WO2020050346A1 - Solid body, sheet, and method for manufacturing solid body - Google Patents

Solid body, sheet, and method for manufacturing solid body Download PDF

Info

Publication number
WO2020050346A1
WO2020050346A1 PCT/JP2019/034904 JP2019034904W WO2020050346A1 WO 2020050346 A1 WO2020050346 A1 WO 2020050346A1 JP 2019034904 W JP2019034904 W JP 2019034904W WO 2020050346 A1 WO2020050346 A1 WO 2020050346A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous cellulose
fine fibrous
solid
less
yellowness
Prior art date
Application number
PCT/JP2019/034904
Other languages
French (fr)
Japanese (ja)
Inventor
孟晨 趙
雄右 轟
裕一 野口
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to JP2020541287A priority Critical patent/JP7342873B2/en
Publication of WO2020050346A1 publication Critical patent/WO2020050346A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres

Definitions

  • the present invention relates to a solid, a sheet, and a method for producing a solid.
  • cellulose fibers have been widely used in clothing, absorbent articles, paper products, and the like.
  • a fine fibrous cellulose having a fiber diameter of 1 ⁇ m or less is known in addition to a fibrous cellulose having a fiber diameter of 10 ⁇ m or more and 50 ⁇ m or less.
  • Fine fibrous cellulose is attracting attention as a new material, and its use is diversified. For example, development of sheets, resin composites, and thickeners containing fine fibrous cellulose has been promoted.
  • fine fibrous cellulose is stably dispersed in an aqueous solvent, it is provided in the form of an aqueous dispersion and is often used for various purposes.
  • a composite or the like is produced by mixing fine fibrous cellulose with a resin, there is a demand that the fine fibrous cellulose be mixed with an organic solvent and used.
  • a technique for producing a fine fibrous cellulose-containing dispersion in which fine fibrous cellulose is dispersed in a dispersion medium containing an organic solvent has been studied.
  • Patent Document 1 discloses a fine fibrous cellulose composite in which a surfactant is adsorbed to fine fibrous cellulose having a carboxy group.
  • a method of agglomerating and dispersing the fine fibrous cellulose in an organic solvent or a method of obtaining fine fibrous cellulose by refining the cellulose fibers in an organic solvent is used. It has been disclosed.
  • Patent Literature 2 discloses a resin composition containing an acrylic resin or a methacrylic resin and a cellulose nanofiber composite in which a hydrocarbon group is bonded to cellulose nanofiber via an amide bond.
  • Patent Document 3 discloses a sheet having a fibrous cellulose having a fiber width of 1000 nm or less and a polymer containing a unit derived from a polyol and a unit derived from a nitrogen-containing compound, and has a water absorption of 5000% or less. It is being considered.
  • a melt kneading method and a casting method are known.
  • a method for producing a solid containing fine fibrous cellulose a method of obtaining a solid by injecting an aqueous dispersion into a large amount of an organic solvent is also known.
  • an organic solvent may remain in the obtained solid, or the surface smoothness of the obtained solid may be low.
  • the present inventors have studied to solve such a problem of the related art with the aim of providing a solid having a low residual ratio of an organic solvent and high surface smoothness.
  • the present inventors have found that fibrous cellulose having an anionic group and a solid containing an organic onium ion as a counter ion of the anionic group have a solid state. It has been found that by setting the water absorption and the yellowness of the body to a predetermined value or less, a solid body having a low residual ratio of the organic solvent and a high surface smoothness can be obtained.
  • the present invention has the following configuration.
  • a sheet containing fibrous cellulose having a fiber width of 1000 nm or less and having an anionic group, and an organic onium ion as a counter ion of the anionic group, A sheet having a sheet having a water absorption of 500% or less and a yellowness (YI 100 ) of 35.0 or less in terms of a film thickness of 100 ⁇ m calculated by the following equation b; (Equation b) Sheet yellowness (YI 100 ) in terms of film thickness 100 ⁇ m sheet yellowness (YI) ⁇ 100 ( ⁇ m) / sheet film thickness ( ⁇ m)
  • the yellowness (YI) of the sheet is the yellowness of the sheet measured by transmitted light measurement according to JIS K 7373.
  • a composition comprising a fibrous cellulose having a fiber width of 1000 nm or less and having an anionic group, an organic onium ion as a counter ion of the anionic group, and a non-aqueous first solvent is hydrogenated with a Hansen solubility parameter of hydrogen.
  • a method for producing a solid comprising a step of contacting a second solvent having a binding term ( ⁇ h) of 12.0 MPa 1/2 or more.
  • a solid having a low residual ratio of the organic solvent and high surface smoothness can be provided.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH added to fibrous cellulose having a phosphate group and the electrical conductivity.
  • FIG. 2 is a graph showing the relationship between the amount of NaOH added to fibrous cellulose having a carboxy group and the electrical conductivity.
  • the present invention relates to a solid body containing fibrous cellulose having a fiber width of 1000 nm or less. Specifically, the present invention relates to a solid containing fibrous cellulose having a fiber width of 1000 nm or less and having an anionic group, and an organic onium ion as a counter ion of the anionic group.
  • the solids have a water absorption of 500% or less, and the pellets produced under the following condition a have a yellowness of 33.0 or less measured by reflected light measurement in accordance with ASTM E313.
  • Condition a After pulverizing the solid into a powder, the powder is press-molded at a surface pressure of 600 MPa for 1 minute so that the basis weight becomes 3000 g / m 2 to obtain a pellet for measuring yellowness.
  • the residual ratio of the organic solvent is small.
  • the residual rate of the organic solvent can be, for example, the weight loss rate when the solid body is heated in vacuum, and when the weight loss rate when the solid body is heated in vacuum is small, It can be determined that the residual ratio of the organic solvent is low.
  • the flammability risk can be determined, for example, by the danger class of a flammable liquid of Class 4 dangerous substances specified in the Fire Service Law of Japan.
  • toluene is a Class 4 Class 1 petroleum and has a high risk after special flammables.
  • Methanol is an alcohol and has a lower risk of ignition than toluene. Water is a non-dangerous substance.
  • the solid body of the present invention has the above configuration, the solid body has high surface smoothness. Specifically, in the obtained solid, the occurrence of wrinkles is suppressed, and the occurrence of cracks and irregularities is also suppressed. Thus, the solid body of the present invention has good surface properties.
  • the water absorption of the solid body may be 500% or less, preferably 200% or less, more preferably 100% or less, and even more preferably 70% or less.
  • the lower limit of the water absorption of the solid body may be 0%.
  • the yellowness of a solid body is a yellowness measured by reflected light measurement in accordance with ASTM E313 of a pellet produced under the above condition a. Specifically, after the solid body is pulverized into a powder, the powder is press-molded at a surface pressure of 600 MPa for one minute so that the basis weight becomes 3000 g / m 2 , thereby forming pellets. The pellet obtained in this manner becomes a yellowness measurement pellet. The yellowness of the yellowness measurement pellet is measured by reflected light measurement according to ASTM E313. The yellowness is measured using a spectrophotometer. As such a measuring device, for example, a spectrophotometer manufactured by Spectroeye; Gretag Macbeth can be used.
  • the yellowness (YI 0 ) of the solid body measured according to ASTM E313 may be 33.0 or less, preferably 30.0 or less, more preferably 27.0 or less, More preferably, it is 25.0 or less.
  • the lower limit of the yellowness (YI 0 ) of the solid is not particularly limited, but is preferably, for example, 0.1 or more.
  • the present invention may also relate to a fibrous cellulose having a fiber width of 1000 nm or less and having an anionic group, and a solid body comprising an organic onium ion as a counter ion of the anionic group.
  • a fibrous cellulose having a fiber width of 1000 nm or less and having an anionic group
  • a solid body comprising an organic onium ion as a counter ion of the anionic group.
  • the water absorption and yellowness of the solid are determined by the type of the organic onium, the content of the organic onium, the amount of the anionic group of the fibrous cellulose, the fiber width of the fibrous cellulose, the solvent used in the process of producing the solid, and the like. Is achieved by properly controlling Among them, in order to achieve the water absorption and the yellowness of the solid, it is preferable to adopt a solvent injection method as a production method, in which case, the injection side solvent and the injection receiving side solvent are appropriately selected. preferable.
  • the form of the solid body of the present invention is not particularly limited, and is preferably, for example, sheet-like, powder-like, or thread-like.
  • the solid body may be a gel body.
  • the solid body is preferably in the form of a sheet, beads (granules), or filaments (filaments), and particularly preferably in the form of sheets.
  • the particle diameter of the beads is preferably 0.1 mm or more and 10 mm or less.
  • the width of the filament is preferably 0.1 mm or more and 10 mm or less, and the length of the filament is preferably 1 mm or more and 10000 mm or less.
  • the solid content concentration of the solid body is preferably 80% by mass or more, more preferably 84% by mass or more, even more preferably 88% by mass or more based on the total mass of the solid body. .
  • the solid content concentration of the solid body may be 100% by mass.
  • the solid body may contain water, and when the solid body contains water, the water content is preferably 20% by mass or less based on the total mass of the solid body, and is preferably 15% by mass or less. %, More preferably 10% by mass or less.
  • the water content in the solid body can be measured by placing 200 mg of the solid body on a moisture meter (MS-70, manufactured by A & D Corporation) and heating at 140 ° C. The water content in the solid body can be calculated from the measured water content.
  • the solid body of the present invention is preferably a molded body.
  • a molded body is a solid body molded into a desired shape.
  • the molded body include sheets, beads, and filaments.
  • the molded article is preferably a sheet, beads or filament, and particularly preferably a sheet.
  • the solid body of the present invention is preferably a sheet. That is, the present invention may relate to a sheet having a fiber width of 1000 nm or less and containing fibrous cellulose having an anionic group and an organic onium ion as a counter ion of the anionic group.
  • the water absorption of the sheet is 500% or less
  • the yellowness (YI 100 ) of the sheet in terms of the film thickness of 100 ⁇ m calculated by the following equation b is 35 or less.
  • the sheet has a water absorption of 500% or less
  • the pellets prepared under the above condition a have a yellowness (YI 0 ) of 33 or less measured according to ASTM E313.
  • the water absorption of the sheet may be 500% or less, preferably 200% or less, more preferably 100% or less, and even more preferably 70% or less.
  • the lower limit of the water absorption of the sheet may be 0%.
  • the yellowness (YI 100 ) of the sheet may be 35 or less, preferably 32 or less, more preferably 28 or less, and even more preferably 24 or less.
  • the lower limit of the yellowness (YI 100 ) of the sheet is not particularly limited, but is preferably, for example, 0.1 or more.
  • the solid body of the present invention has a fiber width of 1000 nm or less and contains fibrous cellulose having an anionic group.
  • the fiber width of the fibrous cellulose having an anionic group is preferably 100 nm or less, more preferably 8 nm or less.
  • the fiber width of the fibrous cellulose can be measured by, for example, observation with an electron microscope.
  • fibrous cellulose having a fiber width of 1000 nm or less may be referred to as fine fibrous cellulose.
  • the fiber width of fibrous cellulose can be measured by, for example, observation with an electron microscope.
  • the average fiber width of the fibrous cellulose is, for example, 1000 nm or less.
  • the average fiber width of the fibrous cellulose is, for example, preferably from 2 nm to 1000 nm, more preferably from 2 nm to 100 nm, further preferably from 2 nm to 50 nm, and more preferably from 2 nm to 10 nm. Particularly preferred.
  • the fibrous cellulose is, for example, a monofibrous cellulose.
  • the average fiber width of the fibrous cellulose is measured, for example, using an electron microscope as follows. First, an aqueous suspension of fibrous cellulose having a concentration of 0.05% by mass or more and 0.1% by mass or less was prepared, and this suspension was cast on a carbon film-coated grid that had been subjected to a hydrophilization treatment, and a TEM observation sample was prepared. And In the case of including a wide fiber, an SEM image of a surface cast on glass may be observed. Next, observation with an electron microscope image is performed at a magnification of 1,000 times, 5000 times, 10,000 times, or 50,000 times depending on the width of the fiber to be observed. However, the sample, observation conditions and magnification are adjusted so as to satisfy the following conditions.
  • One straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
  • a straight line Y perpendicular to the straight line is drawn in the same image, and 20 or more fibers intersect the straight line Y.
  • the width of the fiber that intersects the straight line X and the straight line Y is visually read for an observation image satisfying the above conditions. In this way, at least three or more sets of observation images of the surface portions that do not overlap each other are obtained.
  • the average value of the read fiber width is defined as the average fiber width of the fibrous cellulose.
  • the fiber length of the fibrous cellulose is not particularly limited, but is preferably, for example, 0.1 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.1 ⁇ m or more and 800 ⁇ m or less, and further preferably 0.1 ⁇ m or more and 600 ⁇ m or less. preferable.
  • the fiber length of the fibrous cellulose can be determined by, for example, image analysis using TEM, SEM, or AFM.
  • the fibrous cellulose preferably has an I-type crystal structure.
  • the proportion of the type I crystal structure in the fine fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more. Thereby, further excellent performance can be expected in terms of heat resistance and low linear thermal expansion coefficient.
  • the crystallinity can be determined by measuring the X-ray diffraction profile and using the pattern by a conventional method (Seagal et al., Textile Research Journal, Vol. 29, p. 786, 1959).
  • the axial ratio (fiber length / fiber width) of the fibrous cellulose is not particularly limited, but is preferably, for example, 20 or more and 10,000 or less, and more preferably 50 or more and 1000 or less.
  • the axial ratio is equal to or more than the lower limit, a sheet containing fine fibrous cellulose is easily formed. It is preferable that the axial ratio be equal to or less than the above upper limit, for example, when handling fibrous cellulose as an aqueous dispersion, handling such as dilution becomes easy.
  • the fibrous cellulose in the present embodiment has, for example, both a crystalline region and an amorphous region.
  • the fine fibrous cellulose having both the crystalline region and the non-crystalline region and having a high axial ratio is realized by the method for producing fine fibrous cellulose described below.
  • Fibrous cellulose has an anionic group.
  • the anionic group include a phosphate group or a substituent derived from a phosphate group (sometimes simply referred to as a phosphate group), a carboxy group or a substituent derived from a carboxy group (sometimes referred to simply as a carboxy group), And at least one selected from a sulfone group or a substituent derived from a sulfone group (which may be simply referred to as a sulfone group), and preferably at least one selected from a phosphate group and a carboxy group. More preferably, it is particularly preferably a phosphate group.
  • a phosphate group has a larger number of anionic groups per molecule than a carboxy group or the like, and thus may have more organic onium ions as counterions. It is considered that this makes it easier to adjust the water absorption and the yellowness of the solid body to a preferred range.
  • the phosphate group or a substituent derived from a phosphate group is, for example, a substituent represented by the following formula (1), and is generalized as a phosphorus oxo acid group or a substituent derived from a phosphorus oxo acid.
  • the phosphate group is a divalent functional group corresponding to, for example, phosphoric acid obtained by removing a hydroxy group. Specifically, it is a group represented by —PO 3 H 2 .
  • the substituent derived from the phosphate group includes substituents such as a salt of the phosphate group and a phosphate group.
  • the substituent derived from the phosphate group may be contained in the fibrous cellulose as a group in which the phosphate group is condensed (for example, a pyrophosphate group).
  • the phosphate group may be, for example, a phosphite group (phosphonate group), and the substituent derived from the phosphate group may be a salt of a phosphite group, a phosphite ester group, or the like. Is also good.
  • R represents a hydrogen atom, a saturated-straight hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-straight hydrocarbon group, or an unsaturated-branched hydrocarbon group, respectively.
  • Examples of the saturated-linear hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group, but are not particularly limited.
  • Examples of the saturated-branched hydrocarbon group include an i-propyl group and a t-butyl group, but are not particularly limited.
  • Examples of the saturated-cyclic hydrocarbon group include a cyclopentyl group and a cyclohexyl group, but are not particularly limited.
  • Examples of the unsaturated-linear hydrocarbon group include a vinyl group and an allyl group, but are not particularly limited.
  • Examples of the unsaturated-branched hydrocarbon group include an i-propenyl group and a 3-butenyl group, but are not particularly limited.
  • Examples of the unsaturated-cyclic hydrocarbon group include a cyclopentenyl group and a cyclohexenyl group, but are not particularly limited.
  • Examples of the aromatic group include a phenyl group and a naphthyl group, but are not particularly limited.
  • a group is mentioned, it is not particularly limited.
  • the number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, more preferably 10 or less.
  • ⁇ b + is a monovalent or higher cation composed of an organic or inorganic substance.
  • the monovalent or higher cation composed of an organic substance include aliphatic ammonium and aromatic ammonium, and at least a part of ⁇ b + is an organic onium ion described later.
  • the monovalent or higher cation composed of an inorganic substance include ions of alkali metals such as sodium, potassium, and lithium, and cations of divalent metals such as calcium and magnesium, and hydrogen ions. There is no particular limitation. These can be applied alone or in combination of two or more.
  • the monovalent or higher cation composed of an organic or inorganic substance is preferably, but not particularly limited to, sodium or potassium ions that are less likely to yellow when a ⁇ -containing fiber material is heated and are easily industrially used.
  • the amount of anionic group introduced into the fibrous cellulose is, for example, preferably 0.10 mmol / g or more per 1 g (mass) of the fibrous cellulose, more preferably 0.20 mmol / g or more. It is more preferably at least 0.50 mmol / g, particularly preferably at least 1.00 mmol / g.
  • the amount of the anionic group introduced into the fibrous cellulose is, for example, preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, per 1 g (mass) of the fibrous cellulose. More preferably, it is not more than 00 mmol / g.
  • the unit mmol / g indicates the amount of the substituent per 1 g of the mass of fibrous cellulose when the counter ion of the anionic group is a hydrogen ion (H + ).
  • the amount of anionic group introduced into fibrous cellulose can be measured, for example, by conductivity titration.
  • the amount of introduction is measured by determining the change in conductivity while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing fibrous cellulose.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH added to fibrous cellulose having a phosphate group and the electrical conductivity.
  • the amount of phosphate groups introduced into fibrous cellulose is measured, for example, as follows. First, a slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, before the treatment with the strongly acidic ion exchange resin, a fibrillation treatment similar to the fibrillation treatment step described later may be performed on the measurement target. Next, a change in electric conductivity is observed while adding an aqueous solution of sodium hydroxide, and a titration curve as shown in FIG. 1 is obtained. As shown in FIG.
  • first region the electrical conductivity sharply decreases at first
  • second region the conductivity starts to slightly increase
  • third region the increment of the conductivity increases
  • boundary point between the second region and the third region is defined as the point at which the amount of change in the conductivity twice (ie, the increment (slope) of the conductivity) becomes maximum.
  • the amount of alkali required in the first region is equal to the amount of strongly acidic groups in the slurry used for titration
  • the amount of alkali required in the second region is equal to the amount of weakly acidic groups in the slurry used for titration.
  • the amount of the strongly acidic group matches the amount of the phosphorus atom regardless of the presence or absence of condensation.
  • the value obtained by dividing the alkali amount (mmol) required in the first region of the titration curve obtained above by the solid content (g) in the slurry to be titrated is the phosphate group introduction amount (mmol / mmol). g).
  • FIG. 2 is a graph showing the relationship between the amount of NaOH added to fibrous cellulose having a carboxy group and the electrical conductivity.
  • the amount of carboxy groups introduced into fibrous cellulose is measured, for example, as follows. First, a slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, before the treatment with the strongly acidic ion exchange resin, a fibrillation treatment similar to the fibrillation treatment step described later may be performed on the measurement target. Next, a change in electric conductivity is observed while adding an aqueous solution of sodium hydroxide, and a titration curve as shown in FIG. 2 is obtained. As shown in FIG.
  • the titration curve shows a first region where the increment (slope) of the conductivity becomes substantially constant after the decrease in the electric conductivity, and thereafter, the increment (slope) of the conductivity increases. It is divided into a second area. Note that the boundary point between the first region and the second region is defined as a point at which the amount of change in the conductivity twice (in other words, the increment (slope) of the conductivity becomes maximum).
  • the value obtained by dividing the amount of alkali (mmol) required in the first region of the titration curve by the solid content (g) in the slurry containing fine fibrous cellulose to be titrated is the amount of carboxy group introduced ( mmol / g).
  • the above-mentioned carboxy group introduction amount (mmol / g) refers to the amount of the substituent per mass of fibrous cellulose when the counter ion of the carboxy group is a hydrogen ion (H + ) (hereinafter referred to as the carboxy group amount (acid Type).
  • the carboxy group amount (acid Type) refers to the amount of the substituent per mass of fibrous cellulose when the counter ion of the carboxy group is a hydrogen ion (H + )
  • the carboxy group amount (acid Type) refers to the amount of the substituent per mass of fibrous cellulose when the counter ion of the carboxy group is a hydrogen ion (H + )
  • the carboxy group amount (acid Type) the amount of carboxy groups (hereinafter, the amount of carboxy groups (C type)) of the fibrous cellulose having the cation C as a counter ion.
  • carboxy group introduction amount is calculated by the following formula.
  • Carboxy group introduction amount (C type) carboxy group amount (acid type) / [1+ (W-1) ⁇ (carboxy group amount (acid type)) / 1000]
  • W Formula weight per valence of cation C (eg, 23 for Na, 9 for Al)
  • the amount of the substituent may be lower than it should be. It is desirable to titrate the aqueous sodium solution by 50 ⁇ L every 30 seconds.
  • Fine fibrous cellulose is produced from a fiber raw material containing cellulose.
  • the fiber material containing cellulose is not particularly limited, but pulp is preferably used because it is easily available and inexpensive.
  • Pulp includes, for example, wood pulp, non-wood pulp, and deinked pulp. Examples of the wood pulp include, but are not particularly limited to, hardwood kraft pulp (LBKP), softwood kraft pulp (NBKP), sulfite pulp (SP), dissolved pulp (DP), soda pulp (AP), and unbleached kraft pulp (UKP).
  • Non-wood pulp includes, but is not limited to, cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as hemp, straw and bagasse.
  • Examples of the deinked pulp include, but are not particularly limited to, deinked pulp made from waste paper.
  • one of the above-mentioned types may be used alone, or two or more types may be used in combination.
  • wood pulp and deinked pulp are preferable from the viewpoint of availability.
  • cellulose ratio is large and the yield of fine fibrous cellulose at the time of defibration treatment is high, and the decomposition of cellulose in pulp is small, and fine fibrous cellulose of long fibers having a large axial ratio can be obtained.
  • chemical pulp is more preferable, and kraft pulp and sulfite pulp are more preferable.
  • fine fibrous cellulose of long fibers having a large axial ratio is used, the viscosity tends to increase.
  • cellulose raw material containing cellulose for example, cellulose contained in ascidians or bacterial cellulose produced by acetic acid bacteria can be used.
  • a fiber formed by a linear nitrogen-containing polysaccharide polymer such as chitin or chitosan can be used in place of the fiber material containing cellulose.
  • the step of producing the fine fibrous cellulose includes a step of introducing a phosphate group.
  • the phosphate group introduction step at least one compound selected from compounds capable of introducing a phosphate group by reacting with a hydroxyl group of a cellulose-containing fiber material (hereinafter, also referred to as “compound A”) is converted into cellulose. This is a step of acting on a fiber raw material containing. By this step, a phosphate group-introduced fiber is obtained.
  • the reaction between the fiber material containing cellulose and the compound A is performed in the presence of at least one selected from urea and its derivatives (hereinafter, also referred to as “compound B”). You may.
  • the reaction between the fiber raw material containing cellulose and the compound A may be performed in a state where the compound B is not present.
  • a method of mixing compound A and compound B with a dry, wet, or slurry fiber raw material may be mentioned.
  • a fiber material in a dry state or a wet state it is preferable to use a fiber material in a dry state, because of high uniformity of the reaction.
  • the form of the fiber raw material is not particularly limited, but is preferably, for example, cotton or a thin sheet.
  • the compound A and the compound B may be added to the fiber material in the form of a powder, a solution dissolved in a solvent, or a state in which the compound A and the compound B are heated to a melting point or higher and melted.
  • the compound A and the compound B may be added simultaneously to the fiber raw material, may be added separately, or may be added as a mixture.
  • the method of adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in a solution state, the fiber raw material may be immersed in the solution, absorbed and then taken out. May be added dropwise to the solution.
  • the necessary amount of compound A and compound B may be added to the fiber raw material, or the excessive amount of compound A and compound B may be added to the fiber raw material, respectively, and then the excess compound A and compound B may be squeezed or filtered. It may be removed.
  • Examples of the compound A used in the present embodiment include a compound having a phosphorus atom and capable of forming an ester bond with cellulose, and specifically, phosphoric acid or a salt thereof, phosphorous acid or a salt thereof, dehydration condensation Examples thereof include phosphoric acid or a salt thereof, phosphoric anhydride (diphosphorus pentoxide), and the like, but are not particularly limited.
  • phosphoric acid those having various purities can be used. For example, 100% phosphoric acid (normal phosphoric acid) and 85% phosphoric acid can be used.
  • Examples of the phosphorous acid include 99% phosphorous acid (phosphonic acid).
  • the dehydrated condensed phosphoric acid is obtained by condensing two or more molecules of phosphoric acid by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid.
  • examples of the phosphate, phosphite, and dehydrated condensed phosphate include phosphoric acid, lithium salt, sodium salt, potassium salt, and ammonium salt of phosphoric acid or dehydrated condensed phosphoric acid. It can be the sum.
  • phosphoric acid, phosphoric acid, phosphoric acid from the viewpoint of high efficiency of introduction of the phosphate group, easier to improve the defibration efficiency in the defibration step described later, low cost, and industrially applicable
  • a sodium salt, a potassium salt of phosphoric acid, or an ammonium salt of phosphoric acid is preferable, and phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, or ammonium dihydrogen phosphate is more preferable.
  • the amount of the compound A added to the fiber raw material is not particularly limited.
  • the amount of the phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, further preferably 2% by mass or more and 30% by mass or less.
  • the amount of the phosphorus atom added to the fiber raw material within the above range, the yield of fine fibrous cellulose can be further improved.
  • the amount of phosphorus atoms added to the fiber raw material to be equal to or less than the above upper limit, the effect of improving the yield and the cost can be balanced.
  • the compound B used in this embodiment is at least one selected from urea and its derivatives as described above.
  • Compound B includes, for example, urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like.
  • the compound B is preferably used as an aqueous solution.
  • the amount of the compound B to be added to the fiber raw material is not particularly limited, but is, for example, preferably 1% by mass or more and 500% by mass or less, more preferably 10% by mass or more and 400% by mass or less, More preferably, it is 100% by mass or more and 350% by mass or less.
  • amides or amines may be included in the reaction system.
  • the amide include formamide, dimethylformamide, acetamide, dimethylacetamide and the like.
  • amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine, and the like. Among these, it is known that triethylamine particularly works as a good reaction catalyst.
  • the phosphoric acid group introduction step it is preferable to add or mix the compound A or the like to the fiber raw material and then perform a heat treatment on the fiber raw material.
  • the heat treatment temperature it is preferable to select a temperature at which a phosphate group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis of the fiber.
  • the heat treatment temperature is, for example, preferably from 50 ° C. to 300 ° C., more preferably from 100 ° C. to 250 ° C., and even more preferably from 130 ° C. to 200 ° C.
  • equipment having various heat media can be used for the heat treatment, for example, a stirring drying apparatus, a rotary drying apparatus, a disk drying apparatus, a roll heating apparatus, a plate heating apparatus, a fluidized bed drying apparatus, an air current A drying device, a reduced-pressure drying device, an infrared heating device, a far-infrared heating device, and a microwave heating device can be used.
  • the compound A is added to a thin sheet-form fiber material by impregnation or the like, and then the fiber material and the compound A are heated while kneading or stirring with a kneader or the like.
  • the concentration unevenness of the compound A in the fiber raw material and more uniformly introduce the phosphate group to the surface of the cellulose fiber contained in the fiber raw material.
  • the dissolved compound A is attracted to the water molecules by the surface tension and moves to the fiber material surface similarly (that is, the concentration unevenness of the compound A decreases). It can be considered that this is caused by the fact that it can be suppressed.
  • the heating device used for the heat treatment always generates, for example, the water retained by the slurry and the water generated by the dehydration condensation (phosphate esterification) reaction between compound A and the hydroxyl group contained in cellulose or the like in the fiber material. It is preferable that the device can be discharged outside the device system. As such a heating device, for example, an air-blowing oven or the like can be mentioned. By constantly discharging the water in the system, it is possible to suppress the hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of the phosphorylation, and also to suppress the acid hydrolysis of the sugar chains in the fiber. it can. For this reason, it becomes possible to obtain fine fibrous cellulose having a high axial ratio.
  • the time of the heat treatment is, for example, preferably from 1 second to 300 minutes after water is substantially removed from the fiber raw material, more preferably from 1 second to 1000 seconds, and more preferably from 10 seconds to 800 seconds. Is more preferable.
  • the amount of the phosphate group introduced can be set in a preferable range.
  • the phosphate group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphate group introduction step twice or more, a large number of phosphate groups can be introduced into the fiber raw material.
  • a case where the phosphate group introduction step is performed twice is exemplified.
  • the amount of phosphate groups introduced into the fiber raw material is, for example, preferably 0.10 mmol / g or more, more preferably 0.20 mmol / g or more, and more preferably 0.50 mmol / g per 1 g (mass) of fine fibrous cellulose. g or more, more preferably 1.00 mmol / g or more. Further, the amount of the phosphate group introduced into the fiber raw material is, for example, preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, per 1 g (mass) of fine fibrous cellulose. More preferably, it is not more than 00 mmol / g.
  • the amount of the phosphoric acid group By setting the amount of the phosphoric acid group to be in the above range, it is possible to easily make the fiber raw material finer and to increase the stability of the fine fibrous cellulose. Further, by setting the amount of the phosphate group to be in the above range, the content of organic onium ions that can be included in the fibrous cellulose can be adjusted to an appropriate range, whereby the dispersion of the fibrous cellulose in the organic solvent can be performed. Sex can be effectively improved.
  • the step of producing the fine fibrous cellulose includes a step of introducing a carboxy group.
  • the carboxy group introduction step has a compound having a carboxylic acid-derived group or a derivative thereof, or a carboxylic acid-derived group, or a carboxylic acid-derived compound or a carboxylic acid-derived group, for a fiber raw material containing cellulose, such as ozone oxidation or oxidation by the Fenton method, or TEMPO oxidation treatment. It is carried out by treating with an acid anhydride of a compound or a derivative thereof.
  • Examples of the compound having a group derived from a carboxylic acid include, but are not particularly limited to, dicarboxylic acid compounds such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid, and itaconic acid, and citric acid and aconitic acid. Tricarboxylic acid compounds.
  • the derivative of the compound having a group derived from a carboxylic acid is not particularly limited, and examples thereof include an imidized product of an acid anhydride of a compound having a carboxy group and a derivative of an acid anhydride of a compound having a carboxy group.
  • the imidized product of the acid anhydride of the compound having a carboxy group is not particularly limited, and examples thereof include imidized products of dicarboxylic acid compounds such as maleimide, succinimide and phthalic imide.
  • Examples of the acid anhydride of the compound having a group derived from a carboxylic acid include, but are not particularly limited to, maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, and dicarboxylic acid compounds such as itaconic anhydride. Acid anhydrides.
  • the derivative of the acid anhydride of the compound having a group derived from a carboxylic acid is not particularly limited. For example, dimethylmaleic anhydride, diethylmaleic anhydride, and a compound having a carboxy group such as diphenylmaleic anhydride can be used.
  • An acid anhydride in which at least a part of hydrogen atoms are substituted with a substituent such as an alkyl group or a phenyl group is exemplified.
  • the treatment be performed, for example, at a pH of 6 to 8.
  • a neutral TEMPO oxidation process is also called a neutral TEMPO oxidation process.
  • the TEMPO oxidation treatment may be performed at a pH of 10 or more and 11 or less. Such a treatment is also called an alkaline TEMPO oxidation treatment.
  • the alkali TEMPO oxidation treatment can be performed, for example, by adding a nitroxy radical such as TEMPO as a catalyst, sodium bromide as a cocatalyst, and sodium hypochlorite as an oxidizing agent to pulp as a fiber raw material. .
  • the amount of the carboxy group introduced into the fiber raw material varies depending on the type of the substituent.
  • the amount is preferably 0.10 mmol / g or more per 1 g (mass) of fine fibrous cellulose. , 0.20 mmol / g or more, more preferably 0.50 mmol / g or more, particularly preferably 0.90 mmol / g or more. Further, it is preferably at most 2.5 mmol / g, more preferably at most 2.20 mmol / g, even more preferably at most 2.00 mmol / g.
  • the substituent when it is a carboxymethyl group, it may be 5.8 mmol / g or less per 1 g (mass) of fine fibrous cellulose. Furthermore, by setting the amount of the carboxy group to be in the above range, the content of organic onium ions that can be included in the fibrous cellulose can be in an appropriate range, thereby dispersing the fibrous cellulose in an organic solvent. Can be effectively increased.
  • a washing step can be performed on the anionic group-introduced fiber as necessary.
  • the washing step is performed, for example, by washing the anionic group-introduced fiber with water or an organic solvent. Further, the cleaning step may be performed after each step described later, and the number of times of cleaning performed in each cleaning step is not particularly limited.
  • the fiber raw material may be subjected to an alkali treatment between the anionic group introduction step and the defibration treatment step described below.
  • the method of the alkali treatment is not particularly limited, and includes, for example, a method of dipping the anionic group-introduced fiber in an alkaline solution.
  • the alkali compound contained in the alkali solution is not particularly limited, and may be an inorganic alkali compound or an organic alkali compound. In the present embodiment, it is preferable to use, for example, sodium hydroxide or potassium hydroxide as the alkali compound because of high versatility.
  • the solvent contained in the alkaline solution may be either water or an organic solvent. Among them, the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water.
  • an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide is preferable because of high versatility.
  • the temperature of the alkali solution in the alkali treatment step is not particularly limited, but is preferably, for example, 5 ° C or more and 80 ° C or less, more preferably 10 ° C or more and 60 ° C or less.
  • the immersion time of the anionic group-introduced fiber in the alkali solution in the alkali treatment step is not particularly limited, but is preferably, for example, 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less.
  • the amount of the alkali solution used in the alkali treatment is not particularly limited, but is, for example, preferably from 100% by mass to 100,000% by mass, and more preferably from 1,000% by mass to 10,000% by mass, based on the absolute dry mass of the anionic group-introduced fiber. Is more preferable.
  • the anionic group-introduced fiber may be washed with water or an organic solvent after the anionic group introduction step and before the alkali treatment step. After the alkali treatment step and before the fibrillation treatment step, it is preferable to wash the alkali-treated anionic group-introduced fiber with water or an organic solvent from the viewpoint of improving the handleability.
  • an acid treatment may be performed on the fiber raw material between the step of introducing an anionic group and the defibration step described below.
  • an anionic group introduction step, an acid treatment, an alkali treatment and a fibrillation treatment may be performed in this order.
  • the method of the acid treatment is not particularly limited, and examples thereof include a method of immersing the fiber raw material in an acid-containing acid solution.
  • the concentration of the acidic liquid used is not particularly limited, but is preferably, for example, 10% by mass or less, and more preferably 5% by mass or less.
  • the pH of the acidic liquid used is not particularly limited, but is preferably, for example, 0 or more and 4 or less, and more preferably 1 or more and 3 or less.
  • As the acid contained in the acidic liquid for example, an inorganic acid, a sulfonic acid, a carboxylic acid and the like can be used.
  • Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like.
  • Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like.
  • Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid and the like. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
  • the temperature of the acid solution in the acid treatment is not particularly limited, but is preferably, for example, 5 ° C or more and 100 ° C or less, and more preferably 20 ° C or more and 90 ° C or less.
  • the immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably, for example, 5 minutes or more and 120 minutes or less, and more preferably 10 minutes or more and 60 minutes or less.
  • the amount of the acid solution used in the acid treatment is not particularly limited, but is preferably, for example, 100% by mass to 100,000% by mass, and more preferably 1,000% by mass to 10,000% by mass, based on the absolute dry mass of the fiber raw material. Is more preferred.
  • Fine fibrous cellulose is obtained by defibrating the anionic group-introduced fiber in the defibration step.
  • a defibrating device can be used.
  • the defibrating apparatus is not particularly limited, but includes, for example, a high-speed defibrating machine, a grinder (stone mill-type crusher), a high-pressure homogenizer or an ultra-high-pressure homogenizer, a high-pressure collision-type crusher, a ball mill, a bead mill, a disc refiner, a conical refiner, and a twin-screw.
  • a kneader, a vibration mill, a homomixer under high-speed rotation, an ultrasonic disperser, a beater, or the like can be used.
  • the fibrillation treatment step for example, it is preferable to dilute the anionic group-introduced fiber with a dispersion medium to form a slurry.
  • a dispersion medium one or more kinds selected from water and an organic solvent such as a polar organic solvent can be used.
  • the polar organic solvent is not particularly limited, but, for example, alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents, and the like are preferable.
  • the alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like.
  • polyhydric alcohols include ethylene glycol, propylene glycol, glycerin and the like.
  • ketones include acetone and methyl ethyl ketone (MEK).
  • the ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-butyl ether, and propylene glycol monomethyl ether.
  • the esters include ethyl acetate, butyl acetate and the like.
  • the aprotic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
  • the solid content concentration of the fine fibrous cellulose during the defibration treatment can be set as appropriate. Further, the slurry obtained by dispersing the anionic group-introduced fiber in the dispersion medium may contain a solid content other than the anionic group-introduced fiber such as urea having hydrogen bonding properties.
  • the solid of the present invention contains an organic onium ion as a counter ion of the anionic group of the fibrous cellulose.
  • an organic onium ion is present as a counter ion of fibrous cellulose, but a free organic onium ion may be present in the solid. Note that the organic onium ion does not form a covalent bond with the fibrous cellulose.
  • the organic onium ion preferably satisfies at least one condition selected from the following (a) and (b).
  • the organic onium ion satisfies at least one condition selected from the above (a) and (b)
  • the dispersibility of fibrous cellulose in an organic solvent can be more effectively increased.
  • the hydrocarbon group having 5 or more carbon atoms is preferably an alkyl group having 5 or more carbon atoms or an alkylene group having 5 or more carbon atoms, and an alkyl group having 6 or more carbon atoms or an alkylene having 6 or more carbon atoms.
  • the organic onium ion is preferably an organic onium ion having an alkyl group having 5 or more carbon atoms, more preferably an organic onium ion having an alkyl group having 5 or more carbon atoms and having a total carbon number of 17 or more. preferable.
  • the organic onium ion is preferably an organic onium ion represented by the following general formula (A).
  • M is preferably a nitrogen atom or a phosphorus atom
  • R 1 to R 4 each independently represent a hydrogen atom or an organic group.
  • at least one of R 1 to R 4 is preferably an organic group having 5 or more carbon atoms, or the total number of carbon atoms of R 1 to R 4 is preferably 17 or more.
  • M is preferably a nitrogen atom. That is, the organic onium ion is preferably an organic ammonium ion.
  • at least one of R 1 to R 4 is preferably an alkyl group having 5 or more carbon atoms, and the total number of carbon atoms of R 1 to R 4 is preferably 17 or more.
  • Such organic onium ions include, for example, lauryl trimethyl ammonium, cetyl trimethyl ammonium, stearyl trimethyl ammonium, octyl dimethyl ethyl ammonium, lauryl dimethyl ethyl ammonium, didecyl dimethyl ammonium, lauryl dimethyl benzyl ammonium, tributyl benzyl ammonium, methyl tri-n -Octyl ammonium, hexyl ammonium, n-octyl ammonium, dodecyl ammonium, tetradecyl ammonium, hexadecyl ammonium, stearyl ammonium, N, N-dimethyldodecyl ammonium, N, N-dimethyltetradecyl ammonium, N, N-dimethylhexadecyl Ammonium, N, N-dimethyl-n-octadecyl
  • the central element of the organic onium ion is bonded to a total of four groups or hydrogen.
  • the number of bonding groups is less than four, the remaining hydrogen atoms are bonded to form an organic onium ion.
  • N N-didodecylmethylammonium
  • hydrogen is bonded to the other one to form an organic onium ion.
  • the mass ratio of C atoms to O atoms is preferably as large as possible.
  • C / O ratio it is preferable that C / O> 5.
  • the molecular weight of the organic onium ion is preferably 2000 or less, more preferably 1800 or less.
  • the molecular weight of the organic onium ion is preferably 2000 or less, more preferably 1800 or less.
  • the content of the organic onium ion is preferably 1.0% by mass or more, more preferably 1.5% by mass or more, and more preferably 2.0% by mass or more based on the total mass of the solid. Is more preferable. Further, the content of the organic onium ion is preferably 90% by mass or less, more preferably 80% by mass or less based on the total mass of the solid.
  • the content of the organic onium ion in the solid body is preferably 0.5 to 2 times the molar amount of the anionic group contained in the fibrous cellulose, but is not particularly limited. .
  • the content of the organic onium ion can be measured by tracking atoms typically contained in the organic onium ion. Specifically, the nitrogen atom is measured when the organic onium ion is an ammonium ion, and the phosphorus atom is measured when the organic onium ion is a phosphonium ion.
  • the fibrous cellulose contains a nitrogen atom or a phosphorus atom in addition to the organic onium ion
  • a method of extracting only the organic onium ion for example, performing an extraction operation with an acid, and then measuring the amount of the target atom just do it.
  • the organic onium ion is preferably an ion exhibiting hydrophobicity. That is, the fibrous cellulose in the present invention exhibits hydrophobicity by having an organic onium ion, and as a result, the water absorption of the solid body can be easily adjusted to a desired range.
  • the solid body of the present invention may further contain a resin. Even when the solid body of the present invention contains a resin, the solid body has a water absorption of 500% or less, and is measured by reflected light measurement in accordance with ASTM E313 of the pellet produced under the condition a. The resulting yellowness is 33.0 or less.
  • the type of the resin is not particularly limited, and examples thereof include a thermoplastic resin and a thermosetting resin.
  • the resin examples include polyolefin resin, acrylic resin, polycarbonate resin, polyester resin, polyamide resin, silicone resin, fluorine resin, chlorine resin, epoxy resin, melamine resin, phenol resin, and polyurethane resin.
  • Resins, diallyl phthalate resins, alcohol resins, cellulose derivatives, and precursors of these resins can be mentioned.
  • a cellulose derivative carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, etc. can be mentioned, for example.
  • the solid body of the present invention may contain a resin precursor as the resin.
  • the type of the resin precursor is not particularly limited, and examples thereof include a thermoplastic resin and a thermosetting resin precursor.
  • the precursor of the thermoplastic resin means a monomer or an oligomer having a relatively low molecular weight used for producing the thermoplastic resin.
  • the precursor of the thermosetting resin means a monomer or an oligomer having a relatively low molecular weight that can form a thermosetting resin by causing a polymerization reaction or a cross-linking reaction by the action of light, heat, and a curing agent.
  • the solid body of the present invention may further contain a water-soluble polymer as a resin in addition to the above-mentioned resin species.
  • the water-soluble polymer include synthetic water-soluble polymers (eg, carboxyvinyl polymer, polyvinyl alcohol, alkyl methacrylate / acrylic acid copolymer, polyvinylpyrrolidone, sodium polyacrylate, polyethylene glycol, diethylene glycol, triethylene glycol, propylene) Glycol, dipropylene glycol, polypropylene glycol, isoprene glycol, hexylene glycol, 1,3-butylene glycol, polyacrylamide, etc.), thickening polysaccharides (eg, xanthan gum, guar gum, tamarind gum, carrageenan, locust bean gum, quince seed) , Alginic acid, pullulan, carrageenan, pectin, etc.), cationized starch, raw starch, oxidized starch
  • the content of the resin contained in the solid body is preferably 40% by mass or less, more preferably 30% by mass or less, based on the total mass of the solid matter contained in the solid body. More preferably, it is 20% by mass or less. Further, the content of the resin contained in the solid body may be 1% by mass or more based on the total mass of the solid matter contained in the solid body. The resin does not have to be substantially contained in the solid body. The state in which the resin is not substantially contained means that the content of the resin is less than 1% by mass relative to the total mass of the solid contained in the solid.
  • the solid body may further contain other optional components.
  • the optional component include a moisture absorbent.
  • the moisture absorbent include silica gel, zeolite, alumina, carboxymethyl cellulose, polyvinyl alcohol-soluble cellulose acetate, polyethylene glycol, sepiolite, calcium oxide, diatomaceous earth, activated carbon, activated clay, white carbon, calcium chloride, magnesium chloride, and potassium acetate.
  • surfactants organic ions, coupling agents, inorganic layered compounds, inorganic compounds, leveling agents, preservatives, defoamers, organic particles, lubricants, antistatic agents, ultraviolet protection agents, Dyes, pigments, stabilizers, magnetic powders, alignment promoters, plasticizers, dispersants, crosslinking agents, and the like can be given.
  • the content of the optional components contained in the solid is preferably 40% by mass or less, more preferably 30% by mass or less, based on the total mass of the solids contained in the solid. , 20% by mass or less.
  • the content of the organic solvent in the solid is preferably 4.5% by mass or less, more preferably 2% by mass or less, based on the total mass of the solids contained in the solid. It is more preferably 1% by mass or less.
  • the content of the organic solvent in the solid may be 0% by mass based on the total mass of the solids contained in the solid. As described above, in the solid body of the present invention, it is preferable that the content of the organic solvent is small, whereby the risk of ignition can be reduced.
  • the method for producing a solid body includes a composition having a fiber width of 1,000 nm or less, a fibrous cellulose having an anionic group, an organic onium ion as a counter ion of the anionic group, and a non-aqueous first solvent, It is preferable to include a step of contacting the second solvent having a hydrogen bond term ( ⁇ h) of the Hansen solubility parameter of 12.0 MPa 1/2 or more.
  • the method for producing a solid body of the present invention preferably includes the second solvent contacting step, whereby the water absorption and the yellowness of the solid body can be easily set in a desired range. .
  • Fiber width is 1000 nm or less, fibrous cellulose having an anionic group, a composition containing an organic onium ion as a counter ion of the anionic group, and a non-aqueous first solvent, the fine fibrous cellulose-containing slurry, Adding an organic onium ion or a compound that forms an organic onium ion by neutralization to obtain a fine fibrous cellulose concentrate, and dispersing the obtained fine fibrous cellulose concentrate in a non-aqueous first solvent to form a composition And obtaining a product.
  • the organic onium ion is preferably added as a solution containing the organic onium ion, and more preferably as an aqueous solution containing the organic onium ion.
  • the aqueous solution containing an organic onium ion usually contains an organic onium ion and a counter ion (anion).
  • a counter ion anion
  • the organic onium ion may be dissolved in water as it is.
  • Organic onium ions may be generated only after neutralization with an acid, for example, dodecylamine.
  • the organic onium ion is obtained by reacting a compound that forms an organic onium ion by neutralization with an acid.
  • the acid used for neutralization include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, and organic acids such as lactic acid, acetic acid, formic acid, and oxalic acid.
  • a compound that forms an organic onium by neutralization may be directly added to the fibrous cellulose-containing slurry, and the anionic group contained in the fibrous cellulose may be used as a counter ion to cause organic onium ionization.
  • the addition amount of the organic onium ion in the step of obtaining the concentrate is preferably 2% by mass or more, more preferably 10% by mass or more, and more preferably 50% by mass or more based on the total mass of the fibrous cellulose. More preferably, it is particularly preferably 100% by mass or more. In addition, it is preferable that the addition amount of an organic onium ion is 1000 mass% or less with respect to the total mass of fibrous cellulose. Further, the number of moles of the organic onium ion to be added is preferably 0.2 times or more, more preferably 0.5 times or more of the value obtained by multiplying the amount (mol number) of the anionic group contained in the fibrous cellulose by the valence.
  • the number of moles of the organic onium ion to be added is preferably 10 times or less the value obtained by multiplying the amount (mol number) of the anionic group contained in the fibrous cellulose by the valence.
  • the fibrous cellulose concentrate can be recovered by filtering the slurry containing the fibrous cellulose in which the aggregates are generated under reduced pressure.
  • the obtained fibrous cellulose concentrate may be washed with ion-exchanged water. By repeatedly washing the fibrous cellulose concentrate with ion-exchanged water, excess organic onium ions and the like contained in the fibrous cellulose concentrate can be removed.
  • the ratio of the N atom content to the P atom content (the value of N / P) in the obtained fibrous cellulose concentrate is preferably larger than 1.2, more preferably larger than 2.0. preferable. Further, the ratio of the N atom content to the P atom content (the value of N / P) in the obtained fibrous cellulose concentrate is preferably 5.0 or less.
  • the content of P atoms and the content of N atoms in the fibrous cellulose concentrate can be appropriately calculated by elemental analysis. As the elemental analysis, for example, a trace nitrogen analysis or a molybdenum blue method can be performed after an appropriate pretreatment. When the composition other than the fibrous cellulose concentrate contains P atoms and N atoms, the composition may be separated from the fibrous cellulose concentrate by an appropriate method, followed by elemental analysis.
  • the solid content concentration of the obtained fibrous cellulose concentrate is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 20% by mass or more. Further, the solid content concentration of the fibrous cellulose concentrate is preferably 99.5% by mass or less. Note that a step of drying the fibrous cellulose concentrate may be provided so that the solid content concentration of the fibrous cellulose concentrate is in a desired range.
  • the step of dispersing the obtained fine fibrous cellulose concentrate in the non-aqueous first solvent to obtain a composition is a step of redispersing the fine fibrous cellulose concentrate.
  • the non-aqueous first solvent is preferably a solvent other than water.
  • the non-aqueous first solvent is preferably an organic solvent.
  • organic solvent examples include methanol, ethanol, n-propyl alcohol, isopropyl alcohol (IPA), 1-butanol, and m- Cresol, glycerin, acetic acid, pyridine, tetrahydrofuran (THF), acetone, methyl ethyl ketone (MEK), ethyl acetate, aniline, N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF) ), Hexane, cyclohexane, benzene, toluene, p-xylene, diethyl ether chloroform and the like.
  • NMP N-methyl-2-pyrrolidone
  • DMSO dimethyl sulfoxide
  • DMF N-dimethylformamide
  • a mixed solvent obtained by mixing two or more of these organic solvents may be used.
  • NMP N-methyl-2-pyrrolidone
  • DMSO dimethyl sulfoxide
  • MEK methyl ethyl ketone
  • toluene and methanol are preferably used.
  • the relative dielectric constant of the non-aqueous first solvent at 25 ° C. is preferably 60 or less, and more preferably 50 or less. Since the fine fibrous cellulose used in the present invention can exhibit excellent dispersibility even in a non-aqueous first solvent having a low relative dielectric constant, the relative dielectric constant of the non-aqueous first solvent at 25 ° C. It may be 40 or less, 30 or less, or 20 or less.
  • ⁇ p of Hansen solubility parameters of the non-aqueous first solvent it is preferably, 10 MPa 1/2 or more 19 MPa 1/2 or less is 5 MPa 1/2 or more 20 MPa 1/2 or less Is more preferable, and it is more preferable that it is 12 MPa1 / 2 or more and 18 MPa1 / 2 or less.
  • .delta.h a hydrogen bond of the HSP value is preferably 5 MPa 1/2 or more 40 MPa 1/2 or less, more preferably 5 MPa 1/2 or more 30 MPa 1/2 or less, 5 MPa 1/2 More preferably, it is not less than 20 MPa 1/2 .
  • ⁇ p is in the range of 0 MPa 1/2 to 4 MPa 1/2 and ⁇ h is in the range of 0 MPa 1/2 to 6 MPa 1/2 at the same time.
  • a dispersing device used for dispersing the fine fibrous cellulose concentrate in the non-aqueous first solvent for example, the same dispersing device as described in the above-described fibrillation treatment can be used.
  • the fine fibrous cellulose concentrate may be dispersed in an organic solvent by performing ultrasonic treatment.
  • the step of producing the solid includes the step of bringing the composition obtained in the step of obtaining the composition into contact with a second solvent having a hydrogen bond term ( ⁇ h) of the Hansen solubility parameter of 12.0 MPa 1/2 or more.
  • a second solvent having a hydrogen bond term ( ⁇ h) of the Hansen solubility parameter of 12.0 MPa 1/2 or more include, for example, water, methanol, ethanol, n-propyl alcohol, isopropyl alcohol (IPA), 1-butanol, m -Cresol, glycerin, acetic acid and the like.
  • IPA isopropyl alcohol
  • 1-butanol 1-butanol
  • m -Cresol 1-butanol
  • glycerin glycerin
  • acetic acid acetic acid and the like.
  • a mixed solvent obtained by mixing two or more of these solvents may be used.
  • the second solvent is preferably at least one selected from water and methanol, and more preferably water
  • the first non-aqueous solvent and the second solvent used in the method for producing a solid are preferably compatible with each other.
  • the difference in the hydrogen bond term ( ⁇ h) of the Hansen solubility parameter between the nonaqueous first solvent and the second solvent is preferably 15 MPa 1/2 or more, more preferably 20 MPa 1/2 or more, and 25 MPa More preferably, it is 1/2 or more.
  • the relative permittivity of the second solvent at 25 ° C. is preferably 18 or more, more preferably 30 or more, and further preferably 60 or more.
  • ⁇ p of the Hansen solubility parameter (HSP value) of the second solvent is preferably 5 MPa 1/2 or more and 20 MPa 1/2 or less, and is preferably 10 MPa 1/2 or more and 20 MPa 1/2 or less. Is more preferred.
  • .delta.h a hydrogen bond of the HSP value is preferably 12 MPa 1/2 or more, more preferably 20 MPa 1/2 or more, more preferably 40 MPa 1/2 or more.
  • the step of bringing the composition into contact with the second solvent is preferably a step of immersing the composition in the second solvent.
  • the composition may be immersed in the second solvent by injecting or dropping the composition into the second solvent.
  • the solid body is a filament
  • the step of performing When the solid is in the form of a sheet, the composition may be injected into the second solvent in the form of a sheet, or the sheet precursor formed in the sheet mold may be immersed in the second solvent.
  • the sheet precursor When the sheet precursor is immersed in the second solvent, the sheet precursor may be immersed in the second solvent together with the sheet mold.
  • the step of bringing the composition into contact with the second solvent it is preferable to bring the composition into contact with the second solvent in an amount of at least 40 times the total volume of the composition. That is, it is preferable that the composition be present in a second solvent atmosphere. Further, the second solvent may be exchanged or circulated as necessary.
  • the non-aqueous first solvent is removed to form a solid.
  • the step of producing the solid it is preferable to include, after the step of bringing the composition into contact with the second solvent, a step of further immersing the solid obtained in the step in the second solvent for a predetermined time or more.
  • the solid is preferably immersed in the second solvent for 1 hour or more, more preferably for 5 hours or more, and even more preferably for 8 hours or more.
  • the upper limit of the immersion time is not particularly limited, but is preferably, for example, 100 hours or less.
  • the drying temperature is preferably at least 30 ° C, more preferably at least 40 ° C, even more preferably at least 50 ° C. Further, the drying temperature is preferably 200 ° C. or less.
  • the drying time is preferably 1 minute or more and 100 hours or less.
  • the present invention may relate to a fibrous cellulose-containing composition obtained by dispersing the solid obtained through the above-described steps again in an organic solvent.
  • the fibrous cellulose-containing composition may further contain a resin. Since the solid body of the present invention uses fibrous cellulose having excellent compatibility with the organic solvent and the resin, the resin composite formed from the fibrous cellulose-containing composition has excellent strength, Furthermore, it has excellent dimensional stability. In addition, the resin composite formed from the fibrous cellulose-containing composition has excellent transparency.
  • the resin composite formed from the fibrous cellulose-containing composition may be in the form of a sheet.
  • the method for forming the sheet includes a step of applying the above-described fibrous cellulose-containing composition onto a substrate.
  • the material of the base material used in the coating step is not particularly limited, but those having high wettability to the composition may be able to suppress shrinkage of the sheet during drying, etc. It is preferable to select one that can be easily peeled off. Above all, a resin film or plate or a metal film or plate is preferable, but not particularly limited.
  • a stainless steel film or plate, a brass film or plate, or the like can be used.
  • the composition has low viscosity and spreads on the substrate, use a fixed damming frame on the substrate to obtain a sheet of a predetermined thickness and basis weight. May be.
  • the damming frame is not particularly limited. For example, it is preferable to select a frame that can easily peel off the end of the sheet that adheres after drying. From such a viewpoint, a resin plate or a metal plate is more preferable.
  • a resin plate such as an acrylic plate, a polyethylene terephthalate plate, a vinyl chloride plate, a polystyrene plate, a polypropylene plate, a polycarbonate plate, a polyvinylidene chloride plate, and a metal plate such as an aluminum plate, a zinc plate, a copper plate, and an iron plate And those obtained by oxidizing the surface thereof, and forming a stainless steel plate, a brass plate, or the like.
  • a resin plate such as an acrylic plate, a polyethylene terephthalate plate, a vinyl chloride plate, a polystyrene plate, a polypropylene plate, a polycarbonate plate, a polyvinylidene chloride plate, and a metal plate such as an aluminum plate, a zinc plate, a copper plate, and an iron plate And those obtained by oxidizing the surface thereof, and forming a stainless steel plate, a brass plate, or the like.
  • a coating machine for coating the composition on the base material is not particularly limited, and for example, a roll coater, a gravure coater, a die coater, a curtain coater, an air doctor coater, or the like can be used. Die coaters, curtain coaters, and spray coaters are particularly preferred because the thickness of the coating (sheet) can be made more uniform.
  • the temperature and the ambient temperature of the liquid composition when applying the composition to the substrate are not particularly limited, but are preferably, for example, 5 ° C or more and 80 ° C or less, more preferably 10 ° C or more and 60 ° C or less.
  • the temperature is more preferably from 15 ° C to 50 ° C, and particularly preferably from 20 ° C to 40 ° C.
  • the composition is prepared such that the finished basis weight of the sheet is preferably 10 g / m 2 or more and 100 g / m 2 or less, more preferably 20 g / m 2 or more and 60 g / m 2 or less. It is preferable to apply to the substrate. By coating so that the grammage is in the above range, a sheet having more excellent strength can be obtained.
  • the coating step includes a step of drying the composition applied on the substrate.
  • the step of drying the composition is not particularly limited, and is performed, for example, by a non-contact drying method, a method of drying while restraining a sheet, or a combination thereof.
  • the non-contact drying method is not particularly limited. For example, a method of drying by heating with hot air, infrared rays, far infrared rays or near infrared rays (heating drying method), or a method of drying by vacuum (vacuum drying method) is applied. can do.
  • the heat drying method and the vacuum drying method may be combined, but usually, the heat drying method is applied.
  • Drying with infrared, far-infrared, or near-infrared light can be performed using, for example, but not limited to, an infrared device, a far-infrared device, or a near-infrared device.
  • the heating temperature in the heating and drying method is not particularly limited, but is, for example, preferably from 20 ° C to 150 ° C, more preferably from 25 ° C to 105 ° C.
  • the heating temperature is equal to or higher than the lower limit, the dispersion medium can be quickly volatilized.
  • the heating temperature is equal to or lower than the upper limit, the cost required for heating and the discoloration of fibrous cellulose due to heat can be suppressed.
  • the use of the solid body of the present invention is not particularly limited, but a reinforcing material, an interior material, an exterior material, a packaging material, an electronic material, an optical material, an acoustic material, a process material, a transport equipment member, an electronic equipment member, It is suitable for applications such as members of electrochemical devices.
  • the solid of the present invention is a filament
  • it can be used for ropes, fishing lines, medical sutures and the like. Further, it can be used as a reinforcing material by being added to resin, rubber, cement and the like.
  • a nonwoven fabric may be formed by randomly laminating filaments. Nonwoven fabrics using filaments are suitable for applications such as filters, battery separators, nets, interior materials, exterior materials, packaging materials, clothing materials, and medical materials.
  • the solid body of the present invention is a bead, it can be used as an ink, a paint, a molded article, a film, a coating agent, etc. by adding it to a resin or a solvent in addition to an adsorbent and an abrasive.
  • the solid body of the present invention is a sheet
  • it is suitable for use in light-transmitting substrates such as various display devices and various solar cells.
  • it is also suitable for use as substrates for electronic devices, separators for electrochemical devices, members for home appliances, window materials for various vehicles and buildings, interior materials, exterior materials, packaging materials, and the like.
  • it is also suitable for applications in which the sheet itself is used as a reinforcing material.
  • the raw material pulp was phosphorylated as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. To obtain a chemical-impregnated pulp. Next, the obtained chemical-impregnated pulp was heated with a hot air drier at 165 ° C. for 200 seconds to introduce a phosphate group into cellulose in the pulp, thereby obtaining phosphorylated pulp 1.
  • the obtained phosphorylated pulp 1 was subjected to a washing treatment.
  • a pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of the phosphorylated pulp 1 is stirred so that the pulp is uniformly dispersed, and then filtered and dehydrated repeatedly. It was done by doing.
  • the electric conductivity of the filtrate became 100 ⁇ S / cm or less, it was regarded as the washing end point.
  • the phosphorylated pulp 1 after the washing was subjected to a neutralization treatment as follows. First, the phosphorylated pulp slurry 1 having a pH of 12 or more and 13 or less is diluted by diluting the washed phosphorylated pulp 1 with 10 L of ion-exchanged water, and gradually adding a 1N aqueous sodium hydroxide solution with stirring. Obtained. Next, the phosphorylated pulp slurry 1 was dehydrated to obtain a phosphorylated pulp 1 subjected to a neutralization treatment. Next, the washing treatment was performed on the phosphorylated pulp 1 after the neutralization treatment.
  • ⁇ ⁇ ⁇ Ion-exchanged water was added to the obtained phosphorylated pulp 1 to prepare a slurry having a solid concentration of 2% by mass. This slurry was treated six times at a pressure of 200 MPa with a wet atomizer (manufactured by Sugino Machine Co., Ltd., Starburst) to obtain a fine fibrous cellulose dispersion A containing fine fibrous cellulose.
  • the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope and found to be 3 to 5 nm.
  • the amount of phosphate groups (the amount of strongly acidic groups) measured by the measurement method described later was 2.00 mmol / g.
  • the washing treatment is performed by dehydrating the pulp slurry after TEMPO oxidation, obtaining a dehydrated sheet, pouring 5,000 parts by mass of ion-exchanged water, stirring and uniformly dispersing, and then repeating filtration and dehydration.
  • the washing treatment is performed by dehydrating the pulp slurry after TEMPO oxidation, obtaining a dehydrated sheet, pouring 5,000 parts by mass of ion-exchanged water, stirring and uniformly dispersing, and then repeating filtration and dehydration.
  • the electric conductivity of the filtrate became 100 ⁇ S / cm or less, it was regarded as the washing end point.
  • ⁇ ⁇ ⁇ Ion-exchanged water was added to the obtained TEMPO oxidized pulp to prepare a slurry having a solid content of 2% by mass.
  • This slurry was treated with a wet atomizer (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa six times to obtain a fine fibrous cellulose dispersion B containing fine fibrous cellulose.
  • the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope and found to be 3 to 5 nm.
  • the amount of carboxy groups measured by the measurement method described later was 1.80 mmol / g.
  • the obtained phosphorylated pulp 2 was subjected to a washing treatment.
  • a pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of the phosphorylated pulp is stirred so that the pulp is uniformly dispersed, and then filtered and dehydrated repeatedly. It was done by doing.
  • the electric conductivity of the filtrate became 100 ⁇ S / cm or less, it was regarded as the washing end point.
  • the phosphorylated pulp 2 after the washing was subjected to a neutralization treatment as follows. First, the phosphorylated pulp slurry 2 having a pH of 12 or more and 13 or less is diluted by diluting the washed phosphorylated pulp 2 with 10 L of ion-exchanged water and then adding a 1N aqueous sodium hydroxide solution little by little with stirring. Obtained. Next, the phosphorylated pulp slurry 2 was dehydrated to obtain a phosphorylated pulp 2 subjected to a neutralization treatment. Next, the above-described washing treatment was performed on the phosphorylated pulp 2 after the neutralization treatment.
  • the phosphorylated pulp 2 thus obtained was measured for infrared absorption spectrum using FT-IR.
  • absorption based on P O of a phosphonic acid group, which is a tautomer of a phosphite group, was observed at around 1210 cm ⁇ 1 , indicating that a phosphate group (phosphonate group) was added to the pulp. confirmed.
  • ⁇ ⁇ ⁇ Ion-exchanged water was added to the obtained phosphorylated pulp 2 to prepare a slurry having a solid concentration of 2% by mass.
  • This slurry was treated six times with a wet atomizer (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion C containing fine fibrous cellulose.
  • the amount of the phosphoric acid group (the amount of the strongly acidic group) of the obtained phosphorylated pulp 2 measured by a measuring method described later was 1.50 mmol / g.
  • the amount of the weak acidic group was 0.13 mmol / g.
  • Example 1 (Production of fine fibrous cellulose concentrate) 0.60 g of lactic acid was added to 100 g of a 2.43 mass% N, N-didodecylmethylamine aqueous solution to neutralize it in advance, and then added to 100 g of the fine fibrous cellulose dispersion A obtained in Production Example 1. After stirring for 5 minutes, aggregates were formed in the fine fibrous cellulose dispersion. The fine fibrous cellulose dispersion in which the aggregate was generated was filtered under reduced pressure to obtain a fine fibrous cellulose aggregate.
  • the resulting fine fibrous cellulose aggregates were repeatedly washed with ion-exchanged water to remove excess N, N-didodecylmethylamine, lactic acid, and eluted ions contained in the fine fibrous cellulose aggregates.
  • the obtained fine fibrous cellulose aggregate was dried at 30 ° C. and a relative humidity of 40% to obtain a fine fibrous cellulose concentrate.
  • the counter ion of the phosphate group contained in the fine fibrous cellulose concentrate was N, N-didodecylmethylammonium (DDMA + ).
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 95% by mass.
  • NMP N-methyl-2-pyrrolidone
  • the fine fibrous cellulose injection product after immersion is taken out of the coagulation bath, dried on a hot plate at 70 ° C. for 30 minutes, then heated to 120 ° C. and further dried for 2 hours to obtain a fine fibrous cellulose-containing filament.
  • the water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
  • Example 2 The fine fibrous cellulose dispersion B obtained in Production Example 2 was used in place of the fine fibrous cellulose dispersion A. The same procedure as in Example 1 was carried out except that 0.32 g of lactic acid was added to 100 g of a 1.32% by mass aqueous solution of N, N-didodecylmethylamine to neutralize and then added to the fine fibrous cellulose dispersion B. , A fine fibrous cellulose concentrate, a fine fibrous cellulose re-dispersed slurry, and a fine fibrous cellulose-containing filament were obtained. The counter ion of the carboxy group contained in the fine fibrous cellulose concentrate was N, N-didodecylmethylammonium (DDMA + ).
  • DDMA + N-didodecylmethylammonium
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 91% by mass.
  • the water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
  • Example 3 The fine fibrous cellulose dispersion C obtained in Production Example 3 was used in place of the fine fibrous cellulose dispersion A. The procedure of Example 1 was repeated, except that 0.30 g of lactic acid was added to 100 g of an aqueous solution of N, N-didodecylmethylamine at a concentration of 1.20% by mass to neutralize the solution, and then added to the fine fibrous cellulose dispersion C. , A fine fibrous cellulose concentrate, a fine fibrous cellulose re-dispersed slurry, and a fine fibrous cellulose-containing filament were obtained.
  • the counter ion of the carboxy group contained in the fine fibrous cellulose concentrate was N, N-didodecylmethylammonium (DDMA + ).
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 91% by mass.
  • the water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
  • Example 4 100 g of a 1.83% by mass aqueous solution of polyoxyethylene dodecylamine (the number of oxyethylene residues is 2) was used in place of the aqueous solution of N, N-didodecylmethylamine, and dimethyl sulfoxide (DMSO) was used as the first solvent in N-
  • DMSO dimethyl sulfoxide
  • the counter ion of the phosphate group contained in the fine fibrous cellulose concentrate was polyoxyethylene dodecyl ammonium ion (POEDA + ).
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 92% by mass.
  • the water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
  • Example 5 The fine fibrous cellulose dispersion B obtained in Production Example 2 was used in place of the fine fibrous cellulose dispersion A. The same procedure as in Example 4 was carried out, except that 100 g of a 0.99% by mass aqueous solution of polyoxyethylene dodecylamine (the number of oxyethylene residues was 2) pre-neutralized with lactic acid was added to the fine fibrous cellulose dispersion B. , A fine fibrous cellulose concentrate, a fine fibrous cellulose re-dispersed slurry, and a fine fibrous cellulose-containing filament were obtained. The counter ion of the carboxy group contained in the fine fibrous cellulose concentrate was polyoxyethylene dodecyl ammonium ion (POEDA + ). The solid content concentration of the obtained fine fibrous cellulose concentrate was 90% by mass. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
  • Example 6 100 g of a 2.33 mass% aqueous solution of alkyldimethylbenzylammonium chloride (alkyl chain having 8 to 18 carbon atoms) was used in place of the aqueous solution of N, N-didodecylmethylamine neutralized with lactic acid, and the first solvent was used.
  • methanol was used in place of N-methyl-2-pyrrolidone (NMP)
  • NMP N-methyl-2-pyrrolidone
  • the counter ion of the phosphate group contained in the fine fibrous cellulose concentrate was alkyldimethylbenzylammonium (ADMBA + ).
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 84% by mass.
  • the water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
  • Example 7 The fine fibrous cellulose dispersion B obtained in Production Example 2 was used in place of the fine fibrous cellulose dispersion A.
  • Fine fibrous cellulose concentrate, fine fibrous cellulose re-dispersed slurry, and fine fibers were prepared in the same manner as in Example 6, except that 100 g of an aqueous 27% by mass alkyldimethylbenzylammonium solution was added to the fine fibrous cellulose dispersion B.
  • a cellulose-containing filament was obtained.
  • the counter ion of the carboxy group contained in the fine fibrous cellulose concentrate was alkyldimethylbenzylammonium (ADMBA + ).
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 81% by mass.
  • the water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
  • Example 8 100 g of a 3.86% by mass aqueous di-n-alkyldimethylammonium chloride solution (having 16 or 18 carbon atoms in the alkyl chain) was used in place of the aqueous alkyldimethylbenzylammonium chloride solution, and toluene was used as the first solvent.
  • methanol was used in place of ion-exchanged water as the second solvent, and the fine fibrous cellulose concentrate, the fine fibrous cellulose redispersed slurry, and the fine fibrous cellulose were used. A containing filament was obtained.
  • the counter ion of the phosphate group contained in the fine fibrous cellulose concentrate was di-n-alkyldimethylammonium (DADMA + ).
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 91% by mass.
  • the water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
  • Example 9 The fine fibrous cellulose dispersion B obtained in Production Example 2 was used in place of the fine fibrous cellulose dispersion A. 2.
  • a fine fibrous cellulose concentrate and a fine fibrous cellulose concentrate were prepared in the same manner as in Example 8 except that 100 g of a 10% by mass aqueous di-n-alkyldimethylammonium chloride solution was added to the fine fibrous cellulose dispersion B.
  • a dispersed slurry and a fine fibrous cellulose-containing filament were obtained.
  • the counter ion of the carboxy group contained in the fine fibrous cellulose concentrate was di-n-alkyldimethylammonium (DADMA + ).
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 89% by mass.
  • the water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
  • Example 1 The same procedure as in Example 1 was carried out except that the fine fibrous cellulose dispersion A obtained in Production Example 1 was used instead of the fine fibrous cellulose re-dispersed slurry, and ethanol was used instead of ion-exchanged water as the second solvent. Thus, a fine fibrous cellulose-containing filament was obtained.
  • the water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
  • Example 10 A fine fibrous cellulose re-dispersed slurry obtained in the same manner as in Example 1 was filled in a syringe (needle diameter: ⁇ 1.5 mm), and then dropped at 2 g / min into a coagulation tank filled with ion-exchanged water (second solvent). Then, a fine fibrous cellulose injection product was formed in the coagulation bath. After repeating the operation of replacing the ion-exchanged water in the coagulation tank every 30 minutes three times, the fine fibrous cellulose injection product was immersed in the ion-exchanged water for further 12 hours. The fine fibrous cellulose injection product after immersion is taken out of the coagulation bath, dried on a hot plate at 70 ° C.
  • Example 11 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 2 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 10 was carried out. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
  • Example 12 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 3 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 10 was carried out. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
  • Example 13 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 4 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 10 was carried out. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
  • Example 14 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 5 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 10 was carried out. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
  • Example 15 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 6 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 10 was carried out. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
  • Example 16 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 7 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 10 was carried out. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
  • Example 17 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 8 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, and methanol was used as the second solvent instead of ion-exchanged water. In the same manner as in Example 10, fine fibrous cellulose-containing beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
  • Example 18 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 9 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 8, the same procedure as in Example 17 was carried out. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
  • Comparative Example 5 Comparative Example 4 was repeated except that the fine fibrous cellulose dispersion D obtained in Production Example 4 was used instead of the fine fibrous cellulose dispersion A obtained in Production Example 1, and tetrahydrofuran was used as the second solvent instead of ethanol. In the same manner as in Example 4, fine fibrous cellulose-containing beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
  • Fine fibrous cellulose dispersion containing fine fibrous cellulose was prepared in the same manner as in Comparative Example 4 except that the fine fibrous cellulose dispersion B obtained in Production Example 2 was used instead of the fine fibrous cellulose dispersion A obtained in Production Example 1. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
  • Example 19 The re-dispersed slurry of fine fibrous cellulose obtained in the same manner as in Example 1 was dripped into a glass Petri dish so as to have a basis weight of 80 g / m 2, and was placed in a coagulation tank filled with ion-exchanged water (second solvent) together with the glass Petri dish. It was immersed gently. The operation of exchanging the ion-exchanged water in the coagulation tank every 30 minutes was repeated three times, and then immersed in the ion-exchanged water for further 12 hours, to obtain a hydrous fine fibrous cellulose-containing sheet. The hydrous fine fibrous cellulose was taken out of the coagulation bath, dried on a hot plate at 70 ° C.
  • Example 20 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 2 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 19 was carried out. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
  • Example 21 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 3 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 19 was carried out. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
  • Example 22 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 4 was used in place of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 19 was carried out. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
  • Example 23 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 5 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 19 was carried out. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
  • Example 24 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 6 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 19 was carried out. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
  • Example 25 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 7 was used in place of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 19 was carried out. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
  • Example 26 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 8 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, and methanol was used as the second solvent instead of ion-exchanged water. In the same manner as in Example 19, a fine fibrous cellulose-containing sheet was obtained.
  • the water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
  • Example 27 Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 9 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 8, the same procedure as in Example 26 was carried out. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
  • Comparative Example 8 Comparative Example 4 was repeated except that the fine fibrous cellulose dispersion D obtained in Production Example 4 was used instead of the fine fibrous cellulose dispersion A obtained in Production Example 1, and tetrahydrofuran was used as the second solvent instead of ethanol. In the same manner as in Example 7, a fine fibrous cellulose-containing sheet was obtained. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
  • Fine fibrous cellulose dispersion containing fine fibrous cellulose was prepared in the same manner as in Comparative Example 7, except that the fine fibrous cellulose dispersion B obtained in Production Example 2 was used instead of the fine fibrous cellulose dispersion A obtained in Production Example 1. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
  • Example 10 The re-dispersed slurry of fine fibrous cellulose obtained in the same manner as in Example 1 was dripped on a glass Petri dish so as to have a basis weight of 80 g / m 2, and was cast-dried on a hot plate at 120 ° C. for 6 hours to obtain fine fibrous cellulose. A containing sheet was obtained. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
  • the phosphate group content of the fine fibrous cellulose is a fibrous shape prepared by diluting a fine fibrous cellulose dispersion containing the target fine fibrous cellulose with ion-exchanged water so that the content becomes 0.2% by mass.
  • the measurement was performed by performing titration using an alkali.
  • the treatment with the ion-exchange resin is performed by adding 1/10 by volume of a strongly acidic ion-exchange resin (Amberjet 1024; Organo, Inc., conditioned) to the fibrous cellulose-containing slurry and shaking for 1 hour.
  • the resin and the slurry were separated by pouring on a mesh having a mesh size of 90 ⁇ m.
  • titration using an alkali is performed by adding an aqueous 0.1 N sodium hydroxide solution to a fibrous cellulose-containing slurry after treatment with an ion-exchange resin at a rate of 50 ⁇ L once every 30 seconds while maintaining the electrical conductivity of the slurry. The measurement was performed by measuring the change in the value.
  • the amount of phosphoric acid groups (mmol / g) is obtained by dividing the amount of alkali (mmol) required in the region corresponding to the first region shown in FIG. 1 by the solid content (g) in the slurry to be titrated. Was calculated.
  • the carboxy group content of the fine fibrous cellulose is a fibrous cellulose prepared by diluting the fine fibrous cellulose dispersion containing the target fine fibrous cellulose with ion-exchanged water so that the content becomes 0.2% by mass.
  • the content of the slurry was measured by performing a treatment with an ion-exchange resin and then performing a titration using an alkali.
  • the treatment with the ion-exchange resin is performed by adding 1/10 by volume of a strongly acidic ion-exchange resin (Amberjet 1024; Organo, Inc., conditioned) to the fibrous cellulose-containing slurry and shaking for 1 hour.
  • the resin and the slurry were separated by pouring on a mesh having a mesh size of 90 ⁇ m.
  • titration using an alkali is performed by adding 50 ⁇ L of a 0.1N aqueous sodium hydroxide solution once every 30 seconds to a fibrous cellulose-containing slurry after treatment with an ion-exchange resin while maintaining the electric conductivity of the slurry. This was done by measuring the change in value.
  • the amount of carboxy groups (mmol / g) is obtained by dividing the amount of alkali (mmol) required in a region corresponding to the first region shown in FIG. 2 in the measurement results by the solid content (g) in the slurry to be titrated. Calculated.
  • the solid material (filament, bead, sheet) was conditioned for 24 hours at 23 ° C. and 50% relative humidity, and the conditioned weight was measured. Next, the solid after measuring the humidity control weight was immersed in ion-exchanged water for 24 hours to wipe off excess water remaining on the surface, and then the wet weight was measured.
  • Sheet yellowness (YI 100 ) in terms of film thickness of 100 ⁇ m yellowness of sheet (YI) ⁇ (100 ( ⁇ m)) / (sheet thickness ( ⁇ m))
  • the thickness of the sheet was measured using a constant-pressure thickness meter (PG-02; Teklock) in accordance with JIS K6783.
  • the solid obtained in the example had a low weight loss rate in vacuum heating. This means that the content of the organic solvent remaining in the solid is low. That is, in the solid obtained in the examples, the residual amount of the organic solvent is small, and the risk of ignition and the like are suppressed. Further, the solids obtained in the examples were excellent in surface smoothness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Paper (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention addresses the problem of providing a solid body in which the survival rate of an organic solvent is low and surface smoothness is high. The present invention relates to a solid body containing fibrous cellulose that measures at least 1000 nm in fiber width and has an anionic group, and an organic onium ion as the counterion of the anionic group, wherein solid body has a water absorption rate of 500% or less, and a yellowness of 33 or less as measured by reflected light measurement in conformity with ASTM E313 for pellets produced under prescribed conditions.

Description

固形状体、シート及び固形状体の製造方法Solid body, sheet and method for producing solid body
 本発明は、固形状体、シート及び固形状体の製造方法に関する。 The present invention relates to a solid, a sheet, and a method for producing a solid.
 従来、セルロース繊維は、衣料や吸収性物品、紙製品等に幅広く利用されている。セルロース繊維としては、繊維径が10μm以上50μm以下の繊維状セルロースに加えて、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。例えば、微細繊維状セルロースを含むシートや樹脂複合体、増粘剤の開発が進められている。 Conventionally, cellulose fibers have been widely used in clothing, absorbent articles, paper products, and the like. As the cellulose fiber, a fine fibrous cellulose having a fiber diameter of 1 μm or less is known in addition to a fibrous cellulose having a fiber diameter of 10 μm or more and 50 μm or less. Fine fibrous cellulose is attracting attention as a new material, and its use is diversified. For example, development of sheets, resin composites, and thickeners containing fine fibrous cellulose has been promoted.
 一般的に、微細繊維状セルロースは水系溶媒中に安定して分散するため、水分散液の状態で提供され、各種用途に使用されることが多い。一方で、微細繊維状セルロースを樹脂と混合して複合体等を製造する際には、微細繊維状セルロースを有機溶媒と混合して使用したいという要望もある。このような要望に応える技術として、有機溶媒を含む分散媒に微細繊維状セルロースを分散させた微細繊維状セルロース含有分散液を製造する技術が検討されている。 Generally, since fine fibrous cellulose is stably dispersed in an aqueous solvent, it is provided in the form of an aqueous dispersion and is often used for various purposes. On the other hand, when a composite or the like is produced by mixing fine fibrous cellulose with a resin, there is a demand that the fine fibrous cellulose be mixed with an organic solvent and used. As a technique to meet such a demand, a technique for producing a fine fibrous cellulose-containing dispersion in which fine fibrous cellulose is dispersed in a dispersion medium containing an organic solvent has been studied.
 例えば、特許文献1には、カルボキシ基を有する微細繊維状セルロースに界面活性剤を吸着させた微細繊維状セルロース複合体が開示されている。ここでは、水系溶媒中でセルロース繊維を微細化した後に、微細繊維状セルロースを凝集させ有機溶媒に分散させる方法や、有機溶媒中でセルロース繊維を微細化することで微細繊維状セルロースを得る方法が開示されている。 For example, Patent Document 1 discloses a fine fibrous cellulose composite in which a surfactant is adsorbed to fine fibrous cellulose having a carboxy group. Here, after the cellulose fibers are refined in an aqueous solvent, a method of agglomerating and dispersing the fine fibrous cellulose in an organic solvent or a method of obtaining fine fibrous cellulose by refining the cellulose fibers in an organic solvent is used. It has been disclosed.
 ところで、微細繊維状セルロースを含む樹脂複合体においては、耐水性が要求されることがある。例えば、特許文献2には、アクリル樹脂またはメタクリル樹脂と、セルロースナノファイバーに炭化水素基がアミド結合を介して結合してなるセルロースナノファイバー複合体とを含有する樹脂組成物が開示されている。ここでは、非吸水性のアクリル樹脂またはメタクリル樹脂を用いることで、樹脂組成物の吸水率を抑えることが検討されている。また、特許文献3には、繊維幅が1000nm以下の繊維状セルロースと、ポリオール由来の単位及び含窒素化合物由来の単位を含む重合体とを有するシートが開示されており、吸水率を5000%以下とすることが検討されている。 By the way, a resin composite containing fine fibrous cellulose may be required to have water resistance. For example, Patent Literature 2 discloses a resin composition containing an acrylic resin or a methacrylic resin and a cellulose nanofiber composite in which a hydrocarbon group is bonded to cellulose nanofiber via an amide bond. Here, studies have been made to suppress the water absorption of the resin composition by using a non-water-absorbing acrylic resin or methacrylic resin. Patent Document 3 discloses a sheet having a fibrous cellulose having a fiber width of 1000 nm or less and a polymer containing a unit derived from a polyol and a unit derived from a nitrogen-containing compound, and has a water absorption of 5000% or less. It is being considered.
特開2011-140738号公報JP-A-2011-140738 特開2015-007196号公報JP 2015-007196 A 特開2018-009116号公報JP 2018-009116 A
 微細繊維状セルロースを含む成形体等の固形状体を製造する方法としては、溶融混練法やキャスト法が知られている。また、微細繊維状セルロースを含む固形状体の製造方法としては、水系分散液を多量の有機溶媒中に射出することで固形状体を得る方法も知られている。しかしながら、これらの方法では、得られる固形状体中に有機溶媒が残存したり、得られる固形状体の表面平滑性が低い場合があった。 溶 融 As a method for producing a solid body such as a molded body containing fine fibrous cellulose, a melt kneading method and a casting method are known. In addition, as a method for producing a solid containing fine fibrous cellulose, a method of obtaining a solid by injecting an aqueous dispersion into a large amount of an organic solvent is also known. However, in these methods, an organic solvent may remain in the obtained solid, or the surface smoothness of the obtained solid may be low.
 そこで本発明者らは、このような従来技術の課題を解決するために、有機溶媒の残存率が少なく、かつ表面平滑性の高い固形状体を提供することを目的として検討を進めた。 Therefore, the present inventors have studied to solve such a problem of the related art with the aim of providing a solid having a low residual ratio of an organic solvent and high surface smoothness.
 上記の課題を解決するために鋭意検討を行った結果、本発明者らは、アニオン性基を有する繊維状セルロースと、アニオン性基の対イオンとして有機オニウムイオンを含む固形状体において、固形状体の吸水率と黄色度を所定値以下とすることにより、有機溶媒の残存率が少なく、かつ表面平滑性の高い固形状体が得られることを見出した。
 具体的に、本発明は、以下の構成を有する。
As a result of intensive studies to solve the above problems, the present inventors have found that fibrous cellulose having an anionic group and a solid containing an organic onium ion as a counter ion of the anionic group have a solid state. It has been found that by setting the water absorption and the yellowness of the body to a predetermined value or less, a solid body having a low residual ratio of the organic solvent and a high surface smoothness can be obtained.
Specifically, the present invention has the following configuration.
[1] 繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースと、アニオン性基の対イオンとして有機オニウムイオンとを含む固形状体であって、
 固形状体の吸水率が500%以下であり、かつ、下記条件aで作製したペレットのASTM E313に準拠し、反射光測定により測定した黄色度が33.0以下である、固形状体;
(条件a)
 固形状体を粉砕し粉末とした後、該粉末を坪量が3000g/m2となるよう、面圧600MPaで1分間プレス成形し、黄色度測定用ペレットとする。
[2] 繊維状セルロースにおけるアニオン性基量が、0.50mmol/g以上である[1]に記載の固形状体。
[3] 固形分濃度が、80質量%以上である[1]又は[2]に記載の固形状体。
[4] 有機オニウムイオンは、下記(a)及び(b)から選択される少なくとも一方の条件を満たす[1]~[3]のいずれかに記載の固形状体;
(a)炭素数が5以上の炭化水素基を含む;
(b)総炭素数が17以上である。
[5] 有機オニウムイオンは、有機アンモニウムイオンである[1]~[4]のいずれかに記載の固形状体。
[6] 成形体である[1]~[5]のいずれかに記載の固形状体。
[7] さらに樹脂を含む[1]~[6]のいずれかに記載の固形状体。
[8] 繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースと、アニオン性基の対イオンとして有機オニウムイオンとを含むシートであって、
 シートの吸水率が500%以下であり、かつ、下記式bで算出される膜厚100μm換算のシートの黄色度(YI100)が35.0以下である、シート;
(式b)
 膜厚100μm換算のシートの黄色度(YI100)=シートの黄色度(YI)×100(μm)/シートの膜厚(μm)
 但し、上記式bにおいて、シートの黄色度(YI)は、JIS K 7373に準拠して、透過光測定により測定したシートの黄色度である。
[9] 繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースと、アニオン性基の対イオンとして有機オニウムイオンと、非水第1溶媒とを含む組成物を、ハンセン溶解度パラメータの水素結合項(δh)が12.0MPa1/2以上である第2溶媒に接触させる工程を含む、固形状体の製造方法。
[1] A solid body having a fiber width of 1000 nm or less and containing fibrous cellulose having an anionic group and an organic onium ion as a counter ion of the anionic group,
A solid having a water absorption of 500% or less and a yellowness of 33.0 or less measured by reflected light measurement according to ASTM E313 of a pellet produced under the following condition a;
(Condition a)
After pulverizing the solid into a powder, the powder is press-molded at a surface pressure of 600 MPa for 1 minute so that the basis weight becomes 3000 g / m 2 to obtain a pellet for measuring yellowness.
[2] The solid according to [1], wherein the amount of anionic group in the fibrous cellulose is 0.50 mmol / g or more.
[3] The solid according to [1] or [2], wherein the solid content is 80% by mass or more.
[4] The solid according to any one of [1] to [3], wherein the organic onium ion satisfies at least one condition selected from the following (a) and (b):
(A) containing a hydrocarbon group having 5 or more carbon atoms;
(B) The total number of carbon atoms is 17 or more.
[5] The solid according to any one of [1] to [4], wherein the organic onium ion is an organic ammonium ion.
[6] The solid body according to any one of [1] to [5], which is a molded body.
[7] The solid according to any one of [1] to [6], further comprising a resin.
[8] A sheet containing fibrous cellulose having a fiber width of 1000 nm or less and having an anionic group, and an organic onium ion as a counter ion of the anionic group,
A sheet having a sheet having a water absorption of 500% or less and a yellowness (YI 100 ) of 35.0 or less in terms of a film thickness of 100 μm calculated by the following equation b;
(Equation b)
Sheet yellowness (YI 100 ) in terms of film thickness 100 μm = sheet yellowness (YI) × 100 (μm) / sheet film thickness (μm)
However, in the above formula b, the yellowness (YI) of the sheet is the yellowness of the sheet measured by transmitted light measurement according to JIS K 7373.
[9] A composition comprising a fibrous cellulose having a fiber width of 1000 nm or less and having an anionic group, an organic onium ion as a counter ion of the anionic group, and a non-aqueous first solvent is hydrogenated with a Hansen solubility parameter of hydrogen. A method for producing a solid, comprising a step of contacting a second solvent having a binding term (δh) of 12.0 MPa 1/2 or more.
 本発明によれば、有機溶媒の残存率が少なく、かつ表面平滑性の高い固形状体を提供することができる。 According to the present invention, a solid having a low residual ratio of the organic solvent and high surface smoothness can be provided.
図1は、リン酸基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the amount of NaOH added to fibrous cellulose having a phosphate group and the electrical conductivity. 図2は、カルボキシ基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the amount of NaOH added to fibrous cellulose having a carboxy group and the electrical conductivity.
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。 本 Hereinafter, the present invention will be described in detail. The description of the components described below may be made based on representative embodiments or specific examples, but the present invention is not limited to such embodiments.
(固形状体)
 本発明は、繊維幅が1000nm以下の繊維状セルロースを含有する固形状体に関する。具体的には、本発明は、繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースと、アニオン性基の対イオンとして有機オニウムイオンとを含む固形状体に関する。そして、固形状体の吸水率が500%以下であり、かつ、下記条件aで作製したペレットのASTM E313に準拠し、反射光測定により測定した黄色度が33.0以下である。
(条件a)
 固形状体を粉砕し粉末とした後、該粉末を坪量が3000g/m2となるよう、面圧600MPaで1分間プレス成形し、黄色度測定用ペレットとする。
(Solid body)
The present invention relates to a solid body containing fibrous cellulose having a fiber width of 1000 nm or less. Specifically, the present invention relates to a solid containing fibrous cellulose having a fiber width of 1000 nm or less and having an anionic group, and an organic onium ion as a counter ion of the anionic group. The solids have a water absorption of 500% or less, and the pellets produced under the following condition a have a yellowness of 33.0 or less measured by reflected light measurement in accordance with ASTM E313.
(Condition a)
After pulverizing the solid into a powder, the powder is press-molded at a surface pressure of 600 MPa for 1 minute so that the basis weight becomes 3000 g / m 2 to obtain a pellet for measuring yellowness.
 本発明の固形状体は、上記構成を有するものであるため、有機溶媒の残存率が少ない。有機溶媒の残存率は、例えば、固形状体を真空加熱した場合の重量減少率を指標とすることができ、固形状体を真空加熱した場合の重量減少率が小さい場合に、固形状体中の有機溶媒の残存率が低いと判定できる。本発明においては、固形状体における有機溶媒の残存率を低く抑えることができるため、固形状体の引火危険度を低くすることができ、安全性の高い固形状体を得ることができる。引火危険度とは、例えば、日本国の消防法に定める危険物第4類引火性液体の危険等級で判断することができる。例えば、トルエンは第4類第1石油類で特殊引火物についで危険性が高い。メタノールはアルコール類であり、トルエン対比で引火危険度が低い。なお、水は非危険物である。 た め Since the solid of the present invention has the above structure, the residual ratio of the organic solvent is small. The residual rate of the organic solvent can be, for example, the weight loss rate when the solid body is heated in vacuum, and when the weight loss rate when the solid body is heated in vacuum is small, It can be determined that the residual ratio of the organic solvent is low. In the present invention, since the residual ratio of the organic solvent in the solid body can be suppressed low, the risk of ignition of the solid body can be reduced, and a solid body with high safety can be obtained. The flammability risk can be determined, for example, by the danger class of a flammable liquid of Class 4 dangerous substances specified in the Fire Service Law of Japan. For example, toluene is a Class 4 Class 1 petroleum and has a high risk after special flammables. Methanol is an alcohol and has a lower risk of ignition than toluene. Water is a non-dangerous substance.
 本発明の固形状体は、上記構成を有するものであるため、固形状体の表面平滑性が高い。具体的には、得られる固形状体においては、しわの発生が抑制されており、かつ割れや凹凸の発生も抑制されている。このように、本発明の固形状体においては、その表面性状も良好である。 た め Since the solid body of the present invention has the above configuration, the solid body has high surface smoothness. Specifically, in the obtained solid, the occurrence of wrinkles is suppressed, and the occurrence of cracks and irregularities is also suppressed. Thus, the solid body of the present invention has good surface properties.
 固形状体の吸水率は、以下の方法で測定される値である。まず、固形状体を23℃、相対湿度50%の条件で24時間調湿し、調湿重量を測定する。次いで、調湿重量を測定した後の固形状体を、24時間イオン交換水に浸漬し、表面に残る余分な水をふき取った後に、湿潤重量を測定する。そして、上記調湿重量、湿潤重量から、固形状体の吸水率(%)を下記式にしたがって算出する。
 吸水率(%)=100×(湿潤重量-調湿重量)/調湿重量
The water absorption of the solid is a value measured by the following method. First, the solid body is conditioned at 23 ° C. and a relative humidity of 50% for 24 hours, and the conditioned weight is measured. Next, the solid body after measuring the humidity control weight is immersed in ion-exchanged water for 24 hours, and excess water remaining on the surface is wiped off, and then the wet weight is measured. Then, the water absorption (%) of the solid body is calculated from the humidity control weight and the wet weight according to the following equation.
Water absorption (%) = 100 × (wet weight-humidified weight) / humidified weight
 固形状体の吸水率は、500%以下であればよく、200%以下であることが好ましく、100%以下であることがより好ましく、70%以下であることがさらに好ましい。なお、固形状体の吸水率の下限値は0%であってもよい。固形状体の吸水率を上記範囲内とすることにより、有機溶媒の残存率が少ない固形状体を得ることができる。また、固形状体の吸水率を上記範囲内とすることにより、固形状体の表面平滑性をより効果的に高めることができる。さらに、固形状体の吸水率を上記範囲内とすることにより、固形状体の耐水性を高めることができる。 水 The water absorption of the solid body may be 500% or less, preferably 200% or less, more preferably 100% or less, and even more preferably 70% or less. The lower limit of the water absorption of the solid body may be 0%. By setting the water absorption of the solid within the above range, a solid having a small residual ratio of the organic solvent can be obtained. Further, by setting the water absorption of the solid body within the above range, the surface smoothness of the solid body can be more effectively improved. Further, by setting the water absorption of the solid body within the above range, the water resistance of the solid body can be increased.
 本明細書において固形状体の黄色度は、上記条件aで作製したペレットのASTM E313に準拠し、反射光測定により測定した黄色度である。具体的には、固形状体を粉砕し粉末とした後、該粉末を坪量が3000g/m2となるよう、面圧600MPaで1分間プレス成形し、ペレットとする。このようにして得られたペレットが黄色度測定用ペレットとなる。黄色度測定用ペレットの黄色度は、ASTM E313に準拠して、反射光測定により測定される。黄色度は、分光測色計を用いて測定され、このような測定装置としては、例えば、Spectroeye;Gretag Macbeth社製の分光測色計を用いることができる。 In the present specification, the yellowness of a solid body is a yellowness measured by reflected light measurement in accordance with ASTM E313 of a pellet produced under the above condition a. Specifically, after the solid body is pulverized into a powder, the powder is press-molded at a surface pressure of 600 MPa for one minute so that the basis weight becomes 3000 g / m 2 , thereby forming pellets. The pellet obtained in this manner becomes a yellowness measurement pellet. The yellowness of the yellowness measurement pellet is measured by reflected light measurement according to ASTM E313. The yellowness is measured using a spectrophotometer. As such a measuring device, for example, a spectrophotometer manufactured by Spectroeye; Gretag Macbeth can be used.
 固形状体のASTM E313に準拠し測定された黄色度(YI0)は、33.0以下であればよく、30.0以下であることが好ましく、27.0以下であることがより好ましく、25.0以下であることがさらに好ましい。また、固形状体の黄色度(YI0)の下限値は特に限定されるものではないが、例えば、0.1以上であることが好ましい。固形状体の黄色度を上記範囲内とすることにより、有機溶媒の残存率が少ない固形状体を得ることができる。また、固形状体の黄色度を上記範囲内とすることにより、固形状体の表面平滑性をより効果的に高めることができる。 The yellowness (YI 0 ) of the solid body measured according to ASTM E313 may be 33.0 or less, preferably 30.0 or less, more preferably 27.0 or less, More preferably, it is 25.0 or less. The lower limit of the yellowness (YI 0 ) of the solid is not particularly limited, but is preferably, for example, 0.1 or more. By setting the yellowness of the solid within the above range, a solid having a small residual ratio of the organic solvent can be obtained. Further, by setting the yellowness of the solid body within the above range, the surface smoothness of the solid body can be more effectively enhanced.
 なお、本発明は、繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースと、アニオン性基の対イオンとして有機オニウムイオンからなる固形状体に関するものであってもよい。本発明においては、このような固形状体であっても、上述した吸水率や黄色度が達成される。すなわち、本発明の固形状体は疎水性の樹脂等を含まない場合であっても、低吸水率かつ低黄色度が達成される。 The present invention may also relate to a fibrous cellulose having a fiber width of 1000 nm or less and having an anionic group, and a solid body comprising an organic onium ion as a counter ion of the anionic group. In the present invention, even with such a solid, the above-described water absorption and yellowness are achieved. That is, even when the solid body of the present invention does not contain a hydrophobic resin or the like, low water absorption and low yellowness are achieved.
 固形状体の吸水率や黄色度は、有機オニウムの種類、有機オニウムの含有量、繊維状セルロースのアニオン性基量、繊維状セルロースの繊維幅、固形状体の製造工程で使用する溶媒種等を適切にコントロールすることによって達成される。中でも、固形状体の吸水率や黄色度を達成するためには、製造方法として、溶媒射出法を採用することが好ましく、この場合、射出側溶媒と射出受側溶媒を適切に選択することが好ましい。 The water absorption and yellowness of the solid are determined by the type of the organic onium, the content of the organic onium, the amount of the anionic group of the fibrous cellulose, the fiber width of the fibrous cellulose, the solvent used in the process of producing the solid, and the like. Is achieved by properly controlling Among them, in order to achieve the water absorption and the yellowness of the solid, it is preferable to adopt a solvent injection method as a production method, in which case, the injection side solvent and the injection receiving side solvent are appropriately selected. preferable.
 本発明の固形状体の形態は、特に限定されるものではなく、例えば、シート状、粉粒状、糸状等であることが好ましい。なお、固形状体はゲル状体であってもよい。中でも、固形状体は、シート状、ビーズ状(粉粒状)、フィラメント状(糸状)であることが好ましく、シート状であることが特に好ましい。固形状体がビーズ状である場合、ビーズの粒子径は、0.1mm以上10mm以下であることが好ましい。また、固形状体がフィラメント状である場合、フィラメントの幅は0.1mm以上10mm以下であることが好ましく、フィラメントの長さは1mm以上10000mm以下であることが好ましい。 形態 The form of the solid body of the present invention is not particularly limited, and is preferably, for example, sheet-like, powder-like, or thread-like. The solid body may be a gel body. Among them, the solid body is preferably in the form of a sheet, beads (granules), or filaments (filaments), and particularly preferably in the form of sheets. When the solid body is in the form of beads, the particle diameter of the beads is preferably 0.1 mm or more and 10 mm or less. When the solid body is a filament, the width of the filament is preferably 0.1 mm or more and 10 mm or less, and the length of the filament is preferably 1 mm or more and 10000 mm or less.
 固形状体の固形分濃度は、固形状体の全質量に対して、80質量%以上であることが好ましく、84質量%以上であることがより好ましく、88質量%以上であることがさらに好ましい。なお、固形状体の固形分濃度は、100質量%であってもよい。 The solid content concentration of the solid body is preferably 80% by mass or more, more preferably 84% by mass or more, even more preferably 88% by mass or more based on the total mass of the solid body. . In addition, the solid content concentration of the solid body may be 100% by mass.
 なお、固形状体は水分を含んでいてもよく、固形状体が水分を含む場合、水分含有量は、固形状体の全質量に対して、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。なお、固形状体中の水分含有量は、固形状体を水分計(エー・アンド・デイ社製、MS-70)に200mg載せ、140℃で加熱することで測定することができる。測定された水分量から固形状体中の水分含有量を算出することができる。 The solid body may contain water, and when the solid body contains water, the water content is preferably 20% by mass or less based on the total mass of the solid body, and is preferably 15% by mass or less. %, More preferably 10% by mass or less. The water content in the solid body can be measured by placing 200 mg of the solid body on a moisture meter (MS-70, manufactured by A & D Corporation) and heating at 140 ° C. The water content in the solid body can be calculated from the measured water content.
 本発明の固形状体は成形体であることが好ましい。本明細書において成形体とは、所望の形状となるように成形された固形状体である。成形体としては、例えば、シート、ビーズ、フィラメント等を挙げることができる。中でも、成形体は、シート、ビーズ又はフィラメントであることが好ましく、シートであることが特に好ましい。 固 形 The solid body of the present invention is preferably a molded body. In the present specification, a molded body is a solid body molded into a desired shape. Examples of the molded body include sheets, beads, and filaments. Among them, the molded article is preferably a sheet, beads or filament, and particularly preferably a sheet.
 本発明の固形状体は、シートであることが好ましい。すなわち、本発明は、繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースと、アニオン性基の対イオンとして有機オニウムイオンとを含むシートに関するものであってもよい。ここで、シートの吸水率は500%以下であり、かつ、下記式bで算出される膜厚100μm換算のシートの黄色度(YI100)は35以下である。さらに、シートの吸水率は500%以下であり、かつ、上記条件aで作製したペレットのASTM E313に準拠し測定した黄色度(YI0)が33以下であることが好ましい。
(式b)
 膜厚100μm換算のシートの黄色度(YI100)=シートの黄色度(YI)×100(μm)/シートの膜厚(μm)
 但し、上記式bにおいて、シートの黄色度(YI)は、JIS K 7373に準拠して、透過光測定により測定したシートの黄色度である。シートの黄色度(YI)の測定装置としては、例えば、スガ試験機株式会社製のColour Cute iを挙げることができる。
The solid body of the present invention is preferably a sheet. That is, the present invention may relate to a sheet having a fiber width of 1000 nm or less and containing fibrous cellulose having an anionic group and an organic onium ion as a counter ion of the anionic group. Here, the water absorption of the sheet is 500% or less, and the yellowness (YI 100 ) of the sheet in terms of the film thickness of 100 μm calculated by the following equation b is 35 or less. Further, it is preferable that the sheet has a water absorption of 500% or less, and the pellets prepared under the above condition a have a yellowness (YI 0 ) of 33 or less measured according to ASTM E313.
(Equation b)
Sheet yellowness (YI 100 ) in terms of film thickness 100 μm = sheet yellowness (YI) × 100 (μm) / sheet film thickness (μm)
However, in the above formula b, the yellowness (YI) of the sheet is the yellowness of the sheet measured by transmitted light measurement according to JIS K 7373. As a device for measuring the yellowness (YI) of the sheet, for example, Color Cut i manufactured by Suga Test Instruments Co., Ltd. can be mentioned.
 シートの吸水率は、500%以下であればよく、200%以下であることが好ましく、100%以下であることがより好ましく、70%以下であることがさらに好ましい。なお、シートの吸水率の下限値は0%であってもよい。シートの吸水率を上記範囲内とすることにより、有機溶媒の残存率が少なく、かつ表面平滑性の高いシートを得ることができる。また、シートの吸水率を上記範囲内とすることにより、シートの表面平滑性をより効果的に高めることができる。 The water absorption of the sheet may be 500% or less, preferably 200% or less, more preferably 100% or less, and even more preferably 70% or less. The lower limit of the water absorption of the sheet may be 0%. By setting the water absorption of the sheet within the above range, a sheet having a low residual ratio of the organic solvent and a high surface smoothness can be obtained. By setting the water absorption of the sheet within the above range, the surface smoothness of the sheet can be more effectively improved.
 シートの黄色度(YI100)は、35以下であればよく、32以下であることが好ましく、28以下であることがより好ましく、24以下であることがさらに好ましい。また、シートの黄色度(YI100)の下限値は特に限定されるものではないが、例えば、0.1以上であることが好ましい。シートの黄色度を上記範囲内とすることにより、有機溶媒の残存率が少ないシートを得ることができる。また、シートの吸水率を上記範囲内とすることにより、シートの表面平滑性をより効果的に高めることができる。 The yellowness (YI 100 ) of the sheet may be 35 or less, preferably 32 or less, more preferably 28 or less, and even more preferably 24 or less. The lower limit of the yellowness (YI 100 ) of the sheet is not particularly limited, but is preferably, for example, 0.1 or more. By setting the yellowness of the sheet within the above range, a sheet having a small residual ratio of the organic solvent can be obtained. By setting the water absorption of the sheet within the above range, the surface smoothness of the sheet can be more effectively improved.
(繊維状セルロース)
 本発明の固形状体は、繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースを含む。アニオン性基を有する繊維状セルロースの繊維幅は、100nm以下であることが好ましく、8nm以下であることがより好ましい。なお、繊維状セルロースの繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。なお、本明細書において、繊維幅が1000nm以下の繊維状セルロースを微細繊維状セルロースと呼ぶこともある。
(Fibrous cellulose)
The solid body of the present invention has a fiber width of 1000 nm or less and contains fibrous cellulose having an anionic group. The fiber width of the fibrous cellulose having an anionic group is preferably 100 nm or less, more preferably 8 nm or less. The fiber width of the fibrous cellulose can be measured by, for example, observation with an electron microscope. In addition, in this specification, fibrous cellulose having a fiber width of 1000 nm or less may be referred to as fine fibrous cellulose.
 繊維状セルロースの繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。繊維状セルロースの平均繊維幅は、たとえば1000nm以下である。繊維状セルロースの平均繊維幅は、たとえば2nm以上1000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上10nm以下であることがとくに好ましい。繊維状セルロースの平均繊維幅を2nm以上とすることにより、セルロース分子として水に溶解することを抑制し、繊維状セルロースによる強度や剛性、寸法安定性の向上という効果をより発現しやすくすることができる。なお、繊維状セルロースは、たとえば単繊維状のセルロースである。 繊 維 The fiber width of fibrous cellulose can be measured by, for example, observation with an electron microscope. The average fiber width of the fibrous cellulose is, for example, 1000 nm or less. The average fiber width of the fibrous cellulose is, for example, preferably from 2 nm to 1000 nm, more preferably from 2 nm to 100 nm, further preferably from 2 nm to 50 nm, and more preferably from 2 nm to 10 nm. Particularly preferred. By setting the average fiber width of the fibrous cellulose to 2 nm or more, dissolution in water as cellulose molecules is suppressed, and the effect of improving the strength, rigidity, and dimensional stability of the fibrous cellulose can be more easily exhibited. it can. The fibrous cellulose is, for example, a monofibrous cellulose.
 繊維状セルロースの平均繊維幅は、たとえば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
 上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、繊維状セルロースの平均繊維幅とする。
The average fiber width of the fibrous cellulose is measured, for example, using an electron microscope as follows. First, an aqueous suspension of fibrous cellulose having a concentration of 0.05% by mass or more and 0.1% by mass or less was prepared, and this suspension was cast on a carbon film-coated grid that had been subjected to a hydrophilization treatment, and a TEM observation sample was prepared. And In the case of including a wide fiber, an SEM image of a surface cast on glass may be observed. Next, observation with an electron microscope image is performed at a magnification of 1,000 times, 5000 times, 10,000 times, or 50,000 times depending on the width of the fiber to be observed. However, the sample, observation conditions and magnification are adjusted so as to satisfy the following conditions.
(1) One straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
(2) A straight line Y perpendicular to the straight line is drawn in the same image, and 20 or more fibers intersect the straight line Y.
The width of the fiber that intersects the straight line X and the straight line Y is visually read for an observation image satisfying the above conditions. In this way, at least three or more sets of observation images of the surface portions that do not overlap each other are obtained. Next, the width of the fiber that intersects the straight line X and the straight line Y is read for each image. Thereby, the fiber width of at least 20 fibers × 2 × 3 = 120 fibers is read. Then, the average value of the read fiber width is defined as the average fiber width of the fibrous cellulose.
 繊維状セルロースの繊維長は、とくに限定されないが、たとえば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、繊維状セルロースの結晶領域の破壊を抑制できる。また、繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、繊維状セルロースの繊維長は、たとえばTEM、SEM、AFMによる画像解析より求めることができる。 The fiber length of the fibrous cellulose is not particularly limited, but is preferably, for example, 0.1 μm or more and 1000 μm or less, more preferably 0.1 μm or more and 800 μm or less, and further preferably 0.1 μm or more and 600 μm or less. preferable. By setting the fiber length within the above range, destruction of the crystalline region of fibrous cellulose can be suppressed. Further, the slurry viscosity of the fibrous cellulose can be set in an appropriate range. The fiber length of the fibrous cellulose can be determined by, for example, image analysis using TEM, SEM, or AFM.
 繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。微細繊維状セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。 The fibrous cellulose preferably has an I-type crystal structure. Here, the fact that the fibrous cellulose has the type I crystal structure can be identified in a diffraction profile obtained from a wide-angle X-ray diffraction photograph using CuKα (λ = 1.5418 °) monochromated with graphite. Specifically, it can be identified by having typical peaks at two positions near 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. The proportion of the type I crystal structure in the fine fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more. Thereby, further excellent performance can be expected in terms of heat resistance and low linear thermal expansion coefficient. The crystallinity can be determined by measuring the X-ray diffraction profile and using the pattern by a conventional method (Seagal et al., Textile Research Journal, Vol. 29, p. 786, 1959).
 繊維状セルロースの軸比(繊維長/繊維幅)は、とくに限定されないが、たとえば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、微細繊維状セルロースを含有するシートを形成しやすい。軸比を上記上限値以下とすることにより、たとえば繊維状セルロースを水分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。 軸 The axial ratio (fiber length / fiber width) of the fibrous cellulose is not particularly limited, but is preferably, for example, 20 or more and 10,000 or less, and more preferably 50 or more and 1000 or less. When the axial ratio is equal to or more than the lower limit, a sheet containing fine fibrous cellulose is easily formed. It is preferable that the axial ratio be equal to or less than the above upper limit, for example, when handling fibrous cellulose as an aqueous dispersion, handling such as dilution becomes easy.
 本実施形態における繊維状セルロースは、たとえば結晶領域と非結晶領域をともに有している。とくに、結晶領域と非結晶領域をともに有し、かつ軸比が高い微細繊維状セルロースは、後述する微細繊維状セルロースの製造方法により実現されるものである。 繊 維 The fibrous cellulose in the present embodiment has, for example, both a crystalline region and an amorphous region. In particular, the fine fibrous cellulose having both the crystalline region and the non-crystalline region and having a high axial ratio is realized by the method for producing fine fibrous cellulose described below.
 繊維状セルロースはアニオン性基を有する。アニオン性基としては、たとえばリン酸基またはリン酸基に由来する置換基(単にリン酸基ということもある)、カルボキシ基またはカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、およびスルホン基またはスルホン基に由来する置換基(単にスルホン基ということもある)から選択される少なくとも1種であることが好ましく、リン酸基およびカルボキシ基から選択される少なくとも1種であることがより好ましく、リン酸基であることがとくに好ましい。リン酸基は、カルボキシ基等と比較して、1分子あたりのアニオン性基数が多いため、より多くの有機オニウムイオンを対イオンとして有し得る。これにより、固形状体の吸水率や黄色度を好ましい範囲に調整しやすくなるものと考えられる。 Fibrous cellulose has an anionic group. Examples of the anionic group include a phosphate group or a substituent derived from a phosphate group (sometimes simply referred to as a phosphate group), a carboxy group or a substituent derived from a carboxy group (sometimes referred to simply as a carboxy group), And at least one selected from a sulfone group or a substituent derived from a sulfone group (which may be simply referred to as a sulfone group), and preferably at least one selected from a phosphate group and a carboxy group. More preferably, it is particularly preferably a phosphate group. A phosphate group has a larger number of anionic groups per molecule than a carboxy group or the like, and thus may have more organic onium ions as counterions. It is considered that this makes it easier to adjust the water absorption and the yellowness of the solid body to a preferred range.
 リン酸基又はリン酸基に由来する置換基は、たとえば下記式(1)で表される置換基であり、リンオキソ酸基またはリンオキソ酸に由来する置換基として一般化される。
 リン酸基は、たとえばリン酸からヒドロキシ基を取り除いたものにあたる、2価の官能基である。具体的には-PO32で表される基である。リン酸基に由来する置換基には、リン酸基の塩、リン酸エステル基などの置換基が含まれる。なお、リン酸基に由来する置換基は、リン酸基が縮合した基(たとえばピロリン酸基)として繊維状セルロースに含まれていてもよい。また、リン酸基は、たとえば、亜リン酸基(ホスホン酸基)であってもよく、リン酸基に由来する置換基は、亜リン酸基の塩、亜リン酸エステル基などであってもよい。
The phosphate group or a substituent derived from a phosphate group is, for example, a substituent represented by the following formula (1), and is generalized as a phosphorus oxo acid group or a substituent derived from a phosphorus oxo acid.
The phosphate group is a divalent functional group corresponding to, for example, phosphoric acid obtained by removing a hydroxy group. Specifically, it is a group represented by —PO 3 H 2 . The substituent derived from the phosphate group includes substituents such as a salt of the phosphate group and a phosphate group. The substituent derived from the phosphate group may be contained in the fibrous cellulose as a group in which the phosphate group is condensed (for example, a pyrophosphate group). Further, the phosphate group may be, for example, a phosphite group (phosphonate group), and the substituent derived from the phosphate group may be a salt of a phosphite group, a phosphite ester group, or the like. Is also good.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、a、b及びnは自然数である(ただし、a=b×mである)。α1,α2,・・・,αn及びα’のうちa個がO-であり、残りはR,ORのいずれかである。なお、各αn及びα’の全てがO-であっても構わない。Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。なお、βb+の少なくとも一部は後述する有機オニウムイオンである。 In the formula (1), a, b and n are natural numbers (where a = b × m). Of α 1 , α 2 ,..., α n and α ′, a is O , and the rest are either R or OR. Note that all of αn and α ′ may be O . R represents a hydrogen atom, a saturated-straight hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-straight hydrocarbon group, or an unsaturated-branched hydrocarbon group, respectively. A hydrogen group, an unsaturated-cyclic hydrocarbon group, an aromatic group, or a derivative thereof. At least a part of β b + is an organic onium ion described later.
 飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。 Examples of the saturated-linear hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group, but are not particularly limited. Examples of the saturated-branched hydrocarbon group include an i-propyl group and a t-butyl group, but are not particularly limited. Examples of the saturated-cyclic hydrocarbon group include a cyclopentyl group and a cyclohexyl group, but are not particularly limited. Examples of the unsaturated-linear hydrocarbon group include a vinyl group and an allyl group, but are not particularly limited. Examples of the unsaturated-branched hydrocarbon group include an i-propenyl group and a 3-butenyl group, but are not particularly limited. Examples of the unsaturated-cyclic hydrocarbon group include a cyclopentenyl group and a cyclohexenyl group, but are not particularly limited. Examples of the aromatic group include a phenyl group and a naphthyl group, but are not particularly limited.
 また、Rにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、ヒドロキシ基、又はアミノ基などの官能基のうち、少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リン酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細セルロース繊維の収率を高めることもできる。 Further, as the deriving group for R, a functional group in which at least one of functional groups such as a carboxy group, a hydroxy group, or an amino group is added or substituted to a main chain or a side chain of the above various hydrocarbon groups. Although a group is mentioned, it is not particularly limited. Further, the number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, more preferably 10 or less. By setting the number of carbon atoms constituting the main chain of R to the above range, the molecular weight of the phosphate group can be adjusted to an appropriate range, facilitating penetration into the fiber material, and increasing the yield of fine cellulose fibers. You can also.
 βb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、脂肪族アンモニウム、又は芳香族アンモニウムが挙げられ、βb+の少なくとも一部は後述する有機オニウムイオンである。また、無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属の陽イオン、又は水素イオン等が挙げられるが、特に限定されない。これらは1種又は2種類以上を組み合わせて適用することもできる。有機物又は無機物からなる1価以上の陽イオンとしては、βを含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、とくに限定されない。 β b + is a monovalent or higher cation composed of an organic or inorganic substance. Examples of the monovalent or higher cation composed of an organic substance include aliphatic ammonium and aromatic ammonium, and at least a part of β b + is an organic onium ion described later. Examples of the monovalent or higher cation composed of an inorganic substance include ions of alkali metals such as sodium, potassium, and lithium, and cations of divalent metals such as calcium and magnesium, and hydrogen ions. There is no particular limitation. These can be applied alone or in combination of two or more. The monovalent or higher cation composed of an organic or inorganic substance is preferably, but not particularly limited to, sodium or potassium ions that are less likely to yellow when a β-containing fiber material is heated and are easily industrially used.
 繊維状セルロースにおけるアニオン性基の導入量(アニオン性基量)は、たとえば繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることがとくに好ましい。また、繊維状セルロースにおけるアニオン性基の導入量は、たとえば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。ここで、単位mmol/gは、アニオン性基の対イオンが水素イオン(H+)であるときの繊維状セルロースの質量1gあたりの置換基量を示す。アニオン性基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。さらに、アニオン性基の導入量を上記範囲内とすることにより、繊維状セルロースが含み得る有機オニウムイオンの含有量を適切な範囲とすることができ、これにより、繊維状セルロースの有機溶媒に対する分散性を効果的に高めることができる。 The amount of anionic group introduced into the fibrous cellulose (the amount of anionic group) is, for example, preferably 0.10 mmol / g or more per 1 g (mass) of the fibrous cellulose, more preferably 0.20 mmol / g or more. It is more preferably at least 0.50 mmol / g, particularly preferably at least 1.00 mmol / g. The amount of the anionic group introduced into the fibrous cellulose is, for example, preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, per 1 g (mass) of the fibrous cellulose. More preferably, it is not more than 00 mmol / g. Here, the unit mmol / g indicates the amount of the substituent per 1 g of the mass of fibrous cellulose when the counter ion of the anionic group is a hydrogen ion (H + ). By setting the introduction amount of the anionic group in the above range, the fineness of the fiber raw material can be facilitated, and the stability of the fibrous cellulose can be increased. Furthermore, by setting the introduction amount of the anionic group within the above range, the content of the organic onium ion that can be included in the fibrous cellulose can be adjusted to an appropriate range, thereby dispersing the fibrous cellulose in the organic solvent. Sex can be effectively improved.
 繊維状セルロースに対するアニオン性基の導入量は、たとえば伝導度滴定法により測定することができる。伝導度滴定法による測定では、得られた繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながら伝導度の変化を求めることにより、導入量を測定する。 導入 The amount of anionic group introduced into fibrous cellulose can be measured, for example, by conductivity titration. In the measurement by the conductivity titration method, the amount of introduction is measured by determining the change in conductivity while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing fibrous cellulose.
 図1は、リン酸基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。繊維状セルロースに対するリン酸基の導入量は、たとえば次のように測定される。まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。次いで、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を観察し、図1に示すような滴定曲線を得る。図1に示すように、最初は急激に電気伝導度が低下する(以下、「第1領域」という)。その後、わずかに伝導度が上昇を始める(以下、「第2領域」という)。さらにその後、伝導度の増分が増加する(以下、「第3領域」という)。なお、第2領域と第3領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。このように、滴定曲線には、3つの領域が現れる。このうち、第1領域で必要としたアルカリ量が、滴定に使用したスラリー中の強酸性基量と等しく、第2領域で必要としたアルカリ量が滴定に使用したスラリー中の弱酸性基量と等しくなる。リン酸基が縮合を起こす場合、見かけ上弱酸性基が失われ、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、強酸性基量は、縮合の有無に関わらずリン原子の量と一致する。このため、単にリン酸基導入量(またはリン酸基量)または置換基導入量(または置換基量)と言った場合は、強酸性基量のことを表す。したがって、上記で得られた滴定曲線の第1領域で必要としたアルカリ量(mmol)を滴定対象スラリー中の固形分(g)で除して得られる値が、リン酸基導入量(mmol/g)となる。 FIG. 1 is a graph showing the relationship between the amount of NaOH added to fibrous cellulose having a phosphate group and the electrical conductivity. The amount of phosphate groups introduced into fibrous cellulose is measured, for example, as follows. First, a slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, before the treatment with the strongly acidic ion exchange resin, a fibrillation treatment similar to the fibrillation treatment step described later may be performed on the measurement target. Next, a change in electric conductivity is observed while adding an aqueous solution of sodium hydroxide, and a titration curve as shown in FIG. 1 is obtained. As shown in FIG. 1, the electrical conductivity sharply decreases at first (hereinafter, referred to as “first region”). Thereafter, the conductivity starts to slightly increase (hereinafter, referred to as “second region”). Thereafter, the increment of the conductivity increases (hereinafter, referred to as “third region”). Note that the boundary point between the second region and the third region is defined as the point at which the amount of change in the conductivity twice (ie, the increment (slope) of the conductivity) becomes maximum. Thus, three regions appear in the titration curve. Of these, the amount of alkali required in the first region is equal to the amount of strongly acidic groups in the slurry used for titration, and the amount of alkali required in the second region is equal to the amount of weakly acidic groups in the slurry used for titration. Become equal. When the phosphate group causes condensation, the weakly acidic group is apparently lost, and the amount of alkali required in the second region is smaller than the amount of alkali required in the first region. On the other hand, the amount of the strongly acidic group matches the amount of the phosphorus atom regardless of the presence or absence of condensation. For this reason, simply referring to the phosphate group introduction amount (or phosphate group amount) or the substituent group introduction amount (or substituent amount) indicates a strongly acidic group amount. Therefore, the value obtained by dividing the alkali amount (mmol) required in the first region of the titration curve obtained above by the solid content (g) in the slurry to be titrated is the phosphate group introduction amount (mmol / mmol). g).
 図2は、カルボキシ基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。繊維状セルロースに対するカルボキシ基の導入量は、たとえば次のように測定される。まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。次いで、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を観察し、図2に示すような滴定曲線を得る。滴定曲線は、図2に示すように、電気伝導度が減少した後、伝導度の増分(傾き)がほぼ一定となるまでの第1領域と、その後に伝導度の増分(傾き)が増加する第2領域に区分される。なお、第1領域、第2領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の微細繊維状セルロース含有スラリー中の固形分(g)で除して得られる値が、カルボキシ基の導入量(mmol/g)となる。 FIG. 2 is a graph showing the relationship between the amount of NaOH added to fibrous cellulose having a carboxy group and the electrical conductivity. The amount of carboxy groups introduced into fibrous cellulose is measured, for example, as follows. First, a slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, before the treatment with the strongly acidic ion exchange resin, a fibrillation treatment similar to the fibrillation treatment step described later may be performed on the measurement target. Next, a change in electric conductivity is observed while adding an aqueous solution of sodium hydroxide, and a titration curve as shown in FIG. 2 is obtained. As shown in FIG. 2, the titration curve shows a first region where the increment (slope) of the conductivity becomes substantially constant after the decrease in the electric conductivity, and thereafter, the increment (slope) of the conductivity increases. It is divided into a second area. Note that the boundary point between the first region and the second region is defined as a point at which the amount of change in the conductivity twice (in other words, the increment (slope) of the conductivity becomes maximum). The value obtained by dividing the amount of alkali (mmol) required in the first region of the titration curve by the solid content (g) in the slurry containing fine fibrous cellulose to be titrated is the amount of carboxy group introduced ( mmol / g).
 なお、上述のカルボキシ基導入量(mmol/g)は、カルボキシ基の対イオンが水素イオン(H+)であるときの繊維状セルロースの質量1gあたりの置換基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。一方で、カルボキシ基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(C型))を求めることができる。
すなわち、下記計算式によってカルボキシ基導入量を算出する。
カルボキシ基導入量(C型)=カルボキシ基量(酸型)/[1+(W-1)×(カルボキシ基量(酸型))/1000]
W:陽イオンCの1価あたりの式量(例えば、Naは23、Alは9)
The above-mentioned carboxy group introduction amount (mmol / g) refers to the amount of the substituent per mass of fibrous cellulose when the counter ion of the carboxy group is a hydrogen ion (H + ) (hereinafter referred to as the carboxy group amount (acid Type). On the other hand, when the counter ion of the carboxy group is substituted with an arbitrary cation C so as to have a charge equivalent, the denominator is converted into the mass of fibrous cellulose when the cation C is a counter ion. The amount of carboxy groups (hereinafter, the amount of carboxy groups (C type)) of the fibrous cellulose having the cation C as a counter ion can be determined.
That is, the carboxy group introduction amount is calculated by the following formula.
Carboxy group introduction amount (C type) = carboxy group amount (acid type) / [1+ (W-1) × (carboxy group amount (acid type)) / 1000]
W: Formula weight per valence of cation C (eg, 23 for Na, 9 for Al)
 なお、滴定法による置換基量の測定においては、水酸化ナトリウム水溶液の滴定間隔が短すぎる場合、本来より低い置換基量となることがあるため、適切な滴定間隔、例えば、0.1N水酸化ナトリウム水溶液を30秒に50μLずつ滴定するなどが望ましい。 In the measurement of the amount of the substituent by the titration method, if the titration interval of the aqueous sodium hydroxide solution is too short, the amount of the substituent may be lower than it should be. It is desirable to titrate the aqueous sodium solution by 50 μL every 30 seconds.
<微細繊維状セルロースの製造工程>
<繊維原料>
 微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、とくに限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、とくに限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、とくに限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、とくに限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。
 上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。なお、軸比の大きい長繊維の微細繊維状セルロースを用いると粘度が高くなる傾向がある。
<Manufacturing process of fine fibrous cellulose>
<Textile raw materials>
Fine fibrous cellulose is produced from a fiber raw material containing cellulose. The fiber material containing cellulose is not particularly limited, but pulp is preferably used because it is easily available and inexpensive. Pulp includes, for example, wood pulp, non-wood pulp, and deinked pulp. Examples of the wood pulp include, but are not particularly limited to, hardwood kraft pulp (LBKP), softwood kraft pulp (NBKP), sulfite pulp (SP), dissolved pulp (DP), soda pulp (AP), and unbleached kraft pulp (UKP). And oxygen bleached kraft pulp (OKP); semi-chemical pulp such as semi-chemical pulp (SCP) and chemical ground wood pulp (CGP); groundwood pulp (GP); and thermomechanical pulp (TMP, BCTMP). And mechanical pulp. Non-wood pulp includes, but is not limited to, cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as hemp, straw and bagasse. Examples of the deinked pulp include, but are not particularly limited to, deinked pulp made from waste paper. As the pulp of this embodiment, one of the above-mentioned types may be used alone, or two or more types may be used in combination.
Among the above pulp, for example, wood pulp and deinked pulp are preferable from the viewpoint of availability. In addition, among wood pulp, a viewpoint that the cellulose ratio is large and the yield of fine fibrous cellulose at the time of defibration treatment is high, and the decomposition of cellulose in pulp is small, and fine fibrous cellulose of long fibers having a large axial ratio can be obtained. From the viewpoint, for example, chemical pulp is more preferable, and kraft pulp and sulfite pulp are more preferable. In addition, when fine fibrous cellulose of long fibers having a large axial ratio is used, the viscosity tends to increase.
 セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。 繊 維 As the cellulose raw material containing cellulose, for example, cellulose contained in ascidians or bacterial cellulose produced by acetic acid bacteria can be used. In addition, a fiber formed by a linear nitrogen-containing polysaccharide polymer such as chitin or chitosan can be used in place of the fiber material containing cellulose.
<リン酸基導入工程>
 微細繊維状セルロースがリン酸基を有する場合、微細繊維状セルロースの製造工程は、リン酸基導入工程を含む。リン酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リン酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リン酸基導入繊維が得られることとなる。
<Phosphate group introduction step>
When the fine fibrous cellulose has a phosphate group, the step of producing the fine fibrous cellulose includes a step of introducing a phosphate group. In the phosphate group introduction step, at least one compound selected from compounds capable of introducing a phosphate group by reacting with a hydroxyl group of a cellulose-containing fiber material (hereinafter, also referred to as “compound A”) is converted into cellulose. This is a step of acting on a fiber raw material containing. By this step, a phosphate group-introduced fiber is obtained.
 本実施形態に係るリン酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。 In the phosphate group introduction step according to the present embodiment, the reaction between the fiber material containing cellulose and the compound A is performed in the presence of at least one selected from urea and its derivatives (hereinafter, also referred to as “compound B”). You may. On the other hand, the reaction between the fiber raw material containing cellulose and the compound A may be performed in a state where the compound B is not present.
 化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態またはスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態または湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、とくに限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物Aおよび化合物Bは、それぞれ粉末状または溶媒に溶解させた溶液状または融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、とくに限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。 例 As an example of a method of causing compound A to act on a fiber raw material in the presence of compound B, a method of mixing compound A and compound B with a dry, wet, or slurry fiber raw material may be mentioned. Among them, it is preferable to use a fiber material in a dry state or a wet state, and particularly to use a fiber material in a dry state, because of high uniformity of the reaction. The form of the fiber raw material is not particularly limited, but is preferably, for example, cotton or a thin sheet. The compound A and the compound B may be added to the fiber material in the form of a powder, a solution dissolved in a solvent, or a state in which the compound A and the compound B are heated to a melting point or higher and melted. Among these, it is preferable to add in the form of a solution dissolved in a solvent, particularly in the form of an aqueous solution, because of high reaction uniformity. Further, the compound A and the compound B may be added simultaneously to the fiber raw material, may be added separately, or may be added as a mixture. The method of adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in a solution state, the fiber raw material may be immersed in the solution, absorbed and then taken out. May be added dropwise to the solution. In addition, the necessary amount of compound A and compound B may be added to the fiber raw material, or the excessive amount of compound A and compound B may be added to the fiber raw material, respectively, and then the excess compound A and compound B may be squeezed or filtered. It may be removed.
 本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物が挙げられ、具体的には、リン酸もしくはその塩、亜リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが、特に限定されない。リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。亜リン酸としては、たとえば99%亜リン酸(ホスホン酸)が挙げられる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、例えばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、亜リン酸塩、脱水縮合リン酸塩としては、リン酸、亜リン酸または脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リン酸基の導入の効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、またはリン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、またはリン酸二水素アンモニウムがより好ましい。 Examples of the compound A used in the present embodiment include a compound having a phosphorus atom and capable of forming an ester bond with cellulose, and specifically, phosphoric acid or a salt thereof, phosphorous acid or a salt thereof, dehydration condensation Examples thereof include phosphoric acid or a salt thereof, phosphoric anhydride (diphosphorus pentoxide), and the like, but are not particularly limited. As phosphoric acid, those having various purities can be used. For example, 100% phosphoric acid (normal phosphoric acid) and 85% phosphoric acid can be used. Examples of the phosphorous acid include 99% phosphorous acid (phosphonic acid). The dehydrated condensed phosphoric acid is obtained by condensing two or more molecules of phosphoric acid by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid. Examples of the phosphate, phosphite, and dehydrated condensed phosphate include phosphoric acid, lithium salt, sodium salt, potassium salt, and ammonium salt of phosphoric acid or dehydrated condensed phosphoric acid. It can be the sum. Among these, phosphoric acid, phosphoric acid, phosphoric acid, from the viewpoint of high efficiency of introduction of the phosphate group, easier to improve the defibration efficiency in the defibration step described later, low cost, and industrially applicable A sodium salt, a potassium salt of phosphoric acid, or an ammonium salt of phosphoric acid is preferable, and phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, or ammonium dihydrogen phosphate is more preferable.
 繊維原料に対する化合物Aの添加量は、特に限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。 The amount of the compound A added to the fiber raw material is not particularly limited. For example, when the amount of the compound A added is converted into the phosphorus atomic weight, the amount of the phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, further preferably 2% by mass or more and 30% by mass or less. By setting the amount of the phosphorus atom added to the fiber raw material within the above range, the yield of fine fibrous cellulose can be further improved. On the other hand, by setting the amount of phosphorus atoms added to the fiber raw material to be equal to or less than the above upper limit, the effect of improving the yield and the cost can be balanced.
 本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、および1-エチル尿素などが挙げられる。
反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
The compound B used in this embodiment is at least one selected from urea and its derivatives as described above. Compound B includes, for example, urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like.
From the viewpoint of improving the uniformity of the reaction, the compound B is preferably used as an aqueous solution. From the viewpoint of further improving the uniformity of the reaction, it is preferable to use an aqueous solution in which both the compound A and the compound B are dissolved.
 繊維原料(絶乾質量)に対する化合物Bの添加量は、とくに限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。 The amount of the compound B to be added to the fiber raw material (absolute dry mass) is not particularly limited, but is, for example, preferably 1% by mass or more and 500% by mass or less, more preferably 10% by mass or more and 400% by mass or less, More preferably, it is 100% by mass or more and 350% by mass or less.
 セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類またはアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。 反 応 In the reaction between the fiber material containing cellulose and the compound A, in addition to the compound B, for example, amides or amines may be included in the reaction system. Examples of the amide include formamide, dimethylformamide, acetamide, dimethylacetamide and the like. Examples of the amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine, and the like. Among these, it is known that triethylamine particularly works as a good reaction catalyst.
 リン酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リン酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置を用いることができる。 In the phosphoric acid group introduction step, it is preferable to add or mix the compound A or the like to the fiber raw material and then perform a heat treatment on the fiber raw material. As the heat treatment temperature, it is preferable to select a temperature at which a phosphate group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis of the fiber. The heat treatment temperature is, for example, preferably from 50 ° C. to 300 ° C., more preferably from 100 ° C. to 250 ° C., and even more preferably from 130 ° C. to 200 ° C. In addition, equipment having various heat media can be used for the heat treatment, for example, a stirring drying apparatus, a rotary drying apparatus, a disk drying apparatus, a roll heating apparatus, a plate heating apparatus, a fluidized bed drying apparatus, an air current A drying device, a reduced-pressure drying device, an infrared heating device, a far-infrared heating device, and a microwave heating device can be used.
 本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリン酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。 In the heat treatment according to the present embodiment, for example, the compound A is added to a thin sheet-form fiber material by impregnation or the like, and then the fiber material and the compound A are heated while kneading or stirring with a kneader or the like. Can be adopted. Thereby, it becomes possible to suppress the concentration unevenness of the compound A in the fiber raw material and more uniformly introduce the phosphate group to the surface of the cellulose fiber contained in the fiber raw material. This is because when the water molecules move to the fiber material surface with drying, the dissolved compound A is attracted to the water molecules by the surface tension and moves to the fiber material surface similarly (that is, the concentration unevenness of the compound A decreases). It can be considered that this is caused by the fact that it can be suppressed.
 また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。 In addition, the heating device used for the heat treatment always generates, for example, the water retained by the slurry and the water generated by the dehydration condensation (phosphate esterification) reaction between compound A and the hydroxyl group contained in cellulose or the like in the fiber material. It is preferable that the device can be discharged outside the device system. As such a heating device, for example, an air-blowing oven or the like can be mentioned. By constantly discharging the water in the system, it is possible to suppress the hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of the phosphorylation, and also to suppress the acid hydrolysis of the sugar chains in the fiber. it can. For this reason, it becomes possible to obtain fine fibrous cellulose having a high axial ratio.
 加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リン酸基の導入量を好ましい範囲内とすることができる。 The time of the heat treatment is, for example, preferably from 1 second to 300 minutes after water is substantially removed from the fiber raw material, more preferably from 1 second to 1000 seconds, and more preferably from 10 seconds to 800 seconds. Is more preferable. In the present embodiment, by setting the heating temperature and the heating time in an appropriate range, the amount of the phosphate group introduced can be set in a preferable range.
 リン酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上のリン酸基導入工程を行うことにより、繊維原料に対して多くのリン酸基を導入することができる。本実施形態においては、好ましい態様の一例として、リン酸基導入工程を2回行う場合が挙げられる。 The phosphate group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphate group introduction step twice or more, a large number of phosphate groups can be introduced into the fiber raw material. In the present embodiment, as an example of a preferred embodiment, a case where the phosphate group introduction step is performed twice is exemplified.
 繊維原料に対するリン酸基の導入量は、たとえば微細繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることがとくに好ましい。また、繊維原料に対するリン酸基の導入量は、たとえば微細繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。リン酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易にし、微細繊維状セルロースの安定性を高めることができる。さらに、リン酸基の導入量を上記範囲内とすることにより、繊維状セルロースが含み得る有機オニウムイオンの含有量を適切な範囲とすることができ、これにより、繊維状セルロースの有機溶媒に対する分散性を効果的に高めることができる。 The amount of phosphate groups introduced into the fiber raw material is, for example, preferably 0.10 mmol / g or more, more preferably 0.20 mmol / g or more, and more preferably 0.50 mmol / g per 1 g (mass) of fine fibrous cellulose. g or more, more preferably 1.00 mmol / g or more. Further, the amount of the phosphate group introduced into the fiber raw material is, for example, preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, per 1 g (mass) of fine fibrous cellulose. More preferably, it is not more than 00 mmol / g. By setting the amount of the phosphoric acid group to be in the above range, it is possible to easily make the fiber raw material finer and to increase the stability of the fine fibrous cellulose. Further, by setting the amount of the phosphate group to be in the above range, the content of organic onium ions that can be included in the fibrous cellulose can be adjusted to an appropriate range, whereby the dispersion of the fibrous cellulose in the organic solvent can be performed. Sex can be effectively improved.
<カルボキシ基導入工程>
 微細繊維状セルロースがカルボキシ基を有する場合、微細繊維状セルロースの製造工程は、カルボキシ基導入工程を含む。カルボキシ基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、またはカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
<Carboxy group introduction step>
When the fine fibrous cellulose has a carboxy group, the step of producing the fine fibrous cellulose includes a step of introducing a carboxy group. The carboxy group introduction step has a compound having a carboxylic acid-derived group or a derivative thereof, or a carboxylic acid-derived group, or a carboxylic acid-derived compound or a carboxylic acid-derived group, for a fiber raw material containing cellulose, such as ozone oxidation or oxidation by the Fenton method, or TEMPO oxidation treatment. It is carried out by treating with an acid anhydride of a compound or a derivative thereof.
 カルボン酸由来の基を有する化合物としては、特に限定されないが、たとえばマレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、特に限定されないが、たとえばカルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては、特に限定されないが、たとえばマレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。 Examples of the compound having a group derived from a carboxylic acid include, but are not particularly limited to, dicarboxylic acid compounds such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid, and itaconic acid, and citric acid and aconitic acid. Tricarboxylic acid compounds. The derivative of the compound having a group derived from a carboxylic acid is not particularly limited, and examples thereof include an imidized product of an acid anhydride of a compound having a carboxy group and a derivative of an acid anhydride of a compound having a carboxy group. The imidized product of the acid anhydride of the compound having a carboxy group is not particularly limited, and examples thereof include imidized products of dicarboxylic acid compounds such as maleimide, succinimide and phthalic imide.
 カルボン酸由来の基を有する化合物の酸無水物としては、特に限定されないが、たとえば無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。また、カルボン酸由来の基を有する化合物の酸無水物の誘導体としては、特に限定されないが、たとえばジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等のカルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が、アルキル基、フェニル基等の置換基により置換されたものが挙げられる。 Examples of the acid anhydride of the compound having a group derived from a carboxylic acid include, but are not particularly limited to, maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, and dicarboxylic acid compounds such as itaconic anhydride. Acid anhydrides. The derivative of the acid anhydride of the compound having a group derived from a carboxylic acid is not particularly limited. For example, dimethylmaleic anhydride, diethylmaleic anhydride, and a compound having a carboxy group such as diphenylmaleic anhydride can be used. An acid anhydride in which at least a part of hydrogen atoms are substituted with a substituent such as an alkyl group or a phenyl group is exemplified.
 カルボキシ基導入工程において、TEMPO酸化処理を行う場合には、たとえばその処理をpHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、例えばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することができる。 In the case where the TEMPO oxidation treatment is performed in the carboxy group introduction step, it is preferable that the treatment be performed, for example, at a pH of 6 to 8. Such a process is also called a neutral TEMPO oxidation process. Neutral TEMPO oxidation treatment is performed, for example, by adding sodium phosphate buffer (pH = 6.8), pulp as a fiber raw material, and TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a catalyst. It can be performed by adding nitroxy radical and sodium hypochlorite as a sacrificial reagent. Further, by coexisting sodium chlorite, aldehydes generated in the course of oxidation can be efficiently oxidized to carboxy groups.
 また、TEMPO酸化処理は、その処理をpHが10以上11以下の条件で行ってもよい。このような処理は、アルカリTEMPO酸化処理ともいう。アルカリTEMPO酸化処理は、たとえば繊維原料としてのパルプに対し、触媒としてTEMPO等のニトロキシラジカルと、共触媒として臭化ナトリウムと、酸化剤として次亜塩素酸ナトリウムを添加することにより行うことができる。 In addition, the TEMPO oxidation treatment may be performed at a pH of 10 or more and 11 or less. Such a treatment is also called an alkaline TEMPO oxidation treatment. The alkali TEMPO oxidation treatment can be performed, for example, by adding a nitroxy radical such as TEMPO as a catalyst, sodium bromide as a cocatalyst, and sodium hypochlorite as an oxidizing agent to pulp as a fiber raw material. .
 繊維原料に対するカルボキシ基の導入量は、置換基の種類によっても変わるが、たとえばTEMPO酸化によりカルボキシ基を導入する場合、微細繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、0.90mmol/g以上であることがとくに好ましい。また、2.5mmol/g以下であることが好ましく、2.20mmol/g以下であることがより好ましく、2.00mmol/g以下であることがさらに好ましい。その他、置換基がカルボキシメチル基である場合、微細繊維状セルロース1g(質量)あたり5.8mmol/g以下であってもよい。さらに、カルボキシ基の導入量を上記範囲内とすることにより、繊維状セルロースが含み得る有機オニウムイオンの含有量を適切な範囲とすることができ、これにより、繊維状セルロースの有機溶媒に対する分散性を効果的に高めることができる。 The amount of the carboxy group introduced into the fiber raw material varies depending on the type of the substituent. For example, when the carboxy group is introduced by TEMPO oxidation, the amount is preferably 0.10 mmol / g or more per 1 g (mass) of fine fibrous cellulose. , 0.20 mmol / g or more, more preferably 0.50 mmol / g or more, particularly preferably 0.90 mmol / g or more. Further, it is preferably at most 2.5 mmol / g, more preferably at most 2.20 mmol / g, even more preferably at most 2.00 mmol / g. In addition, when the substituent is a carboxymethyl group, it may be 5.8 mmol / g or less per 1 g (mass) of fine fibrous cellulose. Furthermore, by setting the amount of the carboxy group to be in the above range, the content of organic onium ions that can be included in the fibrous cellulose can be in an appropriate range, thereby dispersing the fibrous cellulose in an organic solvent. Can be effectively increased.
<洗浄工程>
 本実施形態における微細繊維状セルロースの製造方法においては、必要に応じてアニオン性基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりアニオン性基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、とくに限定されない。
<Washing process>
In the method for producing fine fibrous cellulose in the present embodiment, a washing step can be performed on the anionic group-introduced fiber as necessary. The washing step is performed, for example, by washing the anionic group-introduced fiber with water or an organic solvent. Further, the cleaning step may be performed after each step described later, and the number of times of cleaning performed in each cleaning step is not particularly limited.
<アルカリ処理工程>
 微細繊維状セルロースを製造する場合、アニオン性基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、アニオン性基導入繊維を浸漬する方法が挙げられる。
<Alkali treatment step>
When producing fine fibrous cellulose, the fiber raw material may be subjected to an alkali treatment between the anionic group introduction step and the defibration treatment step described below. The method of the alkali treatment is not particularly limited, and includes, for example, a method of dipping the anionic group-introduced fiber in an alkaline solution.
 アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。 ア ル カ リ The alkali compound contained in the alkali solution is not particularly limited, and may be an inorganic alkali compound or an organic alkali compound. In the present embodiment, it is preferable to use, for example, sodium hydroxide or potassium hydroxide as the alkali compound because of high versatility. The solvent contained in the alkaline solution may be either water or an organic solvent. Among them, the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water. As the alkali solution, for example, an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide is preferable because of high versatility.
 アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるアニオン性基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、たとえばアニオン性基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。 温度 The temperature of the alkali solution in the alkali treatment step is not particularly limited, but is preferably, for example, 5 ° C or more and 80 ° C or less, more preferably 10 ° C or more and 60 ° C or less. The immersion time of the anionic group-introduced fiber in the alkali solution in the alkali treatment step is not particularly limited, but is preferably, for example, 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less. The amount of the alkali solution used in the alkali treatment is not particularly limited, but is, for example, preferably from 100% by mass to 100,000% by mass, and more preferably from 1,000% by mass to 10,000% by mass, based on the absolute dry mass of the anionic group-introduced fiber. Is more preferable.
 アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、アニオン性基導入工程の後であってアルカリ処理工程の前に、アニオン性基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったアニオン性基導入繊維を水や有機溶媒により洗浄することが好ましい。 ア ニ オ ン In order to reduce the amount of the alkali solution used in the alkali treatment step, the anionic group-introduced fiber may be washed with water or an organic solvent after the anionic group introduction step and before the alkali treatment step. After the alkali treatment step and before the fibrillation treatment step, it is preferable to wash the alkali-treated anionic group-introduced fiber with water or an organic solvent from the viewpoint of improving the handleability.
<酸処理工程>
 微細繊維状セルロースを製造する場合、アニオン性基を導入する工程と、後述する解繊処理工程の間に、繊維原料に対して酸処理を行ってもよい。例えば、アニオン性基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。
<Acid treatment step>
In the case of producing fine fibrous cellulose, an acid treatment may be performed on the fiber raw material between the step of introducing an anionic group and the defibration step described below. For example, an anionic group introduction step, an acid treatment, an alkali treatment and a fibrillation treatment may be performed in this order.
 酸処理の方法としては、特に限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸または硫酸を用いることがとくに好ましい。 The method of the acid treatment is not particularly limited, and examples thereof include a method of immersing the fiber raw material in an acid-containing acid solution. The concentration of the acidic liquid used is not particularly limited, but is preferably, for example, 10% by mass or less, and more preferably 5% by mass or less. The pH of the acidic liquid used is not particularly limited, but is preferably, for example, 0 or more and 4 or less, and more preferably 1 or more and 3 or less. As the acid contained in the acidic liquid, for example, an inorganic acid, a sulfonic acid, a carboxylic acid and the like can be used. Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like. Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like. Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid and the like. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
 酸処理における酸溶液の温度は、特に限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、たとえば繊維原料の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。 The temperature of the acid solution in the acid treatment is not particularly limited, but is preferably, for example, 5 ° C or more and 100 ° C or less, and more preferably 20 ° C or more and 90 ° C or less. The immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably, for example, 5 minutes or more and 120 minutes or less, and more preferably 10 minutes or more and 60 minutes or less. The amount of the acid solution used in the acid treatment is not particularly limited, but is preferably, for example, 100% by mass to 100,000% by mass, and more preferably 1,000% by mass to 10,000% by mass, based on the absolute dry mass of the fiber raw material. Is more preferred.
<解繊処理>
 アニオン性基導入繊維を解繊処理工程で解繊処理することにより、微細繊維状セルロースが得られる。解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
<Fibrillation processing>
Fine fibrous cellulose is obtained by defibrating the anionic group-introduced fiber in the defibration step. In the defibrating process, for example, a defibrating device can be used. The defibrating apparatus is not particularly limited, but includes, for example, a high-speed defibrating machine, a grinder (stone mill-type crusher), a high-pressure homogenizer or an ultra-high-pressure homogenizer, a high-pressure collision-type crusher, a ball mill, a bead mill, a disc refiner, a conical refiner, and a twin-screw. A kneader, a vibration mill, a homomixer under high-speed rotation, an ultrasonic disperser, a beater, or the like can be used. Among the above defibration apparatuses, it is more preferable to use a high-speed defibrator, a high-pressure homogenizer, or an ultra-high-pressure homogenizer, which is less affected by the pulverized media and is less likely to cause contamination.
 解繊処理工程においては、たとえばアニオン性基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、および極性有機溶媒などの有機溶媒から選択される1種または2種以上を使用することができる。極性有機溶媒としては、とくに限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン性極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。 In the fibrillation treatment step, for example, it is preferable to dilute the anionic group-introduced fiber with a dispersion medium to form a slurry. As the dispersion medium, one or more kinds selected from water and an organic solvent such as a polar organic solvent can be used. The polar organic solvent is not particularly limited, but, for example, alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents, and the like are preferable. Examples of the alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like. Examples of polyhydric alcohols include ethylene glycol, propylene glycol, glycerin and the like. Examples of ketones include acetone and methyl ethyl ketone (MEK). Examples of the ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-butyl ether, and propylene glycol monomethyl ether. Examples of the esters include ethyl acetate, butyl acetate and the like. Examples of the aprotic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
 解繊処理時の微細繊維状セルロースの固形分濃度は適宜設定できる。また、アニオン性基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのアニオン性基導入繊維以外の固形分が含まれていてもよい。 固 形 The solid content concentration of the fine fibrous cellulose during the defibration treatment can be set as appropriate. Further, the slurry obtained by dispersing the anionic group-introduced fiber in the dispersion medium may contain a solid content other than the anionic group-introduced fiber such as urea having hydrogen bonding properties.
(有機オニウムイオン)
 本発明の固形状体は、繊維状セルロースが有するアニオン性基の対イオンとして、有機オニウムイオンを含む。本発明においては、少なくとも一部の有機オニウムイオンは、繊維状セルロースの対イオンとして存在しているが、固形状体中には、遊離した有機オニウムイオンが存在していてもよい。なお、有機オニウムイオンは、繊維状セルロースと共有結合を形成するものではない。
(Organic onium ion)
The solid of the present invention contains an organic onium ion as a counter ion of the anionic group of the fibrous cellulose. In the present invention, at least a part of the organic onium ion is present as a counter ion of fibrous cellulose, but a free organic onium ion may be present in the solid. Note that the organic onium ion does not form a covalent bond with the fibrous cellulose.
 有機オニウムイオンは、下記(a)及び(b)から選択される少なくとも一方の条件を満たすものであることが好ましい。
(a)炭素数が5以上の炭化水素基を含む。
(b)総炭素数が17以上である。
 すなわち、繊維状セルロースは、炭素数が5以上の炭化水素基を含む有機オニウムイオン、及び総炭素数が17以上の有機オニウムイオンから選択される少なくとも一方を、アニオン性基の対イオンとして含むことが好ましい。有機オニウムイオンを、上記(a)及び(b)から選択される少なくとも一方の条件を満たすものとすることにより、有機溶媒に対する繊維状セルロースの分散性をより効果的に高めることができる。
The organic onium ion preferably satisfies at least one condition selected from the following (a) and (b).
(A) It contains a hydrocarbon group having 5 or more carbon atoms.
(B) The total number of carbon atoms is 17 or more.
That is, the fibrous cellulose contains at least one selected from an organic onium ion containing a hydrocarbon group having 5 or more carbon atoms and an organic onium ion having a total carbon number of 17 or more as a counter ion of the anionic group. Is preferred. When the organic onium ion satisfies at least one condition selected from the above (a) and (b), the dispersibility of fibrous cellulose in an organic solvent can be more effectively increased.
 炭素数が5以上の炭化水素基は、炭素数が5以上のアルキル基又は炭素数が5以上のアルキレン基であることが好ましく、炭素数が6以上のアルキル基又は炭素数が6以上のアルキレン基であることがより好ましく、炭素数が7以上のアルキル基又は炭素数が7以上のアルキレン基であることがさらに好ましく、炭素数が10以上のアルキル基又は炭素数が10以上のアルキレン基であることが特に好ましい。中でも、有機オニウムイオンは炭素数が5以上のアルキル基を有するものであることが好ましく、炭素数が5以上のアルキル基を含み、かつ総炭素数が17以上の有機オニウムイオンであることがより好ましい。 The hydrocarbon group having 5 or more carbon atoms is preferably an alkyl group having 5 or more carbon atoms or an alkylene group having 5 or more carbon atoms, and an alkyl group having 6 or more carbon atoms or an alkylene having 6 or more carbon atoms. Group, more preferably an alkyl group having 7 or more carbon atoms or an alkylene group having 7 or more carbon atoms, and an alkyl group having 10 or more carbon atoms or an alkylene group having 10 or more carbon atoms. It is particularly preferred that there is. Among them, the organic onium ion is preferably an organic onium ion having an alkyl group having 5 or more carbon atoms, more preferably an organic onium ion having an alkyl group having 5 or more carbon atoms and having a total carbon number of 17 or more. preferable.
 有機オニウムイオンは、下記一般式(A)で表される有機オニウムイオンであることが好ましい。 The organic onium ion is preferably an organic onium ion represented by the following general formula (A).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(A)中、Mは窒素原子又はリン原子であることが好ましく、R1~R4は、それぞれ独立に水素原子又は有機基を表す。但し、R1~R4の少なくとも1つは、炭素数が5以上の有機基であるか、R1~R4の炭素数の合計が17以上であることが好ましい。
 中でも、Mは、窒素原子であることが好ましい。すなわち、有機オニウムイオンは有機アンモニウムイオンであることが好ましい。また、R1~R4の少なくとも1つは、炭素数が5以上のアルキル基であり、かつR1~R4の炭素数の合計が17以上であることが好ましい。
In the general formula (A), M is preferably a nitrogen atom or a phosphorus atom, and R 1 to R 4 each independently represent a hydrogen atom or an organic group. However, at least one of R 1 to R 4 is preferably an organic group having 5 or more carbon atoms, or the total number of carbon atoms of R 1 to R 4 is preferably 17 or more.
Among them, M is preferably a nitrogen atom. That is, the organic onium ion is preferably an organic ammonium ion. Further, at least one of R 1 to R 4 is preferably an alkyl group having 5 or more carbon atoms, and the total number of carbon atoms of R 1 to R 4 is preferably 17 or more.
 このような有機オニウムイオンとしては、例えば、ラウリルトリメチルアンモニウム、セチルトリメチルアンモニウム、ステアリルトリメチルアンモニウム、オクチルジメチルエチルアンモニウム、ラウリルジメチルエチルアンモニウム、ジデシルジメチルアンモニウム、ラウリルジメチルベンジルアンモニウム、トリブチルベンジルアンモニウム、メチルトリ-n-オクチルアンモニウム、ヘキシルアンモニウム、n-オクチルアンモニウム、ドデシルアンモニウム、テトラデシルアンモニウム、ヘキサデシルアンモニウム、ステアリルアンモニウム、N,N-ジメチルドデシルアンモニウム、N,N-ジメチルテトラデシルアンモニウム、N,N-ジメチルヘキサデシルアンモニウム、N,N-ジメチル-n-オクタデシルアンモニウム、ジヘキシルアンモニウム、ジ(2-エチルヘキシル)アンモニウム、ジーn-オクチルアンモニウム、ジデシルアンモニウム、ジドデシルアンモニウム、ジデシルメチルアンモニウム、N,N-ジドデシルメチルアンモニウム、ポリオキシエチレンドデシルアンモニウム、アルキルジメチルベンジルアンモニウム、ジ-n-アルキルジメチルアンモニウム、ベヘニルトリメチルアンモニウム、テトラフェニルホスホニウム、テトラオクチルホスホニウム、アセトニルトリフェニルホスホニウム、アリルトリフェニルホスホニウム、アミルトリフェニルホスホニウム、ベンジルトリフェニルホスホニウム、エチルトリフェニルホスホニウム、ジフェニルプロピルホスホニウム、トリフェニルホスホニウム、トリシクロヘキシルホスホニウム、トリ-n-オクチルホスホニウム等を挙げることができる。なお、アルキルジメチルベンジルアンモニウム、ジ-n-アルキルジメチルアンモニウムにおけるアルキル基として、炭素数が8以上18以下の直鎖アルキル基が挙げられる。 Such organic onium ions include, for example, lauryl trimethyl ammonium, cetyl trimethyl ammonium, stearyl trimethyl ammonium, octyl dimethyl ethyl ammonium, lauryl dimethyl ethyl ammonium, didecyl dimethyl ammonium, lauryl dimethyl benzyl ammonium, tributyl benzyl ammonium, methyl tri-n -Octyl ammonium, hexyl ammonium, n-octyl ammonium, dodecyl ammonium, tetradecyl ammonium, hexadecyl ammonium, stearyl ammonium, N, N-dimethyldodecyl ammonium, N, N-dimethyltetradecyl ammonium, N, N-dimethylhexadecyl Ammonium, N, N-dimethyl-n-octadecylammonium , Dihexylammonium, di (2-ethylhexyl) ammonium, di-n-octylammonium, didecylammonium, didodecylammonium, didedecylmethylammonium, N, N-didodecylmethylammonium, polyoxyethylenedodecylammonium, alkyldimethylbenzylammonium , Di-n-alkyldimethylammonium, behenyltrimethylammonium, tetraphenylphosphonium, tetraoctylphosphonium, acetonyltriphenylphosphonium, allyltriphenylphosphonium, amyltriphenylphosphonium, benzyltriphenylphosphonium, ethyltriphenylphosphonium, diphenylpropylphosphonium , Triphenylphosphonium, tricyclohexylphosphonium And tri -n- octyl phosphonium like. The alkyl group in alkyldimethylbenzylammonium and di-n-alkyldimethylammonium includes a straight-chain alkyl group having 8 to 18 carbon atoms.
 なお、一般式(A)に示した通り、有機オニウムイオンの中心元素は合計4つの基または水素と結合している。上述した有機オニウムイオンの名称で、結合している基が4つ未満である場合、残りは水素原子が結合して有機オニウムイオンを形成している。例えば、N,N-ジドデシルメチルアンモニウムであれば、名称からドデシル基が2つ、メチル基が1つ結合していると判断できる。この場合、残りの1つには水素が結合し、有機オニウムイオンを形成している。 As shown in the general formula (A), the central element of the organic onium ion is bonded to a total of four groups or hydrogen. In the name of the above-mentioned organic onium ion, when the number of bonding groups is less than four, the remaining hydrogen atoms are bonded to form an organic onium ion. For example, in the case of N, N-didodecylmethylammonium, it can be determined from the name that two dodecyl groups and one methyl group are bonded. In this case, hydrogen is bonded to the other one to form an organic onium ion.
 有機オニウムがO原子を含む場合、O原子に対するC原子の質量比率(C/O比)は大きいほど好ましく、例えば、C/O>5であることが好ましい。C/O比を5よりも大きくすることにより、繊維状セルロース含有スラリーに、有機オニウムイオンまたは、中和により有機オニウムイオンを形成する化合物を添加した際に、繊維状セルロース濃縮物が得られやすくなる。 When the organic onium contains O atoms, the mass ratio of C atoms to O atoms (C / O ratio) is preferably as large as possible. For example, it is preferable that C / O> 5. By increasing the C / O ratio to more than 5, an organic onium ion or a compound that forms an organic onium ion by neutralization is added to the fibrous cellulose-containing slurry, whereby a fibrous cellulose concentrate is easily obtained. Become.
 有機オニウムイオンの分子量は、2000以下であることが好ましく、1800以下であることがより好ましい。有機オニウムイオンの分子量を上記範囲内とすることにより、繊維状セルロースのハンドリング性を高めることができる。また、有機オニウムイオンの分子量を上記範囲内とすることにより、固形状体における繊維状セルロースの含有率が低下してしまうことを抑制できる。 分子 The molecular weight of the organic onium ion is preferably 2000 or less, more preferably 1800 or less. By setting the molecular weight of the organic onium ion within the above range, the handleability of fibrous cellulose can be improved. Further, by setting the molecular weight of the organic onium ion within the above range, it is possible to suppress a decrease in the content of fibrous cellulose in the solid body.
 有機オニウムイオンの含有量は、固形状体の全質量に対して1.0質量%以上であることが好ましく、1.5質量%以上であることがより好ましく、2.0質量%以上であることがさらに好ましい。また、有機オニウムイオンの含有量は固形状体の全質量に対して90質量%以下であることが好ましく、80質量%以下であることがより好ましい。 The content of the organic onium ion is preferably 1.0% by mass or more, more preferably 1.5% by mass or more, and more preferably 2.0% by mass or more based on the total mass of the solid. Is more preferable. Further, the content of the organic onium ion is preferably 90% by mass or less, more preferably 80% by mass or less based on the total mass of the solid.
 また、固形状体における有機オニウムイオンの含有量は、繊維状セルロース中に含まれるアニオン性基量に対して、0.5倍モル量から2倍モル量であることが好ましいが、特に限定されない。なお、有機オニウムイオンの含有量は、有機オニウムイオンに典型的に含まれる原子を追跡することで測定することができる。具体的には、有機オニウムイオンがアンモニウムイオンの場合は窒素原子を、有機オニウムイオンがホスホニウムイオンの場合はリン原子の量を測定する。なお、繊維状セルロースが有機オニウムイオン以外に、窒素原子やリン原子を含む場合は、有機オニウムイオンのみを抽出する方法、例えば、酸による抽出操作などを行ってから、目的の原子の量を測定すれば良い。 The content of the organic onium ion in the solid body is preferably 0.5 to 2 times the molar amount of the anionic group contained in the fibrous cellulose, but is not particularly limited. . The content of the organic onium ion can be measured by tracking atoms typically contained in the organic onium ion. Specifically, the nitrogen atom is measured when the organic onium ion is an ammonium ion, and the phosphorus atom is measured when the organic onium ion is a phosphonium ion. When the fibrous cellulose contains a nitrogen atom or a phosphorus atom in addition to the organic onium ion, a method of extracting only the organic onium ion, for example, performing an extraction operation with an acid, and then measuring the amount of the target atom Just do it.
 有機オニウムイオンは、上述したとおり、疎水性を発揮するイオンであることが好ましい。すなわち、本発明における繊維状セルロースは、有機オニウムイオンを有することにより疎水性を発揮し、その結果、固形状体の吸水率を所望の範囲とすることが容易となる。 As described above, the organic onium ion is preferably an ion exhibiting hydrophobicity. That is, the fibrous cellulose in the present invention exhibits hydrophobicity by having an organic onium ion, and as a result, the water absorption of the solid body can be easily adjusted to a desired range.
(任意成分)
 本発明の固形状体は、さらに樹脂を含むものであってもよい。本発明の固形状体が樹脂を含むものであっても、固形状体の吸水率は500%以下であり、かつ、上記条件aで作製したペレットのASTM E313に準拠し、反射光測定により測定した黄色度は33.0以下となる。
(Optional component)
The solid body of the present invention may further contain a resin. Even when the solid body of the present invention contains a resin, the solid body has a water absorption of 500% or less, and is measured by reflected light measurement in accordance with ASTM E313 of the pellet produced under the condition a. The resulting yellowness is 33.0 or less.
 樹脂の種類は特に限定されるものではないが、例えば、熱可塑性樹脂や熱硬化性樹脂を挙げることができる。 種類 The type of the resin is not particularly limited, and examples thereof include a thermoplastic resin and a thermosetting resin.
 樹脂としては、ポリオレフィン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、シリコーン系樹脂、フッ素系樹脂、塩素系樹脂、エポキシ系樹脂、メラミン系樹脂、フェノール系樹脂、ポリウレタン系樹脂、ジアリルフタレート系樹脂、アルコール系樹脂、セルロース誘導体、これらの樹脂の前駆体を挙げることができる。なお、セルロース誘導体としては、たとえば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロースなどを挙げることができる。 Examples of the resin include polyolefin resin, acrylic resin, polycarbonate resin, polyester resin, polyamide resin, silicone resin, fluorine resin, chlorine resin, epoxy resin, melamine resin, phenol resin, and polyurethane resin. Resins, diallyl phthalate resins, alcohol resins, cellulose derivatives, and precursors of these resins can be mentioned. In addition, as a cellulose derivative, carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, etc. can be mentioned, for example.
 本発明の固形状体は、樹脂として、樹脂の前駆体を含んでいてもよい。樹脂の前駆体の種類は特に限定されるものではないが、たとえば、熱可塑性樹脂や熱硬化性樹脂の前駆体を挙げることができる。熱可塑性樹脂の前駆体とは、熱可塑性樹脂を製造するために使用されるモノマーや分子量が比較的低いオリゴマーを意味する。また、熱硬化性樹脂の前駆体とは、光、熱、硬化剤の作用によって重合反応または架橋反応を起こして熱硬化性樹脂を形成しうるモノマーや分子量が比較的低いオリゴマーを意味する。 固 形 The solid body of the present invention may contain a resin precursor as the resin. The type of the resin precursor is not particularly limited, and examples thereof include a thermoplastic resin and a thermosetting resin precursor. The precursor of the thermoplastic resin means a monomer or an oligomer having a relatively low molecular weight used for producing the thermoplastic resin. In addition, the precursor of the thermosetting resin means a monomer or an oligomer having a relatively low molecular weight that can form a thermosetting resin by causing a polymerization reaction or a cross-linking reaction by the action of light, heat, and a curing agent.
 本発明の固形状体は、樹脂として、上述した樹脂種とは別にさらに水溶性高分子を含んでいてもよい。水溶性高分子としては、たとえば、合成水溶性高分子(例えば、カルボキシビニルポリマー、ポリビニルアルコール、メタクリル酸アルキル・アクリル酸コポリマー、ポリビニルピロリドン、ポリアクリル酸ナトリウム、ポリエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、イソプレングリコール、ヘキシレングリコール、1,3-ブチレングリコール、ポリアクリルアミドなど)、増粘多糖類(例えば、キサンタンガム、グアーガム、タマリンドガム、カラギーナン、ローカストビーンガム、クインスシード、アルギン酸、プルラン、カラギーナン、ペクチンなど)、カチオン化デンプン、生デンプン、酸化デンプン、エーテル化デンプン、エステル化デンプン、アミロース等のデンプン類、グリセリン、ジグリセリン、ポリグリセリン等のグリセリン類等、ヒアルロン酸、ヒアルロン酸の金属塩等を挙げることができる。 固 形 The solid body of the present invention may further contain a water-soluble polymer as a resin in addition to the above-mentioned resin species. Examples of the water-soluble polymer include synthetic water-soluble polymers (eg, carboxyvinyl polymer, polyvinyl alcohol, alkyl methacrylate / acrylic acid copolymer, polyvinylpyrrolidone, sodium polyacrylate, polyethylene glycol, diethylene glycol, triethylene glycol, propylene) Glycol, dipropylene glycol, polypropylene glycol, isoprene glycol, hexylene glycol, 1,3-butylene glycol, polyacrylamide, etc.), thickening polysaccharides (eg, xanthan gum, guar gum, tamarind gum, carrageenan, locust bean gum, quince seed) , Alginic acid, pullulan, carrageenan, pectin, etc.), cationized starch, raw starch, oxidized starch, etherified starch Emissions, esterified starch, starch amylose, etc., glycerol, diglycerol, glycerol such polyglycerin such like, hyaluronic acid, and metal salts of hyaluronic acid.
 固形状体中に含まれる樹脂の含有量は、固形状体中に含まれる固形分の全質量に対して、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。また、固形状体中に含まれる樹脂の含有量は、固形状体中に含まれる固形分の全質量に対して、1質量%以上であってもよい。なお、樹脂は固形状体中に実質的に含有されなくてもよい。樹脂が実質的に含まれない状態とは、固形状体中に含まれる固形分の全質量に対する樹脂の含有量が、1質量%未満の場合をいう。 The content of the resin contained in the solid body is preferably 40% by mass or less, more preferably 30% by mass or less, based on the total mass of the solid matter contained in the solid body. More preferably, it is 20% by mass or less. Further, the content of the resin contained in the solid body may be 1% by mass or more based on the total mass of the solid matter contained in the solid body. The resin does not have to be substantially contained in the solid body. The state in which the resin is not substantially contained means that the content of the resin is less than 1% by mass relative to the total mass of the solid contained in the solid.
 固形状体は、さらに他の任意成分を含有していてもよい。任意成分としては、例えば吸湿剤を挙げることができる。吸湿剤としては、例えば、シリカゲル、ゼオライト、アルミナ、カルボキシメチルセルロース、ポリビニルアルコール水溶性酢酸セルロース、ポリエチレングリコール、セピオライト、酸化カルシウム、ケイソウ土、活性炭、活性白土、ホワイトカーボン、塩化カルシウム、塩化マグネシウム、酢酸カリウム、第二リン酸ナトリウム、クエン酸ナトリウム、吸水性ポリマー等が挙げられる。 The solid body may further contain other optional components. Examples of the optional component include a moisture absorbent. Examples of the moisture absorbent include silica gel, zeolite, alumina, carboxymethyl cellulose, polyvinyl alcohol-soluble cellulose acetate, polyethylene glycol, sepiolite, calcium oxide, diatomaceous earth, activated carbon, activated clay, white carbon, calcium chloride, magnesium chloride, and potassium acetate. , Dibasic sodium phosphate, sodium citrate, water-absorbing polymers and the like.
 さらに、任意成分としては、界面活性剤、有機イオン、カップリング剤、無機層状化合物、無機化合物、レベリング剤、防腐剤、消泡剤、有機系粒子、潤滑剤、帯電防止剤、紫外線防御剤、染料、顔料、安定剤、磁性粉、配向促進剤、可塑剤、分散剤、架橋剤等を挙げることができる。 Further, as optional components, surfactants, organic ions, coupling agents, inorganic layered compounds, inorganic compounds, leveling agents, preservatives, defoamers, organic particles, lubricants, antistatic agents, ultraviolet protection agents, Dyes, pigments, stabilizers, magnetic powders, alignment promoters, plasticizers, dispersants, crosslinking agents, and the like can be given.
 固形状体中に含まれる任意成分の含有量は、固形状体中に含まれる固形分の全質量に対して、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。 The content of the optional components contained in the solid is preferably 40% by mass or less, more preferably 30% by mass or less, based on the total mass of the solids contained in the solid. , 20% by mass or less.
 なお、固形状体における有機溶媒の含有量は、固形状体中に含まれる固形分の全質量に対して、4.5質量%以下であることが好ましく、2質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。なお、固形状体における有機溶媒の含有量は、固形状体中に含まれる固形分の全質量に対して、0質量%であってもよい。このように、本発明の固形状体においては、有機溶媒の含有量が少ないことが好ましく、これにより、引火危険度を低減することができる。 In addition, the content of the organic solvent in the solid is preferably 4.5% by mass or less, more preferably 2% by mass or less, based on the total mass of the solids contained in the solid. It is more preferably 1% by mass or less. In addition, the content of the organic solvent in the solid may be 0% by mass based on the total mass of the solids contained in the solid. As described above, in the solid body of the present invention, it is preferable that the content of the organic solvent is small, whereby the risk of ignition can be reduced.
(固形状体の製造方法)
 固形状体の製造方法は、繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースと、アニオン性基の対イオンとして有機オニウムイオンと、非水第1溶媒とを含む組成物を、ハンセン溶解度パラメータの水素結合項(δh)が12.0MPa1/2以上である第2溶媒に接触させる工程を含むことが好ましい。このように、本発明の固形状体の製造方法は、第2溶媒接触工程を含むことが好ましく、これにより、固形状体の吸水率と黄色度を所望の範囲内とすることが容易となる。
(Method for producing solid body)
The method for producing a solid body includes a composition having a fiber width of 1,000 nm or less, a fibrous cellulose having an anionic group, an organic onium ion as a counter ion of the anionic group, and a non-aqueous first solvent, It is preferable to include a step of contacting the second solvent having a hydrogen bond term (δh) of the Hansen solubility parameter of 12.0 MPa 1/2 or more. As described above, the method for producing a solid body of the present invention preferably includes the second solvent contacting step, whereby the water absorption and the yellowness of the solid body can be easily set in a desired range. .
 繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースと、アニオン性基の対イオンとして有機オニウムイオンと、非水第1溶媒とを含む組成物は、微細繊維状セルロース含有スラリーに、有機オニウムイオンまたは、中和により有機オニウムイオンを形成する化合物を添加し、微細繊維状セルロース濃縮物を得る工程と、得られた微細繊維状セルロース濃縮物を非水第1溶媒に分散させて組成物を得る工程とを含むことが好ましい。なお、微細繊維状セルロース濃縮物を得る工程では、有機オニウムイオンは、有機オニウムイオンを含有した溶液として添加することが好ましく、有機オニウムイオンを含有した水溶液として添加することがより好ましい。 Fiber width is 1000 nm or less, fibrous cellulose having an anionic group, a composition containing an organic onium ion as a counter ion of the anionic group, and a non-aqueous first solvent, the fine fibrous cellulose-containing slurry, Adding an organic onium ion or a compound that forms an organic onium ion by neutralization to obtain a fine fibrous cellulose concentrate, and dispersing the obtained fine fibrous cellulose concentrate in a non-aqueous first solvent to form a composition And obtaining a product. In the step of obtaining the fine fibrous cellulose concentrate, the organic onium ion is preferably added as a solution containing the organic onium ion, and more preferably as an aqueous solution containing the organic onium ion.
 有機オニウムイオンを含有した水溶液は、通常、有機オニウムイオンと、対イオン(アニオン)を含んでいる。有機オニウムイオンの水溶液を調製する際、有機オニウムイオンと、対応する対イオンが既に塩を形成している場合は、そのまま水に溶解させればよい。有機オニウムイオンの水溶液を調製する際、有機オニウムイオンと、対応する対イオンが既に塩を形成している場合は、水又は熱水に溶解することが好ましい。 (4) The aqueous solution containing an organic onium ion usually contains an organic onium ion and a counter ion (anion). In preparing an aqueous solution of an organic onium ion, if the organic onium ion and the corresponding counter ion have already formed a salt, the organic onium ion may be dissolved in water as it is. When preparing an aqueous solution of an organic onium ion, when the organic onium ion and the corresponding counter ion have already formed a salt, it is preferable to dissolve the organic onium ion in water or hot water.
 また、有機オニウムイオンは、例えば、ドデシルアミンなどのように、酸によって中和されて始めて生成する場合もある。この場合、有機オニウムイオンは、中和により有機オニウムイオンを形成する化合物と酸との反応により得られる。この場合、中和に使用する酸としては、塩酸、硫酸、硝酸等の無機酸や乳酸、酢酸、ギ酸、シュウ酸等の有機酸が挙げられる。濃縮物を得る工程では、中和により有機オニウムを形成する化合物を繊維状セルロース含有スラリーに直接加え、繊維状セルロースが含むアニオン性基を対イオンとして、有機オニウムイオン化させても良い。 有機 Organic onium ions may be generated only after neutralization with an acid, for example, dodecylamine. In this case, the organic onium ion is obtained by reacting a compound that forms an organic onium ion by neutralization with an acid. In this case, examples of the acid used for neutralization include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, and organic acids such as lactic acid, acetic acid, formic acid, and oxalic acid. In the step of obtaining the concentrate, a compound that forms an organic onium by neutralization may be directly added to the fibrous cellulose-containing slurry, and the anionic group contained in the fibrous cellulose may be used as a counter ion to cause organic onium ionization.
 濃縮物を得る工程における有機オニウムイオンの添加量は、繊維状セルロースの全質量に対し、2質量%以上であることが好ましく、10質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、100質量%以上であることが特に好ましい。なお、有機オニウムイオンの添加量は、繊維状セルロースの全質量に対し、1000質量%以下であることが好ましい。
 また、添加する有機オニウムイオンのモル数は、繊維状セルロースが含むアニオン性基の量(モル数)に価数を乗じた値の0.2倍以上であることが好ましく、0.5倍以上であることがより好ましく、1.0倍以上であることがさらに好ましい。なお、添加する有機オニウムイオンのモル数は、繊維状セルロースが含むアニオン性基の量(モル数)に価数を乗じた値の10倍以下であることが好ましい。
The addition amount of the organic onium ion in the step of obtaining the concentrate is preferably 2% by mass or more, more preferably 10% by mass or more, and more preferably 50% by mass or more based on the total mass of the fibrous cellulose. More preferably, it is particularly preferably 100% by mass or more. In addition, it is preferable that the addition amount of an organic onium ion is 1000 mass% or less with respect to the total mass of fibrous cellulose.
Further, the number of moles of the organic onium ion to be added is preferably 0.2 times or more, more preferably 0.5 times or more of the value obtained by multiplying the amount (mol number) of the anionic group contained in the fibrous cellulose by the valence. Is more preferable, and it is still more preferable that it is 1.0 times or more. The number of moles of the organic onium ion to be added is preferably 10 times or less the value obtained by multiplying the amount (mol number) of the anionic group contained in the fibrous cellulose by the valence.
 有機オニウムイオンを添加し、撹拌を行うと、繊維状セルロース含有スラリー中に凝集物が生じる。この凝集物は、対イオンとして有機オニウムイオンを有する繊維状セルロースが凝集したものである。凝集物が生じた繊維状セルロース含有スラリーを減圧濾過することで、繊維状セルロース濃縮物を回収することができる。 When the organic onium ion is added and agitated, aggregates are formed in the fibrous cellulose-containing slurry. This aggregate is an aggregate of fibrous cellulose having an organic onium ion as a counter ion. The fibrous cellulose concentrate can be recovered by filtering the slurry containing the fibrous cellulose in which the aggregates are generated under reduced pressure.
 得られた繊維状セルロース濃縮物は、イオン交換水で洗浄してもよい。繊維状セルロース濃縮物をイオン交換水で繰り返し洗うことで、繊維状セルロース濃縮物に含まれる余剰な有機オニウムイオン等を除去することができる。 The obtained fibrous cellulose concentrate may be washed with ion-exchanged water. By repeatedly washing the fibrous cellulose concentrate with ion-exchanged water, excess organic onium ions and the like contained in the fibrous cellulose concentrate can be removed.
 得られた繊維状セルロース濃縮物中のP原子の含有量に対するN原子の含有量の比(N/Pの値)は1.2よりも大きいことが好ましく、2.0よりも大きいことがより好ましい。また、得られた繊維状セルロース濃縮物中のP原子の含有量に対するN原子の含有量の比(N/Pの値)は5.0以下であることが好ましい。なお、繊維状セルロース濃縮物中のP原子の含有量とN原子の含有量は適宜元素分析により算出することができる。元素分析としては、例えば、適当な前処理の後に微量窒素分析やモリブデンブルー法などを行うことができる。なお、繊維状セルロース濃縮物以外の組成物が、P原子、N原子を含む場合は、当該組成物と繊維状セルロース濃縮物を適当な方法で分離した後に元素分析を行ってもよい。 The ratio of the N atom content to the P atom content (the value of N / P) in the obtained fibrous cellulose concentrate is preferably larger than 1.2, more preferably larger than 2.0. preferable. Further, the ratio of the N atom content to the P atom content (the value of N / P) in the obtained fibrous cellulose concentrate is preferably 5.0 or less. The content of P atoms and the content of N atoms in the fibrous cellulose concentrate can be appropriately calculated by elemental analysis. As the elemental analysis, for example, a trace nitrogen analysis or a molybdenum blue method can be performed after an appropriate pretreatment. When the composition other than the fibrous cellulose concentrate contains P atoms and N atoms, the composition may be separated from the fibrous cellulose concentrate by an appropriate method, followed by elemental analysis.
 得られた繊維状セルロース濃縮物の固形分濃度は、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることがさらに好ましい。また、繊維状セルロース濃縮物の固形分濃度は、99.5質量%以下であることが好ましい。なお、繊維状セルロース濃縮物の固形分濃度が所望の範囲となるように、繊維状セルロース濃縮物を乾燥する工程を設けてもよい。 (4) The solid content concentration of the obtained fibrous cellulose concentrate is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 20% by mass or more. Further, the solid content concentration of the fibrous cellulose concentrate is preferably 99.5% by mass or less. Note that a step of drying the fibrous cellulose concentrate may be provided so that the solid content concentration of the fibrous cellulose concentrate is in a desired range.
 得られた微細繊維状セルロース濃縮物を非水第1溶媒に分散させて組成物を得る工程は、微細繊維状セルロース濃縮物の再分散工程である。ここで、非水第1溶媒は、水ではない溶媒であることが好ましい。具体的には、非水第1溶媒は有機溶媒であることが好ましく、このような有機溶媒としては、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール(IPA)、1-ブタノール、m-クレゾール、グリセリン、酢酸、ピリジン、テトラヒドロフラン(THF)、アセトン、メチルエチルケトン(MEK)、酢酸エチル、アニリン、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、ヘキサン、シクロヘキサン、ベンゼン、トルエン、p-キシレン、ジエチルエーテルクロロホルム等を挙げることができる。また、これら有機溶媒を2種類以上混合してなる混合溶媒を用いてもよい。中でも、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、メチルエチルケトン(MEK)、トルエン、メタノールは好ましく用いられる。 工程 The step of dispersing the obtained fine fibrous cellulose concentrate in the non-aqueous first solvent to obtain a composition is a step of redispersing the fine fibrous cellulose concentrate. Here, the non-aqueous first solvent is preferably a solvent other than water. Specifically, the non-aqueous first solvent is preferably an organic solvent. Examples of such an organic solvent include methanol, ethanol, n-propyl alcohol, isopropyl alcohol (IPA), 1-butanol, and m- Cresol, glycerin, acetic acid, pyridine, tetrahydrofuran (THF), acetone, methyl ethyl ketone (MEK), ethyl acetate, aniline, N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF) ), Hexane, cyclohexane, benzene, toluene, p-xylene, diethyl ether chloroform and the like. Further, a mixed solvent obtained by mixing two or more of these organic solvents may be used. Among them, N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), methyl ethyl ketone (MEK), toluene and methanol are preferably used.
 非水第1溶媒の25℃における比誘電率は、60以下であることが好ましく、50以下であることがより好ましい。本発明で用いられる微細繊維状セルロースは、比誘電率の低い非水第1溶媒中においても優れた分散性を発揮することができるため、非水第1溶媒の25℃における比誘電率は、40以下であってもよく、30以下であってもよく、20以下であってもよい。 比 The relative dielectric constant of the non-aqueous first solvent at 25 ° C. is preferably 60 or less, and more preferably 50 or less. Since the fine fibrous cellulose used in the present invention can exhibit excellent dispersibility even in a non-aqueous first solvent having a low relative dielectric constant, the relative dielectric constant of the non-aqueous first solvent at 25 ° C. It may be 40 or less, 30 or less, or 20 or less.
 非水第1溶媒のハンセン溶解度パラメータ(Hansen solubility parameter,HSP値)のδpは、5MPa1/2以上20MPa1/2以下であることが好ましく、10MPa1/2以上19MPa1/2以下であることがより好ましく、12MPa1/2以上18MPa1/2以下であることがさらに好ましい。また、HSP値の水素結合項であるδhは、5MPa1/2以上40MPa1/2以下であることが好ましく、5MPa1/2以上30MPa1/2以下であることがより好ましく、5MPa1/2以上20MPa1/2以下であることがさらに好ましい。また、δpが0MPa1/2以上4MPa1/2以下の範囲であり、δhが0MPa1/2以上6MPa1/2以下の範囲であることを同時に満たすことも好ましい。 Δp of Hansen solubility parameters of the non-aqueous first solvent (Hansen solubility parameter, HSP value), it is preferably, 10 MPa 1/2 or more 19 MPa 1/2 or less is 5 MPa 1/2 or more 20 MPa 1/2 or less Is more preferable, and it is more preferable that it is 12 MPa1 / 2 or more and 18 MPa1 / 2 or less. Further, .delta.h a hydrogen bond of the HSP value is preferably 5 MPa 1/2 or more 40 MPa 1/2 or less, more preferably 5 MPa 1/2 or more 30 MPa 1/2 or less, 5 MPa 1/2 More preferably, it is not less than 20 MPa 1/2 . It is also preferable that δp is in the range of 0 MPa 1/2 to 4 MPa 1/2 and δh is in the range of 0 MPa 1/2 to 6 MPa 1/2 at the same time.
 微細繊維状セルロース濃縮物を非水第1溶媒に分散させる際に用いる分散装置としては、たとえば上記解繊処理において記載した解繊処理装置と同様のものを使用することができる。また、超音波処理を施すことで微細繊維状セルロース濃縮物を有機溶媒中に分散させてもよい。 分散 As a dispersing device used for dispersing the fine fibrous cellulose concentrate in the non-aqueous first solvent, for example, the same dispersing device as described in the above-described fibrillation treatment can be used. Alternatively, the fine fibrous cellulose concentrate may be dispersed in an organic solvent by performing ultrasonic treatment.
 固形状体の製造工程は、組成物を得る工程で得られた組成物を、ハンセン溶解度パラメータの水素結合項(δh)が12.0MPa1/2以上である第2溶媒に接触させる工程を含むことが好ましい。ハンセン溶解度パラメータの水素結合項(δh)が12.0MPa1/2以上である第2溶媒としては、例えば、水、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール(IPA)、1-ブタノール、m-クレゾール、グリセリン、酢酸等を挙げることができる。また、これら溶媒を2種類以上混合してなる混合溶媒を用いてもよい。中でも、第2溶媒は、水及びメタノールから選択される少なくとも1種であることが好ましく、水であることがより好ましい。 The step of producing the solid includes the step of bringing the composition obtained in the step of obtaining the composition into contact with a second solvent having a hydrogen bond term (δh) of the Hansen solubility parameter of 12.0 MPa 1/2 or more. Is preferred. Examples of the second solvent having a hydrogen bond term (δh) of the Hansen solubility parameter of 12.0 MPa 1/2 or more include, for example, water, methanol, ethanol, n-propyl alcohol, isopropyl alcohol (IPA), 1-butanol, m -Cresol, glycerin, acetic acid and the like. Further, a mixed solvent obtained by mixing two or more of these solvents may be used. Among them, the second solvent is preferably at least one selected from water and methanol, and more preferably water.
 固形状体の製造方法において用いる非水第1溶媒と第2溶媒は、互いに相溶することが好ましい。また、非水第1溶媒と第2溶媒のハンセン溶解度パラメータの水素結合項(δh)の差は、15MPa1/2以上であることが好ましく、20MPa1/2以上であることがより好ましく、25MPa1/2以上であることがさらに好ましい。 The first non-aqueous solvent and the second solvent used in the method for producing a solid are preferably compatible with each other. The difference in the hydrogen bond term (δh) of the Hansen solubility parameter between the nonaqueous first solvent and the second solvent is preferably 15 MPa 1/2 or more, more preferably 20 MPa 1/2 or more, and 25 MPa More preferably, it is 1/2 or more.
 第2溶媒の25℃における比誘電率は、18以上であることが好ましく、30以上であることがより好ましく、60以上であることがさらに好ましい。また、第2溶媒のハンセン溶解度パラメータ(Hansen solubility parameter,HSP値)のδpは、5MPa1/2以上20MPa1/2以下であることが好ましく、10MPa1/2以上20MPa1/2以下であることがより好ましい。また、HSP値の水素結合項であるδhは、12MPa1/2以上であることが好ましく、20MPa1/2以上であることがより好ましく、40MPa1/2以上であることがさらに好ましい。 The relative permittivity of the second solvent at 25 ° C. is preferably 18 or more, more preferably 30 or more, and further preferably 60 or more. Further, δp of the Hansen solubility parameter (HSP value) of the second solvent is preferably 5 MPa 1/2 or more and 20 MPa 1/2 or less, and is preferably 10 MPa 1/2 or more and 20 MPa 1/2 or less. Is more preferred. Further, .delta.h a hydrogen bond of the HSP value is preferably 12 MPa 1/2 or more, more preferably 20 MPa 1/2 or more, more preferably 40 MPa 1/2 or more.
 組成物を第2溶媒に接触させる工程では、組成物を第2溶媒中に浸漬させる工程であることが好ましい。この場合、組成物を第2溶媒中に射出したり、滴下したりすることで、組成物を第2溶媒中に浸漬させてもよい。例えば、固形状体がフィラメント状であれば、組成物を第2溶媒中に糸状に射出する工程を含むことが好ましく、固形状体がビーズ状であれば、組成物を第2溶媒中に滴下する工程を含むことが好ましい。また、固形状体がシート状である場合、組成物を第2溶媒中にシート状に射出してもよく、シート成形型において形成したシート前駆体を第2溶媒中に浸漬してもよい。なお、シート前駆体を第2溶媒中に浸漬する場合、シート成形型ごと第2溶媒中に浸漬してもよい。 工程 The step of bringing the composition into contact with the second solvent is preferably a step of immersing the composition in the second solvent. In this case, the composition may be immersed in the second solvent by injecting or dropping the composition into the second solvent. For example, if the solid body is a filament, it is preferable to include a step of injecting the composition in a thread form into the second solvent, and if the solid body is a bead form, the composition is dropped into the second solvent. It is preferable to include the step of performing. When the solid is in the form of a sheet, the composition may be injected into the second solvent in the form of a sheet, or the sheet precursor formed in the sheet mold may be immersed in the second solvent. When the sheet precursor is immersed in the second solvent, the sheet precursor may be immersed in the second solvent together with the sheet mold.
 組成物を第2溶媒に接触させる工程では、組成物の全容量に対して40倍以上の容量の第2溶媒に接触させることが好ましい。すなわち、組成物を第2溶媒雰囲気下に存在させることが好ましい。また、必要に応じて、第2溶媒を交換したり、循環させたりしてもよい。 で は In the step of bringing the composition into contact with the second solvent, it is preferable to bring the composition into contact with the second solvent in an amount of at least 40 times the total volume of the composition. That is, it is preferable that the composition be present in a second solvent atmosphere. Further, the second solvent may be exchanged or circulated as necessary.
 組成物を第2溶媒に接触させることで、非水第1溶媒が取り除かれて固形状体が形成される。固形状体の製造工程では、組成物を第2溶媒に接触させる工程の後に、該工程で得られた固形状体をさらに第2溶媒中に一定時間以上浸漬させる工程を含むことが好ましい。この場合、固形状体を第2溶媒中に1時間以上浸漬することが好ましく、5時間以上浸漬することがより好ましく、8時間以上浸漬することがさらに好ましい。なお、浸漬時間の上限は特に限定されるものではないが、例えば、100時間以内であることが好ましい。 こ と By contacting the composition with the second solvent, the non-aqueous first solvent is removed to form a solid. In the step of producing the solid, it is preferable to include, after the step of bringing the composition into contact with the second solvent, a step of further immersing the solid obtained in the step in the second solvent for a predetermined time or more. In this case, the solid is preferably immersed in the second solvent for 1 hour or more, more preferably for 5 hours or more, and even more preferably for 8 hours or more. The upper limit of the immersion time is not particularly limited, but is preferably, for example, 100 hours or less.
 固形状体を第2溶媒から分離した後には、固形状体を乾燥する工程を設けることが好ましい。乾燥温度は、30℃以上であることが好ましく、40℃以上であることがより好ましく、50℃以上であることがさらに好ましい。また、乾燥温度は200℃以下であることが好ましい。また、乾燥時間は、1分以上100時間以下であることが好ましい。なお、固形状体を第2溶媒から分離する際には、濾過や遠心分離等を行うことで固形状体を分離してもよい。 After separating the solid from the second solvent, it is preferable to provide a step of drying the solid. The drying temperature is preferably at least 30 ° C, more preferably at least 40 ° C, even more preferably at least 50 ° C. Further, the drying temperature is preferably 200 ° C. or less. The drying time is preferably 1 minute or more and 100 hours or less. When the solid is separated from the second solvent, the solid may be separated by performing filtration, centrifugation, or the like.
(繊維状セルロース含有組成物)
 本発明は、上述した工程を経て得られた固形状体を再度有機溶媒に分散させることで得られる繊維状セルロース含有組成物に関するものであってもよい。繊維状セルロース含有組成物は、さらに樹脂を含むものであってもよい。本発明の固形状体は、有機溶媒及び樹脂との相溶性に優れた繊維状セルロースを用いているため、繊維状セルロース含有組成物から形成される樹脂複合体は、優れた強度を有し、さらに寸法安定性にも優れている。加えて、繊維状セルロース含有組成物から形成される樹脂複合体は透明性にも優れている。
(Fibrous cellulose-containing composition)
The present invention may relate to a fibrous cellulose-containing composition obtained by dispersing the solid obtained through the above-described steps again in an organic solvent. The fibrous cellulose-containing composition may further contain a resin. Since the solid body of the present invention uses fibrous cellulose having excellent compatibility with the organic solvent and the resin, the resin composite formed from the fibrous cellulose-containing composition has excellent strength, Furthermore, it has excellent dimensional stability. In addition, the resin composite formed from the fibrous cellulose-containing composition has excellent transparency.
 繊維状セルロース含有組成物から形成される樹脂複合体は、シートあってもよく、この場合、シートの成形方法は、上述した繊維状セルロース含有組成物を基材上に塗工する工程を含むことが好ましい。塗工工程で用いる基材の材質は、とくに限定されないが、組成物に対する濡れ性が高いものの方が乾燥時のシートの収縮等を抑制することができて良いが、乾燥後に形成されたシートが容易に剥離できるものを選択することが好ましい。中でも樹脂製のフィルムや板または金属製のフィルムや板が好ましいが、とくに限定されない。たとえばアクリル、ポリエチレンテレフタレート、塩化ビニル、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリ塩化ビニリデン等の樹脂のフィルムや板、アルミ、亜鉛、銅、鉄板の金属のフィルムや板、および、それらの表面を酸化処理したもの、ステンレスのフィルムや板、真ちゅうのフィルムや板等を用いることができる。 The resin composite formed from the fibrous cellulose-containing composition may be in the form of a sheet. In this case, the method for forming the sheet includes a step of applying the above-described fibrous cellulose-containing composition onto a substrate. Is preferred. The material of the base material used in the coating step is not particularly limited, but those having high wettability to the composition may be able to suppress shrinkage of the sheet during drying, etc. It is preferable to select one that can be easily peeled off. Above all, a resin film or plate or a metal film or plate is preferable, but not particularly limited. For example, acryl, polyethylene terephthalate, vinyl chloride, polystyrene, polypropylene, polycarbonate, polyvinylidene chloride, etc., resin films and plates, aluminum, zinc, copper, metal films and plates such as iron plates, and those obtained by oxidizing their surfaces A stainless steel film or plate, a brass film or plate, or the like can be used.
 塗工工程において、組成物の粘度が低く、基材上で展開してしまう場合には、所定の厚みおよび坪量のシートを得るため、基材上に堰止用の枠を固定して使用してもよい。堰止用の枠としては、とくに限定されないが、たとえば乾燥後に付着するシートの端部が容易に剥離できるものを選択することが好ましい。このような観点から、樹脂板または金属板を成形したものがより好ましい。本実施形態においては、たとえばアクリル板、ポリエチレンテレフタレート板、塩化ビニル板、ポリスチレン板、ポリプロピレン板、ポリカーボネート板、ポリ塩化ビニリデン板等の樹脂板や、アルミ板、亜鉛板、銅板、鉄板等の金属板、およびこれらの表面を酸化処理したもの、ステンレス板、真ちゅう板等を成形したものを用いることができる。 In the coating process, if the composition has low viscosity and spreads on the substrate, use a fixed damming frame on the substrate to obtain a sheet of a predetermined thickness and basis weight. May be. The damming frame is not particularly limited. For example, it is preferable to select a frame that can easily peel off the end of the sheet that adheres after drying. From such a viewpoint, a resin plate or a metal plate is more preferable. In the present embodiment, for example, a resin plate such as an acrylic plate, a polyethylene terephthalate plate, a vinyl chloride plate, a polystyrene plate, a polypropylene plate, a polycarbonate plate, a polyvinylidene chloride plate, and a metal plate such as an aluminum plate, a zinc plate, a copper plate, and an iron plate And those obtained by oxidizing the surface thereof, and forming a stainless steel plate, a brass plate, or the like.
 組成物を基材に塗工する塗工機としては、とくに限定されないが、たとえばロールコーター、グラビアコーター、ダイコーター、カーテンコーター、エアドクターコーター等を使用することができる。被膜(シート)の厚みをより均一にできることから、ダイコーター、カーテンコーター、スプレーコーターがとくに好ましい。 塗 A coating machine for coating the composition on the base material is not particularly limited, and for example, a roll coater, a gravure coater, a die coater, a curtain coater, an air doctor coater, or the like can be used. Die coaters, curtain coaters, and spray coaters are particularly preferred because the thickness of the coating (sheet) can be made more uniform.
 組成物を基材へ塗工する際の液状組成物の温度および雰囲気温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましく、15℃以上50℃以下であることがさらに好ましく、20℃以上40℃以下であることが特に好ましい。 The temperature and the ambient temperature of the liquid composition when applying the composition to the substrate are not particularly limited, but are preferably, for example, 5 ° C or more and 80 ° C or less, more preferably 10 ° C or more and 60 ° C or less. The temperature is more preferably from 15 ° C to 50 ° C, and particularly preferably from 20 ° C to 40 ° C.
 塗工工程においては、シートの仕上がり坪量が好ましくは10g/m2以上100g/m2以下となるように、より好ましくは20g/m2以上60g/m2以下となるように、組成物を基材に塗工することが好ましい。坪量が上記範囲内となるように塗工することで、より強度に優れたシートが得られる。 In the coating step, the composition is prepared such that the finished basis weight of the sheet is preferably 10 g / m 2 or more and 100 g / m 2 or less, more preferably 20 g / m 2 or more and 60 g / m 2 or less. It is preferable to apply to the substrate. By coating so that the grammage is in the above range, a sheet having more excellent strength can be obtained.
 塗工工程は、基材上に塗工した組成物を乾燥させる工程を含む。組成物を乾燥させる工程は、とくに限定されないが、たとえば非接触の乾燥方法、もしくはシートを拘束しながら乾燥する方法、またはこれらの組み合わせにより行われる。非接触の乾燥方法としては、とくに限定されないが、たとえば熱風、赤外線、遠赤外線もしくは近赤外線により加熱して乾燥する方法(加熱乾燥法)、または真空にして乾燥する方法(真空乾燥法)を適用することができる。加熱乾燥法と真空乾燥法を組み合わせてもよいが、通常は、加熱乾燥法が適用される。赤外線、遠赤外線または近赤外線による乾燥は、とくに限定されないが、たとえば赤外線装置、遠赤外線装置または近赤外線装置を用いて行うことができる。加熱乾燥法における加熱温度は、とくに限定されないが、たとえば20℃以上150℃以下とすることが好ましく、25℃以上105℃以下とすることがより好ましい。加熱温度を上記下限値以上とすれば、分散媒を速やかに揮発させることができる。また、加熱温度を上記上限値以下であれば、加熱に要するコストの抑制および繊維状セルロースの熱による変色の抑制を実現できる。 The coating step includes a step of drying the composition applied on the substrate. The step of drying the composition is not particularly limited, and is performed, for example, by a non-contact drying method, a method of drying while restraining a sheet, or a combination thereof. The non-contact drying method is not particularly limited. For example, a method of drying by heating with hot air, infrared rays, far infrared rays or near infrared rays (heating drying method), or a method of drying by vacuum (vacuum drying method) is applied. can do. The heat drying method and the vacuum drying method may be combined, but usually, the heat drying method is applied. Drying with infrared, far-infrared, or near-infrared light can be performed using, for example, but not limited to, an infrared device, a far-infrared device, or a near-infrared device. The heating temperature in the heating and drying method is not particularly limited, but is, for example, preferably from 20 ° C to 150 ° C, more preferably from 25 ° C to 105 ° C. When the heating temperature is equal to or higher than the lower limit, the dispersion medium can be quickly volatilized. When the heating temperature is equal to or lower than the upper limit, the cost required for heating and the discoloration of fibrous cellulose due to heat can be suppressed.
(用途)
 本発明の固形状体の用途は、特に限定されないが、補強材、内装材、外装材、包装用資材、電子材料、光学材料、音響材料、プロセス材料、輸送機器の部材、電子機器の部材、電気化学素子の部材等の用途に適している。
(Application)
The use of the solid body of the present invention is not particularly limited, but a reinforcing material, an interior material, an exterior material, a packaging material, an electronic material, an optical material, an acoustic material, a process material, a transport equipment member, an electronic equipment member, It is suitable for applications such as members of electrochemical devices.
 本発明の固形状体がフィラメントである場合は、ロープ、釣り糸、医療用縫合糸などに使用することができる。また、樹脂やゴム、セメントなどに添加し、補強材として使用することができる。また、フィラメントをランダムに積層させることで不織布を形成してもよい。フィラメントを利用した不織布は、フィルター、電池用セパレータ、ネット、内装材、外装材、包装材、衣料材料、医療材料等の用途に適している。本発明の固形状体がビーズである場合は、吸着剤、研磨剤のほか、樹脂や溶剤に添加して、インキ、塗料、成形体、フィルム、コーティング剤等として使用することができる。 場合 When the solid of the present invention is a filament, it can be used for ropes, fishing lines, medical sutures and the like. Further, it can be used as a reinforcing material by being added to resin, rubber, cement and the like. Further, a nonwoven fabric may be formed by randomly laminating filaments. Nonwoven fabrics using filaments are suitable for applications such as filters, battery separators, nets, interior materials, exterior materials, packaging materials, clothing materials, and medical materials. When the solid body of the present invention is a bead, it can be used as an ink, a paint, a molded article, a film, a coating agent, etc. by adding it to a resin or a solvent in addition to an adsorbent and an abrasive.
 本発明の固形状体がシートである場合は、各種のディスプレイ装置、各種の太陽電池、等の光透過性基板の用途に適している。また、電子機器の基板、電気化学素子用セパレータ、家電の部材、各種の乗り物や建物の窓材、内装材、外装材、包装用資材等の用途にも適している。さらに、シートそのものを補強材として使う用途にも適している。 場合 When the solid body of the present invention is a sheet, it is suitable for use in light-transmitting substrates such as various display devices and various solar cells. In addition, it is also suitable for use as substrates for electronic devices, separators for electrochemical devices, members for home appliances, window materials for various vehicles and buildings, interior materials, exterior materials, packaging materials, and the like. Furthermore, it is also suitable for applications in which the sheet itself is used as a reinforcing material.
 以下の実施例により本発明を更に具体的に説明するが、本発明の範囲は以下の実施例により限定されるものではない。 The present invention will be described more specifically with reference to the following examples, but the scope of the present invention is not limited to the following examples.
<製造例1>
〔微細繊維状セルロース分散液Aの製造〕
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/m2シート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
<Production Example 1>
[Production of fine fibrous cellulose dispersion A]
As a raw material pulp, softwood kraft pulp made by Oji Paper (solid content: 93% by mass, basis weight: 208 g / m 2, sheet: Disintegrated, Canadian Standard Freeness (CSF) 700 ml measured according to JIS P 8121) It was used.
 この原料パルプに対してリン酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で200秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプ1を得た。 リ ン 酸 The raw material pulp was phosphorylated as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. To obtain a chemical-impregnated pulp. Next, the obtained chemical-impregnated pulp was heated with a hot air drier at 165 ° C. for 200 seconds to introduce a phosphate group into cellulose in the pulp, thereby obtaining phosphorylated pulp 1.
 次いで、得られたリン酸化パルプ1に対して洗浄処理を行った。洗浄処理は、100g(絶乾質量)のリン酸化パルプ1に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained phosphorylated pulp 1 was subjected to a washing treatment. In the washing treatment, a pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of the phosphorylated pulp 1 is stirred so that the pulp is uniformly dispersed, and then filtered and dehydrated repeatedly. It was done by doing. When the electric conductivity of the filtrate became 100 μS / cm or less, it was regarded as the washing end point.
 洗浄後のリン酸化パルプ1に対して、さらに上記リン酸化処理、上記洗浄処理をこの順に1回ずつ行った。 リ ン 酸 The phosphorylated pulp 1 after the washing was further subjected to the above-mentioned phosphorylation treatment and the above-mentioned washing treatment once in this order.
 次いで、洗浄後のリン酸化パルプ1に対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプ1を10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリー1を得た。次いで、当該リン酸化パルプスラリー1を脱水して、中和処理が施されたリン酸化パルプ1を得た。次いで、中和処理後のリン酸化パルプ1に対して、上記洗浄処理を行った。 Next, the phosphorylated pulp 1 after the washing was subjected to a neutralization treatment as follows. First, the phosphorylated pulp slurry 1 having a pH of 12 or more and 13 or less is diluted by diluting the washed phosphorylated pulp 1 with 10 L of ion-exchanged water, and gradually adding a 1N aqueous sodium hydroxide solution with stirring. Obtained. Next, the phosphorylated pulp slurry 1 was dehydrated to obtain a phosphorylated pulp 1 subjected to a neutralization treatment. Next, the washing treatment was performed on the phosphorylated pulp 1 after the neutralization treatment.
 これにより得られたリン酸化パルプ1に対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基に基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。 An infrared absorption spectrum of the phosphorylated pulp 1 thus obtained was measured using FT-IR. As a result, absorption based on a phosphate group was observed at around 1230 cm −1 , confirming that a phosphate group was added to the pulp.
 また、得られたリン酸化パルプ1を供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 Further, the obtained phosphorylated pulp 1 was tested and analyzed by an X-ray diffractometer. As a result, two positions of 2θ = around 14 ° to 17 ° and 2θ = around 22 ° to 23 ° were determined. And a typical peak was confirmed, and it was confirmed to have cellulose type I crystals.
 得られたリン酸化パルプ1にイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液Aを得た。 イ オ ン Ion-exchanged water was added to the obtained phosphorylated pulp 1 to prepare a slurry having a solid concentration of 2% by mass. This slurry was treated six times at a pressure of 200 MPa with a wet atomizer (manufactured by Sugino Machine Co., Ltd., Starburst) to obtain a fine fibrous cellulose dispersion A containing fine fibrous cellulose.
 X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を、透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、後述する測定方法で測定されるリン酸基量(強酸性基量)は、2.00mmol/gだった。 X-ray diffraction confirmed that the fine fibrous cellulose maintained cellulose type I crystals. The fiber width of the fine fibrous cellulose was measured using a transmission electron microscope and found to be 3 to 5 nm. In addition, the amount of phosphate groups (the amount of strongly acidic groups) measured by the measurement method described later was 2.00 mmol / g.
<製造例2>
〔微細繊維状セルロース分散液Bの製造〕
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/m2シート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。この原料パルプに対してTEMPO酸化処理を次のようにして行った。
<Production Example 2>
[Production of fine fibrous cellulose dispersion B]
As a raw material pulp, softwood kraft pulp made by Oji Paper (solid content: 93% by mass, basis weight: 208 g / m 2, sheet: Disintegrated, Canadian Standard Freeness (CSF) 700 ml measured according to JIS P 8121) It was used. This raw material pulp was subjected to a TEMPO oxidation treatment as follows.
 まず、乾燥質量100質量部相当の上記原料パルプと、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して10mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。 First, the above raw pulp equivalent to 100 parts by mass of dry mass, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), 10 parts by mass of sodium bromide, 10,000 parts by mass of water Parts. Next, a 13% by mass aqueous solution of sodium hypochlorite was added to 1.0 g of the pulp so as to be 10 mmol, and the reaction was started. During the reaction, a 0.5 M aqueous sodium hydroxide solution was added dropwise to keep the pH at 10 to 10.5, and the reaction was considered to be completed when no change in pH was observed.
 次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、TEMPO酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained TEMPO oxidized pulp was subjected to a washing treatment. The washing treatment is performed by dehydrating the pulp slurry after TEMPO oxidation, obtaining a dehydrated sheet, pouring 5,000 parts by mass of ion-exchanged water, stirring and uniformly dispersing, and then repeating filtration and dehydration. Was. When the electric conductivity of the filtrate became 100 μS / cm or less, it was regarded as the washing end point.
 また、得られたTEMPO酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 Further, the obtained TEMPO oxidized pulp was tested and analyzed by an X-ray diffractometer. As a result, it was found that two positions of 2θ = about 14 ° to 17 ° and 2θ = about 22 ° to 23 ° were used. A typical peak was confirmed, and it was confirmed to have cellulose type I crystals.
 得られたTEMPO酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液Bを得た。 イ オ ン Ion-exchanged water was added to the obtained TEMPO oxidized pulp to prepare a slurry having a solid content of 2% by mass. This slurry was treated with a wet atomizer (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa six times to obtain a fine fibrous cellulose dispersion B containing fine fibrous cellulose.
 X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を、透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、後述する測定方法で測定されるカルボキシ基量は、1.80mmol/gだった。 X-ray diffraction confirmed that the fine fibrous cellulose maintained cellulose type I crystals. The fiber width of the fine fibrous cellulose was measured using a transmission electron microscope and found to be 3 to 5 nm. In addition, the amount of carboxy groups measured by the measurement method described later was 1.80 mmol / g.
<製造例3>
〔微細繊維状セルロース分散液Cの製造〕
 リン酸二水素アンモニウムの代わりに亜リン酸(ホスホン酸)33質量部を用いた以外は、製造例1と同様に操作を行い、リン酸化パルプ2を得た。
<Production Example 3>
[Production of fine fibrous cellulose dispersion C]
A phosphorylated pulp 2 was obtained in the same manner as in Production Example 1, except that 33 parts by mass of phosphorous acid (phosphonic acid) was used instead of ammonium dihydrogen phosphate.
 次いで、得られたリン酸化パルプ2に対して洗浄処理を行った。洗浄処理は、100g(絶乾質量)のリン酸化パルプ2に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained phosphorylated pulp 2 was subjected to a washing treatment. In the washing treatment, a pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of the phosphorylated pulp is stirred so that the pulp is uniformly dispersed, and then filtered and dehydrated repeatedly. It was done by doing. When the electric conductivity of the filtrate became 100 μS / cm or less, it was regarded as the washing end point.
 次いで、洗浄後のリン酸化パルプ2に対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプ2を10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリー2を得た。次いで、当該リン酸化パルプスラリー2を脱水して、中和処理が施されたリン酸化パルプ2を得た。次いで、中和処理後のリン酸化パルプ2に対して、上記洗浄処理を行った。 (5) Next, the phosphorylated pulp 2 after the washing was subjected to a neutralization treatment as follows. First, the phosphorylated pulp slurry 2 having a pH of 12 or more and 13 or less is diluted by diluting the washed phosphorylated pulp 2 with 10 L of ion-exchanged water and then adding a 1N aqueous sodium hydroxide solution little by little with stirring. Obtained. Next, the phosphorylated pulp slurry 2 was dehydrated to obtain a phosphorylated pulp 2 subjected to a neutralization treatment. Next, the above-described washing treatment was performed on the phosphorylated pulp 2 after the neutralization treatment.
 これにより得られたリン酸化パルプ2に対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプにリン酸基(ホスホン酸基)が付加されていることが確認された。 The phosphorylated pulp 2 thus obtained was measured for infrared absorption spectrum using FT-IR. As a result, absorption based on P = O of a phosphonic acid group, which is a tautomer of a phosphite group, was observed at around 1210 cm −1 , indicating that a phosphate group (phosphonate group) was added to the pulp. confirmed.
 また、得られたリン酸化パルプ2を供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 Further, the obtained phosphorylated pulp 2 was tested and analyzed by an X-ray diffractometer. As a result, two positions, 2θ = around 14 ° to 17 ° and 2θ = around 22 ° to 23 °, were found. And a typical peak was confirmed, and it was confirmed to have cellulose type I crystals.
 得られたリン酸化パルプ2にイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液Cを得た。 イ オ ン Ion-exchanged water was added to the obtained phosphorylated pulp 2 to prepare a slurry having a solid concentration of 2% by mass. This slurry was treated six times with a wet atomizer (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion C containing fine fibrous cellulose.
 得られたリン酸化パルプ2の後述する測定方法で測定されるリン酸基量(強酸性基量)は1.50mmol/gだった。なお、弱酸性基量は、0.13mmol/gであった。 リ ン 酸 The amount of the phosphoric acid group (the amount of the strongly acidic group) of the obtained phosphorylated pulp 2 measured by a measuring method described later was 1.50 mmol / g. The amount of the weak acidic group was 0.13 mmol / g.
<製造例4>
〔微細繊維状セルロース分散液Dの製造〕
 製造例1で得られた微細繊維状セルロース分散液Aを、強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)が充填され、先端に目開き90μmのメッシュが配備されたカラムに、ポンプで圧入する操作を繰返し、微細繊維状セルロースのリン酸基の対イオンを水素イオン(H+)へと変換した。この操作により2.0質量%の酸型微細繊維状セルロース分散液を得た。得られた酸型微細繊維状セルロース分散液100gに55%のテトラブチルアンモニウムヒドロキシド水溶液3.10gを添加した後、ディスパーザーで24時間撹拌処理を行い、微細繊維状セルロース分散液Dを得た。
<Production Example 4>
[Production of fine fibrous cellulose dispersion D]
A column in which the fine fibrous cellulose dispersion A obtained in Production Example 1 is filled with a strongly acidic ion-exchange resin (Amberjet 1024; conditioned by Organo Co., Ltd.), and a mesh with a mesh size of 90 μm is provided at the tip. Then, the operation of press-fitting with a pump was repeated to convert the counter ion of the phosphate group of the fine fibrous cellulose into hydrogen ion (H + ). By this operation, an acid-type fine fibrous cellulose dispersion of 2.0% by mass was obtained. After adding 3.10 g of a 55% aqueous solution of tetrabutylammonium hydroxide to 100 g of the obtained acid-type fine fibrous cellulose dispersion, the mixture was stirred for 24 hours with a disperser to obtain a fine fibrous cellulose dispersion D. .
<実施例1>
〔微細繊維状セルロース濃縮物の製造〕
 2.43質量%のN,N-ジドデシルメチルアミン水溶液100gに0.60gの乳酸を添加して事前に中和した後、製造例1で得られた微細繊維状セルロース分散液A 100gに添加し5分間撹拌処理を行ったところ、微細繊維状セルロース分散液中に凝集物が生じた。凝集物が生じた微細繊維状セルロース分散液を減圧濾過することにより、微細繊維状セルロース凝集物を得た。得られた微細繊維状セルロース凝集物をイオン交換水で繰り返し洗うことで、微細繊維状セルロース凝集物に含まれる余剰なN,N-ジドデシルメチルアミン、乳酸及び溶出したイオン等を除去した。得られた微細繊維状セルロース凝集物を30℃、相対湿度40%の条件下で乾燥し、微細繊維状セルロース濃縮物を得た。
 微細繊維状セルロース濃縮物に含まれるリン酸基の対イオンは、N,N-ジドデシルメチルアンモニウム(DDMA+)となっていた。得られた微細繊維状セルロース濃縮物の固形分濃度は95質量%であった。
<Example 1>
(Production of fine fibrous cellulose concentrate)
0.60 g of lactic acid was added to 100 g of a 2.43 mass% N, N-didodecylmethylamine aqueous solution to neutralize it in advance, and then added to 100 g of the fine fibrous cellulose dispersion A obtained in Production Example 1. After stirring for 5 minutes, aggregates were formed in the fine fibrous cellulose dispersion. The fine fibrous cellulose dispersion in which the aggregate was generated was filtered under reduced pressure to obtain a fine fibrous cellulose aggregate. The resulting fine fibrous cellulose aggregates were repeatedly washed with ion-exchanged water to remove excess N, N-didodecylmethylamine, lactic acid, and eluted ions contained in the fine fibrous cellulose aggregates. The obtained fine fibrous cellulose aggregate was dried at 30 ° C. and a relative humidity of 40% to obtain a fine fibrous cellulose concentrate.
The counter ion of the phosphate group contained in the fine fibrous cellulose concentrate was N, N-didodecylmethylammonium (DDMA + ). The solid content concentration of the obtained fine fibrous cellulose concentrate was 95% by mass.
〔微細繊維状セルロース濃縮物の再分散〕
 微細繊維状セルロース濃縮物に、微細繊維状セルロースの含有量が2.0質量%となるようN-メチルー2ーピロリドン(NMP)(第1溶媒)を添加した。その後、超音波処理装置(ヒールシャー製、UP400S)を用いて超音波処理を10分間行い、微細繊維状セルロース再分散スラリーを得た。
(Redispersion of fine fibrous cellulose concentrate)
N-methyl-2-pyrrolidone (NMP) (first solvent) was added to the fine fibrous cellulose concentrate so that the content of fine fibrous cellulose was 2.0% by mass. Thereafter, ultrasonic treatment was performed for 10 minutes using an ultrasonic treatment device (manufactured by Hielscher, UP400S) to obtain a re-dispersed slurry of fine fibrous cellulose.
〔微細繊維状セルロース含有フィラメントの製造〕
 微細繊維状セルロース再分散スラリーをシリンジ(ニードル径;φ1.5mm)に充填した後、ニードル先端部をイオン交換水(第2溶媒)で満たした凝固槽中に入れた状態で、充填物を10g/分でイオン交換水中に射出し、凝固槽中に微細繊維状セルロース射出物を形成した。凝固槽中のイオン交換水を30分おきに交換する操作を3回繰り返した後、微細繊維状セルロース射出物をさらに12時間イオン交換水に浸漬させた。浸漬後の微細繊維状セルロース射出物を凝固槽から取り出し、ホットプレート上で70℃、30分乾燥させた後、温度を120℃に上げてさらに2時間乾燥させ、微細繊維状セルロース含有フィラメントを得た。得られた微細繊維状セルロース含有フィラメントの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
(Production of fine fibrous cellulose-containing filament)
After filling the re-dispersed slurry of fine fibrous cellulose into a syringe (needle diameter: φ1.5 mm), put 10 g of the filler in a coagulation tank filled with ion-exchanged water (second solvent) at the tip of the needle. / Min into ion-exchanged water to form a fine fibrous cellulose injection in the coagulation bath. After repeating the operation of replacing the ion-exchanged water in the coagulation tank every 30 minutes three times, the fine fibrous cellulose injection product was immersed in the ion-exchanged water for further 12 hours. The fine fibrous cellulose injection product after immersion is taken out of the coagulation bath, dried on a hot plate at 70 ° C. for 30 minutes, then heated to 120 ° C. and further dried for 2 hours to obtain a fine fibrous cellulose-containing filament. Was. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
<実施例2>
 製造例2で得られた微細繊維状セルロース分散液Bを、微細繊維状セルロース分散液Aの代わりに用いた。1.32質量%のN,N-ジドデシルメチルアミン水溶液100gに0.32gの乳酸を添加して中和した後に微細繊維状セルロース分散液Bに添加した以外は、実施例1と同様にして、微細繊維状セルロース濃縮物、微細繊維状セルロース再分散スラリー、および微細繊維状セルロース含有フィラメントを得た。微細繊維状セルロース濃縮物に含まれるカルボキシ基の対イオンは、N,N-ジドデシルメチルアンモニウム(DDMA+)となっていた。得られた微細繊維状セルロース濃縮物の固形分濃度は91質量%であった。得られた微細繊維状セルロース含有フィラメントの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 2>
The fine fibrous cellulose dispersion B obtained in Production Example 2 was used in place of the fine fibrous cellulose dispersion A. The same procedure as in Example 1 was carried out except that 0.32 g of lactic acid was added to 100 g of a 1.32% by mass aqueous solution of N, N-didodecylmethylamine to neutralize and then added to the fine fibrous cellulose dispersion B. , A fine fibrous cellulose concentrate, a fine fibrous cellulose re-dispersed slurry, and a fine fibrous cellulose-containing filament were obtained. The counter ion of the carboxy group contained in the fine fibrous cellulose concentrate was N, N-didodecylmethylammonium (DDMA + ). The solid content concentration of the obtained fine fibrous cellulose concentrate was 91% by mass. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
<実施例3>
 製造例3で得られた微細繊維状セルロース分散液Cを、微細繊維状セルロース分散液Aの代わりに用いた。1.20質量%のN,N-ジドデシルメチルアミン水溶液100gに0.30gの乳酸を添加して中和した後に微細繊維状セルロース分散液Cに添加した以外は、実施例1と同様にして、微細繊維状セルロース濃縮物、微細繊維状セルロース再分散スラリー、および微細繊維状セルロース含有フィラメントを得た。微細繊維状セルロース濃縮物に含まれるカルボキシ基の対イオンは、N,N-ジドデシルメチルアンモニウム(DDMA+)となっていた。得られた微細繊維状セルロース濃縮物の固形分濃度は91質量%であった。得られた微細繊維状セルロース含有フィラメントの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 3>
The fine fibrous cellulose dispersion C obtained in Production Example 3 was used in place of the fine fibrous cellulose dispersion A. The procedure of Example 1 was repeated, except that 0.30 g of lactic acid was added to 100 g of an aqueous solution of N, N-didodecylmethylamine at a concentration of 1.20% by mass to neutralize the solution, and then added to the fine fibrous cellulose dispersion C. , A fine fibrous cellulose concentrate, a fine fibrous cellulose re-dispersed slurry, and a fine fibrous cellulose-containing filament were obtained. The counter ion of the carboxy group contained in the fine fibrous cellulose concentrate was N, N-didodecylmethylammonium (DDMA + ). The solid content concentration of the obtained fine fibrous cellulose concentrate was 91% by mass. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
<実施例4>
 1.83質量%のポリオキシエチレンドデシルアミン(オキシエチレン残基の個数は2)水溶液100gをN,N-ジドデシルメチルアミン水溶液の代わりに用い、第1溶媒としてジメチルスルホキシド(DMSO)をN-メチルー2ーピロリドン(NMP)の代わりに用いた以外は、実施例1と同様にして、微細繊維状セルロース濃縮物、微細繊維状セルロース再分散スラリー、および微細繊維状セルロース含有フィラメントを得た。微細繊維状セルロース濃縮物に含まれるリン酸基の対イオンは、ポリオキシエチレンドデシルアンモニウムイオン(POEDA+)となっていた。得られた微細繊維状セルロース濃縮物の固形分濃度は92質量%であった。得られた微細繊維状セルロース含有フィラメントの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 4>
100 g of a 1.83% by mass aqueous solution of polyoxyethylene dodecylamine (the number of oxyethylene residues is 2) was used in place of the aqueous solution of N, N-didodecylmethylamine, and dimethyl sulfoxide (DMSO) was used as the first solvent in N- A fine fibrous cellulose concentrate, a fine fibrous cellulose redispersed slurry, and a fine fibrous cellulose-containing filament were obtained in the same manner as in Example 1 except that methyl-2-pyrrolidone (NMP) was used instead. The counter ion of the phosphate group contained in the fine fibrous cellulose concentrate was polyoxyethylene dodecyl ammonium ion (POEDA + ). The solid content concentration of the obtained fine fibrous cellulose concentrate was 92% by mass. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
<実施例5>
 製造例2で得られた微細繊維状セルロース分散液Bを、微細繊維状セルロース分散液Aの代わりに用いた。乳酸で事前中和した0.99質量%のポリオキシエチレンドデシルアミン(オキシエチレン残基の個数は2)水溶液100gを微細繊維状セルロース分散液Bに添加した以外は、実施例4と同様にして、微細繊維状セルロース濃縮物、微細繊維状セルロース再分散スラリー、および微細繊維状セルロース含有フィラメントを得た。微細繊維状セルロース濃縮物に含まれるカルボキシ基の対イオンは、ポリオキシエチレンドデシルアンモニウムイオン(POEDA+)となっていた。得られた微細繊維状セルロース濃縮物の固形分濃度は90質量%であった。得られた微細繊維状セルロース含有フィラメントの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 5>
The fine fibrous cellulose dispersion B obtained in Production Example 2 was used in place of the fine fibrous cellulose dispersion A. The same procedure as in Example 4 was carried out, except that 100 g of a 0.99% by mass aqueous solution of polyoxyethylene dodecylamine (the number of oxyethylene residues was 2) pre-neutralized with lactic acid was added to the fine fibrous cellulose dispersion B. , A fine fibrous cellulose concentrate, a fine fibrous cellulose re-dispersed slurry, and a fine fibrous cellulose-containing filament were obtained. The counter ion of the carboxy group contained in the fine fibrous cellulose concentrate was polyoxyethylene dodecyl ammonium ion (POEDA + ). The solid content concentration of the obtained fine fibrous cellulose concentrate was 90% by mass. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
<実施例6>
 2.33質量%のアルキルジメチルベンジルアンモニウムクロリド水溶液(アルキル鎖の炭素原子数は8~18個)100gを、乳酸で中和したN,N-ジドデシルメチルアミン水溶液の代わりに用い、第1溶媒としてメタノールをN-メチルー2ーピロリドン(NMP)の代わりに用いた以外は、実施例1と同様にして、微細繊維状セルロース濃縮物、微細繊維状セルロース再分散スラリー、および微細繊維状セルロース含有フィラメントを得た。微細繊維状セルロース濃縮物に含まれるリン酸基の対イオンは、アルキルジメチルベンジルアンモニウム(ADMBA+)となっていた。得られた微細繊維状セルロース濃縮物の固形分濃度は84質量%であった。得られた微細繊維状セルロース含有フィラメントの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 6>
100 g of a 2.33 mass% aqueous solution of alkyldimethylbenzylammonium chloride (alkyl chain having 8 to 18 carbon atoms) was used in place of the aqueous solution of N, N-didodecylmethylamine neutralized with lactic acid, and the first solvent was used. In the same manner as in Example 1 except that methanol was used in place of N-methyl-2-pyrrolidone (NMP), a fine fibrous cellulose concentrate, a fine fibrous cellulose redispersed slurry, and a fine fibrous cellulose-containing filament were used. Obtained. The counter ion of the phosphate group contained in the fine fibrous cellulose concentrate was alkyldimethylbenzylammonium (ADMBA + ). The solid content concentration of the obtained fine fibrous cellulose concentrate was 84% by mass. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
<実施例7>
 製造例2で得られた微細繊維状セルロース分散液Bを、微細繊維状セルロース分散液Aの代わりに用いた。27質量%のアルキルジメチルベンジルアンモニウム水溶液100gを微細繊維状セルロース分散液Bに添加した以外は、実施例6と同様にして、微細繊維状セルロース濃縮物、微細繊維状セルロース再分散スラリー、および微細繊維状セルロース含有フィラメントを得た。微細繊維状セルロース濃縮物に含まれるカルボキシ基の対イオンは、アルキルジメチルベンジルアンモニウム(ADMBA+)となっていた。得られた微細繊維状セルロース濃縮物の固形分濃度は81質量%であった。得られた微細繊維状セルロース含有フィラメントの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 7>
The fine fibrous cellulose dispersion B obtained in Production Example 2 was used in place of the fine fibrous cellulose dispersion A. Fine fibrous cellulose concentrate, fine fibrous cellulose re-dispersed slurry, and fine fibers were prepared in the same manner as in Example 6, except that 100 g of an aqueous 27% by mass alkyldimethylbenzylammonium solution was added to the fine fibrous cellulose dispersion B. A cellulose-containing filament was obtained. The counter ion of the carboxy group contained in the fine fibrous cellulose concentrate was alkyldimethylbenzylammonium (ADMBA + ). The solid content concentration of the obtained fine fibrous cellulose concentrate was 81% by mass. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
<実施例8>
 3.86質量%のジ-n-アルキルジメチルアンモニウムクロリド水溶液(アルキル鎖の炭素原子数は16個又は18個)100gを、アルキルジメチルベンジルアンモニウムクロリド水溶液の代わりに用い、第1溶媒としてトルエンをメタノールの代わりに用い、第2溶媒としてメタノールをイオン交換水の代わりに用いた以外は、実施例6と同様にして、微細繊維状セルロース濃縮物、微細繊維状セルロース再分散スラリー、および微細繊維状セルロース含有フィラメントを得た。微細繊維状セルロース濃縮物に含まれるリン酸基の対イオンは、ジ-n-アルキルジメチルアンモニウム(DADMA+)となっていた。得られた微細繊維状セルロース濃縮物の固形分濃度は91質量%であった。得られた微細繊維状セルロース含有フィラメントの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 8>
100 g of a 3.86% by mass aqueous di-n-alkyldimethylammonium chloride solution (having 16 or 18 carbon atoms in the alkyl chain) was used in place of the aqueous alkyldimethylbenzylammonium chloride solution, and toluene was used as the first solvent. In the same manner as in Example 6, except that methanol was used in place of ion-exchanged water as the second solvent, and the fine fibrous cellulose concentrate, the fine fibrous cellulose redispersed slurry, and the fine fibrous cellulose were used. A containing filament was obtained. The counter ion of the phosphate group contained in the fine fibrous cellulose concentrate was di-n-alkyldimethylammonium (DADMA + ). The solid content concentration of the obtained fine fibrous cellulose concentrate was 91% by mass. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
<実施例9>
 製造例2で得られた微細繊維状セルロース分散液Bを、微細繊維状セルロース分散液Aの代わりに用いた。2.10質量%のジ-n-アルキルジメチルアンモニウムクロリド水溶液100gを微細繊維状セルロース分散液Bに添加した以外は、実施例8と同様にして、微細繊維状セルロース濃縮物、微細繊維状セルロース再分散スラリー、および微細繊維状セルロース含有フィラメントを得た。微細繊維状セルロース濃縮物に含まれるカルボキシ基の対イオンは、ジ-n-アルキルジメチルアンモニウム(DADMA+)となっていた。得られた微細繊維状セルロース濃縮物の固形分濃度は89質量%であった。得られた微細繊維状セルロース含有フィラメントの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 9>
The fine fibrous cellulose dispersion B obtained in Production Example 2 was used in place of the fine fibrous cellulose dispersion A. 2. A fine fibrous cellulose concentrate and a fine fibrous cellulose concentrate were prepared in the same manner as in Example 8 except that 100 g of a 10% by mass aqueous di-n-alkyldimethylammonium chloride solution was added to the fine fibrous cellulose dispersion B. A dispersed slurry and a fine fibrous cellulose-containing filament were obtained. The counter ion of the carboxy group contained in the fine fibrous cellulose concentrate was di-n-alkyldimethylammonium (DADMA + ). The solid content concentration of the obtained fine fibrous cellulose concentrate was 89% by mass. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
<比較例1>
 製造例1で得られた微細繊維状セルロース分散液Aを、微細繊維状セルロース再分散スラリーの代わりに用い、第2溶媒としてエタノールをイオン交換水の代わりに用いた以外は実施例1と同様にして、微細繊維状セルロース含有フィラメントを得た。得られた微細繊維状セルロース含有フィラメントの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Comparative Example 1>
The same procedure as in Example 1 was carried out except that the fine fibrous cellulose dispersion A obtained in Production Example 1 was used instead of the fine fibrous cellulose re-dispersed slurry, and ethanol was used instead of ion-exchanged water as the second solvent. Thus, a fine fibrous cellulose-containing filament was obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
<比較例2>
 製造例4で得られた微細繊維状セルロース分散液Dを、微細繊維状セルロース分散液Aの代わりに用い、第2溶媒としてテトラヒドロフラン(THF)をエタノールの代わりに用いた以外は比較例1と同様にして、微細繊維状セルロース含有フィラメントを得た。得られた微細繊維状セルロース含有フィラメントの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Comparative Example 2>
Same as Comparative Example 1 except that the fine fibrous cellulose dispersion D obtained in Production Example 4 was used instead of the fine fibrous cellulose dispersion A, and tetrahydrofuran (THF) was used instead of ethanol as the second solvent. Thus, a fine fibrous cellulose-containing filament was obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
<比較例3>
 製造例2で得られた微細繊維状セルロース分散液Bを、微細繊維状セルロース分散液Aの代わりに用いた以外は比較例1と同様にして、微細繊維状セルロース含有フィラメントを得た。得られた微細繊維状セルロース含有フィラメントの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Comparative Example 3>
A fine fibrous cellulose-containing filament was obtained in the same manner as in Comparative Example 1, except that the fine fibrous cellulose dispersion B obtained in Production Example 2 was used instead of the fine fibrous cellulose dispersion A. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing filament were measured and evaluated by the methods described below.
<実施例10>
 実施例1と同様にして得た微細繊維状セルロース再分散スラリーをシリンジ(ニードル径;φ1.5mm)に充填した後、イオン交換水(第2溶媒)で満たした凝固槽に2g/分で滴下し、凝固槽中に微細繊維状セルロース射出物を形成した。凝固槽中のイオン交換水を30分おきに交換する操作を3回繰り返した後、微細繊維状セルロース射出物をさらに12時間イオン交換水に浸漬させた。浸漬後の微細繊維状セルロース射出物を凝固槽から取り出し、ホットプレート上で70℃、30分乾燥させた後、温度を120℃に上げてさらに2時間乾燥させ、微細繊維状セルロース含有ビーズを得た。得られた微細繊維状セルロース含有ビーズの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 10>
A fine fibrous cellulose re-dispersed slurry obtained in the same manner as in Example 1 was filled in a syringe (needle diameter: φ1.5 mm), and then dropped at 2 g / min into a coagulation tank filled with ion-exchanged water (second solvent). Then, a fine fibrous cellulose injection product was formed in the coagulation bath. After repeating the operation of replacing the ion-exchanged water in the coagulation tank every 30 minutes three times, the fine fibrous cellulose injection product was immersed in the ion-exchanged water for further 12 hours. The fine fibrous cellulose injection product after immersion is taken out of the coagulation bath, dried on a hot plate at 70 ° C. for 30 minutes, then heated to 120 ° C. and further dried for 2 hours to obtain beads containing fine fibrous cellulose. Was. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
<実施例11>
 実施例2で得られた微細繊維状セルロース再分散スラリーを実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用いた以外は、実施例10と同様にして、微細繊維状セルロース含有ビーズを得た。得られた微細繊維状セルロース含有ビーズの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 11>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 2 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 10 was carried out. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
<実施例12>
 実施例3で得られた微細繊維状セルロース再分散スラリーを実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用いた以外は、実施例10と同様にして、微細繊維状セルロース含有ビーズを得た。得られた微細繊維状セルロース含有ビーズの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 12>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 3 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 10 was carried out. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
<実施例13>
 実施例4で得られた微細繊維状セルロース再分散スラリーを実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用いた以外は、実施例10と同様にして、微細繊維状セルロース含有ビーズを得た。得られた微細繊維状セルロース含有ビーズの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 13>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 4 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 10 was carried out. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
<実施例14>
 実施例5で得られた微細繊維状セルロース再分散スラリーを実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用いた以外は、実施例10と同様にして、微細繊維状セルロース含有ビーズを得た。得られた微細繊維状セルロース含有ビーズの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 14>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 5 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 10 was carried out. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
<実施例15>
 実施例6で得られた微細繊維状セルロース再分散スラリーを実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用いた以外は、実施例10と同様にして、微細繊維状セルロース含有ビーズを得た。得られた微細繊維状セルロース含有ビーズの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 15>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 6 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 10 was carried out. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
<実施例16>
 実施例7で得られた微細繊維状セルロース再分散スラリーを実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用いた以外は、実施例10と同様にして、微細繊維状セルロース含有ビーズを得た。得られた微細繊維状セルロース含有ビーズの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 16>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 7 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 10 was carried out. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
<実施例17>
 実施例8で得られた微細繊維状セルロース再分散スラリーを実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用い、第2溶媒としてメタノールをイオン交換水の代わりに用いた以外は、実施例10と同様にして、微細繊維状セルロース含有ビーズを得た。得られた微細繊維状セルロース含有ビーズの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 17>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 8 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, and methanol was used as the second solvent instead of ion-exchanged water. In the same manner as in Example 10, fine fibrous cellulose-containing beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
<実施例18>
 実施例9で得られた微細繊維状セルロース再分散スラリーを実施例8で得られた微細繊維状セルロース再分散スラリーの代わりに用いた以外は、実施例17と同様にして、微細繊維状セルロース含有ビーズを得た。得られた微細繊維状セルロース含有ビーズの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 18>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 9 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 8, the same procedure as in Example 17 was carried out. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
<比較例4>
 製造例1で得られた微細繊維状セルロース分散液Aを、実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用い、第2溶媒としてエタノールをイオン交換水の代わりに用いた以外は実施例10と同様にして、微細繊維状セルロース含有ビーズを得た。得られた微細繊維状セルロース含有ビーズの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Comparative Example 4>
Except that the fine fibrous cellulose dispersion A obtained in Production Example 1 was used in place of the fine fibrous cellulose redispersion slurry obtained in Example 1, and ethanol was used instead of ion-exchanged water as the second solvent. In the same manner as in Example 10, fine fibrous cellulose-containing beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
<比較例5>
 製造例4で得られた微細繊維状セルロース分散液Dを、製造例1で得られた微細繊維状セルロース分散液Aの代わりに用い、第2溶媒としてテトラヒドロフランをエタノールの代わりに用いた以外は比較例4と同様にして、微細繊維状セルロース含有ビーズを得た。得られた微細繊維状セルロース含有ビーズの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Comparative Example 5>
Comparative Example 4 was repeated except that the fine fibrous cellulose dispersion D obtained in Production Example 4 was used instead of the fine fibrous cellulose dispersion A obtained in Production Example 1, and tetrahydrofuran was used as the second solvent instead of ethanol. In the same manner as in Example 4, fine fibrous cellulose-containing beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
<比較例6>
 製造例2で得られた微細繊維状セルロース分散液Bを、製造例1で得られた微細繊維状セルロース分散液Aの代わりに用いた以外は比較例4と同様にして、微細繊維状セルロース含有ビーズを得た。得られた微細繊維状セルロース含有ビーズの吸水率、黄色度(YI0)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Comparative Example 6>
Fine fibrous cellulose dispersion containing fine fibrous cellulose was prepared in the same manner as in Comparative Example 4 except that the fine fibrous cellulose dispersion B obtained in Production Example 2 was used instead of the fine fibrous cellulose dispersion A obtained in Production Example 1. Beads were obtained. The water absorption, yellowness (YI 0 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing beads were measured and evaluated by the methods described below.
<実施例19>
 実施例1と同様にして得られた微細繊維状セルロース再分散スラリーを坪量80g/m2となるようガラスシャーレに流涎し、ガラスシャーレごとイオン交換水(第2溶媒)で満たした凝固槽に静かに浸漬させた。凝固槽中のイオン交換水を30分おきに交換する操作を3回繰り返した後、さらに12時間イオン交換水に浸漬させた後、含水微細繊維状セルロース含有シートを得た。含水微細繊維状セルロースを凝固槽から取り出し、ホットプレート上で70℃、30分乾燥させた後、温度を120℃に上げてさらに2時間乾燥させ、微細繊維状セルロース含有シートを得た。得られた微細繊維状セルロース含有シートの吸水率、黄色度(YI0)、黄色度(YI100)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 19>
The re-dispersed slurry of fine fibrous cellulose obtained in the same manner as in Example 1 was dripped into a glass Petri dish so as to have a basis weight of 80 g / m 2, and was placed in a coagulation tank filled with ion-exchanged water (second solvent) together with the glass Petri dish. It was immersed gently. The operation of exchanging the ion-exchanged water in the coagulation tank every 30 minutes was repeated three times, and then immersed in the ion-exchanged water for further 12 hours, to obtain a hydrous fine fibrous cellulose-containing sheet. The hydrous fine fibrous cellulose was taken out of the coagulation bath, dried on a hot plate at 70 ° C. for 30 minutes, and then heated to 120 ° C. and further dried for 2 hours to obtain a fine fibrous cellulose-containing sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
<実施例20>
 実施例2で得られた微細繊維状セルロース再分散スラリーを実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用いた以外は、実施例19と同様にして、微細繊維状セルロース含有シートを得た。得られた微細繊維状セルロース含有シートの吸水率、黄色度(YI0)、黄色度(YI100)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 20>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 2 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 19 was carried out. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
<実施例21>
 実施例3で得られた微細繊維状セルロース再分散スラリーを実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用いた以外は、実施例19と同様にして、微細繊維状セルロース含有シートを得た。得られた微細繊維状セルロース含有シートの吸水率、黄色度(YI0)、黄色度(YI100)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 21>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 3 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 19 was carried out. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
<実施例22>
 実施例4で得られた微細繊維状セルロース再分散スラリーを実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用いた以外は、実施例19と同様にして、微細繊維状セルロース含有シートを得た。得られた微細繊維状セルロース含有シートの吸水率、黄色度(YI0)、黄色度(YI100)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 22>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 4 was used in place of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 19 was carried out. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
<実施例23>
 実施例5で得られた微細繊維状セルロース再分散スラリーを実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用いた以外は、実施例19と同様にして、微細繊維状セルロース含有シートを得た。得られた微細繊維状セルロース含有シートの吸水率、黄色度(YI0)、黄色度(YI100)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 23>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 5 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 19 was carried out. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
<実施例24>
 実施例6で得られた微細繊維状セルロース再分散スラリーを実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用いた以外は、実施例19と同様にして、微細繊維状セルロース含有シートを得た。得られた微細繊維状セルロース含有シートの吸水率、黄色度(YI0)、黄色度(YI100)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 24>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 6 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 19 was carried out. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
<実施例25>
 実施例7で得られた微細繊維状セルロース再分散スラリーを実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用いた以外は、実施例19と同様にして、微細繊維状セルロース含有シートを得た。得られた微細繊維状セルロース含有シートの吸水率、黄色度(YI0)、黄色度(YI100)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 25>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 7 was used in place of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, the same procedure as in Example 19 was carried out. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
<実施例26>
 実施例8で得られた微細繊維状セルロース再分散スラリーを実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用い、第2溶媒としてメタノールをイオン交換水の代わりに用いた以外は、実施例19と同様にして、微細繊維状セルロース含有シートを得た。得られた微細繊維状セルロース含有シートの吸水率、黄色度(YI0)、黄色度(YI100)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 26>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 8 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 1, and methanol was used as the second solvent instead of ion-exchanged water. In the same manner as in Example 19, a fine fibrous cellulose-containing sheet was obtained. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
<実施例27>
 実施例9で得られた微細繊維状セルロース再分散スラリーを実施例8で得られた微細繊維状セルロース再分散スラリーの代わりに用いた以外は、実施例26と同様にして、微細繊維状セルロース含有シートを得た。得られた微細繊維状セルロース含有シートの吸水率、黄色度(YI0)、黄色度(YI100)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Example 27>
Except that the fine fibrous cellulose re-dispersed slurry obtained in Example 9 was used instead of the fine fibrous cellulose re-dispersed slurry obtained in Example 8, the same procedure as in Example 26 was carried out. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
<比較例7>
 製造例1で得られた微細繊維状セルロース分散液Aを、実施例1で得られた微細繊維状セルロース再分散スラリーの代わりに用い、第2溶媒としてエタノールをイオン交換水の代わりに用いた以外は実施例19と同様にして、微細繊維状セルロース含有シートを得た。得られた微細繊維状セルロース含有シートの吸水率、黄色度(YI0)、黄色度(YI100)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Comparative Example 7>
Except that the fine fibrous cellulose dispersion A obtained in Production Example 1 was used in place of the fine fibrous cellulose redispersion slurry obtained in Example 1, and ethanol was used instead of ion-exchanged water as the second solvent. In the same manner as in Example 19, a fine fibrous cellulose-containing sheet was obtained. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
<比較例8>
 製造例4で得られた微細繊維状セルロース分散液Dを、製造例1で得られた微細繊維状セルロース分散液Aの代わりに用い、第2溶媒としてテトラヒドロフランをエタノールの代わりに用いた以外は比較例7と同様にして、微細繊維状セルロース含有シートを得た。得られた微細繊維状セルロース含有シートの吸水率、黄色度(YI0)、黄色度(YI100)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Comparative Example 8>
Comparative Example 4 was repeated except that the fine fibrous cellulose dispersion D obtained in Production Example 4 was used instead of the fine fibrous cellulose dispersion A obtained in Production Example 1, and tetrahydrofuran was used as the second solvent instead of ethanol. In the same manner as in Example 7, a fine fibrous cellulose-containing sheet was obtained. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
<比較例9>
 製造例2で得られた微細繊維状セルロース分散液Bを、製造例1で得られた微細繊維状セルロース分散液Aの代わりに用いた以外は比較例7と同様にして、微細繊維状セルロース含有シートを得た。得られた微細繊維状セルロース含有シートの吸水率、黄色度(YI0)、黄色度(YI100)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Comparative Example 9>
Fine fibrous cellulose dispersion containing fine fibrous cellulose was prepared in the same manner as in Comparative Example 7, except that the fine fibrous cellulose dispersion B obtained in Production Example 2 was used instead of the fine fibrous cellulose dispersion A obtained in Production Example 1. I got a sheet. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
<比較例10>
 実施例1と同様にして得られた微細繊維状セルロース再分散スラリーを坪量80g/m2となるようガラスシャーレに流涎し、ホットプレート上で120℃、6時間キャスト乾燥させ、微細繊維状セルロース含有シートを得た。得られた微細繊維状セルロース含有シートの吸水率、黄色度(YI0)、黄色度(YI100)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Comparative Example 10>
The re-dispersed slurry of fine fibrous cellulose obtained in the same manner as in Example 1 was dripped on a glass Petri dish so as to have a basis weight of 80 g / m 2, and was cast-dried on a hot plate at 120 ° C. for 6 hours to obtain fine fibrous cellulose. A containing sheet was obtained. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
<比較例11>
 実施例2と同様にして得られた微細繊維状セルロース再分散スラリーを実施例1と同様にして得られた微細繊維状セルロース再分散スラリーの代わりに用いた以外は、比較例10と同様にして、微細繊維状セルロース含有シートを得た。得られた微細繊維状セルロース含有シートの吸水率、黄色度(YI0)、黄色度(YI100)、表面平滑性、および真空加熱後の重量減少率を後述の方法により測定、評価した。
<Comparative Example 11>
In the same manner as in Comparative Example 10, except that the fine fibrous cellulose redispersed slurry obtained in the same manner as in Example 2 was used instead of the fine fibrous cellulose redispersed slurry obtained in the same manner as Example 1. Thus, a fine fibrous cellulose-containing sheet was obtained. The water absorption, yellowness (YI 0 ), yellowness (YI 100 ), surface smoothness, and weight loss after vacuum heating of the obtained fine fibrous cellulose-containing sheet were measured and evaluated by the methods described below.
<評価>
〔リン酸基量の測定〕
 微細繊維状セルロースのリン酸基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を、30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測することにより行った。リン酸基量(mmol/g)は、計測結果のうち図1に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
<Evaluation>
[Measurement of phosphate group content]
The phosphate group content of the fine fibrous cellulose is a fibrous shape prepared by diluting a fine fibrous cellulose dispersion containing the target fine fibrous cellulose with ion-exchanged water so that the content becomes 0.2% by mass. After the treatment with the ion exchange resin was performed on the cellulose-containing slurry, the measurement was performed by performing titration using an alkali.
The treatment with the ion-exchange resin is performed by adding 1/10 by volume of a strongly acidic ion-exchange resin (Amberjet 1024; Organo, Inc., conditioned) to the fibrous cellulose-containing slurry and shaking for 1 hour. The resin and the slurry were separated by pouring on a mesh having a mesh size of 90 μm.
In addition, titration using an alkali is performed by adding an aqueous 0.1 N sodium hydroxide solution to a fibrous cellulose-containing slurry after treatment with an ion-exchange resin at a rate of 50 μL once every 30 seconds while maintaining the electrical conductivity of the slurry. The measurement was performed by measuring the change in the value. The amount of phosphoric acid groups (mmol / g) is obtained by dividing the amount of alkali (mmol) required in the region corresponding to the first region shown in FIG. 1 by the solid content (g) in the slurry to be titrated. Was calculated.
〔カルボキシ基量の測定〕
 微細繊維状セルロースのカルボキシ基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測することにより行った。カルボキシ基量(mmol/g)は、計測結果のうち図2に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
(Measurement of carboxy group content)
The carboxy group content of the fine fibrous cellulose is a fibrous cellulose prepared by diluting the fine fibrous cellulose dispersion containing the target fine fibrous cellulose with ion-exchanged water so that the content becomes 0.2% by mass. The content of the slurry was measured by performing a treatment with an ion-exchange resin and then performing a titration using an alkali.
The treatment with the ion-exchange resin is performed by adding 1/10 by volume of a strongly acidic ion-exchange resin (Amberjet 1024; Organo, Inc., conditioned) to the fibrous cellulose-containing slurry and shaking for 1 hour. The resin and the slurry were separated by pouring on a mesh having a mesh size of 90 μm.
In addition, titration using an alkali is performed by adding 50 μL of a 0.1N aqueous sodium hydroxide solution once every 30 seconds to a fibrous cellulose-containing slurry after treatment with an ion-exchange resin while maintaining the electric conductivity of the slurry. This was done by measuring the change in value. The amount of carboxy groups (mmol / g) is obtained by dividing the amount of alkali (mmol) required in a region corresponding to the first region shown in FIG. 2 in the measurement results by the solid content (g) in the slurry to be titrated. Calculated.
〔固形状体の吸水率の測定〕
 固形状体(フィラメント、ビーズ、シート)を23℃、相対湿度50%の条件で24時間調湿し、調湿重量を測定した。次いで、調湿重量を測定した後の固形状体を、24時間イオン交換水に浸漬し、表面に残る余分な水をふき取った後に、湿潤重量を測定した。上記調湿重量、湿潤重量から、固形状体の吸水率(%)を下記式にしたがって算出した。
 吸水率(%)=100×(湿潤重量-調湿重量)/調湿重量
(Measurement of water absorption of solid body)
The solid material (filament, bead, sheet) was conditioned for 24 hours at 23 ° C. and 50% relative humidity, and the conditioned weight was measured. Next, the solid after measuring the humidity control weight was immersed in ion-exchanged water for 24 hours to wipe off excess water remaining on the surface, and then the wet weight was measured. The water absorption (%) of the solid body was calculated from the above moisture control weight and wet weight according to the following equation.
Water absorption (%) = 100 × (wet weight-humidified weight) / humidified weight
〔固形状体の黄色度(YI0)の測定〕
 固形状体をラボミルサー(IFM-800;岩谷産業株式会社)を用いて5分間粉砕し、粉末状とした。得られた粉末を坪量が3000g/m2となるよう、錠剤成形圧縮機(BRE-30;前川試験機製作所)を用いて面圧600MPaで1分間プレス成形し、黄色度測定用ペレットを得た。得られたペレットの黄色度を分光測色計(Spectroeye;Gretag Macbeth社)を用いてASTM E313に準拠して、反射光測定により測定した。
[Measurement of Yellowness (YI 0 ) of Solid State Material]
The solid was pulverized for 5 minutes using a laboratory miller (IFM-800; Iwatani Corporation) to obtain a powder. The obtained powder was press-molded at a surface pressure of 600 MPa for 1 minute using a tableting press (BRE-30; Maekawa Testing Machine Seisakusho) so that the basis weight became 3000 g / m 2 , to obtain pellets for measuring yellowness. Was. The yellowness of the obtained pellets was measured by reflected light measurement using a spectrophotometer (Spectroye; Gretag Macbeth) in accordance with ASTM E313.
〔シートの黄色度YI100の算出〕
 JIS K 7373に準拠し、Colour Cute i(スガ試験機株式会社製)を用いて、実施例19~27及び比較例7~11で得られた微細繊維状セルロース含有シートの黄色度(YI)を、透過光測定により測定した。次いで、下記の換算式を用いて、膜厚100μm換算のシートの黄色度(YI100)を算出した。
 膜厚100μm換算のシートの黄色度(YI100)=シートの黄色度(YI)×(100(μm))/(シートの膜厚(μm))
 なお、シートの膜厚は、定圧厚さ測定器(PG-02;テクロック社)を用いて、JIS K 6783に準拠して測定した。
[Calculation of Yellowness YI 100 of Sheet]
The yellowness (YI) of the fine fibrous cellulose-containing sheets obtained in Examples 19 to 27 and Comparative Examples 7 to 11 was measured using Color Cut i (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K 7373. And transmitted light measurement. Next, the yellowness (YI 100 ) of the sheet having a thickness of 100 μm was calculated using the following conversion formula.
Sheet yellowness (YI 100 ) in terms of film thickness of 100 μm = yellowness of sheet (YI) × (100 (μm)) / (sheet thickness (μm))
The thickness of the sheet was measured using a constant-pressure thickness meter (PG-02; Teklock) in accordance with JIS K6783.
〔固形状体の表面平滑性の評価〕
 固形状体の表面平滑性を下記のように、目視で評価した。
〇:しわ、割れ、凹凸がない。
×:しわ、割れ、凹凸がある。
(Evaluation of surface smoothness of solid body)
The surface smoothness of the solid was visually evaluated as described below.
〇: No wrinkles, cracks or irregularities.
×: There are wrinkles, cracks, and irregularities.
〔固形状体の真空加熱後の重量減少率の測定〕
 固形状体を23℃、相対湿度0%の条件で72時間調湿し、調湿重量を測定した。次いで、調湿重量を測定した後の固形状体を、100℃で3時間真空加熱を行った後、加熱後重量を測定した。上記調湿重量、加熱後重量から、重量減少率を算出した。
 重量減少率(%)=100×(調湿重量-加熱後重量)/調湿重量
(Measurement of the weight loss rate after vacuum heating of the solid body)
The solid was humidified for 72 hours at 23 ° C. and a relative humidity of 0%, and the conditioned weight was measured. Next, the solid body after measuring the humidity control weight was vacuum-heated at 100 ° C. for 3 hours, and then the weight was measured after heating. The weight loss rate was calculated from the humidity control weight and the weight after heating.
Weight reduction rate (%) = 100 x (humidity control weight-weight after heating) / humidity control weight
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例で得られた固形状体は、真空加熱における重量減少率が低い結果が得られた。これは、固形状体に残存する有機溶媒の含有量が低いことを意味する。すなわち、実施例で得られた固形状体には、有機溶媒の残存量が少なく、引火危険度等が抑えられている。また、実施例で得られた固形状体は、表面平滑性に優れていた。 (5) The solid obtained in the example had a low weight loss rate in vacuum heating. This means that the content of the organic solvent remaining in the solid is low. That is, in the solid obtained in the examples, the residual amount of the organic solvent is small, and the risk of ignition and the like are suppressed. Further, the solids obtained in the examples were excellent in surface smoothness.

Claims (9)

  1.  繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースと、前記アニオン性基の対イオンとして有機オニウムイオンとを含む固形状体であって、
     前記固形状体の吸水率が500%以下であり、かつ、下記条件aで作製したペレットのASTM E313に準拠し、反射光測定により測定した黄色度が33.0以下である、固形状体;
    (条件a)
     固形状体を粉砕し粉末とした後、該粉末を坪量が3000g/m2となるよう、面圧600MPaで1分間プレス成形し、黄色度測定用ペレットとする。
    A fiber having a fiber width of 1000 nm or less, fibrous cellulose having an anionic group, and an organic onium ion as a counter ion of the anionic group,
    A solid having a water absorption of 500% or less of the solid and a yellowness of 33.0 or less measured by reflected light measurement according to ASTM E313 of the pellet prepared under the following condition a;
    (Condition a)
    After pulverizing the solid into a powder, the powder is press-molded at a surface pressure of 600 MPa for 1 minute so that the basis weight becomes 3000 g / m 2 to obtain a pellet for measuring yellowness.
  2.  前記繊維状セルロースにおけるアニオン性基量が、0.50mmol/g以上である請求項1に記載の固形状体。 The solid according to claim 1, wherein the amount of anionic group in the fibrous cellulose is 0.50 mmol / g or more.
  3.  固形分濃度が、80質量%以上である請求項1又は2に記載の固形状体。 固 形 The solid body according to claim 1 or 2, wherein the solid content concentration is 80% by mass or more.
  4.  前記有機オニウムイオンは、下記(a)及び(b)から選択される少なくとも一方の条件を満たす請求項1~3のいずれか1項に記載の固形状体;
    (a)炭素数が5以上の炭化水素基を含む;
    (b)総炭素数が17以上である。
    The solid according to any one of claims 1 to 3, wherein the organic onium ion satisfies at least one condition selected from the following (a) and (b):
    (A) containing a hydrocarbon group having 5 or more carbon atoms;
    (B) The total number of carbon atoms is 17 or more.
  5.  前記有機オニウムイオンは、有機アンモニウムイオンである請求項1~4のいずれか1項に記載の固形状体。 (5) The solid according to any one of (1) to (4), wherein the organic onium ion is an organic ammonium ion.
  6.  成形体である請求項1~5のいずれか1項に記載の固形状体。 固 形 The solid body according to any one of claims 1 to 5, which is a molded body.
  7.  さらに樹脂を含む請求項1~6のいずれか1項に記載の固形状体。 (7) The solid according to any one of (1) to (6), further comprising a resin.
  8.  繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースと、前記アニオン性基の対イオンとして有機オニウムイオンとを含むシートであって、
     前記シートの吸水率が500%以下であり、かつ、下記式bで算出される膜厚100μm換算のシートの黄色度(YI100)が35.0以下である、シート;
    (式b)
     膜厚100μm換算のシートの黄色度(YI100)=シートの黄色度(YI)×100(μm)/シートの膜厚(μm)
     但し、上記式bにおいて、シートの黄色度(YI)は、JIS K 7373に準拠して、透過光測定により測定したシートの黄色度である。
    A sheet having a fiber width of 1000 nm or less, fibrous cellulose having an anionic group, and an organic onium ion as a counter ion of the anionic group,
    A sheet having a water absorption of 500% or less and a yellowness (YI 100 ) of a sheet having a thickness of 100 μm calculated by the following equation b of 3100 or less;
    (Equation b)
    Sheet yellowness (YI 100 ) in terms of film thickness 100 μm = sheet yellowness (YI) × 100 (μm) / sheet film thickness (μm)
    However, in the above formula b, the yellowness (YI) of the sheet is the yellowness of the sheet measured by transmitted light measurement according to JIS K 7373.
  9.  繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースと、前記アニオン性基の対イオンとして有機オニウムイオンと、非水第1溶媒とを含む組成物を、ハンセン溶解度パラメータの水素結合項(δh)が12.0MPa1/2以上である第2溶媒に接触させる工程を含む、固形状体の製造方法。 A composition comprising a fibrous cellulose having a fiber width of 1,000 nm or less and having an anionic group, an organic onium ion as a counter ion of the anionic group, and a non-aqueous first solvent is used as a hydrogen bond term of a Hansen solubility parameter. A method for producing a solid, comprising a step of contacting a second solvent having (δh) of 12.0 MPa 1/2 or more.
PCT/JP2019/034904 2018-09-06 2019-09-05 Solid body, sheet, and method for manufacturing solid body WO2020050346A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020541287A JP7342873B2 (en) 2018-09-06 2019-09-05 Solid body, sheet and method for producing solid body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-166884 2018-09-06
JP2018166884 2018-09-06

Publications (1)

Publication Number Publication Date
WO2020050346A1 true WO2020050346A1 (en) 2020-03-12

Family

ID=69721512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034904 WO2020050346A1 (en) 2018-09-06 2019-09-05 Solid body, sheet, and method for manufacturing solid body

Country Status (2)

Country Link
JP (1) JP7342873B2 (en)
WO (1) WO2020050346A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077248A (en) * 2008-09-25 2010-04-08 Teijin Ltd Fine decorative cellulose-containing aromatic polyamide composite
JP2011047084A (en) * 2009-08-28 2011-03-10 Sumitomo Bakelite Co Ltd Organized fiber, resin composition, and method for producing the resin composition
JP2017065109A (en) * 2015-09-30 2017-04-06 王子ホールディングス株式会社 Sheet and laminate
WO2017138589A1 (en) * 2016-02-10 2017-08-17 王子ホールディングス株式会社 Sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5944098B2 (en) * 2009-12-11 2016-07-05 花王株式会社 Fine cellulose fiber composite, fine cellulose fiber dispersion and composite material
JP2018024967A (en) * 2016-08-09 2018-02-15 花王株式会社 Fine cellulose fiber complex

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077248A (en) * 2008-09-25 2010-04-08 Teijin Ltd Fine decorative cellulose-containing aromatic polyamide composite
JP2011047084A (en) * 2009-08-28 2011-03-10 Sumitomo Bakelite Co Ltd Organized fiber, resin composition, and method for producing the resin composition
JP2017065109A (en) * 2015-09-30 2017-04-06 王子ホールディングス株式会社 Sheet and laminate
WO2017138589A1 (en) * 2016-02-10 2017-08-17 王子ホールディングス株式会社 Sheet

Also Published As

Publication number Publication date
JPWO2020050346A1 (en) 2021-09-16
JP7342873B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
JP7290147B2 (en) Method for producing fibrous cellulose-containing coating, resin composition, coating and laminate
JP7443769B2 (en) Fibrous cellulose-containing resin composition, sheet and molded article
JP7419819B2 (en) Fibrous cellulose-containing resin composition, sheet and molded article
JP7255106B2 (en) Solid and fibrous cellulose-containing composition
JP6604448B1 (en) Fibrous cellulose-containing composition, liquid composition, and molded article
JP7183627B2 (en) Fine fibrous cellulose-containing composition and method for producing the same
WO2019124364A1 (en) Sheet
JP2020105470A (en) Fibrous cellulose-containing material, fibrous cellulose-containing liquid composition and formed body
JP7351305B2 (en) Fibrous cellulose-containing composition, liquid composition and molded article
JP7135729B2 (en) Cellulose-containing composition, liquid composition, solid form, and method for producing cellulose-containing composition
WO2020050346A1 (en) Solid body, sheet, and method for manufacturing solid body
JP6607328B1 (en) Solid body and fibrous cellulose-containing composition
WO2020050347A1 (en) Solid body and method for manufacturing solid body
WO2020050349A1 (en) Solid and fibrous cellulose-containing composition
JP7452108B2 (en) Fibrous cellulose, fibrous cellulose-containing material, fibrous cellulose-containing liquid composition, and molded article
JP7415675B2 (en) Fibrous cellulose dispersion and molded body
JP7552226B2 (en) Dispersion
CN112654746B (en) Fibrous cellulose-containing material, fluffed cellulose, and composition
JP2020109153A (en) Fibrous cellulose-containing material, fibrous cellulose-containing liquid composition and formed body
JP2022164312A (en) sheet
JP2020169430A (en) Method of producing microfibrous cellulose
JP2019108487A (en) Composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856690

Country of ref document: EP

Kind code of ref document: A1