WO2020050234A1 - Capillary and pipette - Google Patents

Capillary and pipette Download PDF

Info

Publication number
WO2020050234A1
WO2020050234A1 PCT/JP2019/034510 JP2019034510W WO2020050234A1 WO 2020050234 A1 WO2020050234 A1 WO 2020050234A1 JP 2019034510 W JP2019034510 W JP 2019034510W WO 2020050234 A1 WO2020050234 A1 WO 2020050234A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
capillary
signal
liquid
pressure chamber
Prior art date
Application number
PCT/JP2019/034510
Other languages
French (fr)
Japanese (ja)
Inventor
東別府 誠
宮里 健太郎
松下 哲也
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2020541218A priority Critical patent/JP7154303B2/en
Publication of WO2020050234A1 publication Critical patent/WO2020050234A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles

Definitions

  • the present disclosure relates to capillaries and pipettes.
  • the first end and the second end which are both ends in the length direction, are open.
  • the capillary has a first hole and a second hole connected to the second end of the first hole.
  • the water repellency of the inner surface of the second hole is different from the water repellency of the inner surface of the first hole.
  • a pipette controls the capillary, a pressure chamber communicating with the inside of the capillary via the second end, a driving unit that changes the volume of the pressure chamber, and controlling the driving unit. And a control unit that performs the control.
  • the capillary has a first pipe located on the first end side and a second pipe located on the second end side.
  • the first pipe portion has the first hole penetrating in a length direction.
  • the second pipe portion has the second hole penetrating in a length direction.
  • the control unit controls the drive unit so that the volume of the pressure chamber repeatedly increases and decreases, whereby at least a part of the liquid in the capillary reciprocates over the boundary between the first hole and the second hole. Control.
  • FIG. 2 is a cross-sectional view schematically illustrating a specific example of the pipette of the present disclosure.
  • FIG. 2 is a cross-sectional view schematically illustrating a specific example of a capillary in the pipette of the present disclosure.
  • FIG. 3 is a partially enlarged view of FIG. 2.
  • 5 is a graph schematically illustrating an example of a change in voltage of a signal output by a first control unit.
  • 5 (a), 5 (b), 5 (c), 5 (d), 5 (e) and 5 (f) are diagrams schematically showing the operation of the pipette of the present disclosure.
  • FIGS. 6A and 6B are schematic diagrams for explaining a modified example of the pipette and other modified examples.
  • FIG. 4 is a diagram showing the effect of the outer diameter of the capillary tip on the amount of attached droplets. 8 is a table showing various conditions when FIG. 7 is obtained.
  • FIG. 4 is a diagram illustrating an effect of an inner diameter of a capillary tip on a liquid suction amount.
  • water repellency or “hydrophilicity” is sometimes used for both absolute and relative evaluation of properties.
  • “having water repellency” indicates that the contact angle of the liquid to be aspirated by the pipette is 90 ° or more (absolute evaluation). Also, for example, “having hydrophilicity” indicates that the contact angle of the liquid to be aspirated by the pipette is less than 90 °. If the liquid to be suctioned by the pipette is not specified, the presence or absence of water repellency or hydrophilicity may be determined using the contact angle of water.
  • “high water repellency”, “low water repellency”, or “different water repellency” means that two members touching a liquid to be sucked by a pipette (which may be water as described above).
  • a pipette which may be water as described above.
  • the contact angles of the liquids are compared with each other, it means that one contact angle is larger, smaller, or different (relative evaluation) than the other contact angle. Therefore, for example, when the water repellency of the first member is higher than the water repellency of the second member, both the first member and the second member or the second member need not have the water repellency, It may have hydrophilicity.
  • FIG. 1 is a cross-sectional view schematically illustrating a configuration of a pipette 1 according to an embodiment of the present disclosure.
  • the pipette 1 is given a fixed rectangular coordinate system xy for convenience.
  • the + x side (the lower side in the drawing) is a side which is set lower when the liquid is sucked by the pipette 1.
  • the pipette 1 includes, for example, the capillary 10, a pipette body 20 that changes the air pressure in the capillary 10, and a first control unit 24 and a second control unit 25 that control the operation of the pipette body 20.
  • the inside of the capillary 10 is evacuated (depressurized) from the rear end (second end 12) of the capillary 10 by the pipette body 20 in a state where the tip (first end 11) on the + x side of the capillary 10 is in contact with the liquid. Liquid is drawn into the capillary 10.
  • a plurality of types of liquids are stored in the capillary 10.
  • the exhaust and the air supply decompression and increase in pressure in the capillary 10
  • a plurality of types of liquids flow in the capillary 10 in the length direction. Reciprocate (vibrate) along.
  • the plurality of types of liquids are stirred and, consequently, mixed.
  • the capillary 10 has a cylindrical shape in which the first end 11 and the second end 12 which are both ends in the length direction (x direction) are open.
  • the “cylindrical shape” means a shape that is long in one direction (the length in one direction is longer than the length in other directions), hollow, and open at both ends. And does not mean only a cylindrical shape.
  • the schematic shape of the capillary 10 may be various shapes.
  • the shape of the inner edge (the inner surface of the capillary 10) and / or the outer edge (the outer surface of the capillary 10) is circular, elliptical, or oval.
  • it may be a polygon or the like.
  • the shape and / or size of the cross section (the inner edge and / or the outer edge) may be constant over the entire length of the capillary 10 or at least a part of the entire length of the capillary 10 in the length direction. It may be different depending on the position.
  • the inner edge and the outer edge may be similar to each other, or may not be similar.
  • the center line of the internal space (flow path) of the capillary 10 may extend linearly from the first end 11 to the second end 12, or may be bent at least in part.
  • the cross section (the inner edge and the outer edge) of the capillary 10 is assumed to be circular at any position in the length direction.
  • the shape of the cross section of the hole of the capillary 10 is the same or similar (congruent) at different positions in the longitudinal direction of the capillary 10.
  • the cross-sectional area of the cross-sectional area of the holes at any of the different positions is similar or different. It may be taken to mean different from each other.
  • the dimensions of the capillary 10 may be appropriately set according to various circumstances such as the amount of the liquid to be collected and / or a method of attaching the capillary 10 to the pipette body 20.
  • the inner diameter of the capillary 10 may be 0.1 mm or more and 0.3 mm or less.
  • the outer diameter of the capillary 10 may be 0.4 mm or more and 1.2 mm or less.
  • the length of the capillary 10 may be 20 mm or more and 100 mm or less.
  • dimensions outside diameter D1 and inside diameter D2 at the first end 11 of the capillary 10 will be exemplified by values outside the above range (FIGS. 7 to 9). Needless to say, the outer diameter D1 and the inner diameter D2 may be within the above range.
  • the material of the capillary 10 may be various.
  • examples of the material include glass, resin, ceramics, and metal.
  • examples of the resin include polypropylene, polyethylene, and polytetrafluoroethylene.
  • a part in the length direction and another part may be made of different materials, and / or a part in the radial direction and another part may be made of materials different from each other. May be.
  • the capillary 10 may be configured by forming a film made of another material on at least a part of the surface of a member made of one material.
  • at least a part (that is, a part or the whole) of the capillary 10 may be made of a light-transmitting material (eg, resin or glass).
  • the surface of the capillary 10 may have water repellency.
  • the area having the water repellency on the surface of the capillary 10 may be appropriately set.
  • the region having water repellency includes the end surface of the first end 11 (the surface facing in the + x direction), a part of the inner surface of the capillary 10 on the + x side, and a part of the outer surface of the capillary 10 on the + x side.
  • the region having water repellency includes a region that comes into contact with the liquid. Since the area in contact with the liquid has water repellency, for example, the risk of liquid adhesion and / or unintentional movement is reduced, and the accuracy of the liquid collection amount is improved.
  • the capillary 10 may have water repellency on the surface by being made of a material having water repellency, for example. Further, for example, the capillary 10 (part or all) may have water repellency by forming a water repellent film on the surface of a member made of a material having no water repellency.
  • the water-repellent film various types may be used, and examples thereof include a water-repellent film formed by a silane coupling agent, a metal alkoxide-containing water-repellent film, a silicone-containing water-repellent film, and a fluorine-containing water-repellent film.
  • Various methods may be used as a method for forming the water-repellent film on the surface of the capillary 10, for example, a dry process method or a wet process method may be used.
  • Examples of the dry process method include a physical vapor deposition method and a chemical vapor deposition method.
  • Examples of the former include a physical vapor deposition method and a sputtering method.
  • Examples of the latter include a chemical vapor deposition (CVD) method and an atomic layer deposition (ALD) method.
  • Examples of the wet process method include a sol-gel method, a dip coating method, and a coating method.
  • the capillary 10 is, for example, disposable and detachable from the pipette body 20.
  • the attachment / detachment method may be an appropriate method.
  • the capillary 10 may be fixed by being pressed into a hole of the pipette body 20, or may be fixed by fastening or locking by a mechanism (not shown) provided in the pipette body 20.
  • the capillary 10 may be used repeatedly, or may be fixed (for example, adhered) to the pipette body 20 in a non-detachable manner.
  • the pipette body 20 has a pressure chamber 21 (cavity) communicating with the inside of the capillary 10.
  • the pipette body 20 reduces the pressure (exhaust) in the capillary 10 by increasing the volume of the pressure chamber 21 and increases the pressure (air supply) in the capillary 10 by decreasing the volume of the pressure chamber 21. Do. Thereby, for example, suction and discharge of liquid by the capillary 10 are realized.
  • the configuration of the pipette body 20 that realizes such an operation may be an appropriate one. An example is shown below.
  • the pipette body 20 includes, for example, a flow path member 35 that forms a flow path (including the pressure chamber 21) communicating with the inside of the capillary 10, an actuator 40 that changes the volume of the pressure chamber 21, and a flow path member. And a valve 23 for permitting and prohibiting communication between the inside (flow path) of 35 and the outside.
  • the general outer shape and size of the flow path member 35 may be formed in an appropriate shape.
  • the schematic outer shape of the flow path member 35 has an axial shape (a shape in which the length in the x direction is longer than the length in other directions) in series with the capillary 10.
  • the size is, for example, a size that the user can pinch or grip (for example, the maximum outer diameter is 50 mm or less).
  • the internal space of the flow path member 35 connects, for example, the above-described pressure chamber 21, the communication flow path 27 connecting the capillary 10 and the pressure chamber 21, and the communication flow path (in another aspect, the pressure chamber 21) to the outside. And an open channel 28.
  • the shape, position, size, and the like of the pressure chamber 21 may be set as appropriate.
  • the pressure chamber 21 is located on a side surface of the flow path member 35.
  • the schematic shape of the pressure chamber 21 is a thin shape having a substantially constant thickness with the direction (the y direction) overlapping the actuator 40 being the thickness direction.
  • the thin shape is a shape in which the length in the y direction is shorter than the maximum length in each direction orthogonal to the y direction.
  • the planar shape (the shape viewed in the y direction) of the pressure chamber 21 may be an appropriate shape such as a circle, an ellipse, a rectangle, or a rhombus.
  • the thickness (y direction) of the pressure chamber 21 is, for example, not less than 50 ⁇ m and not more than 5 mm.
  • the diameter of the pressure chamber 21 (the maximum length in each direction orthogonal to the y direction) is, for example, 2 mm or more and 50 mm or less.
  • the flow path member 35 includes a first flow path 22 extending from the capillary 10 in the length direction (x direction) of the capillary 10 and a direction intersecting the first flow path 22 from the middle of the first flow path 22. And a second flow path 26 extending to the pressure chamber 21.
  • a communication channel 27 is formed by the second channel 26 and a portion of the first channel 22 on the capillary 10 side from the connection position with the second channel 26.
  • the first flow path 22 communicates with the outside of the flow path member 35, for example, on the side opposite to the capillary 10.
  • An open channel 28 is formed by a portion of the first channel 22 opposite to the capillary 10 from a position connected to the second channel 26. Therefore, the flow path for releasing the liquid so that the liquid does not enter the pressure chamber 21 is also used as the open flow path 28 for opening the pressure chamber 21 to the outside, and the space efficiency is improved.
  • the shapes and dimensions of the cross sections of the first flow path 22 and the second flow path 26 may be appropriately set.
  • the cross section of the first flow path 22 and the second flow path 26 is a circle having a diameter of 0.1 mm or more and 1 mm or less.
  • the inner diameters of the first flow path 22 and the second flow path 26 may be the same or different from each other.
  • the shape and size of the cross section of the first flow path 22 and / or the second flow path 26 may be constant in the length direction or may be changed.
  • the flow path member 35 may be configured by combining members of an appropriate shape made of an appropriate material.
  • the flow path member 35 has a first part 30 and a second part 60 joined to each other.
  • the first part 30 has a through hole serving as the pressure chamber 21.
  • the second part 60 has a first flow path 22 and a second flow path 26.
  • the pressure chamber 21 is configured by a space surrounded by the first part 30, the second part 60, and the actuator 40.
  • each of the first part 30 and the second part 60 may be configured by a combination of a plurality of members.
  • the material of the first part 30 and the second part 60 may be, for example, metal, ceramic, resin, or any combination thereof.
  • the actuator 40 constitutes, for example, one of the inner surfaces of the pressure chamber 21.
  • the actuator 40 has a substantially plate shape, and is joined to the first part 30 so as to close the through hole of the first part 30 from the side opposite to the second part 60, and the communication passage 27 constitutes the inner surface on the opposite side to the inner surface where it opens. Then, the actuator 40 reduces the volume of the pressure chamber 21 by bending toward the pressure chamber 21 side (in other words, by displacing the inner surface of the pressure chamber 21 inward). Conversely, the actuator 40 increases the volume of the pressure chamber 21 by bending to the opposite side to the pressure chamber 21 (in other words, by displacing the inner surface of the pressure chamber 21 outward).
  • the actuator 40 is configured by a unimorph type piezoelectric element. More specifically, for example, the actuator 40 has two stacked piezoelectric ceramic layers 40a and 40b. Further, the actuator 40 has an internal electrode 42 and a surface electrode 44 facing each other with the piezoelectric ceramic layer 40a interposed therebetween. The piezoelectric ceramic layer 40a is polarized in the thickness direction.
  • the piezoelectric ceramic layer 40a contracts in the plane direction.
  • the piezoelectric ceramic layer 40b does not cause such shrinkage.
  • the piezoelectric ceramic layer 40a bends toward the piezoelectric ceramic layer 40b. That is, the actuator 40 bends toward the pressure chamber 21.
  • the actuator 40 bends to the side opposite to the pressure chamber 21.
  • the shape and size of the actuator 40 may be appropriately set.
  • the actuator 40 is a flat plate having an appropriate planar shape.
  • the planar shape may or may not be similar to the planar shape of the pressure chamber 21.
  • the maximum length in each direction in plan view (when viewed in the y direction) is, for example, 3 mm or more and 100 mm or less.
  • the thickness (y direction) of the actuator 40 is, for example, not less than 20 ⁇ m and not more than 2 mm.
  • the materials, dimensions, shapes, conduction methods, and the like of various members constituting the actuator 40 may be appropriately set. An example is shown below.
  • the thickness of the piezoelectric ceramic layers 40a and 40b may be, for example, not less than 10 ⁇ m and not more than 30 ⁇ m.
  • the material of the piezoelectric ceramic layers 40a and 40b may be, for example, a ferroelectric ceramic material. Such ceramic materials include lead zirconate titanate (PZT), NaNbO 3 system, KNaNbO 3 system, BaTiO 3 system and (BiNa) NbO 3 system, those BiNaNb 5 O 15 system.
  • the piezoelectric ceramic layer 40b may be made of a material other than the piezoelectric material.
  • the internal electrode 42 is located, for example, between the piezoelectric ceramic layer 40a and the piezoelectric ceramic layer 40b, and has substantially the same size as the actuator 40.
  • the thickness of the internal electrode 42 may be, for example, 1 ⁇ m or more and 3 ⁇ m or less.
  • the internal electrode 42 is externally conductive, for example, by a through electrode 48 penetrating the piezoelectric ceramic layer 40a and a connection electrode 46 located on the surface of the actuator 40 and connected to the through electrode 48.
  • the surface electrode 44 is located, for example, on the opposite side of the piezoelectric ceramic layer 40a from the piezoelectric ceramic layer 40b (outside of the pressure chamber 21), and has a surface electrode main body 44a and an extraction electrode 44b.
  • the surface electrode main body 44a has, for example, a planar shape substantially equal to the pressure chamber 21, and is provided so as to overlap the pressure chamber 21 in the thickness direction.
  • the extraction electrode 44b is formed so as to be extracted from the surface electrode main body 44a.
  • the thickness of the surface electrode 44 may be, for example, 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the materials of the internal electrode 42, the surface electrode 44, the connection electrode 46, and the through electrode 48 may be, for example, a metal material. More specifically, for example, the material of the internal electrode 42 and the through electrode 48 may be Ag-Pd. The material of the surface electrode 44 and the connection electrode 46 may be, for example, Au.
  • the actuator 40 or a part of the actuator 40 may be referred to as a driving unit 50.
  • the actuator is not limited to a unimorph type piezoelectric element.
  • the actuator may be a bimorph-type piezoelectric element or an electrostatic actuator.
  • valve 23 is provided, for example, at a position where the open channel 28 communicates with the outside. By opening and closing the valve 23, communication between the inside and the outside of the flow path member 35 is permitted or prohibited. In the state where the communication is prohibited, the pressure in the capillary 10 is reduced and increased by the change in the volume of the pressure chamber 21. On the other hand, in a state where the communication is permitted, even if the volume of the pressure chamber 21 is changed, the pressure in the capillary 10 is not reduced or increased. An example of the use of the function in which the pressure is not reduced or increased will be described later.
  • the valve 23 opens and closes in response to, for example, a signal input from the outside.
  • various valves such as an electromagnetic valve or a piezoelectric valve can be used.
  • the valve 23 may be closed when a signal is not input, and may be opened when a signal is input.
  • the valve 23 may be opened when a signal is not input, and may be opened when a signal is input.
  • the signal may be in a closed state, or a signal for closing and a signal for opening may be input.
  • the first control unit 24 is electrically connected to the actuator 40, and changes the volume of the pressure chamber 21 by applying an electric signal to the actuator 40 to deform the actuator 40.
  • the actuator 40 By driving the actuator 40 so that the volume of the pressure chamber 21 periodically increases and decreases, the liquid sucked into the capillary 10 can be mixed by vibrating.
  • the second control unit 25 is electrically connected to the valve 23, and opens and closes the valve 23 by giving an electric signal to the valve 23.
  • the liquid can be discharged from the valve 23 to the outside by opening the valve 23.
  • the valve 23 is opened, the deformation of the actuator 40 is returned to the original state in that state, and the actuator 40 is deformed again after the valve 23 is closed. Liquid can be inhaled.
  • the first control unit 24 and the second control unit 25 can be configured using various integrated circuits.
  • the first control unit 24 and the second control unit 25 may be configured by separate ICs (Integrated @ Circuit), may be synchronized, or may be partially or wholly integrated in the same IC.
  • the first control unit 24 and / or the second control unit 25 may be fixedly provided on the pipette main body 20, may be provided so as to be relatively movable with respect to the pipette main body 20, or may be partially provided.
  • A for example, a driver
  • another part for example, a part for outputting a command to the driver
  • FIG. 2 is an enlarged sectional view showing the capillary 10.
  • FIG. 3 is a partially enlarged view of FIG.
  • the capillary 10 has a first pipe part 17 located on the first end 11 side and a second pipe part 18 located on the second end 12 side.
  • the first pipe part 17 has a first hole 10a penetrating in the length direction
  • the second pipe part 18 has a second hole 10b penetrating in the length direction.
  • the second hole 10b is connected to the second end 12 of the first hole 10a.
  • the first tube portion 17 is a portion of the capillary 10 having the first hole 10a
  • the second tube portion 18 is a portion of the capillary 10 having the second hole 10b.
  • the first pipe part 17 and the second pipe part 18 may be two parts of one integrally formed member (that is, they may not be separate members) or may be two members fixed to each other. You may.
  • the water repellency of the inner surface of the first hole 10a is different from the water repellency of the inner surface of the second hole 10b. That is, the capillary 10 has the first hole 10a and the second hole 10b whose inner surfaces have different water repellency.
  • the water repellency of the inner surface of the first hole 10a may be abbreviated to the water repellency of the first hole 10a. The same applies to the second hole 10b.
  • either of the first hole 10a and the second hole 10b may have higher water repellency than the other.
  • a case where the water repellency of the first hole 10a is higher than the water repellency of the second hole 10b is taken as an example. That is, in the present embodiment, the contact angle of the first hole 10a is larger than the contact angle of the second hole 10b.
  • both the first hole 10a and the second hole 10b may have water repellency (the contact angle is 90 ° or more).
  • the first hole 10a may have water repellency and the second hole 10b may have hydrophilicity, or both the first hole 10a and the second hole 10b may have hydrophilicity. It may be.
  • one of the above three aspects is taken as an example.
  • the water repellency may be uniform or change in the length direction and / or the direction around the axis of the capillary 10.
  • a uniform case is taken as an example.
  • the change may be continuous or discontinuous (stepwise).
  • the first hole 10a and the second hole 10b can define the boundary 14 from the viewpoint of the water repellency, the change in the water repellency between the two is discontinuous.
  • the specific size of the contact angle between the first hole 10a and the second hole 10b may be appropriately set.
  • the contact angle when the first hole 10a has water repellency (when the contact angle is 90 ° or more), the contact angle may be 90 ° or more and 95 ° or less (that is, a value close to 90 °). However, it may be 95 ° or more and 150 ° or less, or may be more than 150 °. Note that the angle exceeding 150 ° is a size that can be said to have so-called super water repellency.
  • the contact angle of the second hole 10b is 90 ° or more and 95 ° or less, and 95 ° or more and 150 ° as long as the contact angle is smaller than the contact angle of the first hole 10a. It may be less than or equal to 150 °.
  • the contact angle of the second hole 10b is 85 ° or more (ie, a value close to 90 °). May be 10 ° or more and 85 ° or less, or may be less than 10 °.
  • less than 10 degrees is a size which can be said to have what is called superhydrophilicity.
  • the difference between the contact angle of the first hole 10a and the contact angle of the second hole 10b may be set as appropriate.
  • the difference between the two may be 5 ° or more, 10 ° or more, 30 ° or more, 90 ° or more, or 140 ° or more.
  • the difference between the two may be less than 180 °, 140 ° or less, 90 ° or less, 30 ° or less, or 10 ° or less (may be combined with any of the above lower limits. ).
  • the difference between the two may be 30 ° or more and 140 ° or less, or 30 ° or more and 90 ° or less.
  • the upper limit of the difference between the two increases, for example, the selection of the material becomes more difficult. Within the above range, the selection of the material is facilitated, for example, while obtaining the effect of causing turbulence in the flow.
  • the shapes and dimensions of the first hole 10a and the second hole 10b, the materials constituting these holes, and the like may be appropriately set. An example is shown below.
  • the first hole 10a extends from the first end 11 to the boundary 14, for example.
  • the second hole 10b extends from the boundary 14 to the second end 12, for example.
  • another hole for example, a hole whose water repellency is equal to or less than the water repellency of the second hole 10 b
  • another hole is formed from the boundary 14 to the first end 11, and / or the second from the boundary 14. It is also possible to configure another hole (for example, a hole whose water repellency is higher than the water repellency of the first hole 10a) up to the end 12.
  • the position of the boundary 14 may be an appropriate position between the first end 11 and the second end 12.
  • the boundary 14 is located on the first end 11 side with respect to the longitudinal center of the capillary 10.
  • the length of the first hole 10a is about 5% to 30% of the total length of the capillary 10.
  • the shape and / or size of the cross section of the first hole 10a and the shape and / or size of the cross section of the second hole 10b may be the same or different. When the two are different in size, either may be larger. In each of the first hole 10a and the second hole 10b, the shape and / or size of the cross section may or may not be constant in the length direction of the capillary 10.
  • the cross section (inner diameter) of the first hole 10a is larger toward the second hole 10b.
  • the cross section (inner diameter) of the second hole 10b is constant in the length direction of the capillary 10.
  • the inner diameter of the first hole 10a is larger than the inner diameter of the second hole 10b.
  • the specific size of the difference between the inner diameter of the first hole 10a and the inner diameter of the second hole 10b may be appropriately set.
  • the inner diameter of the first hole 10a is 1.1 times or more, 1.5 times or more, or 2 times or more, and 5 times or less, 3 times or less of the inner diameter of the second hole 10b. Or twice or less (the former example of the lower limit value and the latter example of the upper limit value may be combined as long as there is no contradiction).
  • the difference between the inner diameter of the first hole 10a and the inner diameter of the second hole 10b is not less than ⁇ of the thickness of the second member 16 described later (the length in the radial direction from the inner surface to the outer surface), 2/3 or more or 1 time or more, and less than 2 times, 18/10 times or less or 2/5 or less (unless inconsistent with the former example of the lower limit and the latter example of the upper limit, May be combined.).
  • the inclination angle of the inner surface of the first hole 10a with respect to the center line of the first hole 10a is 1 ° or more, 2 ° or more or 3 ° or more, and 15 ° or less, 10 ° or less, or 7 ° or less ( Any of the former example of the lower limit value and the latter example of the upper limit value may be combined.)
  • the inner diameter of the first hole 10a at the first end 11 may be smaller than the inner diameter of the second hole 10b, may be the same (provided that there is a difference due to a processing error), or may be larger.
  • the inner diameter of the first end 10 of the first hole 10a is ⁇ or more, / or 4 or more, and 2 times or less, 1.5 times or less of the inner diameter of the second hole 10b. It is twice or less (any of the former example of the lower limit value and the latter example of the upper limit value may be combined).
  • the first end face 11a may be an annular shape having a circular opening.
  • the outer diameter D1 of the first end face 11a in this case may be 0.4 mm or less.
  • the inventor has found out that the liquid attached to the first end face 11a is taken into the capillary 10 when the capillary 10 is pulled out of the liquid. As a result, the amount of liquid taken into the capillary 10 slightly increases with respect to the amount intentionally sucked.
  • the outer diameter of the first end face 11a is large, the amount of the liquid to be increased also increases, which causes a problem when a small amount of liquid is sucked.
  • the outer diameter of the first end face 11a By setting the outer diameter of the first end face 11a to 0.4 mm or less, it is possible to prevent many droplets from adhering to the first end face 11a, and a small amount of liquid can be sucked with high accuracy.
  • FIG. 7 shows the result of measuring the amount of liquid (water) attached to the first end face 11a under various conditions in the capillary shown in FIG.
  • FIG. 8 shows various conditions at that time.
  • the horizontal axis indicates the outer diameter D1.
  • the vertical axis indicates the amount of liquid adhering to the first end face 11a.
  • the plot shows the relationship between the outer diameter D1 and the measured amount of adhesion.
  • the liquid adhesion amount was measured for six types of capillaries up to six.
  • the six types of capillaries differ from each other in the shape and material of the first member 15, the outer diameter D1, and the inner diameter D2.
  • “taper” indicates that the inner diameter D ⁇ b> 2 and the outer diameter D ⁇ b> 1 of the first member 15 become smaller toward the first end 11 as in the example shown in FIG. 2.
  • “straight” indicates that the inner diameter D2 and the outer diameter D1 of the first member 15 are constant from the second end 12 to the first end 11 unlike the example of FIG.
  • the meanings of the abbreviations in the column of the material of the first member 15 are as follows.
  • PP polypropylene
  • FEP flexible electric pipe
  • ETFE ethylene tetrafluoro ethylene
  • PA12 polyamide12.
  • No. 5 has a water-repellent film formed on a portion of the glass capillary which comes into contact with the liquid.
  • the amount of liquid adhering to the first end surface 11a can be reduced regardless of other conditions.
  • the amount of adhesion can be reduced to 5.0 nl or less.
  • the rate of change of the increase in the amount of adhesion with respect to the increase in the outer diameter D1 increases. Significance can be found about
  • the inner diameter D2 of the first end face 11a may be 0.06 mm or more. If the inner diameter D2 of the first end face 11a is too small, the flow path resistance increases, and the amount of liquid that can be sucked by a predetermined pressure change decreases.
  • FIG. 9 shows a change in the amount of the sucked liquid when the inner diameter D2 of the first end face 11a is changed.
  • the horizontal axis indicates the inner diameter D2.
  • the vertical axis indicates the liquid suction amount due to a predetermined pressure change.
  • the plot shows the relationship between the inner diameter D2 and the suction amount, and includes some approximate values.
  • FIG. 9 it can be seen that by setting the inner diameter D2 of the first end face 11a to 0.06 mm or more, it is possible to prevent the amount of the sucked liquid from becoming too small. Further, in the example of FIG. 9, the aspect of the change in the suction amount with respect to the change in the inner diameter D2 is exponential, and by increasing the inner diameter D2 to 0.06 mm or more, the suction amount can be increased by increasing the inner diameter D2. It has been made easier. Contrary to the above description, an extremely small amount of suction may be realized by setting the inner diameter D2 to less than 0.06 mm.
  • the capillary 10 has a first member 15 that forms the first hole 10a, and a second member 16 that forms the second hole 10b. As described above, by forming the capillary 10 from a plurality of members, for example, it is easy to make the water repellency of the first hole 10a different from the water repellency of the second hole 10b.
  • the first member 15 and the second member 16 may be made of various materials already mentioned as the material of the capillary 10.
  • the first member 15 is integrally formed of resin as a whole.
  • the entire second member 16 is integrally formed of glass.
  • the water repellency of the resin forming the first member 15 is higher than the water repellency of the glass forming the second member 16.
  • the material of the second member 16 may be a light-transmitting material, and the material of the first member 15 may or may not be a light-transmitting material. In other words, the light transmission of the second member 16 may be higher than the light transmission of the first member 15. In this case, for example, a material having high water repellency can be selected as the material of the first member 15. On the other hand, as the material of the second member 16, a material suitable for irradiating the liquid with light for analyzing the liquid can be selected.
  • the first member 15 and the second member 16 may be fixed by an appropriate method.
  • the fixing method include fitting (press-fitting) of one member to the other member, locking with a claw, bonding with an adhesive, and welding by melting and solidifying at least one member. it can. Two or more of these methods may be combined.
  • both members may be formed by forming one member first and filling a material for the other member into a mold in which the one member is arranged. Further, between the first member 15 and the second member 16, a packing made of a material having lower rigidity may be disposed.
  • the second member 16 is press-fitted into the first member 15 and both are fixed.
  • the first member 15 has a third hole 15a extending from the first hole 10a to a side opposite to the first end 11.
  • the third hole 15a has a larger inner diameter than the first hole 10a.
  • a step 15b is formed at the boundary between the first hole 10a and the third hole 15a.
  • the second member 16 has an outer diameter equal to or slightly larger than the inner diameter of the third hole 15a. Then, the second member 16 is inserted into the third hole 15a from the side opposite to the first hole 10a, and the tip is locked to the step 15b. The detachment of the second member 16 from the first member 15 is prevented by the frictional force generated by the direct contact between the two members.
  • both may be joined.
  • an adhesive may be arranged between the inner surface of the third hole 15a and the outer surface of the second member 16.
  • the outer diameter of the second member 16 may be slightly smaller, equal, or slightly larger than the inner diameter of the third hole 15a.
  • each of the third hole 15a and the second member 16 has a constant cross section and extends over its entire length.
  • one or both of them may extend in a fixed cross section only in a part of the length direction, and may be fitted only in a portion extending in the fixed cross section.
  • the portions of the third hole 15a and the second member 16 that are fitted to each other do not have to extend in a fixed cross section.
  • both may be tapered so that the diameter increases toward the second end 12.
  • a protrusion may be provided on at least one of the inner surface of the third hole 15a and the outer surface of the second member 16, so that the contact pressure may be increased.
  • the step surface 15ba of the step portion 15b on the side of the second member 16 is inclined, for example, so that the inner side in the radial direction of the capillary 10 is located closer to the second member 16 side.
  • the distal end face 16a of the second member 16 on the side of the step portion 15b is, for example, a planar shape orthogonal to the length direction of the capillary 10.
  • a radially inner corner 15bb (an inner edge of the step surface 15ba) of the step 15b is in contact with the distal end surface 16a of the second member 16. Therefore, the contact between the step portion 15b and the second member 16 is a line contact.
  • the contact between the step portion 15b and the second member 16 may be different from the illustrated example.
  • the step surface 15ba may be a surface orthogonal to the length direction of the capillary 10, and the step surface 15ba and the tip end surface 16a may be in surface contact.
  • the outer shape (the shape of the outer surface) of the first member 15 and the second member 16 may be appropriate.
  • the first member 15 has a first portion 15e having a first end 11 and a second portion located on the second end 12 side with respect to the first portion 15e. 15f.
  • the first portion 15e has, for example, a part (most of the illustrated example) on the first end 11 side of the first hole 10a.
  • the first portion 15e has, for example, a substantially constant thickness (length from the inner surface to the outer surface) over the entire length of the capillary 10 in the length direction.
  • the outer shape of the first portion 15e is also tapered, corresponding to the tapered first hole 10a.
  • the thickness of the first portion 15 e is relatively thin, for example, smaller than the thickness of the second member 16.
  • the second portion 15f has, for example, a part of the first hole 10a opposite to the first end 11 and a third hole 15a.
  • the outer diameter of the second portion 15f is larger than that of the first portion 15e, for example.
  • the thickness of the second portion 15f is relatively thick, for example, larger than the thickness of the first portion 15e and the thickness of the second member 16.
  • the shape of the outer surface of the second portion 15f is, for example, constant in the length direction of the capillary 10.
  • FIG. 4 is a graph schematically illustrating an example of a temporal change of a voltage (signal level) in the drive signal SgA (Sg0 to Sg52) output from the first control unit 24.
  • the horizontal axis t indicates time
  • the vertical axis V indicates voltage.
  • FIGS. 5A to 5F are schematic diagrams showing the state of the capillary 10 at any time shown on the horizontal axis of FIG.
  • the drive signal SgA output from the first control unit 24 to the actuator 40 has a waveform in which the voltage changes over time.
  • the actuator 40 bends by a deformation amount corresponding to the applied voltage.
  • the correspondence here is, for example, a one-to-one correspondence, in other words, a relation in which the amount of deformation is uniquely defined with respect to the voltage (excluding the state where the deformation is saturated). Therefore, the actuator 40 to which the drive signal SgA has been input follows the pressure of the drive signal SgA (change in voltage over time) so that the volume of the pressure chamber 21 becomes a volume corresponding to the voltage of the drive signal SgA. The volume of the chamber 21 is changed.
  • FIG. 4 may be regarded as showing not only the temporal change of the voltage of the drive signal SgA but also the temporal change of the volume of the pressure chamber 21.
  • One of the internal electrode 42 and the surface electrode 44 is provided with a reference potential, and the other is supplied with the drive signal SgA.
  • the voltage in FIG. 4 indicates a potential difference between the reference potential and the drive signal SgA.
  • the drive signal SgA is an unbalanced signal.
  • the drive signal SgA may be a balanced signal in which the potential is changed in both the internal electrode 42 and the surface electrode 44 and the potential difference is the voltage shown in FIG. Note that, in the present embodiment, a case where the drive signal SgA is an unbalanced signal is taken as an example, and therefore, the voltage in FIG. 4 may be described below as the potential of the drive signal SgA.
  • the increase in the voltage of the drive signal SgA may correspond to an increase in the volume of the pressure chamber 21 or may correspond to a decrease in the volume of the pressure chamber 21.
  • the direction of the internal electrode 42 and the surface electrode 44 from the electrode to which the drive signal SgA is applied to the electrode to which the reference potential is applied is opposite to the polarization direction of the piezoelectric ceramic layer 40a. Or the same orientation.
  • an increase in the voltage of the drive signal SgA corresponds to an increase in the volume of the pressure chamber 21 (that is, suction of the liquid).
  • the operation on the pipette 1 by the user may be appropriately read as the operation on the pipette 1 of the device.
  • the movement of the pipette 1 by the user may be the movement of the pipette 1 by the device, and the operation of the user on the switch (not shown) of the pipette 1 may be the output of a command signal to the pipette 1 by the device.
  • the apparatus may perform the same operation as the user on the pipette by, for example, sequence control.
  • the first control unit 24 Before time t1, the first control unit 24 outputs an initial signal Sg0 to the actuator 40 in response to a user operation on a switch (not shown).
  • the initial signal Sg0 is a signal having a constant potential. Thereby, the volume of the pressure chamber 21 is maintained at a predetermined initial volume.
  • the potential of the initial signal Sg0 may be a reference potential or may be different from the reference potential.
  • the drive signal SgA does not need to include the initial signal Sg0. That is, before time t1, the driving signal SgA may not be output, instead of the state where the initial signal Sg0 is output.
  • the valve 23 is closed after time t0 unless otherwise specified.
  • the user brings the first end 11 of the capillary 10 into contact with the first liquid L1 before the time t1 (performs a liquid contacting step). Then, the user instructs the pipette 1 to suction the first liquid L1 by operating a switch (not shown) of the pipette 1.
  • the time of this instruction corresponds to time t1 in FIG.
  • the first control unit 24 When the suction of the first liquid L1 is instructed, the first control unit 24 outputs a first suction signal Sg1 for driving the driving unit 50 so that the volume of the pressure chamber 21 increases.
  • the first suction signal Sg1 is, for example, a signal that rises from the potential V0 of the initial signal Sg0 to a predetermined potential V1 and maintains the potential V1. Thereby, the first liquid L1 is sucked into the capillary 10 and held near the first end 11 of the capillary 10.
  • the suction amount roughly corresponds to a potential difference from the potential V0 to the potential V1. In other words, the potential difference is set according to the target value of the suction amount.
  • the second suction signal Sg2 is, for example, a signal that rises from the potential V1 of the first suction signal Sg1 to a predetermined potential V2 and maintains the potential V2.
  • the suction amount of the second liquid L2 roughly corresponds to the potential difference from the potential V1 to the potential V2. In other words, the potential difference is set according to the target value of the suction amount.
  • the first control unit 24 When the mixing of the first liquid L1 and the second liquid L2 is instructed, the first control unit 24 outputs an air suction signal Sg3 for driving the driving unit 50 so that the volume of the pressure chamber 21 increases.
  • the air suction signal Sg3 is, for example, a signal that rises to approximately a predetermined potential V3 and maintains the potential V3.
  • the first liquid L1 and the second liquid L2 move toward the second end 12 and stop at a predetermined position in the capillary 10.
  • FIG. 5B shows the state at this time.
  • the movement amount of the first liquid L1 and the second liquid L2 roughly corresponds to the potential difference from the potential V2 to the potential V3. In other words, the potential difference is set according to the target value of the movement amount.
  • the stop position of the first liquid L1 and the second liquid L2 may be a position where both the first liquid L1 and the second liquid L2 are located on the first end 11 side of the boundary 14 or the first liquid L1. Both the first liquid L1 and the second liquid L2 may be located at positions closer to the second end 12 than the boundary 14, or may be located at a position where either the first liquid L1 or the second liquid L2 straddles the boundary 14. Good.
  • the subsequent operation will be described by taking as an example a case where both the first liquid L1 and the second liquid L2 are located on the first end 11 side of the boundary 14.
  • both the first liquid L1 and the second liquid L2 are located on the first end 11 side or the second end 12 side of the boundary 14, the liquid and the boundary 14 may be separated from each other or may be adjacent to each other. Is also good.
  • adjacent refers to, for example, a distance at which the boundary 14 is separated from the liquid or a distance at which the liquid is overlapped (any distance may be based on the center of the liquid surface) in the length direction of the capillary 10. , 1/10 or less of the length obtained by dividing the volumes of the first liquid L1 and the second liquid L2 by the area of the cross section at the boundary 14 of the first hole 10a.
  • the second control unit 25 determines that a predetermined time has elapsed after the start of the output of the air suction signal Sg3, the second control unit 25 controls the valve 23 to open the open flow path 28. Note that, as described above, this control may be performed by either outputting the signal or stopping the output of the signal.
  • the predetermined time is a time sufficient for the first liquid L1 and the second liquid L2 to move to the target position by the air suction signal Sg3.
  • the restoration signal Sg4 is, for example, a signal that generally drops to a predetermined potential V4 and maintains the potential V4.
  • the predetermined time from the opening of the valve 23 to the time t4 is a time sufficient to open the valve 23.
  • the potential V4 may be the same, higher, or lower than the initial potential V0 and / or the reference potential. In the illustrated example, the potential V4 is the same as the initial potential V0.
  • the restoration signal Sg4 has a falling portion (intentionally used as a signal) generated in a process of transition from the state in which the air suction signal Sg3 is being output to the state in which the output is stopped. That is not the one output to
  • the second control unit 25 determines that the predetermined time has elapsed from the time t4, the second control unit 25 controls the valve 23 to close the open flow passage 28. Note that, as described above, this control may be performed by either outputting the signal or stopping the output of the signal.
  • the predetermined time from time t4 is a time sufficient for the actuator 40 to be displaced by the restoration signal Sg4 corresponding to the potential V4.
  • the mixed liquid is irradiated with light while being held in the capillary 10 (for example, in the second member 16), and its properties are examined. For example, a fluorescence measurement, a scattering measurement, an absorption measurement, and / or a spectroscopic measurement are performed.
  • the liquid may be moved to a position suitable for measurement by the same operation as the operation of moving the liquid to an arbitrary position between times t3 and t4.
  • the mixed liquid may be discharged from the capillary 10 and used for various purposes instead of being used for measurement while being held in the capillary 10.
  • the waveform of the drive signal SgA is a waveform composed of a plurality of straight lines such as a rectangular wave.
  • part or all of the waveform of the drive signal SgA may be a waveform including a curve such as a sine wave.
  • the mixed signal Sg5 alternates between a first signal Sg51 that drives the drive unit 50 so that the volume of the pressure chamber 21 increases and a second signal Sg52 that drives the drive unit 50 so that the volume of the pressure chamber 21 decreases. Contains repeatedly.
  • FIG. 5B FIG. 5F
  • FIG. 5C and FIG. 5D the liquid (first liquid L1 and second liquid L1 and second liquid L1) At least a part of the liquid L2) flows from the first hole 10a to the second hole 10b.
  • FIGS. 5D, 5E, and 5F due to the increase in the volume of the pressure chamber 21, at least a part of the liquid is removed from the second hole 10b through the second hole 10b. It flows to one hole 10a. That is, the liquid reciprocates at least partially over the boundary 14 repeatedly.
  • All of the liquid (L1 + L2) may repeatedly exceed the boundary 14 as shown in the illustrated example, or, unlike the illustrated example, only a part thereof may repeatedly exceed the boundary 14. In the case where all of the liquid repeatedly crosses the boundary 14, the liquid may leave the boundary 14 after crossing the boundary 14 and then return, or may return from a state in which the liquid exceeds the boundary 14 and is adjacent to the boundary 14. Is also good. "Adjacent" is as described in the air suction signal Sg3 and the description of FIG. 5B. Whether all or a part of the liquid exceeds the boundary 14 or separates from the boundary 14 differs depending on whether the liquid flows toward the first hole 10a or the second hole 10b. May be changed, or may be changed in the process of repeating reciprocation.
  • the liquid (L1 + L2) moves from the state in which the liquid (L1 + L2) exceeds the boundary 14 and is adjacent to the boundary 14 both when flowing toward the first hole 10a and when flowing toward the second hole 10b. Take a case where the vehicle is turned back and the state is maintained even if reciprocation is repeated. In such a case, for example, the whole liquid can be made to exceed the boundary 14, and the reciprocating cycle can be shortened.
  • the first signal Sg51 and the second signal Sg52 may be appropriately set so that the above-described operation is realized.
  • the liquid (L1 + L2) is adjacent to the boundary 14 on the first end 11 side by the air suction signal Sg3.
  • the mixed signal Sg5 includes, for example, first (as a signal whose output starts at time t5) the first signal Sg51 for moving the liquid to the second end 12 side, for example.
  • the amount of change in the potential of the first signal Sg51 (the amount of increase in the volume of the pressure chamber 21) and the amount of change in the potential of the second signal Sg52 (the amount of decrease in the volume of the pressure chamber 21) are each approximately a liquid ( L1 + L2).
  • the last signal included in the mixed signal Sg5 may be either the first signal Sg51 or the second signal Sg52.
  • the signal included in the mixed signal Sg5 second from the start (the second signal Sg52 in the present embodiment).
  • the liquid may be made to be adjacent to the second end 12 side of the boundary 14 by the air suction signal Sg3.
  • the mixed signal Sg5 may include, for example, the second signal Sg52 for first moving the liquid to the first end 11 side. Further, the liquid may be spread over the boundary 14 by the air suction signal Sg3.
  • the mixed signal Sg5 may include, for example, a signal in which the amount of change in the potential of the first signal Sg51 or the second signal Sg52 is first reduced.
  • the liquid may be separated from the boundary 14 by the air suction signal Sg3.
  • the mixed signal Sg5 may include, for example, a signal in which the amount of change in the potential of the first signal Sg51 or the second signal Sg52 is first increased.
  • the first signal Sg51 and the second signal Sg52 may have the same waveform or different waveforms.
  • the waveforms of both signals may be line-symmetric or asymmetric with respect to an axis of symmetry (not shown) parallel to the vertical axis of the graph shown in FIG.
  • the waveforms of both signals are asymmetric.
  • the rate of change of the potential of the first signal Sg51 over time is greater than the rate of change of the potential of the second signal Sg52 over time.
  • the first signal Sg51 is a signal whose potential rises rapidly (with a rise time of about 0)
  • the second signal Sg52 is a signal whose potential gradually decreases in proportion to time. Have been. That is, the combination of the first signal Sg51 and the subsequent second signal Sg52 is a so-called reverse sawtooth signal. Specific values of these rates of change may be set as appropriate.
  • the change amount dV52 of the potential of the second signal Sg52 (the decrease amount of the volume of the pressure chamber 21) is larger than the change amount dV51 of the potential of the first signal Sg51 (the increase amount of the volume of the pressure chamber 21).
  • the difference may be set as appropriate, and may be set, for example, such that the operation described below is performed. Since the change dV52 is larger than the change dV51, the potential of the mixed signal Sg5 gradually decreases. When the mixing is completed (when the output of the mixed signal Sg5 is completed), the potential of the mixed signal Sg5 may be smaller, equal to, or larger than the potential V0 of the initial signal Sg0 and / or the reference potential. Is also good.
  • the pipette 1 has the capillary 10 open at both ends (the first end 11 and the second end 12) in the length direction and the inside of the capillary 10 via the second end 12. It has a communicating pressure chamber 21, a drive unit 50 that changes the volume of the pressure chamber 21, and a control unit (first control unit 24) that controls the drive unit 50.
  • the capillary 10 has a first pipe part 17 located on the first end 11 side and a second pipe part 18 located on the second end 12 side.
  • the first pipe part 17 has a first hole 10a penetrating in the length direction
  • the second pipe part 18 has a second hole 10b penetrating in the length direction.
  • the second hole 10b is connected to the second end 12 of the first hole 10a.
  • the water repellency of the inner surface of the first hole 10a is different from the water repellency of the inner surface of the second hole 10b. Then, the first control unit 24 repeatedly increases and decreases the volume of the pressure chamber 21 so that at least a part of the liquid in the capillary 10 reciprocates over the boundary between the first hole 10a and the second hole 10b. To control the driving unit 50.
  • the flow of the liquid is disturbed due to the difference in water repellency, and thus the liquid is easily stirred.
  • the liquid near the inner surface of the capillary 10 is less likely to flow along the inner surface of the capillary 10.
  • the flow of the liquid is likely to be separated from the inner surface of the capillary 10, and the vortex is likely to be generated.
  • the vortex promotes agitation of the liquid.
  • mixing of the two liquids is promoted.
  • the water repellency of the inner surface of the first hole 10a is higher than the water repellency of the inner surface of the second hole 10b.
  • the flow from the second hole 10b to the first hole 10a has a higher resistance than the flow in the opposite direction.
  • the possibility that the liquid is ejected from the first end 11 during mixing is reduced.
  • the first hole 10a extends from the boundary 14 to the first end 11, when the liquid is sucked from the first end 11, the possibility that the liquid adheres to the first end 11 is reduced.
  • the correspondence between the increase in the volume of the pressure chamber 21 and the suction amount of the liquid is stabilized, and the accuracy of liquid measurement is improved.
  • the inner diameter of the first hole 10a is larger than the inner diameter of the second hole 10b at the boundary 14 between the first hole 10a and the second hole 10b.
  • the flow of the liquid is disturbed due to the difference in the inner diameter, and the two liquids are more likely to be mixed.
  • the flow is likely to be separated from the inner surface of the capillary 10 and a vortex is likely to be generated.
  • the vortex promotes agitation of the liquid.
  • the water repellency of the first hole 10a is higher than the water repellency of the second hole 10b, the direction in which the water repellency increases and the direction in which the inner diameter increases are the same.
  • the effect that peeling is likely to occur due to an increase in water repellency and the effect that peeling is likely to occur due to an increase in the inner diameter are superimposed.
  • the effect of promoting the stirring is improved.
  • the inner diameter of the first hole 10a is larger toward the second hole 10b.
  • the liquid is more likely to be disturbed than when the inner diameter of the first hole 10a is constant.
  • stirring of the liquid is promoted.
  • the inner diameter of the first end 11 can be reduced to improve the accuracy of liquid measurement.
  • the inner diameter of the first hole 10a is made larger than the inner diameter of the second hole 10b, and the above-described effect of promoting mixing due to the difference in the inner diameter can be obtained.
  • the capillary 10 has a first member 15 and a second member 16.
  • the first member 15 is hollow having a first hole 10a.
  • the second member 16 has a hollow shape having the second hole 10 b and is fixed to the first member 15.
  • the first member 15 extends from the first hole 10a to the side opposite to the first end 11 from the first hole 10a, and has a larger inner diameter than the first hole 10a. And a stepped portion 15b due to the inner diameter of the first hole 10a being smaller than the inner diameter of the third hole 15a.
  • the second member 16 is inserted into the third hole 15a and locked on the step 15b, and has a tip surface 16a on the step 15b side.
  • the step surface 15ba on the tip surface 16a side of the step portion 15b is inclined so that the inner side in the radial direction of the capillary 10 is located closer to the tip surface 16a.
  • a radially inner corner portion 15bb of the step portion 15b is in contact with the distal end surface 16a.
  • the second member 16 can be connected to the first member 15 with a simple configuration in which the two members are inserted.
  • the contact between the second member 16 and the step portion 15b is a line contact, so that it is easier to secure a contact pressure than in the case of a surface contact.
  • the sealing performance at the boundary 14 can be improved.
  • a space is formed outside the corner 15bb between the distal end surface 16a of the second member 16 and the step 15b. This space can be used, for example, to release excess adhesive when an adhesive is interposed between the inner surface of the first member 15 and the outer surface of the second member 16.
  • the first member 15 is made of resin
  • the second member 16 is made of glass
  • the water repellency of the first member 15 and lower the water repellency of the second member 16 it is easy to increase the water repellency of the first member 15 and lower the water repellency of the second member 16.
  • a resin that can be easily molded is used as the material of the first member 15, the dimensional accuracy near the first end 11 can be improved, and the accuracy of liquid measurement can be improved.
  • glass that can easily ensure translucency is used as the material of the second member 16, the accuracy of analyzing a liquid using light can be improved.
  • the first control unit 24 outputs the drive signal SgA whose signal level (voltage) changes with time and forms a waveform to the drive unit 50.
  • the drive unit 50 changes the volume of the pressure chamber 21 according to a change with time of the voltage of the drive signal SgA so that the volume of the pressure chamber 21 becomes a volume corresponding to the voltage of the drive signal SgA.
  • the drive signal SgA includes the first signal Sg51 and the second signal Sg52 alternately and repeatedly.
  • the first signal Sg51 is a signal for driving the driving unit 50 such that at least a part of the liquid flows from the first hole 10a to the second hole 10b due to an increase in the volume of the pressure chamber 21.
  • the second signal Sg52 is a signal for driving the driving unit 50 so that at least a part of the liquid flows from the second hole 10b to the first hole 10a due to the decrease in the volume of the pressure chamber 21.
  • the waveform of the first signal Sg51 and the waveform obtained by inverting the waveform of the second signal Sg52 so that the elapsed time is reversed are different from each other.
  • the first hole 10a and the second hole 10b are different in water repellency, inner diameter, and / or position with respect to the first end 11, and the flow can be formed in consideration of the difference. For example, it is as follows.
  • the absolute value of the rate of change of the signal level (voltage) of the second signal Sg52 over time is smaller than the absolute value of the rate of change of the voltage of the first signal Sg51 over time.
  • the flow from the second hole 10b to the first hole 10a becomes gentler than when the absolute values of the two change rates are the same.
  • the flow from the second hole 10b to the first hole 10a becomes gentler than when the absolute values of the two change rates are the same.
  • the liquid flows out from the second hole 10b to the first hole 10a it is possible to reduce the occurrence of a phenomenon in which the liquid is scattered into fine particles. Further, for example, the possibility that the liquid is discharged from the first end 11 is reduced.
  • the water repellency of the inner surface of the first hole 10a is higher than the water repellency of the inner surface of the second hole 10b.
  • the absolute value of the change amount dV52 of the signal level (voltage) of the second signal Sg52 is larger than the absolute value of the change amount dV51 of the voltage of the first signal Sg51.
  • the contact angle on the liquid surface in the first hole 10a is It is larger than the contact angle on the liquid surface in the two holes 10b. Therefore, the force in the x direction acting on the liquid surface in the first hole 10a does not balance with the force in the x direction acting on the liquid surface in the second hole 10b. As a result, the liquid as a whole receives a force from the side having a large contact angle to the side having a small contact angle. That is, the liquid tends to flow from the first hole 10a to the second hole 10b.
  • the position of the liquid gradually increases in the process of repeating the reciprocation of the liquid. May shift to the second hole 10b side.
  • the absolute value of the change amount dV52 larger than the absolute value of the change amount dV51, the position of the liquid can be maintained within a certain range. As a result, for example, it becomes easy to repeat the reciprocation of the liquid so that all of the liquid crosses the boundary 14 and turns back immediately after the crossing. As a result, the effect of promoting agitation utilizing the difference in water repellency can be improved.
  • FIG. 6A is a cross-sectional view illustrating a configuration of a capillary 210 according to a modification.
  • the capillary 210 differs from the capillary 10 of the embodiment only in the material constituting the second member.
  • the second member 216 according to the modified example has a main body 216x and a water-repellent film 216y that covers at least a part of the inner surface of the main body 216x.
  • the main body 216x is made of, for example, glass.
  • the material of the water-repellent film 216y is as described above. Even in such a configuration, the same effect as the embodiment can be obtained by making the water repellency of the inner surface of the first hole 210a different from the water repellency of the inner surface of the second hole 210b.
  • FIG. 6B is a diagram illustrating a drive signal SgB according to a modification. This diagram corresponds to a part of FIG. 4 (approximately at times t6 to t8).
  • the first signal Sg51 and the second signal Sg52 included in the drive signal SgB are configured by curves. More specifically, in the illustrated example, each of the first signal Sg51 and the second signal Sg52 is configured by a ⁇ cycle of a sine wave. Even in such a drive signal SgB, the absolute value of the change rate of the second signal Sg52 may be smaller than the absolute value of the change rate of the first signal Sg51.
  • the waveform of each of the first signal Sg51 and the second signal Sg52 is configured by a curve, which means that the rate of change changes from the start to the end of each signal.
  • whether or not the absolute value of the rate of change of the second signal Sg52 is greater than the absolute value of the rate of change of the first signal Sg51 may be determined based on the average value of the rates of change of both. . That is, in the illustrated example, since the amount of change dV1 occurs in the first signal Sg51 during the time length T1, the average value of the change rate is dV1 / T1.
  • the average value of the change rate is dV2 / T2. If
  • the signal for repeatedly increasing and decreasing the volume of the pressure chamber 21 may have a shape similar to a rectangular wave.
  • the rising portion of the rectangular wave is the first signal
  • the falling portion of the rectangular wave is the second signal
  • the portion having a constant potential therebetween is a signal other than the first signal and the second signal. is there.
  • the pipette is not limited to the one that mixes two liquids sucked by the pipette itself.
  • a capillary in which a reactant is formed in advance on the inner surface is attached to the pipette body, and then a liquid (one liquid) is sucked by the pipette, and the reactant reacts by a reciprocating flow in the length direction of the capillary. May be dissolved in a liquid.
  • a pipette sucks a liquid (one liquid) in which two liquids are already mixed, a solvent (one liquid) in which a solute is already contained, or a liquid (one liquid) in which fine substances are already dispersed.
  • the pipette may be one that sucks and mixes three or more liquids.
  • valve 23 is opened and closed after the air is sucked.
  • the valve 23 may not be opened and closed.
  • the restoration signal Sg4 becomes unnecessary, and the mixing signal Sg5 may be output following the air suction signal Sg3.
  • the valve 23 and the control circuit 25 need not be provided.

Abstract

This capillary is configured so that a first end and a second end, which are both ends thereof in the lengthwise direction, are open. The capillary includes a first hole and a second hole. The second hole is linked to the second end side of the first hole. The water-repelling properties of the inner surface of the second hole are different from the water-repelling properties of the inner surface of the first hole.

Description

キャピラリー及びピペットCapillaries and pipettes
 本開示は、キャピラリー及びピペットに関する。 The present disclosure relates to capillaries and pipettes.
 ポンプ作用装置を駆動させてキャピラリー内部に負圧を生じさせてキャピラリー内に液体を吸引するピペットが知られている。このようなピペットとして、複数種類の液体を吸引した後に、キャピラリー内部の液体をキャピラリーの長さ方向に往復運動させることによって液体を攪拌して混合するものも知られている(例えば、特許文献1及び特許文献2を参照。)。 2. Description of the Related Art There is known a pipette that drives a pump action device to generate a negative pressure inside a capillary and sucks a liquid into the capillary. As such a pipette, there is also known a pipette in which a liquid inside a capillary is reciprocated in a longitudinal direction of the capillary and then agitated and mixed with the liquid after sucking a plurality of kinds of liquids (for example, Patent Document 1). And Patent Document 2).
特開平10-62437号公報JP-A-10-62437 特開2000-304754号公報JP-A-2000-304754
 本開示の一態様に係るキャピラリーは、長さ方向の両端である第1端及び第2端が開口している。キャピラリーは、第1孔と、前記第1孔の前記第2端側に繋がっている第2孔とを有している。前記第2孔の内面の撥水性は、前記第1孔の内面の撥水性とは異なる。 は In the capillary according to an aspect of the present disclosure, the first end and the second end, which are both ends in the length direction, are open. The capillary has a first hole and a second hole connected to the second end of the first hole. The water repellency of the inner surface of the second hole is different from the water repellency of the inner surface of the first hole.
 本開示の一態様に係るピペットは、上記キャピラリーと、前記第2端を介して前記キャピラリーの内部に通じている圧力室と、前記圧力室の容積を変化させる駆動部と、前記駆動部を制御する制御部と、を有している。前記キャピラリーは、前記第1端側に位置する第1管部と、前記第2端側に位置する第2管部と、を有している。前記第1管部は、長さ方向に貫通する前記第1孔を有している。前記第2管部は、長さ方向に貫通する前記第2孔を有している。前記制御部は、前記圧力室の容積が増減を繰り返し、これにより前記キャピラリー内の液体の少なくとも一部が前記第1孔と前記第2孔との境界を繰り返し超えて往復するように前記駆動部を制御する。 A pipette according to one embodiment of the present disclosure controls the capillary, a pressure chamber communicating with the inside of the capillary via the second end, a driving unit that changes the volume of the pressure chamber, and controlling the driving unit. And a control unit that performs the control. The capillary has a first pipe located on the first end side and a second pipe located on the second end side. The first pipe portion has the first hole penetrating in a length direction. The second pipe portion has the second hole penetrating in a length direction. The control unit controls the drive unit so that the volume of the pressure chamber repeatedly increases and decreases, whereby at least a part of the liquid in the capillary reciprocates over the boundary between the first hole and the second hole. Control.
本開示のピペットの具体例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically illustrating a specific example of the pipette of the present disclosure. 本開示のピペットにおけるキャピラリーの具体例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically illustrating a specific example of a capillary in the pipette of the present disclosure. 図2の一部拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 第1制御部が出力する信号における電圧の変化の一例を模式的に示すグラフである。5 is a graph schematically illustrating an example of a change in voltage of a signal output by a first control unit. 図5(a)、図5(b)、図5(c)、図5(d)、図5(e)及び図5(f)は本開示のピペットの作用を模式的に示す図である。5 (a), 5 (b), 5 (c), 5 (d), 5 (e) and 5 (f) are diagrams schematically showing the operation of the pipette of the present disclosure. . 図6(a)及び図6(b)はピペットの変形例及び他の変形例を説明するための模式図である。FIGS. 6A and 6B are schematic diagrams for explaining a modified example of the pipette and other modified examples. キャピラリー先端の外径が液滴付着量に及ぼす影響を示す図である。FIG. 4 is a diagram showing the effect of the outer diameter of the capillary tip on the amount of attached droplets. 図7が得られたときの各種の条件を示す図表である。8 is a table showing various conditions when FIG. 7 is obtained. キャピラリー先端の内径が液体吸引量に及ぼす影響を示す図である。FIG. 4 is a diagram illustrating an effect of an inner diameter of a capillary tip on a liquid suction amount.
 以下、本開示の実施形態について、図面を参照して説明する。なお、以下の説明で用いられる図は模式的なものであり、図面上の寸法比率等は現実のものとは必ずしも一致していない。同一の部材を示す複数の図面同士においても、形状等を誇張するために、寸法比率等は互いに一致していないことがある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The drawings used in the following description are schematic, and the dimensional ratios and the like in the drawings do not always match actual ones. Even in a plurality of drawings showing the same member, dimensional ratios and the like may not match each other in order to exaggerate shapes and the like.
 本開示において「撥水性」又は「親水性」の用語は、特性の絶対的な評価と相対的な評価とのいずれにも用いられることがあるものとする。 に お い て In the present disclosure, the term “water repellency” or “hydrophilicity” is sometimes used for both absolute and relative evaluation of properties.
 例えば、「撥水性を有する」は、ピペットの吸引対象の液体の接触角が90°以上であること(絶対的な評価)を指す。また、例えば、「親水性を有する」は、ピペットの吸引対象の液体の接触角が90°未満であることを指す。なお、ピペットの吸引対象の液体が特定されない場合においては、水の接触角を用いて撥水性又は親水性の有無が判定されてよい。 For example, “having water repellency” indicates that the contact angle of the liquid to be aspirated by the pipette is 90 ° or more (absolute evaluation). Also, for example, “having hydrophilicity” indicates that the contact angle of the liquid to be aspirated by the pipette is less than 90 °. If the liquid to be suctioned by the pipette is not specified, the presence or absence of water repellency or hydrophilicity may be determined using the contact angle of water.
 一方、例えば、「撥水性が高い」、「撥水性が低い」又は「撥水性が異なる」は、ピペットの吸引対象の液体(上記のように水とされてもよい)に触れる2つの部材同士で前記液体の接触角を比較したときに、一方の接触角が他方の接触角よりも、大きいこと、小さいこと、又は異なること(相対的な評価)を指す。従って、例えば、第1部材の撥水性が第2部材の撥水性よりも高いという場合、第1部材及び第2部材の双方、又は第2部材は、撥水性を有している必要は無く、親水性を有していてもよい。 On the other hand, for example, “high water repellency”, “low water repellency”, or “different water repellency” means that two members touching a liquid to be sucked by a pipette (which may be water as described above). When the contact angles of the liquids are compared with each other, it means that one contact angle is larger, smaller, or different (relative evaluation) than the other contact angle. Therefore, for example, when the water repellency of the first member is higher than the water repellency of the second member, both the first member and the second member or the second member need not have the water repellency, It may have hydrophilicity.
[ピペットの概要]
 図1は、本開示の実施形態に係るピペット1の構成を模式的に示す断面図である。なお、図面には、便宜上、ピペット1に固定的な直交座標系xyを付している。+x側(紙面下方)は、ピペット1によって液体を吸引する際に下方とされる側である。
[Outline of pipette]
FIG. 1 is a cross-sectional view schematically illustrating a configuration of a pipette 1 according to an embodiment of the present disclosure. In the drawings, the pipette 1 is given a fixed rectangular coordinate system xy for convenience. The + x side (the lower side in the drawing) is a side which is set lower when the liquid is sucked by the pipette 1.
 ピペット1は、例えば、キャピラリー10と、キャピラリー10内の気圧を変化させるピペット本体20と、ピペット本体20の動作を制御する第1制御部24及び第2制御部25と、を有している。 The pipette 1 includes, for example, the capillary 10, a pipette body 20 that changes the air pressure in the capillary 10, and a first control unit 24 and a second control unit 25 that control the operation of the pipette body 20.
 キャピラリー10の+x側の先端(第1端11)が液体に触れた状態で、ピペット本体20によってキャピラリー10の後端(第2端12)からキャピラリー10内が排気(減圧)されることによって、液体がキャピラリー10内に吸引される。この吸引を複数種類の液体に対して順次行うことにより、複数種類の液体がキャピラリー10内に貯留される。その後、ピペット本体20によってキャピラリー10に対して第2端12からの排気及び給気(キャピラリー10内の減圧及び増圧)が繰り返されると、複数種類の液体はキャピラリー10内をその長さ方向に沿って往復(振動)する。これにより、複数種類の液体は攪拌され、ひいては混合される。 The inside of the capillary 10 is evacuated (depressurized) from the rear end (second end 12) of the capillary 10 by the pipette body 20 in a state where the tip (first end 11) on the + x side of the capillary 10 is in contact with the liquid. Liquid is drawn into the capillary 10. By sequentially performing the suction on a plurality of types of liquids, a plurality of types of liquids are stored in the capillary 10. Thereafter, when the exhaust and the air supply (decompression and increase in pressure in the capillary 10) are repeated from the second end 12 to the capillary 10 by the pipette body 20, a plurality of types of liquids flow in the capillary 10 in the length direction. Reciprocate (vibrate) along. Thereby, the plurality of types of liquids are stirred and, consequently, mixed.
[キャピラリー(概要)]
 キャピラリー10は、長さ方向(x方向)の両端である第1端11及び第2端12が開口した筒状の形状を有している。なお、「筒状の形状」とは、1方向に長く(該1方向の長さが他の方向の長さに比較して長く)、中空であり、且つ両端が開口した形状を意味するものであり、円筒形のみを意味するものではない。
[Capillary (Overview)]
The capillary 10 has a cylindrical shape in which the first end 11 and the second end 12 which are both ends in the length direction (x direction) are open. The “cylindrical shape” means a shape that is long in one direction (the length in one direction is longer than the length in other directions), hollow, and open at both ends. And does not mean only a cylindrical shape.
 キャピラリー10の概略形状は、種々の形状とされてよい。例えば、キャピラリー10の横断面(長さ方向に直交する断面。以下、同様。)において、内縁(キャピラリー10の内面)及び/又は外縁(キャピラリー10の外面)の形状は、円形、楕円、卵形又は多角形等とされてよい。また、例えば、横断面(内縁及び/又は外縁)の形状及び/又は大きさは、キャピラリー10の全長に亘って一定であってもよいし、キャピラリー10の全長の少なくとも一部において長さ方向の位置によって異なっていてもよい。また、例えば、キャピラリー10の横断面において、内縁と外縁とは、互いに相似形であってもよいし、相似形でなくてもよい。また、例えば、キャピラリー10の内部空間(流路)の中心線は、第1端11から第2端12へ直線状に延びていてもよいし、少なくとも一部において曲がっていてもよい。 概略 The schematic shape of the capillary 10 may be various shapes. For example, in a cross section of the capillary 10 (a cross section orthogonal to the length direction; the same applies hereinafter), the shape of the inner edge (the inner surface of the capillary 10) and / or the outer edge (the outer surface of the capillary 10) is circular, elliptical, or oval. Alternatively, it may be a polygon or the like. Further, for example, the shape and / or size of the cross section (the inner edge and / or the outer edge) may be constant over the entire length of the capillary 10 or at least a part of the entire length of the capillary 10 in the length direction. It may be different depending on the position. Further, for example, in the cross section of the capillary 10, the inner edge and the outer edge may be similar to each other, or may not be similar. In addition, for example, the center line of the internal space (flow path) of the capillary 10 may extend linearly from the first end 11 to the second end 12, or may be bent at least in part.
 なお、本実施形態の説明では、便宜上、キャピラリー10の横断面(内縁及び外縁)は、長さ方向のいずれの位置においても円形であるものとする。この場合、キャピラリー10の孔の横断面の形状は、キャピラリー10の長さ方向の互いに異なる位置同士において同一又は相似(合同含む)である。キャピラリー10の長さ方向の互いに異なる位置同士において互いに内径が異なるという場合、その互いに異なる位置同士で孔の横断面の形状が相似である態様及び相似でない態様のいずれにおいても、横断面の面積が互いに異なるという意味に捉えられてよい。 In the description of the present embodiment, for the sake of convenience, the cross section (the inner edge and the outer edge) of the capillary 10 is assumed to be circular at any position in the length direction. In this case, the shape of the cross section of the hole of the capillary 10 is the same or similar (congruent) at different positions in the longitudinal direction of the capillary 10. When the inner diameters of the capillaries 10 at different positions in the longitudinal direction are different from each other, the cross-sectional area of the cross-sectional area of the holes at any of the different positions is similar or different. It may be taken to mean different from each other.
 キャピラリー10の寸法は、採取する液体の量及び/又はピペット本体20への取り付け方法等の種々の事情に応じて適宜に設定されてよい。例えば、キャピラリー10の内径は、0.1mm以上0.3mm以下とされてよい。また、例えば、キャピラリー10の外径は、0.4mm以上1.2mm以下とされてよい。また、例えば、キャピラリー10の長さは、20mm以上100mm以下とされてよい。もちろん、上記の範囲外の寸法が採用されても構わない。後の説明では、キャピラリー10の第1端11における外径D1及び内径D2(図2参照)について、上記の範囲外の値を例示する(図7~図9)。言うまでもなく、外径D1及び内径D2は、上記の範囲内にあってもよい。 The dimensions of the capillary 10 may be appropriately set according to various circumstances such as the amount of the liquid to be collected and / or a method of attaching the capillary 10 to the pipette body 20. For example, the inner diameter of the capillary 10 may be 0.1 mm or more and 0.3 mm or less. Further, for example, the outer diameter of the capillary 10 may be 0.4 mm or more and 1.2 mm or less. Further, for example, the length of the capillary 10 may be 20 mm or more and 100 mm or less. Of course, dimensions outside the above range may be employed. In the following description, the outside diameter D1 and inside diameter D2 (see FIG. 2) at the first end 11 of the capillary 10 will be exemplified by values outside the above range (FIGS. 7 to 9). Needless to say, the outer diameter D1 and the inner diameter D2 may be within the above range.
 キャピラリー10の材料は、種々のものとされてよい。例えば、当該材料としては、ガラス、樹脂、セラミックス及び金属を挙げることができる。樹脂としては、例えば、ポリプロピレン、ポリエチレン及びポリテトラフルオロエチレンを挙げることができる。また、例えば、キャピラリー10は、長さ方向の一部と他部とが互いに異なる材料によって構成されていてもよいし、及び/又は径方向の一部と他部とが互いに異なる材料によって構成されていてもよい。また、例えば、キャピラリー10は、一の材料からなる部材の表面の少なくとも一部に他の材料からなる膜が形成されることにより構成されていてもよい。また、例えば、キャピラリー10の少なくも一部(すなわち一部又は全部)は、透光性を有する材料(例えば樹脂又はガラス)によって構成されてよい。 材料 The material of the capillary 10 may be various. For example, examples of the material include glass, resin, ceramics, and metal. Examples of the resin include polypropylene, polyethylene, and polytetrafluoroethylene. Further, for example, in the capillary 10, a part in the length direction and another part may be made of different materials, and / or a part in the radial direction and another part may be made of materials different from each other. May be. Further, for example, the capillary 10 may be configured by forming a film made of another material on at least a part of the surface of a member made of one material. Further, for example, at least a part (that is, a part or the whole) of the capillary 10 may be made of a light-transmitting material (eg, resin or glass).
 キャピラリー10の表面の少なくとも一部(すなわち一部又は全部)は、撥水性を有していてよい。キャピラリー10の表面のうち撥水性を有する領域は適宜に設定されてよい。例えば、撥水性を有する領域は、第1端11の端面(+x方向に面している面)、キャピラリー10の内面のうち+x側の一部及びキャピラリー10の外面の+x側の一部を含んでいる。換言すれば、撥水性を有する領域は、液体に接触する領域を含んでいる。液体に接触する領域が撥水性を有していることにより、例えば、液体の付着及び/又は意図していない移動のおそれが低減され、液体の採取量の精度が向上する。 少 な く と も At least a part (that is, part or all) of the surface of the capillary 10 may have water repellency. The area having the water repellency on the surface of the capillary 10 may be appropriately set. For example, the region having water repellency includes the end surface of the first end 11 (the surface facing in the + x direction), a part of the inner surface of the capillary 10 on the + x side, and a part of the outer surface of the capillary 10 on the + x side. In. In other words, the region having water repellency includes a region that comes into contact with the liquid. Since the area in contact with the liquid has water repellency, for example, the risk of liquid adhesion and / or unintentional movement is reduced, and the accuracy of the liquid collection amount is improved.
 キャピラリー10(一部又は全部)は、例えば、撥水性を有する材料からなることによって表面に撥水性を有していてもよい。また、例えば、キャピラリー10(一部又は全部)は、撥水性を有さない材料からなる部材の表面に撥水膜が形成されることによって表面に撥水性を有していてもよい。 The capillary 10 (part or all) may have water repellency on the surface by being made of a material having water repellency, for example. Further, for example, the capillary 10 (part or all) may have water repellency by forming a water repellent film on the surface of a member made of a material having no water repellency.
 撥水膜としては、種々のものが用いられてよく、例えば、シランカップリング剤により形成される撥水膜、金属アルコキシド含有撥水膜、シリコーン含有撥水膜及びフッ素含有撥水膜を挙げることができる。キャピラリー10の表面への撥水膜の形成方法としては、種々の方法が用いられてよく、例えば、ドライプロセス法が用いられてもよいし、ウェットプロセス法が用いられてもよい。ドライプロセス法としては、例えば、物理気相成長法及び化学気相成長法が挙げられる。前者としては、例えば、物理蒸着法及びスパッタリング法が挙げられる。後者としては、例えば、化学蒸着(CVD:chemical vapor deposition)法及び原子層堆積(ALD:Atomic Layer Deposition)法が挙げられる。ウェットプロセス法としては、例えば、ゾルゲル法、ディップコーティング法、塗布法が挙げられる。 As the water-repellent film, various types may be used, and examples thereof include a water-repellent film formed by a silane coupling agent, a metal alkoxide-containing water-repellent film, a silicone-containing water-repellent film, and a fluorine-containing water-repellent film. Can be. Various methods may be used as a method for forming the water-repellent film on the surface of the capillary 10, for example, a dry process method or a wet process method may be used. Examples of the dry process method include a physical vapor deposition method and a chemical vapor deposition method. Examples of the former include a physical vapor deposition method and a sputtering method. Examples of the latter include a chemical vapor deposition (CVD) method and an atomic layer deposition (ALD) method. Examples of the wet process method include a sol-gel method, a dip coating method, and a coating method.
 キャピラリー10は、例えば、使い捨てとされており、ピペット本体20に対して着脱可能とされている。着脱方法は、適宜な方法とされてよい。例えば、キャピラリー10は、ピペット本体20の孔に圧入されて固定されてもよいし、ピペット本体20に設けられた不図示の機構による締め付け又は係止によって固定されてもよい。ただし、キャピラリー10は、繰り返し使われるものとされてもよいし、さらには、ピペット本体20に着脱不可能に固定(例えば接着)されていてもよい。 The capillary 10 is, for example, disposable and detachable from the pipette body 20. The attachment / detachment method may be an appropriate method. For example, the capillary 10 may be fixed by being pressed into a hole of the pipette body 20, or may be fixed by fastening or locking by a mechanism (not shown) provided in the pipette body 20. However, the capillary 10 may be used repeatedly, or may be fixed (for example, adhered) to the pipette body 20 in a non-detachable manner.
[ピペット本体]
 ピペット本体20は、キャピラリー10の内部に通じている圧力室21(空洞)を有している。そして、ピペット本体20は、この圧力室21の容積を増加させることによってキャピラリー10内の減圧(排気)を行い、圧力室21の容積を減少させることによってキャピラリー10内の増圧(給気)を行う。これにより、例えば、キャピラリー10による液体の吸引及び吐出等が実現される。このような動作を実現するピペット本体20の構成は、適宜なものとされてよい。以下では、その一例を示す。
[Pipette body]
The pipette body 20 has a pressure chamber 21 (cavity) communicating with the inside of the capillary 10. The pipette body 20 reduces the pressure (exhaust) in the capillary 10 by increasing the volume of the pressure chamber 21 and increases the pressure (air supply) in the capillary 10 by decreasing the volume of the pressure chamber 21. Do. Thereby, for example, suction and discharge of liquid by the capillary 10 are realized. The configuration of the pipette body 20 that realizes such an operation may be an appropriate one. An example is shown below.
 ピペット本体20は、例えば、キャピラリー10の内部に通じている流路(圧力室21を含む)を構成している流路部材35と、圧力室21の容積を変化させるアクチュエータ40と、流路部材35の内部(流路)と外部との連通を許容及び禁止するバルブ23とを有している。 The pipette body 20 includes, for example, a flow path member 35 that forms a flow path (including the pressure chamber 21) communicating with the inside of the capillary 10, an actuator 40 that changes the volume of the pressure chamber 21, and a flow path member. And a valve 23 for permitting and prohibiting communication between the inside (flow path) of 35 and the outside.
(流路部材)
 流路部材35の概略の外形及び大きさは適宜な形状とされてよい。図示の例では、流路部材35の概略の外形は、キャピラリー10に直列な軸状(x方向の長さが他の方向の長さよりも長い形状)とされている。また、その大きさは、例えば、ユーザが摘まむ、又は握ることができる大きさ(例えば最大外径が50mm以下)とされている。
(Flow path member)
The general outer shape and size of the flow path member 35 may be formed in an appropriate shape. In the illustrated example, the schematic outer shape of the flow path member 35 has an axial shape (a shape in which the length in the x direction is longer than the length in other directions) in series with the capillary 10. The size is, for example, a size that the user can pinch or grip (for example, the maximum outer diameter is 50 mm or less).
 流路部材35の内部空間は、例えば、上述の圧力室21と、キャピラリー10と圧力室21とを繋ぐ連通流路27と、連通流路(別の観点では圧力室21)と外部とを繋ぐ開放流路28とを有している。 The internal space of the flow path member 35 connects, for example, the above-described pressure chamber 21, the communication flow path 27 connecting the capillary 10 and the pressure chamber 21, and the communication flow path (in another aspect, the pressure chamber 21) to the outside. And an open channel 28.
 圧力室21の形状、位置及び大きさ等は適宜に設定されてよい。図示の例では、圧力室21は、流路部材35において側面に位置している。また、例えば、圧力室21の概略形状は、アクチュエータ40と重なる方向(y方向)を厚さ方向とする、概ね一定の厚さの薄型形状である。ここでの薄型形状は、y方向の長さがy方向に直交する各方向の最大長さよりも短い形状である。圧力室21の平面形状(y方向に見た形状)は、円形、楕円、矩形又は菱形等の適宜な形状とされてよい。圧力室21の厚さ(y方向)は、例えば、50μm以上5mm以下である。圧力室21の径(y方向に直交する各方向における最大長さ)は、例えば、2mm以上50mm以下である。 形状 The shape, position, size, and the like of the pressure chamber 21 may be set as appropriate. In the illustrated example, the pressure chamber 21 is located on a side surface of the flow path member 35. Further, for example, the schematic shape of the pressure chamber 21 is a thin shape having a substantially constant thickness with the direction (the y direction) overlapping the actuator 40 being the thickness direction. Here, the thin shape is a shape in which the length in the y direction is shorter than the maximum length in each direction orthogonal to the y direction. The planar shape (the shape viewed in the y direction) of the pressure chamber 21 may be an appropriate shape such as a circle, an ellipse, a rectangle, or a rhombus. The thickness (y direction) of the pressure chamber 21 is, for example, not less than 50 μm and not more than 5 mm. The diameter of the pressure chamber 21 (the maximum length in each direction orthogonal to the y direction) is, for example, 2 mm or more and 50 mm or less.
 連通流路27及び開放流路28の形状、位置及び大きさ等も適宜に設定されてよい。例えば、流路部材35は、キャピラリー10からキャピラリー10の長さ方向(x方向)に延びている第1流路22と、第1流路22の中途から第1流路22に交差する方向に延びて圧力室21に至る第2流路26とを有している。そして、第1流路22のうちの、第2流路26との接続位置からキャピラリー10側の部分と、第2流路26とによって連通流路27が構成されている。このような流路構成によって、例えば、吸引した液体(例えばその飛沫)が圧力室21へ侵入し、アクチュエータ40に付着するおそれが低減される。ひいては、付着した液体に起因してアクチュエータ40の動作特性が変化するおそれが低減される。 形状 The shapes, positions, sizes, and the like of the communication flow path 27 and the open flow path 28 may be appropriately set. For example, the flow path member 35 includes a first flow path 22 extending from the capillary 10 in the length direction (x direction) of the capillary 10 and a direction intersecting the first flow path 22 from the middle of the first flow path 22. And a second flow path 26 extending to the pressure chamber 21. A communication channel 27 is formed by the second channel 26 and a portion of the first channel 22 on the capillary 10 side from the connection position with the second channel 26. With such a flow path configuration, for example, the danger that the sucked liquid (for example, its splash) enters the pressure chamber 21 and adheres to the actuator 40 is reduced. As a result, the possibility that the operating characteristics of the actuator 40 change due to the attached liquid is reduced.
 また、第1流路22は、例えば、キャピラリー10とは反対側にて流路部材35の外部へ通じている。そして、第1流路22のうちの、第2流路26との接続位置からキャピラリー10とは反対側の部分によって、開放流路28が構成されている。従って、液体が圧力室21に侵入しないように液体を逃がすための流路が、圧力室21を外部へ開放するための開放流路28に兼用されており、空間効率が向上している。 The first flow path 22 communicates with the outside of the flow path member 35, for example, on the side opposite to the capillary 10. An open channel 28 is formed by a portion of the first channel 22 opposite to the capillary 10 from a position connected to the second channel 26. Therefore, the flow path for releasing the liquid so that the liquid does not enter the pressure chamber 21 is also used as the open flow path 28 for opening the pressure chamber 21 to the outside, and the space efficiency is improved.
 第1流路22及び第2流路26の横断面の形状及び寸法は適宜に設定されてよい。例えば、第1流路22及び第2流路26の横断面は、直径が0.1mm以上1mm以下の円形である。また、第1流路22及び第2流路26の内径は、互いに同一であってもよいし、互いに異なっていてもよい。第1流路22及び/又は第2流路26の横断面の形状及び大きさは、長さ方向において一定であってもよいし、変化していてもよい。 形状 The shapes and dimensions of the cross sections of the first flow path 22 and the second flow path 26 may be appropriately set. For example, the cross section of the first flow path 22 and the second flow path 26 is a circle having a diameter of 0.1 mm or more and 1 mm or less. Further, the inner diameters of the first flow path 22 and the second flow path 26 may be the same or different from each other. The shape and size of the cross section of the first flow path 22 and / or the second flow path 26 may be constant in the length direction or may be changed.
 流路部材35は、適宜な材料からなる適宜な形状の部材が組み合わされて構成されてよい。図示の例では、流路部材35は、互いに接合された第1パーツ30及び第2パーツ60を有している。第1パーツ30は、圧力室21となる貫通孔を有している。第2パーツ60は、第1流路22及び第2流路26を有している。圧力室21は、第1パーツ30、第2パーツ60及びアクチュエータ40によって囲まれた空間によって構成されている。なお、第1パーツ30及び第2パーツ60それぞれも、複数の部材の組み合わせによって構成されてよい。第1パーツ30及び第2パーツ60の材料は、例えば、金属、セラミック若しくは樹脂又はこれらのいずれかの組み合わせとされてよい。 The flow path member 35 may be configured by combining members of an appropriate shape made of an appropriate material. In the illustrated example, the flow path member 35 has a first part 30 and a second part 60 joined to each other. The first part 30 has a through hole serving as the pressure chamber 21. The second part 60 has a first flow path 22 and a second flow path 26. The pressure chamber 21 is configured by a space surrounded by the first part 30, the second part 60, and the actuator 40. In addition, each of the first part 30 and the second part 60 may be configured by a combination of a plurality of members. The material of the first part 30 and the second part 60 may be, for example, metal, ceramic, resin, or any combination thereof.
(アクチュエータ)
 アクチュエータ40は、例えば、圧力室21の内面の一つを構成している。具体的には、例えば、アクチュエータ40は、概略板状とされており、第1パーツ30の貫通孔を第2パーツ60とは反対側から塞ぐように第1パーツ30に接合され、連通流路27が開口する内面とは反対側の内面を構成している。そして、アクチュエータ40は、圧力室21側へ撓むことによって(換言すれば圧力室21の内面を内側へ変位させることによって)、圧力室21の容積を減少させる。逆に、アクチュエータ40は、圧力室21とは反対側に撓むことによって(換言すれば圧力室21の内面を外側へ変位させることによって)、圧力室21の容積を増加させる。
(Actuator)
The actuator 40 constitutes, for example, one of the inner surfaces of the pressure chamber 21. Specifically, for example, the actuator 40 has a substantially plate shape, and is joined to the first part 30 so as to close the through hole of the first part 30 from the side opposite to the second part 60, and the communication passage 27 constitutes the inner surface on the opposite side to the inner surface where it opens. Then, the actuator 40 reduces the volume of the pressure chamber 21 by bending toward the pressure chamber 21 side (in other words, by displacing the inner surface of the pressure chamber 21 inward). Conversely, the actuator 40 increases the volume of the pressure chamber 21 by bending to the opposite side to the pressure chamber 21 (in other words, by displacing the inner surface of the pressure chamber 21 outward).
 上記のような撓み変形を生じさせるアクチュエータ40の具体的構成は、適宜なものとされてよい。例えば、アクチュエータ40は、ユニモルフ型の圧電素子によって構成されている。より詳細には、例えば、アクチュエータ40は、積層された2枚の圧電セラミック層40a、40bを有している。また、アクチュエータ40は、圧電セラミック層40aを挟んで互いに対向している内部電極42及び表面電極44を有している。圧電セラミック層40aは、厚さ方向に分極されている。 The specific configuration of the actuator 40 that causes the above-described bending deformation may be appropriately determined. For example, the actuator 40 is configured by a unimorph type piezoelectric element. More specifically, for example, the actuator 40 has two stacked piezoelectric ceramic layers 40a and 40b. Further, the actuator 40 has an internal electrode 42 and a surface electrode 44 facing each other with the piezoelectric ceramic layer 40a interposed therebetween. The piezoelectric ceramic layer 40a is polarized in the thickness direction.
 そして、内部電極42及び表面電極44によって圧電セラミック層40aに分極方向と同一方向に電圧を印加すると、圧電セラミック層40aは平面方向において収縮する。一方、圧電セラミック層40bは、そのような収縮を生じない。その結果、圧電セラミック層40aは、圧電セラミック層40b側へ撓む。すなわち、アクチュエータ40は、圧力室21側へ撓む。上記とは逆向きの電圧を印加した場合は、アクチュエータ40は、圧力室21とは反対側へ撓む。 Then, when a voltage is applied to the piezoelectric ceramic layer 40a in the same direction as the polarization direction by the internal electrode 42 and the surface electrode 44, the piezoelectric ceramic layer 40a contracts in the plane direction. On the other hand, the piezoelectric ceramic layer 40b does not cause such shrinkage. As a result, the piezoelectric ceramic layer 40a bends toward the piezoelectric ceramic layer 40b. That is, the actuator 40 bends toward the pressure chamber 21. When a voltage in the opposite direction is applied, the actuator 40 bends to the side opposite to the pressure chamber 21.
 アクチュエータ40の形状及び大きさ等は適宜に設定されてよい。例えば、アクチュエータ40は、適宜な平面形状の平板状である。平面形状は、圧力室21の平面形状と相似であってもよいし、相似でなくてもよい。平面視(y方向に見て)における各方向の最大長さは、例えば、3mm以上100mm以下である。アクチュエータ40の厚さ(y方向)は、例えば、20μm以上2mm以下である。アクチュエータ40を構成する各種の部材の材料、寸法、形状及び導通方法等も適宜に設定されてよい。以下に一例を示す。 (4) The shape and size of the actuator 40 may be appropriately set. For example, the actuator 40 is a flat plate having an appropriate planar shape. The planar shape may or may not be similar to the planar shape of the pressure chamber 21. The maximum length in each direction in plan view (when viewed in the y direction) is, for example, 3 mm or more and 100 mm or less. The thickness (y direction) of the actuator 40 is, for example, not less than 20 μm and not more than 2 mm. The materials, dimensions, shapes, conduction methods, and the like of various members constituting the actuator 40 may be appropriately set. An example is shown below.
 圧電セラミック層40a、40bの厚さは、例えば、10μm以上30μm以下とされてよい。圧電セラミック層40a、40bの材料は、例えば、強誘電性を有するセラミック材料とされてよい。このようなセラミック材料としては、チタン酸ジルコン酸鉛(PZT)系、NaNbO系、KNaNbO系、BaTiO系及び(BiNa)NbO系、BiNaNb15系のものを挙げることができる。圧電セラミック層40bは、圧電体以外の材料で構成されていても構わない。 The thickness of the piezoelectric ceramic layers 40a and 40b may be, for example, not less than 10 μm and not more than 30 μm. The material of the piezoelectric ceramic layers 40a and 40b may be, for example, a ferroelectric ceramic material. Such ceramic materials include lead zirconate titanate (PZT), NaNbO 3 system, KNaNbO 3 system, BaTiO 3 system and (BiNa) NbO 3 system, those BiNaNb 5 O 15 system. The piezoelectric ceramic layer 40b may be made of a material other than the piezoelectric material.
 内部電極42は、例えば、圧電セラミック層40aと、圧電セラミック層40bとの間に位置しており、アクチュエータ40と略同じ大きさを有している。内部電極42の厚さは、例えば1μm以上3μm以下とされてよい。内部電極42は、例えば、圧電セラミック層40aを貫通する貫通電極48と、アクチュエータ40の表面に位置し、貫通電極48に接続されている接続電極46とによって外部から導通可能となっている。 (4) The internal electrode 42 is located, for example, between the piezoelectric ceramic layer 40a and the piezoelectric ceramic layer 40b, and has substantially the same size as the actuator 40. The thickness of the internal electrode 42 may be, for example, 1 μm or more and 3 μm or less. The internal electrode 42 is externally conductive, for example, by a through electrode 48 penetrating the piezoelectric ceramic layer 40a and a connection electrode 46 located on the surface of the actuator 40 and connected to the through electrode 48.
 表面電極44は、例えば、圧電セラミック層40aの圧電セラミック層40bとは反対側(圧力室21に対して外側)に位置しており、表面電極本体44aと引出電極44bとを有している。表面電極本体44aは、例えば、圧力室21と略等しい平面形状を有しており、圧力室21と厚さ方向に重なるように設けられている。引出電極44bは、表面電極本体44aから引き出されるように形成されている。表面電極44の厚さは、例えば0.1μm以上1μm以下とされてよい。 The surface electrode 44 is located, for example, on the opposite side of the piezoelectric ceramic layer 40a from the piezoelectric ceramic layer 40b (outside of the pressure chamber 21), and has a surface electrode main body 44a and an extraction electrode 44b. The surface electrode main body 44a has, for example, a planar shape substantially equal to the pressure chamber 21, and is provided so as to overlap the pressure chamber 21 in the thickness direction. The extraction electrode 44b is formed so as to be extracted from the surface electrode main body 44a. The thickness of the surface electrode 44 may be, for example, 0.1 μm or more and 1 μm or less.
 内部電極42、表面電極44、接続電極46及び貫通電極48の材料は、例えば、金属材料とされてよい。より具体的には、例えば、内部電極42及び貫通電極48の材料は、Ag-Pdとされてよい。表面電極44及び接続電極46の材料は、例えば、Auとされてよい。 The materials of the internal electrode 42, the surface electrode 44, the connection electrode 46, and the through electrode 48 may be, for example, a metal material. More specifically, for example, the material of the internal electrode 42 and the through electrode 48 may be Ag-Pd. The material of the surface electrode 44 and the connection electrode 46 may be, for example, Au.
 なお、アクチュエータ40又はアクチュエータ40の一部(例えば表面電極本体44aに重なる部分)を駆動部50ということがある。アクチュエータは、ユニモルフ型の圧電素子に限定されない。例えば、アクチュエータは、バイモルフ型の圧電素子であってもよいし、静電アクチュエータであってもよい。 The actuator 40 or a part of the actuator 40 (for example, a part overlapping the surface electrode main body 44a) may be referred to as a driving unit 50. The actuator is not limited to a unimorph type piezoelectric element. For example, the actuator may be a bimorph-type piezoelectric element or an electrostatic actuator.
(バルブ)
 バルブ23は、例えば、開放流路28が外部へ通じる位置に設けられている。バルブ23の開閉により、流路部材35の内部と外部との連通が許容又は禁止される。連通が禁止されている状態では、圧力室21の容積の変化によってキャピラリー10内の減圧及び増圧が行われる。一方、連通が許容されている状態では、圧力室21の容積を変化させても、キャピラリー10内の減圧及び増圧は行われない。この減圧又は増圧が行われない作用の利用例については後述する。
(valve)
The valve 23 is provided, for example, at a position where the open channel 28 communicates with the outside. By opening and closing the valve 23, communication between the inside and the outside of the flow path member 35 is permitted or prohibited. In the state where the communication is prohibited, the pressure in the capillary 10 is reduced and increased by the change in the volume of the pressure chamber 21. On the other hand, in a state where the communication is permitted, even if the volume of the pressure chamber 21 is changed, the pressure in the capillary 10 is not reduced or increased. An example of the use of the function in which the pressure is not reduced or increased will be described later.
 バルブ23は、例えば、外部から入力される信号に応じて開閉動作を行う。バルブ23としては、電磁式バルブ又は圧電式バルブなど、種々のバルブを用いることができる。バルブ23は、信号が入力されないことによって閉状態となり、信号が入力されることによって開状態となるものであってもよいし、信号が入力されないことによって開状態となり、信号が入力されることによって閉状態となるものであってもよいし、閉じるための信号と開くための信号とがそれぞれ入力されるものであってもよい。 The valve 23 opens and closes in response to, for example, a signal input from the outside. As the valve 23, various valves such as an electromagnetic valve or a piezoelectric valve can be used. The valve 23 may be closed when a signal is not input, and may be opened when a signal is input. Alternatively, the valve 23 may be opened when a signal is not input, and may be opened when a signal is input. The signal may be in a closed state, or a signal for closing and a signal for opening may be input.
[制御部]
 第1制御部24は、アクチュエータ40と電気的に接続されており、電気信号をアクチュエータ40に与えてアクチュエータ40を変形させることにより、圧力室21の容積を変化させる。これにより、キャピラリー10への液体の吸引や、キャピラリー10からの液体の吐出などを行うことができる。圧力室21の容積が周期的に増減するようにアクチュエータ40を駆動させることにより、キャピラリー10内に吸引した液体を振動させて混合することもできる。
[Control unit]
The first control unit 24 is electrically connected to the actuator 40, and changes the volume of the pressure chamber 21 by applying an electric signal to the actuator 40 to deform the actuator 40. Thus, it is possible to perform suction of the liquid into the capillary 10, discharge of the liquid from the capillary 10, and the like. By driving the actuator 40 so that the volume of the pressure chamber 21 periodically increases and decreases, the liquid sucked into the capillary 10 can be mixed by vibrating.
 第2制御部25は、バルブ23と電気的に接続されており、バルブ23に電気信号を与えることによりバルブ23を開閉する。第1流路22内に液体が流入してしまった場合に、バルブ23を開くことにより、液体をバルブ23から外部へ排出することができる。また、アクチュエータ40を変形させて液体を吸入した後に、バルブ23を開いて、その状態でアクチュエータ40の変形を元に戻し、バルブ23を閉じた後に再びアクチュエータ40を変形させることにより、多くの量の液体を吸入することができる。 The second control unit 25 is electrically connected to the valve 23, and opens and closes the valve 23 by giving an electric signal to the valve 23. When the liquid has flowed into the first flow path 22, the liquid can be discharged from the valve 23 to the outside by opening the valve 23. Also, after the actuator 40 is deformed and the liquid is sucked in, the valve 23 is opened, the deformation of the actuator 40 is returned to the original state in that state, and the actuator 40 is deformed again after the valve 23 is closed. Liquid can be inhaled.
 第1制御部24及び第2制御部25は、種々の集積回路を用いて構成することができる。第1制御部24及び第2制御部25は、互いに別個のIC(Integrated Circuit)によって構成され、同期が図られてもよいし、一部又は全部が同一のICに作り込まれてもよい。第1制御部24及び/又は第2制御部25は、ピペット本体20に固定的に設けられていてもよいし、ピペット本体20に対して相対移動可能に設けられていてもよいし、一部(例えばドライバ)がピペット本体20に固定的に設けられ、他の部分(例えばドライバに指令を出力する部分)がピペット本体20に対して相対移動可能に設けられていてもよい。 The first control unit 24 and the second control unit 25 can be configured using various integrated circuits. The first control unit 24 and the second control unit 25 may be configured by separate ICs (Integrated @ Circuit), may be synchronized, or may be partially or wholly integrated in the same IC. The first control unit 24 and / or the second control unit 25 may be fixedly provided on the pipette main body 20, may be provided so as to be relatively movable with respect to the pipette main body 20, or may be partially provided. A (for example, a driver) may be fixedly provided on the pipette body 20, and another part (for example, a part for outputting a command to the driver) may be provided so as to be relatively movable with respect to the pipette body 20.
[キャピラリー(詳細)]
 図2は、キャピラリー10を拡大して示す断面図である。図3は、図2の一部拡大図である。
 キャピラリー10は、第1端11側に位置する第1管部17と、第2端12側に位置する第2管部18と、を有している。第1管部17は、長さ方向に貫通する第1孔10aを有しており、第2管部18は、長さ方向に貫通する第2孔10bを有している。第2孔10bは、第1孔10aの第2端12側に繋がっている。なお、第1管部17は、キャピラリー10における第1孔10aを有する部分であり、第2管部18は、キャピラリー10における第2孔10bを有する部分である。第1管部17及び第2管部18は、一体形成された1つの部材における2つの部位であってもよいし(すなわち別部材でなくてよいし)、互いに固定される2つの部材であってもよい。
[Capillary (details)]
FIG. 2 is an enlarged sectional view showing the capillary 10. FIG. 3 is a partially enlarged view of FIG.
The capillary 10 has a first pipe part 17 located on the first end 11 side and a second pipe part 18 located on the second end 12 side. The first pipe part 17 has a first hole 10a penetrating in the length direction, and the second pipe part 18 has a second hole 10b penetrating in the length direction. The second hole 10b is connected to the second end 12 of the first hole 10a. The first tube portion 17 is a portion of the capillary 10 having the first hole 10a, and the second tube portion 18 is a portion of the capillary 10 having the second hole 10b. The first pipe part 17 and the second pipe part 18 may be two parts of one integrally formed member (that is, they may not be separate members) or may be two members fixed to each other. You may.
(撥水性)
 第1孔10aの内面の撥水性と、第2孔10bの内面の撥水性とは、互いに異なっている。すなわち、キャピラリー10は、内面の撥水性が互いに異なる第1孔10a及び第2孔10bを有している。これにより、例えば、液体が両者の境界14を流れるときに、撥水性の相違に起因して液体の流れに乱れが生じやすい。その結果、例えば、液体が境界14を繰り返し超えて往復するようにアクチュエータ40を駆動させると、液体が混合されやすい。なお、以下の説明では、第1孔10aの内面の撥水性を第1孔10aの撥水性と略すことがある。第2孔10bについても同様である。
(Water repellency)
The water repellency of the inner surface of the first hole 10a is different from the water repellency of the inner surface of the second hole 10b. That is, the capillary 10 has the first hole 10a and the second hole 10b whose inner surfaces have different water repellency. Thus, for example, when the liquid flows through the boundary 14 between the two, the flow of the liquid is likely to be disturbed due to the difference in water repellency. As a result, for example, when the actuator 40 is driven so that the liquid repeatedly reciprocates beyond the boundary 14, the liquid is easily mixed. In the following description, the water repellency of the inner surface of the first hole 10a may be abbreviated to the water repellency of the first hole 10a. The same applies to the second hole 10b.
 第1孔10a及び第2孔10bの撥水性は、いずれが他方に対して高くてもよい。本実施形態では、第1孔10aの撥水性が第2孔10bの撥水性よりも高い場合を例にとる。すなわち、本実施形態では、第1孔10aの接触角は、第2孔10bの接触角よりも大きい。 水性 Either of the first hole 10a and the second hole 10b may have higher water repellency than the other. In the present embodiment, a case where the water repellency of the first hole 10a is higher than the water repellency of the second hole 10b is taken as an example. That is, in the present embodiment, the contact angle of the first hole 10a is larger than the contact angle of the second hole 10b.
 第1孔10aの撥水性が第2孔10bの撥水性よりも高い場合において、第1孔10a及び第2孔10bの双方が撥水性を有していてもよいし(接触角が90°以上であってもよいし)、第1孔10aが撥水性を有するとともに第2孔10bが親水性を有していてもよいし、第1孔10a及び第2孔10bの双方が親水性を有していてもよい。本実施形態では、前記3つの態様のうち、前2つのいずれか(少なくとも第1孔10aが撥水性を有している態様)を例にとる。 When the water repellency of the first hole 10a is higher than the water repellency of the second hole 10b, both the first hole 10a and the second hole 10b may have water repellency (the contact angle is 90 ° or more). The first hole 10a may have water repellency and the second hole 10b may have hydrophilicity, or both the first hole 10a and the second hole 10b may have hydrophilicity. It may be. In the present embodiment, one of the above three aspects (an aspect in which at least the first hole 10a has water repellency) is taken as an example.
 第1孔10a及び第2孔10bのそれぞれにおいて、撥水性は、キャピラリー10の長さ方向及び/又は軸回りの方向において、一様であってもよいし、変化してもよい。本実施形態では、一様の場合を例にとる。ただし、一様とは言っても、加工誤差に起因する撥水性のばらつきがあってもよいことはもちろんである。また、撥水性が変化する場合、その変化は、連続的なものであってもよいし、非連続的(段階的)なものであってもよい。ただし、第1孔10a及び第2孔10bは、その撥水性の観点から境界14を概念できるものであるから、両者の間で撥水性の変化は非連続である。 In each of the first hole 10a and the second hole 10b, the water repellency may be uniform or change in the length direction and / or the direction around the axis of the capillary 10. In the present embodiment, a uniform case is taken as an example. However, even if uniform, it goes without saying that there may be variations in water repellency due to processing errors. When the water repellency changes, the change may be continuous or discontinuous (stepwise). However, since the first hole 10a and the second hole 10b can define the boundary 14 from the viewpoint of the water repellency, the change in the water repellency between the two is discontinuous.
 第1孔10a及び第2孔10bの接触角の具体的な大きさは、適宜に設定されてよい。例えば、第1孔10aが撥水性を有している場合(接触角が90°以上の場合)において、接触角は、90°以上95°以下(すなわち90°に近い値)であってもよいし、95°以上150°以下であってもよいし、150°超であってもよい。なお、150°超は、いわゆる超撥水性を有しているといえる大きさである。また、第2孔10bが撥水性を有している場合において、第2孔10bの接触角は、第1孔10aの接触角よりも小さい限り、90°以上95°以下、95°以上150°以下又は150°超であってよい。また、第2孔10bが親水性を有している場合(接触角が90°未満の場合)において、第2孔10bの接触角は、85°以上(すなわち90°に近い値)であってもよいし、10°以上85°以下であってもよいし、10°未満であってもよい。なお、10°未満は、いわゆる超親水性を有しているといえる大きさである。 具体 The specific size of the contact angle between the first hole 10a and the second hole 10b may be appropriately set. For example, when the first hole 10a has water repellency (when the contact angle is 90 ° or more), the contact angle may be 90 ° or more and 95 ° or less (that is, a value close to 90 °). However, it may be 95 ° or more and 150 ° or less, or may be more than 150 °. Note that the angle exceeding 150 ° is a size that can be said to have so-called super water repellency. Further, when the second hole 10b has water repellency, the contact angle of the second hole 10b is 90 ° or more and 95 ° or less, and 95 ° or more and 150 ° as long as the contact angle is smaller than the contact angle of the first hole 10a. It may be less than or equal to 150 °. When the second hole 10b has hydrophilicity (when the contact angle is less than 90 °), the contact angle of the second hole 10b is 85 ° or more (ie, a value close to 90 °). May be 10 ° or more and 85 ° or less, or may be less than 10 °. In addition, less than 10 degrees is a size which can be said to have what is called superhydrophilicity.
 また、第1孔10aの接触角と第2孔10bの接触角との差も適宜に設定されてよい。例えば、両者の差は、5°以上、10°以上、30°以上、90°以上又は140°以上とされてよい。また、この下限と矛盾しない限り、両者の差は、180°未満、140°以下、90°以下、30°以下又は10°以下とされてよい(前記の下限のいずれと組み合わされてもよい。)。例えば、両者の差は、30°以上140°以下、又は30°以上90°以下とされてよい。両者の差の範囲の下限が大きいほど、例えば、流れに乱れを生じさせる作用は強くなる。一方、両者の差の範囲の上限が大きいほど、例えば、材料の選択が困難になる。上記の範囲であれば、例えば、流れに乱れを生じさせる作用を得つつ、材料の選択が容易化される。 The difference between the contact angle of the first hole 10a and the contact angle of the second hole 10b may be set as appropriate. For example, the difference between the two may be 5 ° or more, 10 ° or more, 30 ° or more, 90 ° or more, or 140 ° or more. In addition, as long as it does not contradict this lower limit, the difference between the two may be less than 180 °, 140 ° or less, 90 ° or less, 30 ° or less, or 10 ° or less (may be combined with any of the above lower limits. ). For example, the difference between the two may be 30 ° or more and 140 ° or less, or 30 ° or more and 90 ° or less. The larger the lower limit of the difference between the two is, for example, the stronger the effect of causing turbulence in the flow is. On the other hand, as the upper limit of the difference between the two increases, for example, the selection of the material becomes more difficult. Within the above range, the selection of the material is facilitated, for example, while obtaining the effect of causing turbulence in the flow.
(孔の形状等)
 第1孔10a及び第2孔10bの形状、寸法及びこれらの孔を構成する材料等は適宜に設定されてよい。以下では、その一例を示す。
(Hole shape, etc.)
The shapes and dimensions of the first hole 10a and the second hole 10b, the materials constituting these holes, and the like may be appropriately set. An example is shown below.
 第1孔10aは、例えば、第1端11から境界14まで延びている。第2孔10bは、例えば、境界14から第2端12まで延びている。なお、図示の例とは異なり、境界14から第1端11までを別の孔(例えば撥水性が第2孔10bの撥水性以下の孔)で構成したり、及び/又は境界14から第2端12までを別の孔(例えば撥水性が第1孔10aの撥水性以上の孔)で構成したりすることも可能である。 1The first hole 10a extends from the first end 11 to the boundary 14, for example. The second hole 10b extends from the boundary 14 to the second end 12, for example. Note that, unlike the example shown in the drawing, another hole (for example, a hole whose water repellency is equal to or less than the water repellency of the second hole 10 b) is formed from the boundary 14 to the first end 11, and / or the second from the boundary 14. It is also possible to configure another hole (for example, a hole whose water repellency is higher than the water repellency of the first hole 10a) up to the end 12.
 境界14の位置は、第1端11から第2端12までの間の適宜な位置とされてよい。例えば、境界14は、キャピラリー10の長さ方向の中央に対して第1端11側に位置している。例えば、第1孔10aの長さは、キャピラリー10の全長の5%~30%程度の長さである。 The position of the boundary 14 may be an appropriate position between the first end 11 and the second end 12. For example, the boundary 14 is located on the first end 11 side with respect to the longitudinal center of the capillary 10. For example, the length of the first hole 10a is about 5% to 30% of the total length of the capillary 10.
 第1孔10aの横断面の形状及び/又は大きさと、第2孔10bの横断面の形状及び/又は大きさとは、互いに同一であってもよいし、互いに異なっていてもよい。両者の大きさが異なっている場合において、いずれが大きくてもよい。また、第1孔10a及び第2孔10bのそれぞれにおいて、横断面の形状及び/又は大きさは、キャピラリー10の長さ方向において一定であってもよいし、一定でなくてもよい。 The shape and / or size of the cross section of the first hole 10a and the shape and / or size of the cross section of the second hole 10b may be the same or different. When the two are different in size, either may be larger. In each of the first hole 10a and the second hole 10b, the shape and / or size of the cross section may or may not be constant in the length direction of the capillary 10.
 図示の例では、第1孔10aの横断面(内径)は、第2孔10b側ほど大きくなっている。一方、第2孔10bの横断面(内径)は、キャピラリー10の長さ方向において一定となっている。そして、境界14において、第1孔10aの内径は、第2孔10bの内径よりも大きくなっている。 で は In the illustrated example, the cross section (inner diameter) of the first hole 10a is larger toward the second hole 10b. On the other hand, the cross section (inner diameter) of the second hole 10b is constant in the length direction of the capillary 10. At the boundary 14, the inner diameter of the first hole 10a is larger than the inner diameter of the second hole 10b.
 第1孔10aの内径と第2孔10bの内径との差の具体的な大きさ等は、適宜に設定されてよい。例えば、境界14において、第1孔10aの内径は、第2孔10bの内径に対して、1.1倍以上、1.5倍以上又は2倍以上であり、かつ5倍以下、3倍以下又は2倍以下(前者の下限値の例と後者の上限値の例とは、矛盾しない限り、いずれが組み合わされてもよい。)である。また、例えば、第1孔10aの内径と、第2孔10bの内径との差は、後述する第2部材16の厚さ(内面から外面までの径方向の長さ)の2/5以上、2/3以上又は1倍以上であり、かつ2倍未満、18/10倍以下又は2/5以下である(前者の下限値の例と後者の上限値の例とは、矛盾しない限り、いずれが組み合わされてもよい。)。また、例えば、第1孔10aの内面の第1孔10aの中心線に対する傾斜角は、1°以上、2°以上又は3°以上、かつ15°以下、10°以下又は7°以下である(前者の下限値の例と後者の上限値の例とは、いずれが組み合わされてもよい。)。 具体 The specific size of the difference between the inner diameter of the first hole 10a and the inner diameter of the second hole 10b may be appropriately set. For example, at the boundary 14, the inner diameter of the first hole 10a is 1.1 times or more, 1.5 times or more, or 2 times or more, and 5 times or less, 3 times or less of the inner diameter of the second hole 10b. Or twice or less (the former example of the lower limit value and the latter example of the upper limit value may be combined as long as there is no contradiction). Further, for example, the difference between the inner diameter of the first hole 10a and the inner diameter of the second hole 10b is not less than の of the thickness of the second member 16 described later (the length in the radial direction from the inner surface to the outer surface), 2/3 or more or 1 time or more, and less than 2 times, 18/10 times or less or 2/5 or less (unless inconsistent with the former example of the lower limit and the latter example of the upper limit, May be combined.). Further, for example, the inclination angle of the inner surface of the first hole 10a with respect to the center line of the first hole 10a is 1 ° or more, 2 ° or more or 3 ° or more, and 15 ° or less, 10 ° or less, or 7 ° or less ( Any of the former example of the lower limit value and the latter example of the upper limit value may be combined.)
 なお、第1孔10aの第1端11における内径は、第2孔10bの内径よりも小さくてもよいし、同じでもよいし(ただし、加工誤差による差がある場合を含む)、大きくてもよい。例えば、第1孔10aの第1端11における内径は、第2孔10bの内径の1/2以上、2/3以上又は4/5以上、かつ2倍以下、1.5倍以下又は1.2倍以下である(前者の下限値の例と後者の上限値の例とは、いずれが組み合わされてもよい。)。 In addition, the inner diameter of the first hole 10a at the first end 11 may be smaller than the inner diameter of the second hole 10b, may be the same (provided that there is a difference due to a processing error), or may be larger. Good. For example, the inner diameter of the first end 10 of the first hole 10a is 以上 or more, / or 4 or more, and 2 times or less, 1.5 times or less of the inner diameter of the second hole 10b. It is twice or less (any of the former example of the lower limit value and the latter example of the upper limit value may be combined).
 ここで、第1孔10aの第1端11の端面を第1端面11aとすると、第1端面11aは円形状の開口を有する環状であってよい。そして、この場合の第1端面11aの外径D1は0.4mm以下であってよい。キャピラリー10を液体中から引き上げたときに、第1端面11aに付着した液体がキャピラリー10内に取りこまれてしまう現象を発明者が見出した。これにより、キャピラリー10内に取り込まれる液体の量は、意図的に吸引した量に対して僅かに増加する。第1端面11aの外径が大きいと、増加する液体の量も増加するため、微量の液体を吸引する場合には問題となる。第1端面11aの外径を0.4mm以下とすることにより、第1端面11aに多くの液滴が付着するのを防止でき、微量の液体を精度よく吸引できる。 Here, assuming that the end face of the first end 11 of the first hole 10a is the first end face 11a, the first end face 11a may be an annular shape having a circular opening. The outer diameter D1 of the first end face 11a in this case may be 0.4 mm or less. The inventor has found out that the liquid attached to the first end face 11a is taken into the capillary 10 when the capillary 10 is pulled out of the liquid. As a result, the amount of liquid taken into the capillary 10 slightly increases with respect to the amount intentionally sucked. When the outer diameter of the first end face 11a is large, the amount of the liquid to be increased also increases, which causes a problem when a small amount of liquid is sucked. By setting the outer diameter of the first end face 11a to 0.4 mm or less, it is possible to prevent many droplets from adhering to the first end face 11a, and a small amount of liquid can be sucked with high accuracy.
 図2に示すキャピラリーにおいて各種条件を変えて第1端面11aへの液体(水)の付着量を測定した結果を図7に示す。また、そのときの各種条件を図8に示す。図7において、横軸は外径D1を示している。縦軸は第1端面11aへの液体の付着量を示している。プロットは、外径D1と測定された付着量との関係を示している。 FIG. 7 shows the result of measuring the amount of liquid (water) attached to the first end face 11a under various conditions in the capillary shown in FIG. FIG. 8 shows various conditions at that time. In FIG. 7, the horizontal axis indicates the outer diameter D1. The vertical axis indicates the amount of liquid adhering to the first end face 11a. The plot shows the relationship between the outer diameter D1 and the measured amount of adhesion.
 図8に示されているように、No.1からNo.6までの6種類のキャピラリーについて液体の付着量が測定された。6種類のキャピラリーは、第1部材15の形状及び材質、外径D1並びに内径D2が互いに異なっている。第1部材15の形状の欄において、「テーパー」は、図2に示される例のように、第1部材15の内径D2及び外径D1が第1端11側ほど小さくなっていることを示している。また、「ストレート」は、図2の例とは異なり、第1部材15の内径D2及び外径D1が第2端12から第1端11に亘って一定であることを示している。第1部材15の材質の欄における略語の意味は、以下のとおりである。PP:polypropylene、FEP:flexible electric pipe、ETFE:ethylene tetrafluoro ethylene、PA12:polyamide 12。また、No.5の材質は、ガラスからなるキャピラリーのうちの液体に触れる部分に撥水膜が形成されたものである。 よ う As shown in FIG. No. 1 to No. The liquid adhesion amount was measured for six types of capillaries up to six. The six types of capillaries differ from each other in the shape and material of the first member 15, the outer diameter D1, and the inner diameter D2. In the column of the shape of the first member 15, “taper” indicates that the inner diameter D <b> 2 and the outer diameter D <b> 1 of the first member 15 become smaller toward the first end 11 as in the example shown in FIG. 2. ing. Also, “straight” indicates that the inner diameter D2 and the outer diameter D1 of the first member 15 are constant from the second end 12 to the first end 11 unlike the example of FIG. The meanings of the abbreviations in the column of the material of the first member 15 are as follows. PP: polypropylene, FEP: flexible electric pipe, ETFE: ethylene tetrafluoro ethylene, PA12: polyamide12. In addition, No. The material No. 5 has a water-repellent film formed on a portion of the glass capillary which comes into contact with the liquid.
 図7によれば、第1面11aの外径D1を0.4mm以下とすることにより、他の条件に関わらず第1端面11aへの液体付着量を小さくできることがわかる。具体的には、図7の例では、外径D1を0.4mm以下とすることによって、付着量は5.0nl以下とすることができている。また、図7の例では、外径D1が0.4mmを超えると、外径D1の増加に対する付着量の増加の変化率が大きくなっており、この観点からも、0.4mm付近を上限値とすることについて意義が見出せる。 According to FIG. 7, it can be seen that by setting the outer diameter D1 of the first surface 11a to 0.4 mm or less, the amount of liquid adhering to the first end surface 11a can be reduced regardless of other conditions. Specifically, in the example of FIG. 7, by setting the outer diameter D1 to 0.4 mm or less, the amount of adhesion can be reduced to 5.0 nl or less. In addition, in the example of FIG. 7, when the outer diameter D1 exceeds 0.4 mm, the rate of change of the increase in the amount of adhesion with respect to the increase in the outer diameter D1 increases. Significance can be found about
 このとき、第1端面11aの内径D2は0.06mm以上であってよい。第1端面11aの内径D2を小さくしすぎると流路抵抗が増加して、所定の圧力変化によって吸引できる液体の量が減少する。第1端面11aの内径D2を変化させたときの吸引される液体の量の変化を図9に示す。この図において、横軸は内径D2を示している。縦軸は所定の圧力変化による液体吸引量を示している。プロットは、内径D2と吸引量との関係を示しており近似値を一部含んでいる。 At this time, the inner diameter D2 of the first end face 11a may be 0.06 mm or more. If the inner diameter D2 of the first end face 11a is too small, the flow path resistance increases, and the amount of liquid that can be sucked by a predetermined pressure change decreases. FIG. 9 shows a change in the amount of the sucked liquid when the inner diameter D2 of the first end face 11a is changed. In this figure, the horizontal axis indicates the inner diameter D2. The vertical axis indicates the liquid suction amount due to a predetermined pressure change. The plot shows the relationship between the inner diameter D2 and the suction amount, and includes some approximate values.
 図9によれば、第1端面11aの内径D2を0.06mm以上とすることにより、吸引される液体の量が少なくなり過ぎるのを抑制できることがわかる。また、図9の例では、内径D2の変化に対する吸引量の変化の態様は指数関数的であり、内径D2を0.06mm以上にすることによって、内径D2の増加によって吸引量を増加させることが容易化されている。なお、上記の説明とは逆に、内径D2を0.06mm未満とすることによって、極めて微量な吸引量を実現しても構わない。 According to FIG. 9, it can be seen that by setting the inner diameter D2 of the first end face 11a to 0.06 mm or more, it is possible to prevent the amount of the sucked liquid from becoming too small. Further, in the example of FIG. 9, the aspect of the change in the suction amount with respect to the change in the inner diameter D2 is exponential, and by increasing the inner diameter D2 to 0.06 mm or more, the suction amount can be increased by increasing the inner diameter D2. It has been made easier. Contrary to the above description, an extremely small amount of suction may be realized by setting the inner diameter D2 to less than 0.06 mm.
(第1部材及び第2部材)
 キャピラリー10は、第1孔10aを構成する第1部材15と、第2孔10bを構成する第2部材16とを有している。このように、キャピラリー10を複数の部材から構成することによって、例えば、第1孔10aの撥水性と、第2孔10bの撥水性とを異ならせることが容易化される。
(First member and second member)
The capillary 10 has a first member 15 that forms the first hole 10a, and a second member 16 that forms the second hole 10b. As described above, by forming the capillary 10 from a plurality of members, for example, it is easy to make the water repellency of the first hole 10a different from the water repellency of the second hole 10b.
 第1部材15及び第2部材16は、キャピラリー10の材料として既に挙げた種々の材料によって構成されてよい。例えば、第1部材15は、その全体が樹脂によって一体的に構成されている。また、例えば、第2部材16は、その全体がガラスによって一体的に構成されている。そして、第1部材15を構成する樹脂の撥水性は、第2部材16を構成するガラスの撥水性よりも高い。 1The first member 15 and the second member 16 may be made of various materials already mentioned as the material of the capillary 10. For example, the first member 15 is integrally formed of resin as a whole. In addition, for example, the entire second member 16 is integrally formed of glass. The water repellency of the resin forming the first member 15 is higher than the water repellency of the glass forming the second member 16.
 また、第2部材16の材料は、透光性を有する材料とされ、第1部材15の材料は、透光性を有する、又は有さない材料とされてよい。換言すれば、第2部材16の透光性は、第1部材15の透光性よりも高くされてよい。この場合、例えば、第1部材15の材料として、撥水性の高い材料を選択できる。その一方で、第2部材16の材料として、液体の分析のために液体に光を照射することに適した材料を選択できる。 The material of the second member 16 may be a light-transmitting material, and the material of the first member 15 may or may not be a light-transmitting material. In other words, the light transmission of the second member 16 may be higher than the light transmission of the first member 15. In this case, for example, a material having high water repellency can be selected as the material of the first member 15. On the other hand, as the material of the second member 16, a material suitable for irradiating the liquid with light for analyzing the liquid can be selected.
 第1部材15と第2部材16との固定は、適宜な方法によってなされてよい。固定方法としては、例えば、一方の部材の他方の部材への嵌合(圧入)、爪などによる係止、接着剤よる接着、及び少なくとも一方の部材を溶融させ固化させることによる溶着を挙げることができる。これらの方法の2つ以上が組み合わされてもよい。また、一方の部材を先に形成し、当該一方の部材を配置した金型内に他方の部材となる材料を充填して両者を構成してもよい。また、第1部材15と第2部材16との間には、これらよりも剛性が低い材料からなるパッキンが配置されてもよい。 固定 The first member 15 and the second member 16 may be fixed by an appropriate method. Examples of the fixing method include fitting (press-fitting) of one member to the other member, locking with a claw, bonding with an adhesive, and welding by melting and solidifying at least one member. it can. Two or more of these methods may be combined. Alternatively, both members may be formed by forming one member first and filling a material for the other member into a mold in which the one member is arranged. Further, between the first member 15 and the second member 16, a packing made of a material having lower rigidity may be disposed.
 図示の例では、第2部材16が第1部材15に圧入されて両者が固定されている。具体的には、第1部材15は、第1孔10aから第1端11とは反対側に延びている第3孔15aを有している。第3孔15aは、第1孔10aよりも内径が大きい。ひいては、第1孔10aと第3孔15aとの境界には段差部15bが構成されている。一方、第2部材16は、その外径が第3孔15aの内径に対して同等とされ、又は若干大きくされている。そして、第2部材16は、第3孔15aに第1孔10aとは反対側から挿入され、先端が段差部15bに係止されている。第2部材16の第1部材15からの抜けは、両者が直接に当接していることによって生じる摩擦力によって阻止される。 In the illustrated example, the second member 16 is press-fitted into the first member 15 and both are fixed. Specifically, the first member 15 has a third hole 15a extending from the first hole 10a to a side opposite to the first end 11. The third hole 15a has a larger inner diameter than the first hole 10a. As a result, a step 15b is formed at the boundary between the first hole 10a and the third hole 15a. On the other hand, the second member 16 has an outer diameter equal to or slightly larger than the inner diameter of the third hole 15a. Then, the second member 16 is inserted into the third hole 15a from the side opposite to the first hole 10a, and the tip is locked to the step 15b. The detachment of the second member 16 from the first member 15 is prevented by the frictional force generated by the direct contact between the two members.
 なお、このように第2部材16が第1部材15に挿入される場合においても、両者は接合されても構わない。例えば、第3孔15aの内面と第2部材16の外面との間に接着剤が配置されてもよい。この場合において、第2部材16の外径は、第3孔15aの内径に対して、若干小さくされてもよいし、同等とされてもよいし、若干大きくされてもよい。 Also, even when the second member 16 is inserted into the first member 15 as described above, both may be joined. For example, an adhesive may be arranged between the inner surface of the third hole 15a and the outer surface of the second member 16. In this case, the outer diameter of the second member 16 may be slightly smaller, equal, or slightly larger than the inner diameter of the third hole 15a.
 また、図示の例では、第3孔15a及び第2部材16それぞれは、一定の横断面でその全長に亘って延びている。ただし、これらの一方又は双方は、長さ方向の一部のみにおいて一定の横断面で延び、その一定の横断面で延びる部分においてのみ嵌合してもよい。また、第3孔15a及び第2部材16の互いに嵌合する部分は、一定の横断面で延びていなくてもよい。例えば、両者は、第2端12側ほど拡径するテーパ状とされていてもよい。また、例えば、第3孔15aの内面及び第2部材16の外面の少なくとも一方に突部が設けられ、これにより接触圧が高くされてもよい。 In the illustrated example, each of the third hole 15a and the second member 16 has a constant cross section and extends over its entire length. However, one or both of them may extend in a fixed cross section only in a part of the length direction, and may be fitted only in a portion extending in the fixed cross section. Further, the portions of the third hole 15a and the second member 16 that are fitted to each other do not have to extend in a fixed cross section. For example, both may be tapered so that the diameter increases toward the second end 12. Further, for example, a protrusion may be provided on at least one of the inner surface of the third hole 15a and the outer surface of the second member 16, so that the contact pressure may be increased.
 段差部15bの、第2部材16側の段差面15baは、例えば、キャピラリー10の径方向の内側ほど第2部材16側へ位置するように傾斜している。一方、第2部材16の、段差部15b側の先端面16aは、例えば、キャピラリー10の長さ方向に直交する平面状である。そして、段差部15bの径方向内側の角部15bb(段差面15baの内側の縁部)が第2部材16の先端面16aに当接している。従って、段差部15bと第2部材16との当接は、線接触となっている。なお、段差部15bと第2部材16との当接は、図示の例とは異なっていてもよい。例えば、段差面15baがキャピラリー10の長さ方向に直交する面とされ、段差面15baと先端面16aとが面接触してもよい。 段 The step surface 15ba of the step portion 15b on the side of the second member 16 is inclined, for example, so that the inner side in the radial direction of the capillary 10 is located closer to the second member 16 side. On the other hand, the distal end face 16a of the second member 16 on the side of the step portion 15b is, for example, a planar shape orthogonal to the length direction of the capillary 10. A radially inner corner 15bb (an inner edge of the step surface 15ba) of the step 15b is in contact with the distal end surface 16a of the second member 16. Therefore, the contact between the step portion 15b and the second member 16 is a line contact. Note that the contact between the step portion 15b and the second member 16 may be different from the illustrated example. For example, the step surface 15ba may be a surface orthogonal to the length direction of the capillary 10, and the step surface 15ba and the tip end surface 16a may be in surface contact.
 第1部材15及び第2部材16の外形(外面の形状)は、適宜なものとされてよい。図示の例では、第1部材15は、その外観において、第1端11を有している第1部位15eと、第1部位15eに対して第2端12側に位置している第2部位15fとを有している。 外形 The outer shape (the shape of the outer surface) of the first member 15 and the second member 16 may be appropriate. In the illustrated example, the first member 15 has a first portion 15e having a first end 11 and a second portion located on the second end 12 side with respect to the first portion 15e. 15f.
 第1部位15eは、例えば、第1孔10aの第1端11側の一部(図示の例では大部分)を有している。また、第1部位15eは、例えば、厚さ(内面から外面までの長さ)がキャピラリー10の長さ方向の全長に亘って概ね一定とされている。そして、第1孔10aがテーパ状であることに対応して、第1部位15eの外形もテーパ状とされている。第1部位15eの厚さは、比較的薄くされており、例えば、第2部材16の厚さよりも薄くされている。 The first portion 15e has, for example, a part (most of the illustrated example) on the first end 11 side of the first hole 10a. The first portion 15e has, for example, a substantially constant thickness (length from the inner surface to the outer surface) over the entire length of the capillary 10 in the length direction. The outer shape of the first portion 15e is also tapered, corresponding to the tapered first hole 10a. The thickness of the first portion 15 e is relatively thin, for example, smaller than the thickness of the second member 16.
 第2部位15fは、例えば、第1孔10aの第1端11とは反対側の一部と、第3孔15aとを有している。第2部位15fは、例えば、第1部位15eよりも外径が大きくされている。また、第2部位15fの厚さは、比較的厚くされており、例えば、第1部位15eの厚さ及び第2部材16の厚さよりも厚くされている。第2部位15fの外面の形状は、例えば、キャピラリー10の長さ方向において一定とされている。 The second portion 15f has, for example, a part of the first hole 10a opposite to the first end 11 and a third hole 15a. The outer diameter of the second portion 15f is larger than that of the first portion 15e, for example. Further, the thickness of the second portion 15f is relatively thick, for example, larger than the thickness of the first portion 15e and the thickness of the second member 16. The shape of the outer surface of the second portion 15f is, for example, constant in the length direction of the capillary 10.
[ピペットの一連の動作]
 ピペット1の動作の一例について説明する。図4は、第1制御部24が出力する駆動信号SgA(Sg0~Sg52)における電圧(信号レベル)の経時変化の一例を模式的に示すグラフである。図4において、横軸tは時間を示しており、縦軸Vは電圧を示している。図5(a)~図5(f)は、図4の横軸に示されるいずれかの時点におけるキャピラリー10の状態を示す模式図である。
[A series of pipette operations]
An example of the operation of the pipette 1 will be described. FIG. 4 is a graph schematically illustrating an example of a temporal change of a voltage (signal level) in the drive signal SgA (Sg0 to Sg52) output from the first control unit 24. In FIG. 4, the horizontal axis t indicates time, and the vertical axis V indicates voltage. FIGS. 5A to 5F are schematic diagrams showing the state of the capillary 10 at any time shown on the horizontal axis of FIG.
 図4に示されているように、第1制御部24がアクチュエータ40へ出力する駆動信号SgAは、電圧が時間経過に対して変化して波形をなす。一方、アクチュエータ40は、印加された電圧に対応した変形量で撓む。ここでいう対応は、例えば、1対1対応であり、換言すれば、電圧に対して一意に変形量が規定される関係である(変形が飽和している状態は除く。)。従って、駆動信号SgAが入力されたアクチュエータ40は、圧力室21の容積が駆動信号SgAの電圧に対応した容積になるように駆動信号SgAの波形(電圧の時間経過に対する変化)に追随して圧力室21の容積を変化させる。 (4) As shown in FIG. 4, the drive signal SgA output from the first control unit 24 to the actuator 40 has a waveform in which the voltage changes over time. On the other hand, the actuator 40 bends by a deformation amount corresponding to the applied voltage. The correspondence here is, for example, a one-to-one correspondence, in other words, a relation in which the amount of deformation is uniquely defined with respect to the voltage (excluding the state where the deformation is saturated). Therefore, the actuator 40 to which the drive signal SgA has been input follows the pressure of the drive signal SgA (change in voltage over time) so that the volume of the pressure chamber 21 becomes a volume corresponding to the voltage of the drive signal SgA. The volume of the chamber 21 is changed.
 なお、駆動信号SgAの電圧の変化量と圧力室21の容積の変化量との関係は比例関係とは限らない。ただし、便宜上、比例又は比例に近い関係を想定して説明する。従って、図4は、駆動信号SgAの電圧の経時変化だけでなく、圧力室21の容積の経時変化を示していると捉えてもよい。 The relationship between the amount of change in the voltage of the drive signal SgA and the amount of change in the volume of the pressure chamber 21 is not necessarily a proportional relationship. However, for the sake of convenience, the description will be made assuming a proportional or nearly proportional relationship. Therefore, FIG. 4 may be regarded as showing not only the temporal change of the voltage of the drive signal SgA but also the temporal change of the volume of the pressure chamber 21.
 内部電極42及び表面電極44は、一方に基準電位が付与され、他方に駆動信号SgAが入力される。そして、図4の電圧は、基準電位と駆動信号SgAとの電位差を示している。換言すれば、駆動信号SgAは、不平衡信号である。ただし、駆動信号SgAは、内部電極42及び表面電極44の双方において電位を変化させ、その電位差が図4に示される電圧となっている平衡信号とされても構わない。なお、本実施形態では、駆動信号SgAが不平衡信号である場合を例に取るから、以下では、図4の電圧を駆動信号SgAの電位として説明することがある。 基準 One of the internal electrode 42 and the surface electrode 44 is provided with a reference potential, and the other is supplied with the drive signal SgA. The voltage in FIG. 4 indicates a potential difference between the reference potential and the drive signal SgA. In other words, the drive signal SgA is an unbalanced signal. However, the drive signal SgA may be a balanced signal in which the potential is changed in both the internal electrode 42 and the surface electrode 44 and the potential difference is the voltage shown in FIG. Note that, in the present embodiment, a case where the drive signal SgA is an unbalanced signal is taken as an example, and therefore, the voltage in FIG. 4 may be described below as the potential of the drive signal SgA.
 駆動信号SgAの電圧の上昇(電位の正側への変化)は、圧力室21の容積の増加に対応していてもよいし、圧力室21の容積の減少に対応していてもよい。換言すれば、内部電極42及び表面電極44のうち駆動信号SgAが付与される電極から基準電位が付与される電極への方向と、圧電セラミック層40aの分極方向とは、逆向きであってもよいし、同一の向きであってもよい。以下では、便宜上、駆動信号SgAの電圧の上昇は、圧力室21の容積の増加(すなわち液体の吸引)に対応しているものとする。 (4) The increase in the voltage of the drive signal SgA (change of the potential to the positive side) may correspond to an increase in the volume of the pressure chamber 21 or may correspond to a decrease in the volume of the pressure chamber 21. In other words, the direction of the internal electrode 42 and the surface electrode 44 from the electrode to which the drive signal SgA is applied to the electrode to which the reference potential is applied is opposite to the polarization direction of the piezoelectric ceramic layer 40a. Or the same orientation. Hereinafter, for convenience, it is assumed that an increase in the voltage of the drive signal SgA corresponds to an increase in the volume of the pressure chamber 21 (that is, suction of the liquid).
 下記では、ピペット1自体の動作だけでなく、ピペット1のユーザ又はピペット1を利用する(若しくは含む)装置が行う動作についても説明する。ここでは、ユーザがピペット1を操作する態様を例に取って説明する。ユーザのピペット1に対する操作は、適宜に装置のピペット1に対する操作に読み替えられてよい。例えば、ユーザによるピペット1の移動は、装置によるピペット1の移動とされてよいし、ユーザによるピペット1の不図示のスイッチに対する操作は、装置によるピペット1に対する指令信号の出力とされてよい。装置は、例えば、シーケンス制御によってユーザと同様の操作をピペットに対して行ってよい。 In the following, not only the operation of the pipette 1 itself, but also the operation performed by a user of the pipette 1 or an apparatus using (or including) the pipette 1 will be described. Here, a mode in which the user operates the pipette 1 will be described as an example. The operation on the pipette 1 by the user may be appropriately read as the operation on the pipette 1 of the device. For example, the movement of the pipette 1 by the user may be the movement of the pipette 1 by the device, and the operation of the user on the switch (not shown) of the pipette 1 may be the output of a command signal to the pipette 1 by the device. The apparatus may perform the same operation as the user on the pipette by, for example, sequence control.
(時刻t0~t1:接液等)
 時刻t1以前において、第1制御部24は、ユーザの不図示のスイッチに対する操作に応じて初期信号Sg0をアクチュエータ40に出力する。初期信号Sg0は、一定の電位の信号である。これにより、圧力室21の容積は所定の初期容積に維持される。初期信号Sg0の電位は、基準電位であってもよいし、基準電位とは異なっていてもよい。なお、駆動信号SgAは、初期信号Sg0を含んでいなくてもよい。すなわち、時刻t1以前は、初期信号Sg0が出力される状態ではなく、駆動信号SgAが出力されない状態とされてもよい。バルブ23は、時刻t0以降において、特に言及がない限り、閉じられている。
(Time t0 to t1: liquid contact etc.)
Before time t1, the first control unit 24 outputs an initial signal Sg0 to the actuator 40 in response to a user operation on a switch (not shown). The initial signal Sg0 is a signal having a constant potential. Thereby, the volume of the pressure chamber 21 is maintained at a predetermined initial volume. The potential of the initial signal Sg0 may be a reference potential or may be different from the reference potential. Note that the drive signal SgA does not need to include the initial signal Sg0. That is, before time t1, the driving signal SgA may not be output, instead of the state where the initial signal Sg0 is output. The valve 23 is closed after time t0 unless otherwise specified.
 ユーザは、時刻t1以前において、キャピラリー10の第1端11を第1液体L1に接触させる(接液ステップを行う。)。そして、ユーザは、ピペット1が有している不図示のスイッチに対する操作によって、ピペット1に第1液体L1の吸引を指示する。この指示の時刻は、図4の時刻t1に対応する。 The user brings the first end 11 of the capillary 10 into contact with the first liquid L1 before the time t1 (performs a liquid contacting step). Then, the user instructs the pipette 1 to suction the first liquid L1 by operating a switch (not shown) of the pipette 1. The time of this instruction corresponds to time t1 in FIG.
(時刻t1~t2:第1液体の吸引等)
 第1制御部24は、第1液体L1の吸引が指示されると、圧力室21の容積が増加するように駆動部50を駆動させる第1吸引信号Sg1を出力する。第1吸引信号Sg1は、例えば、概略、初期信号Sg0の電位V0から所定の電位V1まで上昇し、電位V1を維持する信号である。これにより、第1液体L1は、キャピラリー10内に吸引され、キャピラリー10の第1端11付近に保持される。その吸引量は、概略、電位V0から電位V1までの電位差に対応している。換言すれば、当該電位差は、吸引量の目標値に応じて設定されている。
(Time t1 to t2: suction of the first liquid, etc.)
When the suction of the first liquid L1 is instructed, the first control unit 24 outputs a first suction signal Sg1 for driving the driving unit 50 so that the volume of the pressure chamber 21 increases. The first suction signal Sg1 is, for example, a signal that rises from the potential V0 of the initial signal Sg0 to a predetermined potential V1 and maintains the potential V1. Thereby, the first liquid L1 is sucked into the capillary 10 and held near the first end 11 of the capillary 10. The suction amount roughly corresponds to a potential difference from the potential V0 to the potential V1. In other words, the potential difference is set according to the target value of the suction amount.
 ユーザは、第1液体L1の一部がキャピラリー10内に吸引されると、キャピラリー10を第1液体L1の残りから引き上げる(離液ステップを行う。)。次に、ユーザは、キャピラリー10の第1端11を第2液体L2に接触させる(接液ステップを行う。)。そして、ユーザは、ピペット1が有している不図示のスイッチに対する操作によって、ピペット1に第2液体L2の吸引を指示する。この指示の時刻は、図4の時刻t2に対応する。 (4) When a part of the first liquid L1 is sucked into the capillary 10, the user pulls up the capillary 10 from the rest of the first liquid L1 (performs a liquid separation step). Next, the user brings the first end 11 of the capillary 10 into contact with the second liquid L2 (performs a liquid contact step). Then, the user instructs the pipette 1 to suck the second liquid L2 by operating a switch (not shown) of the pipette 1. The time of this instruction corresponds to time t2 in FIG.
(時刻t2~t3:第2液体の吸引等)
 第1制御部24は、第2液体L2の吸引が指示されると、圧力室21の容積が増加するように駆動部50を駆動させる第2吸引信号Sg2を出力する。第2吸引信号Sg2は、例えば、概略、第1吸引信号Sg1の電位V1から所定の電位V2まで上昇し、電位V2を維持する信号である。これにより、第2液体L2は、キャピラリー10内に吸引され、キャピラリー10の第1端11付近に保持される。図5(a)は、このときの状態を示している。第2液体L2の吸引量は、概略、電位V1から電位V2までの電位差に対応している。換言すれば、当該電位差は、吸引量の目標値に応じて設定されている。
(Time t2 to t3: suction of the second liquid, etc.)
When the suction of the second liquid L2 is instructed, the first control unit 24 outputs a second suction signal Sg2 for driving the driving unit 50 so that the volume of the pressure chamber 21 increases. The second suction signal Sg2 is, for example, a signal that rises from the potential V1 of the first suction signal Sg1 to a predetermined potential V2 and maintains the potential V2. As a result, the second liquid L2 is sucked into the capillary 10 and held near the first end 11 of the capillary 10. FIG. 5A shows the state at this time. The suction amount of the second liquid L2 roughly corresponds to the potential difference from the potential V1 to the potential V2. In other words, the potential difference is set according to the target value of the suction amount.
 ユーザは、第2液体L2の一部がキャピラリー10内に吸引されると、キャピラリー10を第2液体L2の残りから引き上げる(離液ステップを行う。)。そして、ユーザは、ピペット1が有している不図示のスイッチに対する操作によって、ピペット1に第1液体L1と第2液体L2との混合を指示する。この指示の時刻は、図4の時刻t3に対応する。 (4) When a part of the second liquid L2 is sucked into the capillary 10, the user pulls up the capillary 10 from the rest of the second liquid L2 (performs a liquid separation step). Then, the user instructs the pipette 1 to mix the first liquid L1 and the second liquid L2 by operating a switch (not shown) of the pipette 1. The time of this instruction corresponds to time t3 in FIG.
(時刻t3~t4:エア吸引等)
 第1制御部24は、第1液体L1と第2液体L2との混合が指示されると、圧力室21の容積が増加するように駆動部50を駆動させるエア吸引信号Sg3を出力する。エア吸引信号Sg3は、例えば、概略、所定の電位V3まで上昇し、電位V3を維持する信号である。これにより、第1液体L1及び第2液体L2は、第2端12側へ移動して、キャピラリー10内の所定の位置に停止する。図5(b)は、このときの状態を示している。第1液体L1及び第2液体L2の移動量は、概略、電位V2から電位V3までの電位差に対応している。換言すれば、当該電位差は、移動量の目標値に応じて設定されている。
(Time t3 to t4: air suction etc.)
When the mixing of the first liquid L1 and the second liquid L2 is instructed, the first control unit 24 outputs an air suction signal Sg3 for driving the driving unit 50 so that the volume of the pressure chamber 21 increases. The air suction signal Sg3 is, for example, a signal that rises to approximately a predetermined potential V3 and maintains the potential V3. Thus, the first liquid L1 and the second liquid L2 move toward the second end 12 and stop at a predetermined position in the capillary 10. FIG. 5B shows the state at this time. The movement amount of the first liquid L1 and the second liquid L2 roughly corresponds to the potential difference from the potential V2 to the potential V3. In other words, the potential difference is set according to the target value of the movement amount.
 第1液体L1及び第2液体L2の停止位置は、第1液体L1及び第2液体L2の双方が境界14よりも第1端11側に位置する位置であってもよいし、第1液体L1及び第2液体L2の双方が境界14よりも第2端12側に位置する位置であってもよいし、第1液体L1及び第2液体L2のいずれかが境界14に跨る位置であってもよい。本実施形態の説明では、第1液体L1及び第2液体L2の双方が境界14よりも第1端11側に位置する場合を例に取り、以降の動作を説明する。 The stop position of the first liquid L1 and the second liquid L2 may be a position where both the first liquid L1 and the second liquid L2 are located on the first end 11 side of the boundary 14 or the first liquid L1. Both the first liquid L1 and the second liquid L2 may be located at positions closer to the second end 12 than the boundary 14, or may be located at a position where either the first liquid L1 or the second liquid L2 straddles the boundary 14. Good. In the description of the present embodiment, the subsequent operation will be described by taking as an example a case where both the first liquid L1 and the second liquid L2 are located on the first end 11 side of the boundary 14.
 なお、第1液体L1及び第2液体L2の双方が境界14の第1端11側又は第2端12側に位置する場合、液体と境界14とは離れていてもよいし、隣接していてもよい。「隣接している」は、例えば、キャピラリー10の長さ方向において、境界14と液体とが離間している距離又は重複している距離(いずれの距離も液面の中心を基準としてよい)が、第1液体L1及び第2液体L2の体積を第1孔10aの境界14における横断面の面積で割って得られる長さの1/10以下又は1/5以下の状態である。 When both the first liquid L1 and the second liquid L2 are located on the first end 11 side or the second end 12 side of the boundary 14, the liquid and the boundary 14 may be separated from each other or may be adjacent to each other. Is also good. The term “adjacent” refers to, for example, a distance at which the boundary 14 is separated from the liquid or a distance at which the liquid is overlapped (any distance may be based on the center of the liquid surface) in the length direction of the capillary 10. , 1/10 or less of the length obtained by dividing the volumes of the first liquid L1 and the second liquid L2 by the area of the cross section at the boundary 14 of the first hole 10a.
 第2制御部25は、エア吸引信号Sg3の出力開始後、所定時間が経過したと判定すると、開放流路28を開くようにバルブ23を制御する。なお、この制御が、信号の出力及び信号の出力の停止のいずれによってなされてもよいことは既に述べたとおりである。所定時間は、エア吸引信号Sg3によって第1液体L1及び第2液体L2が目標位置まで移動するのに十分な時間とされる。 When the second control unit 25 determines that a predetermined time has elapsed after the start of the output of the air suction signal Sg3, the second control unit 25 controls the valve 23 to open the open flow path 28. Note that, as described above, this control may be performed by either outputting the signal or stopping the output of the signal. The predetermined time is a time sufficient for the first liquid L1 and the second liquid L2 to move to the target position by the air suction signal Sg3.
(時刻t4~t5:圧力室の復元等)
 第1制御部24は、バルブ23を開く制御を開始後、所定時間が経過したと判定すると(時刻t4)、圧力室21の容積が減少するように駆動部50を駆動させる復元信号Sg4を出力する。復元信号Sg4は、例えば、概略、所定の電位V4まで降下し、電位V4を維持する信号である。復元信号Sg4によって、圧力室21の容積は減少するが、バルブ23が開かれていることから、キャピラリー10内のうちの第1液体L1及び第2液体L2よりも第2端12側の部分の増圧は行われない。ひいては、第1液体L1及び第2液体L2の位置は変化しない。
(Time t4 to t5: restoration of pressure chamber, etc.)
When the first control unit 24 determines that a predetermined time has elapsed after starting the control for opening the valve 23 (time t4), the first control unit 24 outputs a restoration signal Sg4 for driving the driving unit 50 so that the volume of the pressure chamber 21 decreases. I do. The restoration signal Sg4 is, for example, a signal that generally drops to a predetermined potential V4 and maintains the potential V4. Although the volume of the pressure chamber 21 is reduced by the restoration signal Sg4, since the valve 23 is opened, the portion of the capillary 10 closer to the second end 12 than the first liquid L1 and the second liquid L2 is. No pressure boost is performed. As a result, the positions of the first liquid L1 and the second liquid L2 do not change.
 上記のバルブ23を開いてから時刻t4までの所定時間は、バルブ23を開くのに十分な時間とされる。電位V4は、初期電位V0に対して、及び/又は基準電位に対して、同一であってもよいし、高くてもよいし、低くてもよい。図示の例では、電位V4は初期電位V0と同一とされている。なお、電位V4が基準電位である場合においては、復元信号Sg4は、エア吸引信号Sg3を出力している状態から、出力を停止する状態へ遷移する過程に生じる立ち下がりの部分(信号として意図的に出力されたものではない部分)であってもよい。 The predetermined time from the opening of the valve 23 to the time t4 is a time sufficient to open the valve 23. The potential V4 may be the same, higher, or lower than the initial potential V0 and / or the reference potential. In the illustrated example, the potential V4 is the same as the initial potential V0. When the potential V4 is the reference potential, the restoration signal Sg4 has a falling portion (intentionally used as a signal) generated in a process of transition from the state in which the air suction signal Sg3 is being output to the state in which the output is stopped. That is not the one output to
 その後、第2制御部25は、時刻t4から所定時間が経過したと判定すると、開放流路28を閉じるようにバルブ23を制御する。なお、この制御が、信号の出力及び信号の出力の停止のいずれによってなされてもよいことは既に述べたとおりである。時刻t4からの所定時間は、復元信号Sg4によってアクチュエータ40が電位V4に対応する変位となるのに十分な時間とされる。 After that, if the second control unit 25 determines that the predetermined time has elapsed from the time t4, the second control unit 25 controls the valve 23 to close the open flow passage 28. Note that, as described above, this control may be performed by either outputting the signal or stopping the output of the signal. The predetermined time from time t4 is a time sufficient for the actuator 40 to be displaced by the restoration signal Sg4 corresponding to the potential V4.
(時刻t5~t8:混合等)
 第1制御部24は、バルブ23を閉じる制御を開始後、所定時間が経過したと判定すると(時刻t5)、圧力室21の容積が増減を繰り返すように駆動部50を駆動させる混合信号Sg5(Sg51及びSg52)を出力する。これにより、図5(b)(図5(f))、図5(c)及び図5(d)に示される液体の第2端12側への移動と、図5(d)、図5(e)及び図5(f)に示される液体の第1端11側への移動とが交互に繰り返される。ひいては、第1液体L1及び第2液体L2が攪拌され、両者が混合される。繰り返しの回数は適宜に設定されてよい。
(Time t5 to t8: mixing, etc.)
When the first control unit 24 determines that a predetermined time has elapsed after starting the control to close the valve 23 (time t5), the mixing signal Sg5 for driving the driving unit 50 so that the volume of the pressure chamber 21 repeatedly increases and decreases (time t5). Sg51 and Sg52). Thereby, the movement of the liquid toward the second end 12 shown in FIG. 5B (FIG. 5F), FIG. 5C and FIG. 5D, and FIG. 5D and FIG. (E) and the movement of the liquid to the first end 11 shown in FIG. 5 (f) are alternately repeated. Eventually, the first liquid L1 and the second liquid L2 are stirred, and both are mixed. The number of repetitions may be set as appropriate.
 その後、例えば、混合された液体は、キャピラリー10内(例えば第2部材16内)に保持された状態で光が照射されてその性質が調べられる。例えば、蛍光測定、散乱測定、吸光測定及び/又は分光測定が行われる。特に図示しないが、測定に先立って、時刻t3~t4において任意の位置へ液体を移動させた動作と同様の動作により、測定に適した位置へ液体を移動させてもよい。また、混合された液体は、キャピラリー10内に保持されたまま測定に供されるのではなく、キャピラリー10から吐出されて種々の用途に利用されてもよい。 Thereafter, for example, the mixed liquid is irradiated with light while being held in the capillary 10 (for example, in the second member 16), and its properties are examined. For example, a fluorescence measurement, a scattering measurement, an absorption measurement, and / or a spectroscopic measurement are performed. Although not particularly shown, prior to the measurement, the liquid may be moved to a position suitable for measurement by the same operation as the operation of moving the liquid to an arbitrary position between times t3 and t4. The mixed liquid may be discharged from the capillary 10 and used for various purposes instead of being used for measurement while being held in the capillary 10.
 なお、図4では、駆動信号SgAの波形は、矩形波等の複数の直線からなる波形とされている。ただし、駆動信号SgAの波形の一部又は全部は、正弦波等の曲線からなる波形とされても構わない。 In FIG. 4, the waveform of the drive signal SgA is a waveform composed of a plurality of straight lines such as a rectangular wave. However, part or all of the waveform of the drive signal SgA may be a waveform including a curve such as a sine wave.
[ピペットの混合動作]
 混合信号Sg5は、圧力室21の容積が増加するように駆動部50を駆動させる第1信号Sg51と、圧力室21の容積が減少するように駆動部50を駆動させる第2信号Sg52とを交互に繰り返し含んでいる。図5(b)(図5(f))、図5(c)及び図5(d)に示されているように、圧力室21の容積の減少により、液体(第1液体L1及び第2液体L2)は、少なくとも一部が第1孔10aから第2孔10bへ流れる。同様に、図5(d)、図5(e)及び図5(f)に示されているように、圧力室21の容積の増加により、液体は、少なくとも一部が第2孔10bから第1孔10aへ流れる。すなわち、液体は、少なくとも一部が境界14を繰り返し超えて往復する。
[Mixing operation of pipette]
The mixed signal Sg5 alternates between a first signal Sg51 that drives the drive unit 50 so that the volume of the pressure chamber 21 increases and a second signal Sg52 that drives the drive unit 50 so that the volume of the pressure chamber 21 decreases. Contains repeatedly. As shown in FIG. 5B (FIG. 5F), FIG. 5C and FIG. 5D, the liquid (first liquid L1 and second liquid L1 and second liquid L1) At least a part of the liquid L2) flows from the first hole 10a to the second hole 10b. Similarly, as shown in FIGS. 5D, 5E, and 5F, due to the increase in the volume of the pressure chamber 21, at least a part of the liquid is removed from the second hole 10b through the second hole 10b. It flows to one hole 10a. That is, the liquid reciprocates at least partially over the boundary 14 repeatedly.
 液体(L1+L2)は、図示の例のように、その全部が境界14を繰り返し超えてもよいし、図示の例とは異なり、一部のみが境界14を繰り返し超えてもよい。液体の全部が境界14を繰り返し超える場合において、液体は、境界14を超えた後に境界14から離れ、その後、引き返してもよいし、境界14を超えて境界14に隣接している状態から引き返してもよい。「隣接している」については、エア吸引信号Sg3及び図5(b)の説明で述べたとおりである。また、液体の全部及び一部のいずれが境界14を超えるか否か、境界14から離れるか否かは、第1孔10a側へ流れるときと、第2孔10b側へ流れるときとで異なっていてもよいし、往復を繰り返す過程で変化してもよい。 All of the liquid (L1 + L2) may repeatedly exceed the boundary 14 as shown in the illustrated example, or, unlike the illustrated example, only a part thereof may repeatedly exceed the boundary 14. In the case where all of the liquid repeatedly crosses the boundary 14, the liquid may leave the boundary 14 after crossing the boundary 14 and then return, or may return from a state in which the liquid exceeds the boundary 14 and is adjacent to the boundary 14. Is also good. "Adjacent" is as described in the air suction signal Sg3 and the description of FIG. 5B. Whether all or a part of the liquid exceeds the boundary 14 or separates from the boundary 14 differs depending on whether the liquid flows toward the first hole 10a or the second hole 10b. May be changed, or may be changed in the process of repeating reciprocation.
 本実施形態の説明では、第1孔10a側へ流れるときと、第2孔10b側へ流れるときとの双方において、液体(L1+L2)は、境界14を超えて境界14に隣接している状態から引き返し、かつその状態が往復を繰り返しても維持される場合を例に取る。このような場合においては、例えば、液体全体に境界14を超えさせることができ、かつ往復の周期を短くすることができる。 In the description of the present embodiment, the liquid (L1 + L2) moves from the state in which the liquid (L1 + L2) exceeds the boundary 14 and is adjacent to the boundary 14 both when flowing toward the first hole 10a and when flowing toward the second hole 10b. Take a case where the vehicle is turned back and the state is maintained even if reciprocation is repeated. In such a case, for example, the whole liquid can be made to exceed the boundary 14, and the reciprocating cycle can be shortened.
 第1信号Sg51及び第2信号Sg52は、上記のような動作が実現されるように適宜に設定されてよい。 The first signal Sg51 and the second signal Sg52 may be appropriately set so that the above-described operation is realized.
 例えば、まず、本実施形態では、混合直前において、液体(L1+L2)は、エア吸引信号Sg3によって境界14に対して第1端11側に隣接している。この場合、混合信号Sg5は、例えば、最初に(時刻t5に出力が開始される信号として)、液体を第2端12側へ移動させる第1信号Sg51を含んでいる。また、第1信号Sg51の電位の変化量(圧力室21の容積の増加量)、及び第2信号Sg52の電位の変化量(圧力室21の容積の減少量)は、それぞれ、概略、液体(L1+L2)の体積に相当している。混合信号Sg5が最後に含む信号は、第1信号Sg51及び第2信号Sg52のいずれでもよく、例えば、混合信号Sg5が開始から2番目に含む信号(本実施形態では第2信号Sg52)である。 For example, first, in the present embodiment, immediately before mixing, the liquid (L1 + L2) is adjacent to the boundary 14 on the first end 11 side by the air suction signal Sg3. In this case, the mixed signal Sg5 includes, for example, first (as a signal whose output starts at time t5) the first signal Sg51 for moving the liquid to the second end 12 side, for example. In addition, the amount of change in the potential of the first signal Sg51 (the amount of increase in the volume of the pressure chamber 21) and the amount of change in the potential of the second signal Sg52 (the amount of decrease in the volume of the pressure chamber 21) are each approximately a liquid ( L1 + L2). The last signal included in the mixed signal Sg5 may be either the first signal Sg51 or the second signal Sg52. For example, the signal included in the mixed signal Sg5 second from the start (the second signal Sg52 in the present embodiment).
 なお、上記とは異なり、エア吸引信号Sg3によって境界14よりも第2端12側に液体を隣接させてもよい。この場合、混合信号Sg5は、例えば、最初に、液体を第1端11側へ移動させる第2信号Sg52を含んでよい。また、エア吸引信号Sg3によって液体を境界14に跨らせてもよい。この場合、混合信号Sg5は、例えば、最初に、第1信号Sg51又は第2信号Sg52の電位の変化量を低減した信号を含んでよい。逆に、エア吸引信号Sg3によって液体を境界14から離してもよい。この場合、混合信号Sg5は、例えば、最初に、第1信号Sg51又は第2信号Sg52の電位の変化量を増加させた信号を含んでよい。 Note that, unlike the above, the liquid may be made to be adjacent to the second end 12 side of the boundary 14 by the air suction signal Sg3. In this case, the mixed signal Sg5 may include, for example, the second signal Sg52 for first moving the liquid to the first end 11 side. Further, the liquid may be spread over the boundary 14 by the air suction signal Sg3. In this case, the mixed signal Sg5 may include, for example, a signal in which the amount of change in the potential of the first signal Sg51 or the second signal Sg52 is first reduced. Conversely, the liquid may be separated from the boundary 14 by the air suction signal Sg3. In this case, the mixed signal Sg5 may include, for example, a signal in which the amount of change in the potential of the first signal Sg51 or the second signal Sg52 is first increased.
 第1信号Sg51と第2信号Sg52とは、一方を時間経過に対して反転させたときに、互いに一致する波形であってもよいし、異なる波形であってもよい。換言すれば、両信号の波形は、図4に示すグラフの縦軸に平行な不図示の対称軸に関して、線対称であってもよいし、非対称であってもよい。図4に示す例では、両信号の波形は非対称である。 When the first signal Sg51 and the second signal Sg52 are inverted with respect to the passage of time, the first signal Sg51 and the second signal Sg52 may have the same waveform or different waveforms. In other words, the waveforms of both signals may be line-symmetric or asymmetric with respect to an axis of symmetry (not shown) parallel to the vertical axis of the graph shown in FIG. In the example shown in FIG. 4, the waveforms of both signals are asymmetric.
 具体的には、例えば、第1信号Sg51の電位の時間経過に対する変化率は、第2信号Sg52の電位の時間経過に対する変化率よりも大きい。図示の例では、第1信号Sg51は、急激に(立ち上がり時間が略0で)電位が上昇する信号とされており、第2信号Sg52は、時間に比例して徐々に電位が降下する信号とされている。すなわち、第1信号Sg51と、これに続く第2信号Sg52との組み合わせは、いわゆる逆のこぎり波状の信号となっている。これらの変化率の具体的な値は適宜に設定されてよい。 Specifically, for example, the rate of change of the potential of the first signal Sg51 over time is greater than the rate of change of the potential of the second signal Sg52 over time. In the illustrated example, the first signal Sg51 is a signal whose potential rises rapidly (with a rise time of about 0), and the second signal Sg52 is a signal whose potential gradually decreases in proportion to time. Have been. That is, the combination of the first signal Sg51 and the subsequent second signal Sg52 is a so-called reverse sawtooth signal. Specific values of these rates of change may be set as appropriate.
 また、例えば、第2信号Sg52の電位の変化量dV52(圧力室21の容積の減少量)は、第1信号Sg51の電位の変化量dV51(圧力室21の容積の増加量)よりも大きい。その差は、適宜に設定されてよく、例えば、後述する作用が奏されるように設定されてよい。なお、変化量dV52が変化量dV51よりも大きいことから、混合信号Sg5の電位は、徐々に低下していく。混合が完了したとき(混合信号Sg5の出力完了時)、混合信号Sg5の電位は、初期信号Sg0の電位V0及び/又は基準電位に対して、小さくてもよいし、同等でもよいし、大きくてもよい。 {Also, for example, the change amount dV52 of the potential of the second signal Sg52 (the decrease amount of the volume of the pressure chamber 21) is larger than the change amount dV51 of the potential of the first signal Sg51 (the increase amount of the volume of the pressure chamber 21). The difference may be set as appropriate, and may be set, for example, such that the operation described below is performed. Since the change dV52 is larger than the change dV51, the potential of the mixed signal Sg5 gradually decreases. When the mixing is completed (when the output of the mixed signal Sg5 is completed), the potential of the mixed signal Sg5 may be smaller, equal to, or larger than the potential V0 of the initial signal Sg0 and / or the reference potential. Is also good.
 以上のとおり、本実施形態では、ピペット1は、長さ方向の両端(第1端11及び第2端12)が開口しているキャピラリー10と、第2端12を介してキャピラリー10の内部に通じている圧力室21と、圧力室21の容積を変化させる駆動部50と、駆動部50を制御する制御部(第1制御部24)と、を有している。キャピラリー10は、第1端11側に位置する第1管部17と、第2端12側に位置する第2管部18と、を有している。第1管部17は、長さ方向に貫通する第1孔10aを有しており、第2管部18は、長さ方向に貫通する第2孔10bを有している。第2孔10bは、第1孔10aの第2端12側に繋がっている。第1孔10aの内面の撥水性と、第2孔10bの内面の撥水性とは、互いに異なっている。そして、第1制御部24は、圧力室21の容積が増減を繰り返し、これによりキャピラリー10内の液体の少なくとも一部が第1孔10aと第2孔10bとの境界を繰り返し超えて往復するように駆動部50を制御する。 As described above, in the present embodiment, the pipette 1 has the capillary 10 open at both ends (the first end 11 and the second end 12) in the length direction and the inside of the capillary 10 via the second end 12. It has a communicating pressure chamber 21, a drive unit 50 that changes the volume of the pressure chamber 21, and a control unit (first control unit 24) that controls the drive unit 50. The capillary 10 has a first pipe part 17 located on the first end 11 side and a second pipe part 18 located on the second end 12 side. The first pipe part 17 has a first hole 10a penetrating in the length direction, and the second pipe part 18 has a second hole 10b penetrating in the length direction. The second hole 10b is connected to the second end 12 of the first hole 10a. The water repellency of the inner surface of the first hole 10a is different from the water repellency of the inner surface of the second hole 10b. Then, the first control unit 24 repeatedly increases and decreases the volume of the pressure chamber 21 so that at least a part of the liquid in the capillary 10 reciprocates over the boundary between the first hole 10a and the second hole 10b. To control the driving unit 50.
 従って、例えば、液体が境界14を超えるときに、撥水性の相違に起因して液体の流れに乱れが生じ、ひいては液体が攪拌されやすくなる。具体的には、例えば、液体が、撥水性が低い側から高い側へ境界14を超えるとき、キャピラリー10の内面付近の液体は、キャピラリー10の内面に沿って流れにくくなる。その結果、例えば、液体の流れがキャピラリー10の内面から剥離しやすくなり、渦が生じやすくなる。この渦により、液体の攪拌が促進される。ひいては、例えば、2液の混合が促進される。 Therefore, for example, when the liquid exceeds the boundary 14, the flow of the liquid is disturbed due to the difference in water repellency, and thus the liquid is easily stirred. Specifically, for example, when the liquid crosses the boundary 14 from the lower side of the water repellency to the higher side, the liquid near the inner surface of the capillary 10 is less likely to flow along the inner surface of the capillary 10. As a result, for example, the flow of the liquid is likely to be separated from the inner surface of the capillary 10, and the vortex is likely to be generated. The vortex promotes agitation of the liquid. Thus, for example, mixing of the two liquids is promoted.
 また、本実施形態では、第1孔10aの内面の撥水性は、第2孔10bの内面の撥水性よりも高い。 In the present embodiment, the water repellency of the inner surface of the first hole 10a is higher than the water repellency of the inner surface of the second hole 10b.
 この場合、例えば、第2孔10bから第1孔10a側への流れは、その逆方向の流れよりも抵抗が大きくなりやすい。その結果、例えば、混合の際に液体が第1端11から吐出されてしまうおそれが低減される。また、第1孔10aが境界14から第1端11に至るまで延びるものである場合においては、第1端11から液体を吸引するときに、液体が第1端11に付着するおそれが低減される。その結果、例えば、圧力室21の容積の増加と液体の吸引量との対応関係が安定し、液体の計量の精度が向上する。 場合 In this case, for example, the flow from the second hole 10b to the first hole 10a has a higher resistance than the flow in the opposite direction. As a result, for example, the possibility that the liquid is ejected from the first end 11 during mixing is reduced. Further, when the first hole 10a extends from the boundary 14 to the first end 11, when the liquid is sucked from the first end 11, the possibility that the liquid adheres to the first end 11 is reduced. You. As a result, for example, the correspondence between the increase in the volume of the pressure chamber 21 and the suction amount of the liquid is stabilized, and the accuracy of liquid measurement is improved.
 また、本実施形態では、第1孔10aと第2孔10bとの境界14において、第1孔10aの内径が第2孔10bの内径よりも大きい。 In the present embodiment, the inner diameter of the first hole 10a is larger than the inner diameter of the second hole 10b at the boundary 14 between the first hole 10a and the second hole 10b.
 この場合、例えば、液体が境界14を超えるときに、内径の相違に起因して液体の流れに乱れが生じ、ひいては2液が混合されやすくなる。具体的には、例えば、液体が、内径が小さい側から内径が大きい側へ境界14を超えるとき、キャピラリー10の内面から流れが剥離しやすくなり、渦が生じやすくなる。この渦により、液体の攪拌が促進される。さらに、第1孔10aの撥水性が第2孔10bの撥水性よりも高い場合においては、撥水性が高くなる方向と、内径が大きくなる方向とが一致する。その結果、例えば、撥水性が高くなることによって剥離が生じやすくなる効果と、内径が大きくなることによって剥離が生じやすくなる効果とが重畳されることになる。ひいては、攪拌促進の効果が向上する。 In this case, for example, when the liquid exceeds the boundary 14, the flow of the liquid is disturbed due to the difference in the inner diameter, and the two liquids are more likely to be mixed. Specifically, for example, when the liquid crosses the boundary 14 from the side having the smaller inner diameter to the side having the larger inner diameter, the flow is likely to be separated from the inner surface of the capillary 10 and a vortex is likely to be generated. The vortex promotes agitation of the liquid. Further, when the water repellency of the first hole 10a is higher than the water repellency of the second hole 10b, the direction in which the water repellency increases and the direction in which the inner diameter increases are the same. As a result, for example, the effect that peeling is likely to occur due to an increase in water repellency and the effect that peeling is likely to occur due to an increase in the inner diameter are superimposed. As a result, the effect of promoting the stirring is improved.
 また、本実施形態では、第1孔10aは、第2孔10b側ほど内径が大きくなっている。 In the present embodiment, the inner diameter of the first hole 10a is larger toward the second hole 10b.
 この場合、例えば、第1孔10aの内径が一定である場合に比較して、液体の乱れが生じやすい。その結果、例えば、液体の攪拌が促進される。また、例えば、第1孔10aが第1端11まで延びている場合においては、第1端11の内径を小さくして、液体の計量の精度を向上させることができる。その一方で、境界14において第1孔10aの内径を第2孔10bの内径よりも大きくし、上述した内径の相違による混合促進の効果を得ることができる。 In this case, for example, the liquid is more likely to be disturbed than when the inner diameter of the first hole 10a is constant. As a result, for example, stirring of the liquid is promoted. Further, for example, when the first hole 10a extends to the first end 11, the inner diameter of the first end 11 can be reduced to improve the accuracy of liquid measurement. On the other hand, at the boundary 14, the inner diameter of the first hole 10a is made larger than the inner diameter of the second hole 10b, and the above-described effect of promoting mixing due to the difference in the inner diameter can be obtained.
 また、本実施形態では、キャピラリー10は、第1部材15と、第2部材16とを有している。第1部材15は、第1孔10aを有している中空状である。第2部材16は、第2孔10bを有している中空状であり、第1部材15と固定されている。 In addition, in the present embodiment, the capillary 10 has a first member 15 and a second member 16. The first member 15 is hollow having a first hole 10a. The second member 16 has a hollow shape having the second hole 10 b and is fixed to the first member 15.
 この場合、例えば、第1孔10aを構成する材料と第2孔10bを構成する材料とを互いに異ならせることが容易である。その結果、例えば、第1孔10aの撥水性と第2孔10bの撥水性とを互いに異ならせることが容易である。 In this case, for example, it is easy to make the material forming the first hole 10a and the material forming the second hole 10b different from each other. As a result, for example, it is easy to make the water repellency of the first hole 10a and the water repellency of the second hole 10b different from each other.
 また、本実施形態では、第1部材15は、第1孔10aと、第1孔10aから第1端11とは反対側に延びており、第1孔10aよりも内径が大きい第3孔15aと、第1孔10aの内径が第3孔15aの内径よりも小さいことによる段差部15bと、を有している。第2部材16は、第3孔15aに挿入されて段差部15bに係止されており、また、段差部15b側に先端面16aを有している。段差部15bの先端面16a側の段差面15baは、キャピラリー10の径方向の内側ほど先端面16a側に位置するように傾斜している。段差部15bの、径方向の内側の角部15bbは、先端面16aに当接している。 In the present embodiment, the first member 15 extends from the first hole 10a to the side opposite to the first end 11 from the first hole 10a, and has a larger inner diameter than the first hole 10a. And a stepped portion 15b due to the inner diameter of the first hole 10a being smaller than the inner diameter of the third hole 15a. The second member 16 is inserted into the third hole 15a and locked on the step 15b, and has a tip surface 16a on the step 15b side. The step surface 15ba on the tip surface 16a side of the step portion 15b is inclined so that the inner side in the radial direction of the capillary 10 is located closer to the tip surface 16a. A radially inner corner portion 15bb of the step portion 15b is in contact with the distal end surface 16a.
 この場合、例えば、第2部材16を第1部材15に挿入する簡便な構成で、両者を連結することができる。また、例えば、第2部材16と段差部15bとの当接は、線接触であることから、面接触である場合に比較して、接触圧を確保しやすい。その結果、例えば、境界14における密閉性を向上させることができる。また、例えば、第2部材16の先端面16aと段差部15bとの間には、角部15bbの外側に空間が構成される。この空間は、例えば、第1部材15の内面と第2部材16の外面との間に接着剤を介在させたときに、余剰な接着剤を逃がすことに利用可能である。 In this case, for example, the second member 16 can be connected to the first member 15 with a simple configuration in which the two members are inserted. Further, for example, the contact between the second member 16 and the step portion 15b is a line contact, so that it is easier to secure a contact pressure than in the case of a surface contact. As a result, for example, the sealing performance at the boundary 14 can be improved. In addition, for example, a space is formed outside the corner 15bb between the distal end surface 16a of the second member 16 and the step 15b. This space can be used, for example, to release excess adhesive when an adhesive is interposed between the inner surface of the first member 15 and the outer surface of the second member 16.
 また、本実施形態では、第1部材15は、樹脂からなり、第2部材16は、ガラスからなる。 Also, in the present embodiment, the first member 15 is made of resin, and the second member 16 is made of glass.
 この場合、例えば、第1部材15の撥水性を高くするとともに、第2部材16の撥水性を低くすることが容易である。例えば、第1部材15の接触角を95°以上とし、第2部材16の撥水性を60°以下とすることが容易である。すなわち、第1孔10aと第2孔10bとの撥水性の相違を大きくすることが容易である。その結果、例えば、撥水性の相違による混合促進の効果を向上させることが容易である。さらに、第1部材15の材料として成形が容易な樹脂が用いられることから、第1端11付近の寸法の精度を向上させ、液体の計量の精度を向上させることができる。その一方で、第2部材16の材料として透光性を確保することが容易なガラスが用いられることから、光を用いた液体の分析の精度を向上させることができる。 In this case, for example, it is easy to increase the water repellency of the first member 15 and lower the water repellency of the second member 16. For example, it is easy to set the contact angle of the first member 15 to 95 ° or more and the water repellency of the second member 16 to 60 ° or less. That is, it is easy to increase the difference in water repellency between the first hole 10a and the second hole 10b. As a result, for example, it is easy to improve the effect of promoting mixing due to the difference in water repellency. Further, since a resin that can be easily molded is used as the material of the first member 15, the dimensional accuracy near the first end 11 can be improved, and the accuracy of liquid measurement can be improved. On the other hand, since glass that can easily ensure translucency is used as the material of the second member 16, the accuracy of analyzing a liquid using light can be improved.
 また、本実施形態では、第1制御部24は、信号レベル(電圧)が時間経過に対して変化して波形をなす駆動信号SgAを駆動部50に出力する。駆動部50は、圧力室21の容積が駆動信号SgAの電圧に対応した容積になるように駆動信号SgAの電圧の時間経過に対する変化に追随して圧力室21の容積を変化させる。駆動信号SgAは、第1信号Sg51と第2信号Sg52とを交互に繰り返し含んでいる。第1信号Sg51は、圧力室21の容積の増加によって液体の少なくとも一部が第1孔10aから第2孔10bへ流れるように駆動部50を駆動させる信号である。第2信号Sg52は、圧力室21の容積の減少によって液体の少なくとも一部が第2孔10bから第1孔10aへ流れるように駆動部50を駆動させる信号である。第1信号Sg51の波形と、第2信号Sg52の波形を時間経過が逆になるように反転させた波形とは互いに異なる。 In addition, in the present embodiment, the first control unit 24 outputs the drive signal SgA whose signal level (voltage) changes with time and forms a waveform to the drive unit 50. The drive unit 50 changes the volume of the pressure chamber 21 according to a change with time of the voltage of the drive signal SgA so that the volume of the pressure chamber 21 becomes a volume corresponding to the voltage of the drive signal SgA. The drive signal SgA includes the first signal Sg51 and the second signal Sg52 alternately and repeatedly. The first signal Sg51 is a signal for driving the driving unit 50 such that at least a part of the liquid flows from the first hole 10a to the second hole 10b due to an increase in the volume of the pressure chamber 21. The second signal Sg52 is a signal for driving the driving unit 50 so that at least a part of the liquid flows from the second hole 10b to the first hole 10a due to the decrease in the volume of the pressure chamber 21. The waveform of the first signal Sg51 and the waveform obtained by inverting the waveform of the second signal Sg52 so that the elapsed time is reversed are different from each other.
 この場合、例えば、液体が第1孔10aから第2孔10bへ流れるときと、その逆方向へ流れるときとで、それぞれに適した流れを形成することができる。例えば、第1孔10aと第2孔10bとでは撥水性、内径及び/又は第1端11に対する位置等が異なるが、この相違を考慮した流れを形成することができる。例えば、以下のとおりである。 In this case, for example, when the liquid flows from the first hole 10a to the second hole 10b and when the liquid flows in the opposite direction, a flow suitable for each can be formed. For example, the first hole 10a and the second hole 10b are different in water repellency, inner diameter, and / or position with respect to the first end 11, and the flow can be formed in consideration of the difference. For example, it is as follows.
 本実施形態では、第2信号Sg52の信号レベル(電圧)の時間経過に対する変化率の絶対値は、第1信号Sg51の電圧の時間経過に対する変化率の絶対値よりも小さい。 In the present embodiment, the absolute value of the rate of change of the signal level (voltage) of the second signal Sg52 over time is smaller than the absolute value of the rate of change of the voltage of the first signal Sg51 over time.
 この場合、上記2つの変化率の絶対値が同一の場合に比較して、第2孔10bから第1孔10aへの流れは緩やかになる。その結果、第2孔10bから第1孔10aへ液体が流出する際に、液体が細かい粒状になって飛び散る現象が生じるのを低減することができる。また、例えば、第1端11から液体が吐出されるおそれが低減される。 In this case, the flow from the second hole 10b to the first hole 10a becomes gentler than when the absolute values of the two change rates are the same. As a result, when the liquid flows out from the second hole 10b to the first hole 10a, it is possible to reduce the occurrence of a phenomenon in which the liquid is scattered into fine particles. Further, for example, the possibility that the liquid is discharged from the first end 11 is reduced.
 また、本実施形態では、第1孔10aの内面の撥水性は、第2孔10bの内面の撥水性よりも高い。第2信号Sg52の信号レベル(電圧)の変化量dV52の絶対値は、第1信号Sg51の電圧の変化量dV51の絶対値よりも大きい。 In the present embodiment, the water repellency of the inner surface of the first hole 10a is higher than the water repellency of the inner surface of the second hole 10b. The absolute value of the change amount dV52 of the signal level (voltage) of the second signal Sg52 is larger than the absolute value of the change amount dV51 of the voltage of the first signal Sg51.
 この場合、境界14を繰り返し超えて往復する液体を一定の範囲に留めることが容易化される。具体的には、以下のとおりである。なお、説明の便宜上、原理の厳密性は無視する。液体がキャピラリー10内に位置しているとき、第1端11側の液面と、第2端12側の液面とが形成される。各液面においては、液面を縮ませようとする表面張力が作用する。この表面張力に起因して、当該表面張力の大きさと接触角の大きさとに応じた大きさで、各液面に対してキャピラリー10の長さ方向(x方向)に作用する力が生じる。液体が境界14を跨いでいる状態となっているとき、第1孔10aの撥水性が第2孔10bの撥水性よりも高いことから、第1孔10a内の液面における接触角は、第2孔10b内の液面における接触角よりも大きい。従って、第1孔10a内の液面に作用するx方向の力と、第2孔10b内の液面に作用するx方向の力とは釣り合わない。その結果、液体は、全体として、接触角が大きい側から接触角が小さい側への力を受けることになる。すなわち、液体は、第1孔10aから第2孔10b側へ流れようとする。従って、第1信号Sg51の電圧の変化量dV51の絶対値と、第2信号Sg52の電圧の変化量dV52の絶対値とが同一であると、液体の往復を繰り返す過程で、液体の位置が徐々に第2孔10b側へずれていくおそれがある。しかし、変化量dV52の絶対値を変化量dV51の絶対値よりも大きくすることによって、液体の位置を一定の範囲に維持することができる。その結果、例えば、液体の全部が境界14を超えるとともに、超えた直後に引き返すように、液体の往復を繰り返すことが容易になる。ひいては、撥水性の相違を利用した攪拌促進の効果を向上させることができる。 In this case, it is easy to keep the liquid that reciprocates over the boundary 14 within a certain range. Specifically, it is as follows. Note that, for convenience of explanation, the strictness of the principle is ignored. When the liquid is located in the capillary 10, a liquid surface on the first end 11 side and a liquid surface on the second end 12 side are formed. At each liquid level, a surface tension acts to shrink the liquid level. Due to this surface tension, a force acting on each liquid surface in the length direction (x direction) of the capillary 10 is generated with a magnitude corresponding to the magnitude of the surface tension and the magnitude of the contact angle. When the liquid is straddling the boundary 14, since the water repellency of the first hole 10a is higher than the water repellency of the second hole 10b, the contact angle on the liquid surface in the first hole 10a is It is larger than the contact angle on the liquid surface in the two holes 10b. Therefore, the force in the x direction acting on the liquid surface in the first hole 10a does not balance with the force in the x direction acting on the liquid surface in the second hole 10b. As a result, the liquid as a whole receives a force from the side having a large contact angle to the side having a small contact angle. That is, the liquid tends to flow from the first hole 10a to the second hole 10b. Therefore, when the absolute value of the amount of change dV51 of the voltage of the first signal Sg51 and the absolute value of the amount of change dV52 of the voltage of the second signal Sg52 are the same, the position of the liquid gradually increases in the process of repeating the reciprocation of the liquid. May shift to the second hole 10b side. However, by making the absolute value of the change amount dV52 larger than the absolute value of the change amount dV51, the position of the liquid can be maintained within a certain range. As a result, for example, it becomes easy to repeat the reciprocation of the liquid so that all of the liquid crosses the boundary 14 and turns back immediately after the crossing. As a result, the effect of promoting agitation utilizing the difference in water repellency can be improved.
[変形例]
(第2部材に係る変形例)
 図6(a)は、変形例に係るキャピラリー210の構成を示す断面図である。キャピラリー210は、第2部材を構成する材料のみが実施形態のキャピラリー10と相違する。具体的には、変形例に係る第2部材216は、本体216xと、本体216xの表面のうち、少なくとも内面の一部を覆う撥水膜216yとを有している。本体216xは、例えば、ガラスからなる。撥水膜216yの材料については既に述べたとおりである。このような構成においても、第1孔210aの内面の撥水性と、第2孔210bの内面の撥水性とを異ならせることによって、実施形態と同様の効果を得ることができる。
[Modification]
(Modification of the second member)
FIG. 6A is a cross-sectional view illustrating a configuration of a capillary 210 according to a modification. The capillary 210 differs from the capillary 10 of the embodiment only in the material constituting the second member. Specifically, the second member 216 according to the modified example has a main body 216x and a water-repellent film 216y that covers at least a part of the inner surface of the main body 216x. The main body 216x is made of, for example, glass. The material of the water-repellent film 216y is as described above. Even in such a configuration, the same effect as the embodiment can be obtained by making the water repellency of the inner surface of the first hole 210a different from the water repellency of the inner surface of the second hole 210b.
(駆動信号に係る変形例)
 図6(b)は、変形例に係る駆動信号SgBを示す図である。この図は、図4の一部(概ね時刻t6~t8)に相当する。この変形例では、駆動信号SgBが含む第1信号Sg51及び第2信号Sg52は、曲線によって構成されている。より具体的には、図示の例では、第1信号Sg51及び第2信号Sg52それぞれは、正弦波の1/4周期分によって構成されている。このような駆動信号SgBにおいても、第2信号Sg52の変化率の絶対値は、第1信号Sg51の変化率の絶対値よりも小さくされてよい。
(Modification Example of Drive Signal)
FIG. 6B is a diagram illustrating a drive signal SgB according to a modification. This diagram corresponds to a part of FIG. 4 (approximately at times t6 to t8). In this modification, the first signal Sg51 and the second signal Sg52 included in the drive signal SgB are configured by curves. More specifically, in the illustrated example, each of the first signal Sg51 and the second signal Sg52 is configured by a 周期 cycle of a sine wave. Even in such a drive signal SgB, the absolute value of the change rate of the second signal Sg52 may be smaller than the absolute value of the change rate of the first signal Sg51.
 ここで、第1信号Sg51及び第2信号Sg52それぞれは、その波形が曲線で構成されているということは、各信号の開始から終了までの間に、変化率が変化するということである。このような場合において、第2信号Sg52の変化率の絶対値が、第1信号Sg51の変化率の絶対値よりも大きいか否かは、両者の変化率の平均値を基準に判断してよい。すなわち、図示の例では、第1信号Sg51は、時間長さT1の間に変化量dV1が生じているから、その変化率の平均値は、dV1/T1である。同様に、第2信号Sg52は、時間長さT2の間に変化量dV2が生じているから、その変化率の平均値は、dV2/T2である。そして、|dV2/T2|>|dV1/T1|であれば、第2信号Sg52の変化率の絶対値は、第1信号Sg51の変化率の絶対値よりも大きいと判定されてよい。 Here, the waveform of each of the first signal Sg51 and the second signal Sg52 is configured by a curve, which means that the rate of change changes from the start to the end of each signal. In such a case, whether or not the absolute value of the rate of change of the second signal Sg52 is greater than the absolute value of the rate of change of the first signal Sg51 may be determined based on the average value of the rates of change of both. . That is, in the illustrated example, since the amount of change dV1 occurs in the first signal Sg51 during the time length T1, the average value of the change rate is dV1 / T1. Similarly, in the second signal Sg52, since the change amount dV2 occurs during the time length T2, the average value of the change rate is dV2 / T2. If | dV2 / T2 |> | dV1 / T1 |, it may be determined that the absolute value of the rate of change of the second signal Sg52 is greater than the absolute value of the rate of change of the first signal Sg51.
 なお、特に図示しないが、圧力室21の容積の増減を繰り返すための信号は、矩形波に類似した形状であってもよい。この場合、例えば、矩形波の立ち上がり部分が第1信号であり、矩形波の立ち下がり部分が第2信号であり、その間の電位が一定の部分は、第1信号及び第2信号以外の信号である。 Although not particularly shown, the signal for repeatedly increasing and decreasing the volume of the pressure chamber 21 may have a shape similar to a rectangular wave. In this case, for example, the rising portion of the rectangular wave is the first signal, the falling portion of the rectangular wave is the second signal, and the portion having a constant potential therebetween is a signal other than the first signal and the second signal. is there.
 本開示に係る技術は、以上の実施形態及び変形例に限定されず、種々の態様で実施されてよい。 技術 The technology according to the present disclosure is not limited to the above embodiments and modified examples, and may be implemented in various modes.
 例えば、ピペットは、該ピペット自体が吸引した2液を混合するものに限定されない。具体的には、例えば、内面に反応物質が予め成膜されたキャピラリーがピペット本体に取り付けられ、その後、液体(1液)がピペットによって吸引され、キャピラリーの長さ方向における往復の流れによって反応物質が液体に溶け出すようにしてもよい。また、例えば、ピペットは、2液が既に混合されている液体(1液)、溶質が既に含まれている溶媒(1液)、又は微小物質が既に分散されている液体(1液)を吸引して、混合、溶解又は分散をさらに進めるために利用されてもよい。また、ピペットは3液以上を吸引して混合するものであってもよい。 For example, the pipette is not limited to the one that mixes two liquids sucked by the pipette itself. Specifically, for example, a capillary in which a reactant is formed in advance on the inner surface is attached to the pipette body, and then a liquid (one liquid) is sucked by the pipette, and the reactant reacts by a reciprocating flow in the length direction of the capillary. May be dissolved in a liquid. Further, for example, a pipette sucks a liquid (one liquid) in which two liquids are already mixed, a solvent (one liquid) in which a solute is already contained, or a liquid (one liquid) in which fine substances are already dispersed. Thus, it may be used to further mix, dissolve or disperse. Further, the pipette may be one that sucks and mixes three or more liquids.
 また、例えば、上述した実施形態では、エア吸引後にバルブ23の開閉を行う例を示したが、場合によっては、バルブ23の開閉を行わなくてもよい。この場合、復元信号Sg4は不要となり、エア吸引信号Sg3に続いて混合信号Sg5が出力されるようにしてもよい。また、バルブ23および制御回路25を有していなくてもよい。 In addition, for example, in the above-described embodiment, an example in which the valve 23 is opened and closed after the air is sucked is shown. However, in some cases, the valve 23 may not be opened and closed. In this case, the restoration signal Sg4 becomes unnecessary, and the mixing signal Sg5 may be output following the air suction signal Sg3. Further, the valve 23 and the control circuit 25 need not be provided.
 1…ピペット、10…キャピラリー、10a…第1孔、10b…第2孔、21…圧力室、50…駆動部、24…第1制御部(制御部)、11…第1端、12…第2端、17…第1管部、18…第2管部。 DESCRIPTION OF SYMBOLS 1 ... Pipette, 10 ... Capillary, 10a ... 1st hole, 10b ... 2nd hole, 21 ... Pressure chamber, 50 ... Drive part, 24 ... 1st control part (control part), 11 ... 1st end, 12 ... No. Two ends, 17: first pipe section, 18: second pipe section.

Claims (13)

  1.  長さ方向の両端である第1端及び第2端が開口しているキャピラリーであって、
     第1孔と、
     前記第1孔の前記第2端側に繋がっており、その内面の撥水性が前記第1孔の内面の撥水性とは異なる第2孔と、を有している
     キャピラリー。
    A capillary having a first end and a second end which are both ends in a length direction,
    A first hole,
    A second hole connected to the second end side of the first hole, the second hole having a water repellency of an inner surface different from that of the inner surface of the first hole;
  2.  前記第1孔の内面の撥水性は、前記第2孔の内面の撥水性よりも高い
     請求項1に記載のキャピラリー。
    The capillary according to claim 1, wherein the water repellency of the inner surface of the first hole is higher than the water repellency of the inner surface of the second hole.
  3.  前記第1孔と前記第2孔との境界において、前記第1孔の内径が前記第2孔の内径よりも大きい
     請求項1又は2に記載のキャピラリー。
    The capillary according to claim 1, wherein an inner diameter of the first hole is larger than an inner diameter of the second hole at a boundary between the first hole and the second hole.
  4.  前記第1孔は、前記第2孔側ほど内径が大きい
     請求項1~3のいずれか1項に記載のキャピラリー。
    The capillary according to any one of claims 1 to 3, wherein the first hole has a larger inner diameter toward the second hole.
  5.  前記第1孔を有している中空状の第1部材と、
     前記第2孔を有している中空状であり、前記第1部材と固定されている第2部材と、を有している
     請求項1~4のいずれか1項に記載のキャピラリー。
    A hollow first member having the first hole,
    The capillary according to any one of claims 1 to 4, wherein the capillary has a hollow shape having the second hole, and has a second member fixed to the first member.
  6.  前記第1部材は、
      前記第1孔と、
      前記第1孔から前記第1端とは反対側に延びており、前記第1孔よりも内径が大きい第3孔と、
      前記第1孔の内径が前記第3孔の内径よりも小さいことによる段差部と、を有しており、
     前記第2部材は、前記第3孔に挿入されて前記段差部に係止されており、
     前記第2部材は、前記段差部側に先端面を有しており、
     前記段差部の前記先端面側の面は、前記キャピラリーの径方向の内側ほど前記先端面側に位置するように傾斜しており、前記段差部の、前記径方向の内側の角部が前記先端面に当接している
     請求項5に記載のキャピラリー。
    The first member includes:
    Said first hole;
    A third hole extending from the first hole to a side opposite to the first end, and having a larger inner diameter than the first hole;
    A step formed by the inner diameter of the first hole being smaller than the inner diameter of the third hole;
    The second member is inserted into the third hole and locked to the step portion,
    The second member has a distal end surface on the side of the step portion,
    The surface on the distal end surface side of the step portion is inclined so as to be located closer to the distal end surface side in the radial direction of the capillary, and the radially inner corner portion of the step portion is the distal end. The capillary according to claim 5, which is in contact with a surface.
  7.  前記第1部材は、樹脂からなり、
     前記第2部材は、ガラスからなり、又は表面の少なくとも一部を除いてガラスからなる
     請求項5又は6に記載のキャピラリー。
    The first member is made of resin,
    The capillary according to claim 5, wherein the second member is made of glass, or made of glass except for at least a part of a surface.
  8.  前記第1端の端面を第1端面とすると、
     該第1端面は円形状の開口を有する環状であり、
     前記第1端面の外径は0.4mm以下である
     請求項1~7のいずれか1項に記載のキャピラリー。
    When the end face of the first end is a first end face,
    The first end face is annular with a circular opening,
    The capillary according to any one of claims 1 to 7, wherein an outer diameter of the first end surface is 0.4 mm or less.
  9.  前記第1端面の内径は0.06mm以上である
     請求項8に記載のキャピラリー。
    The capillary according to claim 8, wherein an inner diameter of the first end surface is 0.06 mm or more.
  10.  請求項1~9のいずれか1項に記載のキャピラリーと、
     前記第2端を介して前記キャピラリーの内部に通じている圧力室と、
     前記圧力室の容積を変化させる駆動部と、
     前記駆動部を制御する制御部と、
     を有しており、
     前記キャピラリーは、前記第1端側に位置する第1管部と、前記第2端側に位置する第2管部と、を有しており、
     前記第1管部は、長さ方向に貫通する前記第1孔を有しており、
     前記第2管部は、長さ方向に貫通する前記第2孔を有しており、
     前記制御部は、前記圧力室の容積が増減を繰り返し、これにより前記キャピラリー内の液体の少なくとも一部が前記第1孔と前記第2孔との境界を繰り返し超えて往復するように前記駆動部を制御する
     ピペット。
    A capillary according to any one of claims 1 to 9,
    A pressure chamber communicating with the interior of the capillary via the second end;
    A drive unit for changing the volume of the pressure chamber,
    A control unit for controlling the driving unit;
    Has,
    The capillary has a first pipe portion located on the first end side, and a second pipe portion located on the second end side.
    The first pipe portion has the first hole penetrating in a length direction,
    The second pipe portion has the second hole penetrating in a length direction,
    The control unit controls the drive unit so that the volume of the pressure chamber repeatedly increases and decreases, whereby at least a part of the liquid in the capillary reciprocates over the boundary between the first hole and the second hole. Control the pipette.
  11.  前記制御部は、信号レベルが時間経過に対して変化して波形をなす駆動信号を前記駆動部に出力し、
     前記駆動部は、前記圧力室の容積が前記信号レベルに対応した容積になるように前記信号レベルの時間経過に対する変化に追随して前記圧力室の容積を変化させ、
     前記駆動信号は、
      前記圧力室の容積の増加によって前記液体の少なくとも一部が前記第1孔から前記第2孔へ流れるように前記駆動部を駆動させる第1信号と、
      前記圧力室の容積の減少によって前記液体の少なくとも一部が前記第2孔から前記第1孔へ流れるように前記駆動部を駆動させる第2信号と、
    を交互に繰り返し含んでおり、
     前記第1信号の波形と、前記第2信号の波形を時間経過が逆になるように反転させた波形とは互いに異なる
     請求項10に記載のピペット。
    The control unit outputs a drive signal whose signal level changes with time and forms a waveform to the drive unit,
    The drive unit changes the volume of the pressure chamber following a change with time of the signal level so that the volume of the pressure chamber becomes a volume corresponding to the signal level,
    The drive signal is
    A first signal for driving the driving unit such that at least a part of the liquid flows from the first hole to the second hole by increasing a volume of the pressure chamber;
    A second signal for driving the driving unit such that at least a portion of the liquid flows from the second hole to the first hole due to a decrease in the volume of the pressure chamber;
    Are repeated alternately,
    The pipette according to claim 10, wherein a waveform of the first signal and a waveform obtained by inverting the waveform of the second signal so that the elapsed time is reversed are different from each other.
  12.  前記第2信号の信号レベルの時間経過に対する変化率の絶対値は、前記第1信号の信号レベルの時間経過に対する変化率の絶対値よりも小さい
     請求項11に記載のピペット。
    The pipette according to claim 11, wherein the absolute value of the rate of change of the signal level of the second signal over time is smaller than the absolute value of the rate of change of the signal level of the first signal over time.
  13.  前記第1孔の内面の撥水性は、前記第2孔の内面の撥水性よりも高く、
     前記第2信号の信号レベルの変化量の絶対値は、前記第1信号の信号レベルの変化量の絶対値よりも大きい
     請求項11又は12に記載のピペット。
    The water repellency of the inner surface of the first hole is higher than the water repellency of the inner surface of the second hole,
    The pipette according to claim 11, wherein an absolute value of a change amount of a signal level of the second signal is larger than an absolute value of a change amount of a signal level of the first signal.
PCT/JP2019/034510 2018-09-03 2019-09-03 Capillary and pipette WO2020050234A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020541218A JP7154303B2 (en) 2018-09-03 2019-09-03 capillaries and pipettes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-164441 2018-09-03
JP2018164441 2018-09-03

Publications (1)

Publication Number Publication Date
WO2020050234A1 true WO2020050234A1 (en) 2020-03-12

Family

ID=69722330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034510 WO2020050234A1 (en) 2018-09-03 2019-09-03 Capillary and pipette

Country Status (2)

Country Link
JP (1) JP7154303B2 (en)
WO (1) WO2020050234A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021003690A (en) * 2019-06-27 2021-01-14 京セラ株式会社 pipette
WO2021045043A1 (en) * 2019-09-03 2021-03-11 京セラ株式会社 Pipette
CN113533033A (en) * 2021-07-19 2021-10-22 长春工程学院 Metal wire Young modulus measuring instrument based on hydraulic pressure micro displacement amplifier principle
CN116026821A (en) * 2023-02-22 2023-04-28 深圳市深信信息技术有限公司 Intelligent agricultural product detection method and detection equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131351A (en) * 1989-10-16 1991-06-04 Fuji Photo Film Co Ltd Pipette tip subjected to water-repellent treatment
JPH05184949A (en) * 1992-01-13 1993-07-27 Fuji Photo Film Co Ltd Microquantitative pipette
JP2016047531A (en) * 2010-07-12 2016-04-07 ハミルトン・ボナドゥーツ・アーゲー Pipette tip having hydrophobic surface texture
WO2018181023A1 (en) * 2017-03-29 2018-10-04 京セラ株式会社 Capillary and pipette using same
JP2019171329A (en) * 2018-03-29 2019-10-10 京セラ株式会社 Pipette and liquid collection method using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018064801A (en) * 2016-10-20 2018-04-26 武田 将和 Clothing button

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131351A (en) * 1989-10-16 1991-06-04 Fuji Photo Film Co Ltd Pipette tip subjected to water-repellent treatment
JPH05184949A (en) * 1992-01-13 1993-07-27 Fuji Photo Film Co Ltd Microquantitative pipette
JP2016047531A (en) * 2010-07-12 2016-04-07 ハミルトン・ボナドゥーツ・アーゲー Pipette tip having hydrophobic surface texture
WO2018181023A1 (en) * 2017-03-29 2018-10-04 京セラ株式会社 Capillary and pipette using same
JP2019171329A (en) * 2018-03-29 2019-10-10 京セラ株式会社 Pipette and liquid collection method using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021003690A (en) * 2019-06-27 2021-01-14 京セラ株式会社 pipette
JP7154192B2 (en) 2019-06-27 2022-10-17 京セラ株式会社 pipette
WO2021045043A1 (en) * 2019-09-03 2021-03-11 京セラ株式会社 Pipette
CN113533033A (en) * 2021-07-19 2021-10-22 长春工程学院 Metal wire Young modulus measuring instrument based on hydraulic pressure micro displacement amplifier principle
CN116026821A (en) * 2023-02-22 2023-04-28 深圳市深信信息技术有限公司 Intelligent agricultural product detection method and detection equipment
CN116026821B (en) * 2023-02-22 2023-12-12 深圳市深信信息技术有限公司 Intelligent agricultural product detection method and detection equipment

Also Published As

Publication number Publication date
JP7154303B2 (en) 2022-10-17
JPWO2020050234A1 (en) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2020050234A1 (en) Capillary and pipette
JP4543986B2 (en) Micro total analysis system
JP6426882B1 (en) Capillary and pipette using it
JP2007224844A (en) Micropump, liquid feeding method and liquid feeding system
JP5156839B2 (en) Microfluidic cartridge with solution reservoir-pump chamber
WO2020050235A1 (en) Pipette and liquid collection method
JP2007322284A (en) Microchip and filling method of reagent in microchip
JP2007292714A (en) Micro-fluid system and sample analyzer
US7509906B2 (en) Microfluidic driving and speed controlling apparatus and application thereof
US9952210B2 (en) Microchip solution sending system
JP6630028B1 (en) Pipette and liquid collection method
WO2021037218A1 (en) Sample adding needle for preparing microdroplets and microdroplet preparation method
WO2010092845A1 (en) Micro-flow passage structure and micropump
US20220288579A1 (en) Pipette
US8127794B2 (en) Dispenser arrangement for fluidic dispensing control in microfluidic system
JP2000310645A (en) Liquid injection device
JP6940449B2 (en) Pipette and liquid sampling method using it
KR20150135613A (en) Micropump for microfluidic actuation
JP7245135B2 (en) Pre-wash method, liquid aspirator and pipette
CN210045178U (en) High-precision piezoelectric ceramic driven micro-flow pump in field
KR20160011735A (en) Programmable Micropump
CN110684828A (en) Digital PCR chip, digital PCR detection system and detection method
JP3705266B2 (en) Microfluidic system
CN112283080A (en) Piezoelectric micropump
Yasuda et al. Droplet transportation using EWOD-induced wettability gradient

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857694

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541218

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857694

Country of ref document: EP

Kind code of ref document: A1