WO2020050113A1 - Method for manufacturing useful substance through use of fermentation process - Google Patents
Method for manufacturing useful substance through use of fermentation process Download PDFInfo
- Publication number
- WO2020050113A1 WO2020050113A1 PCT/JP2019/033690 JP2019033690W WO2020050113A1 WO 2020050113 A1 WO2020050113 A1 WO 2020050113A1 JP 2019033690 W JP2019033690 W JP 2019033690W WO 2020050113 A1 WO2020050113 A1 WO 2020050113A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- useful substance
- producing
- escherichia coli
- culture
- photosynthetic
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/54—Acetic acid
Definitions
- the present invention relates to a method for producing a useful substance by culturing a non-photosynthetic prokaryote having photophosphorylation ability. More specifically, the present invention relates to a method for producing a useful substance, which comprises culturing, under light conditions, a non-photosynthetic prokaryote in which a gene encoding rhodopsin has been introduced and expressed by genetic engineering.
- Patent Document 1 Plants and algae of eukaryotes and photoautotrophs of prokaryotes such as cyanobacteria, green sulfur bacteria, green non-sulfur bacteria, purple sulfur bacteria, and purple non-sulfur bacteria plants and algae, photosynthetic bacteria It is disclosed that introduction of proteorhodopsin into a microorganism (photoautotoroph) enables conversion to a highly photosynthetic organism (hyper @ photosynthetic @ organism) (Patent Document 1).
- the photoautotrophic microorganism described in Patent Document 1 refers to an organism that acquires energy through photosynthesis, and is completely different from a non-photosynthetic prokaryote.
- Patent Document 3 There is a method for producing a light-driven high-energy Saccharomyces submonum yeast (Patent Document 3).
- dR Delta-rhodopsin
- Patent Document 3 targets only Saccharomyces submonum yeast and requires that a nucleic acid (gene) encoding a mitochondrial localization signal besides rhodopsin be incorporated.
- Japanese Patent Application Laid-Open No. 2014-87360 Japanese Patent Application No. 2013-269377
- Japanese Patent Application No. 2004-521604 Japanese Patent Application 2001-580311
- Re-published publication WO2015 / 170609 Japanese Patent Application No. 2016-517869
- the present invention relates to a method for producing a useful substance by utilizing a fermentation process of a microorganism, and an object of the present invention is to provide a method for producing and producing a useful substance more effectively.
- the present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, by imparting photophosphorylation ability to non-photosynthetic prokaryotes biotechnologically, while being a non-photosynthetic prokaryote, a light-driven high energy action And succeeded in producing a useful substance more effectively, thereby completing the present invention. More specifically, by culturing non-photosynthetic prokaryotes expressed by introducing a gene encoding rhodopsin by genetic engineering under light conditions, it is possible to more effectively produce useful substances using the fermentation process of microorganisms The present invention was completed.
- the present invention includes the following. 1. A method for producing a useful substance, which comprises culturing a non-photosynthetic prokaryote in which a gene encoding rhodopsin is introduced and expressed by genetic engineering under light irradiation. 2. Non-photosynthetic prokaryotes expressed by introducing the gene encoding rhodopsin by genetic engineering, the production of useful substances when cultured under light irradiation, the production of useful substances when cultured in the dark 2. The method for producing a useful substance according to the above item 1, which is a non-photosynthetic prokaryote showing a higher production amount. 3. 3. 3.
- the method of manufacturing the substance 5.
- the method for producing a useful substance according to any one of items 1 to 4, wherein the non-photosynthetic prokaryote is Escherichia coli. 6. 6.
- a method for producing a useful substance according to any one of items 1 to 5, wherein the culture of the non-photosynthetic prokaryote under light irradiation is a culture under light irradiation of a light amount of 1 to 2000 ⁇ mol / m 2 / s. 7.
- a method for producing a useful substance derived from a culture product of Escherichia coli comprising the following steps: 1) a step of introducing a gene encoding rhodopsin into E. coli; 2) a step of culturing the Escherichia coli into which the gene of the above 1) has been incorporated at 4 to 40 ° C.
- the useful substance is one or more selected from organic acids, peptides, amino acids, proteins, nucleic acids, vitamins, sugars, sugar alcohols, alcohols, isoprenoids, and lipids.
- the useful substance is acetic acid and / or glutathione.
- the useful substance is one or more selected from mevalonic acid, isoprenol, and 3-hydroxypropionic acid.
- Non-photosynthetic prokaryotes usually do not have the purpose of producing useful substances, so the productivity of useful substances using non-photosynthetic prokaryotes is low.
- non-photosynthetic prokaryotes such as Escherichia coli are improved by metabolic engineering to improve the fermentation productivity of various useful substances such as pharmaceuticals, foods, cosmetics, fuels, and polymer raw materials
- microorganisms fall short of intracellular energy. It is not uncommon to face a decline in growth or a plateau in productivity of the target substance. This is thought to be due to the fact that the carbon source is consumed in the fermentation process of the microorganism, such as “material of the cell itself (Cell mass)”, “production of the target product”, and “intracellular energy”.
- the light-driven non-photosynthetic prokaryote of the present invention in which a non-photosynthetic prokaryote is provided with a photophosphorylation ability, it can be a host for producing a renewable useful substance.
- light can be used as an energy source in addition to the conventional energy sources, so that the productivity of useful substances can be improved.
- Example 3-3 It is a figure which shows the result of the growth of the Escherichia coli cell which used glucose or glycerol as a carbon source about the transformed Escherichia coli (dR expression strain 1). rpm indicates the stirring speed (the number of revolutions per minute).
- Example 3-4 It is a figure which shows the result of glutathione production which used glucose or glycerol as a carbon source about the transformed Escherichia coli (dR expression strain 1). rpm indicates the stirring speed (the number of revolutions per minute).
- Example 3-4 It is a figure which shows the glutathione production result about the transformed Escherichia coli (pR expression strain 1).
- FIG. 4 shows the results of confirming the production of metabolites by transformed Escherichia coli (dR expression strains 2 to 4).
- Examples 4 to 6 It is a figure which shows the result of having confirmed the production amount of the metabolite (mevalonic acid) by the transformed Escherichia coli (dR expression strain 2).
- Example 4 It is a figure which shows the result of having confirmed the production amount of the metabolite (isoprenol) by the transformed Escherichia coli (dR expression strain 3).
- Example 5 It is a figure which shows the result of having confirmed the production amount of the metabolite (3HP: 3 hydroxypropionic acid) by the transformed Escherichia coli (dR expression strain 4).
- Example 6 It is a figure which shows the result of having confirmed the production amount of the metabolite (3HP: 3 hydroxypropionic acid) by the transformed Escherichia coli (dR expression strain 4).
- the method for producing a useful substance according to the present invention is characterized in that it comprises a step of culturing a non-photosynthetic prokaryote, which has been expressed by introducing a gene encoding rhodopsin by genetic engineering, under light conditions (light irradiation).
- non-photosynthetic prokaryote refers to a prokaryote that does not normally perform photosynthesis, such as non-photosynthetic bacteria, non-photosynthetic archea, and non-photosynthetic actinomycetes ( non-photosynthetic actinomycetes).
- Escherichia coli Bacillus subtilis , lactic acid bacteria ( Lactobacillus ), acetic acid bacteria ( Acetobacteraceae ), coryneform bacteria ( Corynebacterium ), Pseudomonas bacteria, methanogens ( Methanobacterium , Methanosarcina), Streptomyces (Streptomyces), include actinomycetes (Actinomyces), etc., it is particularly suitable E. coli.
- the non-photosynthetic prokaryote that can be used may be a wild type as long as rhodopsin can be expressed by genetic engineering, or may be a mutated or established prokaryote.
- Escherichia coli Escherichia coli MG1655 (DE3) strain (Journal of Bioscience and Bioengineering Vol. 123 No. 2, 177 e182, 2017) can be used, and expression methods such as constitutive expression and propionic acid, When inducible expression with arabinose, acetic anhydride, or the like is applied, a wild strain or an appropriate strain can be selected and used.
- rhodopsin is a complex of a protein called Opsin and retinal (Retinal), and refers to a photoreceptor protein.
- examples of the type of rhodopsin include delta-rhodopsin (dR), bacteriorhodopsin (including archrhodopsin and crux rhodopsin), sensory rhodopsin I, sensory rhodopsin II, proteorhodopsin (pR), channelrhodopsin I, channelrhodopsin II, halo Rhodopsin, xanthrodopsin, sodium pump type rhodopsin, heliorhodopsin and the like.
- dR delta-rhodopsin
- bacteriorhodopsin including archrhodopsin and crux rhodopsin
- sensory rhodopsin I include archrhodopsin and crux rhodops
- delta-rhodopsin and bacteriorhodopsin have a function of pumping protons from the inside of prokaryotes to the outside under light conditions (light irradiation), and halorhodopsin has a function of taking in chloride ions by light.
- Rhodopsin of the present invention is preferably delta-rhodopsin, bacteriorhodopsin or proteorhodopsin, more preferably delta-rhodopsin.
- Deltarhodopsin includes those derived from Haloterrigena turkmenica , Haloterrigena sp. Arg-4. There is a report on deltarhodopsin derived from H. turkmenica expressed in E. coli (BiochemBiophys Res Commun 2006, 341: 285-290, GeneBank Accession No. AB00962).
- the term “gene encoding rhodopsin” includes a nucleic acid sequence consisting of a base sequence capable of expressing rhodopsin.
- the expressed rhodopsin does not necessarily need to be full-length rhodopsin, but may be activated by light energy and be long enough to produce intracellular energy such as a proton concentration gradient or ATP by activating the electron transport system. I just need.
- Rhodopsin artificially designed may be used.
- a gene encoding rhodopsin having such a function may be used.
- the non-photosynthetic prokaryote (hereinafter, also referred to as “transformed non-photosynthetic prokaryote”) into which the gene encoding rhodopsin of the present invention is introduced and expressed by the genetic engineering method is used.
- Those prepared in advance may be used, or the transformed non-photosynthetic prokaryote may be prepared to produce a useful substance.
- the method for producing a useful substance of the present invention comprises the steps of preculturing the transformed non-photosynthetic prokaryote and culturing the transformed non-photosynthetic prokaryote under light conditions (light irradiation) to produce a useful substance. included. Further, a step of collecting the produced useful substance can be included. The step of collecting the produced useful substance may be simultaneous with the step of culturing the transformed non-photosynthetic prokaryote, or may be after the culturing.
- the transformed non-photosynthetic prokaryote can be recovered by culturing and growing the transformed non-photosynthetic prokaryote in a conventional manner. Culture conditions can be appropriately set under conditions suitable for the growth of the transformed non-photosynthetic prokaryote to be used.
- the culture medium used for culturing the transformed non-photosynthetic prokaryote includes a carbon source, a nitrogen source, inorganic ions, and an organic substance required by the transformed non-photosynthetic prokaryote in order to produce a useful substance which is a target product of the present invention. There is no particular limitation as long as it is a commonly used medium containing trace elements, nucleic acids, vitamins and the like.
- pH and temperature conditions may be selected so as to be most suitable for the growth of the transformed non-photosynthetic prokaryote to be used.
- pH 2-9 preferably pH 4-9, more preferably pH 5-8
- the culture temperature is 4-50 ° C, preferably 15-45 ° C, more preferably 30-40 ° C. be able to.
- the culturing period is not particularly limited as long as the production of the desired product can be confirmed.
- culturing can be performed for 4 to 144 hours, preferably 4 to 72 hours, and more preferably 4 to 36 hours. Subculture may be performed if necessary.
- the method for confirming the growth of the transformed non-photosynthetic prokaryote is not particularly limited.
- a culture may be collected and observed with a microscope, or may be observed with absorbance.
- concentration of dissolved oxygen in the medium during the culture of the transformed non-photosynthetic prokaryotic organism is not particularly limited, but is usually preferably 0.5 to 20 ppm.
- the amount of ventilation can be adjusted, agitated, or oxygen can be added to the ventilation.
- the culture method is not particularly limited under the above conditions, but a liquid culture method is preferred, and any of batch culture, fed-batch culture, continuous culture, or perfusion culture may be used. Further, the culture can be carried out by shaking or stirring with aeration.
- the culture medium for culturing the transformed non-photosynthetic prokaryote may be simply referred to as “culture solution”.
- the transformed non-photosynthetic prokaryote of the present invention it is preferable to culture the transformed non-photosynthetic prokaryote under light conditions (light irradiation). By culturing under light irradiation, it is possible to effectively utilize the energy in the transformed non-photosynthetic prokaryote and to produce a useful substance more effectively.
- Light irradiation for producing a useful substance is preferably performed under light irradiation with a light amount of 1 to 2000 ⁇ mol / m 2 / s, more preferably under light irradiation with a light amount of 10 to 200 ⁇ mol / m 2 / s.
- the light irradiation may be performed from the start of the culture or during the culture.
- the irradiation time may be constant irradiation during the culture or intermittent irradiation.
- any light source such as a fluorescent lamp, an LED, and sunlight may be used, but when the wavelength is limited, 300 to 800 nm is preferable, and 450 to 650 nm is more preferable. Yes, 550 nm is most preferred.
- the useful substance can be recovered, for example, by continuously extracting a culture solution containing the product from a culture tank containing the transformed non-photosynthetic prokaryote cultured under the above-mentioned light conditions (light irradiation).
- the culture vessel containing the transformed non-photosynthetic prokaryote may be continuously supplied with the medium. While continuously withdrawing the culture solution from the culture tank, the transformed non-photosynthetic prokaryote can be cultured under conditions that allow stable growth during the useful substance production phase.
- Continuous culture of the transformed non-photosynthetic prokaryote and production of a useful substance are achieved by supplying a medium as a substrate solution, extracting the culture solution, and culturing under growth conditions. As a result, the ability of the transformed non-photosynthetic prokaryote to proliferate is maintained even during the useful substance production period, and as a result, the production of the useful substance can be maintained even in continuous culture.
- the “useful substance” is a substance that can be produced by the fermentation process of the transformed non-photosynthetic prokaryote of the present invention, and is not particularly limited as long as it is industrially useful.
- useful substances include, for example, organic acids, peptides, amino acids, proteins, nucleosides, vitamins, sugars, sugar alcohols, alcohols, isoprenoids, and lipids. More specifically, the following can be mentioned.
- the organic acid include acetic acid, lactic acid, and succinic acid.
- Examples of the peptide include glutathione, alanylglutamine, and ⁇ -glutamyl valylglycine
- examples of the polypeptide include polylysine and polyglutamic acid.
- amino acids L-alanine, glycine, L-glutamine, L-glutamic acid, L-asparagine, L-aspartic acid, L-lysine, L-methionine, L-threonine, L-leucine, L-valine, L-isoleucine , L-proline, L-histidine, L-arginine, L-tyrosine, L-tryptophan, L-phenylalanine, L-serine, L-cysteine, L-3-hydroxyproline, L-4-hydroxyproline, 5-aminolevulin Acids and the like can be given.
- Proteins include luciferase, inosine kinase, Glutamate-5-kinase (EC 2.7.2.11), Glutamate-5-semialdehyde dehydrogenase (EC 1.2.1.41), Pyrroline-5-carboxylatereductase (EC 1.5.1.2), ⁇ -glutamylcysteine synthase (EC 6.3.2.2), glutathione synthase (EC 6.3.2.3), human granulocyte colony stimulating factor, xylose reductase, P450 and the like.
- the nucleoside include inosine, guanosine, inosinic acid, guanylic acid, adenylic acid and the like.
- vitamins include riboflavin, thiamine, and ascorbic acid.
- sugar examples include xylose and mannose
- examples of the sugar alcohol include xylitol and mannitol
- examples of the alcohol include ethanol.
- isoprenoids include mevalonate (MVA), isoprenol, astaxanthin, isoprene, isopentenol, limonene, pinene, farnesene, and bisabolene.
- examples of the lipid include propionic acid, hydroxypropionic acid, EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid).
- acetic acid is particularly preferable for organic acids, glutathione for peptides, mevalonic acid and isoprenol for isoprenoids, and hydroxypropionic acid for lipids.
- a method for isolating a useful substance from a culture solution containing the product is not particularly limited, and a method known per se or any method to be developed in the future can be applied.
- Example 1 Preparation of transformed Escherichia coli (dR expression strain)
- Example 1 shows a method of preparing deltarhodopsin (dR) transformed Escherichia coli.
- transformed Escherichia coli capable of expressing the following delta-rhodopsin (dR) was prepared in Escherichia coli MG1655 (DE3) strain (Journal of Bioscience and Bioengineering Vol. 123 No. 2, 177 e182, 2017).
- the transformed Escherichia coli prepared in this example is hereinafter referred to as “dR-expressing strain 1”.
- deltarhodopsin (dR) expressed in E. coli has the amino acid sequence shown in SEQ ID NO: 1 below.
- Example 2 Preparation of transformed Escherichia coli (pR expression strain)
- pR expression strain 1 transformed Escherichia coli capable of expressing the following proteorhodopsin (pR) in Escherichia coli MG1655 (DE3) was prepared. did.
- the transformed Escherichia coli prepared in this example is hereinafter referred to as “pR expression strain 1”.
- proteorhodopsin (pR) expressed in Escherichia coli has the following amino acid sequence shown in SEQ ID NO: 3 (see Biochimica et Biophysica Acta 1777: 2008, 504-513).
- SEQ ID NO: 3 see Biochimica et Biophysica Acta 1777: 2008, 504-513.
- Example 3 Culture of transformed Escherichia coli
- Example 3 shows a method of culturing the transformed Escherichia coli (dR-expressing strain 1, pR-expressing strain 1) prepared in Examples 1 and 2.
- Each transformed E. coli was pre-cultured in LB medium (Luria-Bertani medium) at 37 ° C. with stirring at 200 rpm, and then in M9 medium containing glucose (4-8%) or glycerol (8%) as a carbon source. Main culture was performed at 37 ° C. and 200 rpm.
- the medium contains an appropriate amount of streptomycin, and the same applies to the culture in each of the following Examples and Experimental Examples. Growth of transformed E. coli, the culture medium containing the E. coli cells and the absorbance of OD 600 ultraviolet-visible spectrophotometer; by measuring in (UVmini-1240 Shimadzu), it was confirmed from the cell concentration.
- Preculture medium LB medium volume 5 ml Addition amount of transformed Escherichia coli to culture medium Inoculate one colony from LB agar plate Temperature 37 °C Incubation time 15 hours without light irradiation
- the sample prepared above was irradiated with light having a light intensity of 50, 70, 200 and 1500 ⁇ mol / m 2 / s, and the change in pH caused by ion transport of rhodopsin was measured. It was measured using a meter (F-72; HORIBA).
- the proton transport activity of the transformed Escherichia coli (dR-expressing strain 1) was confirmed by the change in pH, and it was confirmed whether the transformed Escherichia coli (dR-expressing strain 1) was a light-driven bacterium.
- Example 3-2 Measurement of ATP
- the sample prepared in the same manner as the sample for measuring the proton transport activity in Experimental Example 3-1 was irradiated with light of 25, 50 and 100 ⁇ mol / m 2 / s using a halogen lamp projector (JCD100V-300WL). .
- the dark condition means 0.02 ⁇ mol / m 2 / s or less.
- the culture solution (100 ml) containing the dR-expressing strain 1 was centrifuged at 3000 g for 5 minutes at room temperature, and the supernatant was removed to give 1 ml of 100 ml of 100 mM Tris-HCl, 1 mM EDTA (pH 7.5). Was added, and the mixture was centrifuged again to remove the supernatant.
- 500 ⁇ l of 100 mM Tris-HCl, 1 mM EDTA (pH 7.5) was added to E. coli cells, and transferred to a cell disruption tube. Zirconia beads having a diameter of 0.6 mm were added, and the cells were crushed at 1500 rpm for 0 minutes using a cell crusher (shake master neo).
- the Escherichia coli cell solution after cell disruption was centrifuged at 16000 g for 20 minutes at 4 ° C., and the supernatant was used as an ATP measurement sample.
- ATP production was measured by a luciferase luminescence method using a commercially available ATP Bioluminescent Assay Kit (FLAA-1KT; Sigma) according to the method described in the manual. It was confirmed that the ATP production increased according to the amount of light irradiation (FIG. 2).
- Example 3-3 Measurement of metabolites by transformed Escherichia coli
- production of metabolites by the transformed Escherichia coli (dR expression strain 1) cultured in Example 3 was confirmed.
- light with a light amount of 50 ⁇ mol / m 2 / s was irradiated as a bright condition, and 0.02 ⁇ mol / m 2 / s or less in a dark condition.
- the culture solution (100 ml) containing the dR expression strain 1 was centrifuged at 15000 g at 4 ° C. for 5 minutes, and the supernatant was collected, filtered through a 0.45 ⁇ m filter (Millex HV; Merck KGAA), and stored at -30 ° C. The resulting sample was used as a culture solution sample. Next, an equal amount of an internal standard solution (5 mM isobutyric acid) was mixed with a culture solution sample to prepare a metabolite measurement sample.
- an internal standard solution 5 mM isobutyric acid
- HPLC high performance liquid chromatography
- Example 3-4 Glutathione production by transformed Escherichia coli 1
- the production of glutathione (GSH) by the transformed Escherichia coli (dR expression strain 1) cultured in Example 3 was confirmed.
- light with a light amount of 50 ⁇ mol / m 2 / s was irradiated as a bright condition, and 0.02 ⁇ mol / m 2 / s or less in a dark condition.
- FIG. 4 shows the E. coli cell concentration (OD 600 ) after 24 hours of culture.
- OD 600 E. coli cell concentration
- the amount of GSH was measured by a coloration method using DTNB (5-5′-dithiobis [2-nitrobenzoic acid]) using a commercially available GSH measurement kit (Dojindo Chemical).
- G The GSH concentration per cell after 24 hours of culture is shown in the upper part of FIG.
- glucose was used as a carbon source and cultured aerobically with stirring at 200 rpm
- the concentration was 0.221 mg / l / OD under light conditions and 0.117 mg / l / OD under dark conditions.
- glycerol was used as a carbon source and cultured aerobically with stirring at 200 rpm
- the light condition was 1.18 mg / l / OD and the dark condition was 0.60 mg / l / OD.
- Example 3-5 Glutathione production 2 by transformed E. coli
- Glutathione production 2 by transformed E. coli
- GSH glutathione
- Example 4 Preparation of transformed Escherichia coli (dR expression strain 2)
- a nucleic acid consisting of the nucleotide sequence specified by SEQ ID NO: 2 was introduced into Escherichia coli MG1655 (DE3) in the same manner as in Example 1, Transformed E. coli (dR expression strain 2) was prepared.
- PCOLADuet-1-mvaES and pBbS7a-dR were introduced into Escherichia coli MG1655 (DE3) to prepare an MVADR strain, which was designated as dR-expressing strain 2.
- dR expression strain 2 a method for preparing dR expression strain 2 will be described.
- pCOLADuet-1-mvaES attaches recognition sites for the restriction enzymes NdeI and KpnI to the NdeI-XhoI site of MCS2 of pCOLADuet-1 (Merck KGaA). It was prepared by introducing the nucleotide sequences shown in SEQ ID NO: 5 and SEQ ID NO: 6, which were codon-optimized. mvaE and mvaS are both mevalonate synthases.
- pBbS7a-dR was prepared by treating pBbS7a-RFP (Plasmid # 35313; Addgene) with restriction enzymes NdeI and KpnI, and replacing the RFP gene of pBbS7a-RFP with the Rd gene consisting of the nucleotide sequence specified by SEQ ID NO: 2. .
- the purified plasmid was treated with AvrII and SacI, and replaced with the replication origin SC101 of BbS47a-RFP (Plasmid ## 35301; #Addgene).
- Escherichia coli MG1655 (DE3) was transformed with the above plasmid to prepare dR expression strain 2.
- Example 4-1 Culture method of transformed Escherichia coli (dR expression strain 2) and production of mevalonic acid The dR expression strain 2 prepared above was subjected to preculture and main culture under the following culture conditions. In this experimental example, production of mevalonic acid, which is a metabolite of dR expression strain 2, was also confirmed.
- the metabolic pathway of mevalonic acid is as shown in FIG.
- the culture solution (100 ml) containing the dR expression strain 2 was centrifuged at 15000 g at 4 ° C. for 5 minutes, and the supernatant was collected, filtered through a 0.45 ⁇ m filter (Millex HV; MerckAKGaA), and stored at -30 ° C. This was used as a mevalonic acid measurement sample.
- the mevalonic acid concentration was measured by high performance liquid chromatography (HPLC).
- HPLC high performance liquid chromatography
- FIG. 8 shows the measurement results of the cell concentration and the mevalonic acid concentration.
- the production rate of mevalonic acid was 0.64 ⁇ 0.07 mmol / g / h when cultured under light conditions, and 0.49 ⁇ 0.020.0mmol / g / h when cultured under dark conditions.
- the production rate of mevalonate is determined by the cell concentration during the phase in which the cell concentration and the mevalonate concentration increase linearly (culture time 6 to 7.5 hours) and the amount of mevalonate increased per time (1.5 hours) was obtained.
- Mevalonic acid is a very important compound as an intermediate hub compound of isoprenoids, which are natural pigments having various structures and physiological functions, and pharmaceutical intermediates.
- Example 5 Preparation of transformed Escherichia coli (dR expression strain 3)
- a nucleic acid having the nucleotide sequence specified by SEQ ID NO: 2 was introduced into Escherichia coli MG1655 (DE3) as in Example 1, Transformed E. coli (dR expression strain 3) was prepared.
- E. coli MG1655 (DE3) was introduced with pCOLADuet-1-mvaES-nudF into which an ADP-ribose pyrophosphatase expression gene was inserted, pMevB and pBbS7a-dR, and an IPDR strain was prepared to be dR expression strain 3.
- dR expression strain 3 As an ADP-ribose pyrophosphatase expression gene, a nudF sequence (SEQ ID NO: 7) obtained from the genome of Bacillus subtilis was used. pCOLADuet-1-mvaES-nudF was prepared by introducing a nudF sequence into the Nco1-BamH1 site of MCS1 of pCOLADuet-1-mvaES prepared in Example 4.
- nudF Nucleotide sequence of codon-optimized gene encoding nudF (SEQ ID NO: 7)
- PMevB was obtained from Plasmid # 17819 (Addgene).
- pBbS7a-dR was produced in the same manner as in Example 4.
- Escherichia coli MG1655 (DE3) was transformed using the above plasmid to prepare dR expression strain 3.
- Example 5-1 Culture method of transformed Escherichia coli (dR expression strain 3) and production of isoprenol
- the dR expression strain 3 prepared above was subjected to preculture and main culture under the following culture conditions.
- the production of isoprenol, a metabolite of dR-expressing strain 3 was also confirmed.
- the metabolic pathway of isoprenol is as shown in FIG.
- the culture solution (100 ml) containing dR-expressing strain 3 was centrifuged at 15000 g at 4 ° C. for 5 minutes, and the supernatant was collected, filtered through a 0.45 ⁇ m filter (Millex HV; Merck KKGA), and stored at -30 ° C. The resulting sample was used as a culture solution sample. Next, an equal amount of an internal standard solution (0.1% 3-methyl-1-butanol) was mixed with a culture solution sample to prepare a sample for isoprenol measurement.
- Isoprenol was measured by GC (Gas Chromatography) -FID (Flame Ionization Detector, flame ionization type detector). The GC-FID was operated under the following conditions, and isoprenol was measured.
- FIG. 9 shows the measurement results of the cell concentration, glucose concentration, and isoprenol concentration.
- the isoprenol yield was calculated from the changes in the isoprenol concentration and the glucose concentration at the 0th and 10th hours of the culture. As a result, after 10 hours of culture, the concentration was 1.78 ⁇ 0.14 ° C.-mol ⁇ % under the bright condition, and 1.17 ⁇ 0.10 ° C-mol% under the dark condition.
- Isoprenol has an energy density (35 MJ / L) about 1.8 times that of ethanol (19.6 MJ / L), and is expected as an alternative fuel to gasoline (32 MJ / L).
- isoprenol can be converted into general chemical raw materials such as isoprene by a chemical process.
- Isoprene is a raw material for synthetic rubber.Since synthetic rubber produces 15 million tons worldwide and 1,68,000 tons in Japan, it is expected to form a large market as a synthetic petroleum alternative biomaterial. You.
- Example 6 Preparation of transformed Escherichia coli (dR expression strain 4)
- a nucleic acid consisting of the nucleotide sequence specified by SEQ ID NO: 2 was introduced into Escherichia coli MG1655 (DE3) as in Example 1, Transformed E. coli (dR expression strain 4) was prepared.
- PETM6-mcrNC and pBbS7a-dR were introduced into Escherichia coli MG1655 (DE3) to prepare an MVADR strain, which was designated as dR-expressing strain 4.
- dR expression strain 4 a method for preparing dR expression strain 4 will be described.
- pETM6-mcrNC is an N-terminal side (mcrN, amino acids 1 to 549) and a C-terminal side (mcrC, amino acid number 550) of Malonyl-CoA reductase derived from Chloroflexus aurantiacus. -1219), which was prepared by introducing a codon-optimized sequence for E. coli.
- pBbS7a-dR was produced in the same manner as in Example 4.
- Escherichia coli MG1655 (DE3) was transformed with the above plasmid to prepare dR expression strain 4.
- Example 6-1 Culture method of transformed Escherichia coli (dR expression strain 4) and production of 3HP
- the dR expression strain 4 prepared above was subjected to preculture and main culture under the following culture conditions.
- the production of 3HP (3-hydroxypropionic acid), which is a metabolite of dR-expressing strain 4 was also confirmed.
- the metabolic pathway of 3HP is as shown in FIG.
- the initial cell concentration OD 660 0.05, temperature 37 ° C., with stirring 150 rpm, the light irradiation in the bright condition (50 ⁇ mol / m 2 / s) to about
- the culture solution (100 ml) containing the dR expression strain 4 was centrifuged at 15000 g at 4 ° C. for 5 minutes, and the supernatant was collected, filtered through a 0.45 ⁇ m filter (Millex HV; Merck KGaA), and stored at -30 ° C. This was used as a sample for measuring mevalonic acid. 3HP was measured by high performance liquid chromatography (HPLC).
- HPLC high performance liquid chromatography
- Shimadzu HPLC was operated under the following conditions to measure central metabolites including 3HP.
- the measurement results of the cell concentration and the 3HP concentration are shown in FIG.
- the production rate of 3HP was 1.2 ⁇ 0.05 mmol / g / h when cultured under light conditions, whereas it was 1.0 ⁇ 0.09 mmol / g / h when cultured under dark conditions.
- the 3HP production rate is calculated by converting the cell concentration between the cell concentration and the phase in which the 3HP concentration increases linearly (culture time 6 to 10 hours) and the amount of 3HP increased per time (4 hours). I got it.
- 3HP and its esters are useful compounds as raw materials for aliphatic polyesters, and polyesters synthesized therefrom have attracted attention as biodegradable polyesters. For this reason, it also leads to the solution of the microplastic problem, which is concerned about recent marine pollution and adverse effects on the human body.
- non-photosynthetic prokaryotes in which a gene encoding rhodopsin has been introduced and expressed by genetic engineering become a new light-driven energy-regenerating useful substance production host that can use light energy. It is advantageous in gaining.
- the technology of the present invention can separate "intracellular energy" from the fermentation process in the three-phase state, and imparts photophosphorylation ability to non-photosynthetic prokaryotes that originally cannot use light energy, This is an advantage in that it can be a new light-driven energy-renewable useful material production host that makes energy available.
- the technology of the present invention can improve the productivity of useful substances because light can be used as an energy source in addition to the conventional energy sources.
- As a competing technology there is an energy-saving microorganism (see JP-A-2017-55777).
- JP-A-2017-55777 an energy-saving microorganism
- the energy of basal metabolism can be deleted, and the energy of producing useful substances can be improved.
- there is a limit to the saving of basal metabolic energy and it is assumed that the growth speed is slowed by reducing the energy of basal metabolism, and the improvement in productivity seems to be limited.
- microalgae eg, Euglena
- microalgae utilized for producing useful substances other than microorganisms such as Escherichia coli can also compete for producing useful substances.
- microalgae can originally utilize light energy, so they are not the destination to provide this technology.
- microalgae have a slow growth rate, and it is considered that practical use as a host for producing substances is difficult when compared with non-photosynthetic prokaryotes such as Escherichia coli.
- Useful substances include substances that can be produced by utilizing the fermentation process of microorganisms, such as proteins, peptides, amino acids, nucleic acids, vitamins, sugars, sugar alcohols, alcohols, organic acids, isoprenoids, bioactive low molecular weight compounds and And lipids.
- Particularly useful substances in the present invention are glutathione as a peptide and acetic acid as an organic acid.
- useful substances produced by the method of the present invention can be effectively used as raw materials for pharmaceuticals, foods, cosmetics, fuels, polymers, and the like, and have extremely excellent industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Provided is a method for producing a useful substance through the use of a microorganism fermentation process that can more effectively produce and manufacture the useful substance. This method is based on giving photophosphorylation ability to nonphotosynthetic prokaryotes by bioengineering. By giving the nonphotosynthetic prokarkyotes photophosphorylation ability by bioengineering, cells that have a light-driven high-energy action, while being nonphotosynthetic prokaryotes, are obtained. By using these transformed nonphotosynthetic prokaryotes, the useful substance can be more effectively produced and manufactured. More specifically, the useful substance can be more effectively manufactured using a microorganism fermentation process by culturing the transformed nonphotosynthetic prokaryotes, in which a gene that encodes rhodopsin has been introduced by genetic engineering and allowed to express, under irradiation with light.
Description
本発明は、光リン酸化能を付与した非光合成原核生物を培養することによる有用物質の製造方法に関する。より詳しくは、遺伝子工学的にロドプシン(Rhodopsin)をコードする遺伝子を導入して発現させた非光合成原核生物を明条件下で培養することを特徴とする、有用物質の製造方法に関する。
(4) The present invention relates to a method for producing a useful substance by culturing a non-photosynthetic prokaryote having photophosphorylation ability. More specifically, the present invention relates to a method for producing a useful substance, which comprises culturing, under light conditions, a non-photosynthetic prokaryote in which a gene encoding rhodopsin has been introduced and expressed by genetic engineering.
本出願は、参照によりここに援用されるところの日本出願特願2018-164907号優先権を請求する。
This application claims the priority of Japanese Patent Application No. 2018-164907, which is incorporated herein by reference.
生体や環境にやさしいクリーンなエネルギーが望まれる時代にあって、無尽蔵に存在する光エネルギーを利用する太陽電池や、光エネルギーを有機物として蓄積した植物体をエネルギー源や化成品の発酵原料として用いようとするバイオリファイナリーの研究が盛んである。そして光合成細菌(photosynthetic bacteria)や藍藻(cyanobacterium)などの光合成能を有する微生物について、光エネルギーを利用して有用物質を生産させる研究が行なわれている。しかしながら、これらの微生物は概して増殖速度が遅いことや、代謝経路の全貌が不明確であることが、実用化するうえでの課題となっている。一方で、増殖速度が速い大腸菌や出芽酵母などの発酵微生物に代謝工学的な改良を施し、医薬品や食品、化粧品、燃料、ポリマー原料等の様々な有用物質の発酵生産性を向上させる研究が行なわれている。しかしながら、目的物質の生産性が向上するにつれて、野生株とは異なる偏った負荷を課せられたこれらの発酵微生物はしばしば細胞内エネルギー(ATP:Adenosine triphosphate)不足に陥り、生育の低下や目的物質の生産性の頭打ちに直面することが多い。
In an era where clean energy that is friendly to living organisms and the environment is desired, use solar cells that use inexhaustible light energy and plants that store light energy as organic matter as energy sources and fermentation materials for chemical products. Research on biorefinery is active. Research has been conducted on microorganisms having photosynthetic ability, such as photosynthetic bacteria (bacteria) and cyanobacterium, to produce useful substances using light energy. However, these microorganisms generally have a low growth rate and the entire metabolic pathway is unclear, which has been a problem in practical use. On the other hand, research is being conducted to improve the fermentation microorganisms such as Escherichia coli and budding yeast, which have a high growth rate, by metabolic engineering to improve the fermentation productivity of various useful substances such as pharmaceuticals, foods, cosmetics, fuels, and polymer raw materials. Have been. However, as the productivity of the target substance increases, these fermenting microorganisms, which have been subjected to a biased load different from that of the wild type, often fall into intracellular energy (ATP: Adenosine triphosphate) deficiency, which leads to a decrease in growth and a decrease in the target substance. Often face productivity peaks.
真核生物(eukaryote)の植物及び藻類、並びに原核生物(prokaryote)の藍藻類、緑色硫黄細菌、緑色非硫黄細菌、紅色硫黄細菌、及び紅色非硫黄細菌植物や藻類、光合成菌などの光独立栄養微生物(photoautotoroph)にプロテオロドプシンを導入することで、高光合成生物(hyper photosynthetic organism)に変換することを可能にすることが開示されている(特許文献1)。特許文献1に示す光独立栄養微生物とは、光合成を通じてエネルギーを取得する生物をいい、非光合成原核生物とは全く相違する。
Plants and algae of eukaryotes and photoautotrophs of prokaryotes such as cyanobacteria, green sulfur bacteria, green non-sulfur bacteria, purple sulfur bacteria, and purple non-sulfur bacteria plants and algae, photosynthetic bacteria It is disclosed that introduction of proteorhodopsin into a microorganism (photoautotoroph) enables conversion to a highly photosynthetic organism (hyper @ photosynthetic @ organism) (Patent Document 1). The photoautotrophic microorganism described in Patent Document 1 refers to an organism that acquires energy through photosynthesis, and is completely different from a non-photosynthetic prokaryote.
大腸菌にロドプシンを発現させて、プロテオロドプシン(PR:proteorhodopsin)の大量生産を見込んだ迅速かつ安価な生産方法が開示されている(特許文献2、非特許文献1)。光利用プロトン駆動力の形成には触れているが、ロドプシンを発現した大腸菌が有用物質の生産に必要なATPのエネルギー生産に良好な作用を示すことや、さらには有用物質の生産に高い効力を示すことは記載されていない。
(4) A rapid and inexpensive production method has been disclosed in which rhodopsin is expressed in Escherichia coli and mass production of proteorhodopsin (PR) is expected (Patent Document 2 and Non-Patent Document 1). Although mentioning the formation of light-driven proton driving force, Escherichia coli expressing rhodopsin has a good effect on the energy production of ATP required for the production of useful substances, and has a high effect on the production of useful substances. No indication is given.
光駆動高エネルギーサッカロミセス亜門酵母の作製方法について開示がある(特許文献3)。ここでは、出芽酵母にデルタロドプシン(dR:Delta-rhodopsin)を発現させ、光利用プロトン駆動力の形成、ATPの産生を介して有用物質の生産に良好な作用を示したことが開示されている。しかしながら、特許文献3ではサッカロミセス亜門酵母のみを対象としており、ロドプシンの他にミトコンドリア局在化シグナルをコードする核酸(遺伝子)を組み込むことを要件としている。
が あ る There is a method for producing a light-driven high-energy Saccharomyces submonum yeast (Patent Document 3). Here, it is disclosed that budding yeast expressed delta-rhodopsin (dR: Delta-rhodopsin) and showed a favorable effect on the production of useful substances through the formation of light-driven proton driving force and the production of ATP. . However, Patent Document 3 targets only Saccharomyces submonum yeast and requires that a nucleic acid (gene) encoding a mitochondrial localization signal besides rhodopsin be incorporated.
微生物の発酵プロセスを利用する方法において、より効果的に有用物質を産生及び製造する方法の開発が望まれている。
に お い て In a method utilizing a fermentation process of a microorganism, development of a method for more effectively producing and producing a useful substance is desired.
本発明は、微生物の発酵プロセス利用による有用物質の産生方法に関し、より効果的に有用物質を産生させ、製造する方法を提供することを課題とする。
The present invention relates to a method for producing a useful substance by utilizing a fermentation process of a microorganism, and an object of the present invention is to provide a method for producing and producing a useful substance more effectively.
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、非光合成原核生物に生物工学的に光リン酸化能を付与することで非光合成原核生物でありながら光駆動高エネルギー作用を有する微生物を作製し、有用物質をより効果的に産生させることに成功し、本発明を完成した。より詳しくは、遺伝子工学的にロドプシンをコードする遺伝子を導入して発現させた非光合成原核生物を明条件下で培養することで、微生物の発酵プロセスを利用して有用物質をより効果的に産生させ、製造させることができ、本発明を完成した。
The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, by imparting photophosphorylation ability to non-photosynthetic prokaryotes biotechnologically, while being a non-photosynthetic prokaryote, a light-driven high energy action And succeeded in producing a useful substance more effectively, thereby completing the present invention. More specifically, by culturing non-photosynthetic prokaryotes expressed by introducing a gene encoding rhodopsin by genetic engineering under light conditions, it is possible to more effectively produce useful substances using the fermentation process of microorganisms The present invention was completed.
すなわち本発明は、以下よりなる。
1.遺伝子工学的にロドプシンをコードする遺伝子を導入して発現させた非光合成原核生物を光照射下で培養することを特徴とする、有用物質の製造方法。
2.前記遺伝子工学的にロドプシンをコードする遺伝子を導入して発現させた非光合成原核生物が、光照射下で培養したときの有用物質の生産量が、暗所で培養したときの有用物質の生産量より高い産生量を示す非光合成原核生物である、前項1記載の有用物質の製造方法。
3.前記非光合成原核生物が、非光合成細菌である、前項1又は2記載の有用物質の製造方法。
4.前記非光合成原核生物が、大腸菌、乳酸菌、酢酸菌、枯草菌、放線菌、コリネ型細菌、シュードモナス属細菌、メタン生成菌、古細菌より選択されるいずれかである、前項1又は2記載の有用物質の製造方法。
5.前記非光合成原核生物が、大腸菌である、前項1~4のいずれか記載の有用物質の製造方法。
6.前記非光合成原核生物の光照射下での培養が、1~2000μmol/m2/sの光量の光照射下での培養である、前項1~5のいずれか記載の有用物質の製造方法。
7.以下の工程を含む、大腸菌の培養産物由来有用物質の製造方法:
1)ロドプシンをコードする遺伝子を、大腸菌に導入する工程;
2)前記1)の遺伝子が組み込まれた大腸菌を1~2000μmol/m2/sの光量の光照射下で、4~40℃、4~72時間培養する工程;
3)前記2)の工程で培養した大腸菌の培養産物を培養液から回収する工程。
8.ロドプシンが、バクテリオロドプシン又はプロテオロドプシンである、前項1~7のいずれか記載の有用物質の製造方法。
9.ロドプシンが、デルタロドプシンである、前項1~7のいずれか記載の有用物質の製造方法。
10.前記有用物質が、有機酸、ペプチド、アミノ酸、タンパク質、核酸、ビタミン、糖、糖アルコール、アルコール、イソプレノイド類及び脂質から選択される1種又は複数種である、前項1~9のいずれかに記載の有用物質の製造方法。
11.前記有用物質が、酢酸及び/又はグルタチオンである、前項1~9のいずれかに記載の有用物質の製造方法。
12.前記有用物質が、メバロン酸、イソプレノール、3ヒドロキシプロピオン酸から選択される1種又は複数種である、前項1~9のいずれかに記載の有用物質の製造方法。 That is, the present invention includes the following.
1. A method for producing a useful substance, which comprises culturing a non-photosynthetic prokaryote in which a gene encoding rhodopsin is introduced and expressed by genetic engineering under light irradiation.
2. Non-photosynthetic prokaryotes expressed by introducing the gene encoding rhodopsin by genetic engineering, the production of useful substances when cultured under light irradiation, the production of useful substances when cultured in the dark 2. The method for producing a useful substance according to theabove item 1, which is a non-photosynthetic prokaryote showing a higher production amount.
3. 3. The method for producing a useful substance according to the above 1 or 2, wherein the non-photosynthetic prokaryote is a non-photosynthetic bacterium.
4. The useful item 1 or 2 above, wherein the non-photosynthetic prokaryote is any one selected from Escherichia coli, lactic acid bacteria, acetic acid bacteria, Bacillus subtilis, actinomycetes, coryneform bacteria, Pseudomonas bacteria, methanogens, and archaea. The method of manufacturing the substance.
5. 5. The method for producing a useful substance according to any one ofitems 1 to 4, wherein the non-photosynthetic prokaryote is Escherichia coli.
6. 6. The method for producing a useful substance according to any one ofitems 1 to 5, wherein the culture of the non-photosynthetic prokaryote under light irradiation is a culture under light irradiation of a light amount of 1 to 2000 μmol / m 2 / s.
7. A method for producing a useful substance derived from a culture product of Escherichia coli, comprising the following steps:
1) a step of introducing a gene encoding rhodopsin into E. coli;
2) a step of culturing the Escherichia coli into which the gene of the above 1) has been incorporated at 4 to 40 ° C. for 4 to 72 hours under light irradiation of 1 to 2000 μmol / m 2 / s;
3) a step of recovering the culture product of Escherichia coli cultured in the step 2) from the culture solution.
8. 8. The method for producing a useful substance according to any one ofitems 1 to 7, wherein the rhodopsin is bacteriorhodopsin or proteorhodopsin.
9. 8. The method for producing a useful substance according to any one ofItems 1 to 7, wherein rhodopsin is delta-rhodopsin.
10. 10. The useful substance according to any one ofitems 1 to 9, wherein the useful substance is one or more selected from organic acids, peptides, amino acids, proteins, nucleic acids, vitamins, sugars, sugar alcohols, alcohols, isoprenoids, and lipids. For producing useful substances.
11. 10. The method for producing a useful substance according to any one of theabove items 1 to 9, wherein the useful substance is acetic acid and / or glutathione.
12. 10. The method for producing a useful substance according to any one of theabove items 1 to 9, wherein the useful substance is one or more selected from mevalonic acid, isoprenol, and 3-hydroxypropionic acid.
1.遺伝子工学的にロドプシンをコードする遺伝子を導入して発現させた非光合成原核生物を光照射下で培養することを特徴とする、有用物質の製造方法。
2.前記遺伝子工学的にロドプシンをコードする遺伝子を導入して発現させた非光合成原核生物が、光照射下で培養したときの有用物質の生産量が、暗所で培養したときの有用物質の生産量より高い産生量を示す非光合成原核生物である、前項1記載の有用物質の製造方法。
3.前記非光合成原核生物が、非光合成細菌である、前項1又は2記載の有用物質の製造方法。
4.前記非光合成原核生物が、大腸菌、乳酸菌、酢酸菌、枯草菌、放線菌、コリネ型細菌、シュードモナス属細菌、メタン生成菌、古細菌より選択されるいずれかである、前項1又は2記載の有用物質の製造方法。
5.前記非光合成原核生物が、大腸菌である、前項1~4のいずれか記載の有用物質の製造方法。
6.前記非光合成原核生物の光照射下での培養が、1~2000μmol/m2/sの光量の光照射下での培養である、前項1~5のいずれか記載の有用物質の製造方法。
7.以下の工程を含む、大腸菌の培養産物由来有用物質の製造方法:
1)ロドプシンをコードする遺伝子を、大腸菌に導入する工程;
2)前記1)の遺伝子が組み込まれた大腸菌を1~2000μmol/m2/sの光量の光照射下で、4~40℃、4~72時間培養する工程;
3)前記2)の工程で培養した大腸菌の培養産物を培養液から回収する工程。
8.ロドプシンが、バクテリオロドプシン又はプロテオロドプシンである、前項1~7のいずれか記載の有用物質の製造方法。
9.ロドプシンが、デルタロドプシンである、前項1~7のいずれか記載の有用物質の製造方法。
10.前記有用物質が、有機酸、ペプチド、アミノ酸、タンパク質、核酸、ビタミン、糖、糖アルコール、アルコール、イソプレノイド類及び脂質から選択される1種又は複数種である、前項1~9のいずれかに記載の有用物質の製造方法。
11.前記有用物質が、酢酸及び/又はグルタチオンである、前項1~9のいずれかに記載の有用物質の製造方法。
12.前記有用物質が、メバロン酸、イソプレノール、3ヒドロキシプロピオン酸から選択される1種又は複数種である、前項1~9のいずれかに記載の有用物質の製造方法。 That is, the present invention includes the following.
1. A method for producing a useful substance, which comprises culturing a non-photosynthetic prokaryote in which a gene encoding rhodopsin is introduced and expressed by genetic engineering under light irradiation.
2. Non-photosynthetic prokaryotes expressed by introducing the gene encoding rhodopsin by genetic engineering, the production of useful substances when cultured under light irradiation, the production of useful substances when cultured in the dark 2. The method for producing a useful substance according to the
3. 3. The method for producing a useful substance according to the above 1 or 2, wherein the non-photosynthetic prokaryote is a non-photosynthetic bacterium.
4. The
5. 5. The method for producing a useful substance according to any one of
6. 6. The method for producing a useful substance according to any one of
7. A method for producing a useful substance derived from a culture product of Escherichia coli, comprising the following steps:
1) a step of introducing a gene encoding rhodopsin into E. coli;
2) a step of culturing the Escherichia coli into which the gene of the above 1) has been incorporated at 4 to 40 ° C. for 4 to 72 hours under light irradiation of 1 to 2000 μmol / m 2 / s;
3) a step of recovering the culture product of Escherichia coli cultured in the step 2) from the culture solution.
8. 8. The method for producing a useful substance according to any one of
9. 8. The method for producing a useful substance according to any one of
10. 10. The useful substance according to any one of
11. 10. The method for producing a useful substance according to any one of the
12. 10. The method for producing a useful substance according to any one of the
通常、非光合成原核生物は有用物質の生産が生きる目的ではないため、非光合成原核生物を用いた有用物質の生産性は低い。大腸菌などの非光合成原核生物に代謝工学的な改良を施し、医薬品や食品、化粧品、燃料、ポリマー原料等の様々な有用物質の発酵生産性を向上するにつれ、微生物が細胞内エネルギー不足に陥り、生育の低下や目的物質の生産性の頭打ちに直面することが少なくない。これは微生物の発酵プロセスで「細胞自身の材料(Cell mass)」、「目的産物の産生」、「細胞内エネルギー」等により炭素源が消費されることによると考えられる。非光合成原核生物に光リン酸化能を付与した本発明の光駆動非光合成原核生物によれば、エネルギー再生型有用物質生産宿主になり得る。これにより、これまでのエネルギー源に加えて、光をエネルギー源にできることから、有用物質の生産性を向上させることができる。
Non-photosynthetic prokaryotes usually do not have the purpose of producing useful substances, so the productivity of useful substances using non-photosynthetic prokaryotes is low. As non-photosynthetic prokaryotes such as Escherichia coli are improved by metabolic engineering to improve the fermentation productivity of various useful substances such as pharmaceuticals, foods, cosmetics, fuels, and polymer raw materials, microorganisms fall short of intracellular energy. It is not uncommon to face a decline in growth or a plateau in productivity of the target substance. This is thought to be due to the fact that the carbon source is consumed in the fermentation process of the microorganism, such as “material of the cell itself (Cell mass)”, “production of the target product”, and “intracellular energy”. According to the light-driven non-photosynthetic prokaryote of the present invention in which a non-photosynthetic prokaryote is provided with a photophosphorylation ability, it can be a host for producing a renewable useful substance. Thus, light can be used as an energy source in addition to the conventional energy sources, so that the productivity of useful substances can be improved.
本発明の有用物質の製造方法は、遺伝子工学的にロドプシンをコードする遺伝子を導入して発現させた非光合成原核生物を明条件(光照射)下で培養する工程を含むことを特徴とする。
方法 The method for producing a useful substance according to the present invention is characterized in that it comprises a step of culturing a non-photosynthetic prokaryote, which has been expressed by introducing a gene encoding rhodopsin by genetic engineering, under light conditions (light irradiation).
本明細書において「非光合成原核生物」とは、通常光合成を行わない原核生物であり、例えば非光合成細菌(non-photosynthetic bacteria)、非光合成古細菌(non-photosynthetic archea)、非光合成放線菌(non-photosynthetic actinomycetes)等が挙げられる。具体的には、大腸菌(Escherichia coli)、枯草菌(Bacillus subtilis)、乳酸菌(Lactobacillus)、酢酸菌(Acetobacteraceae)、コリネ型細菌(Corynebacterium)、シュードモナス属細菌(Pseudomonas bacteria)、メタン生成菌(Methanobacterium、Methanosarcina)、ストレプトミセス属(Streptomyces)、アクチノマイセス属(Actinomyces)等が挙げられ、特に大腸菌が好適である。使用可能な非光合成原核生物は、遺伝子工学的にロドプシンを発現可能であれば野生株であってもよいし、変異導入や株化された原核生物であってもよい。例えば、大腸菌の場合には大腸菌MG1655(DE3)株(Journal of Bioscience and Bioengineering Vol. 123 No. 2, 177 e182, 2017)を使用することもできるし、発現方法、例えば構成的発現やプロピオン酸、アラビノース、無水酢酸などによる誘導発現などを適用する場合に、野生株や適宜適切な株を選択して使用することができる。
As used herein, the term “non-photosynthetic prokaryote” refers to a prokaryote that does not normally perform photosynthesis, such as non-photosynthetic bacteria, non-photosynthetic archea, and non-photosynthetic actinomycetes ( non-photosynthetic actinomycetes). Specifically, Escherichia coli , Bacillus subtilis , lactic acid bacteria ( Lactobacillus ), acetic acid bacteria ( Acetobacteraceae ), coryneform bacteria ( Corynebacterium ), Pseudomonas bacteria, methanogens ( Methanobacterium , Methanosarcina), Streptomyces (Streptomyces), include actinomycetes (Actinomyces), etc., it is particularly suitable E. coli. The non-photosynthetic prokaryote that can be used may be a wild type as long as rhodopsin can be expressed by genetic engineering, or may be a mutated or established prokaryote. For example, in the case of Escherichia coli, Escherichia coli MG1655 (DE3) strain (Journal of Bioscience and Bioengineering Vol. 123 No. 2, 177 e182, 2017) can be used, and expression methods such as constitutive expression and propionic acid, When inducible expression with arabinose, acetic anhydride, or the like is applied, a wild strain or an appropriate strain can be selected and used.
本明細書において「ロドプシン」とは、オプシン(Opsin)というタンパク質とレチナール(Retinal)の複合体であり、光受容体タンパク質をいう。ロドプシンの種類としては、例えばデルタロドプシン(dR)、バクテリオロドプシン(アーキアロドプシン、クルックスロドプシンを含む)、センサリーロドプシンI、センサリーロドプシンII、プロテオロドプシン(pR)、チャンネルロドプシンI、チャンネルロドプシンII、ハロロドプシン、キサントロドプシン、ナトリウムポンプ型ロドプシン、ヘリオロドプシンなどが挙げられる。例えば、デルタロドプシンやバクテリオロドプシンは明条件(光照射)によりプロトンを原核生物の内部から外部へ汲み出す機能を有し、ハロロドプシンは光により塩素イオンを取り込む機能を有する。本発明のロドプシンは、好ましくはデルタロドプシン、バクテリオロドプシンやプロテオロドプシンであり、より好ましくはデルタロドプシンである。デルタロドプシンは、ハロテリジェナ・タークメニカ(Haloterrigena turkmenica, Haloterrigena sp. Arg-4)由来のものが挙げられる。大腸菌に発現させたH. turkmenica由来のデルタロドプシンについて報告がある(BiochemBiophys Res Commun 2006, 341: 285-290, GeneBank Accession No. AB00962)。
As used herein, “rhodopsin” is a complex of a protein called Opsin and retinal (Retinal), and refers to a photoreceptor protein. Examples of the type of rhodopsin include delta-rhodopsin (dR), bacteriorhodopsin (including archrhodopsin and crux rhodopsin), sensory rhodopsin I, sensory rhodopsin II, proteorhodopsin (pR), channelrhodopsin I, channelrhodopsin II, halo Rhodopsin, xanthrodopsin, sodium pump type rhodopsin, heliorhodopsin and the like. For example, delta-rhodopsin and bacteriorhodopsin have a function of pumping protons from the inside of prokaryotes to the outside under light conditions (light irradiation), and halorhodopsin has a function of taking in chloride ions by light. Rhodopsin of the present invention is preferably delta-rhodopsin, bacteriorhodopsin or proteorhodopsin, more preferably delta-rhodopsin. Deltarhodopsin includes those derived from Haloterrigena turkmenica , Haloterrigena sp. Arg-4. There is a report on deltarhodopsin derived from H. turkmenica expressed in E. coli (BiochemBiophys Res Commun 2006, 341: 285-290, GeneBank Accession No. AB00962).
本明細書において、「ロドプシンをコードする遺伝子」とは、上述のロドプシンを発現可能な塩基配列からなる核酸配列を含む。また、発現されるロドプシンは、必ずしも完全長のロドプシンでなくてもよく、光エネルギーにより活性化し、電子伝達系の活性化によりプロトン濃度勾配やATPなどの細胞内エネルギーが産生しうる長さであればよい。また、人工的に設計したロドプシンでもよい。このような機能を有するロドプシンをコードする遺伝子であればよい。
に お い て In the present specification, the term “gene encoding rhodopsin” includes a nucleic acid sequence consisting of a base sequence capable of expressing rhodopsin. The expressed rhodopsin does not necessarily need to be full-length rhodopsin, but may be activated by light energy and be long enough to produce intracellular energy such as a proton concentration gradient or ATP by activating the electron transport system. I just need. Rhodopsin artificially designed may be used. A gene encoding rhodopsin having such a function may be used.
遺伝子工学的にロドプシンをコードする遺伝子を導入する方法は、自体公知の方法、又は今後開発されるあらゆる方法を適用することができる。本発明の有用物質の製造方法において、本発明の遺伝子工学的にロドプシンをコードする遺伝子を導入して発現させた非光合成原核生物(以下、「形質転換非光合成原核生物」ともいう。)は、予め作製したものを使用することもできるし、当該形質転換非光合成原核生物を作製して有用物質の製造をしてもよい。
As a method for introducing a gene encoding rhodopsin by genetic engineering, a method known per se or any method to be developed in the future can be applied. In the method for producing a useful substance of the present invention, the non-photosynthetic prokaryote (hereinafter, also referred to as “transformed non-photosynthetic prokaryote”) into which the gene encoding rhodopsin of the present invention is introduced and expressed by the genetic engineering method is used. Those prepared in advance may be used, or the transformed non-photosynthetic prokaryote may be prepared to produce a useful substance.
本発明の有用物質の製造方法は、前記形質転換非光合成原核生物を前培養する工程と、当該形質転換非光合成原核生物を明条件(光照射)下で培養し、有用物質を産生させる工程が含まれる。さらに当該産生した有用物質を回収する工程を含めることもできる。産生した有用物質を回収する工程は、当該形質転換非光合成原核生物を培養する工程と同時であってもよいし、培養後であってもよい。
The method for producing a useful substance of the present invention comprises the steps of preculturing the transformed non-photosynthetic prokaryote and culturing the transformed non-photosynthetic prokaryote under light conditions (light irradiation) to produce a useful substance. included. Further, a step of collecting the produced useful substance can be included. The step of collecting the produced useful substance may be simultaneous with the step of culturing the transformed non-photosynthetic prokaryote, or may be after the culturing.
前記形質転換非光合成原核生物を、常法により培養、増殖させることで当該形質転換非光合成原核生物を回収することができる。培養の条件は、使用する当該形質転換非光合成原核生物の生育に適した条件において適宜設定することができる。当該形質転換非光合成原核生物の培養に用いられる培地としては、炭素源、窒素源、無機イオン、及び本発明の目的産物である有用物質を生産するために形質転換非光合成原核生物が要求する有機微量元素、核酸、ビタミン類等が含まれた通常用いられる培地であれば特に制限はない。本発明の培養に際して、pH、温度条件は使用する形質転換非光合成原核生物の増殖に最も適した条件を選べばよい。例えばpH 2~9、好ましくはpH 4~9、より好ましくはpH 5~8とすることができ、培養温度は4~50℃、好ましくは15~45℃、より好ましくは30~40℃とすることができる。培養期間は、目的産物の生産が確認可能な期間であればよく特に制限されないが、例えば4~144時間、好ましくは4~72時間、より好ましくは4~36時間培養することができる。また必要に応じて継代培養してもよい。形質転換非光合成原核生物の増殖を確認する方法は特に制限はないが、例えば培養物を採取して顕微鏡で観察してもよいし、吸光度で観察してもよい。また、形質転換非光合成原核生物培養時の培地の溶存酸素濃度には特に制限はないが、通常は、0.5~20ppmが好ましい。そのために、通気量を調節したり、撹拌したり、通気に酸素を追加することができる。培養法としては、前記条件で特に限定されないが、液体培養法がよく、回分培養、流加培養、連続培養又は灌流培養のいずれを用いてもよい。また、振盪又は通気攪拌して培養することができる。以下、形質転換非光合成原核生物培養時の培地を、単に「培養液」という場合もある。
培養 The transformed non-photosynthetic prokaryote can be recovered by culturing and growing the transformed non-photosynthetic prokaryote in a conventional manner. Culture conditions can be appropriately set under conditions suitable for the growth of the transformed non-photosynthetic prokaryote to be used. The culture medium used for culturing the transformed non-photosynthetic prokaryote includes a carbon source, a nitrogen source, inorganic ions, and an organic substance required by the transformed non-photosynthetic prokaryote in order to produce a useful substance which is a target product of the present invention. There is no particular limitation as long as it is a commonly used medium containing trace elements, nucleic acids, vitamins and the like. In the cultivation of the present invention, pH and temperature conditions may be selected so as to be most suitable for the growth of the transformed non-photosynthetic prokaryote to be used. For example, pH 2-9, preferably pH 4-9, more preferably pH 5-8, and the culture temperature is 4-50 ° C, preferably 15-45 ° C, more preferably 30-40 ° C. be able to. The culturing period is not particularly limited as long as the production of the desired product can be confirmed. For example, culturing can be performed for 4 to 144 hours, preferably 4 to 72 hours, and more preferably 4 to 36 hours. Subculture may be performed if necessary. The method for confirming the growth of the transformed non-photosynthetic prokaryote is not particularly limited. For example, a culture may be collected and observed with a microscope, or may be observed with absorbance. The concentration of dissolved oxygen in the medium during the culture of the transformed non-photosynthetic prokaryotic organism is not particularly limited, but is usually preferably 0.5 to 20 ppm. For this purpose, the amount of ventilation can be adjusted, agitated, or oxygen can be added to the ventilation. The culture method is not particularly limited under the above conditions, but a liquid culture method is preferred, and any of batch culture, fed-batch culture, continuous culture, or perfusion culture may be used. Further, the culture can be carried out by shaking or stirring with aeration. Hereinafter, the culture medium for culturing the transformed non-photosynthetic prokaryote may be simply referred to as “culture solution”.
本発明の形質転換非光合成原核生物から本発明の有用物質を産生させるために、当該形質転換非光合成原核生物を明条件(光照射)下で培養することが好ましい。光照射下で培養することで、形質転換非光合成原核生物内のエネルギーを有効活用し、より効果的に有用物質を産生することができる。有用物質を産生する際の光照射は、1~2000μmol/m2/sの光量の光照射下が好適であり、好ましくは10~200μmol/m2/sの光量の光照射下がより好適であり、50μmol/m2/sの光照射(明条件)下が最も好適である。光照射を施す時期は、培養開始からでもよいし、培養途中からでもよい。照射時間は培養中に常時照射してもよいし、間欠的に照射してもよい。照射光の光源は、蛍光灯、LED、太陽光等いずれの光源を用いてもよいが波長を限定する場合には、300~800 nmが好適であり、好ましくは450~650 nmがより好適であり、550 nmが最も好適である。
In order to produce the useful substance of the present invention from the transformed non-photosynthetic prokaryote of the present invention, it is preferable to culture the transformed non-photosynthetic prokaryote under light conditions (light irradiation). By culturing under light irradiation, it is possible to effectively utilize the energy in the transformed non-photosynthetic prokaryote and to produce a useful substance more effectively. Light irradiation for producing a useful substance is preferably performed under light irradiation with a light amount of 1 to 2000 μmol / m 2 / s, more preferably under light irradiation with a light amount of 10 to 200 μmol / m 2 / s. Yes, and most preferably under light irradiation (bright conditions) of 50 μmol / m 2 / s. The light irradiation may be performed from the start of the culture or during the culture. The irradiation time may be constant irradiation during the culture or intermittent irradiation. As a light source of the irradiation light, any light source such as a fluorescent lamp, an LED, and sunlight may be used, but when the wavelength is limited, 300 to 800 nm is preferable, and 450 to 650 nm is more preferable. Yes, 550 nm is most preferred.
前記有用物質は、例えば上記明条件(光照射)下で培養した形質転換非光合成原核生物を含む培養槽から生産物を含む培養液を連続的に抜き取りながら、回収することができる。形質転換非光合成原核生物を含む培養槽には、培地を連続的に供給することもできる。前記培養液を該培養槽から連続的に抜き取りながら、前記形質転換非光合成原核生物を有用物質生産期に安定的に増殖する条件で培養することができる。前記形質転換非光合成原核生物の連続的な培養と有用物質の産生は、基質液としての培地の供給及び培養液の抜き取りと、増殖条件下での培養とにより達成される。これにより、有用物質の生産期でも前記形質転換非光合成原核生物の増殖能が維持され、結果的に、連続培養であっても有用物質の生産を維持することができる。
The useful substance can be recovered, for example, by continuously extracting a culture solution containing the product from a culture tank containing the transformed non-photosynthetic prokaryote cultured under the above-mentioned light conditions (light irradiation). The culture vessel containing the transformed non-photosynthetic prokaryote may be continuously supplied with the medium. While continuously withdrawing the culture solution from the culture tank, the transformed non-photosynthetic prokaryote can be cultured under conditions that allow stable growth during the useful substance production phase. Continuous culture of the transformed non-photosynthetic prokaryote and production of a useful substance are achieved by supplying a medium as a substrate solution, extracting the culture solution, and culturing under growth conditions. As a result, the ability of the transformed non-photosynthetic prokaryote to proliferate is maintained even during the useful substance production period, and as a result, the production of the useful substance can be maintained even in continuous culture.
本明細書において「有用物質」とは、本発明の形質転換非光合成原核生物の発酵プロセスにより産生可能な物質であって、工業上有用とされている物質であれば特に限定されない。有用物質の例として、例えば有機酸、ペプチド、アミノ酸、タンパク質、ヌクレオシド、ビタミン、糖、糖アルコール、アルコール、イソプレノイド類及び脂質などをあげることができる。より具体的には以下があげられる。有機酸としては、酢酸、乳酸、コハク酸などをあげることができる。ペプチドとしてはグルタチオン、アラニルグルタミン、γグルタミルバリルグリシンなどをあげることができ、ポリペプチドとしては、ポリリジン、ポリグルタミン酸をあげることができる。アミノ酸としては、L-アラニン、グリシン、L-グルタミン、L-グルタミン酸、L-アスパラギン、L-アスパラギン酸、L-リジン、L-メチオニン、L-スレオニン、L-ロイシン、L-バリン、L-イソロイシン、L-プロリン、L-ヒスチジン、L-アルギニン、L-チロシン、L-トリプトファン、L-フェニルアラニン、L-セリン、L-システイン、L-3-ヒドロキシプロリン、L-4-ヒドロキシプロリン、5-アミノレブリン酸などをあげることができる。タンパク質としては、ルシフェラーゼ、イノシンキナーゼ、Glutamate 5-kinase (EC 2.7.2.11)、Glutamate-5-semialdehydedehydrogenase (EC 1.2.1.41)、Pyrroline-5-carboxylatereductase (EC 1.5.1.2)、γ-グルタミルシステイン合成酵素(EC 6.3.2.2)、グルタチオン合成酵素(EC 6.3.2.3)、ヒト顆粒球コロニー刺激因子、キシロースレダクターゼ、P450などをあげることができる。ヌクレオシドとしては、イノシン、グアノシン、イノシン酸、グアニル酸、アデニル酸などをあげることができる。ビタミンとしては、リボフラビン、チアミン、アスコルビン酸などをあげることができる。糖としては、キシロース、マンノースなどをあげることができ、糖アルコールとしては、キシリトール、マンニトールなどをあげることができ、アルコールとしてはエタノールなどをあげることができる。イソプレノイド類としては、メバロン酸(MVA:Mevalonate)、イソプレノール、アスタキサンチン、イソプレン、イソペンテノール、リモネン、ピネン、ファルネセン、ビサボレンなどをあげることができる。脂質としては、プロピオン酸、ヒドロキシプロピオン酸、EPA(エイコサペンタエン酸)やDHA(ドコサヘキサエン酸)などをあげることができる。本発明における有用物質では、有機酸では酢酸、ペプチドではグルタチオン、イソプレノイド類ではメバロン酸、イソプレノール、脂質ではヒドロキシプロピオン酸が特に好適である。
に お い て In the present specification, the “useful substance” is a substance that can be produced by the fermentation process of the transformed non-photosynthetic prokaryote of the present invention, and is not particularly limited as long as it is industrially useful. Examples of useful substances include, for example, organic acids, peptides, amino acids, proteins, nucleosides, vitamins, sugars, sugar alcohols, alcohols, isoprenoids, and lipids. More specifically, the following can be mentioned. Examples of the organic acid include acetic acid, lactic acid, and succinic acid. Examples of the peptide include glutathione, alanylglutamine, and γ-glutamyl valylglycine, and examples of the polypeptide include polylysine and polyglutamic acid. As amino acids, L-alanine, glycine, L-glutamine, L-glutamic acid, L-asparagine, L-aspartic acid, L-lysine, L-methionine, L-threonine, L-leucine, L-valine, L-isoleucine , L-proline, L-histidine, L-arginine, L-tyrosine, L-tryptophan, L-phenylalanine, L-serine, L-cysteine, L-3-hydroxyproline, L-4-hydroxyproline, 5-aminolevulin Acids and the like can be given. Proteins include luciferase, inosine kinase, Glutamate-5-kinase (EC 2.7.2.11), Glutamate-5-semialdehyde dehydrogenase (EC 1.2.1.41), Pyrroline-5-carboxylatereductase (EC 1.5.1.2), γ-glutamylcysteine synthase (EC 6.3.2.2), glutathione synthase (EC 6.3.2.3), human granulocyte colony stimulating factor, xylose reductase, P450 and the like. Examples of the nucleoside include inosine, guanosine, inosinic acid, guanylic acid, adenylic acid and the like. Examples of vitamins include riboflavin, thiamine, and ascorbic acid. Examples of the sugar include xylose and mannose, examples of the sugar alcohol include xylitol and mannitol, and examples of the alcohol include ethanol. Examples of the isoprenoids include mevalonate (MVA), isoprenol, astaxanthin, isoprene, isopentenol, limonene, pinene, farnesene, and bisabolene. Examples of the lipid include propionic acid, hydroxypropionic acid, EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid). Among useful substances in the present invention, acetic acid is particularly preferable for organic acids, glutathione for peptides, mevalonic acid and isoprenol for isoprenoids, and hydroxypropionic acid for lipids.
前記生産物を含む培養液から有用物質の単離方法は特に限定されず、自体公知の方法又は今後開発されるあらゆる方法を適用することができる。
方法 A method for isolating a useful substance from a culture solution containing the product is not particularly limited, and a method known per se or any method to be developed in the future can be applied.
本発明の理解を深めるために、本発明の内容を実施例及び実験例を示して具体的に説明するが、本発明はこれら実施例等の記載内容に限定されるものではないことは明らかである。
In order to deepen the understanding of the present invention, the contents of the present invention will be specifically described with reference to examples and experimental examples, but it is apparent that the present invention is not limited to the description contents of these examples and the like. is there.
(実施例1)形質転換大腸菌(dR発現株)の作製
実施例1ではデルタロドプシン(dR)の形質転換大腸菌の作製方法について示す。本実施例では、大腸菌MG1655(DE3)株(Journal of Bioscience andBioengineering Vol. 123 No. 2, 177 e182, 2017)に、以下に示すデルタロドプシン(dR)を発現可能な形質転換大腸菌を作製した。本実施例で作製した形質転換大腸菌を、以下「dR発現株1」という。 (Example 1) Preparation of transformed Escherichia coli (dR expression strain) Example 1 shows a method of preparing deltarhodopsin (dR) transformed Escherichia coli. In this example, transformed Escherichia coli capable of expressing the following delta-rhodopsin (dR) was prepared in Escherichia coli MG1655 (DE3) strain (Journal of Bioscience and Bioengineering Vol. 123 No. 2, 177 e182, 2017). The transformed Escherichia coli prepared in this example is hereinafter referred to as “dR-expressingstrain 1”.
実施例1ではデルタロドプシン(dR)の形質転換大腸菌の作製方法について示す。本実施例では、大腸菌MG1655(DE3)株(Journal of Bioscience andBioengineering Vol. 123 No. 2, 177 e182, 2017)に、以下に示すデルタロドプシン(dR)を発現可能な形質転換大腸菌を作製した。本実施例で作製した形質転換大腸菌を、以下「dR発現株1」という。 (Example 1) Preparation of transformed Escherichia coli (dR expression strain) Example 1 shows a method of preparing deltarhodopsin (dR) transformed Escherichia coli. In this example, transformed Escherichia coli capable of expressing the following delta-rhodopsin (dR) was prepared in Escherichia coli MG1655 (DE3) strain (Journal of Bioscience and Bioengineering Vol. 123 No. 2, 177 e182, 2017). The transformed Escherichia coli prepared in this example is hereinafter referred to as “dR-expressing
本実施例において、大腸菌に発現させるデルタロドプシン(dR)は、以下の配列番号1に示すアミノ酸配列からなる。
MCCAALAPPMAATVGPESIWLWIGTIGMTLGTLYFVGRGRGVRDRKMQEFYIITIFITTIAAAMYFAMATGFGVTEVMVGDEALTIYWARYADWLFTTPLLLLDLSLLAGANRNTIATLIGLDVFMIGTGAIAALSSTPGTRIAWWAISTGALLALLYVLVGTLSENARNRAPEVASLFGRLRNLVIALWFLYPVVWILGTEGTFGILPLYWETAAFMVLDLSAKVGFGVILLQSRSVLERVATPTAAPT(配列番号1) In this example, deltarhodopsin (dR) expressed in E. coli has the amino acid sequence shown in SEQ ID NO: 1 below.
MCCAALAPPMAATVGPESIWLWIGTIGMTLGTLYFVGRGRGVRDRKMQEFYIITIFITTIAAAMYFAMATGFGVTEVMVGDEALTIYWARYADWLFTTPLLLLDLSLLAGANRNTIATLIGLDVFMIGTGAIAALSSTPGTRIAWWAISTGALLALLVVLVGTLSENARNRVLVTFLL
MCCAALAPPMAATVGPESIWLWIGTIGMTLGTLYFVGRGRGVRDRKMQEFYIITIFITTIAAAMYFAMATGFGVTEVMVGDEALTIYWARYADWLFTTPLLLLDLSLLAGANRNTIATLIGLDVFMIGTGAIAALSSTPGTRIAWWAISTGALLALLYVLVGTLSENARNRAPEVASLFGRLRNLVIALWFLYPVVWILGTEGTFGILPLYWETAAFMVLDLSAKVGFGVILLQSRSVLERVATPTAAPT(配列番号1) In this example, deltarhodopsin (dR) expressed in E. coli has the amino acid sequence shown in SEQ ID NO: 1 below.
MCCAALAPPMAATVGPESIWLWIGTIGMTLGTLYFVGRGRGVRDRKMQEFYIITIFITTIAAAMYFAMATGFGVTEVMVGDEALTIYWARYADWLFTTPLLLLDLSLLAGANRNTIATLIGLDVFMIGTGAIAALSSTPGTRIAWWAISTGALLALLVVLVGTLSENARNRVLVTFLL
上記アミノ酸配列を、geneArt(R)GeneOptimizer(R)プログラム(ThermoFisher)を用いて、大腸菌用にコドンを最適化し、以下の配列番号2に示す塩基配列からなる核酸(遺伝子)を取得した。
ATGTGTTGTGCAGCACTGGCACCGCCTATGGCAGCAACCGTTGGTCCGGAAAGCATTTGGCTGTGGATTGGCACCATTGGTATGACCCTGGGCACCCTGTATTTTGTTGGTCGTGGTCGCGGTGTTCGTGATCGTAAAATGCAAGAGTTTTACATCATCACCATCTTTATCACCACCATTGCAGCAGCAATGTATTTCGCAATGGCAACCGGTTTTGGTGTTACCGAAGTTATGGTTGGTGATGAAGCACTGACCATTTATTGGGCACGTTATGCAGATTGGCTGTTTACCACACCTCTGCTGCTGCTGGATCTGAGCCTGCTGGCAGGCGCAAATCGTAATACCATTGCAACCCTGATTGGTCTGGATGTTTTTATGATTGGTACAGGTGCAATTGCCGCACTGAGCAGCACACCGGGTACACGTATTGCATGGTGGGCAATTAGTACCGGTGCACTGCTGGCCCTGCTGTATGTTCTGGTTGGCACCCTGAGCGAAAATGCACGTAATCGTGCACCGGAAGTTGCAAGTCTGTTTGGTCGTCTGCGTAATCTGGTTATTGCACTGTGGTTTCTGTATCCGGTTGTTTGGATTCTGGGCACCGAAGGTACATTTGGTATTCTGCCGCTGTATTGGGAAACCGCAGCATTTATGGTTCTGGATCTGTCAGCAAAAGTTGGTTTTGGCGTTATTCTGCTGCAAAGCCGTAGCGTTCTGGAACGTGTTGCAACCCCGACCGCAGCACCGACCTAA(配列番号2) The amino acid sequence, using the GeneArt (R) GeneOptimizer (R) program (ThermoFisher), codon-optimized for E. coli, obtaining the nucleic acid consisting of the nucleotide sequence shown in SEQ ID NO: 2 below (gene).
(SEQ ID NO: 2)
ATGTGTTGTGCAGCACTGGCACCGCCTATGGCAGCAACCGTTGGTCCGGAAAGCATTTGGCTGTGGATTGGCACCATTGGTATGACCCTGGGCACCCTGTATTTTGTTGGTCGTGGTCGCGGTGTTCGTGATCGTAAAATGCAAGAGTTTTACATCATCACCATCTTTATCACCACCATTGCAGCAGCAATGTATTTCGCAATGGCAACCGGTTTTGGTGTTACCGAAGTTATGGTTGGTGATGAAGCACTGACCATTTATTGGGCACGTTATGCAGATTGGCTGTTTACCACACCTCTGCTGCTGCTGGATCTGAGCCTGCTGGCAGGCGCAAATCGTAATACCATTGCAACCCTGATTGGTCTGGATGTTTTTATGATTGGTACAGGTGCAATTGCCGCACTGAGCAGCACACCGGGTACACGTATTGCATGGTGGGCAATTAGTACCGGTGCACTGCTGGCCCTGCTGTATGTTCTGGTTGGCACCCTGAGCGAAAATGCACGTAATCGTGCACCGGAAGTTGCAAGTCTGTTTGGTCGTCTGCGTAATCTGGTTATTGCACTGTGGTTTCTGTATCCGGTTGTTTGGATTCTGGGCACCGAAGGTACATTTGGTATTCTGCCGCTGTATTGGGAAACCGCAGCATTTATGGTTCTGGATCTGTCAGCAAAAGTTGGTTTTGGCGTTATTCTGCTGCAAAGCCGTAGCGTTCTGGAACGTGTTGCAACCCCGACCGCAGCACCGACCTAA(配列番号2) The amino acid sequence, using the GeneArt (R) GeneOptimizer (R) program (ThermoFisher), codon-optimized for E. coli, obtaining the nucleic acid consisting of the nucleotide sequence shown in SEQ ID NO: 2 below (gene).
(SEQ ID NO: 2)
上記配列番号2に示す配列の両端に制限酵素NdeIとKpnIの認識サイトを付けてpCDFDuetTM-1 vector(Novagen)に挿入し、大腸菌MG1655(DE3)を形質転換して細胞内に導入し、dR発現株1を作製した。
Recognition sites for restriction enzymes NdeI and KpnI were added to both ends of the sequence shown in SEQ ID NO: 2 and inserted into the pCDFDuet ™ -1 vector (Novagen). Escherichia coli MG1655 (DE3) was transformed and introduced into cells. Expression strain 1 was prepared.
(実施例2)形質転換大腸菌(pR発現株)の作製
実施例2では実施例1と同様に大腸菌MG1655(DE3)株に、以下に示すプロテオロドプシン(pR)を発現可能な形質転換大腸菌を作製した。本実施例で作製した形質転換大腸菌を、以下「pR発現株1」という。 (Example 2) Preparation of transformed Escherichia coli (pR expression strain) In Example 2, as in Example 1, transformed Escherichia coli capable of expressing the following proteorhodopsin (pR) in Escherichia coli MG1655 (DE3) was prepared. did. The transformed Escherichia coli prepared in this example is hereinafter referred to as “pR expression strain 1”.
実施例2では実施例1と同様に大腸菌MG1655(DE3)株に、以下に示すプロテオロドプシン(pR)を発現可能な形質転換大腸菌を作製した。本実施例で作製した形質転換大腸菌を、以下「pR発現株1」という。 (Example 2) Preparation of transformed Escherichia coli (pR expression strain) In Example 2, as in Example 1, transformed Escherichia coli capable of expressing the following proteorhodopsin (pR) in Escherichia coli MG1655 (DE3) was prepared. did. The transformed Escherichia coli prepared in this example is hereinafter referred to as “
本実施例において、大腸菌に発現させるプロテオロドプシン(pR)は、以下の配列番号3に示すアミノ酸配列からなる(Biochimica et Biophysica Acta 1777: 2008, 504-513 参照)。
MKLLLILGSVIALPTFAAGGGDLDASDYTGVSFWLVTAALLASTVFFFVERDRVSAKWKTSLTVSGLVTGIAFWHYMYMRGVWIETGDSPTVFRYIDWLLTVPLLICEFYLILAAATNVAGSLFKKLLVGSLVMLVFGYMGEAGIMAAWPAFIIGCLAWVYMIYELWAGEGKSACNTASPAVQSAYNTMMYIIIVGWAIYPVGYFTGYLMGDGGSALNLNLIYNLADFVNKILFGLIIWNVAVKESSNA(配列番号3) In this example, proteorhodopsin (pR) expressed in Escherichia coli has the following amino acid sequence shown in SEQ ID NO: 3 (see Biochimica et Biophysica Acta 1777: 2008, 504-513).
MKLLLILGSVIALPTFAAGGGDLDASDYTGVSFWLVTAALLASTVFFFVERDRVSAKWKTSLTVSGLVTGIAFWHYMYMRGVWIETGDSPTVFRYIDWLLTVPLLICEFYLILAAATNVAGSLFKKLLVGSLVMLVFGYMGEAGIMAAWPAFIIGCLAWVYMIYNVLAGSVNGYNAVLAGSVN
MKLLLILGSVIALPTFAAGGGDLDASDYTGVSFWLVTAALLASTVFFFVERDRVSAKWKTSLTVSGLVTGIAFWHYMYMRGVWIETGDSPTVFRYIDWLLTVPLLICEFYLILAAATNVAGSLFKKLLVGSLVMLVFGYMGEAGIMAAWPAFIIGCLAWVYMIYELWAGEGKSACNTASPAVQSAYNTMMYIIIVGWAIYPVGYFTGYLMGDGGSALNLNLIYNLADFVNKILFGLIIWNVAVKESSNA(配列番号3) In this example, proteorhodopsin (pR) expressed in Escherichia coli has the following amino acid sequence shown in SEQ ID NO: 3 (see Biochimica et Biophysica Acta 1777: 2008, 504-513).
MKLLLILGSVIALPTFAAGGGDLDASDYTGVSFWLVTAALLASTVFFFVERDRVSAKWKTSLTVSGLVTGIAFWHYMYMRGVWIETGDSPTVFRYIDWLLTVPLLICEFYLILAAATNVAGSLFKKLLVGSLVMLVFGYMGEAGIMAAWPAFIIGCLAWVYMIYNVLAGSVNGYNAVLAGSVN
上記アミノ酸配列を、geneArt(R)GeneOptimizer(R)プログラム(ThermoFisher)を用いて、大腸菌用にコドンを最適化し、以下の配列番号4に示す塩基配列からなる核酸(遺伝子)を取得した。
ATGAAACTGCTGCTGATTCTGGGTAGCGTTATTGCACTGCCGACCTTTGCAGCCGGTGGTGGTGATCTGGATGCAAGCGATTATACCGGTGTTAGCTTTTGGCTGGTTACCGCAGCACTGCTGGCAAGCACCGTTTTTTTCTTTGTTGAACGTGATCGTGTTAGCGCCAAATGGAAAACCAGCCTGACCGTTAGCGGTCTGGTGACCGGTATTGCATTTTGGCATTATATGTATATGCGTGGCGTTTGGATTGAAACCGGTGATAGCCCGACCGTTTTTCGTTATATTGATTGGCTGCTGACCGTTCCGCTGCTGATCTGTGAATTTTATCTGATCCTGGCAGCAGCAACCAATGTTGCAGGTAGCCTGTTCAAAAAACTGCTGGTTGGTAGCCTGGTTATGCTGGTGTTTGGTTATATGGGTGAAGCAGGTATTATGGCAGCATGGCCTGCATTTATCATTGGTTGTCTGGCATGGGTGTATATGATTTATGAACTGTGGGCAGGCGAAGGTAAAAGCGCATGTAATACCGCAAGTCCGGCAGTTCAGAGCGCCTATAATACCATGATGTACATTATTATCGTTGGCTGGGCAATTTATCCGGTGGGTTATTTCACCGGCTATCTGATGGGTGATGGTGGTAGCGCACTGAATCTGAACCTGATTTATAATCTGGCCGACTTCGTGAACAAAATTCTGTTTGGTCTGATTATTTGGAACGTGGCCGTTAAAGAAAGCAGCAATGCATAA(配列番号4) The amino acid sequence, using the GeneArt (R) GeneOptimizer (R) program (ThermoFisher), codon-optimized for E. coli, obtaining the nucleic acid consisting of the nucleotide sequence shown in SEQ ID NO: 4 below (gene).
(SEQ ID NO: 4)
ATGAAACTGCTGCTGATTCTGGGTAGCGTTATTGCACTGCCGACCTTTGCAGCCGGTGGTGGTGATCTGGATGCAAGCGATTATACCGGTGTTAGCTTTTGGCTGGTTACCGCAGCACTGCTGGCAAGCACCGTTTTTTTCTTTGTTGAACGTGATCGTGTTAGCGCCAAATGGAAAACCAGCCTGACCGTTAGCGGTCTGGTGACCGGTATTGCATTTTGGCATTATATGTATATGCGTGGCGTTTGGATTGAAACCGGTGATAGCCCGACCGTTTTTCGTTATATTGATTGGCTGCTGACCGTTCCGCTGCTGATCTGTGAATTTTATCTGATCCTGGCAGCAGCAACCAATGTTGCAGGTAGCCTGTTCAAAAAACTGCTGGTTGGTAGCCTGGTTATGCTGGTGTTTGGTTATATGGGTGAAGCAGGTATTATGGCAGCATGGCCTGCATTTATCATTGGTTGTCTGGCATGGGTGTATATGATTTATGAACTGTGGGCAGGCGAAGGTAAAAGCGCATGTAATACCGCAAGTCCGGCAGTTCAGAGCGCCTATAATACCATGATGTACATTATTATCGTTGGCTGGGCAATTTATCCGGTGGGTTATTTCACCGGCTATCTGATGGGTGATGGTGGTAGCGCACTGAATCTGAACCTGATTTATAATCTGGCCGACTTCGTGAACAAAATTCTGTTTGGTCTGATTATTTGGAACGTGGCCGTTAAAGAAAGCAGCAATGCATAA(配列番号4) The amino acid sequence, using the GeneArt (R) GeneOptimizer (R) program (ThermoFisher), codon-optimized for E. coli, obtaining the nucleic acid consisting of the nucleotide sequence shown in SEQ ID NO: 4 below (gene).
(SEQ ID NO: 4)
上記配列番号4に示す配列の両端に制限酵素NdeIとKpnIの認識サイトを付けてpCDFDuetTM-1 vector(Novagen)に挿入し、大腸菌MG1655(DE3)を形質転換して細胞内に導入し、pR発現株1を作製した。
Recognition sites for the restriction enzymes NdeI and KpnI were added to both ends of the sequence shown in SEQ ID NO: 4 and inserted into the pCDFDuet ™ -1 vector (Novagen). Escherichia coli MG1655 (DE3) was transformed and introduced into cells. Expression strain 1 was prepared.
(実施例3)形質転換大腸菌の培養
実施例3では実施例1及び実施例2で作製した形質転換大腸菌(dR発現株1、pR発現株1)の培養方法を示す。 (Example 3) Culture of transformed Escherichia coli Example 3 shows a method of culturing the transformed Escherichia coli (dR-expressingstrain 1, pR-expressing strain 1) prepared in Examples 1 and 2.
実施例3では実施例1及び実施例2で作製した形質転換大腸菌(dR発現株1、pR発現株1)の培養方法を示す。 (Example 3) Culture of transformed Escherichia coli Example 3 shows a method of culturing the transformed Escherichia coli (dR-expressing
各形質転換大腸菌は、LB培地(Luria-Bertani medium)中で37℃、撹拌200 rpmで前培養し、その後炭素源としてグルコース(4~8%)又はグリセロール(8%)を含むM9培地中で37℃、200 rpmにて本培養を行った。培地にはストレプトマイシンを適量含み、以下各実施例、実験例の培養においても同様である。形質転換大腸菌の増殖は、大腸菌細胞を含む培養液をOD600の吸光度を紫外可視分光光度計(UVmini-1240; Shimadzu)で測定することで、細胞濃度から確認した。細胞濃度(OD600)が0.6になるまで培養した後、0.025~1mMのイソプロピル-β-チオガラクトピラノシド(Isopropylβ-D-1-thiogalactopyranoside)と10μMのall-trans-レチナール(all-trans-Retinal)を加えて誘導発現を行った後、明条件として0~135μmol/m2/sの光照射にて、37℃、50~200 rpmで24時間培養した。
Each transformed E. coli was pre-cultured in LB medium (Luria-Bertani medium) at 37 ° C. with stirring at 200 rpm, and then in M9 medium containing glucose (4-8%) or glycerol (8%) as a carbon source. Main culture was performed at 37 ° C. and 200 rpm. The medium contains an appropriate amount of streptomycin, and the same applies to the culture in each of the following Examples and Experimental Examples. Growth of transformed E. coli, the culture medium containing the E. coli cells and the absorbance of OD 600 ultraviolet-visible spectrophotometer; by measuring in (UVmini-1240 Shimadzu), it was confirmed from the cell concentration. After culturing until the cell concentration (OD 600 ) reaches 0.6, 0.025 to 1 mM isopropyl-β-thiogalactopyranoside (Isopropyl β-D-1-thiogalactopyranoside) and 10 μM all-trans-retinal (all-trans- Retinal) was added for induction expression, and the cells were cultured at 37 ° C. at 50 to 200 rpm for 24 hours under light conditions under light irradiation of 0 to 135 μmol / m 2 / s.
前培養 培地 LB培地量 5 ml
培地への形質転換大腸菌の添加量 LB寒天プレートより1個のコロニーを植菌
温度 37℃
培養時間 15時間
光照射なし Preculture medium LBmedium volume 5 ml
Addition amount of transformed Escherichia coli to culture medium Inoculate one colony from LB agar plate Temperature 37 ℃
Incubation time 15 hours without light irradiation
培地への形質転換大腸菌の添加量 LB寒天プレートより1個のコロニーを植菌
温度 37℃
培養時間 15時間
光照射なし Preculture medium LB
Addition amount of transformed Escherichia coli to culture medium Inoculate one colony from LB agar plate Temperature 37 ℃
Incubation time 15 hours without light irradiation
本培養 培地 炭素源としてグルコース(4~8%)又はグリセロール(8%)を含むM9培地量 100 ml
培地への形質転換大腸菌の添加量 2 ml
温度 37℃
培養時間 24時間
撹拌 50~200 rpm
光照射 0~135μmol/m2/s Main culture medium M9 medium containing glucose (4-8%) or glycerol (8%) ascarbon source 100 ml
Add 2 ml of transformed E. coli to the medium
Temperature 37 ℃
Incubation time 24 hours stirring 50-200 rpm
Light irradiation 0-135 μmol / m 2 / s
培地への形質転換大腸菌の添加量 2 ml
温度 37℃
培養時間 24時間
撹拌 50~200 rpm
光照射 0~135μmol/m2/s Main culture medium M9 medium containing glucose (4-8%) or glycerol (8%) as
Add 2 ml of transformed E. coli to the medium
Temperature 37 ℃
Incubation time 24 hours stirring 50-200 rpm
Light irradiation 0-135 μmol / m 2 / s
(実験例3-1)プロトン輸送活性
上記培養した形質転換大腸菌(dR発現株1)について、プロトン輸送活性を確認した。
dR発現株1を含む培養液(100 ml)を遠心分離し、上清を除去して取得した大腸菌細胞に5~10 mlの生理食塩水(100 mMNaCl)を加え、10分間平衡化した。これを3回繰り返し、プロトン輸送活性測定用の試料とした。 (Experimental example 3-1) Proton transport activity The proton transport activity of the above-described transformed Escherichia coli (dR expression strain 1) was confirmed.
The culture solution (100 ml) containing dR-expressingstrain 1 was centrifuged, the supernatant was removed, and 5 to 10 ml of physiological saline (100 mM NaCl) was added to the obtained E. coli cells and equilibrated for 10 minutes. This was repeated three times to obtain a sample for measuring proton transport activity.
上記培養した形質転換大腸菌(dR発現株1)について、プロトン輸送活性を確認した。
dR発現株1を含む培養液(100 ml)を遠心分離し、上清を除去して取得した大腸菌細胞に5~10 mlの生理食塩水(100 mMNaCl)を加え、10分間平衡化した。これを3回繰り返し、プロトン輸送活性測定用の試料とした。 (Experimental example 3-1) Proton transport activity The proton transport activity of the above-described transformed Escherichia coli (dR expression strain 1) was confirmed.
The culture solution (100 ml) containing dR-expressing
上記作製した試料に、ハロゲンランププロジェクター(JCD100V-300WL)を用いて、光量50、70、200及び1500μmol/m2/sの光を照射し、ロドプシンのイオン輸送に伴って生じるpHの変化をpHメーター(F-72;HORIBA)を用いて測定した。pHの変化により形質転換大腸菌(dR発現株1)のプロトン輸送活性を確認し、光駆動型細菌といえるかについて確認した。pH変化がロドプシンのプロトンポンプ活性由来であることは、溶液中にプロトンイオノフォアであるCCCP(Carbonyl Cyanide3-Chlorophenylhydrazone)を加えることで確認した。その結果を図1及び表1に示した。
Using a halogen lamp projector (JCD100V-300WL), the sample prepared above was irradiated with light having a light intensity of 50, 70, 200 and 1500 μmol / m 2 / s, and the change in pH caused by ion transport of rhodopsin was measured. It was measured using a meter (F-72; HORIBA). The proton transport activity of the transformed Escherichia coli (dR-expressing strain 1) was confirmed by the change in pH, and it was confirmed whether the transformed Escherichia coli (dR-expressing strain 1) was a light-driven bacterium. The fact that the pH change was due to the rhodopsin proton pump activity was confirmed by adding the proton ionophore CCCP (Carbonyl Cyanide3-Chlorophenylhydrazone) to the solution. The results are shown in FIG.
照射した光量の増加に伴って上記作製した試料でのpH減少速度が増加しており、デルタロドプシンが光依存的に細胞外にプロトンを輸送していることが確認された。
(4) The rate of pH decrease in the sample prepared above increased with the increase in the amount of irradiated light, confirming that delta-rhodopsin transported protons extracellularly in a light-dependent manner.
(実験例3-2)ATPの測定
本実験例では、上記実施例3で培養した形質転換大腸菌(dR発現株1)について、光照射の違いによる大腸菌細胞におけるATP生産を確認した。上記実験例3-1のプロトン輸送活性測定用試料と同手法で作製した試料について、ハロゲンランププロジェクター(JCD100V-300WL)を用いて、光量25、50及び100μmol/m2/sの光を照射した。本実施例以降において、暗条件とは0.02μmol/m2/s以下をいう。 (Experimental example 3-2) Measurement of ATP In this experimental example, for the transformed Escherichia coli (dR expression strain 1) cultured in Example 3, ATP production in Escherichia coli cells due to differences in light irradiation was confirmed. The sample prepared in the same manner as the sample for measuring the proton transport activity in Experimental Example 3-1 was irradiated with light of 25, 50 and 100 μmol / m 2 / s using a halogen lamp projector (JCD100V-300WL). . In the examples and thereafter, the dark condition means 0.02 μmol / m 2 / s or less.
本実験例では、上記実施例3で培養した形質転換大腸菌(dR発現株1)について、光照射の違いによる大腸菌細胞におけるATP生産を確認した。上記実験例3-1のプロトン輸送活性測定用試料と同手法で作製した試料について、ハロゲンランププロジェクター(JCD100V-300WL)を用いて、光量25、50及び100μmol/m2/sの光を照射した。本実施例以降において、暗条件とは0.02μmol/m2/s以下をいう。 (Experimental example 3-2) Measurement of ATP In this experimental example, for the transformed Escherichia coli (dR expression strain 1) cultured in Example 3, ATP production in Escherichia coli cells due to differences in light irradiation was confirmed. The sample prepared in the same manner as the sample for measuring the proton transport activity in Experimental Example 3-1 was irradiated with light of 25, 50 and 100 μmol / m 2 / s using a halogen lamp projector (JCD100V-300WL). . In the examples and thereafter, the dark condition means 0.02 μmol / m 2 / s or less.
dR発現株1を含む培養液(100 ml)を3000g、室温で5分間遠心分離し、上清を除去して取得した大腸菌細胞に1 mlの100 mM Tris-HCl、1 mM EDTA(pH 7.5)を加え、混和後再び遠心分離して上清を除去した。大腸菌細胞に対して500μlの100 mM Tris-HCl、1 mM EDTA(pH7.5)を加え、細胞破砕用チューブに移し替えた。直径0.6 mmのジルコニアビーズを加え、細胞破砕装置(shake master neo)にて、1500rpm、0分間細胞破砕処理を行った。細胞破砕後の大腸菌細胞溶液を16000g、20分、4℃にて遠心分離後し、上清をATP測定用試料とした。
The culture solution (100 ml) containing the dR-expressing strain 1 was centrifuged at 3000 g for 5 minutes at room temperature, and the supernatant was removed to give 1 ml of 100 ml of 100 mM Tris-HCl, 1 mM EDTA (pH 7.5). Was added, and the mixture was centrifuged again to remove the supernatant. 500 μl of 100 mM Tris-HCl, 1 mM EDTA (pH 7.5) was added to E. coli cells, and transferred to a cell disruption tube. Zirconia beads having a diameter of 0.6 mm were added, and the cells were crushed at 1500 rpm for 0 minutes using a cell crusher (shake master neo). The Escherichia coli cell solution after cell disruption was centrifuged at 16000 g for 20 minutes at 4 ° C., and the supernatant was used as an ATP measurement sample.
ATP生産は、市販のATP Bioluminescent Assay Kit(FLAA-1KT; Sigma)を用いてマニュアルに記載の方法に従い、ルシフェラーゼ発光法で測定した。光照射量に応じてATP生産量は増加することが確認された(図2)。
ATP production was measured by a luciferase luminescence method using a commercially available ATP Bioluminescent Assay Kit (FLAA-1KT; Sigma) according to the method described in the manual. It was confirmed that the ATP production increased according to the amount of light irradiation (FIG. 2).
(実験例3-3)形質転換大腸菌による代謝産物の測定
本実験例では、上記実施例3で培養した形質転換大腸菌(dR発現株1)による代謝産物の産生を確認した。本実験例では、明条件として光量50μmol/m2/sの光を照射し、暗条件は0.02μmol/m2/s以下とした。 (Experimental example 3-3) Measurement of metabolites by transformed Escherichia coli In this experimental example, production of metabolites by the transformed Escherichia coli (dR expression strain 1) cultured in Example 3 was confirmed. In the present experimental example, light with a light amount of 50 μmol / m 2 / s was irradiated as a bright condition, and 0.02 μmol / m 2 / s or less in a dark condition.
本実験例では、上記実施例3で培養した形質転換大腸菌(dR発現株1)による代謝産物の産生を確認した。本実験例では、明条件として光量50μmol/m2/sの光を照射し、暗条件は0.02μmol/m2/s以下とした。 (Experimental example 3-3) Measurement of metabolites by transformed Escherichia coli In this experimental example, production of metabolites by the transformed Escherichia coli (dR expression strain 1) cultured in Example 3 was confirmed. In the present experimental example, light with a light amount of 50 μmol / m 2 / s was irradiated as a bright condition, and 0.02 μmol / m 2 / s or less in a dark condition.
dR発現株1を含む培養液(100 ml)を15000g、4℃で5分間遠心分離し、上清を回収して0.45μmのフィルター(Millex HV; Merck KGaA)でろ過して-30℃で保存したものを培養液試料とした。次に、培養液試料と等量の内部標準液(5 mM イソ酪酸)を混合し、代謝産物測定用試料とした。
The culture solution (100 ml) containing the dR expression strain 1 was centrifuged at 15000 g at 4 ° C. for 5 minutes, and the supernatant was collected, filtered through a 0.45 μm filter (Millex HV; Merck KGAA), and stored at -30 ° C. The resulting sample was used as a culture solution sample. Next, an equal amount of an internal standard solution (5 mM isobutyric acid) was mixed with a culture solution sample to prepare a metabolite measurement sample.
上記調製した試料を高速液体クロマトグラフィー(HPLC; Shimadzu)により分析した。以下の条件でHPLCを運転し、酢酸を含む中枢代謝産物を測定した。
・カラム:Aminex HPX-87X column(Bio-Rad)、カラム温度:65℃
・分離溶媒:1.5 mM H2SO4、流速:0.5 ml/分
・検出器:UV/vis検出器(SPD-20A; Shimadzu)、RI検出器(RID-10A; Shimadzu)
・検出波長:210 nm The sample prepared above was analyzed by high performance liquid chromatography (HPLC; Shimadzu). HPLC was operated under the following conditions to measure central metabolites including acetic acid.
・ Column: Aminex HPX-87X column (Bio-Rad), Column temperature: 65 ℃
And separating the solvent: 1.5 mM H 2 SO 4, flow rate: 0.5 ml / min Detector: UV / vis detector (SPD-20A; Shimadzu), RI detector (RID-10A; Shimadzu)
・ Detection wavelength: 210 nm
・カラム:Aminex HPX-87X column(Bio-Rad)、カラム温度:65℃
・分離溶媒:1.5 mM H2SO4、流速:0.5 ml/分
・検出器:UV/vis検出器(SPD-20A; Shimadzu)、RI検出器(RID-10A; Shimadzu)
・検出波長:210 nm The sample prepared above was analyzed by high performance liquid chromatography (HPLC; Shimadzu). HPLC was operated under the following conditions to measure central metabolites including acetic acid.
・ Column: Aminex HPX-87X column (Bio-Rad), Column temperature: 65 ℃
And separating the solvent: 1.5 mM H 2 SO 4, flow rate: 0.5 ml / min Detector: UV / vis detector (SPD-20A; Shimadzu), RI detector (RID-10A; Shimadzu)
・ Detection wavelength: 210 nm
分析結果を図3及び表2に示した。その結果、炭素源であるグルコースから、ほとんどの代謝産物への産生速度は明条件及び暗条件で同程度であったが、明条件では暗条件と比較して、TCAサイクルへの炭素流量が減少し、酢酸への炭素流量が増加した。明条件及び暗条件での大腸菌細胞増殖速度はほとんど変わらなかったが、明条件では代謝サイクルにおいてグルコース消費量が減少し、その結果、酢酸の産生量が明条件により約1.3倍増加したことが確認された。
The analysis results are shown in FIG. As a result, the production rate of most metabolites from glucose as a carbon source was almost the same under light and dark conditions, but the carbon flow to the TCA cycle decreased under light conditions compared to dark conditions. And the carbon flow to acetic acid increased. The growth rate of Escherichia coli cells under light and dark conditions was almost the same, but under light conditions glucose consumption decreased during the metabolic cycle, and as a result, acetic acid production increased by about 1.3 times under light conditions. Was done.
(実験例3-4)形質転換大腸菌によるグルタチオン産生1
本実験例では、上記実施例3で培養した形質転換大腸菌(dR発現株1)によるグルタチオン(GSH)の産生を確認した。本実験例では、明条件として光量50μmol/m2/sの光を照射し、暗条件は0.02μmol/m2/s以下とした。 (Experimental example 3-4) Glutathione production by transformed Escherichia coli 1
In this experimental example, the production of glutathione (GSH) by the transformed Escherichia coli (dR expression strain 1) cultured in Example 3 was confirmed. In the present experimental example, light with a light amount of 50 μmol / m 2 / s was irradiated as a bright condition, and 0.02 μmol / m 2 / s or less in a dark condition.
本実験例では、上記実施例3で培養した形質転換大腸菌(dR発現株1)によるグルタチオン(GSH)の産生を確認した。本実験例では、明条件として光量50μmol/m2/sの光を照射し、暗条件は0.02μmol/m2/s以下とした。 (Experimental example 3-4) Glutathione production by transformed Escherichia coli 1
In this experimental example, the production of glutathione (GSH) by the transformed Escherichia coli (dR expression strain 1) cultured in Example 3 was confirmed. In the present experimental example, light with a light amount of 50 μmol / m 2 / s was irradiated as a bright condition, and 0.02 μmol / m 2 / s or less in a dark condition.
培養24時間後の大腸菌細胞濃度(OD600)を図4に示した。グルコースを炭素源として用いて好気的に撹拌200 rpmで培養した場合には、明条件では1.37、暗条件では1.14であった。グリセロールを炭素源として用いて好気的に撹拌200 rpmで培養した場合には、明条件では2.54、暗条件では2.28であった。グリセロールを炭素源として嫌気的に50 rpmで培養した場合には、明条件では1.13、暗条件では2.28であった。
FIG. 4 shows the E. coli cell concentration (OD 600 ) after 24 hours of culture. When cultured at 200 rpm with agitation using glucose as a carbon source under aerobic conditions, the value was 1.37 in the light condition and 1.14 in the dark condition. When glycerol was used as a carbon source and cultured aerobically with stirring at 200 rpm, the value was 2.54 under light conditions and 2.28 under dark conditions. When anaerobically cultured at 50 rpm using glycerol as a carbon source, the value was 1.13 in the light condition and 2.28 in the dark condition.
培養24時間後の培養液を分取し、遠心分離により培養液上清を除去した大腸菌細胞(dR発現株)を100 mM Tris-HCl(pH7.5)、2 mM EDTAにて洗浄した。その後、100 mM Tris-HCl(pH7.5)、2 mM EDTAを適量加え、細胞懸濁液を調製した。次にジルコニアビーズ(直径=0.6mm)を細胞懸濁液に加え、細胞破砕装置(shake master Neo; バイオメディカルサイエンス)にて1500 rpmの条件で10分間細胞を破砕した。遠心分離により細胞破砕物を除去したものをGSH測定用試料とした。
(4) The culture solution after 24 hours of culture was collected, and Escherichia coli cells (dR expression strain) from which the culture solution supernatant was removed by centrifugation were washed with 100 mM Tris-HCl (pH 7.5) and 2 mM EDTA. Thereafter, appropriate amounts of 100 mM Tris-HCl (pH 7.5) and 2 mM EDTA were added to prepare a cell suspension. Next, zirconia beads (diameter = 0.6 mm) were added to the cell suspension, and the cells were crushed for 10 minutes at 1500 rpm using a cell crusher (shake master Neo; Biomedical Science). A sample from which cell debris was removed by centrifugation was used as a sample for GSH measurement.
GSH量は、市販のGSH測定キット(同仁化学)を用いてDTNB(5-5'-dithiobis[2-nitrobenzoic acid])による呈色法で測定した。
The amount of GSH was measured by a coloration method using DTNB (5-5′-dithiobis [2-nitrobenzoic acid]) using a commercially available GSH measurement kit (Dojindo Chemical).
培養24時間後の細胞当たりのGSH濃度を図5上段に示した。グルコースを炭素源として用い、好気的に撹拌200 rpmで培養した場合には、明条件では0.221 mg/l/OD、暗条件では0.117 mg/l/ODであった。グリセロールを炭素源として用い、好気的に撹拌200rpmで培養した場合には、明条件では1.18 mg/l/OD、暗条件では0.60 mg/l/ODであった。グリセロールを炭素源として嫌気的に50 rpmで培養した場合には、明条件では4.01 mg/l/OD、暗条件では2.52 mg/l/ODであった。また、培養24時間後の培養液当たりのGSH濃度を図5下段に示した。グルコースを炭素源として用い、好気的に撹拌200 rpmで培養した場合には、明条件では0.302 mg/l、暗条件では0.135 mg/lであった。グリセロールを炭素源として用い、好気的に撹拌200 rpmで培養した場合には、明条件では2.17 mg/l、暗条件では1.55 mg/lであった。グリセロールを炭素源として嫌気的に50 rpmで培養した場合には、明条件では4.53 mg/l、暗条件では2.07 mg/lであった。
G The GSH concentration per cell after 24 hours of culture is shown in the upper part of FIG. When glucose was used as a carbon source and cultured aerobically with stirring at 200 rpm, the concentration was 0.221 mg / l / OD under light conditions and 0.117 mg / l / OD under dark conditions. When glycerol was used as a carbon source and cultured aerobically with stirring at 200 rpm, the light condition was 1.18 mg / l / OD and the dark condition was 0.60 mg / l / OD. When anaerobic cultivation was performed at 50 ° rpm using glycerol as a carbon source, it was 4.01 mg / l / OD under light conditions and 2.52 mg / l / OD under dark conditions. The GSH concentration per culture solution after 24 hours of culture is shown in the lower part of FIG. When glucose was used as a carbon source and cultured aerobically with stirring at 200 rpm, the concentration was 0.302 mg / l under light conditions and 0.135 mg / l under dark conditions. When glycerol was used as a carbon source and cultured aerobically with stirring at 200 rpm, the concentration was 2.17 mg / l in the light condition and 1.55 mg / l in the dark condition. When anaerobically cultured at 50 ° rpm using glycerol as a carbon source, the concentration was 4.53 mg / l in the light condition and 2.07 mg / l in the dark condition.
(実施例3-5)形質転換大腸菌によるグルタチオン産生2
本実験例では、上記実施例3で培養した形質転換大腸菌(pR発現株1)によるグルタチオン(GSH)の産生を確認した。 (Example 3-5)Glutathione production 2 by transformed E. coli
In this experimental example, production of glutathione (GSH) by the transformed Escherichia coli (pR expression strain 1) cultured in Example 3 was confirmed.
本実験例では、上記実施例3で培養した形質転換大腸菌(pR発現株1)によるグルタチオン(GSH)の産生を確認した。 (Example 3-5)
In this experimental example, production of glutathione (GSH) by the transformed Escherichia coli (pR expression strain 1) cultured in Example 3 was confirmed.
本実験例では、明条件として光量50μmol/m2/sの光を照射し、暗条件は0.02μmol/m2/s以下とした。グルコースを炭素源として用い、好気的に撹拌150 rpmで培養した。実験例3-4と同様に、大腸菌細胞(pR発現株1)についてGSH測定用試料を調製し、GSH量は、市販のGSH測定キット(同仁化学)を用いてDTNB(5-5'-dithiobis[2-nitrobenzoic acid])による呈色法で測定した。培養24時間後の細胞当たりのGSH濃度を図6に示した。明条件では0.91 mg/l/OD、暗条件では0.54 mg/l/ODであった。
In the present experimental example, light with a light amount of 50 μmol / m 2 / s was irradiated as a bright condition, and 0.02 μmol / m 2 / s or less in a dark condition. The cells were cultured aerobically at 150 rpm with glucose as a carbon source. In the same manner as in Experimental Example 3-4, a sample for GSH measurement was prepared for Escherichia coli cells (pR expression strain 1), and the amount of GSH was determined using a commercially available GSH measurement kit (Dojindo) using DTNB (5-5'-dithiobis). [2-nitrobenzoic acid]). The GSH concentration per cell after 24 hours of culture is shown in FIG. The light condition was 0.91 mg / l / OD, and the dark condition was 0.54 mg / l / OD.
(実施例4)形質転換大腸菌(dR発現株2)の作製
実施例4では、実施例1と同様に大腸菌MG1655(DE3)株に、配列番号2で特定する塩基配列からなる核酸を導入し、形質転換大腸菌(dR発現株2)を作製した。大腸菌MG1655(DE3)にpCOLADuet-1-mvaES及びpBbS7a-dRを導入し、MVADR株を作製し、dR発現株2とした。以下、dR発現株2の作製方法について示す。 (Example 4) Preparation of transformed Escherichia coli (dR expression strain 2) In Example 4, a nucleic acid consisting of the nucleotide sequence specified by SEQ ID NO: 2 was introduced into Escherichia coli MG1655 (DE3) in the same manner as in Example 1, Transformed E. coli (dR expression strain 2) was prepared. PCOLADuet-1-mvaES and pBbS7a-dR were introduced into Escherichia coli MG1655 (DE3) to prepare an MVADR strain, which was designated as dR-expressingstrain 2. Hereinafter, a method for preparing dR expression strain 2 will be described.
実施例4では、実施例1と同様に大腸菌MG1655(DE3)株に、配列番号2で特定する塩基配列からなる核酸を導入し、形質転換大腸菌(dR発現株2)を作製した。大腸菌MG1655(DE3)にpCOLADuet-1-mvaES及びpBbS7a-dRを導入し、MVADR株を作製し、dR発現株2とした。以下、dR発現株2の作製方法について示す。 (Example 4) Preparation of transformed Escherichia coli (dR expression strain 2) In Example 4, a nucleic acid consisting of the nucleotide sequence specified by SEQ ID NO: 2 was introduced into Escherichia coli MG1655 (DE3) in the same manner as in Example 1, Transformed E. coli (dR expression strain 2) was prepared. PCOLADuet-1-mvaES and pBbS7a-dR were introduced into Escherichia coli MG1655 (DE3) to prepare an MVADR strain, which was designated as dR-expressing
pCOLADuet-1-mvaESは、Journal of Bioscience and Bioengineering 124: 2017, 177-182に示す方法に従い、pCOLADuet-1(Merck KGaA)のMCS2のNdeI-XhoIサイトに、制限酵素NdeIとKpnIの認識サイトを付けてコドン最適化した配列番号5及び配列番号6に示す塩基配列を導入して作製した。mvaE及びmvaSは、いずれもメバロン酸合成酵素である。
According to the method described in Journal of Bioscience and Bioengineering 124: 2017, 177-182, pCOLADuet-1-mvaES attaches recognition sites for the restriction enzymes NdeI and KpnI to the NdeI-XhoI site of MCS2 of pCOLADuet-1 (Merck KGaA). It was prepared by introducing the nucleotide sequences shown in SEQ ID NO: 5 and SEQ ID NO: 6, which were codon-optimized. mvaE and mvaS are both mevalonate synthases.
コドン最適化したmvaEをコードする遺伝子の塩基配列
ATGAAAACCGTGGTGATTATTGATGCACTGCGTACCCCGATTGGTAAATACAAAGGTAGCCTGAGCCAGGTTAGCGCAGTTGATCTGGGCACCCATGTTACCACCCAGCTGCTGAAACGTCATAGCACCATTAGCGAAGAAATTGATCAGGTGATTTTTGGCAATGTTCTGCAGGCAGGTAATGGTCAGAATCCGGCACGTCAGATTGCAATTAATAGCGGTCTGAGCCATGAAATTCCGGCAATGACCGTTAATGAAGTTTGTGGTAGCGGTATGAAAGCAGTTATTCTGGCAAAACAGCTGATCCAGCTGGGCGAAGCCGAAGTTCTGATTGCCGGTGGTATTGAAAATATGAGCCAGGCACCGAAACTGCAGCGTTTCAATTATGAAACCGAAAGCTATGATGCACCGTTTAGCAGCATGATGTATGATGGTCTGACCGATGCATTTAGCGGTCAGGCAATGGGTCTGACAGCAGAAAATGTTGCAGAAAAATATCATGTGACCCGTGAAGAACAGGATCAGTTTAGCGTTCATAGCCAGCTGAAAGCAGCACAGGCACAGGCCGAAGGTATTTTTGCAGATGAAATTGCACCGCTGGAAGTTAGCGGCACCCTGGTTGAAAAAGATGAAGGTATTCGTCCGAATAGCAGCGTTGAAAAACTGGGTACACTGAAAACGGTGTTTAAAGAAGATGGCACCGTTACCGCAGGCAATGCAAGTACCATTAATGATGGTGCAAGCGCACTGATTATTGCCAGCCAAGAATATGCCGAAGCACATGGTCTGCCGTATCTGGCAATTATTCGTGATAGCGTTGAAGTTGGTATTGATCCGGCATATATGGGTATTAGCCCGATTAAAGCAATTCAGAAACTGCTGGCACGTAATCAGCTGACCACCGAAGAAATCGACCTGTATGAAATTAATGAAGCATTTGCCGCAACCAGCATTGTTGTTCAGCGTGAACTGGCACTGCCGGAAGAAAAAGTTAACATTTATGGTGGTGGTATCAGCCTGGGTCATGCAATTGGTGCAACCGGTGCACGTCTGCTGACCAGCCTGAGCTATCAGCTGAATCAGAAAGAGAAAAAATACGGCGTTGCAAGCCTGTGTATTGGTGGTGGCCTGGGTCTGGCAATGCTGCTGGAACGCCCTCAACAGAAAAAAAACAGCCGTTTTTATCAGATGAGTCCGGAAGAACGTCTGGCCAGCCTGCTGAATGAAGGTCAGATTAGCGCAGATACCAAAAAAGAATTTGAAAACACCGCACTGAGCAGCCAGATTGCCAATCACATGATTGAAAATCAGATCAGCGAAACCGAAGTGCCGATGGGTGTTGGTCTGCATCTGACCGTGGATGAAACGGATTATCTGGTTCCGATGGCAACCGAAGAACCGAGCGTTATTGCAGCCCTGAGCAATGGTGCAAAAATTGCACAGGGCTTTAAAACCGTGAATCAGCAGCGTCTGATGCGTGGTCAGATTGTTTTTTATGATGTTGCCGATGCAGAAAGCCTGATTGATGAACTGCAGGTTCGTGAAACAGAAATTTTCCAGCAGGCAGAACTGAGTTATCCGAGCATTGTTAAACGCGGTGGTGGTCTGCGTGATCTGCAGTATCGTGCATTTGATGAAAGCTTTGTTAGCGTGGATTTTCTGGTGGATGTTAAAGATGCAATGGGTGCCAATATTGTTAATGCAATGCTGGAAGGTGTTGCCGAACTGTTTCGTGAATGGTTTGCAGAACAAAAAATCCTGTTTAGCATCCTGAGTAACTATGCCACCGAAAGCGTTGTTACCATGAAAACAGCAATTCCGGTTAGCCGTCTGAGCAAAGGTAGTAATGGTCGTGAAATTGCCGAAAAAATTGTTCTGGCAAGCCGTTATGCCAGCCTGGACCCGTATCGTGCCGTTACCCATAATAAAGGTATTATGAATGGCATTGAAGCAGTTGTGCTGGCCACCGGTAATGATACCCGTGCAGTTAGCGCAAGCTGTCATGCATTTGCAGTTAAAGAAGGTCGTTATCAGGGTCTGACCAGCTGGACCCTGGATGGTGAGCAGCTGATTGGTGAAATTAGCGTTCCGCTGGCACTGGCAACCGTTGGTGGTGCCACCAAAGTTCTGCCGAAAAGCCAGGCAGCAGCCGATCTGCTGGCAGTTACCGATGCAAAAGAACTGAGCCGTGTTGTTGCAGCAGTTGGTCTGGCACAGAATCTGGCAGCACTGCGTGCACTGGTTAGCGAAGGCATTCAGAAAGGTCACATGGCACTGCAGGCACGTTCACTGGCCATGACCGTGGGTGCGACCGGTAAAGAAGTTGAAGCCGTTGCACAGCAACTGAAACGCCAGAAAACAATGAATCAGGATCGTGCCCTGGCAATTCTGAATGATCTGCGTAAACAGTAA(配列番号5) Nucleotide sequence of codon-optimized gene encoding mvaE
(SEQ ID NO: 5)
ATGAAAACCGTGGTGATTATTGATGCACTGCGTACCCCGATTGGTAAATACAAAGGTAGCCTGAGCCAGGTTAGCGCAGTTGATCTGGGCACCCATGTTACCACCCAGCTGCTGAAACGTCATAGCACCATTAGCGAAGAAATTGATCAGGTGATTTTTGGCAATGTTCTGCAGGCAGGTAATGGTCAGAATCCGGCACGTCAGATTGCAATTAATAGCGGTCTGAGCCATGAAATTCCGGCAATGACCGTTAATGAAGTTTGTGGTAGCGGTATGAAAGCAGTTATTCTGGCAAAACAGCTGATCCAGCTGGGCGAAGCCGAAGTTCTGATTGCCGGTGGTATTGAAAATATGAGCCAGGCACCGAAACTGCAGCGTTTCAATTATGAAACCGAAAGCTATGATGCACCGTTTAGCAGCATGATGTATGATGGTCTGACCGATGCATTTAGCGGTCAGGCAATGGGTCTGACAGCAGAAAATGTTGCAGAAAAATATCATGTGACCCGTGAAGAACAGGATCAGTTTAGCGTTCATAGCCAGCTGAAAGCAGCACAGGCACAGGCCGAAGGTATTTTTGCAGATGAAATTGCACCGCTGGAAGTTAGCGGCACCCTGGTTGAAAAAGATGAAGGTATTCGTCCGAATAGCAGCGTTGAAAAACTGGGTACACTGAAAACGGTGTTTAAAGAAGATGGCACCGTTACCGCAGGCAATGCAAGTACCATTAATGATGGTGCAAGCGCACTGATTATTGCCAGCCAAGAATATGCCGAAGCACATGGTCTGCCGTATCTGGCAATTATTCGTGATAGCGTTGAAGTTGGTATTGATCCGGCATATATGGGTATTAGCCCGATTAAAGCAATTCAGAAACTGCTGGCACGTAATCAGCTGACCACCGAAGAAATCGACCTGTATGAAATTAATGAAGCATTTGCCGCAACCAGCATTGTTGTTCAGCGTGAACTGGCACTGCCGGAAGAAAAAGTTAACATTTATGGTGGTGGTATCAGCCTGGGTCATGCAATTGGTGCAACCGGTGCACGTCTGCTGACCAGCCTGAGCTATCAGCTGAATCAGAAAGAGAAAAAATACGGCGTTGCAAGCCTGTGTATTGGTGGTGGCCTGGGTCTGGCAATGCTGCTGGAACGCCCTCAACAGAAAAAAAACAGCCGTTTTTATCAGATGAGTCCGGAAGAACGTCTGGCCAGCCTGCTGAATGAAGGTCAGATTAGCGCAGATACCAAAAAAGAATTTGAAAACACCGCACTGAGCAGCCAGATTGCCAATCACATGATTGAAAATCAGATCAGCGAAACCGAAGTGCCGATGGGTGTTGGTCTGCATCTGACCGTGGATGAAACGGATTATCTGGTTCCGATGGCAACCGAAGAACCGAGCGTTATTGCAGCCCTGAGCAATGGTGCAAAAATTGCACAGGGCTTTAAAACCGTGAATCAGCAGCGTCTGATGCGTGGTCAGATTGTTTTTTATGATGTTGCCGATGCAGAAAGCCTGATTGATGAACTGCAGGTTCGTGAAACAGAAATTTTCCAGCAGGCAGAACTGAGTTATCCGAGCATTGTTAAACGCGGTGGTGGTCTGCGTGATCTGCAGTATCGTGCATTTGATGAAAGCTTTGTTAGCGTGGATTTTCTGGTGGATGTTAAAGATGCAATGGGTGCCAATATTGTTAATGCAATGCTGGAAGGTGTTGCCGAACTGTTTCGTGAATGGTTTGCAGAACAAAAAATCCTGTTTAGCATCCTGAGTAACTATGCCACCGAAAGCGTTGTTACCATGAAAACAGCAATTCCGGTTAGCCGTCTGAGCAAAGGTAGTAATGGTCGTGAAATTGCCGAAAAAATTGTTCTGGCAAGCCGTTATGCCAGCCTGGACCCGTATCGTGCCGTTACCCATAATAAAGGTATTATGAATGGCATTGAAGCAGTTGTGCTGGCCACCGGTAATGATACCCGTGCAGTTAGCGCAAGCTGTCATGCATTTGCAGTTAAAGAAGGTCGTTATCAGGGTCTGACCAGCTGGACCCTGGATGGTGAGCAGCTGATTGGTGAAATTAGCGTTCCGCTGGCACTGGCAACCGTTGGTGGTGCCACCAAAGTTCTGCCGAAAAGCCAGGCAGCAGCCGATCTGCTGGCAGTTACCGATGCAAAAGAACTGAGCCGTGTTGTTGCAGCAGTTGGTCTGGCACAGAATCTGGCAGCACTGCGTGCACTGGTTAGCGAAGGCATTCAGAAAGGTCACATGGCACTGCAGGCACGTTCACTGGCCATGACCGTGGGTGCGACCGGTAAAGAAGTTGAAGCCGTTGCACAGCAACTGAAACGCCAGAAAACAATGAATCAGGATCGTGCCCTGGCAATTCTGAATGATCTGCGTAAACAGTAA(配列番号5) Nucleotide sequence of codon-optimized gene encoding mvaE
(SEQ ID NO: 5)
コドン最適化したmvaSをコードする遺伝子の塩基配列
ATGACCATCGGCATCGACAAAATCAGCTTTTTTGTTCCGCCTTACTATATCGACATGACCGCACTGGCCGAAGCACGTAATGTTGATCCGGGTAAATTTCATATTGGTATTGGTCAGGATCAGATGGCCGTTAATCCGATTAGCCAGGATATTGTTACCTTTGCAGCAAATGCAGCAGAAGCAATTCTGACCAAAGAAGATAAAGAAGCCATCGATATGGTTATTGTTGGCACCGAAAGCAGCATTGATGAAAGCAAAGCAGCCGCAGTTGTTCTGCATCGTCTGATGGGTATTCAGCCGTTTGCACGTAGCTTTGAAATTAAAGAAGCATGTTACGGCGCAACCGCAGGTCTGCAGCTGGCAAAAAATCATGTTGCACTGCATCCGGATAAAAAAGTTCTGGTTGTTGCAGCAGATATTGCCAAATATGGTCTGAATAGCGGTGGTGAACCGACCCAGGGTGCCGGTGCAGTTGCAATGCTGGTTGCAAGCGAACCGCGTATTCTGGCACTGAAAGAGGATAATGTTATGCTGACGCAGGACATCTATGATTTTTGGCGTCCGACCGGTCATCCGTATCCGATGGTTGATGGTCCGCTGAGCAATGAAACCTATATTCAGAGCTTTGCACAGGTGTGGGATGAACATAAAAAACGTACCGGTCTGGATTTCGCAGATTATGATGCACTGGCCTTTCATATTCCGTATACCAAAATGGGTAAAAAAGCACTGCTGGCGAAAATTAGCGATCAGACCGAAGCCGAACAAGAACGTATCCTGGCACGTTATGAAGAAAGCATTATCTATAGCCGTCGTGTGGGTAATCTGTATACCGGTAGCCTGTATCTGGGTCTGATTAGCCTGCTGGAAAATGCAACCACCCTGACCGCTGGTAATCAGATTGGTCTGTTTAGCTATGGTAGCGGTGCCGTTGCAGAATTCTTTACCGGTGAACTGGTTGCAGGTTATCAGAATCATCTGCAGAAAGAAACCCATCTGGCCCTGCTGGATAATCGTACCGAACTGAGCATTGCAGAATATGAAGCAATGTTTGCAGAAACCCTGGATACCGATATTGATCAGACCCTGGAAGATGAACTGAAATATAGCATTAGCGCCATTAATAACACCGTGCGTAGCTATCGTAACTAA(配列番号6) Nucleotide sequence of codon-optimized gene encoding mvaS
(SEQ ID NO: 6)
ATGACCATCGGCATCGACAAAATCAGCTTTTTTGTTCCGCCTTACTATATCGACATGACCGCACTGGCCGAAGCACGTAATGTTGATCCGGGTAAATTTCATATTGGTATTGGTCAGGATCAGATGGCCGTTAATCCGATTAGCCAGGATATTGTTACCTTTGCAGCAAATGCAGCAGAAGCAATTCTGACCAAAGAAGATAAAGAAGCCATCGATATGGTTATTGTTGGCACCGAAAGCAGCATTGATGAAAGCAAAGCAGCCGCAGTTGTTCTGCATCGTCTGATGGGTATTCAGCCGTTTGCACGTAGCTTTGAAATTAAAGAAGCATGTTACGGCGCAACCGCAGGTCTGCAGCTGGCAAAAAATCATGTTGCACTGCATCCGGATAAAAAAGTTCTGGTTGTTGCAGCAGATATTGCCAAATATGGTCTGAATAGCGGTGGTGAACCGACCCAGGGTGCCGGTGCAGTTGCAATGCTGGTTGCAAGCGAACCGCGTATTCTGGCACTGAAAGAGGATAATGTTATGCTGACGCAGGACATCTATGATTTTTGGCGTCCGACCGGTCATCCGTATCCGATGGTTGATGGTCCGCTGAGCAATGAAACCTATATTCAGAGCTTTGCACAGGTGTGGGATGAACATAAAAAACGTACCGGTCTGGATTTCGCAGATTATGATGCACTGGCCTTTCATATTCCGTATACCAAAATGGGTAAAAAAGCACTGCTGGCGAAAATTAGCGATCAGACCGAAGCCGAACAAGAACGTATCCTGGCACGTTATGAAGAAAGCATTATCTATAGCCGTCGTGTGGGTAATCTGTATACCGGTAGCCTGTATCTGGGTCTGATTAGCCTGCTGGAAAATGCAACCACCCTGACCGCTGGTAATCAGATTGGTCTGTTTAGCTATGGTAGCGGTGCCGTTGCAGAATTCTTTACCGGTGAACTGGTTGCAGGTTATCAGAATCATCTGCAGAAAGAAACCCATCTGGCCCTGCTGGATAATCGTACCGAACTGAGCATTGCAGAATATGAAGCAATGTTTGCAGAAACCCTGGATACCGATATTGATCAGACCCTGGAAGATGAACTGAAATATAGCATTAGCGCCATTAATAACACCGTGCGTAGCTATCGTAACTAA(配列番号6) Nucleotide sequence of codon-optimized gene encoding mvaS
(SEQ ID NO: 6)
pBbS7a-dRは、pBbS7a-RFP(Plasmid #35313; Addgene)を制限酵素NdeIとKpnIで処理し、pBbS7a-RFPのうちRFP遺伝子を配列番号2で特定する塩基配列からなるRd遺伝子に置き換えて作製した。精製したプラスミドをAvrIIとSacIを用いて処理し、BbS47a-RFP(Plasmid #35301; Addgene)の複製起点SC101に置き換えた。上記プラスミドを用いて大腸菌MG1655(DE3)を形質転換し、dR発現株2を作製した。
pBbS7a-dR was prepared by treating pBbS7a-RFP (Plasmid # 35313; Addgene) with restriction enzymes NdeI and KpnI, and replacing the RFP gene of pBbS7a-RFP with the Rd gene consisting of the nucleotide sequence specified by SEQ ID NO: 2. . The purified plasmid was treated with AvrII and SacI, and replaced with the replication origin SC101 of BbS47a-RFP (Plasmid ## 35301; #Addgene). Escherichia coli MG1655 (DE3) was transformed with the above plasmid to prepare dR expression strain 2.
(実験例4-1)形質転換大腸菌(dR発現株2)の培養方法及びメバロン酸の産生
上記作製したdR発現株2は、以下の培養条件で前培養及び本培養を行った。本実験例では、dR発現株2の代謝産物であるメバロン酸の産生についても確認した。メバロン酸の代謝経路は、図7に示すとおりである。 (Experimental example 4-1) Culture method of transformed Escherichia coli (dR expression strain 2) and production of mevalonic acid ThedR expression strain 2 prepared above was subjected to preculture and main culture under the following culture conditions. In this experimental example, production of mevalonic acid, which is a metabolite of dR expression strain 2, was also confirmed. The metabolic pathway of mevalonic acid is as shown in FIG.
上記作製したdR発現株2は、以下の培養条件で前培養及び本培養を行った。本実験例では、dR発現株2の代謝産物であるメバロン酸の産生についても確認した。メバロン酸の代謝経路は、図7に示すとおりである。 (Experimental example 4-1) Culture method of transformed Escherichia coli (dR expression strain 2) and production of mevalonic acid The
前培養では炭素源として4g/Lのグルコースを含む20 mlのM9培地を用い、初期細胞濃度OD660=0.05、温度37℃、攪拌165rpm、で20時間培養した。このとき、光照射は行わなかった。
In the preculture, 20 ml of M9 medium containing 4 g / L glucose was used as a carbon source, and the cells were cultured for 20 hours at an initial cell concentration of OD 660 = 0.05, a temperature of 37 ° C., and a stirring of 165 rpm. At this time, no light irradiation was performed.
本培養では炭素源として4g/Lのグルコースを含む40 mlのM9培地を用い、初期細胞濃度OD660=0.05、温度37℃、攪拌165rpm、明条件では光照射(50μmol/m2/s)で4時間近く培養し、細胞濃度がOD660=0.5に到達後、0.1 mMのIPTG(Isopropylβ-D-1-thiogalactopyranoside)と10μMレチナールを添加した。さらに培養開始6及び7時間目に5μMレチナールを添加した。
In the main culture, 40 ml of M9 medium containing 4 g / L glucose was used as a carbon source, the initial cell concentration was OD 660 = 0.05, the temperature was 37 ° C., the stirring was 165 rpm, and light irradiation (50 μmol / m 2 / s) was performed under light conditions. After culturing for nearly 4 hours, after the cell concentration reached OD 660 = 0.5, 0.1 mM IPTG (Isopropyl β-D-1-thiogalactopyranoside) and 10 μM retinal were added. Further, at 6 and 7 hours after the start of the culture, 5 μM retinal was added.
dR発現株2を含む培養液(100 ml)を15000g、4℃で5分間遠心分離し、上清を回収して0.45μmのフィルター(Millex HV; Merck KGaA)でろ過して-30℃で保存したものをメバロン酸測定用試料とした。高速液体クロマトグラフィー(HPLC)にてメバロン酸濃度の測定を行った。
The culture solution (100 ml) containing the dR expression strain 2 was centrifuged at 15000 g at 4 ° C. for 5 minutes, and the supernatant was collected, filtered through a 0.45 μm filter (Millex HV; MerckAKGaA), and stored at -30 ° C. This was used as a mevalonic acid measurement sample. The mevalonic acid concentration was measured by high performance liquid chromatography (HPLC).
上記調製した試料を高速液体クロマトグラフィー(HPLC; Shimadzu)により分析した。以下の条件でHPLCを運転し、メバロン酸を含む中枢代謝産物を測定した。
・カラム:Aminex HPX-87X column(Bio-Rad)、カラム温度:65℃
・分離溶媒:1.5 mM H2SO4、流速:0.5 ml/分
・検出器:UV/vis検出器(SPD-20A; Shimadzu)、RI検出器(RID-10A; Shimadzu)
・検出波長:210 nm The sample prepared above was analyzed by high performance liquid chromatography (HPLC; Shimadzu). HPLC was operated under the following conditions to measure central metabolites including mevalonic acid.
・ Column: Aminex HPX-87X column (Bio-Rad), Column temperature: 65 ℃
And separating the solvent: 1.5 mM H 2 SO 4, flow rate: 0.5 ml / min Detector: UV / vis detector (SPD-20A; Shimadzu), RI detector (RID-10A; Shimadzu)
・ Detection wavelength: 210 nm
・カラム:Aminex HPX-87X column(Bio-Rad)、カラム温度:65℃
・分離溶媒:1.5 mM H2SO4、流速:0.5 ml/分
・検出器:UV/vis検出器(SPD-20A; Shimadzu)、RI検出器(RID-10A; Shimadzu)
・検出波長:210 nm The sample prepared above was analyzed by high performance liquid chromatography (HPLC; Shimadzu). HPLC was operated under the following conditions to measure central metabolites including mevalonic acid.
・ Column: Aminex HPX-87X column (Bio-Rad), Column temperature: 65 ℃
And separating the solvent: 1.5 mM H 2 SO 4, flow rate: 0.5 ml / min Detector: UV / vis detector (SPD-20A; Shimadzu), RI detector (RID-10A; Shimadzu)
・ Detection wavelength: 210 nm
細胞濃度及びメバロン酸濃度の測定結果を図8に示した。メバロン酸の産生速度は、明条件で培養したときは0.64±0.07 mmol/g/hであったのに対し、暗条件で培養したときは0.49±0.02 mmol/g/hであった。メバロン酸の産生速度は、細胞濃度とメバロン酸濃度が直線的に増加しているフェーズ(培養時間6~7.5時間目)の間での細胞濃度及び時間(1.5時間)あたりの増加したメバロン酸量を換算して得た。メバロン酸は、多様な構造や生理機能を有する天然色素、医薬品中間体であるイソプレノイド類の中間ハブ化合物として極めて重要な化合物である。
FIG. 8 shows the measurement results of the cell concentration and the mevalonic acid concentration. The production rate of mevalonic acid was 0.64 ± 0.07 mmol / g / h when cultured under light conditions, and 0.49 ± 0.020.0mmol / g / h when cultured under dark conditions. The production rate of mevalonate is determined by the cell concentration during the phase in which the cell concentration and the mevalonate concentration increase linearly (culture time 6 to 7.5 hours) and the amount of mevalonate increased per time (1.5 hours) Was obtained. Mevalonic acid is a very important compound as an intermediate hub compound of isoprenoids, which are natural pigments having various structures and physiological functions, and pharmaceutical intermediates.
(実施例5)形質転換大腸菌(dR発現株3)の作製
実施例5では、実施例1と同様に大腸菌MG1655(DE3)株に、配列番号2で特定する塩基配列からなる核酸を導入し、形質転換大腸菌(dR発現株3)を作製した。大腸菌MG1655(DE3)に、ADP-リボースピロホスファターゼ発現遺伝子を挿入したpCOLADuet-1-mvaES-nudFと、pMevB及びpBbS7a-dRを導入し、IPDR株を作製しdR発現株3とした。 (Example 5) Preparation of transformed Escherichia coli (dR expression strain 3) In Example 5, a nucleic acid having the nucleotide sequence specified by SEQ ID NO: 2 was introduced into Escherichia coli MG1655 (DE3) as in Example 1, Transformed E. coli (dR expression strain 3) was prepared. E. coli MG1655 (DE3) was introduced with pCOLADuet-1-mvaES-nudF into which an ADP-ribose pyrophosphatase expression gene was inserted, pMevB and pBbS7a-dR, and an IPDR strain was prepared to bedR expression strain 3.
実施例5では、実施例1と同様に大腸菌MG1655(DE3)株に、配列番号2で特定する塩基配列からなる核酸を導入し、形質転換大腸菌(dR発現株3)を作製した。大腸菌MG1655(DE3)に、ADP-リボースピロホスファターゼ発現遺伝子を挿入したpCOLADuet-1-mvaES-nudFと、pMevB及びpBbS7a-dRを導入し、IPDR株を作製しdR発現株3とした。 (Example 5) Preparation of transformed Escherichia coli (dR expression strain 3) In Example 5, a nucleic acid having the nucleotide sequence specified by SEQ ID NO: 2 was introduced into Escherichia coli MG1655 (DE3) as in Example 1, Transformed E. coli (dR expression strain 3) was prepared. E. coli MG1655 (DE3) was introduced with pCOLADuet-1-mvaES-nudF into which an ADP-ribose pyrophosphatase expression gene was inserted, pMevB and pBbS7a-dR, and an IPDR strain was prepared to be
以下、dR発現株3の作製方法について示す。ADP-リボースピロホスファターゼ発現遺伝子として、Bacillus subtilisのゲノムから取得したnudF配列(配列番号7)を用いた。pCOLADuet-1-mvaES-nudFは、実施例4で作製したpCOLADuet-1-mvaESのMCS1のNco1-BamH1サイトにnudF配列を導入して作製した。
Hereinafter, a method for preparing dR expression strain 3 will be described. As an ADP-ribose pyrophosphatase expression gene, a nudF sequence (SEQ ID NO: 7) obtained from the genome of Bacillus subtilis was used. pCOLADuet-1-mvaES-nudF was prepared by introducing a nudF sequence into the Nco1-BamH1 site of MCS1 of pCOLADuet-1-mvaES prepared in Example 4.
コドン最適化したnudFをコードする遺伝子の塩基配列
ATGAAATCATTAGAAGAAAAAACAATTGCCAAAGAACAGATTTTTTCGGGTAAAGTCATTGATCTTTATGTCGAGGATGTAGAGCTGCCAAACGGCAAAGCCAGTAAACGTGAAATTGTGAAACACCCTGGAGCTGTAGCGGTACTAGCCGTCACAGATGAAGGGAAAATCATCATGGTCAAACAATTCCGTAAGCCGCTTGAGCGGACGATCGTTGAAATTCCGGCCGGTAAGCTTGAAAAAGGTGAGGAGCCGGAGTATACGGCACTTCGGGAACTTGAAGAGGAAACCGGTTATACAGCAAAAAAACTGACAAAAATAACTGCGTTTTATACATCACCCGGATTTGCAGATGAAATGTTCACGTTTTTCTTGCTGAGGAGCTTTCTGTGCTTGAAGAAAAACGGGAGCTTGATGAGGACGAGTTTGTTGAAGTGATGGAGGTGACGCTTGAAGATGCGCTAAAGCTGGTTGAATCGCGTGAAGTATATGATGCTAAAACAGCCTACGCGATTCAGTATCTTCAGCTGAAAGAAGCGCTCCAAGCACAAAAATGA(配列番号7) Nucleotide sequence of codon-optimized gene encoding nudF
(SEQ ID NO: 7)
ATGAAATCATTAGAAGAAAAAACAATTGCCAAAGAACAGATTTTTTCGGGTAAAGTCATTGATCTTTATGTCGAGGATGTAGAGCTGCCAAACGGCAAAGCCAGTAAACGTGAAATTGTGAAACACCCTGGAGCTGTAGCGGTACTAGCCGTCACAGATGAAGGGAAAATCATCATGGTCAAACAATTCCGTAAGCCGCTTGAGCGGACGATCGTTGAAATTCCGGCCGGTAAGCTTGAAAAAGGTGAGGAGCCGGAGTATACGGCACTTCGGGAACTTGAAGAGGAAACCGGTTATACAGCAAAAAAACTGACAAAAATAACTGCGTTTTATACATCACCCGGATTTGCAGATGAAATGTTCACGTTTTTCTTGCTGAGGAGCTTTCTGTGCTTGAAGAAAAACGGGAGCTTGATGAGGACGAGTTTGTTGAAGTGATGGAGGTGACGCTTGAAGATGCGCTAAAGCTGGTTGAATCGCGTGAAGTATATGATGCTAAAACAGCCTACGCGATTCAGTATCTTCAGCTGAAAGAAGCGCTCCAAGCACAAAAATGA(配列番号7) Nucleotide sequence of codon-optimized gene encoding nudF
(SEQ ID NO: 7)
pMevBはPlasmid #17819(Addgene)から取得した。pBbS7a-dRは、実施例4と同手法により作製した。上記プラスミドを用いて大腸菌MG1655(DE3)を形質転換し、dR発現株3を作製した。
PMevB was obtained from Plasmid # 17819 (Addgene). pBbS7a-dR was produced in the same manner as in Example 4. Escherichia coli MG1655 (DE3) was transformed using the above plasmid to prepare dR expression strain 3.
(実験例5-1)形質転換大腸菌(dR発現株3)の培養方法及びイソプレノールの産生
上記作製したdR発現株3は、以下の培養条件で前培養及び本培養を行った。本実験例では、dR発現株3の代謝産物であるイソプレノールの産生についても確認した。イソプレノールの代謝経路は、図7及に示すとおりである。 (Experimental example 5-1) Culture method of transformed Escherichia coli (dR expression strain 3) and production of isoprenol ThedR expression strain 3 prepared above was subjected to preculture and main culture under the following culture conditions. In this experimental example, the production of isoprenol, a metabolite of dR-expressing strain 3, was also confirmed. The metabolic pathway of isoprenol is as shown in FIG.
上記作製したdR発現株3は、以下の培養条件で前培養及び本培養を行った。本実験例では、dR発現株3の代謝産物であるイソプレノールの産生についても確認した。イソプレノールの代謝経路は、図7及に示すとおりである。 (Experimental example 5-1) Culture method of transformed Escherichia coli (dR expression strain 3) and production of isoprenol The
前培養では100 mlのLB培地を用い、初期細胞濃度OD660=0.1、温度37℃、攪拌165rpmで約18時間培養した。このとき、光照射は行わなかった。培養液から大腸菌細胞を遠心分離(7000g、25℃、4分間)にて回収した。
In the pre-culture, 100 ml of LB medium was used, and the cells were cultured for about 18 hours at an initial cell concentration of OD 660 = 0.1, a temperature of 37 ° C., and agitation at 165 rpm. At this time, no light irradiation was performed. Escherichia coli cells were collected from the culture solution by centrifugation (7000 g, 25 ° C., 4 minutes).
本培養では炭素源として4g/Lのグルコースを含む50 mlのM9培地を用い、細胞濃度OD660=5、温度37℃、攪拌165rpm、明条件では光照射(50μmol/m2/s)で培養した。0.1 mMのIPTGと10μMレチナールは本培養開始時に添加した。
In the main culture, 50 ml of M9 medium containing 4 g / L glucose was used as a carbon source, and the cell concentration was OD 660 = 5, temperature 37 ° C, stirring 165 rpm, and light irradiation (50 μmol / m 2 / s) under bright conditions did. 0.1 mM IPTG and 10 μM retinal were added at the start of the main culture.
dR発現株3を含む培養液(100 ml)を15000g、4℃で5分間遠心分離し、上清を回収して0.45μmのフィルター(Millex HV; Merck KGaA)でろ過して-30℃で保存したものを培養液試料とした。次に、培養液試料と等量の内部標準液(0.1% 3-methyl-1-butanol)を混合し、イソプレノール測定用試料とした。
The culture solution (100 ml) containing dR-expressing strain 3 was centrifuged at 15000 g at 4 ° C. for 5 minutes, and the supernatant was collected, filtered through a 0.45 μm filter (Millex HV; Merck KKGA), and stored at -30 ° C. The resulting sample was used as a culture solution sample. Next, an equal amount of an internal standard solution (0.1% 3-methyl-1-butanol) was mixed with a culture solution sample to prepare a sample for isoprenol measurement.
イソプレノールはGC(Gas Chromatography)-FID(Flame Ionization Detector, 水素炎イオン化型検出器)により測定した。以下の条件でGC-FIDを運転し、イソプレノールを測定した。
・カラム:Stabiliwax(長さ 60 m、内径0.32 mm、膜厚1μm)(Restek)
・キャリアガス:ヘリウム
・昇温条件:70℃ (3 min)~10℃/min~200℃
・Injector温度および検出温度:250℃ Isoprenol was measured by GC (Gas Chromatography) -FID (Flame Ionization Detector, flame ionization type detector). The GC-FID was operated under the following conditions, and isoprenol was measured.
・ Column: Stabiliwax (length 60 m, inner diameter 0.32 mm,film thickness 1 μm) (Restek)
・ Carrier gas: Helium ・ Rising temperature condition: 70 ℃ (3 min) ~ 10 ℃ / min ~ 200 ℃
・ Injector temperature and detection temperature: 250 ℃
・カラム:Stabiliwax(長さ 60 m、内径0.32 mm、膜厚1μm)(Restek)
・キャリアガス:ヘリウム
・昇温条件:70℃ (3 min)~10℃/min~200℃
・Injector温度および検出温度:250℃ Isoprenol was measured by GC (Gas Chromatography) -FID (Flame Ionization Detector, flame ionization type detector). The GC-FID was operated under the following conditions, and isoprenol was measured.
・ Column: Stabiliwax (length 60 m, inner diameter 0.32 mm,
・ Carrier gas: Helium ・ Rising temperature condition: 70 ℃ (3 min) ~ 10 ℃ / min ~ 200 ℃
・ Injector temperature and detection temperature: 250 ℃
細胞濃度、グルコース濃度、及びイソプレノール濃度の測定結果を図9に示した。イソプレノールの収率は、培養0時間目と10時間目のイソプレノール濃度及びグルコース濃度の変化量から換算した。その結果、培養10時間目では明条件で1.78±0.14 C-mol %であり、暗条件で1.17±0.10 C-mol %であった。イソプレノールは、エタノール(19.6 MJ/L)に対して1.8倍程度のエネルギー密度(35 MJ/L)を持ち、ガソリン(32 MJ/L)の代替燃料として期待されている。また、イソプレノールは化学プロセスによりイソプレンなどの一般化成品原料に変換可能である。イソプレンは合成ゴムの原料であるが、合成ゴムは全世界で1,500万トン、我が国でも163.8万トンを生産していることから、合成石油代替バイオマテリアルとしても大きな市場を形成していると予想される。
FIG. 9 shows the measurement results of the cell concentration, glucose concentration, and isoprenol concentration. The isoprenol yield was calculated from the changes in the isoprenol concentration and the glucose concentration at the 0th and 10th hours of the culture. As a result, after 10 hours of culture, the concentration was 1.78 ± 0.14 ° C.-mol で% under the bright condition, and 1.17 ± 0.10 ° C-mol% under the dark condition. Isoprenol has an energy density (35 MJ / L) about 1.8 times that of ethanol (19.6 MJ / L), and is expected as an alternative fuel to gasoline (32 MJ / L). Also, isoprenol can be converted into general chemical raw materials such as isoprene by a chemical process. Isoprene is a raw material for synthetic rubber.Since synthetic rubber produces 15 million tons worldwide and 1,68,000 tons in Japan, it is expected to form a large market as a synthetic petroleum alternative biomaterial. You.
(実施例6)形質転換大腸菌(dR発現株4)の作製
実施例6では、実施例1と同様に大腸菌MG1655(DE3)株に、配列番号2で特定する塩基配列からなる核酸を導入し、形質転換大腸菌(dR発現株4)を作製した。大腸菌MG1655(DE3)にpETM6-mcrNC及びpBbS7a-dRを導入し、MVADR株を作製しdR発現株4とした。以下、dR発現株4の作製方法について示す。 (Example 6) Preparation of transformed Escherichia coli (dR expression strain 4) In Example 6, a nucleic acid consisting of the nucleotide sequence specified by SEQ ID NO: 2 was introduced into Escherichia coli MG1655 (DE3) as in Example 1, Transformed E. coli (dR expression strain 4) was prepared. PETM6-mcrNC and pBbS7a-dR were introduced into Escherichia coli MG1655 (DE3) to prepare an MVADR strain, which was designated as dR-expressingstrain 4. Hereinafter, a method for preparing dR expression strain 4 will be described.
実施例6では、実施例1と同様に大腸菌MG1655(DE3)株に、配列番号2で特定する塩基配列からなる核酸を導入し、形質転換大腸菌(dR発現株4)を作製した。大腸菌MG1655(DE3)にpETM6-mcrNC及びpBbS7a-dRを導入し、MVADR株を作製しdR発現株4とした。以下、dR発現株4の作製方法について示す。 (Example 6) Preparation of transformed Escherichia coli (dR expression strain 4) In Example 6, a nucleic acid consisting of the nucleotide sequence specified by SEQ ID NO: 2 was introduced into Escherichia coli MG1655 (DE3) as in Example 1, Transformed E. coli (dR expression strain 4) was prepared. PETM6-mcrNC and pBbS7a-dR were introduced into Escherichia coli MG1655 (DE3) to prepare an MVADR strain, which was designated as dR-expressing
pETM6-mcrNCは、Metabolic Engineering 52: 2019, 215-223に示す方法に従い、Chloroflexus aurantiacus由来のMalonyl-CoA reductaseのN末端側(mcrN, アミノ酸番号 1-549)とC末端側(mcrC, アミノ酸番号550-1219)に分割したもので、大腸菌用にコドン最適化した配列を導入して作製した。pBbS7a-dRは、実施例4と同手法により作製した。上記プラスミドを用いて大腸菌MG1655(DE3)を形質転換し、dR発現株4を作製した。
According to the method described in Metabolic Engineering 52: 2019, 215-223, pETM6-mcrNC is an N-terminal side (mcrN, amino acids 1 to 549) and a C-terminal side (mcrC, amino acid number 550) of Malonyl-CoA reductase derived from Chloroflexus aurantiacus. -1219), which was prepared by introducing a codon-optimized sequence for E. coli. pBbS7a-dR was produced in the same manner as in Example 4. Escherichia coli MG1655 (DE3) was transformed with the above plasmid to prepare dR expression strain 4.
(実験例6-1)形質転換大腸菌(dR発現株4)の培養方法及び3HPの産生
上記作製したdR発現株4は、以下の培養条件で前培養及び本培養を行った。本実験例では、dR発現株4の代謝産物である3HP(3ヒドロキシプロピオン酸)の産生についても確認した。3HPの代謝経路は、図7に示すとおりである。 (Experimental example 6-1) Culture method of transformed Escherichia coli (dR expression strain 4) and production of 3HP ThedR expression strain 4 prepared above was subjected to preculture and main culture under the following culture conditions. In this experimental example, the production of 3HP (3-hydroxypropionic acid), which is a metabolite of dR-expressing strain 4, was also confirmed. The metabolic pathway of 3HP is as shown in FIG.
上記作製したdR発現株4は、以下の培養条件で前培養及び本培養を行った。本実験例では、dR発現株4の代謝産物である3HP(3ヒドロキシプロピオン酸)の産生についても確認した。3HPの代謝経路は、図7に示すとおりである。 (Experimental example 6-1) Culture method of transformed Escherichia coli (dR expression strain 4) and production of 3HP The
前培養では炭素源として10g/Lグルコースを含む50 mlのM9培地を用い、初期細胞濃度OD660=0.05、温度37℃、攪拌150rpmで培養した。このとき、光照射は行わなかった。
In the pre-culture, 50 ml of M9 medium containing 10 g / L glucose was used as a carbon source, and the cells were cultured at an initial cell concentration of OD 660 = 0.05, a temperature of 37 ° C., and a stirring of 150 rpm. At this time, no light irradiation was performed.
本培養では炭素源として4g/Lグルコースを含む50 mlのM9培地を用い、初期細胞濃度OD660=0.05、温度37℃、攪拌150rpm、明条件では光照射(50μmol/m2/s)で約4.5時間培養した。細胞濃度OD660=0.5に到達後、0.1 mMのIPTGと10μMレチナールを添加した。さらに培養開始6及び8時間目に10μMレチナールを添加した。
Using M9 medium 50 ml of containing 4g / L glucose as carbon source in the culture, the initial cell concentration OD 660 = 0.05, temperature 37 ° C., with stirring 150 rpm, the light irradiation in the bright condition (50μmol / m 2 / s) to about The cells were cultured for 4.5 hours. After reaching a cell concentration of OD 660 = 0.5, 0.1 mM IPTG and 10 μM retinal were added. Further, at 6 and 8 hours after the start of the culture, 10 μM retinal was added.
dR発現株4を含む培養液(100 ml)を15000g、4℃で5分間遠心分離し、上清を回収して0.45μmのフィルター(Millex HV; Merck KGaA)でろ過して-30℃で保存したものを、メバロン酸測定用試料とした。高速液体クロマトグラフィー(HPLC)にて3HPの測定を行った。
The culture solution (100 ml) containing the dR expression strain 4 was centrifuged at 15000 g at 4 ° C. for 5 minutes, and the supernatant was collected, filtered through a 0.45 μm filter (Millex HV; Merck KGaA), and stored at -30 ° C. This was used as a sample for measuring mevalonic acid. 3HP was measured by high performance liquid chromatography (HPLC).
上記調製した試料を高速液体クロマトグラフィー(HPLC; Shimadzu)により分析した。以下の条件でHPLCを運転し、3HPを含む中枢代謝産物を測定した。
・カラム:Aminex HPX-87X column(Bio-Rad)、カラム温度:65℃
・分離溶媒:1.5 mM H2SO4、流速:0.5 ml/分
・検出器:UV/vis検出器(SPD-20A; Shimadzu)、RI検出器(RID-10A; Shimadzu)
・検出波長:210 nm The sample prepared above was analyzed by high performance liquid chromatography (HPLC; Shimadzu). HPLC was operated under the following conditions to measure central metabolites including 3HP.
・ Column: Aminex HPX-87X column (Bio-Rad), Column temperature: 65 ℃
And separating the solvent: 1.5 mM H 2 SO 4, flow rate: 0.5 ml / min Detector: UV / vis detector (SPD-20A; Shimadzu), RI detector (RID-10A; Shimadzu)
・ Detection wavelength: 210 nm
・カラム:Aminex HPX-87X column(Bio-Rad)、カラム温度:65℃
・分離溶媒:1.5 mM H2SO4、流速:0.5 ml/分
・検出器:UV/vis検出器(SPD-20A; Shimadzu)、RI検出器(RID-10A; Shimadzu)
・検出波長:210 nm The sample prepared above was analyzed by high performance liquid chromatography (HPLC; Shimadzu). HPLC was operated under the following conditions to measure central metabolites including 3HP.
・ Column: Aminex HPX-87X column (Bio-Rad), Column temperature: 65 ℃
And separating the solvent: 1.5 mM H 2 SO 4, flow rate: 0.5 ml / min Detector: UV / vis detector (SPD-20A; Shimadzu), RI detector (RID-10A; Shimadzu)
・ Detection wavelength: 210 nm
細胞濃度及び3HP濃度の測定結果を図10に示した。3HPの産生速度は、明条件で培養したときは1.2±0.05 mmol/g/hであったのに対し、暗条件で培養したときは1.0±0.09 mmol/g/hであった。3HPの産生速度は、細胞濃度と3HP濃度が直線的に増加しているフェーズ(培養時間6~10時間目)の間での細胞濃度及び時間(4時間)あたりに増加した3HP量を換算して得た。3HP及びそのエステルは、脂肪族ポリエステルの原料として有用な化合物であり、また、これから合成されるポリエステルは生分解性のポリエステルとして注目されている。そのため、近年の海洋汚染や人体への悪影響が懸念されるマイクロプラスチック問題の解決にもつながる。
The measurement results of the cell concentration and the 3HP concentration are shown in FIG. The production rate of 3HP was 1.2 ± 0.05 mmol / g / h when cultured under light conditions, whereas it was 1.0 ± 0.09 mmol / g / h when cultured under dark conditions. The 3HP production rate is calculated by converting the cell concentration between the cell concentration and the phase in which the 3HP concentration increases linearly (culture time 6 to 10 hours) and the amount of 3HP increased per time (4 hours). I got it. 3HP and its esters are useful compounds as raw materials for aliphatic polyesters, and polyesters synthesized therefrom have attracted attention as biodegradable polyesters. For this reason, it also leads to the solution of the microplastic problem, which is concerned about recent marine pollution and adverse effects on the human body.
以上詳述したように、遺伝子工学的にロドプシンをコードする遺伝子を導入して発現させた非光合成原核生物によれば、光エネルギーを利用可能にする新しい光駆動エネルギー再生型有用物質生産宿主になり得る点で優位である。
As described in detail above, non-photosynthetic prokaryotes in which a gene encoding rhodopsin has been introduced and expressed by genetic engineering become a new light-driven energy-regenerating useful substance production host that can use light energy. It is advantageous in gaining.
通常の非光合成原核生物を用いた有用物質の生産では、通常非光合成原核生物は有用物質の生産が生きる目的ではないため、その生産性は低い。大腸菌などの非光合成原核生物に代謝工学的な改良を施し、医薬品や食品、化粧品、燃料、ポリマー原料等の様々な有用物質の発酵生産性を向上させる研究が行なわれている。しかし、目的物質の生産性が向上するにつれ、微生物が細胞内エネルギー不足に陥り、生育の低下や目的物質の生産性の頭打ちに直面することが少なくない。これは、発酵そのものがインプットである炭素源を、「細胞自身の材料(Cell mass)」、「目的産物の産生」、「細胞内エネルギー」の3つのアウトプットに振り分けるプロセスであり、これらがトレードオフの関係にあることに、根本的な原因が存在すると考えられる。そこで本発明技術は、この三つ巴の状態にある発酵プロセスから「細胞内エネルギー」を切り離すことができ、本来は光エネルギーを利用できない非光合成原核生物に、光リン酸化能を付与することで、光エネルギーを利用可能にする新しい光駆動エネルギー再生型有用物質生産宿主になりうる点で優位である。
(4) In the production of useful substances using ordinary non-photosynthetic prokaryotes, the productivity is usually low because non-photosynthetic prokaryotes do not have the purpose of producing useful substances. Research is being conducted to improve metabolic engineering of non-photosynthetic prokaryotes such as Escherichia coli to improve fermentation productivity of various useful substances such as pharmaceuticals, foods, cosmetics, fuels, and polymer raw materials. However, as the productivity of the target substance increases, the microorganisms often fall into a deficiency in intracellular energy, and often face a decrease in growth and a peak in productivity of the target substance. This is the process of distributing the carbon source, which is the input of the fermentation itself, into three outputs: “cell material”, “production of target product”, and “intracellular energy”. It is thought that the root cause exists in the off relationship. Thus, the technology of the present invention can separate "intracellular energy" from the fermentation process in the three-phase state, and imparts photophosphorylation ability to non-photosynthetic prokaryotes that originally cannot use light energy, This is an advantage in that it can be a new light-driven energy-renewable useful material production host that makes energy available.
本発明の技術は、前述のとおり、これまでのエネルギー源に加えて、光をエネルギー源にできることから、有用物質の生産性を向上させることができる。競合技術としては、省エネ型微生物が挙げられる(特開2017-55777号公報参照)。当該技術では、基礎代謝を行う遺伝子を削除することで、基礎代謝のエネルギーを削除し、有用物生産のエネルギーを向上させることができる。しかしながら、基礎代謝エネルギーの節減には限界があり、基礎代謝のエネルギーを削減することで増殖スピードが遅くなることが想定され、生産性の向上は限定的であると思われる。
As described above, the technology of the present invention can improve the productivity of useful substances because light can be used as an energy source in addition to the conventional energy sources. As a competing technology, there is an energy-saving microorganism (see JP-A-2017-55777). In this technique, by deleting genes that perform basal metabolism, the energy of basal metabolism can be deleted, and the energy of producing useful substances can be improved. However, there is a limit to the saving of basal metabolic energy, and it is assumed that the growth speed is slowed by reducing the energy of basal metabolism, and the improvement in productivity seems to be limited.
なお、大腸菌等微生物以外で有用物産生に活用される微細藻類(例えばユーグレナ)も、有用物生産の競合となり得る。また、微細藻類は元来光エネルギーを活用できるため、本技術を提供する先にならない。しかしながら、微細藻類は増殖速度が遅く、大腸菌等非光合成原核生物と比較した場合、物質生産宿主としての実用化は困難であると考えられる。そこで、非光合成原核生物に光リン酸化能を付与し、光エネルギーを活用できる微生物を生み出す本発明の技術によれば、これまでのエネルギー源に加えて、光をエネルギー源にできることから、有用物質の生産性を向上させることができる。有用物質としては、微生物の発酵プロセスを利用して産生しうる物質であり、例えばタンパク質、ペプチド、アミノ酸、核酸、ビタミン、糖、糖アルコール、アルコール、有機酸、イソプレノイド類、生理活性低分子化合物及び脂質などをあげることができる。本発明における有用物質は、ペプチドとしてグルタチオン、有機酸として酢酸が特に好適である。
微細 In addition, microalgae (eg, Euglena) utilized for producing useful substances other than microorganisms such as Escherichia coli can also compete for producing useful substances. In addition, microalgae can originally utilize light energy, so they are not the destination to provide this technology. However, microalgae have a slow growth rate, and it is considered that practical use as a host for producing substances is difficult when compared with non-photosynthetic prokaryotes such as Escherichia coli. Therefore, according to the technology of the present invention, which imparts photophosphorylation ability to non-photosynthetic prokaryotes to produce microorganisms capable of utilizing light energy, light can be used as an energy source in addition to conventional energy sources, and therefore, a useful substance. Can be improved in productivity. Useful substances include substances that can be produced by utilizing the fermentation process of microorganisms, such as proteins, peptides, amino acids, nucleic acids, vitamins, sugars, sugar alcohols, alcohols, organic acids, isoprenoids, bioactive low molecular weight compounds and And lipids. Particularly useful substances in the present invention are glutathione as a peptide and acetic acid as an organic acid.
一方、本発明の方法により産生された有用物質は、医薬品や食品、化粧品、燃料、ポリマー等の原料に有効利用することができ、産業上の利用可能性も非常に優れている。
On the other hand, useful substances produced by the method of the present invention can be effectively used as raw materials for pharmaceuticals, foods, cosmetics, fuels, polymers, and the like, and have extremely excellent industrial applicability.
Claims (12)
- 遺伝子工学的にロドプシンをコードする遺伝子を導入して発現させた非光合成原核生物を光照射下で培養することを特徴とする、有用物質の製造方法。 A method for producing a useful substance, which comprises culturing a non-photosynthetic prokaryote in which a gene encoding rhodopsin is introduced and expressed by genetic engineering under light irradiation.
- 前記遺伝子工学的にロドプシンをコードする遺伝子を導入して発現させた非光合成原核生物が、光照射下で培養したときの有用物質の生産量が、暗所で培養したときの有用物質の生産量より高い産生量を示す非光合成原核生物である、請求項1記載の有用物質の製造方法。 Non-photosynthetic prokaryotes expressed by introducing the gene encoding rhodopsin by genetic engineering, the production of useful substances when cultured under light irradiation, the production of useful substances when cultured in the dark The method for producing a useful substance according to claim 1, which is a non-photosynthetic prokaryote exhibiting a higher production amount.
- 前記非光合成原核生物が、非光合成細菌である、請求項1又は2記載の有用物質の製造方法。 The method for producing a useful substance according to claim 1 or 2, wherein the non-photosynthetic prokaryote is a non-photosynthetic bacterium.
- 前記非光合成原核生物が、大腸菌、乳酸菌、酢酸菌、枯草菌、放線菌、コリネ型細菌、シュードモナス属細菌、メタン生成菌、古細菌より選択されるいずれかである、請求項1又は2記載の有用物質の製造方法。 The non-photosynthetic prokaryote is any one selected from Escherichia coli, lactic acid bacteria, acetic acid bacteria, Bacillus subtilis, actinomycetes, coryneform bacteria, Pseudomonas bacteria, methanogens, and archaea. Method for producing useful substances.
- 前記非光合成原核生物が、大腸菌である、請求項1~4のいずれか記載の有用物質の製造方法。 The method for producing a useful substance according to any one of claims 1 to 4, wherein the non-photosynthetic prokaryote is Escherichia coli.
- 前記非光合成原核生物の光照射下での培養が、1~2000μmol/m2/sの光量の光照射下での培養である、請求項1~5のいずれか記載の有用物質の製造方法。 The method for producing a useful substance according to any one of claims 1 to 5, wherein the culture of the non-photosynthetic prokaryote under light irradiation is a culture under light irradiation of a light amount of 1 to 2000 μmol / m 2 / s.
- 以下の工程を含む、大腸菌の培養産物由来有用物質の製造方法:
1)ロドプシンをコードする遺伝子を、大腸菌に導入する工程;
2)前記1)の遺伝子が組み込まれた大腸菌を1~2000μmol/m2/sの光量の光照射下で、4~40℃、4~72時間培養する工程;
3)前記2)の工程で培養した大腸菌の培養産物を培養液から回収する工程。 A method for producing a useful substance derived from a culture product of Escherichia coli, comprising the following steps:
1) a step of introducing a gene encoding rhodopsin into E. coli;
2) a step of culturing the Escherichia coli into which the gene of the above 1) has been incorporated at 4 to 40 ° C. for 4 to 72 hours under light irradiation of 1 to 2000 μmol / m 2 / s;
3) a step of recovering the culture product of Escherichia coli cultured in the step 2) from the culture solution. - ロドプシンが、バクテリオロドプシン又はプロテオロドプシンである、請求項1~7のいずれか記載の有用物質の製造方法。 The method for producing a useful substance according to any one of claims 1 to 7, wherein the rhodopsin is bacteriorhodopsin or proteorhodopsin.
- ロドプシンが、デルタロドプシンである、請求項1~7のいずれか記載の有用物質の製造方法。 The method for producing a useful substance according to any one of claims 1 to 7, wherein the rhodopsin is delta-rhodopsin.
- 前記有用物質が、有機酸、ペプチド、アミノ酸、タンパク質、核酸、ビタミン、糖、糖アルコール、アルコール、イソプレノイド類及び脂質から選択される1種又は複数種である、請求項1~9のいずれかに記載の有用物質の製造方法。 10. The method according to claim 1, wherein the useful substance is at least one selected from organic acids, peptides, amino acids, proteins, nucleic acids, vitamins, sugars, sugar alcohols, alcohols, isoprenoids, and lipids. A method for producing the useful substance described above.
- 前記有用物質が、酢酸及び/又はグルタチオンである、請求項1~9のいずれかに記載の有用物質の製造方法。 The method for producing a useful substance according to any one of claims 1 to 9, wherein the useful substance is acetic acid and / or glutathione.
- 前記有用物質が、メバロン酸、イソプレノール、3ヒドロキシプロピオン酸から選択される1種又は複数種である、請求項1~9のいずれかに記載の有用物質の製造方法。 The method for producing a useful substance according to any one of claims 1 to 9, wherein the useful substance is one or more kinds selected from mevalonic acid, isoprenol, and 3-hydroxypropionic acid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020541155A JPWO2020050113A1 (en) | 2018-09-03 | 2019-08-28 | Method of manufacturing useful substances by using fermentation process |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018164907 | 2018-09-03 | ||
JP2018-164907 | 2018-09-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020050113A1 true WO2020050113A1 (en) | 2020-03-12 |
Family
ID=69721613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/033690 WO2020050113A1 (en) | 2018-09-03 | 2019-08-28 | Method for manufacturing useful substance through use of fermentation process |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020050113A1 (en) |
WO (1) | WO2020050113A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022044979A1 (en) * | 2020-08-24 | 2022-03-03 | 静岡県公立大学法人 | Exogenous opsin and cells expressing said rhodopsin |
EP4163292A1 (en) | 2021-10-08 | 2023-04-12 | Shizuoka Prefectural University Corporation | Novel rhodopsin mutants |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004521604A (en) * | 2000-05-03 | 2004-07-22 | モンテレー ベイ アクアリウム リサーチ インスティテュート | Light-driven energy production using proteorhodopsin |
US20090191599A1 (en) * | 2007-09-10 | 2009-07-30 | Joule Biotechnologies, Inc. | Engineered light-harvesting organisms |
WO2011030964A1 (en) * | 2009-09-14 | 2011-03-17 | Industry-University Cooperation Foundation Sogang University | Composition for atp synthesis, mounted for gloeobacter rhodopsin and atp synthase to have orientation |
US20110256605A1 (en) * | 2010-03-12 | 2011-10-20 | The Regents Of The University Of California, A California Corporation | Cells with non-natural physiologies derived by expressing light-powered proton pumps in one or more membranes |
JP2012039885A (en) * | 2010-08-12 | 2012-03-01 | Nagoya Univ | Method for expressing protein utilizing anabaena sensory rhodopsin |
US20150147780A1 (en) * | 2013-11-22 | 2015-05-28 | World Biotechnology LLC | Method for harvesting organic compounds from genetically modified organisms |
JP2015154768A (en) * | 2014-01-14 | 2015-08-27 | 国立大学法人九州大学 | Novel artificial gene circuit |
WO2015170609A1 (en) * | 2014-05-09 | 2015-11-12 | 国立大学法人 神戸大学 | Method for fabricating light-driven high-energy saccharomycotina |
-
2019
- 2019-08-28 JP JP2020541155A patent/JPWO2020050113A1/en active Pending
- 2019-08-28 WO PCT/JP2019/033690 patent/WO2020050113A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004521604A (en) * | 2000-05-03 | 2004-07-22 | モンテレー ベイ アクアリウム リサーチ インスティテュート | Light-driven energy production using proteorhodopsin |
US20090191599A1 (en) * | 2007-09-10 | 2009-07-30 | Joule Biotechnologies, Inc. | Engineered light-harvesting organisms |
WO2011030964A1 (en) * | 2009-09-14 | 2011-03-17 | Industry-University Cooperation Foundation Sogang University | Composition for atp synthesis, mounted for gloeobacter rhodopsin and atp synthase to have orientation |
US20110256605A1 (en) * | 2010-03-12 | 2011-10-20 | The Regents Of The University Of California, A California Corporation | Cells with non-natural physiologies derived by expressing light-powered proton pumps in one or more membranes |
JP2012039885A (en) * | 2010-08-12 | 2012-03-01 | Nagoya Univ | Method for expressing protein utilizing anabaena sensory rhodopsin |
US20150147780A1 (en) * | 2013-11-22 | 2015-05-28 | World Biotechnology LLC | Method for harvesting organic compounds from genetically modified organisms |
JP2015154768A (en) * | 2014-01-14 | 2015-08-27 | 国立大学法人九州大学 | Novel artificial gene circuit |
WO2015170609A1 (en) * | 2014-05-09 | 2015-11-12 | 国立大学法人 神戸大学 | Method for fabricating light-driven high-energy saccharomycotina |
Non-Patent Citations (7)
Title |
---|
HIRONO, YOUKO ET AL.: "Creation of Vmax cells by ATP regeneration optically driven", LECTURE ABSTRACTS OF THE 70TH ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, 7 August 2018 (2018-08-07), Japan, pages 110 * |
HIRONO-HARA, YOUKO ET AL.: "Improvement in productivity of useful substances by budding yeast in which delta- rhodopsin is introduced into mitochondria", PRESENTATION ABSTRACTS OF THE 43RD ANNUAL SYMPOSIUM OF THE JAPAN BIOENERGETICS GROUP, 5 December 2017 (2017-12-05), pages 112 - 113 * |
KAMADA, KENTARO ET AL.: "Light-driven ATP regeneration in Escherichia coli using rhodopsin", LECTURE ABSTRACTS OF THE 70TH ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, 7 August 2018 (2018-08-07), Japan, pages 110 * |
KANG, A. ET AL.: "High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production", METABOLIC ENGINEERING, vol. 41, 5 April 2017 (2017-04-05), pages 125 - 134, XP085033745, DOI: 10.1016/j.ymben.2017.03.010 * |
TANAKA, RYO ET AL.: "Toward utilization of light-driven ATP regeneration for production by Escherichia coli", LECTURE PROGRAMS OF THE 84TH ANNUAL RESEARCH PRESENTATION OF THE SOCIETY OF CHEMICAL ENGINEERS, March 2019 (2019-03-01), Japan * |
WALTER, J. M. ET AL.: "Light-powering Escherichia coli with proteorhodopsin", PNAS, vol. 104, no. 7, 13 February 2007 (2007-02-13), pages 2408 - 2412, XP002507364, DOI: 10.1073/PNAS.0611035104 * |
WANG, Y. ET AL.: "Experimental Evidence for Growth Advantage and Metabolic Shift Stimulated by Photophosphorylation of Proteorhodopsin Expressed in Escherichia Coli at Anaerobic Condition", BIOTECHNOLOGY AND BIOENGINEERING, vol. 112, no. 5, May 2015 (2015-05-01), pages 947 - 956, XP055693029 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022044979A1 (en) * | 2020-08-24 | 2022-03-03 | 静岡県公立大学法人 | Exogenous opsin and cells expressing said rhodopsin |
EP4163292A1 (en) | 2021-10-08 | 2023-04-12 | Shizuoka Prefectural University Corporation | Novel rhodopsin mutants |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020050113A1 (en) | 2021-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Luo et al. | Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity | |
Hasunuma et al. | Improved sugar-free succinate production by Synechocystis sp. PCC 6803 following identification of the limiting steps in glycogen catabolism | |
Liu et al. | Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant | |
Thoma et al. | Metabolic engineering of Vibrio natriegens | |
Lalwani et al. | Optogenetic control of microbial consortia populations for chemical production | |
Ishikawa et al. | Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli | |
Therien et al. | Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002 | |
Ma et al. | Enhanced photo-fermentative hydrogen production by Rhodobacter capsulatus with pigment content manipulation | |
Choi et al. | Systems metabolic engineering of microorganisms for food and cosmetics production | |
Pérez-García et al. | From brown seaweed to a sustainable microbial feedstock for the production of riboflavin | |
WO2020050113A1 (en) | Method for manufacturing useful substance through use of fermentation process | |
Pade et al. | Ethanol, glycogen and glucosylglycerol represent competing carbon pools in ethanol-producing cells of Synechocystis sp. PCC 6803 under high-salt conditions | |
Luo et al. | Enhancement of pyruvic acid production in Candida glabrata by engineering hypoxia-inducible factor 1 | |
Zhu et al. | Mitochondrial engineering of Yarrowia lipolytica for sustainable production of α-Bisabolene from waste cooking oil | |
Ji et al. | PHB production from food waste hydrolysates by Halomonas bluephagenesis Harboring PHB operon linked with an essential gene | |
Liu et al. | High titer mevalonate fermentation and its feeding as a building block for isoprenoids (isoprene and sabinene) production in engineered Escherichia coli | |
Arora et al. | A two-prong mutagenesis and adaptive evolution strategy to enhance the temperature tolerance and productivity of Nannochloropsis oculata | |
Kim et al. | Over-production of β-carotene from metabolically engineered Escherichia coli | |
WO2021050371A1 (en) | Biotin synthases for efficient production of biotin | |
Cui et al. | Efficient 5-aminolevulinic acid production through reconstructing the metabolic pathway in SDH-deficient Yarrowia lipolytica | |
JP6507152B2 (en) | Method for producing light-driven high-energy Saccharomyces yeast | |
Xu et al. | Enhanced poly-γ-glutamic acid synthesis in Corynebacterium glutamicum by reconstituting PgsBCA complex and fermentation optimization | |
Yim et al. | Rapid combinatorial rewiring of metabolic networks for enhanced poly (3-hydroxybutyrate) production in Corynebacterium glutamicum | |
KR101745346B1 (en) | A method for continuous production of glutathione by photosynthetic membrane vesicle | |
Acedos et al. | Isobutanol production by a recombinant biocatalyst Shimwellia blattae (p424IbPSO): study of the operational conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19857948 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020541155 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19857948 Country of ref document: EP Kind code of ref document: A1 |