WO2020050107A1 - Heating apparatus and program - Google Patents

Heating apparatus and program Download PDF

Info

Publication number
WO2020050107A1
WO2020050107A1 PCT/JP2019/033602 JP2019033602W WO2020050107A1 WO 2020050107 A1 WO2020050107 A1 WO 2020050107A1 JP 2019033602 W JP2019033602 W JP 2019033602W WO 2020050107 A1 WO2020050107 A1 WO 2020050107A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
microwave
heating target
irradiation
unit
Prior art date
Application number
PCT/JP2019/033602
Other languages
French (fr)
Japanese (ja)
Inventor
保徳 塚原
保 高元
達弥 小林
隆平 金城
Original Assignee
マイクロ波化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロ波化学株式会社 filed Critical マイクロ波化学株式会社
Priority to JP2020541151A priority Critical patent/JP7465548B2/en
Publication of WO2020050107A1 publication Critical patent/WO2020050107A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/74Mode transformers or mode stirrers

Definitions

  • the present invention relates to an apparatus for performing heating using microwaves.
  • JP-T-2006-516008 (Page 1, FIG. 1, etc.)
  • the object to be heated it was not possible to heat the object to be heated (hereinafter, the object to be heated) using a microwave so as to have an appropriate temperature distribution.
  • the temperature of a part of the surface of the target area of the object to be heated is detected as a sample, and the entire microwave output is controlled so that the temperature becomes a desired temperature.
  • the entire microwave output is controlled so that the temperature becomes a desired temperature.
  • the present invention has been made to solve the above-described problems, and has as its object to provide a heating device or the like that can appropriately heat an object to be heated using microwaves. More specifically, a heating device capable of selectively heating a portion that is insufficiently heated based on the temperature distribution of an object to be heated, or a concentrated heating of a portion to be heated according to the state thereof, and the like. The purpose is to provide.
  • the heating device of the present invention is a heating device that heats an object to be heated by irradiating the object with microwaves by one or more microwave irradiating means, and information indicating a state of the object to be heated.
  • a heating device is a heating device that heats an object to be heated by irradiating the object with microwaves by one or more microwave irradiating means, and information indicating a state of the object to be heated.
  • the heating target portion detected by the detection unit can be concentratedly heated by the microwave, the heating target can be heated to a desired state dynamically and in real time, and the microwave heating can be efficiently performed without waste. Can be performed.
  • the heating device includes two or more microwave irradiation means, and the irradiation state changing means controls the phase by the irradiation state changing means so that the heating target portion detected by the detection means is concentratedly heated.
  • the waves may be irradiated from two or more microwave irradiation means.
  • the heating target portion can be intensively heated dynamically and in real time by the microwave whose phase is controlled.
  • the one or more microwave irradiating means irradiates microwaves having two or more different frequencies
  • the irradiation state changing means includes a means for intensively heating the portion to be heated detected by the detecting means.
  • the microwave irradiating means may irradiate the microwaves of each frequency so that the intensity distribution of the microwaves as described above is obtained.
  • the heating device includes two or more microwave irradiation units, and the irradiation state changing unit includes a microwave irradiation unit that irradiates each of the microwave irradiation units so that the heating target portion detected by the detection unit is concentratedly heated. May be changed.
  • the output of the microwave irradiation means can be changed, and the heating target portion can be concentratedly heated dynamically and in real time.
  • the irradiation state changing unit includes an arrangement changing unit that changes an arrangement of an emitting unit that emits microwaves of the microwave irradiating unit, and the arrangement changing unit includes a heating target detected by the detecting unit. You may make it change the arrangement
  • the heating target portion of the microwave irradiating unit can be concentratedly heated dynamically and in real time.
  • the irradiation state changing means is configured to irradiate the microwave whose phase is controlled so that the heating target portion detected by the detection means is concentratedly heated from two or more microwave irradiation means, and to detect the irradiation.
  • detection means detects Irradiation of the microwaves whose output has been changed from two or more microwave irradiation means, and microwaves of the microwave irradiation means provided in the irradiation state changing means, so that the heated portion to be heated is concentratedly heated.
  • the arrangement of the emission unit is changed by an arrangement change unit that changes the arrangement of the emission unit that emits the light so that the heating target portion detected by the detection unit is concentratedly heated.
  • Dividing the microwave irradiation it may be to perform the irradiation of the at least two microwave selected from the group consisting of.
  • the heating target portion can be intensively heated dynamically and in real time.
  • the detection unit may detect the heating target portion along at least two directions that are not parallel to each other.
  • the heating target portion detected two-dimensionally and further three-dimensionally of the heating target object can be concentratedly heated, and the heating target object can be appropriately heated using microwaves. For example, if detection is performed along three directions that are not parallel to each other, even if there is a heating target portion inside the heating target, such as the center, the portion can be appropriately heated.
  • the detecting means may include one or more of an X-ray sensor, an ultrasonic sensor, a temperature sensor, a pressure sensor, a moisture sensor, and a color sensor.
  • the heating device may further include a conveying unit that conveys the object to be heated, and the detecting unit may detect the portion to be heated linearly in a direction orthogonal to the conveying direction of the object to be heated, and may include an irradiation unit. Is located downstream of the detecting means in the conveying direction of the object to be heated, and is capable of irradiating a microwave so as to heat the portion to be heated in a concentrated manner. When a portion is transported to a position where microwaves can be irradiated, microwaves may be irradiated so as to perform concentrated heating.
  • the moving object to be heated can be scanned using a line sensor or the like to detect the portion to be heated, and concentrated heating can be performed on the downstream side.
  • the detecting means can be simplified and downsized.
  • the apparatus further includes an irradiation management information storage unit, and the irradiation state changing unit controls the microwave irradiation unit associated with the region where the heating target portion detected by the detection unit is located among the two or more predetermined regions.
  • the microwave irradiating means may be configured to irradiate the microwave to intensively heat the region where the portion to be heated is located, using information for performing the heating.
  • the concentrated heating region is concentratedly heated, so that the heating target portion is concentratedly heated.
  • the concentrated heating region is concentratedly heated, so that the heating target portion is concentratedly heated.
  • the object to be heated can be appropriately heated.
  • FIG. 1A Block diagram (FIG. 1A) and perspective view (FIG. 1B) of the heating device according to the first embodiment.
  • Sectional view of the heating device (FIGS. 2A and 2B) Schematic plan view inside the container of the heating device (FIGS. 3A to 3D) Flow chart for explaining the operation of the heating device The figure which shows the irradiation management information of the same heating device The figure which shows the irradiation control table of the same heating apparatus (FIG. 5 (a), FIG. 5 (b)).
  • FIGS. 7A to 7D are schematic plan views of the inside of a container for explaining a modification of the heating device.
  • FIG. 8 (a) and 8 (b) Sectional view of the heating device
  • FIG. 8 (a) and 8 (b) The figure which shows the irradiation management information of the same heating device
  • FIG. 11 (a) A perspective view (FIG. 11 (a)) and a schematic plan view (FIGS. 11 (b) to 11 (c)) of the inside of the container of the heating device.
  • FIG. 4 is a diagram showing a model used in a simulation test related to the heating device of the first embodiment. Diagrams showing the results of a simulation test related to the heating device (FIGS. 13A to 13C)
  • FIG. 1 is a diagram illustrating an example of an external appearance of a computer system according to each embodiment. The figure which shows an example of the structure of the same computer system Block diagram (FIG. 16A) and perspective view (FIG.
  • FIG. 16B of a modification of the heating device according to the second embodiment.
  • Sectional schematic view for explaining the modification FIGGS. 17A and 17B
  • a perspective view of a second modification of the heating apparatus FIG. 20A
  • FIG. 20B Block diagram of heating device in Embodiment 4
  • FIG. 21B Block diagram of heating device in Embodiment 4
  • FIG. 21B Block diagram of heating device in Embodiment 4
  • FIG. 21B Block diagram
  • partially cutaway plan view FIGG.
  • FIG. 22 (b) Schematic plan views for explaining the operation of the heating device (FIGS. 23A to 23D).
  • Block diagram (FIG. 24 (a) partially cutaway plan view (FIG. 24 (b)), and partially cutaway side view (FIG. 22 (c)) of the heating device according to the sixth embodiment.
  • Schematic diagrams for explaining the operation of the heating device FIGGS. 25A to 25D
  • FIG. 1 is a block diagram (Fig. 1 (a)) showing the function of the heating device according to the present embodiment, and a perspective view (Fig. 1 (b)) showing the appearance and the like. 2) is a sectional view taken along the line IIa-IIa (FIG. 2 (a)) and a sectional view taken along the line IIb-IIb (FIG. 2 (b)).
  • FIG. 3 is a schematic plan view (FIGS. 3 (a) and 3 (b)) of the heating device 1 according to the present embodiment, illustrating the vicinity of a heating target 60 in the container 10 as viewed from the front side.
  • FIG. 3 is a schematic plan view (FIGS. 3 (c) and 3 (d)) as viewed from the back side.
  • the heating device 1 includes the container 10, the detection unit 20, three microwave irradiation units 401, the irradiation state changing unit 40, and the belt conveyor 50.
  • the heating device 1 is a device for heating one or more heating objects 60.
  • the heating target 60 may be, for example, a solid, a liquid, or a gas.
  • the heating target 60 may be, for example, wood, paper, pulp, synthetic resin, rubber, glass, carbon, ceramics, a bundle of hollow fiber membranes, fibers, or the like.
  • the heating target 60 may be a material or the like used for manufacturing a separator, a capacitor, or the like, may be a material or the like used for manufacturing a honeycomb structure, or may be a pressed yeast or the like. Is also good.
  • the heating target 60 may be, for example, a water-containing porous substance or a water-containing substance such as a water-containing polymer (for example, a hygroscopic resin, a water-absorbing resin, or the like).
  • the hydrated polymer here may be a hydrated polymer particle group.
  • the polymer here may be any polymer. It should be noted that evaporating and removing a liquid such as water or an organic solvent in the object to be heated 60 may be considered as one mode of heating.
  • the heating here may be considered as drying by heating. Note that the heating target 60 is not limited to the above.
  • the shape of the heating target 60 may be a sheet shape, a plate shape, a rectangular parallelepiped shape, a spherical shape, or a cylindrical shape.
  • the thickness or the like of the sheet-like or plate-like heating target 60 does not matter.
  • the heating object 60 may have a constant thickness, or may not have a constant thickness.
  • the sheet-like or plate-like heating target 60 may have irregularities on the front surface or the back surface, or may have holes or the like.
  • the heating target 60 may have a rod shape, a fiber shape, a pellet shape, or a granular shape.
  • the heating target 60 may be, for example, an irregularly shaped substance.
  • the heating target 60 may be in a gel state or may have fluidity. Further, the heating target 60 may be a powder. Note that the heating target 60 is not limited to the above. Further, the shape and the like of the heating target 60 are not limited to those described above.
  • the case where the heating target 60 is a plate-shaped hydrated substance having a longitudinal direction will be described as an example.
  • the container 10 is made of a material having microwave reflectivity.
  • the container 10 is made of, for example, a metal such as stainless steel.
  • the thickness of the outer wall and the like of the container 10 does not matter.
  • a direction perpendicular to the longitudinal direction of the container 10 when viewed from above is hereinafter referred to as a width direction, but may be referred to as a lateral direction.
  • the inside of the container 10 is hollow, and is used as a heating chamber for heating the object 60 to be heated.
  • the inside of the container 10 may be partitioned into a plurality of rooms by a partition (not shown) or the like.
  • the outer wall and the like of the container 10 may have a structure in which microwaves applied to the inside are reflected into the container.
  • a layer made of a material having microwave reflectivity It may have a structure in which layers of materials having the same are laminated.
  • the material and shape of the container are not limited to the above.
  • the container 10 has an inlet 101 which is an opening for putting the heating object 60 into the inside of the container 10, and an outlet 102 which is an opening for taking the heating object 60 out of the container 10.
  • an inlet 101 is provided at one end in the longitudinal direction of the container 10 and an outlet 102 is provided at the other end.
  • the heating target 60 is conveyed by the belt conveyor 50, moves from the inlet 101 into the container 10, moves inside the container 10, and moves from the outlet 102 to the outside of the container 10 will be described.
  • the inlet 101 and the outlet 102 are preferably provided with a structure for preventing the microwave irradiated into the container 10 from leaking outside.
  • a choke structure or the like that prevents the passage of microwave power in a non-contact manner using the property of the wavelength of the microwave may be provided at the inlet 101 and the outlet 102.
  • the inlet 101 and the outlet 102 may be omitted.
  • At least one of the inlet and the outlet may be provided with a lid (not shown) or the like.
  • the belt conveyor 50 is a transport unit that transports the heating target 60.
  • the belt conveyor 50 has a belt 501 made of mesh.
  • the belt 501 is arranged to move from the outside of the container 10 to the inside of the container 10 via the inlet 101, and from the inside of the container 10 to the outside of the container 10 via the outlet 102.
  • the heating target 60 is placed on the belt 501 and conveyed by the belt conveyor 50, moves from the inlet 101 into the container 10, moves inside the container 10, and moves from the outlet 102 to outside the container 10.
  • a case where the plate-shaped heating object 60 is transported in the longitudinal direction of the container 10 will be described.
  • the direction perpendicular to the moving direction (conveying direction) of the plate-shaped heating object 60 when viewed from above is referred to as the width direction.
  • the longitudinal direction of the heating target 60 coincides with the moving direction.
  • the upper surface of the heating target 60 is called a front surface 61a
  • the lower surface of the heating target 60 is called a back surface 61b. This is the same even when the shape of the heating target 60 is not plate-shaped.
  • the front surface 61a and the back surface 61b of the heating target 60 may be simply referred to as a flat surface.
  • a two-dimensional direction in this plane a two-dimensional direction in a plane parallel to a plane on which the heating target 60 is placed, and a two-dimensional direction in a plane parallel to a horizontal plane may be referred to as a plane direction.
  • the two-dimensional direction is, for example, a direction expressed by a combination of two directions that are not parallel to each other or a combination of two directions that are orthogonal to each other.
  • the three-dimensional direction is, for example, a direction represented by a combination of three directions that are not on the same plane and are not parallel to each other, or a direction represented by a combination of three directions that are orthogonal to each other.
  • the plane direction is, for example, a direction represented by a combination of the longitudinal direction and the width direction of the heating target 60.
  • the position in the plane direction is, for example, a position represented by a combination of a position in the longitudinal direction and a position in the width direction of the heating target 60.
  • the belt 501 is arranged to move substantially horizontally in the container 10.
  • the heating target 60 moves substantially horizontally in the container 10.
  • the moving direction and moving path of the belt 501 are not limited. 1 and 2, an arrow 505 indicates a moving direction of the belt 501 and the heating target 60.
  • the moving direction of the heating target 60 is not limited to the longitudinal direction of the container 10 or the longitudinal direction of the heating target, and the heating target 60 and the container 10 may have a shape having no longitudinal direction. May be provided.
  • the longitudinal direction of the container 10 and the moving direction of the heating object 60 are orthogonal to the first direction in the plane direction
  • the width direction of the container 10 and the width direction of the heating object 60 are orthogonal to the first direction.
  • the second direction, the height direction of the container 10 and the object to be heated 60 may be read as a third direction orthogonal to the first direction and the second direction.
  • the material of the mesh belt 501 is usually a metal such as stainless steel, but the material is not limited to this.
  • the mesh belt 501 may be made of resin. It is preferable to use a mesh belt 501 as the belt conveyor 50, but the belt 501 is not limited to a mesh belt.
  • the belt conveyor 50 continuously moves the belt 501 at a constant speed, and moves the heating target 60 placed on the belt 501 so as to continuously pass through the container 10 at a constant speed.
  • the case will be described as an example.
  • the configuration of the belt conveyor 50 other than the belt 501 for example, pulleys for moving the belt 501, rollers, driving means such as a motor for driving the belt 501, and the like are omitted.
  • the transporting unit may be a belt conveyor if the heating target 60 can be transported in the container 10.
  • the present invention is not limited to this, and may be, for example, a roller conveyor that moves the object 60 to be heated by a plurality of rollers.
  • a transport unit that transports the heating target 60 placed on a porous plate, a tray (not shown), or the like may be used.
  • the belt conveyor 50 a plurality of belt conveyors or the like that can deliver and convey the object to be heated may be used as the belt conveyor 50.
  • the transporting means is not limited to the one that continuously transports the heating target 60 at a constant speed.
  • the transporting means may be a means for performing a combination of transporting and stopping the heating target 60.
  • the transporting means may perform the transporting discontinuously.
  • the transfer speed of the transfer means may be variable.
  • a portion of the conveying means such as a belt or a roller on which the heating object is placed is a heating object. It is preferable that at least a part of the back surface 61b placed on the object transporting device has a shape or structure that is exposed when viewed from below, to the extent that a temperature can be detected by a sensor. For example, it is preferable that a portion of the transporting unit on which the heating target 60 is placed has one or more openings.
  • the detecting means 20 detects one or more portions to be heated intensively according to the information indicating the state of the heating target 60.
  • the portion of the heating target 60 to be concentratedly heated is referred to as a heating target portion.
  • the heating target portion is, for example, a portion of the heating target 60 to be heated.
  • the heating target portion of the heating target 60 is, for example, a portion of the heating target 60 to which concentrated heating is desired.
  • the portion of the heating target 60 to which concentrated heating is to be performed may be, for example, a portion that requires heating or a portion that is insufficiently heated.
  • the portion here may be considered as a region.
  • a portion where heating is insufficient may be considered as a linear region or a point-like region.
  • the detection unit 20 detects, for example, a heating target 60 arranged in the container 10 and a heating target portion of the heating target 60 moving in the container 10.
  • the detection unit 20 detects, for example, a heating target portion of the heating target 60 arranged on the belt 501.
  • the meaning of “concentrated heating” will be described later.
  • the detection unit 20 detects a heating target portion in the two-dimensional direction or the three-dimensional direction of the heating target 60, for example.
  • the detection unit 20 detects, for example, a heating target portion in at least one of the planar direction and the height direction of the heating target 60.
  • the plane direction may be considered as a horizontal direction, for example.
  • the detection unit 20 detects a portion to be heated in, for example, a plane direction or a combination of the plane direction and the height direction of the object 60 to be heated. Detecting the heating target portion in the plane direction of the heating target 60 means, for example, detecting the heating target portion so that the position of the heating target portion in the planar direction can be specified.
  • To detect the heating target portion in the height direction of the heating target object 60 means, for example, to detect the heating target portion so that the position of the heating target portion in the height direction can be specified.
  • detecting the heating target portion in the combination of the planar direction and the height direction of the heating target 60 means that, for example, the position of the heating target portion in the combination of the planar direction and the height direction can be specified. That is, to detect the portion to be heated.
  • To detect the heating target portion in the planar direction of the heating target 60 means, for example, to detect the position of the heating target portion that can be represented by a combination of the position in the width direction and the position in the longitudinal direction of the heating target 60. That is. Detecting the portion to be heated in the plane direction may be, for example, detecting the position of the portion to be heated in the horizontal direction. When the heating target portion is represented by a region, the position of the heating target portion may be considered as the position of the region of the heating target portion. The same applies to the following.
  • Detecting the portion to be heated in the plane direction includes, for example, detecting a position indicating the portion to be heated in the surface 61a or the back surface 61b of the object to be heated 60 or in a plane where the object to be heated 60 is projected on a horizontal plane or the like. It may be.
  • detecting the heating target portion in the planar direction of the heating target 60 is performed by detecting the heating target portion in the longitudinal direction of the heating target 60.
  • detection of a heating target portion in the width direction of the heating target 60 may be performed.
  • a heating target portion is detected in the longitudinal direction of the heating target 60. This may be considered as detecting the heating target portion in the plane direction of the heating target 60.
  • the position of the heating target portion in the longitudinal direction can be specified by the moving time since the detection of the heating target portion. Detecting the heating target portion in the width direction of the heating target 60 may be considered as detecting the heating target in the planar direction of the heating target 60.
  • the height direction of the heating target 60 is, for example, a direction perpendicular to the front surface 61a, the back surface 61b of the heating target 60, the surface on which the heating target 60 is placed, or the like.
  • the height direction may be considered as the depth direction or the vertical direction of the heating target 60.
  • To detect the heating target portion in the height direction of the heating target object 60 means, for example, to detect the heating target portion so that the position of the heating target portion in the height direction can be specified.
  • To detect the heating target portion in the height direction of the heating target 60 means, for example, that the position of the heating target portion in the depth direction from a reference height position such as the front surface or the back surface of the heating target 60 or It is to detect the position in the height direction.
  • To detect the portion to be heated in the height direction may be to detect the position of the object to be heated in the vertical direction.
  • the heating target portions are detected at different depths by detecting the heating target portions on the front surface 61a side and the rear surface 61b side of the heating target object 60.
  • the detection unit 20 detects the heating target portion only in the plane direction of the heating target 60
  • the detection unit 20 may be, for example, the front surface 61a side and the back surface 61b side of the heating target 60 arranged in the container 10.
  • the heating target portion may be detected for only one of them.
  • the detection unit 20 detects the heating target 60 in the width direction on the front surface 61a side and the width direction on the back surface 61b side. The case of sequentially detecting the portion to be heated will be described.
  • the detection unit 20 acquires, for example, information indicating the state of the object 60 to be heated, and detects the portion to be heated using the acquired information.
  • the information indicating the state of the heating target 60 is, for example, information that changes depending on the state of the heating target 60.
  • the information indicating the state of the heating target 60 is, for example, different information depending on whether the state of the heating target 60 is a state requiring heating such as insufficient heating and a state not requiring heating. It is.
  • the information indicating the state of the heating target is, for example, one or more of temperature, pressure, moisture content, and color information of the heating target.
  • the information indicating the state of the heating target acquired by the detection unit 20 may be, for example, information indicating the state of the heating target acquired for one or a plurality of different portions of the heating target 60.
  • the information indicating the state of the heating target obtained by the detection unit 20 may be one or more of a temperature distribution, a pressure distribution, a water content distribution, and a color distribution of the heating target 60.
  • the information indicating the state of the heating target 60 acquired by the detection unit 20 is a temperature.
  • the detection unit 20 detects, for example, a portion having a low temperature in at least one of the planar direction and the height direction of the heating target 60, and detects a detected portion having a low temperature as a heating target portion.
  • the detected portion having a low temperature may be, for example, a portion requiring heating or a portion having insufficient heating.
  • the portion having a low temperature may be, for example, a portion in which the temperature is lower than a predetermined threshold, and the temperature may be lower than the average value of other portions of the heating target 60 or a plurality of portions of the heating target 60. May be low or a temperature may be lower than the threshold.
  • the detection unit 20 normally detects one or more portions of one heating target 60 as a heating target portion, but detects one or more heating targets of the heating target 60 including a plurality of objects.
  • an object that needs to be heated or an object that is insufficiently heated may be detected as a portion to be heated, or may not be detected.
  • the heating target portion of the heating target 60 may be one or more portions of one heating target 60 such as a rectangular parallelepiped heating target 60.
  • the heating target portion of the heating target 60 may be, for example, one or more objects of the heating target 60 composed of a plurality of objects such as pellets and solids, such as powder and gel. May be a part of the object 60 to be heated.
  • the detection unit 20 has a first sensor 201a and a second sensor 201b, and a detection processing unit 202, and uses these to determine the state of the heating target. A case where the heating target portion of the heating target 60 is detected from the information shown will be described.
  • the first sensor 201a and the second sensor 201b are not distinguished, they may be simply referred to as the sensor 201.
  • the detecting means 20 is not limited to such a configuration.
  • the first sensor 201a and the second sensor 201b are sensors used to detect a heating target portion of the heating target 60.
  • the first sensor 201a is a sensor for acquiring the temperature distribution on the front surface 61a side of the heating target 60
  • the second sensor 201b is a sensor for acquiring the temperature distribution on the rear surface 61b side of the heating target 60.
  • the first sensor 201a and the second sensor 201b are, for example, sensors such as a radiation thermometer that acquires a temperature distribution in a non-contact manner.
  • the radiation thermometer receives, for example, infrared rays radiated from an object by a detection element and acquires a temperature distribution.
  • the radiation thermometer may be an image analysis type non-contact temperature sensor.
  • an arrow 110 schematically indicates infrared rays received by the first sensor 201a and the second sensor 201b.
  • the first sensor 201a is a sensor in which a region where a temperature distribution can be detected (hereinafter, referred to as a first detection region 205a) is a stripe-shaped region.
  • the shape of the first detection area 205a is, for example, a linear shape whose width direction is the longitudinal direction.
  • the shape of the first detection area 205a may be considered, for example, as a linear area one-dimensionally arranged in a direction orthogonal to the transport direction of the heating target 60.
  • the first detection region 205a is located on the surface 61a of the heating target 60 placed on the belt 501, and its longitudinal direction is the same as the width direction of the heating target 60. So that it is attached to the container 10.
  • the detecting unit 20 can acquire the temperature distribution in the width direction of the heating target 60 and detect the heating target portion in the width direction.
  • the width direction is a direction orthogonal to the transport direction of the heating target 60.
  • the detection unit 20 can detect the heating target portion in a one-dimensional linear manner in a direction orthogonal to the transport direction of the heating target 60.
  • the first sensor 201a is mounted above the container 10 such that, for example, a portion (not shown) for detecting temperature faces the surface 61a of the rectangular parallelepiped heating object 60.
  • the first sensor 201a may be a sensor that scans the above-mentioned stripe-shaped area to obtain a temperature distribution.
  • the first sensor 201a is attached so that, for example, the first detection region 205a in a stripe shape crosses the entire heating target 60 in the width direction.
  • the width direction of the belt 501 and the width direction of the rectangular parallelepiped heating object 60 may be simply referred to as the width direction.
  • the second sensor 201b has a portion (not shown) for detecting a temperature, which is attached below the container 10 so as to face the back surface 61b of the object 60 to be heated, and is capable of detecting a temperature distribution (hereinafter referred to as a second region). Is the same as the first sensor 201a except that the detection region 205b) is located on the back surface 61b side of the heating target 60, and therefore detailed description is omitted here.
  • the temperature distribution of the second detection area 205b is obtained by using a belt having an opening such as a mesh belt 501 between the back surface 61b of the heating target 60 and the second sensor 201b. can do. Further, even if a plurality of rollers (not shown) exist between the back surface 61b side of the heating target 60 and the second sensor 201b, a portion where there is no roller between the rollers is the second detection. By providing the second sensor 201b to be in the region 205b, the temperature distribution of the second detection region 205b can be obtained.
  • the positions of the first detection region 205a and the second detection region 205b in the moving direction of the heating target 60 match, but they do not have to match.
  • the first detection area 205a and the second detection area 205b are not distinguished, they are simply referred to as a detection area 205.
  • the detection area 205 may be considered as an observation field.
  • the width of the striped first detection region 205a and the striped second detection region 205b that is, the length of the first detection region 205a and the second detection region 205b in the moving direction of the heating target 60 does not matter. are preferably the same.
  • the first sensor 201a and the second sensor 201b acquire the temperature distribution of the heating target 60 carried in from the entrance 101 by the belt conveyor 50.
  • the first sensor 201a performs heating when passing through the stripe-shaped first detection area 205a.
  • the temperature distribution on the front surface 61a side of the object 60 is acquired, and the second sensor 201b acquires the temperature distribution on the back surface 61b side of the heating object 60 when passing through the second detection region 205b in a stripe shape.
  • the first sensor 201a and the second sensor 201b may sequentially acquire the temperature distribution of the heating target 60 passing through the detection region 205 at predetermined time intervals.
  • This time is, for example, the time required for an arbitrary point of the heating target 60 to pass through the detection area 205.
  • the first sensor 201a and the second sensor 201b sequentially acquire the temperature distribution of the heating target 60 passing through the detection region 205, and as a result, have passed the detection region 205 of the heating target 60.
  • the temperature distribution in the plane direction on the front surface 61a side and the temperature distribution in the plane direction on the back surface 61b side can be obtained.
  • the detection unit 20 determines the temperature distribution of the heating target 60.
  • a temperature distribution can be obtained for a combination of the plane direction and the height direction for a portion that has passed through the detection region 205.
  • the number of points for detecting the temperature and the resolution at the time of acquiring the temperature distribution in the width direction of the first sensor 201a and the second sensor 201b are not limited.
  • the sensor 201 does not have to be a sensor in which the detection region 205 extends in a stripe shape in the width direction.
  • at least one of the first sensor 201a and the second sensor 201b may be, for example, a sensor that can scan a detection region capable of detecting a temperature distribution in the width direction of the heating target 60.
  • at least one of the first sensor 201a and the second sensor 201b is, for example, a plurality of temperature sensors capable of measuring the temperature of a spot-shaped area in a non-contact manner. May be provided so as to be arranged in the width direction.
  • the sensor 201 is preferably a sensor capable of acquiring a temperature distribution in a non-contact manner, but may be a contact sensor as long as the temperature distribution can be acquired.
  • the sensor 201 may be provided with a plurality of temperature sensors that measure the temperature by contacting the object to be heated 60 so that the portions for measuring the temperature are arranged in the width direction.
  • the sensor 201 has a plurality of contact-type temperature sensors such that a portion for measuring temperature has the same position in the moving direction of the heating target 60 and a different combination of the depth and the position in the width direction. It may be provided.
  • the detection processing unit 202 detects a heating target portion in the first detection area 205a on the surface 61a side of the heating target 60 from the temperature distribution acquired by the first sensor 201a. For example, from the temperature distribution acquired by the first sensor 201a, the detection processing unit 202 detects a portion having a low temperature as a portion to be heated. Usually, in the heating target 60, the portion where the heating is insufficient is lower in temperature than the portion where the heating is not insufficient. Therefore, to detect the low temperature portion as the heating target portion means that the heating is insufficient. May be considered to be detected.
  • the detection processing unit 202 acquires, for example, information indicating the position of the detected heating target portion.
  • the information indicating the position here is, for example, information indicating the position in the width direction (coordinates in the width direction).
  • the low temperature portion may be a portion where the temperature is equal to or lower than a predetermined threshold, and the temperature may be a maximum value, a minimum value, or an average value of other portions of the first detection region 205a.
  • the temperature may be a portion lower than a representative value such as an intermediate value or a portion lower than a threshold, and the temperature may be lower than the average value of the first detection region 205a, a portion lower than the intermediate value or a predetermined threshold or more. It may be a part or the like.
  • the threshold and the like here differ depending on, for example, the material of the heating target 60, the purpose of heating, the target value of the temperature after heating, and the like.
  • the threshold value and the like used by the detection processing unit 202 be acquired by, for example, an experiment or a simulation.
  • the detection processing unit 202 detects a portion having a low temperature from the temperature distribution, and indicates information indicating the position of the detected portion in the width direction (for example, coordinates in the width direction) to indicate the position of the portion to be heated. It may be obtained as information.
  • information indicating the range of the heating target portion is transmitted to the heating target portion.
  • You may acquire as information which shows a position.
  • the position in the width direction here may be based on the container 10, the belt 501 or the like, or the heating target 60. The same applies to the following positions in the width direction and the positions in the width direction.
  • the detection processing unit 202 detects a heating target portion in the second detection area 205b on the back surface 61b side of the heating target 60 from the temperature distribution acquired by the second sensor 201b.
  • the second detection region 205b is read as the second detection region 205b
  • the front surface 61a of the heating target 60 is read as the back surface 61b. Since the processing is the same as that described above, a detailed description is omitted here.
  • the process in which the detection processing unit 202 detects a low-temperature portion is not limited to the above process.
  • the detection region 205 is divided into a plurality of regions in the width direction in advance, and the detection processing unit 202 obtains an average value of the temperatures of the divided regions using the temperature distribution obtained by the sensor 201a. Then, a region where the average value is equal to or smaller than the threshold value may be detected as a heating target portion.
  • Dividing the detection region 205 in the width direction may be, for example, dividing the temperature distribution acquired for the detection region 205 in the width direction.
  • each of the plurality of divided detection regions 205 may be a region associated with one of a plurality of selective concentrated heating regions described later.
  • a threshold for detecting a low temperature portion from the temperature distribution obtained by the first sensor 201a and a threshold for detecting a low temperature portion from the temperature distribution obtained by the second sensor 201b are as follows.
  • the values may be the same or different.
  • the threshold may be changed in accordance with the decrease in sensitivity.
  • Each of the three microwave irradiation units 401 irradiates a microwave.
  • the three microwave irradiation units 401 are a first microwave irradiation unit 401a, a second microwave irradiation unit 401b, and a third microwave irradiation unit 401c. However, when these are not distinguished, they are simply called microwave irradiation means.
  • the three microwave irradiation means 401 can control the phases of the emitted microwaves, respectively.
  • the number of the microwave irradiation means 401 included in the heating device 1 is not limited to three, and may be two or more. However, the number is preferably 3 or more.
  • the three microwave irradiation units 401 are all the same, but they need not be the same.
  • the irradiation state changing means 40 irradiates the microwaves to the three microwave irradiation means 401 respectively.
  • the irradiation state changing unit 40 changes the irradiation state of the microwaves irradiated by the two or more microwave irradiation units 401 so that the heating target portion detected by the detection unit 20 is intensively heated.
  • the irradiation state changing unit 40 applies the microwave whose phase is controlled so that the heating target portion detected by the detection unit 20 is concentratedly heated to two or more of the three microwave irradiation units 401.
  • the case of irradiation will be described as an example.
  • the fact that the heating target portion is concentratedly heated means that, for example, the entire heating target object 60 is not heated, and the heating target portion or the heating target portion and a region in the vicinity thereof are selectively concentratedly heated. is there.
  • the fact that the heating target portion is selectively concentratedly heated means that, for example, the heating target portion of the heat treatment apparatus or a region including the heating target portion and its vicinity is heated more than other portions. You may. Heating more strongly than other parts may mean that the amount of heat generated by microwave irradiation is greater than that of other parts.For example, the amount of heat generated by microwave irradiation may be larger than other parts. It may be considered that the heat generation amount becomes larger than the threshold value by more than the threshold value.
  • To irradiate the microwave whose phase is controlled so that the heating target portion is concentratedly heated from the two or more microwave irradiating units 401 means, for example, that the microwave is applied to the heating target portion or the heating target portion and the microwave in the vicinity thereof.
  • the microwave intensity here may be the electric field intensity of the microwave or the magnetic field intensity. The same applies to the following.
  • irradiating the microwave whose phase is controlled so that the heating target portion is concentratedly heated from the two or more microwave irradiation units 401 means that, for example, the heating target portion or the heating target portion and the portion in the vicinity thereof Microwaves whose phases are controlled are radiated from the two or more microwave radiating means 401 so that the microwaves radiated from the two or more microwave radiating means 401 reinforce each other and the microwaves do not reinforce each other. It may be to do.
  • the microwave irradiated from the microwave irradiation unit 401 may be considered to include the microwave irradiated from the microwave irradiation unit 401 and reflected inside the container 10 or the like.
  • the microwaves irradiated from the two or more microwave irradiation units 401 are strengthened or weakened at various points in the container 10 due to, for example, interference. Therefore, the phases are individually controlled to perform centralized heating. Becomes possible.
  • the irradiation state changing unit 40 may be any unit that controls the phases of the two or more microwave irradiation units 401 to perform the concentrated heating, and the phases of the microwaves irradiated by the three microwave irradiation units 401 may be used.
  • the combination of the two or more microwave irradiation units 401 may be changed according to the position where the concentrated heating is performed. Controlling the phase of the microwave radiated by the two or more microwave irradiation means 401 may be controlling the phase of the microwave of only a part of the two or more microwaves.
  • the irradiation state changing means 40 irradiates microwaves whose phases are controlled from two or more microwave irradiation means 401 so that the heating target portion is heated intensively, for example, as described below.
  • the information for controlling the phases of the microwaves to be irradiated by the respective 401 is stored in advance, and the irradiation state changing unit 40 concentrates at least one area stored in the irradiation management information storage unit 403 or the like.
  • the information for controlling the phase for heating is read, and the microwave having the phase corresponding to this information is irradiated.
  • the heating target portion is intensively heated.
  • the information for controlling the phase stored in advance in the irradiation management information storage unit 403 and the like includes the setting of the microwave output of each microwave irradiation unit 401 for centrally heating two or more predetermined areas. May be considered as information indicating The same applies to other embodiments and the like.
  • the processing in which the irradiation state changing means 40 controls the phase of the microwave radiated by the microwave irradiating means 401 so that the heating target portion detected by the detecting means 20 is concentratedly heated is limited to such processing and the like. It is not something to be done.
  • the irradiation state changing means 40 acquires the coordinates (for example, the coordinates of the center position) of the heating target portion detected by the detection means 20 and the like, and two or more, preferably all three microwave irradiation means 401
  • the distance between the position where the wave is emitted and the portion to be heated is calculated, and using this distance, the microwaves radiated by two or more, preferably all three, microwave irradiation means 401 are strengthened by interference at the portion to be heated.
  • the phases of the microwaves emitted from each may be controlled so as to match.
  • the phase of the microwave radiated from each microwave irradiating unit 401 is controlled so that the microwave radiated from each microwave irradiating unit 401 has the same phase in the portion to be heated.
  • the difference in distance from the heating target portion to the irradiation position where the microwave of each microwave irradiation unit 401 is irradiated is an integral multiple of the wavelength of the microwave irradiated from each microwave irradiation unit 401.
  • Microwaves whose phases are controlled are irradiated from each microwave irradiation means 401.
  • a technique for controlling the phase of microwaves irradiated by two or more microwave irradiation units 401 to perform concentrated heating is known in Japanese Patent Application Laid-Open No. 2017-204449 or the like. Omitted.
  • simulation test results related to the heating device of the present embodiment will be described.
  • This simulation test was performed to examine the relationship between the phases of the microwaves respectively radiated from a plurality of microwave irradiation means and the heat generation density distribution.
  • a simulation test was performed in which microwaves with controlled phases were irradiated into the container from five different positions.
  • FIG. 12 is a perspective view (FIG. 12A) of a model used in a simulation test related to the heating device of the present embodiment, a schematic view of the model as viewed from above (FIG. 12B), and a sample.
  • FIG. 12 is a schematic diagram of FIG.
  • FIGS. 13A to 13C are diagrams showing the results of a simulation test of the heat generation density distribution performed using the model shown in FIG. A diagram showing a heat generation density diagram when the inside of the container 801 is viewed from above is shown.
  • This model includes a container 801, nine samples 802 to be heated (hereinafter, referred to as samples 802a to 802i), and five rectangular waveguides (standard: WRJ-2) 803 (hereinafter, rectangular waveguides). 803a to 803e).
  • the container 801 has a rectangular parallelepiped shape of 600 mm in the x-axis direction, 600 mm in the y-axis direction, and 900 mm in the z-axis direction.
  • the ports 8031 of the five rectangular waveguides 803a to 803e are provided on the upper surface of the container 801 (the surface having the highest position in the z-axis direction). It is arranged to be parallel to the y-axis.
  • the port 8031a and the port 8031b are arranged so that positions in the x-axis direction (for example, the x coordinate) are equal, and the ports 8031d and 8031e are arranged so that the positions in the x-axis direction are equal.
  • the port 8031c is disposed at the center of the container 801 when viewed from the z-axis direction.
  • the port 8031a and the port 8031d are arranged so that the position (for example, the y coordinate) in the y-axis direction is equal, and the port 8031b and the port 8031e are arranged so that the position in the y-axis direction is equal.
  • the sample has a cylindrical shape with a height of 60 m in the z-axis direction, which is a circle having a diameter of 50 mm as viewed from the z-axis direction.
  • Samples 802 are arranged in three rows and three columns in the x-axis direction and the y-axis direction, and three samples 802 in each row are stacked in the x-axis direction. Are arranged at three points that divide the length of the container 801 in the x-axis direction into five equal parts, and the three samples 802 in each row have the positions in the y-axis direction of the container 801 in the x-axis direction.
  • the sample 802a is placed at three points that divide the length by five. 2c is located below the port 8031b, sample 802e is located below the port 8031c, sample 802g is located below the port 8031d, and sample 802a is located below the port 8031e.
  • the sample 802d is arranged between the sample 802a and the sample 802g, the sample 802f is arranged between the sample 802c and the sample 802i, and the sample 802h is arranged between the sample 802g and the sample 802i.
  • the relative dielectric constant ⁇ ′ 2.1 and the relative dielectric constant so as to partition the container 801 in the z-direction.
  • FIG. 13A is a diagram showing a heat generation density distribution when microwaves with a phase difference of “0” are irradiated from the ports 8031a to 8031e, respectively.
  • FIG. 13B shows a case where microwaves with a phase difference of “0” are irradiated from ports 8031a to 8031c, respectively, and a microwave with a phase difference of “180 °” is set from ports 8031d and 8031e.
  • FIG. 4 is a diagram showing a heat generation density distribution when each is irradiated.
  • FIG. 13 (c) shows a case where a microwave whose phase difference is set to “0” is emitted from ports 8031a, 8031b, 8031d and 8031e, and a microwave whose phase difference is set to “180 °” from port 3031c.
  • FIG. 4 is a diagram showing a heat generation density distribution when irradiation is performed.
  • FIG. 13A when the microwaves radiated from the ports 8031a to 8031e are not controlled and the microwaves having the same phase are irradiated, only one sample 802 is selectively used.
  • FIG. 13B when a microwave having a phase difference of “180 °” is irradiated from the port 8031d and the port 8031e as shown in FIG.
  • FIG. 13C when microwaves having a phase difference of “180 °” are irradiated from the port 3031c, the sample 802e can be concentratedly heated.
  • the inside of the container can be selectively concentrated and heated.
  • a heating target portion of the heating target is placed in a region corresponding to a region where a sample to be selectively concentratedly heated in the simulation test is arranged.
  • the irradiation state changing unit 40 controls, for example, the phase of the microwaves irradiated by the two or more microwave irradiation units 401 and the heating target portion detected by the detection unit 20 is located in the region where the concentrated heating can be individually performed. Then, microwaves whose phases are controlled so that the region where partial heating is possible are concentratedly heated are radiated from two or more microwave irradiating means 401 to intensively heat the portion to be heated. For example, the irradiation state changing unit 40 controls the phases of the microwaves irradiated by the two or more microwave irradiation units 401 to set the region in which the concentrated heating can be individually performed in the moving direction of the heating target 60 more than the detection region 205.
  • the irradiation state changing means 40 determines whether or not the heating target portion detected by the detecting means 20 is located in the region where the concentrated heating is possible.
  • Microwaves whose phases are controlled so that a region where heating is possible are concentratedly heated are radiated from two or more microwave radiating means 401 to intensively heat a portion to be heated.
  • the time when the heating target portion is located in the region where the concentrated heating can be performed is, for example, the case where the heating target 60 is located in the region where the concentrated heating can be performed due to the movement of the heating target 60 (for example, when entering).
  • the fact that the heating target portion is located in the region where the concentrated heating can be performed may be considered that the heating target portion overlaps the region where the concentrated heating can be performed.
  • To be able to centrally heat one or more regions means that, for example, information for controlling a phase for centrally heating one or more regions is prepared in advance for each region. Alternatively, information that can be used to calculate information for controlling a phase for centrally heating a plurality of regions may be prepared in advance.
  • the irradiation state changing means 40 is, for example, an area in which the irradiation state changing means 40 corresponding to one or more irradiation management information stored in the irradiation management information storage unit 403 can be concentratedly heated, specifically, two or more micro-
  • the heating target portion detected by the detection unit 20 is located in one or two or more regions that can be concentratedly heated by controlling the phase of the microwave irradiated by the wave irradiation unit 401, irradiation management information corresponding to this region Is used to irradiate microwaves whose phases are controlled so that the area where the concentrated heating can be performed is concentratedly heated from two or more microwave irradiating means 401, thereby intensively heating the portion to be heated.
  • the region corresponding to the irradiation management information may be considered as, for example, a region capable of concentrated heating specified by the irradiation management information, and the phase of the microwave irradiated by two or more microwave irradiation units 401 according to the irradiation management information. May be considered as an area where concentrated heating is possible.
  • the concentrated heating region is a region where concentrated heating can be performed by the irradiation state changing unit 40.
  • the concentrated heating region is, for example, a region in which concentrated heating can be performed so that the heat generation amount is equal to or larger than a threshold.
  • the concentrated heating region may be, for example, a region where concentrated heating can be performed so that the calorific value becomes a threshold value or more than the maximum value of the calorific value of other portions of the heating target 60.
  • the concentrated heating region may be, for example, a region where the intensity of microwaves is higher than others (for example, higher than a threshold), and the microwaves irradiated from two or more microwave irradiation units 401 may be heated. It may be an area that is stronger than other parts of the target object 60.
  • the concentrated heating area may be a part of an area heated when the irradiation state changing unit 40 actually performs the concentrated heating. For example, it may be a region included in a region heated when concentrated heating is actually performed. Further, the concentrated heating region may be a region including a region that cannot be partially heated, or a region that does not include a region that cannot be concentrated heated.
  • the concentrated heating region 406 is usually a three-dimensional region, but may be considered a two-dimensional region.
  • a plane crossing the three-dimensional concentrated heating region 406 may be considered as a two-dimensional concentrated heating region 406.
  • the shape of the three-dimensional concentrated heating region may be any shape.
  • the shape of the concentrated heating region may be any shape such as a rectangular parallelepiped shape, a cubic shape, a spherical shape, an elliptical shape, and the like.
  • the concentrated heating area may have a rectangular parallelepiped shape or a spherical shape that fits in the area where concentrated heating is possible.
  • the shape of the two-dimensional concentrated heating region is a polygon such as a rectangle, a square, a circle, an ellipse, or the like.
  • the size of the region where the concentrated heating can be performed is, for example, approximately the same as the length of the wavelength of the microwave irradiated by the microwave irradiation unit 401. This size can be narrowed or widened by irradiating the microwave radiated by the microwave irradiating means 401 through a microwave lens (not shown) or the like. For this reason, the size of the concentrated heating region 406 can be changed according to the size of the region in which the concentrated heating can be performed.
  • each of the three microwave irradiation units 401 described above includes a microwave oscillator 4011 and a transmission unit 4012, and the irradiation state changing unit 40 includes a control unit 402
  • the management information storage unit 403 is provided will be described as an example.
  • the irradiation state changing unit 40 and the three microwave irradiation units 401 by using the irradiation state changing unit 40 and the three microwave irradiation units 401, six concentrated heating areas, that is, The case where the first concentrated heating area 406a to the sixth concentrated heating area 406f can be concentratedly heated will be described as an example.
  • the first concentrated heating region 406a to the sixth concentrated heating region 406f are not distinguished, they are simply referred to as a concentrated heating region 406.
  • concentrated heating region 406 is considered as a two-dimensional region of front surface 61a or back surface 61b of heating target 60 will be described.
  • the concentrated heating of the concentrated heating region 406 of the front surface 61a is to centrally heat the portion of the heating object 60 on the front surface 61a side
  • the concentrated heating of the concentrated heating region 406 of the back surface 61b is It is considered that the portion on the back surface 61b side of the heating object 60 is heated separately.
  • the irradiation state changing unit 40 transmits the microwave whose phase is controlled so that the region on the rear surface 61b side is not concentratedly heated from the microwave irradiation unit 401.
  • the microwave irradiating means 401 irradiate the microwave whose phase is controlled so that the front surface 61a is not concentratedly heated.
  • the first concentrated heating region 406a to the third concentrated heating region 406c are concentrated heating regions located on the surface 61a side of the heating target 60, It is assumed that the region is a region linearly arranged in the width direction of the heating target 60.
  • the fourth concentrated heating region 406d to the sixth concentrated heating region 406f are concentrated heating regions located on the back surface 61b side of the heating target 60. It is assumed that the region is a region that is linearly arranged in the width direction of the heating target 60.
  • the first concentrated heating region 406a to the sixth concentrated heating region 406f are regions having the same size and shape.
  • each concentrated heating region 406 is rectangular, but the shape of each concentrated heating region 406 may be any shape. Further, the shape and size of at least a part of the concentrated heating region 406 may be different from the others.
  • Each concentrated heating region 406 has a side parallel to the longitudinal direction and a side parallel to the width direction.
  • the first concentrated heating region 406a to the third concentrated heating region 406c and the fourth concentrated heating region 406d to the sixth concentrated heating region 406f are located at different positions in the height direction in the container 10.
  • the fourth concentrated heating region 406d is located directly below the first concentrated heating region 406a
  • the fifth concentrated heating region 406e is located immediately below the second concentrated heating region 406b
  • the sixth concentrated heating region 406f Are located immediately below the third concentrated heating region 406c.
  • the concentrated heating regions 406 adjacent in the planar direction do not partially overlap with each other, and sides parallel to the longitudinal direction are in contact with each other. The same applies to the fourth concentrated heating region 406d to the sixth concentrated heating region 406f.
  • first concentrated heating region 406a to the third concentrated heating region 406c are partially irradiated, and when the fourth concentrated heating region 406d to the sixth concentrated heating region 406f are partially irradiated, different positions in the height direction are different. It shall be heated intensively.
  • the first concentrated heating region 406a, the third concentrated heating region 406c, the fourth concentrated heating region 406d, and the sixth concentrated heating region 406f do not protrude from the side of the heating target 60, and have respective longitudinal portions. The case where one of the sides extending in the direction is in contact with the side of the heating target 60 will be described.
  • the adjacent concentrated heating regions 406 may partially overlap each other. Also, a predetermined interval may be provided. Further, the first concentrated heating region 406a, the third concentrated heating region 406c, the fourth concentrated heating region 406d, and the sixth concentrated heating region 406f may protrude from the widthwise end of the heating target 60. In addition, one of the sides extending in the longitudinal direction may not be in contact with the widthwise end of the heating target 60. In addition, the first concentrated heating region 406a to the third concentrated heating region 406c and the fourth concentrated heating region 406d to the sixth concentrated heating region 406f may overlap in the height direction, and may be in contact with each other. Is also good.
  • first concentrated heating region 406a to the third concentrated heating region 406c are preferably provided such that the combined region crosses the entire heating target 60 in the width direction.
  • fourth concentrated heating region 406d to the sixth concentrated heating region 406f are preferably provided such that the combined region crosses the entire heating target 60 in the width direction.
  • the first concentrated heating region 406a to the third concentrated heating region 406c are provided so that the combined range in the width direction crosses the entire heating target 60 in the width direction. May not be arranged on the same straight line in the width direction. The same applies to the fourth concentrated heating region 406d to the sixth concentrated heating region 406f.
  • the microwave oscillator 4011 is, for example, a magnetron, a klystron, a gyrotron, a semiconductor oscillator, or the like.
  • a semiconductor oscillator whose phase is easily controlled is preferably used.
  • the microwave oscillator 4011 is not limited to these.
  • the frequency, intensity, and the like of the microwave irradiated by each microwave oscillator 4011 are not limited.
  • the frequency of the microwave irradiated by each microwave oscillator 4011 may be, for example, 915 MHz, 2.45 GHz, or 5.8 GHz, and may be in the range of 300 MHz to 300 GHz. It may be a frequency, and the frequency does not matter.
  • Each microwave oscillator 4011 includes a phase shifter (not shown) for controlling the phase of the microwave, and the phase of the microwave generated in each microwave oscillator 4011 is controlled (specifically, the phase is changed). And emitted.
  • each microwave oscillator 4011 controls the phase of the microwave generated inside, amplifies and outputs the microwave whose phase is controlled.
  • the plurality of microwave irradiation means 401 splits the microwave generated by the oscillator that generates one microwave, inputs the split microwave to a plurality of phase shifters (not shown), and individually separates the phase by the plurality of phase shifters. May be individually amplified as necessary by an amplifier (not shown) or the like and emitted. In this case, portions such as a plurality of phase shifters and amplifiers provided for each phase shifter may be considered as the microwave irradiation means 401.
  • the microwave irradiating means 401 may be capable of controlling the output of the microwave, the frequency of the radiated microwave, and the like.
  • the output here is, for example, electric power.
  • the control of the microwave output may include the control of whether or not to perform the microwave irradiation and the strength of the output.
  • the transmission unit 4012 transmits the microwave output from the microwave oscillator 4011.
  • the transmission unit 4012 is, for example, a waveguide, a coaxial cable for transmitting microwaves, or the like. However, it is not limited to these as long as microwaves can be transmitted. Here, a case where each transmission unit 4012 is a waveguide will be described.
  • Each transmission unit 4012 is connected between the microwave oscillator 4011 and the container 10.
  • a portion of the container 10 to which each transmission unit 4012 is connected is provided with, for example, a first opening 105a to a third opening 105c.
  • the first opening 105a to the third opening 105c are openings to which the transmission units 4012 of the first microwave irradiation unit 401a to the third microwave irradiation unit 401c are respectively attached.
  • the first opening 105a to the third opening 105c are not distinguished, they are simply referred to as the opening 105.
  • the microwave transmitted through the transmission unit 4012 is applied to the inside of the container 10 through the opening 105.
  • the three openings 105 are arranged in a line in the width direction of the container 10 at a position behind the detection area 205b, but the first openings 105a to the third
  • the arrangement of the opening 105c is not limited to this.
  • the opening 105 may be closed with a microwave-permeable plate or the like.
  • an antenna or the like used for microwave irradiation into the container 10 connected to each transmission unit 4012 may be provided in the container 10.
  • the shape and structure of the antenna are not limited.
  • the configuration and the like of the connection portion between the transmission unit 4012 and the container 10 are not limited to these.
  • the control unit 402 controls the irradiation of the microwaves by the two or more microwave irradiation units 401 so that the heating target portion detected by the detection unit 20 is concentratedly heated in addition to the simple microwave irradiation control. It also functions as a means for changing the state.
  • To control the phases of the microwaves irradiated by the two or more microwave irradiation units 401 means that, for example, the two or more microwave irradiation units 401 are individually controlled, and the heating target portion detected by the detection unit 20 is controlled. The purpose of this is to irradiate a plurality of microwave irradiating means 401 with microwaves whose phases are controlled so that concentrated heating is performed.
  • the control unit 402 sets the phase so that the one concentrated heating region 406 is concentrated heated.
  • the microwave controlled in the above manner is irradiated from two or more of the three microwave irradiation means 401 will be described.
  • the time when the heating target portion is located in one or more concentrated heating regions may be, for example, when the heating target portion enters the concentrated heating region 406 due to the movement of the heating target 60.
  • the control unit 402 transmits the microwaves whose phases are controlled so that the concentrated heating region 406 is concentrated heated. Irradiation is performed from the microwave irradiation means 401 described above. Thereby, the portion to be heated is concentratedly heated.
  • the concentrated heating region 406 where the heating target portion is located may be considered as, for example, the concentrated heating region 406 where the heating target portions overlap.
  • the control unit 402 specifies, for example, the concentrated heating region 406 where the heating target portion is located, and sets the phases of the microwaves irradiated by the two or more microwave irradiation units 401 for centrally heating the specified concentrated heating region 406, respectively.
  • the information for controlling is acquired, and using the acquired information for controlling the phase, two or more microwave irradiating means 401 are irradiated with the microwave whose phase is controlled so that the specified concentrated heating region 406 is concentratedly heated.
  • the concentrated heating area 406 here is the concentrated heating area 406 corresponding to the irradiation management information stored in the irradiation management information storage unit 403.
  • the concentrated heating region 406 corresponding to the irradiation management information may be considered as, for example, the concentrated heating region 406 specified by the irradiation management information, and the microwaves irradiated by two or more microwave irradiation units 401 according to the irradiation management information.
  • the information for controlling the phase includes, for example, information indicating the phase of the microwave output from each microwave irradiation unit 401, information indicating the phase difference between each microwave irradiation unit 401, and information indicating each microwave irradiation unit 401. Is information for setting the phase of the microwave to be irradiated.
  • control unit 402 specifies the concentrated heating region 406 for centrally heating the heating target portion, and the phases of the microwaves irradiated by the two or more microwave irradiation units 401 for centrally heating the specified concentrated heating region 406, respectively.
  • An example of a process of acquiring information for controlling the information will be described.
  • the control unit 402 specifies the concentrated heating area 406 in which the heating target portion detected by the detection unit 20 is located (for example, enters) with the movement of the heating target 60, and specifies the specified concentrated heating.
  • Information for controlling the phase of the microwave irradiated by each of the two or more microwave irradiation units 401 for centrally heating the region 406 is acquired.
  • information indicating the position (for example, coordinates) indicating the position of the heating target portion in the width direction of the container 10 and the position of the concentrated heating region 406 The determination can be made by comparing with information (for example, coordinates) indicating the position of the container 10 in the width direction.
  • Information indicating the position in the width direction of each concentrated heating region 406 may be appropriately read from information previously stored in a storage unit (not shown) or the like.
  • the control unit 402 determines the first concentrated heating region 406a located on the front surface 61a side of the heating target 60. From the third concentrated heating region 406c, the concentrated heating region 406 where the heating target portion is located is detected, and the detected concentrated heating region 406 is specified as the concentrated heating region 406 for centrally heating the heating target portion.
  • the fourth concentrated heating region 406d to the sixth concentrated heating region located on the back surface 61b side of the heating target 60 may be detected, and the detected concentrated heating region may be specified as the concentrated heating region 406 for centrally heating the heating target portion.
  • the heating target portion can be intensively heated in consideration of the height direction.
  • the control unit 402 assigns one of the overlapping concentrated heating regions 406 to the heating target portion.
  • the portion may be specified as a concentrated heating region 406 where concentrated heating is performed.
  • the heating target portion detected by the detection means 20 is located at a portion where the concentrated heating region 406 overlaps, the heating target portion is determined in advance regardless of the position of the overlapping portion.
  • one concentrated heating region may be specified as the concentrated heating region 406 for centrally heating.
  • the overlapping portion is divided into two in the width direction of the container 10, and when the portion to be heated is located in one of the divided regions, the control unit 402 determines whether the adjacent concentrated heating is performed.
  • the concentrated heating region 406 in which the non-overlapping portion of the region 406 is located on the side of the divided region may be specified as the concentrated heating region to perform concentrated heating.
  • the overlapping portion is preferably divided by a straight line passing through a position where the contour of the adjacent concentrated heating region 406 intersects.
  • the region 406 is considered as a three-dimensional region, it is preferable to divide the region by a plane passing through a position where the contour of the adjacent concentrated heating region 406 intersects.
  • the overlapping portion may be the center of the overlapping portion in the width direction.
  • the control unit 402 removes all of the two or more concentrated heating areas 406,
  • the heating target portion may be specified as the concentrated heating region 406 for concentrated heating, and the specified two or more concentrated heating regions 406 may be sequentially concentrated heated.
  • the control unit 402 identifies all of the plurality of concentrated heating regions 406 as the concentrated heating regions 406 that perform the concentrated heating, and identifies them.
  • Two or more microwave irradiation units 401 may control the phases of the microwaves to be irradiated, respectively, so that the plurality of concentrated heating regions 406 are sequentially heated in a concentrated manner.
  • control unit 402 obtains information for controlling the phases of the microwaves radiated by the two or more microwave radiating units 401 for intensively heating the concentrated heating area 406 specified as described above.
  • information indicating the position of the specified concentrated heating region 406 for example, coordinates indicating the position of a representative point such as the center or the center of gravity of the concentrated heating region 406) and the position where a plurality of microwaves are emitted in the container 10
  • the distance from the position from which a plurality of microwaves are emitted to the concentrated heating region 406 is calculated using the coordinates of the microwave and the like, and specific concentrated heating is performed using information on the calculated distance and the wavelength of the irradiated microwave.
  • the phases of the microwaves irradiated by the two or more microwave irradiation units 401 may be calculated so that the plurality of microwaves reinforce each other.
  • the information indicating the position of each concentrated heating area for example, information stored in a storage unit (not shown) or the like may be read out.
  • information for controlling the phases of the microwaves radiated by the two or more microwave irradiating units 401 for intensively heating each concentrated heating region 406 is associated with each concentrated heating region 406 and irradiation management information
  • the information may be stored in the storage unit 403 in advance, and information for controlling the phase associated with the specified concentrated heating region 406 may be acquired from the irradiation management information storage unit 403.
  • the position of the detection area 205 where the detection unit 20 detects the heating target portion and the position of the concentrated heating area 406 are separated, and the object 60 to be heated is moved away from the detection area 205 side.
  • a case will be described in which, when moving toward the side, the concentrated heating region 406 corresponding to the position of the detection region 205 where the object to be heated is detected is irradiated with the phase-controlled microwave to perform concentrated heating.
  • the detection region 205 is divided into regions that overlap when the respective concentrated heating regions 406 are moved in a direction opposite to the moving direction of the heating target 60, and the divided regions (hereinafter, referred to as divided regions) (Referred to as a region) in the width direction and two or more microwave irradiation units 401 for intensively heating the concentrated heating region 406 overlapping each divided region respectively control the phases of the microwaves irradiated.
  • the irradiation management information storage unit 403 From the irradiation management information storage unit 403, information for controlling the phases of the microwaves irradiated by the two or more attached microwave irradiation units 401 is acquired. Thereafter, after the time required for the heating target portion detected in the detection region 205 to move to the concentrated heating region 406 corresponding to the divided region elapses, the information for controlling the phase of the microwave obtained above is used. The central heating is performed by controlling the phases of the microwaves radiated by the two or more microwave irradiating means 401 respectively. Thus, the heating target portion detected by the detection unit 20 can be concentratedly heated in the concentrated heating region 406.
  • the irradiation management information includes information indicating the position in the width direction of the divided region obtained by dividing the detection region 205 in the width direction, and performing concentrated heating in the concentrated heating region 406 in which a heating target passing through each divided region moves. It may be considered as information having information for controlling the phases of the microwaves radiated by the two or more microwave radiating means 401 to perform.
  • the divided region corresponds to the concentrated heating region 406 that performs concentrated heating on the heating target portion. Therefore, it may be considered that the process corresponds to the process of specifying the concentrated heating region 406 where the concentrated heating is performed on the heating target portion or the process of specifying the concentrated heating region 406 where the heated target portion moves.
  • the information for controlling the phase of the microwave corresponding to the detected divided region is information for controlling the phase of the microwave for intensively heating the concentrated heating region corresponding to the detected divided region. Therefore, the process of acquiring information for controlling the phase of the microwave corresponding to the detected divided region is specified by the process of specifying the concentrated heating region 406 that performs the concentrated heating on the heating target portion. It can be considered as a process of acquiring information for controlling the phase of the microwave for centrally heating the concentrated heating region.
  • the overlapping portion is divided in the width direction for each concentrated heating region 406 where concentrated heating is performed, and accordingly, the detection region 205 is divided into regions in which the overlapping portion is divided. In the case where it is moved, it is divided for each overlapping area, and the divided area is associated with information for controlling the phase of the microwave for centrally heating the overlapping portion of the concentrated heating area 406 overlapping this divided area.
  • the irradiation management information stored therein may be stored in the irradiation management information storage unit 403. Then, when a portion to be heated is detected in this divided region, the control unit 402 obtains information for controlling the phase of the microwave for intensively heating the concentrated heating region associated with the irradiation management information. You may make it.
  • the information stored in the irradiation management information storage unit 403 is a central heating area 406 and two or more microwave irradiating units 401 for intensively heating the central heating area 406.
  • the control unit 402 acquires and acquires the information indicating the concentrated heating region 406 corresponding to the divided region in which the heating target portion is detected.
  • Information for controlling the phase of the microwave for centrally heating the concentrated heating region 406 may be acquired from the irradiation management information storage unit 403.
  • the time required to move from the detection target portion in the detection region 205 to one or more concentrated heating regions 406 for irradiating the microwave is determined by the distance between the detection region 205 and the concentrated heating region 406 and the heating time. It can be calculated from the moving speed of the object 60 and the like. For this time, for example, what is stored in a storage unit or the like (not shown) in advance in association with the concentrated heating area 406 may be appropriately read. In the above description, the information for controlling the phase of the microwave may be obtained immediately before performing the concentrated heating.
  • the above-described division of the detection area 205 is an example, and any division other than the above may be performed as long as the division can specify the concentrated heating area 406 where concentrated heating is performed on the portion to be heated. Good.
  • control unit 402 specifies the concentrated heating region in which the heating target portion is concentratedly heated is not limited to the above-described process.
  • the control unit 402 may further control the output of the microwave irradiated by the one or more microwave irradiation units 401.
  • This output is, for example, the intensity of the microwave.
  • the output of the microwave irradiated by the microwave irradiation unit 401 may be a predetermined output or may be changed according to the detection result of the detection unit 20.
  • the control unit 402 determines and controls the output of the microwave radiated by the one or more microwave irradiating units 401 in accordance with, for example, the temperature of the portion to be heated detected by the detecting unit 20, the size, and the like. For example, control may be performed so that the microwave output increases continuously or stepwise as the temperature decreases.
  • control may be performed so that the output of the microwave is increased continuously or stepwise as the area to be heated is increased.
  • the output of the microwave irradiated by each microwave irradiating means 401 according to the detection result of the detecting means 20 described above is determined according to an experiment, a simulation, or the like.
  • the irradiation management information storage unit 403 stores irradiation management information that is information for controlling the phases of microwaves irradiated by two or more microwave irradiation units 401 for centrally heating the concentrated heating area 406.
  • the irradiation management information storage unit 403 stores, for example, information for specifying the concentrated heating region 406 and the phases of the microwaves irradiated by the two or more microwave irradiation units 401 for centrally heating the concentrated heating region 406.
  • One or two or more pieces of irradiation management information, which is information in which control information is associated with the information, are stored.
  • the information for specifying the concentrated heating region 406 may be any information as long as the information can specify the concentrated heating region 406 overlapping the heating target portion.
  • the information specifying the concentrated heating area 406 is information indicating the position of a divided area corresponding to the concentrated heating area 406.
  • the irradiation management information storage unit 403 stores information indicating the divided region 2051 of the detection region 205 divided as described above, and a concentrated heating region in which the heating target portion detected in the divided region 2051 moves.
  • one or more irradiation management information including information for controlling the phases of two or more microwave irradiation units 401 when the 406 is concentratedly heated will be described.
  • the information indicating the divided region is, for example, information indicating the position of the divided region in the plane direction.
  • the information indicating the divided area is, for example, information indicating an area of the divided area or a range in the width direction of the container 10.
  • the information for controlling the phases of the two or more microwave irradiation units 401 includes, for example, information for identifying the microwave irradiation unit 401 and information for setting the phase of the microwave irradiated by the microwave irradiation unit 401. It is two or more pieces of information.
  • the information for setting the phase may be a value of the phase or information of a change amount of the phase with respect to the reference phase.
  • the information for controlling the phases of the two or more microwave irradiation units 401 included in one irradiation management information includes, for example, a simulation or an experiment for intensively heating the concentrated heating region 406 corresponding to the one irradiation management information. It is preferable that the information is information that sets the phases of the microwaves to be radiated by the two or more microwave radiating units 401, respectively. This simulation or experiment is performed, for example, by changing the combination of the phases of the microwaves irradiated by the two or more microwave irradiation units 401.
  • the shape of the container 10 and the shape of the heating object 60 are taken into consideration in consideration of reflection in the container 10, refraction of microwaves by a dielectric such as the heating object 60, and changes in the wavelength of microwaves. It is preferable to use a dielectric constant or the like.
  • the information for setting the phase of two or more microwave irradiation units 401 included in one irradiation management information includes, for example, the centralized heating region 406 included in the same irradiation management information in order to perform concentrated heating.
  • the information may be information that sets a phase calculated from the distance between the concentrated heating region 406 and a position from which two or more microwaves are emitted, so that the phases are strengthened in the above.
  • control unit 402 stores information indicating the divided area 2051 stored in a storage unit or the like (not shown) and an identifier of the concentrated heating area 406 corresponding to the divided area 2051 (for example, the heating target portion located in the divided area 2051 is
  • the identifier of the concentrated heating region 406 corresponding to the divided region 2051 where the heating target portion is located is acquired from the information including the identifier of the moving concentrated heating region 406), the partial irradiation management information
  • the information may include an identifier and information for controlling a phase for centrally heating the concentrated heating region 406.
  • the irradiation state changing unit 40 has the irradiation management information storage unit 403
  • the irradiation management information storage unit 403 may be provided outside the irradiation state changing unit 40.
  • the irradiation management information storage unit 403 may be a non-volatile recording medium or a volatile recording medium. The same applies to other storage units.
  • the belt conveyor 50 conveys a rectangular parallelepiped heating object 60 placed on the belt 501 at a constant speed.
  • the operation of the heating device 1 is not limited to the operation shown in FIG.
  • the first sensor 201a of the detecting means 20 acquires the temperature distribution on the surface 61a side of the heating target 60 in the first detection area 205a. This processing is preferably performed, for example, at a predetermined cycle.
  • the period (time interval) at which the detecting means 20 performs the process of acquiring the temperature distribution using the sensor 201 is, for example, a time obtained by dividing the moving direction length of the detection region 205 by the moving speed of the heating target 60. It is preferable that
  • Step S102 The detection processing unit 202 of the detection means 20 performs a process of detecting a portion to be heated from the temperature distribution acquired in Step S101. For example, the detection processing unit 202 detects, from the acquired temperature distribution, a portion having a temperature equal to or lower than the threshold, and outputs information (for example, coordinates in the width direction) indicating the width direction position of the detected one or more portions to the heating target. A process of acquiring the information indicating the position of the part is performed.
  • the information indicating the position in the width direction here may be information indicating an area in the width direction (for example, information indicating a range of coordinates).
  • Step S103 The control unit 402 of the irradiation state changing unit 40 determines whether or not the heating target portion has been detected in Step S102. If detected, the process proceeds to step S104, and if not detected, the process proceeds to step S106.
  • Step S104 The control unit 402 starts irradiation with information for controlling the phases of the two or more microwave irradiation units 401 for performing concentrated heating on the heating target portion detected in step S102. Determine the time. Specifically, the control unit 402 determines the information indicating the range of the divided region obtained by dividing the first detection region 205a in the width direction, which is stored in the irradiation management information storage unit 403, and the heating that passes through the divided region. In step S102, a plurality of irradiation management information including information for controlling the phase of the microwave irradiated by the two or more microwave irradiation units 401 for concentrated heating of the concentrated heating region 406 in which the target portion moves are used.
  • Irradiation management information including information (for example, information indicating a range) indicating a position of a divided region including the detected one or more heating target portions is detected, and a phase of a microwave included in the detected irradiation management information is controlled.
  • the information indicating the range of the divided region including the heating target portion may be considered as a process for specifying a concentrated heating region for performing concentrated heating.
  • the process of acquiring information for controlling the phase of the microwave may be considered as the process of acquiring information for controlling the phase of the microwave when the specified concentrated heating region is intensively heated.
  • the control unit 402 further obtains the current time from a clock (not shown) or the like, and adds the time required for the heating target 60 that has passed the detection area 205 to move to the concentrated heating area 406 to the obtained time,
  • the time obtained by the addition is acquired by the determined microwave irradiation means 401 as the start time of microwave irradiation.
  • the positions of the plurality of concentrated heating regions 406 in the moving direction of the heating target 60 are the same, and the first detection region 205a is set perpendicular to the moving direction of the heating target 60. Then, this time is all the same time.
  • Step S105 The control unit 402 accumulates information indicating the microwave irradiation unit 401 determined in step S104 and the start time of microwave irradiation in association with each other in a storage unit (not shown). Then, the process proceeds to step S106.
  • Step S106 The second sensor 201b of the detection means 20 acquires the temperature distribution on the back surface 61b side of the heating target 60 in the second detection area 205b.
  • Step S107 The detection processing unit 202 of the detection unit 20 performs a process of detecting a portion to be heated from the temperature distribution acquired in Step S106. This process is the same as step S102, and a detailed description thereof will be omitted.
  • Step S108 The control unit 402 of the irradiation state changing unit 40 determines whether or not a heating target portion has been detected in Step S107. If detected, the process proceeds to step S109. If not detected, the process proceeds to step S111.
  • Step S109 The control unit 402 starts irradiation with information for controlling the phases of the two or more microwave irradiation units 401 for performing concentrated heating on the heating target portion detected in step S107. Determine the time.
  • This process is the same as step S104 except that the detection region 205 is the second detection region 205b, and thus detailed description is omitted.
  • Step S110 The control unit 402 accumulates information having the start time and the information for controlling the phase acquired in step S109 in the storage unit used for accumulation in step S105. Then, the process proceeds to step S111.
  • Step S111 The control unit 402 determines whether or not it is time to irradiate the microwave with the phase controlled. Specifically, from the irradiation start times stored in association with the information indicating the microwave irradiation means 401 in step S105 and step S110, a search is made for the one that matches the current time. If there is at least one matching irradiation start time, it is determined that it is time to perform microwave irradiation, and if there is no matching irradiation start time, it is determined that it is time to not perform microwave irradiation. If it is the timing to perform the microwave irradiation, the process proceeds to step S112. If it is not the timing to perform the microwave irradiation, the process returns to step S101.
  • Step S112 The control unit 402 acquires information for controlling the phase associated with the irradiation start time coinciding with the current time detected in step S111, and uses the acquired form to obtain information for controlling the phase.
  • the microwave irradiation means 401 is controlled to irradiate a microwave whose phase is controlled. Thereby, microwave irradiation is performed from two or more microwave irradiation units 401, and concentrated heating is performed. Then, the process returns to step S101. If there are two or more records having the same irradiation start time, microwave irradiation using information for controlling the phase of each record is performed in order.
  • the time for each microwave irradiation means 401 to emit a microwave may be, for example, the same length as the time interval at which the detection means 20 performs detection.
  • the microwave irradiation from each microwave irradiation unit 401 may be performed, for example, for a predetermined time. This time may be, for example, the same time as the period in which the detection unit 20 performs the process of acquiring the temperature distribution using the sensor 201. Further, it is preferable that this time is, for example, equal to or less than the time required for the heating target portion to enter from one concentrated heating region 406 to exit.
  • each microwave irradiating means 401 that is irradiating the microwave determines in step S111 after starting the microwave irradiation that it is time to newly irradiate the microwave.
  • This new determination is performed.
  • the performed time may be updated to the time when the microwave irradiation unit 401 starts microwave irradiation.
  • the conditions under which each microwave irradiating means 401 terminates microwave irradiation are not limited to the above.
  • the processing is terminated by turning off the power or interrupting the termination of the processing.
  • the heating target 60 is heated by another heating device or the like immediately before being carried into the container 10.
  • the belt 501 is moving at a constant speed in a direction from the entrance 101 to the exit 102, and the time required for the portion of the heating target 60 passing through the detection area 205 to enter the detection area 205. Is "t0" seconds. Note that “t0”, “t1”, “t2”, and the like, which will be described later, are arbitrary values representing time.
  • the first detection area 205a moves the first concentrated heating area 406a to the third concentrated heating area 406c in the direction opposite to the moving direction of the heating target 60, respectively.
  • the areas overlapping the first concentrated heating area 406a to the third concentrated heating area 406c are referred to as first divided area 2051a to third divided area 2051c, respectively.
  • the second detection area 205b is configured to move the fourth concentrated heating area 406d to the sixth concentrated heating area 406f in directions opposite to the moving direction of the heating target 60, respectively. It is assumed that the area is divided into three areas that are overlapped when moved to. Here, the areas overlapping the fourth concentrated heating area 406d to the sixth concentrated heating area 406f are respectively referred to as a fourth divided area 2051e to a sixth divided area 2051f. Note that the divided regions obtained by dividing the detection region 205 are simply referred to as divided regions 2051 unless particularly distinguished.
  • FIG. 5 is a diagram showing irradiation management information stored in the irradiation management information storage unit 403.
  • the irradiation management information has attributes of “region” and “control”.
  • the “region” has attributes “height” and “range”.
  • the “region” is an attribute indicating the divided region 2051, and the “height” indicates the height of the detection region to which the divided region 2051 belongs.
  • the first detection region 205a on the surface 61a side is divided. This indicates whether the region is a divided region or the second detection region 205b on the back surface 61b side is a divided region 2051.
  • the value “1” indicates the divided region 2051 of the first detection region 205a, and the value “2” indicates the divided region 2051 of the second detection region 205b.
  • Range is information indicating the divided region 2051, and indicates a range in the width direction of the heating target 60 in the divided region 2051 by a range of coordinates in the width direction. Note that “x1”, “x2”, and the like are values representing coordinates. This “region” may be considered as information for specifying the concentrated heating region 406.
  • Control is information used to control the phases of the microwaves of the three microwave irradiation units 401, and includes a value indicating the microwave irradiation unit 401 to be controlled, a value indicating the phase, and a value indicating the heating target.
  • control may be considered as information of a template for obtaining irradiation control information described later for controlling the three microwave irradiation units 401.
  • the values “1” to “3” representing the microwave irradiation unit 401 indicate the first microwave irradiation unit 401a to the third microwave irradiation unit 401c.
  • the value representing the phase indicates the value of the phase set in each microwave irradiation means 401.
  • “1: ⁇ 1: t0, 2: ⁇ 2: t0, 3: ⁇ 3: t0” means that the first microwave irradiation unit 401a sets the phase to ⁇ 1, detects the portion to be heated, and then sets “1”. After t0 ”seconds, the microwave is irradiated, the second microwave irradiation means 401b sets the phase to ⁇ 2, and the microwave is irradiated after t0 seconds after detecting the portion to be heated.
  • the phase is set to ⁇ 3 for the three microwave irradiating units 401c, and it is assumed that the information designates to control each of the microwave irradiating units 401c to irradiate the microwaves “t0” seconds after the detection of the portion to be heated. Note that “ ⁇ 1” to “ ⁇ 3” and the like are values representing phases.
  • one row is one record of the irradiation management information.
  • the microwave irradiation is to be performed “t0” seconds after the heating target portion is detected, and thus “t0” may be omitted.
  • the heating target 60 placed on the belt 501 is carried into the container 10 from the entrance 101, and is carried out of the container 10 through the container 10. .
  • the first sensor 201a of the detecting means 20 detects the temperature distribution on the surface 61a side of the heating target 60 passing through the first detection area 205a. Then, the detection processing unit 202 detects a portion that is equal to or less than a predetermined threshold value in the detected temperature distribution as a portion to be heated.
  • a predetermined threshold value in the detected temperature distribution as a portion to be heated.
  • the detection processing unit 202 acquires the detected range of the coordinates of the heating target portion 206 in the width direction.
  • the control unit 402 divides the first detection region 205a from the first divided region 2051a to the third divided region 2051c, which are a plurality of regions, by dividing the first detection region 205a. Is detected. Specifically, in the irradiation management information shown in FIG. 5, “height” is “1” representing the first detection area 205 a where the detection is performed, and “range” is A record (row) including the acquired range of coordinates in the width direction of the heating target portion 206 is detected.
  • the control unit 402 acquires the value of “control” of this record.
  • This value is obtained, for example, by a plurality of microwave irradiating units 401 for irradiating microwaves for intensively heating the first concentrated heating region 406a obtained by a simulation or the like, and by each microwave irradiating unit 401. This is information for designating the phase of the microwave and the time from when the heating target portion is detected to when each microwave irradiating unit 401 starts to irradiate the microwave.
  • control unit 402 acquires the current time “t1” from a clock or the like (not shown) and controls the phases of the microwaves of the three microwave irradiation units 401 acquired from “control” of the irradiation management information.
  • the time “t0” from the detection of the heating target portion to the start of microwave irradiation of the information used for this is all added to the current time “t1” obtained above, and this time “t0” is added.
  • the irradiation start time is changed to “t0 + t1”.
  • the information “1: ⁇ 1:” obtained by changing the time “t0” of the “control” value of the record in the first row of the irradiation management information of FIG.
  • irradiation control information for controlling the irradiation of the microwaves whose phases are controlled by the plurality of microwave irradiation units 401.
  • the irradiation control information is a combination of a value indicating each microwave irradiation unit 401 to be controlled, a value representing the phase thereof, and an irradiation start time of each microwave irradiation unit 401 with a “:” (colon) therebetween. It consists of a set of information.
  • the control unit 402 since the irradiation start times corresponding to the values “1” to “3” representing the respective microwave irradiation units 401 are common, the control unit 402 stores the irradiation start times as different attributes.
  • FIGS. 6A and 6B are diagrams showing irradiation control tables for managing irradiation control information stored in a storage unit (not shown).
  • the irradiation control table has attributes of “irradiation time” and “control”. “Irradiation time” is the above-described irradiation start time.
  • the “control” is the same as the “control” in FIG. 5 except for the time until microwave irradiation.
  • one record (row) indicates one irradiation control information.
  • FIG. 6A shows the case where the above information is accumulated.
  • the second sensor 201b of the detection means 20 also detects the temperature distribution on the back surface 61b side of the heating target 60 passing through the second detection area 205b. For example, this detection is actually performed almost simultaneously with the process of detecting the temperature distribution using the first sensor 201a. Then, the detection processing unit 202 performs a process of detecting a portion that is equal to or less than a predetermined threshold in the detected temperature distribution in order to detect the portion to be heated.
  • the control unit 402 does not acquire the irradiation control information as described above.
  • the control unit 402 searches the irradiation control information shown in FIG. 6A for a record in which the attribute value of “irradiation time” matches the current time “t1”.
  • the microwave irradiation means 401 does not perform microwave irradiation.
  • the detection means 20 detects a temperature distribution in a portion of the moving heating target 60 that passes through the first detection area 205a and the second detection area 205b, respectively, as described above, and uses this temperature distribution.
  • the heating target portion is detected, and when it is detected, the corresponding irradiation control information is obtained, and the process of additionally writing to the storage unit (not shown) is repeated at regular time intervals.
  • control unit 402 repeats the process of searching for a record in which the attribute value of “irradiation time” matches the current time in the irradiation control information shown in FIG. A processing example when a matching record is detected will be described later.
  • a portion where the temperature is equal to or lower than the threshold is not detected.
  • the temperature distribution acquired by the second sensor 201b for the portion passing through the second detection region 205b of the 60 for example, as shown in FIG. Suppose it was done.
  • the control unit 402 detects an area including the heating target portion 206 detected by the detection unit 20 from the fourth divided area 2051d to the sixth divided area 2051f obtained by dividing the second detection area 205b. Specifically, in the irradiation management information shown in FIG. 5, “height” is “2” representing the second detection area 205 b performed on the detection side, and “range” is that the detection unit 20 A record (row) including the acquired coordinate range in the width direction of the heating target portion 206 is detected.
  • the control unit 402 acquires the value of “control” of this record.
  • the acquired values are “1: ⁇ 13: t0, 2: ⁇ 14: t0, 3: ⁇ 15: t0”.
  • This value is obtained, for example, by a plurality of microwave irradiating units 401 that irradiate microwaves for intensively heating the fifth concentrated heating region 406e acquired by a simulation or the like, and by each microwave irradiating unit 401. It is assumed that the information designates the phase of the microwave and the time from when the heating target portion is detected to when each microwave irradiating unit 401 starts to irradiate the microwave.
  • control unit 402 acquires the current time “t2” from a clock or the like (not shown), and heats information used to control the phases of the microwaves of the three microwave irradiation units 401 acquired above.
  • the time “t0” from the detection of the part to the start of the microwave irradiation is changed to the irradiation start time “t0 + t2” obtained by adding the time “t0” to the current time “t2” obtained above.
  • the irradiation control information “1: ⁇ 13: t0 + t2, 2: ⁇ 14: t0 + t2, 3: ⁇ 15: t0 + t2” is acquired and added to the storage unit (not shown).
  • the irradiation control table to which the irradiation control information is added is as shown in FIG.
  • the control unit 402 sets the attribute value of “irradiation time” to the current time “t1 + t0” in the irradiation control table shown in FIG. It is assumed that a record (row) that matches is detected.
  • the control unit 402 obtains the attribute value “1” of “control” from the record in the first row from the irradiation control table shown in FIG. 6B in which the detected attribute value of “irradiation time” is “t1 + t0”.
  • the first microwave irradiating unit 401a to the third microwave irradiating unit 401c are controlled using the attribute values, and the phases are controlled from each. Irradiate microwave. Specifically, the first microwave irradiating unit 401a irradiates a microwave whose phase is set to ⁇ 1, and the second microwave irradiating unit 401b irradiates a microwave whose phase is set to ⁇ 2, Microwaves whose phases are set to ⁇ 3 are irradiated from the three microwave irradiation units 401c.
  • the phase here is, for example, a phase based on the case where all phases are the same.
  • the heating target portion 206 detected at the time “t0” in the first detection region 205a has moved into the first concentrated heating region 406a at the time “t0 + t1”. 206 will be concentratedly heated.
  • the control unit 402 sets the attribute value of “irradiation time” to the current time “t0 + t2” in the irradiation control table shown in FIG.
  • the control unit 402 obtains the attribute value “1: ⁇ 13, 2: ⁇ 14, 3: ⁇ 15” of “control” of the record in which the attribute value of the detected “irradiation time” is “t0 + t2”, and acquires this attribute value.
  • the first microwave irradiation means 401a to the third microwave irradiation means 401c are controlled to irradiate the microwaves whose phases are controlled.
  • the first microwave irradiation unit 401a irradiates a microwave whose phase is set to ⁇ 13
  • the second microwave irradiation unit 401b irradiates a microwave whose phase is set to ⁇ 14
  • Microwaves whose phases are set to ⁇ 15 are irradiated from the three microwave irradiation units 401c.
  • the fifth concentrated heating region 406e is concentratedly heated.
  • the heating target portion 206 detected at the time “t0” in the second detection region 205b has moved into the fifth concentrated heating region 406e at the time “t0 + t2”. 206 will be heated intensively.
  • the heating target portion detected by the detection means 20 can be concentratedly heated by the microwave, the heating target portion can be dynamically and in real time concentratedly heated, and the concentrated heating is wasteful. No efficient microwave heating can be performed. In addition, microwave irradiation performed on a portion that does not require heating can be reduced, and damage or the like due to heating of an unnecessary portion can be prevented.
  • the heating object 60 that is continuously conveyed in the container 10 that is, continuously moves in the container 10) by the conveying means such as the belt conveyor 50 is heated.
  • the heating target 60 may be appropriately moved or stopped in the container 10.
  • the heating apparatus 1 may perform processing such as heating on the heating target 60 that moves discontinuously in the container 10.
  • Moving discontinuously means, for example, moving in combination with movement and stopping, or moving intermittently. It does not matter when the heating target 60 is moved and when the heating target 60 is stopped.
  • the movement of the heating target 60 may be temporarily stopped when the detection unit 20 detects the heating target portion, and when the microwave irradiation unit 401 performs the concentrated heating, the heating target 60 May be temporarily stopped.
  • the irradiation state changing means 40 controls the phase of the microwave radiated by the microwave irradiating means 401 so that the heating target portion detected by the detecting means 20 is located (for example, the approaching state).
  • the concentrated heating area may be heated intensively. That is, the concentrated heating regions 406 may be arranged in a matrix of p ⁇ q (p and q are integers of 2 or more) on the plane of the heating target 60 without gaps.
  • FIG. 7 (a) to 7 (d) are schematic plan views of the vicinity of the heating target 60 in the container 10 as viewed from the front side, for describing such a modification of the heating device 1.
  • FIG. 7A to 7D the same reference numerals as those in FIG. 3A indicate the same or corresponding parts.
  • the concentrated heating areas 406a2 to 406c2, and the concentrated heating areas 406a3 to 406c3 are respectively arranged such that the first concentrated heating area 406a to the concentrated heating area 406c are moved toward the first detection area 205a. It is assumed that the centralized heating area is translated. Thus, the concentrated heating regions 406 are arranged in a matrix in the planar direction.
  • the other configuration of the heating device 1 is the same as that of the first embodiment.
  • the irradiation management information storage unit 403 includes, for example, information indicating the range of the first divided area 2051a and information for individually and centrally heating the first concentrated heating area 406a, the concentrated heating area 406a2, and the concentrated heating area 406a3.
  • Irradiation management information including information for controlling the phase of the microwave irradiation means 401 is stored.
  • the microwave irradiation unit 401 for concentratedly heating the concentrated heating regions 406 having the same position in the width direction respectively.
  • Irradiation management information associated with information for controlling the phase is stored.
  • the information for controlling the phase of each concentrated heating region 406 is associated with information necessary for the heating target portion to move from the detection region 205 to each concentrated heating region 406.
  • the time “t0” until the heating target portion moves from the detection region 205 to the first concentrated heating region 406a is associated with the first concentrated heating region 406a.
  • the time “t5" until the heating target portion moves from the detection region 205 to the concentrated heating region 406a2 is associated with the heating target portion, and the heating target portion is moved from the detection region 205 to the concentrated heating region 406a3. It is assumed that the time “t6” before moving to is associated. (However, t0> t5> t6).
  • the control unit 402 determines the first divided area 2051a from the irradiation management information in the irradiation management information storage unit 403.
  • the information for controlling the phase of the microwave irradiation means 401 for individually and centrally heating the first concentrated heating region 406a, the concentrated heating region 406a2, and the concentrated heating region 406a3 are acquired.
  • the control unit 402 uses the information associated with “t6” among the acquired information to generate a plurality of microwave irradiation units.
  • the concentrated heating area 406a3 is concentratedly heated when the heating target portion is located in the concentrated heating area 406b3. Further, as shown in FIG. 7 (c), when the heating target portion is located in the concentrated heating area 406a2 after "t5" seconds have elapsed since the detection of the heating target portion, "t5" Using the information correlated with "", the plurality of microwave irradiating means 401 are controlled to irradiate a microwave whose phase is controlled, thereby intensively heating the concentrated heating region 406a2.
  • the plurality of microwave irradiation units 401 are controlled using the information associated with “t0” in the acquired information to control the phase. Is controlled, and the first concentrated heating region 406a is concentratedly heated when the heating target portion is located in the first concentrated heating region 406a as shown in FIG. 7D. Thereby, the heating target portion can be concentratedly heated by following the movement of the heating target portion. By doing so, it is possible to increase the time for intensively heating the portion to be heated.
  • the arrangement of the concentrated heating regions 406a in the plurality of rows is not limited to the above arrangement.
  • a plurality of rows of concentrated heating regions 406 may extend in the width direction, and a plurality of concentrated heating regions 406 in different rows located in front and rear in the longitudinal direction may be arranged so as to have different width positions.
  • the heating target portion is located in the width direction of the heating target 60 in the concentrated heating region on the front surface 61a side.
  • the heating object portion in the width direction of the heating object 60 in the concentrated heating region on the back surface 61b side is The concentrated heating region 406 to be located is specified as the concentrated heating region 406 where the concentrated heating is performed, and the concentrated heating is performed.
  • Concentration heating region may be identified to the centralized heating area 406 which performs centralized heating. That is, the concentrated heating region 406 where the heating target portion is located in the width direction of the heating target 60 and the concentrated heating region 406 where the heating target portion is located in the height direction are subjected to concentrated heating.
  • the central heating region may be determined.
  • the process of specifying the concentrated heating region 406 where the heating target portion is located includes the process of specifying the concentrated heating region 406 where the heating target portion is located in the width direction as described above, and the process of specifying the concentrated heating region.
  • Detecting the heating target portion in the height direction may be detecting the heating target portion inside the heating target object 60, or detecting the heating target portion in the internal height direction.
  • the detection unit 20 obtains a temperature distribution in the height direction of the heating target 60, or obtains a temperature distribution for a combination of the planar direction and the height direction, and uses this temperature distribution to determine a heating target portion.
  • Obtaining the temperature distribution in the height direction of the heating target 60 may be obtaining the temperature distribution inside the heating target 60.
  • acquiring the temperature distribution in the height direction of the heating object 60 may be acquiring the temperature distribution from the front surface to the back surface of the heating object 60.
  • a plurality of sensors such as a contact-type temperature sensor in the height direction of the heating target 60.
  • Mounting the sensors in the height direction means, for example, mounting one or more sensors at different heights.
  • an X-ray sensor or an ultrasonic sensor as a sensor of the detecting means 20
  • the temperature distribution in the height direction is obtained without contacting the heating target 60, and the obtained temperature distribution in the height direction is obtained.
  • a threshold or the like a portion having a low temperature is detected as a portion to be heated, and the detected portion to be heated is concentratedly heated using the irradiation state changing means 40 and the plurality of microwave irradiation means 401.
  • the X-ray sensor here is, for example, three-dimensional X-ray thermography.
  • the X-ray sensor here is, for example, three-dimensional X-ray thermography.
  • the following non-patent document "Akio Yoneyama et al., Four people," Three-dimensional X-ray thermography using phase-contrast imaging ", Scientific Reports, [online], July 1, 1980 Search, Internet ⁇ URL: https://www.nature.com/articles/s41598-018-30443-4 ””.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2008-70340
  • a sensor other than the above may be used as a sensor for acquiring the temperature in the height direction.
  • the temperature distribution in the height direction of the heating target 60 may be calculated using a temperature on the front surface, a temperature on the back surface, or the like, using a prediction formula prepared in advance or the like. Further, the temperature in the height direction may be obtained by performing a simulation such as a heat treatment in a preceding stage.
  • the detection unit 20 be able to acquire the temperature distribution of a part of the object to be heated that moves to one or more concentrated heating areas 406.
  • at least one or more temperatures can be sequentially acquired for a portion moving to each concentrated heating region 406.
  • the control unit 402 sets the time at which the detected heating target portion moves to the corresponding concentrated heating region 406 in accordance with the longitudinal position of the heating target portion in the detection region where the heating target portion is detected. It may be adjusted.
  • a plurality of configurations including the detecting unit 20, the irradiation state changing unit 40, and the plurality of microwave irradiating units 401 as in the present embodiment are provided in the longitudinal direction in one container 10, so that a heating target portion is provided. And a plurality of partial irradiations on the detected object to be heated may be performed.
  • FIG. 8 is a block diagram (Fig. 8 (a)) and a perspective view (Fig. 8 (b)) of the appearance and the like showing the function of the heating device 2 in the present embodiment. The corresponding parts are shown.
  • FIG. 9 is a schematic sectional view taken along the line IXa-IXa of FIG. 8B (FIG. 9A) and a schematic sectional view taken along the line IXb-IXb (FIG. 9B).
  • FIG. 11 is a perspective view schematically showing the vicinity of the heating target 60 in the container 10 (FIG. 11A), and a view of the vicinity of the surface side of the heating target 60 in the container 10 viewed from above (FIG. 11).
  • FIG. 11B is a diagram (FIG. 11C) of the vicinity of the back surface viewed from below.
  • the heating device 2 includes the container 10, the detection unit 21, the first to third microwave irradiation units 401a to 401c, the irradiation state changing unit 41, and the belt conveyor 50.
  • the container 10 is similar to the container 10 described in the first embodiment except that the size of the inlet 101 and the outlet 102 is different.
  • the irradiation state changing means 41 can individually and collectively heat the plurality of concentrated heating regions 406 set at different positions in the container 10 by controlling the phases of the microwaves irradiated by the two or more microwave irradiation means 401. Things.
  • the concentrated heating area 406 is, for example, a three-dimensional area.
  • the plurality of concentrated heating regions 406 are set at positions where at least one of positions in the longitudinal direction, the width direction, and the height direction of the container 10 is different.
  • the plurality of concentrated heating regions 406 may be arranged, for example, in at least one of the longitudinal direction, the width direction, and the height direction of the container 10.
  • the case where the region is a plurality of concentrated heating regions 406 will be described as an example.
  • each concentrated heating region 406 is arranged so that a side extends in the longitudinal direction, the width direction, and the height direction of the container 10.
  • Each concentrated heating region 406 is assumed to be a rectangular parallelepiped having the same size.
  • Adjacent concentrated heating regions 406 are in contact with each other without a gap, and the plurality of concentrated heating regions 406 are regularly arranged in the longitudinal direction, the width direction, and the height direction.
  • a plurality of concentrated heating regions 406 having a rectangular parallelepiped shape have two or more rows in the longitudinal direction and two or more rows in the width direction.
  • two or more rows are arranged in the height direction without any gap, and the whole has a rectangular parallelepiped shape extending in the longitudinal direction.
  • the arrangement of the two or more concentrated heating regions 406 is not limited to the above arrangement.
  • the two or more concentrated heating areas 406 may not be regularly arranged.
  • the positions of the two or more concentrated heating regions 406 arranged before and after are arranged so as to be shifted in a direction perpendicular to the one direction.
  • the shape of the concentrated heating region 406 is not limited to a rectangular parallelepiped shape, and may be another three-dimensional shape such as a spherical shape.
  • the adjacent concentrated heating regions 406 may be arranged with a space therebetween, and the adjacent concentrated heating regions 406 may partially overlap. However, it is preferable not to set a concentrated heating region completely included in another concentrated heating region.
  • the plurality of concentrated heating regions 406 may be arranged such that at least a part of the heating target 60, preferably the entire heating target 60, overlaps in a three-dimensional region in which the plurality of concentrated heating regions 406 are combined. preferable.
  • the plurality of concentrated heating regions 406 are arranged without any gap at least in a region overlapping with the heating target 60.
  • the heating target 60 is arranged in a region where a plurality of concentrated heating regions 406 are arranged.
  • the rectangular parallelepiped heating target 60 is arranged so as to overlap a region where a plurality of concentrated heating regions 406 are arranged.
  • the heating target 60 may be arranged so as to overlap only a part of the plurality of concentrated heating regions 406.
  • the heating target 60 is the same as the heating target 60 of the above embodiment except for the shape and size. In the present embodiment, as the heating target 60, the same heating target as that described in the first embodiment can be used.
  • the carrying means such as the belt conveyor 50 may be omitted.
  • an outlet or the like of the container 10 for carrying out the heating target 60 may be omitted.
  • a mounting table (not shown) for mounting the object to be heated 60 whose surface is a mesh or the like may be provided in the container 10.
  • a lid (not shown) for closing the inlet 101 and the outlet 102 may be provided.
  • the detection unit 21 includes a first sensor 211a and a second sensor 211b, and a detection processing unit 212.
  • a sensor 211 When the first sensor 211a and the second sensor 211b are not distinguished, they are simply referred to as a sensor 211.
  • the first sensor 211a is a sensor that detects a temperature distribution in the first detection area 215a.
  • the first sensor 211a is a sensor arranged such that the first detection region 215a overlaps with the region where the plurality of concentrated heating regions 406 are arranged.
  • the first sensor 211a is a sensor in which the length of the detection region 205 in the longitudinal direction is increased in the first sensor 201a described above, and is a sensor arranged so as to overlap the plurality of concentrated heating regions 406.
  • the first sensor 211a is a sensor arranged such that portions of the plurality of concentrated heating regions 406 overlapping the surface 61a side of the heating target 60 overlap the first detection region 215a.
  • the first sensor 211a is, for example, a sensor in which the first detection region 215a has a two-dimensional shape.
  • the first sensor 211a acquires not the temperature distribution in the width direction but the temperature distribution in the two-dimensional direction on the surface 61a side of the heating target 60, for example, the temperature distribution in the width direction and the longitudinal direction. It is a sensor.
  • the second sensor 211b is a sensor that detects the temperature distribution in the second detection area 215b.
  • the second sensor 211b is a sensor in which the second detection area 215b is arranged so as to overlap the area where the plurality of concentrated heating areas 406 are arranged.
  • the second sensor 211b is a sensor in which the length of the detection region 205 in the longitudinal direction in the first sensor 201a described above is increased, and is a sensor arranged so as to overlap the plurality of concentrated heating regions 406. .
  • the second sensor 211b is a sensor arranged such that portions of the plurality of concentrated heating regions 406 that overlap the back surface 61b side of the heating target 60 overlap the first detection region 215a.
  • the second sensor 211b is, for example, a sensor in which the second detection area 215b has a two-dimensional shape.
  • the second sensor 211b acquires not the temperature distribution in the width direction but the temperature distribution in the two-dimensional direction on the back surface 61b side of the heating target 60, for example, the temperature distribution in the width direction and the longitudinal direction. It is a sensor.
  • the temperature distribution in the two-dimensional direction is, for example, a temperature distribution in two orthogonal directions.
  • the temperature distribution in the two-dimensional direction is, for example, a temperature distribution at a plurality of positions represented by a combination of a position in the width direction and a position in the longitudinal direction.
  • the sensor 211 may be a sensor such as a radiation thermometer in which elements for detecting infrared rays are arranged in a two-dimensional direction.
  • the acquired sensor may be used.
  • the first detection region 215a and the second detection region 215b are not distinguished, they are simply referred to as a detection region 215.
  • the detection processing unit 212 detects a heating target portion using the temperature distribution acquired by the sensor 211. For example, the detection processing unit 212 detects a low-temperature portion as a heating target portion. Then, the detection processing unit 212 acquires information indicating the detected heating target portion. It is preferable that the detected information indicating the heating target portion is three-dimensional information indicating the position of the heating target portion in the container 10. However, when the sensor 211 is a non-contact temperature sensor as in the present embodiment, the information indicating the position of the heating target detected by the sensor 211 is usually information indicating the position of the heating target in a two-dimensional space.
  • the information indicates the position in the plane direction, here, in addition to this, as information indicating the position in the height direction of the information indicating the area detected by the first sensor 211a.
  • Information indicating the position of the surface of the target object 60 in the height direction is acquired.
  • the position information in the height direction of the surface of the heating target 60 is obtained as the position information in the height direction of the information indicating the area detected by the second sensor 211b.
  • the values are stored in a storage unit (not shown) and read out by the detection processing unit 212 as appropriate. get.
  • the position in the height direction of the front surface 61a and the back surface 61b of the heating object 60 is determined by a sensor (not shown) that measures the distance, and the sensor that detects the height position of the front surface 61a and the back surface 61b (not shown). Zu) or the like.
  • the information indicating the heating target portion obtained from the information indicating the two-dimensional temperature distribution obtained by the sensor 211 may be information indicating the position of the heating target portion in the two-dimensional space, such as the center or the center of gravity of the heating target portion. Or information indicating the position of the representative point.
  • the information indicating the position of the heating target portion in the two-dimensional space is, for example, information that can distinguish points included in the heating target portion and points not included therein, or an area inside and outside the heating target portion. Is information that can be distinguished.
  • the information indicating the position of the heating target portion in the two-dimensional space may be, for example, information indicating the contour or outer surface of the heating target portion.
  • the information may indicate information such as the vertices of the polygon.
  • the information may indicate the center and radius of the circle.
  • the information indicating the position here is preferably three-dimensional information indicating the position of the portion to be heated in the container 10.
  • the heating target portion acquired by the detection processing unit 212 is, for example, a region in a three-dimensional space. It is preferable to acquire information indicating the position of the heating target portion in the three-dimensional space as the indicating information.
  • the information indicating the position of the heating target portion in the three-dimensional original space is, for example, information that can distinguish a point included in the heating target portion and a point not included therein, and indicates, for example, an outline or an outer surface of the heating target portion. It may be information.
  • the information indicating the contour is, for example, a plurality of coordinate groups located on the contour in the three-dimensional space.
  • the information indicating the position of the heating target portion in the three-dimensional space may be a coordinate group indicating a plurality of vertices of the polygon.
  • the information indicating the position of the heating target portion in the three-dimensional space may be a combination of the coordinates of the center of the sphere and the radius of the sphere.
  • Information indicating the position of the heating target portion in the three-dimensional original space includes information indicating the shape and size of the heating target, and information indicating the position in the three-dimensional space of a representative point such as the center or the center of gravity of the heating target. May be combined. The same applies to the information indicating the concentrated heating area 406 described later.
  • the three microwave irradiation units 401 included in the heating unit 2 are the same as those in the above-described embodiment, and a detailed description thereof will be omitted.
  • the number of the microwave irradiation means 401 is not limited to three, but may be any plural number.
  • the irradiation state changing unit 41 has a control unit 412 and an irradiation management information storage unit 413.
  • the irradiation state changing unit 41 converts the microwave whose phase is controlled so that the concentrated heating region is concentratedly heated into two or more microwaves. Irradiation is performed from the irradiating means 401 to intensively heat the portion to be heated.
  • the irradiation state changing unit 41 is configured, for example, when the heating target portion detected by the detection unit 21 is located in the concentrated heating area corresponding to one or more irradiation management information stored in the irradiation management information storage unit 413. Microwaves whose phases are controlled so that the region where partial heating is possible are concentratedly heated are radiated from two or more microwave radiating means 401 to intensively heat the portion to be heated.
  • the control unit 412 controls the phase of the microwave radiated by the microwave irradiating means 401 so that the portion to be heated is concentratedly heated.
  • the control unit 412 controls the phase of the microwave irradiated by the microwave irradiation unit 401, for example, such that the concentrated heating region where the heating target portion is located, that is, the concentrated heating region overlapping the heating target portion is concentratedly heated. This means that when the portion to be heated is located in the concentrated heating area 406, two or more microwave irradiation means 401 are controlled, and the microwaves whose phases are controlled so that the concentrated heating area 406 is concentrated heated are Irradiation may be considered.
  • the concentrated heating area 406 is the concentrated heating area 406 corresponding to the irradiation management information stored in the irradiation management information storage unit 413.
  • the heating target part is determined.
  • the overlapped concentrated heating region is specified, and the phases of the microwaves irradiated by the two or more microwave irradiation units 401 are controlled so that the specified concentrated heating region is concentratedly heated.
  • information indicating the position of the concentrated heating region 406 in the three-dimensional space is acquired as the information indicating the concentrated heating region 406.
  • Information indicating the position of the concentrated heating area 406 in the three-dimensional space is the same information as the information indicating the position of the heating target portion described above.
  • the control unit 402 uses, for example, information indicating the position of each of the concentrated heating regions 406 in the three-dimensional space and information indicating the position of the heating target portion, and uses the concentrated heating region 406 overlapping the heating target portion. Is detected. Specifically, information indicating the concentrated heating region 406 at least partially overlapping the heating target portion is acquired. The detection of the information indicating the concentrated heating region 406 including the concentrated heating region 406 overlapping the heating target portion may be considered as a process of specifying the concentrated heating region where the heating target portion is located.
  • the irradiation state changing unit 41 When the heating target 60 is moving, the irradiation state changing unit 41 immediately specifies the concentrated heating region 406 where the heating target portion is located, and then immediately applies the microwave irradiation unit 401 so that the concentrated heating region 406 is concentrated heated. Is preferably controlled. This is not the case when the heating target 60 is not moving.
  • information indicating the position of the concentrated heating region 406 in the three-dimensional space and two or more microwaves for centrally heating the concentrated heating region 406 are stored in the irradiation management information storage unit 413 in advance.
  • a plurality of irradiation management information having information for controlling the phase of the microwave irradiated by the irradiation unit 401 is stored, and the control unit 402 controls the concentrated heating region overlapping the heating target portion detected above.
  • the irradiation management information including the information indicating 406 is detected, the information for controlling the phase of the microwave irradiated by the two or more microwave irradiation units 401 included in the detected irradiation management information is read, and this information is used.
  • control unit 402 includes information indicating the position in the three-dimensional space of the representative point such as the center or the center of gravity of the specified concentrated heating region 406 overlapping the heating target portion (for example, the center coordinates of the concentrated heating region 406), Using the coordinates of the positions where the plurality of microwaves are irradiated in the container 10, the distances from the positions where the plurality of microwaves are irradiated to the concentrated heating area 406 are calculated, and information on the calculated distance and the microwave to be irradiated are calculated.
  • the phase of the microwave irradiated by the two or more microwave irradiation means 401 is calculated so that the plurality of microwaves reinforce each other in the specific concentrated heating region 406, and the calculated information is calculated.
  • the specified concentrated heating region 406 may be concentratedly heated by controlling the phase of the microwaves irradiated by the two or more microwave irradiation units 401.
  • the irradiation management information storage unit 413 stores irradiation management information that is information for controlling the phase of microwaves irradiated by two or more microwave irradiation units 401 for centrally heating the concentrated heating region 406.
  • the irradiation management information stored in the present embodiment is, in the irradiation management information described in the above embodiment, information indicating the position of the concentrated heating region 406 in the three-dimensional space as information for specifying the concentrated heating region. It is assumed that it has.
  • information for controlling the phases of the microwaves irradiated by the two or more microwave irradiation units 401 in the irradiation management information information that does not have the irradiation start time is used here.
  • the concentrated heating area 406 here is a plurality of concentrated heating areas 406 arranged in the container 10.
  • the control unit 412 stores the identifier of the concentrated heating area 406 stored in a storage unit (not shown) and information indicating the concentrated heating area 406 (for example, information indicating the position of the concentrated heating area in the three-dimensional space) and the like.
  • the partial irradiation management information includes the identifier of the concentrated heating region 406 and the information for controlling the phase for centrally heating the concentrated heating region 406. May be information having the following.
  • the information for controlling the phases of two or more microwave irradiation units 401 included in one irradiation management information is, for example, a concentrated heating area corresponding to the one irradiation management information, like the irradiation management information of the above embodiment. It is preferable that the information is information obtained by performing a simulation, an experiment, or the like for performing concentrated heating of the 406 and setting the phases of the microwaves to be irradiated by the two or more microwave irradiation units 401.
  • the concentrated heating region where the heating target portion is located is specified, and the phase of the microwave is controlled.
  • the microwave irradiation is performed immediately after specifying the concentrated heating area, and when the heating target 60 is not moving, except that the microwave irradiation is performed at an arbitrary time after the concentrated heating region is specified, the configuration is the same as that of the above embodiment, and the detailed description is omitted here.
  • the heating target 60 is heated by another heating device or the like immediately before being carried into the container 10.
  • the case where the belt 60 conveys the heating target 60 from the entrance 101 into the container 10 and then stops the movement, detects the target to be heated, and performs the process of centrally heating the target to be heated will be described.
  • the heating target 60 is moved from the container 10 to the outside of the container 10 on the belt conveyor 50.
  • FIG. 10 is a diagram showing irradiation management information stored in the irradiation management information storage unit 413.
  • the irradiation management information has attributes of “centralized heating area” and “control”.
  • the “concentrated heating area” is information indicating the position of each concentrated heating area 406 in the container 10 in the three-dimensional space. Here, the coordinates of the six vertices of the concentrated heating area 406 that is a rectangular parallelepiped are stored. And Note that (X1, Y1, Z1) and the like indicate arbitrary X, Y, and Z coordinates in the container 10.
  • the “control” is information used to control the phases of the microwaves of the three microwave irradiation units 401 similarly to the “control” of the specific example of the first embodiment, and the microwave irradiation of the control target is performed. It is composed of a set of information in which a value indicating the unit 401 and a value indicating the phase of the microwave emitted from the microwave irradiation unit 401 are combined with a “:” (colon) therebetween.
  • the values “1” to “3” representing the microwave irradiation unit 401 indicate the first microwave irradiation unit 401a to the third microwave irradiation unit 401c. Here, it is assumed that one row is one record of the irradiation management information.
  • the first sensor 211a of the detecting means 21 detects a temperature distribution in a first detection area 215a covering the surface 61a of the heating target 60.
  • the detected temperature distribution is a temperature distribution in the planar direction of the surface 61a of the heating target 60.
  • the detection processing unit 212 detects a portion that is equal to or less than a predetermined threshold value in the detected temperature distribution as a portion to be heated.
  • a predetermined threshold value in the detected temperature distribution as a portion to be heated.
  • FIG. 11B it is assumed that the heating target portion 506 is detected.
  • the detection processing unit 202 acquires, as the information indicating the detected position of the heating target portion 506 in the planar direction, information indicating the contour of the heating target portion in the planar direction.
  • the information on the contour in the plane direction is, for example, a group of coordinates located on the contour.
  • the coordinates in the height direction of the surface 61a of the heating target 60 arranged in the container 10 are arranged in a storage unit (not shown), and the detection processing unit 212 also calculates the coordinates in the height direction.
  • the control unit 402 reads out a set of the coordinate group of the contour and the coordinates in the height direction as information indicating an area of a heating target portion.
  • the control unit 402 uses the information indicating the area of the portion to be heated received from the detection processing unit 202 to change the attribute value of the “centralized heating area” from the irradiation management information stored in the irradiation management information storage unit 413 to the heating. Irradiation management information overlapping with information indicating the position of the target portion is detected. Specifically, the control unit 412 determines that the range of the X coordinate and the range of the Y coordinate indicated by the attribute value of the “concentrated heating area” overlap with the area indicated by the coordinate group of the outline of the heating target portion, The irradiation management information in which the range of the Z coordinate indicated by the attribute value of the “heating region” includes the coordinates in the height direction included in the information indicating the heating target portion is searched.
  • the irradiation management information detected here is irradiation management information corresponding to the concentrated heating area 406m.
  • the control unit 412 acquires the attribute value of “control” of the detected irradiation management information, controls the two or more microwave irradiation units 401 using the attribute value, and responds to the attribute value. Microwaves of different phases are irradiated.
  • the concentrated heating area 406m in which the heating target portion is detected can be heated by irradiating the microwaves whose phases are controlled from the two or more microwave irradiating means 401, respectively.
  • the time for performing the concentrated heating may be constant, or may be determined according to the temperature of the portion to be heated.
  • the detected heating target portions are arranged over a plurality of concentrated heating regions 406, or when a plurality of heating target portions located in different concentrated heating regions are detected.
  • the irradiation of the microwaves according to the irradiation management information is performed in order, so that the heating target part has a plurality of concentrated heating regions 406. May be concentratedly heated in order.
  • the second sensor 211b of the detection means 20 detects the temperature distribution in the second detection region 215b covering the back side of the heating target 60. Then, the detection processing unit 202 detects a portion that is equal to or less than a predetermined threshold value in the detected temperature distribution as a portion to be heated.
  • a predetermined threshold value in the detected temperature distribution as a portion to be heated.
  • the detection processing unit 202 acquires information indicating the outline of the detected heating target portion 507 in the planar direction.
  • the coordinates in the height direction of the back surface of the heating target 60 arranged in the container 10 are arranged in a storage unit (not shown), and the detection processing unit 202 also reads the coordinates in the height direction.
  • a set of a coordinate group indicating the contour and coordinates in the height direction is passed to the control unit 402 as information indicating the position of the heating target portion.
  • the control unit 402 uses the information indicating the position of the heating target portion received from the detection processing unit 202 to extract the “centralized heating area” from the irradiation management information stored in the irradiation management information storage unit 413.
  • Irradiance management information including information indicating the position of the portion to be heated is detected, and two or more microwave irradiation means 401 are controlled using the attribute value of “control” of the detected irradiation management information. Microwaves having phases corresponding to the attribute values are radiated.
  • the concentrated heating region 406n in which the heating target portion is detected can be heated by irradiating the microwaves whose phases are controlled from the two or more microwave irradiating means 401, respectively.
  • the control unit 402 intensively heats the respective heating target portions. The processing is performed in order.
  • the heating target portion can be detected by the detection means 21 and the detected heating target portion can be concentratedly heated. Heating enables efficient microwave heating without waste.
  • the heating target portion detected by the detection unit 21 can be concentratedly heated on the spot, the concentrated heating can be performed in real time.
  • microwave irradiation performed on unnecessary portions can be reduced, and damage or the like due to heating of unnecessary portions can be prevented. Further, even when the object to be heated is not moving, the portion to be heated can be heated.
  • the heating target 60 is not moving when performing the process for intensively heating the heating target portion has been described, but when the heating target 60 is moving. Further, a process for intensively heating the portion to be heated as described above may be performed. However, in this case, immediately after the detection unit 21 detects the heating target portion, it is desired that the concentrated heating region including the heating target portion be specified to perform the concentrated heating. In addition, these processes need to be repeatedly performed with the movement.
  • the heating target 60 is moved at desired time intervals (for example, when the heating target 60 At each time interval passing through the length of the heating region in the longitudinal direction, etc.), the process of detecting the heating target portion and repeating the process of intensively heating the region including the heating target portion allows the moving heating target portion to be detected.
  • the concentrated heating can be prevented from being performed when the heating target portion is sufficiently heated.
  • the sensor 211 included in the detection unit 21 is a sensor that acquires the temperature distribution on the front surface and the back surface of the heating target 60 in a non-contact manner.
  • 211 is not limited to such a sensor.
  • a plurality of contact-type temperature sensors each of which has a temperature detecting portion attached to a plurality of positions in the longitudinal direction, the width direction, and the height direction of the heating target 60 different from each other, are used.
  • the temperature distribution inside the object 60 may also be acquired.
  • only the temperature distribution on the front surface and the back surface of the heating target 60 can be obtained, and the temperature distribution in the height direction of the heating target 60 cannot be obtained.
  • the heating target 60 Even if there is a heating target portion, it is difficult to detect the heating target portion, and it is difficult to heat the heating target portion intensively. However, by using such a sensor 211, the heating target 60 The temperature distribution inside is obtained, the portion to be heated inside is detected, and the portion to be heated can be intensively heated.
  • the sensor 211 included in the detection unit 21 is a sensor that can detect one or more temperatures for each concentrated heating region 406 (for example, each concentrated heating region 406 where a heating target portion is located). (Not shown), and the central heating region 406 where the temperature of the heating target 60 or the like indicated by the output of this sensor is equal to or higher than the threshold value, or the temperature of the other concentrated heating region 406 or the like.
  • the irradiation state is determined such that the concentrated heating area 406 higher than a representative value such as an average value or an intermediate value of the temperatures of the plurality of concentrated heating areas 406 is determined as a heating target portion, and the concentrated heating area 406 is concentrated heated.
  • the changing means 41 may irradiate the microwave irradiating means 401 with the microwave whose phase is controlled. In such a case as well, since the output of each sensor is considered to indicate a temperature distribution, such a process is also a process of intensively heating the heating target portion detected by the detecting unit 21 using the temperature distribution. You may think.
  • a temperature distribution in the height direction is obtained, and a threshold value is obtained by using the obtained temperature distribution in the height direction.
  • a portion having a low temperature may be detected as a portion to be heated by using the method described above, and the detected portion to be heated may be concentratedly heated using the irradiation state changing means 41 and the microwave irradiation means 401.
  • Modification 1 a heating device that detects a heating target portion even in the height direction inside the heating target object and centrally heats the detected heating target portion will be described.
  • Drawing 16 is a block diagram (Drawing 16 (a)) and a perspective view (Drawing 16 (b)) of heating device 3 of a modification of this embodiment.
  • Drawings the same numerals as Drawing 8 grade are the same or equivalent. The part to be performed is shown.
  • FIG. 17 is a schematic cross-sectional view (FIGS. 17 (a) and 17 (b)) perpendicular to the longitudinal direction of the object to be heated, for explaining a modification of the present embodiment.
  • the heating device 3 of this modification is different from the heating device 2 of the second embodiment in that an ultrasonic sensor is used instead of the detection unit 21 having the first sensor 211a and the second sensor 211b and the detection processing unit 212.
  • the detection unit 24 has a detection unit 24 that detects a portion to be heated from the temperature distribution acquired by the ultrasonic sensor 211c.
  • the cross-sectional shape of the heating target 60a perpendicular to the longitudinal direction at a certain position in the longitudinal direction is, for example, a shape as shown in FIG. It is assumed that the heating target 60a is not moved after being placed on the belt 501 and moving into the container 10 similarly to the second embodiment.
  • the ultrasonic sensor 211c can acquire a temperature distribution in cross sections at a plurality of different positions in the longitudinal direction of the heating target 60a.
  • the ultrasonic sensor 211c may be capable of performing scanning for acquiring a temperature distribution at different positions in the longitudinal direction, and a plurality of ultrasonic sensors 211c arranged to acquire the temperature distribution at different positions in the longitudinal direction may be used.
  • An ultrasonic wave transmission unit and a reception unit (not shown) may be provided.
  • the detection processing unit 212a is different from the detection processing unit 212 of the second embodiment in that the ultrasonic sensor 211c is used in the longitudinal direction instead of detecting the heating target portion from the information acquired by the first sensor 211a and the second sensor 211b.
  • the target to be heated is detected from the temperature distributions obtained from different positions by using a threshold value or the like.
  • the detection processing unit 212 detects a region having a temperature equal to or higher than a threshold from the temperature distribution acquired by the ultrasonic sensor 211c, and acquires information indicating the detected region as information indicating a heating target portion.
  • the configuration and the like of the detection processing unit 212a other than those described above are the same as those of the detection processing unit 212, and thus description thereof is omitted here.
  • the ultrasonic sensor 211c acquires the temperature distributions of the cross section perpendicular to the longitudinal direction of the heating target 60a at different positions in the longitudinal direction.
  • This cross section may be considered a fault.
  • Each temperature distribution includes, for example, coordinates of a plurality of positions represented by a combination of coordinates in the width direction of the heating target 60a and coordinates in the height direction of the heating target 60a, and the temperature of the plurality of positions. This is information having a value.
  • the acquisition position of each temperature distribution indicates a position (for example, coordinates) in the longitudinal direction of the heating target 60a of each temperature distribution.
  • the detection processing unit 212a performs a process of detecting a portion to be heated using a threshold in each temperature distribution acquired by the ultrasonic sensor 211c.
  • the detection processing unit 212a determines the heating target portion 1606 If it is detected, the control unit 412 determines the position in the longitudinal direction at which the temperature distribution is obtained, the position in the width direction of the heating target portion 1606 obtained from the temperature distribution by the detection processing unit 212, and the position in the height direction
  • the centralized heating area 406 ⁇ which is the centralized heating area 406 including the position in the container 10 represented by the acquired longitudinal position, widthwise position, and heightwise position, is subjected to irradiation management.
  • the control unit 412 controls the phase from the microwave irradiation unit 401 using the irradiation management information stored in the irradiation management information storage unit 413 so that the concentrated heating area 406 ⁇ is subjected to the concentrated heating. Irradiate a plurality of microwaves. Thereby, the heating target portion 1606 can be detected inside the heating target object 60a, and the detected heating target portion can be concentratedly heated. Central heating can be performed in real time.
  • the heating target 60a is moved in the container 10 and the ultrasonic sensor 211c is used to heat the heating target 60a passing through one position in the longitudinal direction in the container 10.
  • the portions are sequentially detected, and when the heating target portion is detected, the phase of irradiating the concentrated heating region 406 into which the heating target portion enters with the movement of the heating target object 60a from the microwave irradiation unit 401 is controlled.
  • the concentrated heating may be performed by a plurality of microwaves.
  • the ultrasonic sensor 211c is provided as a sensor for acquiring the temperature distribution inside the heating target 60a
  • the other heating target 60a A sensor for acquiring the internal temperature distribution may be used.
  • the detection unit 24 may include an X-ray sensor instead of the ultrasonic sensor 211c. The same applies to the following embodiments using the ultrasonic sensor and the detecting unit 24 having the ultrasonic sensor.
  • the control unit 412 uses the information indicating the position of the concentrated heating region or the like in the three-dimensional space to locate the concentrated heating region 406 overlapping the heating target portion, where the heating target portion is located.
  • the information is specified as the concentrated heating region 406 and the information for controlling the phase of the microwave for centrally heating the concentrated heating region 406 is acquired, the control unit 412 performs the concentrated heating including the heating target portion.
  • the process of specifying the region 406 and acquiring information for controlling the phase of the microwave for centrally heating the concentrated heating region 406 is not limited to the above process.
  • the center of each concentrated heating region 406 in the three-dimensional space is used as the information indicating the position of the concentrated heating region.
  • information indicating the position of a representative point such as the center of gravity (eg, three-dimensional coordinates)
  • information indicating the position of the heating target portion such as the center or the center of gravity of the heating target portion in the three-dimensional space.
  • the information (for example, three-dimensional coordinates) indicating the position of the representative point is used, and the control unit 412 selects the representative point of the heating target portion detected by the detection unit 21 from the representative points of each concentrated heating area 406.
  • the irradiation management information is information (for example, three-dimensional coordinates) indicating the position of a representative point such as the center or the center of gravity of the concentrated heating area 406 in the three-dimensional space, for a plurality of concentrated heating areas in the container 10.
  • the control unit 412 determines the position of the representative point in the three-dimensional space of the heating target portion detected by the detection unit 21 so as to have information for controlling the phase of the microwave for centrally heating the concentrated heating region.
  • the phase of the microwave for detecting the irradiation management information having the information indicating the position of the representative point of the concentrated heating area 406 where the distance to the indicated information is the shortest and for centrally heating the concentrated heating area included in the detected irradiation management information May be acquired, and using this information, the phases of the microwaves irradiated by the plurality of microwave irradiation units 401 may be controlled.
  • the arrangement direction of the plurality of concentrated heating regions 406 is limited to the three-dimensional direction.
  • they may be arranged in a two-dimensional direction or in a one-dimensional direction.
  • being arranged in the two-dimensional direction means that, for example, the height direction is arranged in a line, and is arranged in a matrix of r ⁇ s (r, s is an integer of 2 or more) in the plane direction.
  • the longitudinal direction may be one line, and the height direction and the width direction may be arranged in a matrix of r ⁇ s (r and s are integers of 2 or more).
  • the arrangement of the plurality of concentrated heating regions 406 in the one-dimensional direction means, for example, that the plurality of concentrated heating regions 406 are arranged in a line in the longitudinal direction, the width direction, or an arbitrary direction. It is preferable that the arrangement of the plurality of concentrated heating regions be in accordance with, for example, the shape of the heating target 60 or the like.
  • the detection unit 21 is limited to the detection unit 21 in which the detection region 215 is disposed as long as the detection region 215 is disposed so as to overlap the concentrated heating region 406 arranged in the container 10. Not something.
  • the senor 211 included in the detecting unit 21 is arranged such that the detection region 215 overlaps the plurality of concentrated heating regions 406.
  • the sensor may be a direction in which the plurality of concentrated heating regions 406 are arranged.
  • the number of the concentrated heating regions 406 may be one.
  • the heating target 60 moves in the longitudinal direction in the container 10 and has a thread shape or a stripe shape narrower than one concentrated heating region 406, the heating target 60 Is moved while passing through the concentrated heating area 406, and the detection area of the detection means is arranged on this movement path, so that the heating target portion of the heating target 60 is detected by the detection means.
  • the detected heating target portion can be concentratedly heated when located in the concentrated heating region 406 (for example, when overlapping with the concentrated heating region 406).
  • the plurality of concentrated heating regions 406, which are two-dimensional regions, differ from each other in the plane directions of the front surface side and the back surface side of the heating target 60, as described in the first embodiment. Position (for example, at least one of the position in the longitudinal direction and the position in the width direction is different) so that the first detection area 205a of the detection unit 21 overlaps the plurality of concentrated heating areas 406.
  • the area on the front surface 61a side, the second detection area 205b of the detection means 21 is made to be the area on the back side of the heating object 60 overlapping the plurality of concentrated heating areas 406, and the irradiation state changing means 41
  • microwaves may be irradiated so that the concentrated heating region 406 in which is detected is concentratedly heated.
  • one concentrated heating region 406 is arranged in the planar direction on the front surface 61a side and the back surface 61b side of the heating target 60.
  • each concentrated heating region 406 is arranged so as to be one layer in the height direction, and the heating object 60 is arranged so as to fit in the one layer concentrated heating region 406 in the height direction, or It is preferable to move.
  • the detecting unit 20 acquires the temperature of the heating target 60 and detects the portion to be heated.
  • Information indicating the state of the target object 60 is not limited to the temperature.
  • the information indicating the state of the heating target 60 acquired by the detection unit to detect the heated portion may be one or more of temperature, pressure, moisture, and color.
  • the sensor is not limited to the sensor described in the above embodiment.
  • the sensor included in the detecting means may be one or more of a temperature sensor, a pressure sensor, a moisture sensor, and a sensor for acquiring color.
  • the detection unit may detect, for example, a portion having a high moisture content in at least one of the planar direction and the height direction of the heating target 60, and may detect the portion having a high detected moisture content as the heating target portion.
  • a portion having a high detected moisture content is, for example, a portion requiring heating or insufficient heating. It may be considered as a part that does.
  • the portion having a high moisture content may be, for example, a portion having a moisture content higher than a predetermined threshold, and may be a portion having a higher moisture content than other portions of the heating target 60 or an average value of a plurality of portions of the heating target 60. It may be a portion with a water content higher than the threshold value.
  • the detection unit 20 has been described in the above embodiment using, as one or more sensors that acquire information indicating the state of the heating target, a sensor capable of detecting the moisture content of the heating target 60 without contact.
  • a sensor capable of detecting the moisture content of the heating target 60 In the same detection region as the detection region, the distribution of the moisture content of the heating target 60 may be detected, and a portion where the moisture content is equal to or larger than the threshold may be detected as the heating target portion.
  • a sensor for detecting the amount of water in a non-contact manner a sensor that irradiates a microwave to a desired position and detects the amount of water from the reflected microwave can be used.
  • one or two or more contact-type water amounts provided so that at least one of a position in the longitudinal direction, a position in the width direction, and a position in the height direction of the heating object 60 are in contact with a plurality of different positions are measured.
  • the distribution of the water content of the heating target 60 is detected in the same detection region as the detection region described in the above embodiment, and the portion where the water content equal to or larger than the threshold is detected is regarded as the heating target portion. May be detected.
  • the detection unit 20 detects, for example, a portion where the pressure is low in at least one of the planar direction and the height direction of the heating target 60, and detects the detected low pressure portion as the heating target portion. Is also good.
  • the portion where the detected pressure is low may be considered as, for example, a portion requiring heating or a portion lacking heating.
  • the portion where the pressure is low may be, for example, a portion where the pressure is lower than a predetermined threshold, and the threshold is lower than the average value of the heating target 60 or the average value of other portions of the heating target 60 or the like.
  • the above may be a portion where the pressure is low.
  • the detection unit 20 includes one or two or more contact types provided so that at least one of a position in the longitudinal direction, a position in the width direction, and a position in the height direction of the heating target 60 is different from each other.
  • the detection unit 20 uses a sensor or the like that measures the amount of moisture in the detection area similar to the detection area described in the above embodiment, the distribution of the amount of moisture in the heating target 60 is detected, and a portion where the amount of moisture equal to or greater than the threshold is detected May be detected as the portion to be heated.
  • the detection unit 20 detects a color in at least one of the plane direction and the height direction of the heating target 60, and detects a portion in which the detected color is a predetermined color as a heating target portion.
  • the portion having a predetermined color is, for example, a portion in which one or more of the lightness, hue, and saturation of the color have a value within a desired range.
  • the heating target 60 changes color by heating (for example, when the color turns black due to heating or changes color by causing a color reaction)
  • a color that has not changed color is used.
  • the portion having the heat may be detected as a portion requiring heating, a portion having insufficient heating, or the like.
  • the detecting unit 20 may use an image sensor or a line sensor capable of acquiring the color of the surface of the heating target 60 in a non-contact manner as one or more sensors that obtain information indicating the state of the heating target.
  • the color distribution of the heating target 60 may be detected, and a specific color portion may be detected as a heating target portion.
  • the specific color portion is, for example, a color in which one or more of hue, saturation, and lightness are in a specific range.
  • the description of the temperature in each of the above embodiments may be appropriately replaced with information indicating a state other than the temperature.
  • the detecting means detects the heating target portion from the information indicating the state of the heating target object 60, and the three-dimensional representative points such as the center and the center of gravity of the heating target portion are detected.
  • the information indicating the position in the space is acquired, and the control unit of the irradiation state changing unit uses the coordinates of the position where the two or more microwaves are emitted in the container 10 from the position where the two or more microwaves are emitted.
  • Calculate the distance to the representative point of the heating target part and use the information on the calculated distance and the wavelength of the microwave to be irradiated to strengthen the microwaves at the representative point of the heating target part and the surrounding area.
  • the phase of the microwave radiated by the two or more microwave irradiation units 401 is calculated, and information for controlling the phase of the microwave radiated by the two or more microwave irradiation units 401 is obtained.
  • the heat target portion may be centralized heating.
  • the information indicating the position of each concentrated heating area for example, information stored in a storage unit (not shown) or the like may be read out.
  • the phase calculated here may be, for example, a phase at which the phase difference between the microwaves irradiated by the two or more microwave irradiation units 401 becomes zero.
  • the changing means includes one or more microwave irradiating means for irradiating the microwave, and the microwave irradiating the one or more microwave irradiating means so that the heating target portion detected by the detecting means is concentratedly heated.
  • a heating device whose output is changed will be described.
  • FIG. 18 is a block diagram (FIG. 18A) and a perspective view (FIG. 18B) of the heating device 4 of the present embodiment.
  • FIG. 18A a block diagram
  • FIG. 18B a perspective view of the heating device 4 of the present embodiment.
  • the same reference numerals as those in FIG. 1 indicate the same or corresponding parts.
  • the heating device 4 includes the detection unit 20, first to third microwave irradiation units 421a to 421c, and an irradiation state changing unit 42.
  • the irradiation state changing unit 42 includes a control unit 422 and an irradiation management information storage unit 423.
  • the first to third microwave irradiation means 421a to 421c are microwave irradiation means whose output can be individually changed. To be able to individually change the output may be considered that the output can be individually controlled.
  • the individually changeable output may mean, for example, that the microwave output can be individually increased or decreased or changed, or that the output can be individually turned on and off.
  • a case where the change of the microwave output is a change of ON and OFF for example, a control of ON and OFF
  • each of the first to third microwave irradiation means 421a to 421c has a microwave oscillator 4211 whose output can be individually changed, and a transmission unit 4012 similar to each of the above embodiments.
  • the microwave oscillator 4211 is a microwave oscillator similar to the microwave oscillator 4011 described in the above embodiment, and is a microwave oscillator whose output can be changed. However, it does not matter whether the microwave oscillator 4211 can change the phase like the microwave oscillator 4011. For example, the microwave oscillator 4211 may not have a phase shifter.
  • the plurality of microwave irradiating means 421 is for irradiating microwaves emitted from one microwave oscillator into the container 10 by branching and transmitting the microwaves at a transmission unit having a branch structure.
  • the output of the microwave may be changeable using an amplifier (not shown) provided in a transmission unit or the like. In this case, the amplifier or the like that changes the output may be irradiated with the microwave. It may be considered as a means.
  • the first to third microwave irradiating units 421a to 421c have the same configuration as the first to third microwave irradiating units 401a to 401c of the first embodiment except for the above. Available. When the first to third microwave irradiation means 421a to 421c are not distinguished from each other, they may be simply referred to as microwave irradiation means 421.
  • the concentrated heating regions 406a to 406f of the present embodiment are regions that are concentrated and heated by the same microwaves as in the first embodiment, but different from the first embodiment, the first to third microwaves. It is assumed that each of the irradiation units 421a to 421c is a region individually irradiated with the microwaves to be irradiated.
  • each transmission section 4012 of the first to third microwave irradiation means 421a to 421c is an opening 105 provided at the upper part of the container 10 and is a straight line in the width direction of the heating target 60. It is assumed that they are respectively attached to three openings 105 arranged in a shape. The microwave is applied downward from each opening 105.
  • the concentrated heating regions 406a to 406c are linearly arranged on the surface 61a of the heating target 60 in the width direction.
  • the concentrated heating regions 406d to 406f are linearly arranged on the back surface 61b of the heating target 60 in the width direction.
  • the transmission section 4012 of the first microwave irradiation means 421a is attached to the opening 105 located above the concentrated heating areas 406a and 406d.
  • the transmission section 4012 of the second microwave irradiation means 421b is attached to the opening 105 located above the concentrated heating areas 406b and 406e.
  • the transmission section 4012 of the third microwave irradiation means 421c is attached to the opening 105 located above the concentrated heating areas 406c and 406f.
  • the first to third microwave irradiation means 421a to 421c only need to be attached so that the corresponding concentrated heating areas 406a to 406f can be irradiated with microwaves.
  • the mounting positions of the irradiation units 421a to 421c and the arrangement of the concentrated heating area 406 are not limited to the above.
  • the shape, arrangement, and the like of the concentrated heating regions 406a to 406f the same shape, arrangement, and the like as in the first embodiment can be used, and a detailed description thereof is omitted here.
  • adjacent concentrated heating regions 406 may partially overlap.
  • the irradiation state changing means 42 changes the output of the microwave irradiated by each microwave irradiation means 421 so that the heating target portion detected by the detection means 20 is concentratedly heated.
  • the control unit 422 controls the output of each microwave irradiating unit 421 so that the portion to be heated is concentratedly heated, instead of controlling the phase of each microwave irradiating unit as described in the above embodiment.
  • the irradiation management information storage unit 403 includes, as irradiation management information, information for specifying the concentrated heating region 406 and information for specifying the microwave irradiation unit 421 that irradiates the microwave to the concentrated heating region 406 specified by the information. Are stored in association with each other.
  • the information specifying the concentrated heating region 406 may be information specifying the divided region 2051 corresponding to the concentrated heating region 406.
  • the operation of the heating device 4 according to the present embodiment will be described using a specific example with reference to FIG. 3 of the first embodiment.
  • the process in which the detection unit 20 detects the portion to be heated on the surface of the object to be heated 60 is the same as that in the first embodiment, and thus the description is omitted here.
  • the control unit of the irradiation state changing unit 40 when the detecting unit 20 detects the heating target portion 206 at the time “t1” on the surface 61 a of the moving heating target 60, the control unit of the irradiation state changing unit 40.
  • Reference numeral 422 denotes a first concentrated heating area 406a corresponding to the first divided area 2051a of the first detection area 205a in which the heating target portion 206 is detected, using the irradiation management information stored in the irradiation management information storage unit 403.
  • the first microwave irradiating means 401a for irradiating the microwave with respect to is specified, and at the time “t1 + t0” as in the first embodiment, the first microwave irradiating means 421a transmits the microwave to the concentrated heating area 406a. To start microwave irradiation. That is, the microwave output is turned on.
  • the other second microwave irradiation means 421b and the third microwave irradiation means 421c do not perform microwave irradiation. That is, the microwave output is turned off. Thereby, the detected heating target portion 206 is concentratedly heated by the microwave. Further, the second concentrated heating region 406b and the third concentrated heating region 406c that do not include the heating target portion 206 are not concentratedly heated. The microwave irradiation is performed, for example, for a time required for one point of the heating target 60 to pass through the concentrated heating region 406.
  • the irradiation state changing unit 40 detects The control unit 422 uses the irradiation management information stored in the irradiation management information storage unit 403 to perform the fifth concentrated heating corresponding to the fifth divided area 2051e of the second detection area 205b where the heating target portion 207 is detected.
  • the second microwave irradiating unit 421b that irradiates the microwave to the region 406e is specified, and at the time “t2 + t0”, the fifth microwave irradiating unit 421b receives the fifth concentrated light similarly to the first embodiment.
  • Microwave irradiation is started on the heating region 406e. That is, the output of the microwave is turned on.
  • the irradiated microwave passes through the front surface 61a of the heating target 60, and is irradiated to the fifth concentrated heating area 406e on the back surface 61b side.
  • the other second and third microwave irradiation means 421b and 421c do not perform microwave irradiation. That is, the microwave output is turned off.
  • the detected heating target portion 207 is concentratedly heated by the microwave.
  • the fourth concentrated heating region 406d and the sixth concentrated heating region 406f that do not include the heating target portion 207 are not concentratedly heated.
  • the microwave irradiation is performed, for example, for a time required for one point of the heating target 60 to pass through the concentrated heating region 406.
  • the heating target area detected by the detection means 20 can be concentrated and heated in real time in a dynamic manner.
  • efficient microwave heating without waste can be performed.
  • the region to be irradiated with the microwaves emitted from the microwave irradiating unit 421 is set as the heating target region without considering the phases of the plurality of microwaves, so that the heating target region can be easily set.
  • the number of the microwave irradiation means 421 is three has been described, but the number of the microwave irradiation means 421 is not limited to three as long as the number is one or two or more. .
  • microwaves for irradiating microwaves in the overlapped concentrated heating regions are used.
  • Microwaves may be output from both of the irradiation units 421.
  • the output of the microwave radiated by each microwave irradiating unit 421 is lower than the output of the microwave radiated when the heating target portion is located in the non-overlapping concentrated heating area (for example, when the microwave is not overlapped, (Half of the output).
  • the microwave is applied to the concentrated heating region.
  • the microwave irradiating means other than the microwave irradiating means that can irradiate the microwave to the concentrated heating area also outputs the microwave.
  • the output of the microwave emitted by the microwave irradiating means capable of irradiating the microwave to the concentrated heating area may be made stronger than the other microwave irradiating means. The same applies to the following modifications.
  • FIG. 19 is a block diagram (FIG. 19 (a)) and a perspective view (FIG. 19 (b)) showing a heating device which is a first modification of the heating device 4.
  • the heating device 4a is provided at a position where the microwaves can be applied to the fourth to sixth concentrated heating regions 406d to 406f in the portion of the heating device 4 on the back surface side of the object 60 to be heated.
  • the fourth to sixth microwave irradiation units 421a to 421c can control the same output as the fourth to fourth microwave irradiation units 421a to 421c.
  • the heating target portion detected by the detection means 20 on the back surface 61b side of the heating target 60 is the fourth to sixth concentrated heating regions 406d to 406f.
  • the fourth to sixth microwave irradiation means 421d to 421f corresponding to the fourth to sixth concentrated heating areas 406d to 406f in which the heating target portion has entered. It is obtained so as to control the output of the microwave irradiation means 421 to output a microwave.
  • the control of the outputs of the six microwave irradiation units 421 is performed by the control unit 422 of the irradiation state changing unit 42.
  • the configuration of the irradiation state changing unit 42 is the same as that of the third embodiment except that the number of the microwave irradiation units 421 for controlling the output is different, and thus the detailed description is omitted here.
  • the detection unit 20 detects the heating target portion 206 at the time “t1”, at the time “t1 + t0” as in the above embodiment.
  • the microwave irradiation is started from the first microwave irradiation means 421a to the concentrated heating area 406a, and the microwave irradiation is not performed from the other second to sixth microwave irradiation means 421b to 421f. Then, the detected heating target portion 206 is concentratedly heated by the microwave.
  • the irradiation state changing unit 42 uses the irradiation management information stored in the irradiation management information storage unit 403 to perform the fifth concentrated heating corresponding to the fifth divided area 2051e of the second detection area 205b where the heating target portion 207 is detected.
  • the fifth microwave irradiating means 421e for irradiating the region 406e with the microwave is specified, and the fifth microwave irradiating means 421e on the back surface 61b side is used to specify the fifth microwave irradiating means 421e at the time "t2 + t0" as in the first embodiment.
  • Microwave irradiation is started for the five concentrated heating regions 406e.
  • the other first to fourth and sixth microwave irradiation means 421a to 421d and 421f do not perform microwave irradiation. Thereby, the detected heating target portion 207 is concentratedly heated by the microwave.
  • the same effect as described above can be obtained, and the heating target portion detected on the front surface 61a side is applied from the front side, and the heating target portion detected on the back surface 61b side is applied. Can be irradiated with microwaves from the back side, and the portion to be heated can be efficiently heated.
  • FIG. 20 is a perspective view (FIG. 20 (a)) showing a heating device of Modification 2 of the present embodiment and a schematic diagram (FIG. 20 (b)) of a heating target 60 viewed from above.
  • the heating device 4b according to Modification 2 includes a plurality of rows of one or more concentrated heating regions arranged in the width direction in the longitudinal direction, similarly to the modification in FIG.
  • a plurality of microwave irradiating means 421 for irradiating each concentrated heating area with a microwave is provided so that the heating target portion detected by the detecting means 20 is located in one concentrated heating area 406 so as to be arranged.
  • the irradiation state changing means 42 controls the output of the microwave irradiation means 421 capable of irradiating the concentrated heating area 406 with microwaves (for example, when entering) (for example, controlling to start microwave irradiation). ), The concentrated heating area 406 is heated in a concentrated manner.
  • the heating device 4b is the same as the heating device 4 of the third embodiment shown in FIG. 18A, except that the heating device 4b includes nine microwave irradiation means 421. Further, the irradiation state changing means 42 controls the outputs of the nine microwave irradiation means 421.
  • the other configuration of the heating device 4b is the same as that of the heating device 4 or the heating device 4a, and thus the description is omitted here.
  • the nine microwave irradiating units 421 are provided in the respective concentrated heating regions 406 of the container 10 so that the concentrated heating regions 406 are arranged on the surface 61a of the heating target 60 in a matrix of three rows and three columns as in FIG. Each emission part is attached above.
  • each microwave irradiation unit 421 is attached is provided above each concentrated heating area 406.
  • a concentrated heating region (not shown) is also provided on the back surface 61b side of the surface 61a of the heating target 60 where each concentrated heating region 406 is provided.
  • the irradiation state changing means 42 is disposed above the concentrated heating area 406.
  • the centralized heating area 406 that has entered can be heated in a dynamic and real-time manner.
  • the concentrated heating region 406 and the microwave irradiating means 421 respectively arranged on the concentrated heating region 406 are not limited to those arranged in a matrix of 3 rows and 3 columns, and are not limited to r ⁇ s (r, (s is an integer of 2 or more). Further, the arrangement of the plurality of concentrated heating regions 406 and the microwave irradiation means 421 is not limited to a matrix, but may be any arrangement.
  • the microwave irradiation means 421 is provided, and when the heating target portion detected by the detection means 20 is located in the concentrated heating area 406 on the back side, the irradiation state changing means 42 is provided by the microwave irradiation means provided on the back side.
  • the microwave may be irradiated from the microwave irradiation means 421 which can irradiate the microwave to the concentrated heating region 406 of the 421.
  • one of the first sensor 201a and the second sensor 201b of the detecting means 20 is omitted, and the concentration of the heating target portion detected by the omitted sensor is omitted. Heating may not be performed.
  • the two-dimensional temperature distribution (that is, the longitudinal direction) of the front surface 61a and the back surface 61b of the heating target 60 as described in the second embodiment is used.
  • a temperature distribution for a combination in the width direction) using the detection unit 21 having the first sensor 211a and the second sensor 211b, and the irradiation state changing unit 42 is configured to use the detection processing unit 212 of the detection unit 21.
  • the heating target portion located in the concentrated heating region arranged three-dimensionally by irradiating the microwave with the phase controlled is concentratedly heated.
  • one or more concentrated heating areas set in three dimensions are irradiated with microwaves from two different directions, respectively, so that the heating target portions located in each concentrated heating area are concentratedly heated. It was done.
  • Fig. 21 is a block diagram (Fig. 21 (a)) and a perspective view (Fig. 21 (b)) of the heating device according to the present embodiment, in which the same reference numerals as those in Fig. 16 and the like denote the same or corresponding parts. Is shown.
  • the heating device 5 includes the detection unit 24, nine vertical microwave irradiation units 431a, nine horizontal microwave irradiation units 431b, and the irradiation state changing unit 44.
  • the microwave irradiation means 431a irradiates microwaves in the height direction.
  • the nine transverse microwave irradiators 431b irradiate microwaves in the width direction.
  • the nine vertical microwave irradiating units 431 are arranged such that a portion for emitting microwaves (for example, the transmission unit 4012 or the like) is arranged in a matrix of three rows and three columns at a position above the heating object 60 of the container 10. Attached to.
  • the nine transverse microwave irradiators 441b have microwave emitting portions attached to one of the side surfaces of the container 10 located in the width direction of the heating target 60 in a matrix of three rows and three columns. .
  • a region (space) where the microwave irradiated by each vertical microwave irradiation unit 431a and the microwave irradiated by each horizontal microwave irradiation unit 441b overlap is defined as a concentrated heating region 436.
  • a total of 27 concentrated heating regions 436 of three rows in the width direction, three rows in the longitudinal direction, and three rows in the height direction are set.
  • Each of the vertical microwave irradiation unit 431a and the horizontal microwave irradiation unit 431b is the same as the microwave irradiation unit 421 of the third embodiment, and the detailed description is omitted here.
  • the irradiation state changing unit 44 includes a control unit 432 and an irradiation management information storage unit 433.
  • the irradiation state changing means 44 controls the outputs of the vertical microwave irradiation means 431a and the horizontal microwave irradiation means 431b so that the portion to be heated is heated intensively by the microwave irradiation.
  • the control unit 432 controls the outputs of the vertical microwave irradiation unit 431a and the horizontal microwave irradiation unit 431b so that the heating target portion is heated intensively by the microwave irradiation.
  • the vertical heating unit 431a and the horizontal microwave irradiation unit 431b that detect the concentrated heating region 436 including the heating target portion detected by the detection unit 21 and irradiate the concentrated heating region 436 with the microwave are connected to the microwave. Is output.
  • control unit 432 controls the vertical microwave irradiation unit 431a and the horizontal microwave irradiation unit 431b that irradiate the microwave to one concentrated heating area 436 using the irradiation management information stored in the irradiation management information storage unit 433. To detect.
  • Other configurations of the control unit 432 are the same as those of the control unit 412 and the like, and thus detailed description is omitted here.
  • the irradiation management information storage unit 433 stores one or more irradiation management information.
  • the irradiation management information includes, for example, information for specifying the concentrated heating region 436 similar to that described in the second embodiment, the vertical microwave irradiation unit 431a that irradiates the concentrated heating region 436 with microwaves, and the horizontal microwave irradiation unit 431a. This is information for specifying each of the wave irradiation units 431b.
  • the control unit 432 acquires this temperature distribution.
  • the obtained position in the longitudinal direction, the position in the width direction and the position in the height direction of the heating target portion acquired by the detection processing unit 212a in this temperature distribution, and the acquired position in the longitudinal direction and the position in the width direction are acquired.
  • a concentrated heating area 436 including the position of the heating target portion 1706 represented by the position in the height direction is specified using irradiation management information and the like, and the microwave irradiation is performed on the heating area.
  • the means 431a and the transverse microwave irradiation means 431b are specified.
  • the control unit 432 uses the irradiation management information to transmit the microwave to the concentrated heating region 436a.
  • the vertical microwave irradiating means 431a1 which is the vertical microwave irradiating means 431a for irradiating the microwave
  • the horizontal microwave irradiating means 431b1 which is the horizontal microwave irradiating means 431b for irradiating the concentrated heating area 436a with the microwave. To get.
  • control part 432 irradiates a microwave to the vertical microwave irradiation means 431a1 and the horizontal microwave irradiation means 431b1.
  • the arrows in FIG. 21B schematically represent the microwaves irradiated from the vertical microwave irradiation means 431a1 and the horizontal microwave irradiation means 431b1, respectively. Since the microwaves emitted from the vertical microwave irradiation means 431a1 and the horizontal microwave irradiation means 431b1 intersect in the concentrated heating area 436a, the microwave intensity in this portion becomes the strongest and the parts are concentratedly heated.
  • the vertical microwave irradiation means 431a1 and the horizontal microwave irradiation means are used. Since only the microwave radiated from one of the 431b1 is radiated, the intensity of the microwave is weak and the intensive heating is less likely to be performed than the intensive heating region 436a. Thus, concentrated heating of the heating region 436a can be performed most strongly.
  • the heating target portion detected by the detection unit 24 is irradiated with the microwaves radiated from two different directions. can do.
  • the heating target portion detected in the three-dimensional direction can be appropriately concentratedly heated.
  • the number and arrangement of the plurality of vertical microwave irradiation units 431a and the number and arrangement of the plurality of horizontal microwave irradiation units 431b are merely examples, and may be other numbers and arrangements.
  • the vertical microwave irradiation means 431a is not limited to those arranged in a matrix of 3 rows and 3 columns, but is arranged in a matrix of r1 ⁇ s1 (r1, s1 is an integer of 2 or more). It may be something.
  • the horizontal microwave irradiating means 431b is not limited to those arranged in a matrix of three rows and three columns, but may be arranged in a matrix of r2 ⁇ s2 (r2, s2 is an integer of 2 or more). They may be arranged.
  • a plurality of vertical microwave irradiation units 431a and a plurality of horizontal microwave irradiation units 431b are used to control one or two or more concentrated heating regions in the height direction and the width direction, respectively.
  • the microwaves are irradiated from two directions, the microwaves may be irradiated from two different directions.
  • the direction in which the microwave is irradiated is not limited to two directions of the width direction, the height direction, and the longitudinal direction.
  • the heating target 60 may be irradiated with microwaves from diagonally upper right and diagonally upper left, so that the position where the microwaves overlap is concentratedly heated.
  • the heating device of the present embodiment may be considered as a heating device that emits microwaves from a first direction and a second direction.
  • the height direction and the width direction in the above embodiment may be considered as a first direction and a second direction.
  • microwaves may be applied to one or more concentrated heating regions from three or more different directions.
  • the microwave irradiation may be performed in the longitudinal direction.
  • the different directions in which microwaves are irradiated are preferably orthogonal directions. Further, it is preferable that the different directions are two directions that are not co-linear.
  • the heating device configured to irradiate the microwave to the heating target portion from two or more directions includes, for example, a microwave that irradiates the microwave from the first to the k-th (k is an integer of two or more) different directions.
  • a plurality of wave irradiating means are provided for each of the first to k-th directions, and microwave irradiation is performed on the heating target portion detected by the detecting means among the microwave irradiating means corresponding to each direction.
  • the heating device is configured to irradiate microwaves from possible microwave irradiating means.
  • the object to be heated 60 may not be moved in the container 10 or may be moved.
  • the sensor for detecting the portion to be heated is not limited to the ultrasonic sensor 211c as described above, and the same sensor as that described in the second embodiment can be used.
  • the heating device is the irradiation device according to the second modification of the third embodiment, in which the output of the microwave output from the microwave irradiation unit is changed so that the concentrated heating region where the portion to be heated is located is heated intensively.
  • the irradiation state change unit having an arrangement changing unit that changes the arrangement of the emission unit that emits the microwave of the microwave irradiation unit so that the heating target portion detected by the detection unit is concentratedly heated. Means.
  • FIG. 22 is a block diagram of the heating device of the present embodiment (FIG. 22A), a partially cutaway plan view of the heating device of the present embodiment as viewed from above (FIG. 22B), and FIG. It is sectional drawing (FIG.22 (c)) perpendicular to the width direction of (b).
  • FIG. 22A a block diagram of the heating device of the present embodiment
  • FIG. 22B a partially cutaway plan view of the heating device of the present embodiment as viewed from above
  • FIG. It It is sectional drawing (FIG.22 (c)) perpendicular to the width direction of (b).
  • the heating device 6 includes the detection unit 21, the microwave irradiation unit 441, and the irradiation state changing unit 44.
  • the microwave irradiation unit 441 includes a microwave oscillator 4211, a transmission unit 4412, and an emission unit 4413.
  • the irradiation state changing unit 44 includes a control unit 442 and an arrangement changing unit 443.
  • the transmission unit 4412 is connected to the microwave oscillator 4211 and the emission unit 4413, and transmits the microwave generated by the microwave oscillator 4211 to the emission unit 4413.
  • the variable transmission unit is, for example, a coaxial cable or a variable waveguide.
  • the variable waveguide is, for example, a flexible waveguide or a slide type waveguide.
  • a flexible waveguide is a waveguide that has flexibility and can be flexibly bent or stretched.
  • a sliding waveguide (not shown) is a variable waveguide having elasticity.
  • the slide mechanism of the slide type waveguide may be, for example, a tube or cylinder extension mechanism similar to a zoom lens or a telescope.
  • the variable transmission section may be a combination of a coaxial cable and a variable waveguide or a non-variable waveguide.
  • a coaxial cable is used as the transmission unit 4412 will be described as an example. Note that the other points are the same as those of the transmission section 4012 and the like in the first embodiment, and thus detailed description is omitted here.
  • the emission unit 4413 emits the microwave transmitted by the transmission unit 4412.
  • the case where the emission unit 4413 is a microwave antenna will be described as an example. It is preferable to use an antenna having high directivity as the antenna. Further, in order to perform the concentrated heating, it is more preferable that the region irradiated with the microwave is narrow.
  • the emission unit 4413 is attached to the arrangement change unit 443, and the arrangement can be changed by the operation of the arrangement change unit 443.
  • the change in the arrangement of the emission unit 4413 is, for example, a change in the position of the emission unit 4413 in the container 10 or a change in the direction of the emission unit 4413.
  • the change in the direction of the emission unit 4413 is a change in the direction in which the emission unit 4413 irradiates the microwave.
  • the emission unit 4413 is attached to the arrangement change unit 443 so that microwave irradiation can be performed on a part of the heating target 60.
  • the emission unit 4413 is disposed above the heating target 60 so that the microwave can be irradiated downward.
  • the emitting unit 4413 is not limited to an antenna as long as it emits microwaves.
  • the emission unit 4413 may be a coaxial cable or an end (not shown) of the transmission unit 4412 such as a variable waveguide on the heating target 60 side.
  • the irradiation state changing means 44 changes the arrangement of the emission portions of one or more microwave irradiation means (here, one microwave irradiation means 441) so that the heating target portion detected by the detection means 21 is concentratedly heated. Microwaves are radiated from the above-described microwave irradiating means to intensively heat the heating target portion.
  • the arrangement change section 443 changes the arrangement of the emission section 4413 of the microwave irradiation means 441.
  • the arrangement change unit 443 changes the arrangement of the emission unit 4413 so that the heating target portion detected by the detection unit 21 is concentratedly heated.
  • the emission unit 4413 is attached to the arrangement change unit 443, and the arrangement change unit 443 changes the arrangement of the emission unit 4413.
  • the arrangement change unit 443 is an articulated robot arm that can change the position of the tip 4431 in the two-dimensional direction.
  • the distal end 4431 is also called a terminal end.
  • the emission part 4413 of the microwave irradiation means 441 is attached to the tip part 4431.
  • Changing the position in the two-dimensional direction is changing the position in the planar direction.
  • Changing the position in the plane direction is, for example, changing the position in the horizontal direction.
  • Changing the position in the plane direction may be considered as changing the position along the plane.
  • an articulated robot arm that can change the position of the emission unit 4413 in the longitudinal direction and the width direction of the heating target unit 60 is used.
  • the arrangement changing unit 443 is installed above the heating target 60, and changes the position of the emission unit 4413 above the heating target 60.
  • the emission unit 4413 has a microwave emission direction fixed vertically downward (for example, vertically downward) with respect to the plane direction, and irradiates the microwave downward.
  • the arrangement change unit 443 changes the arrangement of the emission unit 4413 so that the heating target portion detected by the detection unit 21 is concentratedly heated.
  • the arrangement changing unit 443 moves the emission unit 4413 above the heating target portion detected by the detection unit 21. It is preferable that the arrangement changing unit 443 moves the emission unit 4413 so that the center of the heating target portion detected by the detection unit 21 is positioned on the axis in the irradiation direction in which the emission unit 4413 irradiates the microwave.
  • the arrangement change unit 443 determines the position of the center of the heating target portion detected by the detection unit 21 in the plane direction. It is preferable to move the light emitting unit 4413 so that the position of the center of the light emitting unit 4413 in the plane direction matches.
  • any articulated robot arm may be used as long as it can move the attached emission unit 4413 in two-dimensional directions. Since the articulated robot arm is a known technique, a detailed description is omitted.
  • the arrangement changing unit 443 other than the articulated robot arm is used. May be used.
  • a robot arm other than the articulated robot arm may be used.
  • a moving mechanism or the like capable of moving a stage or a table in a two-dimensional direction is used as an arrangement changing unit, and the emission unit 4413 is attached to a table or the like of the moving mechanism. You may do so.
  • a table moving mechanism see, for example, a moving mechanism disclosed in JP-A-2002-82190.
  • the control unit 442 controls the arrangement changing unit 443 and controls the microwave irradiation from the microwave irradiation unit 441.
  • the control unit 442 operates the arrangement changing unit 443 such that, for example, the arrangement of the emission unit 4413 is such that the heating target portion detected by the detection unit 21 is concentratedly heated.
  • the control unit 442 operates the arrangement changing unit 443 such that, for example, the emission unit 4413 moves above the heating target portion detected by the detection unit 21.
  • the control performed by the control unit 442 other than the above is the same as that of the control unit 402 and the like in the first embodiment, and a detailed description thereof will be omitted.
  • information such as setting for moving the emission unit 4413 to a position where concentrated heating can be performed on the region where the heating target portion is located is stored in advance in an irradiation management information storage unit (not shown) or the like.
  • the unit 442 may use this information to control the arrangement changing unit 443 to move the emission unit 4413 to a position where the detected heating target portion can be concentratedly heated.
  • FIG. 23 is a schematic plan view (FIGS. 23 (a) to 23 (d)) for explaining the operation of the heating device of the present embodiment.
  • This figure is a diagram showing the heating device 6 from which the container 10, the microwave oscillator 4211 and the like are omitted.
  • the control unit 442 receives the coordinates (for example, the coordinates represented by the coordinates in the longitudinal direction and the coordinates in the width direction) of the heating target portion 226 in the plane direction from the detection unit 21, and outputs the light attached to the distal end portion 4431.
  • the arrangement changing unit 443 is operated such that the unit 4413 is located above the heating target portion 226.
  • the arrangement changing unit 443 is operated such that the coordinates of the center of the emission unit 4413 in the plane direction match the coordinates of the heating target portion 226. In response to this, as shown in FIG.
  • the arrangement changing unit 443 moves the emission unit 4413 attached to the distal end 4431 above the heating target portion 226. Then, under the control of the control unit 442, the microwave irradiating means 441 irradiates the microwave, and the microwave is irradiated from the emission unit 4413 to the heating target portion 226 located below the emission unit 4413, and Portion 226 is heated intensively.
  • the arrangement changing unit 443 also performs the operation shown in FIG. As described above, the emission unit 4413 attached to the tip 4431 is moved above the heating target portion 227. Then, the microwave irradiating means 441 irradiates the microwave, and the microwave is irradiated from the emitting portion 4413 to the heating target portion 227 located below the emitting portion 4413, and the microwave passed through the front surface 61 a causes the back surface 61 b to be heated. The heating target portion 227 on the side is concentratedly heated.
  • the portion to be heated is detected by the detecting unit 21, and the emission unit 4413 of the microwave irradiating unit 441 is positioned at a position where the microwave can be irradiated to the portion to be heated detected by the detecting unit 21.
  • the heating target portion can be heated in a concentrated manner dynamically and in real time. Further, since different positions can be concentratedly heated by one microwave irradiation unit 441, the number of microwave irradiation units can be reduced.
  • the movement by the arrangement changing unit 443 is not limited to the movement in the plane direction.
  • the movement may be a movement in a plane direction perpendicular to a plane direction (for example, a horizontal direction).
  • the arrangement changing unit 443 that changes the position of the emitting unit in the two-dimensional direction is used.
  • the movement of the emitting unit 4413 by the arrangement changing unit 443 is limited to the movement in the two-dimensional direction.
  • the movement may be one-dimensional movement or three-dimensional movement.
  • the one-dimensional movement is, for example, the movement of the heating target 60 in the width direction.
  • the heating target portion of the heating target 60 detected during movement in the width direction is placed at a predetermined position in the longitudinal direction in the container 10 at a different position in the width direction.
  • the emitting portion When heating the detected portion to be heated, the emitting portion is moved onto the detected portion to be heated by using an arrangement changing portion that moves the emitting portion in the width direction at a predetermined position in the longitudinal direction. Then, microwaves may be irradiated.
  • an articulated robot arm, a moving stage mechanism that moves in a one-dimensional direction, or the like can be used as the arrangement changing unit for moving the object in the one-dimensional direction.
  • an articulated robot arm, a moving stage mechanism that moves in the three-dimensional direction, or the like can be used as an arrangement change unit for moving in the three-dimensional direction.
  • the arrangement change unit 443 may be capable of changing the emission direction of the emission unit 4413.
  • the arrangement change unit 443 may be capable of changing the position of the emission unit 4413 and the emission direction, or may be one capable of changing only the emission direction.
  • the change of the emission direction is, for example, at least one of rotation and inclination of the emission direction.
  • the arrangement changing unit 443 may change the emission direction of the emission unit 4413 so that the microwave is applied to the portion to be heated.
  • a known technique such as a mechanism that changes the direction of a spotlight, a monitoring camera, or the like can be used.
  • the entire arrangement of the microwave irradiation means 441 is changed by the arrangement change section 443 by attaching the entire microwave irradiation means 441 to the arrangement change section 443 or the like instead of the emission section 4413.
  • the arrangement of the emission unit 4413 may be changed as a result.
  • the arrangement change unit 443 performs one-step heating such that the heating target portion detected by the detection unit is concentratedly heated.
  • the position is not limited to the one described above as long as the position of the emission unit of the two or more microwave irradiation units can be changed.
  • FIG. 24 is a block diagram of the heating device of the present embodiment (FIG. 24A), a partially cutaway plan view of the heating device of the present embodiment (FIG. 24B), and a partially cutaway side view ( FIG. 24C).
  • FIGS. 16 and 22 indicate the same or corresponding parts.
  • the heating device 7 according to the present embodiment is different from the heating device 6 according to the fifth embodiment in that, instead of the detection unit 21, a different position in the longitudinal direction of the heating target 60 as described in the fourth embodiment.
  • a temperature distribution in the height direction is acquired, and the detection unit 24 that detects a portion to be heated from the temperature distribution is used.
  • a first unit having an emission unit 4413a is used.
  • a second microwave irradiation unit 441b having a microwave irradiation unit 441a and an emission unit 4413b is provided, and the irradiation state changing unit 44 changes the arrangement of the emission unit 4413a in place of the arrangement change unit 443.
  • the heating target portion where the detection unit 21 detects the arrangement of the emission unit 4413a of the first microwave irradiation unit 441a and the emission unit 4413b of the second microwave irradiation unit 441b is concentratedly heated. It is changed as follows.
  • the first microwave irradiation unit 441a and the first arrangement changing unit 443a are the same as the microwave irradiation unit 441 and the arrangement changing unit 443 of the fifth embodiment, and are attached at the same positions. Here, the detailed description is omitted.
  • the second microwave irradiating unit 441b and the second arrangement changing unit 443b are the same as the microwave irradiating unit 441 and the arrangement changing unit 443 of the fifth embodiment described above, and are output from the second microwave irradiating unit 441b.
  • a predetermined interval is provided on the side surface in the width direction of the container 10 so that the movement direction of the portion 4413b is in a plane direction perpendicular to the width direction of the heating target 60 (for example, movement in a direction along the vertical plane).
  • the other configuration and the like are the same as those of the microwave irradiation unit 441 and the arrangement change unit 443 of the fifth embodiment, and thus the description is omitted here.
  • the emission direction of the emission section 4413b is assumed to be fixed in the width direction as an example here.
  • the change of the arrangement by the second arrangement changing unit 443b can be performed by substantially the same operation as that of the arrangement changing unit 443 except that the moving direction is different.
  • the first arrangement changing unit 443a transmits the microwave to the heating target portion so as to irradiate the microwave.
  • the position of the emission section 4413a of the wave irradiation means 441a in the plane direction, specifically, the position in the longitudinal direction and the width direction is changed.
  • the first microwave irradiating unit 441a irradiates the microwave from the emission unit 4413a.
  • the second arrangement changing unit 443b is positioned in a plane direction perpendicular to the width direction of the emission unit 4413b of the second microwave irradiation unit 441b so that the detected heating target portion is irradiated with microwaves, specifically. Changes the position in the height direction and the longitudinal direction.
  • the second microwave irradiating unit 441b irradiates the microwave from the emission unit 4413b.
  • the control unit 442 controls the output of the first microwave irradiation unit 441a, controls the operation of the first arrangement change unit 443a, controls the output of the second microwave irradiation unit 441b, and changes the second arrangement.
  • the operation of the unit 443b is controlled. Since these controls are the same as those in the above-described fifth embodiment, detailed description will be omitted here. Further, other configurations and the like are the same as those of the control unit 442 of the fifth embodiment, and thus detailed description is omitted here.
  • FIG. 25 is a schematic diagram (FIGS. 25A to 25D) for explaining the operation of the heating device of the present embodiment. This figure is a view showing the heating device 7 with the container 10 and the like omitted.
  • FIGS. 25A and 25C are schematic plan views, and FIGS. 25B and 25D are schematic diagrams viewed from the width direction.
  • the control unit 442 receives three-dimensional coordinates (for example, coordinates represented by coordinates in a longitudinal direction, coordinates in a width direction, and coordinates in a height direction) of the heating target portion 226 from the detection unit 24.
  • the control unit 442 acquires the coordinates in the plane direction (for example, the coordinates represented by the coordinates in the longitudinal direction and the coordinates in the width direction) from the received coordinates, and stores the coordinates in the tip end 4431 of the first arrangement change unit 443a.
  • the first arrangement changing section 443a is operated such that the emission section 4413a of the attached first microwave irradiation means 441a is located above the heating target portion 236.
  • the first arrangement changing unit 443a is operated such that the coordinates of the center of the emission unit 4413 in the plane direction coincide with the coordinates of the heating target portion 236 in the plane direction.
  • the first arrangement changing unit 443a moves the emission unit 4413a attached to the distal end portion 4431 above the heating target portion 236.
  • control unit 442 acquires the coordinates in the plane direction perpendicular to the width direction (for example, the coordinates represented by the coordinates in the longitudinal direction and the coordinates in the height direction) from the coordinates received above, and acquires the second
  • the second arrangement changing section 443b is arranged such that the emission section 4413b of the second microwave irradiation means 441b attached to the tip end 4431 of the arrangement changing section 443b is located on the widthwise extension of the portion 236 to be heated. make it work.
  • the coordinates of the center of the emission section 4413 in the plane direction perpendicular to the width direction of the heating target 60 coincide with the coordinates of the heating target portion 236 in the plane direction perpendicular to the width direction of the heating target 60.
  • the second arrangement changing unit 443b is operated.
  • the second arrangement changing unit 443b moves the emission unit 4413b attached to the distal end portion 4431 on the extension of the heating target portion 236 in the width direction.
  • the first microwave irradiation unit 441a performs microwave irradiation, and the microwave is irradiated from the emission unit 4413a to the heating target portion 236 located below the emission unit 4413a.
  • the second microwave irradiating means 441b irradiates microwaves, and the microwaves are emitted from the emission unit 4413b to the heating target portion 236 located on the widthwise extension of the emission unit 4413b. Waves are irradiated.
  • the heating target portion 236 is intensively heated by the microwaves emitted from the emission unit 4413a and the microwaves emitted from the emission unit 4413b.
  • the heating target portion 236 is located at the intersection of the microwaves irradiated from two directions, concentrated heating is performed most strongly, and the portion through which the microwave passes other than the intersection is weaker than the heating target portion 236. Since the heating is performed, the influence of the microwave irradiation on portions other than the heating target portion 236 can be suppressed.
  • the emission section 4413a of the first microwave irradiation means 441a and the second emission section 4413a of the second microwave irradiation means irradiate the heating target portion detected by the detection means with the microwaves irradiated from two different directions. Since the arrangement of the emission sections of the emission section 4413b of the microwave irradiation means 441b can be respectively changed, the heating target portion can be dynamically and intensively heated in real time. For example, the heating target portion detected in the three-dimensional direction dynamically and in real time can be appropriately concentratedly heated. In addition, it is possible to suppress the influence of heating or the like due to microwave irradiation on a portion other than the portion to be heated.
  • the emission direction of the emission unit 4413 and the emission unit 4413a is vertically downward with respect to the plane, but the emission direction of the emission unit 4413 and the emission unit 4413a is relative to the plane. May be inclined at an angle other than 0 ° and 90 °.
  • the arrangement change unit 443 and the first arrangement change unit 443a are arranged such that the heating target part is arranged in the emission direction of the emission unit 4413 and the emission unit 4413a.
  • the positions of the emission unit 4413 and the emission unit 4413a may be moved so as to be included.
  • the emission direction of the emission unit 4413b is the width direction of the heating target 60.
  • the emission direction of the emission unit 4413b is other than 0 ° and 90 ° with respect to the width direction.
  • the position may be inclined, and in this case, the second arrangement changing unit 443b may move the position of the emission unit 4413b in the emission direction of the emission unit 4413b so that the heating target portion is included. .
  • the movement by the first arrangement changing unit 443a and the second arrangement changing unit 443b is not limited to the above movement.
  • the movements by the first arrangement changing unit 443a and the second arrangement changing unit 443b may be movements in different plane directions.
  • the different plane directions are preferably plane directions that are not parallel.
  • the mounting position, the mounting direction, and the like of the first layout changing section 443a and the second layout changing section 443b are not limited to the above.
  • the irradiation state changing unit 44 may have, for example, a number of arrangement changing units corresponding to the number of the emission units.
  • each of the first arrangement changing unit 443a and the second arrangement changing unit 443b in the above embodiment is not limited to the movement in the two-dimensional direction, and may be the movement in the one-dimensional direction or the three-dimensional direction. It may be.
  • first arrangement changing section 443a may change the emission direction of emission section 4413a.
  • second arrangement change unit 443b may be capable of changing the emission direction of the emission unit 4413b.
  • the first microwave irradiation means 441a is used instead of attaching the emitting section 4413a and the emitting section 4413b to the tip section 4431 such as the first arrangement changing section 443a and the second arrangement changing section 443b.
  • the first microwave irradiation means 441a is used instead of attaching the emitting section 4413a and the emitting section 4413b to the tip section 4431 such as the first arrangement changing section 443a and the second arrangement changing section 443b.
  • the arrangement of the entire means 441b can be changed by the first arrangement changing section 443a and the second arrangement changing section 443b, respectively, so that the arrangement of the emission section 4413a and the emission section 4413b can be changed as a result. Is also good.
  • the heating device that radiates a plurality of microwaves whose phases are controlled to intensively heat the portion to be heated has been described.
  • one or more microwaves are used.
  • a heating device for intensively heating the portion to be heated by changing the frequency will be described.
  • FIG. 26 is a block diagram (FIG. 26 (a)) and a perspective view (FIG. 26 (b)) of the heating device of the seventh embodiment.
  • the same reference numerals as those in FIG. 8 indicate the same or corresponding parts.
  • the heating device 8 includes the detection unit 24 of the second embodiment, the microwave irradiation unit 461, and the irradiation state changing unit 46.
  • the irradiation state changing means 46 includes a control unit 462 and an irradiation management information storage unit 463.
  • the microwave irradiation means 461 is a microwave irradiation means capable of changing the frequency of the microwave to be irradiated.
  • the microwave irradiation means 461 includes, for example, a microwave oscillator 4611 whose frequency can be changed, and a transmission unit 4612. Since the microwave irradiation means whose frequency can be changed is a known technique, a detailed description thereof will be omitted here.
  • a plurality of three-dimensional concentrated heating regions 406 are set in the container 10.
  • This concentrated heating region 406 is assumed to be a region that is concentratedly heated when the microwave irradiated by the microwave irradiation unit 461 is changed.
  • One concentrated heating area 406 is an area that is heated at least once at a time when the frequency is changed, for example.
  • the irradiation state changing means 44 irradiates one or two or more microwaves with two or more different frequencies so that the heating target portion detected by the detection means 24 has a microwave intensity distribution that is concentratedly heated.
  • the microwave irradiating means 461 irradiates microwaves of each frequency. For example, the frequency of the microwave irradiated by the microwave irradiation means 461 is changed.
  • the control unit 462 changes the frequency of the microwave radiated by each microwave irradiating unit 461 so that the intensity distribution of the microwave is such that the heating target portion detected by the detecting unit 24 is concentratedly heated.
  • the control unit 462 determines the frequency to be changed using the irradiation management information for frequency change stored in the irradiation management information storage unit 463 in advance.
  • the irradiation management information for changing the frequency includes the frequency of the microwave radiated into the container 10 and one of the frequencies in the container 10 where the intensity of the microwave is increased by irradiating the microwave with the frequency into the container 10. This is information having the above-described area position information.
  • the position information is, for example, information for specifying a concentrated heating region including a region where the intensity is high, and coordinates of the region where the intensity is high.
  • the irradiation management information is information for specifying a concentrated heating region including a region where the intensity is high.
  • the microwave intensity here may be the electric field intensity, the magnetic field intensity, or both.
  • the region where the intensity of the microwave is high may be considered as a region that is concentratedly heated by the microwave.
  • the control unit 462 detects, using the irradiation management information, a concentrated heating region including the heating target portion detected by the detection unit 24, or a region having a high microwave intensity closest to the heating target portion.
  • the frequency corresponding to the region or the region having the highest microwave intensity closest to the heating target portion is acquired, and the microwave having the frequency acquired from the microwave irradiating unit 461 is irradiated into the container 10.
  • the process in which the control unit 462 determines the frequency of the microwave to be irradiated from the microwave irradiation unit 461 is not limited to the above process.
  • the control unit 462 detects a concentrated heating region will be described.
  • the irradiation management information storage unit 463 stores the irradiation management information for changing the frequency as described above.
  • the irradiation management information may be, for example, information obtained by performing a simulation, calculation, or the like, or may be information obtained by performing an experiment, or the like.
  • the frequency of the microwave irradiated into the container 10 is changed, the intensity distribution of the microwave in the container 10 changes, and the region where the intensity of the microwave is high changes. For this reason, irradiation management information can be obtained by acquiring information of one or more regions where the intensity of the microwave is high for each frequency by performing a simulation, an experiment, or the like.
  • the control unit 462 uses the irradiation management information stored in the irradiation management information storage unit 463 to perform this heating. Is detected, and a frequency associated with the detected concentrated heating region is obtained. Then, the microwave of the acquired frequency is output to the microwave irradiation means 461. In response, the microwave irradiating means 461 outputs a microwave having this frequency. When the microwave irradiating means 461 irradiates the container 10 with the microwave having this frequency, the microwave intensity distribution in the container 10 becomes the microwave intensity distribution corresponding to the frequency of the irradiated microwave, and Is concentratedly heated.
  • the detecting unit 24 detects the heating target portion, and irradiates the microwave with the changed frequency so that the microwave intensity becomes strong at the position of the detected heating target portion. It is possible to perform dynamic and real-time centralized heating of the heating target portion.
  • the microwave is irradiated into the container 10 from one place, but the microwave may be irradiated into the container 10 from a plurality of places.
  • the transmission unit 4612 connected to one microwave oscillator 4611 may be branched and connected at a location different from the container 10.
  • a plurality of microwave oscillators 4611 may be attached to the container 10 via the transmission unit 4612, respectively. Note that when microwaves are radiated into the container 10 from the plurality of microwave oscillators 4611, the frequencies of the microwaves radiated from the microwave oscillators 4611 may be the same or different.
  • the microwave irradiation means 461 capable of changing the frequency is used to irradiate microwaves of different frequencies.
  • the irradiation state changing means 46 uses a plurality of microwaves irradiating microwaves of different frequencies.
  • the microwave irradiating means 461 is provided, and microwaves are output from the microwave irradiating means for outputting a microwave of a desired frequency among the plurality of microwave irradiating means 461, so that different frequencies are provided in the container 10. May be radiated.
  • a plurality of microwave oscillators for irradiating microwaves of one frequency may be provided.
  • the microwave may be branched from a microwave oscillator that radiates a microwave of one frequency, and the microwave may be connected to the container 10 at a plurality of locations.
  • one or more microwave irradiating means of the heating device may irradiate microwaves of two or more different frequencies.
  • two or more microwave irradiation means irradiates microwaves of two or more different frequencies means that, for example, two or more microwave irradiation means for irradiating microwaves of different frequencies are provided.
  • two or more microwave irradiation means for irradiating microwaves of two or more different frequencies may be provided.
  • the output of the microwave irradiated by the microwave irradiating means may be a predetermined output or an arbitrary output, and the heating target portion detected by the detecting means may be used. May be an output corresponding to the temperature.
  • the output may increase continuously or stepwise as the temperature of the portion to be heated increases.
  • the output may be determined by, for example, a predetermined function (for example, an increasing function) using the temperature of the heating target portion as an argument, and is determined using a correspondence table between the temperature range of the heating target portion and the output. May be done.
  • the detection unit is limited to the detection unit described in each of the above embodiments as long as the detection unit detects the heating target portion to be heated using the information indicating the state of the heating target object. Not something.
  • the irradiation state changing means is not limited to the detection means described in each of the above embodiments, as long as it irradiates the microwave so that the heating target portion detected by the detection means is concentratedly heated. .
  • the heating device controls the phase of the microwave irradiated by the plurality of microwave irradiation state changing units, or controls the microwave irradiation by one or more microwave irradiation state changing units.
  • Output control for example, output on / off
  • control for example, change
  • the heating target portion is intensively heated by controlling (for example, changing) the arrangement of the emission portion of the changing unit has been described.
  • the heating device performs two or more of these controls to thereby perform the heating target portion. Concentrated heating may be performed.
  • the microwave irradiation state changing means of the heating device must be two or more. Is preferred.
  • the detecting means detects the heating target portion in the plane direction or the height direction of the heating target object, or on the front surface or the back surface of the heating target object.
  • the detection means used in the heating device of the form described above can detect the heating target portion in any direction and in any region as long as it can detect the heating target portion existing at the position where the centralized heating can be performed in each heating device. It does not matter whether a detectable one is used.
  • the detection unit used in the heating device of each of the above embodiments may detect a heating target portion along at least two directions that are not parallel to each other.
  • At least two directions that are not parallel to each other may be, for example, three directions that are not on the same plane and are not parallel to each other.
  • the detecting means may detect, for example, a heating target portion along at least two or more of three directions orthogonal to each other on the heating target. These two or more directions may be set appropriately, for example, in a direction in which a heating target portion existing at a position where concentrated heating can be performed by each heating device can be detected. For example, by setting these two directions as the width direction and the longitudinal direction of the object to be heated, it is possible to detect the portion to be heated in the plane direction of the object to be heated.
  • the irradiation management information stored in the irradiation management information storage unit has information for controlling the phase, output, position, frequency, and the like of the microwave irradiation unit.
  • the irradiation management information stored in the irradiation management information storage unit controls, for example, two or more predetermined regions and one or two or more microwave irradiation units for centrally heating the respective regions. And any other information that is associated with the information.
  • the irradiation state changing means uses the irradiation management information to control the microwave irradiation means associated with the area where the heating target part detected by the detection means is located, and to control the heating target part by using the information. What is necessary is just to irradiate the microwave to the microwave irradiating means so that the located area is concentratedly heated.
  • each process may be realized by centralized processing by a single device (system), or may be realized by distributed processing by a plurality of devices. You may.
  • each component may be configured by dedicated hardware, or a component that can be realized by software may be realized by executing a program.
  • each component can be realized by a program execution unit such as a CPU reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the program execution unit may execute the program while accessing a storage unit (for example, a recording medium such as a hard disk or a memory).
  • the process of detecting the portion to be heated from the information obtained by the sensor of the detecting unit of the above-described embodiment performs the concentrated heating of the portion to be heated.
  • At least one of the processes for performing the control may be realized as, for example, one information processing device.
  • the software for realizing such an information processing apparatus is a program as described below.
  • the program uses the information indicating the state of the object to be heated by the computer to detect the portion to be heated to be concentrated and the portion to be heated detected in the step of detecting the portion to be heated. And changing one or more microwave irradiating means for irradiating microwaves to the object to be heated so that the object is heated intensively.
  • the above program does not include processing that is performed only by hardware.
  • the computer that executes this program may be a single computer or multiple computers. That is, centralized processing or distributed processing may be performed.
  • FIG. 14 is a schematic diagram illustrating an example of the external appearance of a computer that executes the program and realizes the information processing apparatus according to the embodiment.
  • the above embodiment can be realized by computer hardware and a computer program executed on the computer hardware.
  • the computer system 900 includes a computer 901 including a CD-ROM (Compact Disk Read Only Memory) drive 905, a keyboard 902, a mouse 903, and a monitor 904.
  • a computer 901 including a CD-ROM (Compact Disk Read Only Memory) drive 905, a keyboard 902, a mouse 903, and a monitor 904.
  • CD-ROM Compact Disk Read Only Memory
  • FIG. 15 is a diagram showing an internal configuration of the computer system 900.
  • a computer 901 in addition to a CD-ROM drive 905, a computer 901 is connected to an MPU (Micro Processing Unit) 911, a ROM 912 for storing a program such as a boot-up program, and an MPU 911, and executes instructions of an application program.
  • MPU Micro Processing Unit
  • ROM Read Only Memory
  • a RAM Random Access Memory
  • 913 for temporarily storing and providing a temporary storage space
  • a hard disk 914 for storing application programs, system programs, and data
  • a bus 915 for interconnecting the MPU 911, the ROM 912, and the like.
  • the computer 901 may include a network card (not shown) that provides a connection to a LAN.
  • a program that causes the computer system 900 to execute the functions of the information processing apparatus and the like according to the above-described embodiment may be stored in the CD-ROM 921, inserted into the CD-ROM drive 905, and transferred to the hard disk 914.
  • the program may be transmitted to the computer 901 via a network (not shown) and stored in the hard disk 914.
  • the program is loaded into the RAM 913 at the time of execution. Note that the program may be loaded directly from the CD-ROM 921 or a network.
  • the program does not necessarily include an operating system (OS) or a third-party program that causes the computer 901 to execute the function of the heating device according to the above-described embodiment.
  • the program may include only a part of an instruction for calling an appropriate function (module) in a controlled manner and obtaining a desired result. It is well known how the computer system 900 operates, and a detailed description thereof will be omitted.
  • the heating apparatus according to the present invention is suitable as an apparatus for heating an object to be heated, and is particularly useful as an apparatus for heating using microwaves.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Tunnel Furnaces (AREA)

Abstract

Provided is a heating apparatus that can appropriately heat a heating target. A heating apparatus which heats a heating target (60) by irradiating the heating target (60) with microwaves by one or two or more microwave irradiating means (401) comprises: a detection means (20) which detects a heating target portion to be heated intensively, by using information indicating the state of the heating target (60); and an irradiation state changing means (40) which changes the irradiation state of the microwave such that the heating target portion detected by the detection means (20) is intensively heated. Thus, the heating target portion detected by the detection means (20) can be intensively heated dynamically and in real time.

Description

加熱装置、およびプログラムHeating device and program
 本発明は、マイクロ波を用いて加熱を行なう装置等に関するものである。 (4) The present invention relates to an apparatus for performing heating using microwaves.
 従来の技術として、反応物質に対してマイクロ波を照射することにより、熱処理等を行なう加熱装置等が知られていた(例えば、特許文献1参照)。 (4) As a conventional technique, a heating device or the like that performs a heat treatment or the like by irradiating a reaction substance with microwaves has been known (for example, see Patent Document 1).
特表2006-516008号公報(第1頁、第1図等)JP-T-2006-516008 (Page 1, FIG. 1, etc.)
 しかしながら、従来の技術においては、マイクロ波を用いて、加熱の対象物(以下、加熱対象物)を適切な温度分布となるように加熱することができなかった。例えば、従来の技術においては、対象物の加熱対象領域の表面の一部の温度をサンプル検出して、その温度が所望の温度となるようにマイクロ波の出力全体を制御していたため、加熱対象領域内で温度ムラがある場合や、特定領域を集中的に加熱したい場合に対応できない問題があった。 However, in the related art, it was not possible to heat the object to be heated (hereinafter, the object to be heated) using a microwave so as to have an appropriate temperature distribution. For example, in the related art, the temperature of a part of the surface of the target area of the object to be heated is detected as a sample, and the entire microwave output is controlled so that the temperature becomes a desired temperature. There has been a problem that it is not possible to cope with a case where there is temperature unevenness in the region or a case where a specific region is to be intensively heated.
 本発明は、上記のような課題を解消するためになされたものであり、マイクロ波を用いて、加熱対象物を適切に加熱することができる加熱装置等を提供することを目的とする。更に具体的には、加熱したい部分を、その状態に応じて集中加熱することや、加熱対象物の温度分布等から、加熱が不足している部分を選択的に加熱することができる加熱装置等を提供することを目的とする。 The present invention has been made to solve the above-described problems, and has as its object to provide a heating device or the like that can appropriately heat an object to be heated using microwaves. More specifically, a heating device capable of selectively heating a portion that is insufficiently heated based on the temperature distribution of an object to be heated, or a concentrated heating of a portion to be heated according to the state thereof, and the like. The purpose is to provide.
 本発明の加熱装置は、加熱対象物に1または2以上のマイクロ波照射手段によりマイクロ波を照射することで該加熱対象物を加熱する加熱装置であって、加熱対象物についての状態を示す情報に応じて、集中して加熱すべき加熱対象部分を検出する検出手段と、検出手段が検出した加熱対象部分が集中的に加熱されるようにマイクロ波の照射状態を変化させる照射状態変化手段と、を備えた加熱装置である。 The heating device of the present invention is a heating device that heats an object to be heated by irradiating the object with microwaves by one or more microwave irradiating means, and information indicating a state of the object to be heated. A detecting means for detecting a heating target portion to be heated intensively, and an irradiation state changing means for changing an irradiation state of the microwave so that the heating target portion detected by the detecting means is intensively heated. And a heating device.
 かかる構成により、検出手段が検出した加熱対象部分を、マイクロ波により集中加熱することができるため、ダイナミックかつリアルタイムに加熱対象物を所望の状態に加熱できるとともに、無駄のない効率的なマイクロ波加熱を行なうことができる。 With this configuration, since the heating target portion detected by the detection unit can be concentratedly heated by the microwave, the heating target can be heated to a desired state dynamically and in real time, and the microwave heating can be efficiently performed without waste. Can be performed.
 また、前記加熱装置において、2以上のマイクロ波照射手段を備えており、照射状態変化手段は、検出手段が検出した加熱対象部分が集中加熱されるよう、照射状態変化手段により位相を制御したマイクロ波を、2以上のマイクロ波照射手段から照射させるようにしてもよい。 Further, the heating device includes two or more microwave irradiation means, and the irradiation state changing means controls the phase by the irradiation state changing means so that the heating target portion detected by the detection means is concentratedly heated. The waves may be irradiated from two or more microwave irradiation means.
 かかる構成により、位相を制御したマイクロ波により、ダイナミックかつリアルタイムに加熱対象部分を集中加熱することができる。 構成 With such a configuration, the heating target portion can be intensively heated dynamically and in real time by the microwave whose phase is controlled.
 また、前記加熱装置において、1または2以上のマイクロ波照射手段は、2以上の異なる周波数のマイクロ波を照射するものであり、照射状態変化手段は、検出手段が検出した加熱対象部分が集中加熱されるようなマイクロ波の強度分布となるようにマイクロ波照射手段に各周波数のマイクロ波を照射させるようにしてもよい。 Further, in the heating device, the one or more microwave irradiating means irradiates microwaves having two or more different frequencies, and the irradiation state changing means includes a means for intensively heating the portion to be heated detected by the detecting means. The microwave irradiating means may irradiate the microwaves of each frequency so that the intensity distribution of the microwaves as described above is obtained.
 かかる構成により、周波数を変更してマイクロ波強度の高い部分を変更することより、ダイナミックかつリアルタイムに加熱対象部分を集中加熱することができる。 With this configuration, it is possible to dynamically and in real time intensively heat the portion to be heated by changing the frequency to change the portion having a high microwave intensity.
 また、前記加熱装置において、2以上のマイクロ波照射手段を備えており、照射状態変化手段は、検出手段が検出した加熱対象部分が集中加熱されるよう、各マイクロ波照射手段が照射するマイクロ波の出力を変更するようにしてもよい。 Further, the heating device includes two or more microwave irradiation units, and the irradiation state changing unit includes a microwave irradiation unit that irradiates each of the microwave irradiation units so that the heating target portion detected by the detection unit is concentratedly heated. May be changed.
 かかる構成により、マイクロ波照射手段の出力を変更して、ダイナミックかつリアルタイムに加熱対象部分を集中加熱することができる。 構成 With this configuration, the output of the microwave irradiation means can be changed, and the heating target portion can be concentratedly heated dynamically and in real time.
 また、前記加熱装置において、照射状態変化手段は、マイクロ波照射手段のマイクロ波を出射する出射部の配置を変更する配置変更部を備えており、配置変更部は、検出手段が検出した加熱対象部分が集中加熱されるよう1以上のマイクロ波照射手段の出射部の配置を変更するようにしてもよい。 Further, in the heating device, the irradiation state changing unit includes an arrangement changing unit that changes an arrangement of an emitting unit that emits microwaves of the microwave irradiating unit, and the arrangement changing unit includes a heating target detected by the detecting unit. You may make it change the arrangement | positioning of the emission part of one or more microwave irradiation means so that a part may be concentratedly heated.
 かかる構成により、出射部の配置を変更して、加熱対象部にマイクロ波を照射することにより、ダイナミックかつリアルタイムにマイクロ波照射手段の加熱対象部分を集中加熱することができる。 With this configuration, by changing the arrangement of the emission unit and irradiating the microwave to the heating target portion, the heating target portion of the microwave irradiating unit can be concentratedly heated dynamically and in real time.
 また、前記加熱装置において、照射状態変化手段は、検出手段が検出した加熱対象部分が集中加熱されるよう位相を制御したマイクロ波の、2以上のマイクロ波照射手段からの照射、検出手段が検出した加熱対象部分が集中加熱されるようなマイクロ波の強度分布とするための、2以上の異なる周波数のマイクロ波を照射するマイクロ波照射手段からの各周波数のマイクロ波の照射、検出手段が検出した加熱対象部分が集中加熱されるようにするための、2以上のマイクロ波照射手段からの出力を変更したマイクロ波の照射、および、照射状態変化手段が備えているマイクロ波照射手段のマイクロ波を出射する出射部の配置を変更する配置変更部により、検出手段が検出した加熱対象部分が集中加熱されるよう出射部の配置を変更させて行なわれるマイクロ波の照射、からなる群より選ばれた少なくとも2以上のマイクロ波の照射を行なわせるようにしてもよい。 Further, in the heating device, the irradiation state changing means is configured to irradiate the microwave whose phase is controlled so that the heating target portion detected by the detection means is concentratedly heated from two or more microwave irradiation means, and to detect the irradiation. Irradiation of microwaves of each frequency from microwave irradiating means for irradiating microwaves of two or more different frequencies in order to make the intensity distribution of microwaves such that concentrated heating target parts are concentratedly heated, detection means detects Irradiation of the microwaves whose output has been changed from two or more microwave irradiation means, and microwaves of the microwave irradiation means provided in the irradiation state changing means, so that the heated portion to be heated is concentratedly heated. The arrangement of the emission unit is changed by an arrangement change unit that changes the arrangement of the emission unit that emits the light so that the heating target portion detected by the detection unit is concentratedly heated. Dividing the microwave irradiation, it may be to perform the irradiation of the at least two microwave selected from the group consisting of.
 かかる構成により、ダイナミックかつリアルタイムに加熱対象部分を集中加熱することができる。 に よ り With such a configuration, the heating target portion can be intensively heated dynamically and in real time.
 また、前記加熱装置において、検出手段は、加熱対象物の少なくとも互いに平行でない2方向に沿って加熱対象部分を検出するようにしてもよい。 In the heating device, the detection unit may detect the heating target portion along at least two directions that are not parallel to each other.
 かかる構成により、加熱対象物について二次元、更には三次元的に検出した加熱対象部分を、集中加熱することができ、マイクロ波を用いて加熱対象物を適切に加熱することができる。例えば、互いに平行でない3方向に沿って検出すれば、加熱対象物の中心など、その内部に加熱対象部分があっても該部分を適切に加熱することができる。 構成 With this configuration, the heating target portion detected two-dimensionally and further three-dimensionally of the heating target object can be concentratedly heated, and the heating target object can be appropriately heated using microwaves. For example, if detection is performed along three directions that are not parallel to each other, even if there is a heating target portion inside the heating target, such as the center, the portion can be appropriately heated.
 また、前記加熱装置において、検出手段は、X線センサ、超音波センサ、温度センサ、圧力センサ、水分センサ、および色を取得するセンサのうちの1以上を有していてもよい。 In the heating device, the detecting means may include one or more of an X-ray sensor, an ultrasonic sensor, a temperature sensor, a pressure sensor, a moisture sensor, and a color sensor.
 かかる構成により、加熱対象物の内部の温度分布を含む温度や、圧力、水分や色のうちのいずれか、あるいはこれらの2以上の組み合わせに応じて検出した加熱対象部分を集中加熱することができる。 With this configuration, it is possible to centrally heat the heating target portion detected according to the temperature including the temperature distribution inside the heating target, any one of pressure, moisture, and color, or a combination of two or more of these. .
 また、前記加熱装置において、加熱対象物を搬送する搬送手段をさらに備え、検出手段は、加熱対象物の搬送方向と直交する方向に1次元的に線状に加熱対象部分を検出し、照射手段は、加熱対象物の搬送方向において検出手段の下流に位置し、加熱対象部分を集中加熱するようマイクロ波を照射可能なものであり、加熱対象物が搬送されて、検出手段が検出した加熱対象部分がマイクロ波を照射可能な位置に搬送されたときに、集中加熱するようマイクロ波を照射するようにしてもよい。 The heating device may further include a conveying unit that conveys the object to be heated, and the detecting unit may detect the portion to be heated linearly in a direction orthogonal to the conveying direction of the object to be heated, and may include an irradiation unit. Is located downstream of the detecting means in the conveying direction of the object to be heated, and is capable of irradiating a microwave so as to heat the portion to be heated in a concentrated manner. When a portion is transported to a position where microwaves can be irradiated, microwaves may be irradiated so as to perform concentrated heating.
 かかる構成により、移動する加熱対象物をラインセンサなどを用いて走査などして加熱対象部分を検出し、その下流側で集中加熱することができる。これにより、検出手段を簡素化、小型化できる。 With this configuration, the moving object to be heated can be scanned using a line sensor or the like to detect the portion to be heated, and concentrated heating can be performed on the downstream side. Thereby, the detecting means can be simplified and downsized.
 また、前記加熱装置において、予め決められた2以上の領域と、この各領域を集中加熱するための、1または2以上のマイクロ波照射手段を制御するための情報とが対応付けて格納された照射管理情報格納部を更に備え、照射状態変化手段は、予め決められた2以上の領域のうちの、検出手段が検出した加熱対象部分が位置する領域に対応付けられたマイクロ波照射手段を制御するための情報を用いて、この加熱対象部分が位置する領域を集中加熱するよう前記マイクロ波照射手段にマイクロ波を照射させるようにしてもよい。 Further, in the heating device, two or more predetermined areas and information for controlling one or two or more microwave irradiation means for centrally heating the respective areas are stored in association with each other. The apparatus further includes an irradiation management information storage unit, and the irradiation state changing unit controls the microwave irradiation unit associated with the region where the heating target portion detected by the detection unit is located among the two or more predetermined regions. The microwave irradiating means may be configured to irradiate the microwave to intensively heat the region where the portion to be heated is located, using information for performing the heating.
 かかる構成により、予め1または2以上のマイクロ波照射手段を用いて集中加熱可能な領域に加熱対象部分が位置する時に、この集中加熱領域を集中加熱することによって、加熱対象部分を集中加熱することができる。 With such a configuration, when the heating target portion is located in a region in which concentrated heating can be performed using one or two or more microwave irradiation units in advance, the concentrated heating region is concentratedly heated, so that the heating target portion is concentratedly heated. Can be.
 本発明によれば、加熱対象物を適切に加熱することができる。 According to the present invention, the object to be heated can be appropriately heated.
実施の形態1の加熱装置のブロック図(図1(a))、および斜視図(図1(b))Block diagram (FIG. 1A) and perspective view (FIG. 1B) of the heating device according to the first embodiment. 同加熱装置の断面図(図2(a)、図2(b))Sectional view of the heating device (FIGS. 2A and 2B) 同加熱装置の容器内の平面模式図(図3(a)~図3(d))Schematic plan view inside the container of the heating device (FIGS. 3A to 3D) 同加熱装置の動作を説明するためのフローチャートFlow chart for explaining the operation of the heating device 同加熱装置の照射管理情報を示す図The figure which shows the irradiation management information of the same heating device 同加熱装置の照射制御表を示す図(図5(a)、図5(b))The figure which shows the irradiation control table of the same heating apparatus (FIG. 5 (a), FIG. 5 (b)). 同加熱装置の変形例を説明するための、容器内の平面模式図(図7(a)~図7(d))FIGS. 7A to 7D are schematic plan views of the inside of a container for explaining a modification of the heating device. 実施の形態2の加熱装置のブロック図(図8(a))、および斜視図(図8(b))Block diagram (FIG. 8A) and perspective view (FIG. 8B) of the heating device according to the second embodiment. 同加熱装置の断面図(図8(a)、図8(b))Sectional view of the heating device (FIGS. 8 (a) and 8 (b)) 同加熱装置の照射管理情報を示す図The figure which shows the irradiation management information of the same heating device 同加熱装置の容器内の斜視図(図11(a))、および平面模式図(図11(b)~図11(c))A perspective view (FIG. 11 (a)) and a schematic plan view (FIGS. 11 (b) to 11 (c)) of the inside of the container of the heating device. 実施の形態1の加熱装置に関連したシミュレーション試験に用いられたモデルを示す図FIG. 4 is a diagram showing a model used in a simulation test related to the heating device of the first embodiment. 同加熱装置に関連したミュレーション試験結果を示す図(図13(a)~図13(c))Diagrams showing the results of a simulation test related to the heating device (FIGS. 13A to 13C) 各実施の形態におけるコンピュータシステムの外観の一例を示す図FIG. 1 is a diagram illustrating an example of an external appearance of a computer system according to each embodiment. 同コンピュータシステムの構成の一例を示す図The figure which shows an example of the structure of the same computer system 実施の形態2の加熱装置の変形例のブロック図(図16(a))および斜視図(図16(b))Block diagram (FIG. 16A) and perspective view (FIG. 16B) of a modification of the heating device according to the second embodiment. 同変形例を説明するための断面模式図(図17(a)および図17(b))Sectional schematic view for explaining the modification (FIGS. 17A and 17B) 実施の形態3における加熱装置のブロック図(図18(a))および斜視図(図18(b))Block diagram (FIG. 18A) and perspective view (FIG. 18B) of the heating device according to the third embodiment. 同加熱装置の変形例1のブロック図(図19(a))および斜視図(図19(b))Block diagram (FIG. 19A) and perspective view (FIG. 19B) of Modification 1 of the heating device. 同加熱装置の変形例2の斜視図(図20(a))および加熱対象物を上方から見た模式図(図20(b))A perspective view of a second modification of the heating apparatus (FIG. 20A) and a schematic view of the object to be heated as viewed from above (FIG. 20B). 実施の形態4における加熱装置のブロック図(図21(a))、および斜視図(図21(b))Block diagram of heating device in Embodiment 4 (FIG. 21A) and perspective view (FIG. 21B) 実施の形態5における加熱装置のブロック図(図22(a))、一部切欠平面図(図22(b))、および断面図(図22(c))Block diagram (FIG. 22 (a)), partially cutaway plan view (FIG. 22 (b)), and cross-sectional view (FIG. 22 (c)) of the heating device according to the fifth embodiment. 同加熱装置の動作を説明するための平面模式図(図23(a)~図23(d))Schematic plan views for explaining the operation of the heating device (FIGS. 23A to 23D). 実施の形態6の加熱装置のブロック図(図24(a))、一部切欠平面図(図24(b))、および一部切欠側面図(図22(c))Block diagram (FIG. 24 (a)), partially cutaway plan view (FIG. 24 (b)), and partially cutaway side view (FIG. 22 (c)) of the heating device according to the sixth embodiment. 同加熱装置の動作を説明するための模式図(図25(a)~図25(d))Schematic diagrams for explaining the operation of the heating device (FIGS. 25A to 25D) 本実施の形態7の加熱装置のブロック図(図26(a))および斜視図(図26(b))Block diagram (FIG. 26 (a)) and perspective view (FIG. 26 (b)) of the heating device of the seventh embodiment.
 以下、加熱装置等の実施形態について図面を参照して説明する。なお、実施の形態において同じ符号を付した構成要素は同様の動作を行うので、再度の説明を省略する場合がある。 Hereinafter, embodiments of the heating device and the like will be described with reference to the drawings. Note that components denoted by the same reference numerals in the embodiments perform the same operation, and thus the description thereof may not be repeated.
 (実施の形態1)
 図1は、本実施の形態における加熱装置の機能を示すブロック図(図1(a))および外観等を示す斜視図(図1(b)である。また、図2は、図1(b)のIIa-IIa線による断面図(図2(a))、およびIIb-IIb線による断面図(図2(b))である。
(Embodiment 1)
Fig. 1 is a block diagram (Fig. 1 (a)) showing the function of the heating device according to the present embodiment, and a perspective view (Fig. 1 (b)) showing the appearance and the like. 2) is a sectional view taken along the line IIa-IIa (FIG. 2 (a)) and a sectional view taken along the line IIb-IIb (FIG. 2 (b)).
 図3は、本実施の形態の加熱装置1を説明するための、容器10内の加熱対象物60の近傍を表面側からみた平面模式図(図3(a)、図3(b))、および裏面側からみた平面模式図(図3(c)、図3(d))である。 FIG. 3 is a schematic plan view (FIGS. 3 (a) and 3 (b)) of the heating device 1 according to the present embodiment, illustrating the vicinity of a heating target 60 in the container 10 as viewed from the front side. FIG. 3 is a schematic plan view (FIGS. 3 (c) and 3 (d)) as viewed from the back side.
 加熱装置1は、容器10と、検出手段20と、3つのマイクロ波照射部401と、照射状態変化手段40と、ベルトコンベア50とを備えている。 The heating device 1 includes the container 10, the detection unit 20, three microwave irradiation units 401, the irradiation state changing unit 40, and the belt conveyor 50.
 加熱装置1は、1または2以上の加熱対象物60を加熱するための装置である。加熱対象物60は、例えば、固体であっても良く、液体であっても良く、気体であってもよい。加熱対象物60は、例えば、木材や、紙、パルプ、合成樹脂、ゴム、ガラス、カーボン、セラミックス、中空糸膜束、繊維等であってもよい。また、加熱対象物60は、セパレータやキャパシタ等の製造等に用いられる材料等であってもよく、ハニカム構造体の製造等に用いられる材料等であってもよく、圧搾した酵母等であってもよい。加熱対象物60は、例えば、含水している多孔質物質や、含水しているポリマー(例えば、吸湿性樹脂、吸水性樹脂等)等の含水物であってもよい。ここでの含水しているポリマーは、含水しているポリマー粒子群であってもよい。ここでのポリマーは、どのようなポリマーであってもよい。なお、加熱対象物60中の水や有機溶剤等の液体を蒸発させて取り除くことも、ここでは、加熱の一態様と考えてもよい。ここでの加熱は、加熱による乾燥と考えてもよい。なお、加熱対象物60は、上記のようなものに限定されるものではない。加熱対象物60の形状はシート状であってもよく、プレート状であってもよく、直方体形状であってもよく、球形状であってもよく、円筒形形状であってもよい。シート状やプレート状の加熱対象物60の厚さ等は問わない。加熱対象物60は、厚さが一定であってもよく、厚さが一定でなくてもよい。また、シート状やプレート状の加熱対象物60は、表面または裏面に凹凸等を有していても良く、孔等を有していてもよい。また、加熱対象物60は、棒状やファイバー状、ペレット状、粒状の形状を有していてもよい。加熱対象物60は、例えば、不定形状の物質であってもよい。加熱対象物60は、ゲル状のものであってもよく、流動性を有するものであってもよい。また、加熱対象物60は粉体であってもよい。なお、加熱対象物60は、上記のようなものに限定されるものではない。また、加熱対象物60の形状等も上記のようなものに限定されるものではない。以下、本実施の形態においては、加熱対象物60が、長手方向を有するプレート状の含水物質である場合を例に挙げて説明する。 The heating device 1 is a device for heating one or more heating objects 60. The heating target 60 may be, for example, a solid, a liquid, or a gas. The heating target 60 may be, for example, wood, paper, pulp, synthetic resin, rubber, glass, carbon, ceramics, a bundle of hollow fiber membranes, fibers, or the like. Further, the heating target 60 may be a material or the like used for manufacturing a separator, a capacitor, or the like, may be a material or the like used for manufacturing a honeycomb structure, or may be a pressed yeast or the like. Is also good. The heating target 60 may be, for example, a water-containing porous substance or a water-containing substance such as a water-containing polymer (for example, a hygroscopic resin, a water-absorbing resin, or the like). The hydrated polymer here may be a hydrated polymer particle group. The polymer here may be any polymer. It should be noted that evaporating and removing a liquid such as water or an organic solvent in the object to be heated 60 may be considered as one mode of heating. The heating here may be considered as drying by heating. Note that the heating target 60 is not limited to the above. The shape of the heating target 60 may be a sheet shape, a plate shape, a rectangular parallelepiped shape, a spherical shape, or a cylindrical shape. The thickness or the like of the sheet-like or plate-like heating target 60 does not matter. The heating object 60 may have a constant thickness, or may not have a constant thickness. The sheet-like or plate-like heating target 60 may have irregularities on the front surface or the back surface, or may have holes or the like. The heating target 60 may have a rod shape, a fiber shape, a pellet shape, or a granular shape. The heating target 60 may be, for example, an irregularly shaped substance. The heating target 60 may be in a gel state or may have fluidity. Further, the heating target 60 may be a powder. Note that the heating target 60 is not limited to the above. Further, the shape and the like of the heating target 60 are not limited to those described above. Hereinafter, in the present embodiment, the case where the heating target 60 is a plate-shaped hydrated substance having a longitudinal direction will be described as an example.
 容器10は、マイクロ波反射性を有する材質で構成されている。容器10は、例えば、ステンレス等の金属で構成されている。容器10の外壁等の厚さは問わない。ここでは、容器10は、後述するベルトコンベア50の搬送方向が長手方向となる直方体形状を有している場合を例に挙げて説明する。容器10の、上方からみて長手方向に垂直となる方向を、以下、幅方向と呼ぶが、短手方向と呼んでもよい。容器10は内部が中空であり、加熱対象物60を加熱する加熱室として用いられる。ここでは、容器10の内部が区切られていない場合について説明するが、容器10の内部は、図示しない仕切り等で複数の部屋に区切られていてもよい。なお、容器10の外壁等は、内部に照射されるマイクロ波が、容器内に反射されるような構造であれば良く、例えば、マイクロ波反射性を有する材質の層と、マイクロ波透過性を有する材質の層とを積層した構造であってもよい。なお、容器の材質および形状等は、上記に限定されるものではない。 The container 10 is made of a material having microwave reflectivity. The container 10 is made of, for example, a metal such as stainless steel. The thickness of the outer wall and the like of the container 10 does not matter. Here, the case where the container 10 has a rectangular parallelepiped shape in which the conveying direction of the belt conveyor 50 described later is the longitudinal direction will be described as an example. A direction perpendicular to the longitudinal direction of the container 10 when viewed from above is hereinafter referred to as a width direction, but may be referred to as a lateral direction. The inside of the container 10 is hollow, and is used as a heating chamber for heating the object 60 to be heated. Here, the case where the inside of the container 10 is not partitioned will be described, but the inside of the container 10 may be partitioned into a plurality of rooms by a partition (not shown) or the like. The outer wall and the like of the container 10 may have a structure in which microwaves applied to the inside are reflected into the container. For example, a layer made of a material having microwave reflectivity, It may have a structure in which layers of materials having the same are laminated. The material and shape of the container are not limited to the above.
 容器10には、加熱対象物60を容器10の内部に入れるための開口部である入口101と、加熱対象物60を容器10から外部に出すための開口部である出口102とを有している。ここでは、一例として、容器10の長手方向の端部の一方に入口101が設けられ、他方の端部に出口102が設けられている場合について説明する。ここでは、加熱対象物60が、ベルトコンベア50で搬送されて、入口101から容器10内に移動して、容器10内部を移動し、出口102から容器10外に移動する場合について説明する。入口101および出口102には、容器10内に照射されるマイクロ波の外部への漏洩を防止するような構造を設けることが好ましい。例えば、マイクロ波の波長の性質を利用した、非接触でマイクロ波電力の通過を防止するチョーク構造等を、入口101および出口102に設けるようにしてもよい。なお、入口101および出口102の少なくとも一方は省略してもよい。また、入口および出口の少なくとも一方には蓋(図示せず)等を設けてもよい。 The container 10 has an inlet 101 which is an opening for putting the heating object 60 into the inside of the container 10, and an outlet 102 which is an opening for taking the heating object 60 out of the container 10. I have. Here, as an example, a case in which an inlet 101 is provided at one end in the longitudinal direction of the container 10 and an outlet 102 is provided at the other end will be described. Here, a case where the heating target 60 is conveyed by the belt conveyor 50, moves from the inlet 101 into the container 10, moves inside the container 10, and moves from the outlet 102 to the outside of the container 10 will be described. The inlet 101 and the outlet 102 are preferably provided with a structure for preventing the microwave irradiated into the container 10 from leaking outside. For example, a choke structure or the like that prevents the passage of microwave power in a non-contact manner using the property of the wavelength of the microwave may be provided at the inlet 101 and the outlet 102. Note that at least one of the inlet 101 and the outlet 102 may be omitted. At least one of the inlet and the outlet may be provided with a lid (not shown) or the like.
 ベルトコンベア50は、加熱対象物60を搬送する搬送手段である。ここでは、ベルトコンベア50は、メッシュ製のベルト501を有している。ベルト501は、容器10外から、入口101を経て容器10内に移動し、容器10内から、出口102を経て容器10外に移動するよう配置されている。加熱対象物60は、ベルト501上に載置されてベルトコンベア50で搬送され、入口101から容器10内に移動して、容器10内部を移動し、出口102から容器10外に移動する。ここではプレート状の加熱対象物60が容器10の長手方向に向かって搬送される場合について説明する。プレート状の加熱対象物60の、上方からみて移動方向(搬送される方向)に対して垂直な方向を、ここでは、幅方向と呼ぶ。この加熱対象物60の長手方向が、移動方向と一致している。また、加熱対象物60の上面を表面61a、加熱対象物60の下面を裏面61bと呼ぶ。かかることは、加熱対象物60の形状がプレート状でない場合においても同様である。なお、加熱対象物60の表面61aや裏面61bを単に平面と呼ぶ場合がある。また、この平面内における二次元方向や、加熱対象物60が載置される面に平行な面内における二次元方向や、水平面に平行な面内における二次元方向を、平面方向と呼ぶ場合がある。二次元方向は、例えば、互いに平行ではない2方向の組み合わせや、互いに直交する2つの方向の組み合わせで表される方向である。なお、三次元方向は、例えば、同一平面上になく互いに平行ではない3方向の組み合わせで表される方向や、互いに直交する3つの方向の組み合わせで表される方向である。例えば、平面方向は、例えば、加熱対象物60の長手方向と幅方向との組合せで表される方向である。平面方向の位置は、例えば、加熱対象物60の長手方向の位置と幅方向の位置との組合せで表される位置である。ここでは、ベルト501が、容器10内を略水平に移動するよう配置されている場合について説明する。これにより、加熱対象物60は、容器10内を略水平に移動する。ただし、ベルト501の移動方向および移動経路等は問わない。図1および図2において、矢印505は、ベルト501および加熱対象物60の移動方向を示す。 The belt conveyor 50 is a transport unit that transports the heating target 60. Here, the belt conveyor 50 has a belt 501 made of mesh. The belt 501 is arranged to move from the outside of the container 10 to the inside of the container 10 via the inlet 101, and from the inside of the container 10 to the outside of the container 10 via the outlet 102. The heating target 60 is placed on the belt 501 and conveyed by the belt conveyor 50, moves from the inlet 101 into the container 10, moves inside the container 10, and moves from the outlet 102 to outside the container 10. Here, a case where the plate-shaped heating object 60 is transported in the longitudinal direction of the container 10 will be described. The direction perpendicular to the moving direction (conveying direction) of the plate-shaped heating object 60 when viewed from above is referred to as the width direction. The longitudinal direction of the heating target 60 coincides with the moving direction. The upper surface of the heating target 60 is called a front surface 61a, and the lower surface of the heating target 60 is called a back surface 61b. This is the same even when the shape of the heating target 60 is not plate-shaped. The front surface 61a and the back surface 61b of the heating target 60 may be simply referred to as a flat surface. Further, a two-dimensional direction in this plane, a two-dimensional direction in a plane parallel to a plane on which the heating target 60 is placed, and a two-dimensional direction in a plane parallel to a horizontal plane may be referred to as a plane direction. is there. The two-dimensional direction is, for example, a direction expressed by a combination of two directions that are not parallel to each other or a combination of two directions that are orthogonal to each other. The three-dimensional direction is, for example, a direction represented by a combination of three directions that are not on the same plane and are not parallel to each other, or a direction represented by a combination of three directions that are orthogonal to each other. For example, the plane direction is, for example, a direction represented by a combination of the longitudinal direction and the width direction of the heating target 60. The position in the plane direction is, for example, a position represented by a combination of a position in the longitudinal direction and a position in the width direction of the heating target 60. Here, a case will be described in which the belt 501 is arranged to move substantially horizontally in the container 10. Thereby, the heating target 60 moves substantially horizontally in the container 10. However, the moving direction and moving path of the belt 501 are not limited. 1 and 2, an arrow 505 indicates a moving direction of the belt 501 and the heating target 60.
 なお、加熱対象物60の移動方向は、容器10の長手方向や、加熱対象物の長手方向に限定されるものではなく、また、加熱対象物60および容器10は、長手方向を有さない形状を有するものであってもよい。これらのような場合、容器10の長手方向およぎ加熱対象物60の移動方向を第一の方向、容器10の幅方向および加熱対象物60の幅方向を、平面方向において第一の方向に直交する第二の方向、容器10および加熱対象物60の高さ方向を、第一の方向および第二の方向に直交する第三の方向等と読み替えるようにしてもよい。 In addition, the moving direction of the heating target 60 is not limited to the longitudinal direction of the container 10 or the longitudinal direction of the heating target, and the heating target 60 and the container 10 may have a shape having no longitudinal direction. May be provided. In such a case, the longitudinal direction of the container 10 and the moving direction of the heating object 60 are orthogonal to the first direction in the plane direction, and the width direction of the container 10 and the width direction of the heating object 60 are orthogonal to the first direction. The second direction, the height direction of the container 10 and the object to be heated 60 may be read as a third direction orthogonal to the first direction and the second direction.
 メッシュ製のベルト501の材質は、通常、ステンレス等の金属であるが、材質はこれに限定されるものではない。例えば、メッシュ製のベルト501は、樹脂製であってもよい。ベルトコンベア50として、メッシュ製のベルト501を用いることが好ましいが、ベルト501は、メッシュ製のベルトに限定されるものではない。 The material of the mesh belt 501 is usually a metal such as stainless steel, but the material is not limited to this. For example, the mesh belt 501 may be made of resin. It is preferable to use a mesh belt 501 as the belt conveyor 50, but the belt 501 is not limited to a mesh belt.
 ここでは、ベルトコンベア50が、ベルト501を連続的に一定速度で移動させて、ベルト501上に載置した加熱対象物60を、連続的に一定速度で、容器10内を通過するよう移動させる場合を例に挙げて説明する。 Here, the belt conveyor 50 continuously moves the belt 501 at a constant speed, and moves the heating target 60 placed on the belt 501 so as to continuously pass through the container 10 at a constant speed. The case will be described as an example.
 なお、図においては、ベルト501以外のベルトコンベア50の構成、例えば、ベルト501を移動させるためのプーリや、ローラ、ベルト501を駆動させるモータ等の駆動手段等は省略している。 In the drawings, the configuration of the belt conveyor 50 other than the belt 501, for example, pulleys for moving the belt 501, rollers, driving means such as a motor for driving the belt 501, and the like are omitted.
 なお、ここでは、加熱対象物60の搬送手段として、ベルトコンベアを用いた場合について説明するが、搬送手段は、加熱対象物60を、容器10内において、搬送可能なものであれば、ベルトコンベアに限定されるものではなく、例えば、複数のローラによって、加熱対象物60を移動させるローラコンベア等であってもよい。また、多孔状のプレートやトレイ(図示せず)等に載置された加熱対象物60を搬送する搬送手段であってもよい。また、ベルトコンベア50として、加熱対象物を受け渡して搬送可能な複数のベルトコンベア等を用いてもよい。 Here, a case will be described in which a belt conveyor is used as a transporting unit for the heating target 60. However, the transporting unit may be a belt conveyor if the heating target 60 can be transported in the container 10. However, the present invention is not limited to this, and may be, for example, a roller conveyor that moves the object 60 to be heated by a plurality of rollers. In addition, a transport unit that transports the heating target 60 placed on a porous plate, a tray (not shown), or the like may be used. Further, as the belt conveyor 50, a plurality of belt conveyors or the like that can deliver and convey the object to be heated may be used.
 また、搬送手段は、連続的に一定速度で、加熱対象物60を搬送するものに限定されるものではない。例えば、搬送手段は、加熱対象物60の搬送と停止とを組み合わせて行うものであってもよい。つまり、搬送手段は、非連続に搬送を行うものであってもよい。また、搬送手段の搬送速度は可変であってもよい。 The transporting means is not limited to the one that continuously transports the heating target 60 at a constant speed. For example, the transporting means may be a means for performing a combination of transporting and stopping the heating target 60. In other words, the transporting means may perform the transporting discontinuously. Further, the transfer speed of the transfer means may be variable.
 なお、後述する検出手段20が、非接触のセンサ等で加熱対象物60の下面側の温度を検出する場合、ベルトやローラ等の搬送手段の加熱対象物が載置される部分は、加熱対象物の搬送手段に載置される裏面61bの少なくとも一部が、センサで温度が検出可能な程度に、下方から見て露出するような形状や構造を備えていることが好ましい。例えば、搬送手段の加熱対象物60が載置される部分は、1以上の開口部を有していることが好ましい。 When the detecting means 20 described later detects the temperature on the lower surface side of the heating object 60 with a non-contact sensor or the like, a portion of the conveying means such as a belt or a roller on which the heating object is placed is a heating object. It is preferable that at least a part of the back surface 61b placed on the object transporting device has a shape or structure that is exposed when viewed from below, to the extent that a temperature can be detected by a sensor. For example, it is preferable that a portion of the transporting unit on which the heating target 60 is placed has one or more openings.
 検出手段20は、加熱対象物60の状態を示す情報に応じて、集中して加熱すべき1以上の部分を検出する。以下、加熱対象物60の、集中して加熱すべき部分を、加熱対象部分と呼ぶ。加熱対象部分は、例えば、加熱対象物60の加熱させたい部分である。加熱対象物60の加熱対象部分は、例えば、加熱対象物60の集中加熱したい部分である。加熱対象物60の集中加熱したい部分とは、例えば、加熱が必要な部分であっても良く、加熱が不足している部分であってもよい。ここでの部分は、領域と考えてもよい。加熱が不足している部分は、線状の領域や点状の領域と考えてもよい。検出手段20は、例えば、容器10内に配置された加熱対象物60や、容器10内を移動する加熱対象物60の加熱対象部分を検出する。検出手段20は、例えば、ベルト501上に配置された加熱対象物60について、加熱対象部分を検出する。「集中加熱」の意味については後述する。 The detecting means 20 detects one or more portions to be heated intensively according to the information indicating the state of the heating target 60. Hereinafter, the portion of the heating target 60 to be concentratedly heated is referred to as a heating target portion. The heating target portion is, for example, a portion of the heating target 60 to be heated. The heating target portion of the heating target 60 is, for example, a portion of the heating target 60 to which concentrated heating is desired. The portion of the heating target 60 to which concentrated heating is to be performed may be, for example, a portion that requires heating or a portion that is insufficiently heated. The portion here may be considered as a region. A portion where heating is insufficient may be considered as a linear region or a point-like region. The detection unit 20 detects, for example, a heating target 60 arranged in the container 10 and a heating target portion of the heating target 60 moving in the container 10. The detection unit 20 detects, for example, a heating target portion of the heating target 60 arranged on the belt 501. The meaning of “concentrated heating” will be described later.
 検出手段20は、例えば、加熱対象物60の二次元方向または三次元方向において加熱対象部分を検出する。検出手段20は、例えば、加熱対象物60の平面方向および高さ方向の少なくとも一方について加熱対象部分を検出する。平面方向は、例えば、水平方向と考えてもよい。検出手段20は、例えば、加熱対象物60の平面方向または平面方向と高さ方向との組み合わせにおいて加熱対象部分を検出する。加熱対象物60の平面方向において加熱対象部分を検出するということは、例えば、加熱対象部分の平面方向における位置が特定可能となるよう、加熱対象部分を検出することである。加熱対象物60の高さ方向において加熱対象部分を検出するということは、例えば、加熱対象部分の高さ方向における位置が特定可能となるよう、加熱対象部分を検出することである。同様に、加熱対象物60の平面方向と高さ方向との組み合わせにおいて加熱対象部分を検出するということは、例えば、加熱対象部分の平面方向と高さ方向との組み合わせにおける位置が特定可能となるよう、加熱対象部分を検出することである。 The detection unit 20 detects a heating target portion in the two-dimensional direction or the three-dimensional direction of the heating target 60, for example. The detection unit 20 detects, for example, a heating target portion in at least one of the planar direction and the height direction of the heating target 60. The plane direction may be considered as a horizontal direction, for example. The detection unit 20 detects a portion to be heated in, for example, a plane direction or a combination of the plane direction and the height direction of the object 60 to be heated. Detecting the heating target portion in the plane direction of the heating target 60 means, for example, detecting the heating target portion so that the position of the heating target portion in the planar direction can be specified. To detect the heating target portion in the height direction of the heating target object 60 means, for example, to detect the heating target portion so that the position of the heating target portion in the height direction can be specified. Similarly, detecting the heating target portion in the combination of the planar direction and the height direction of the heating target 60 means that, for example, the position of the heating target portion in the combination of the planar direction and the height direction can be specified. That is, to detect the portion to be heated.
 加熱対象物60の平面方向において加熱対象部分を検出するということは、例えば、加熱対象物60の幅方向の位置と長手方向の位置との組合せで表すことができる加熱対象部分の位置を検出することである。平面方向において加熱対象部分を検出するということは、例えば、水平方向における加熱対象部分の位置を検出することであってもよい。加熱対象部分が領域で表される場合、加熱対象部分の位置は、加熱対象部分の領域の位置と考えてもよい。かかることは以下においても同様である。平面方向において加熱対象部分を検出することは、例えば、加熱対象物60の表面61aまたは裏面61bや、加熱対象物60を水平面等に投影した面内において、加熱対象部分を示す位置を検出することであってもよい。 To detect the heating target portion in the planar direction of the heating target 60 means, for example, to detect the position of the heating target portion that can be represented by a combination of the position in the width direction and the position in the longitudinal direction of the heating target 60. That is. Detecting the portion to be heated in the plane direction may be, for example, detecting the position of the portion to be heated in the horizontal direction. When the heating target portion is represented by a region, the position of the heating target portion may be considered as the position of the region of the heating target portion. The same applies to the following. Detecting the portion to be heated in the plane direction includes, for example, detecting a position indicating the portion to be heated in the surface 61a or the back surface 61b of the object to be heated 60 or in a plane where the object to be heated 60 is projected on a horizontal plane or the like. It may be.
 なお、加熱対象部分の平面方向における位置が特定可能であれば、加熱対象物60の平面方向において加熱対象部分を検出することは、加熱対象物60の長手方向において加熱対象部分を検出することであっても良く、加熱対象物60の幅方向において加熱対象部分を検出することであってもよい。例えば、加熱対象物60が、選択的集中加熱が可能な範囲内に収まる十分に幅が狭いストライプ状や糸状のものである場合、この加熱対象物60の長手方向において、加熱対象部分を検出することは、この加熱対象物60の平面方向において加熱対象部分を検出することと考えてもよい。例えば、加熱対象物60が連続的に一定速度で長手方向に移動している場合、加熱対象部分の長手方向の位置は、加熱対象部分が検出されてからの移動時間で特定可能である。加熱対象物60の幅方向において加熱対象部分を検出することは、加熱対象物60の平面方向において加熱対象物を検出することと考えてもよい。 If the position of the heating target portion in the planar direction can be specified, detecting the heating target portion in the planar direction of the heating target 60 is performed by detecting the heating target portion in the longitudinal direction of the heating target 60. Alternatively, detection of a heating target portion in the width direction of the heating target 60 may be performed. For example, in a case where the heating target 60 is a stripe or a thread having a sufficiently narrow width within a range where selective concentrated heating is possible, a heating target portion is detected in the longitudinal direction of the heating target 60. This may be considered as detecting the heating target portion in the plane direction of the heating target 60. For example, when the heating target 60 is continuously moving in the longitudinal direction at a constant speed, the position of the heating target portion in the longitudinal direction can be specified by the moving time since the detection of the heating target portion. Detecting the heating target portion in the width direction of the heating target 60 may be considered as detecting the heating target in the planar direction of the heating target 60.
 加熱対象物60の高さ方向とは、例えば、加熱対象物60の表面61a、裏面61bまたは加熱対象物60が載置される面等に垂直な方向である。高さ方向は、加熱対象物60の深さ方向や鉛直方向と考えてもよい。加熱対象物60の高さ方向において加熱対象部分を検出するということは、例えば、加熱対象部分の高さ方向における位置が特定可能となるよう、加熱対象部分を検出することである。加熱対象物60の高さ方向において加熱対象部分を検出するということは、例えば、加熱対象部分の、加熱対象物60の表面や裏面等の基準となる高さ位置からの深さ方向の位置や高さ方向の位置を検出することである。高さ方向において加熱対象部分を検出するということは、加熱対象物の鉛直方向の位置を検出することであってもよい。なお、本実施の形態においては、一例として、加熱対象物60の表面61a側および裏面61b側で加熱対象部分を検出することによって、異なる深さにおいて加熱対象部分を検出する場合について説明する。なお、検出手段20が、加熱対象物60の平面方向においてのみ加熱対象部分を検出する場合、検出手段20は、例えば、容器10内に配置された加熱対象物60の表面61a側および裏面61b側の一方についてのみ加熱対象部分を検出してもよい。 The height direction of the heating target 60 is, for example, a direction perpendicular to the front surface 61a, the back surface 61b of the heating target 60, the surface on which the heating target 60 is placed, or the like. The height direction may be considered as the depth direction or the vertical direction of the heating target 60. To detect the heating target portion in the height direction of the heating target object 60 means, for example, to detect the heating target portion so that the position of the heating target portion in the height direction can be specified. To detect the heating target portion in the height direction of the heating target 60 means, for example, that the position of the heating target portion in the depth direction from a reference height position such as the front surface or the back surface of the heating target 60 or It is to detect the position in the height direction. To detect the portion to be heated in the height direction may be to detect the position of the object to be heated in the vertical direction. In the present embodiment, as an example, a case will be described in which the heating target portions are detected at different depths by detecting the heating target portions on the front surface 61a side and the rear surface 61b side of the heating target object 60. When the detection unit 20 detects the heating target portion only in the plane direction of the heating target 60, the detection unit 20 may be, for example, the front surface 61a side and the back surface 61b side of the heating target 60 arranged in the container 10. The heating target portion may be detected for only one of them.
 本実施の形態においては、検出手段20が、ベルトコンベア50により容器10内に搬入される加熱対象物60について、加熱対象物60の表面61a側の幅方向、および裏面61b側の幅方向において、順次、加熱対象部分を検出する場合について説明する。 In the present embodiment, for the heating target 60 carried into the container 10 by the belt conveyor 50, the detection unit 20 detects the heating target 60 in the width direction on the front surface 61a side and the width direction on the back surface 61b side. The case of sequentially detecting the portion to be heated will be described.
 検出手段20は、例えば、加熱対象物60の状態を示す情報を取得して、取得した情報を用いて、加熱対象部分を検出する。加熱対象物60の状態を示す情報は、例えば、加熱対象物60の状態によって変化する情報である。加熱対象物60の状態を示す情報は、例えば、加熱対象物60の状態が、加熱不足等の加熱が必要な状態である場合と、加熱が必要でない状態である場合とで異なるものとなる情報である。加熱対象物の状態を示す情報とは、例えば、加熱対象物の温度や、圧力や、水分量や、色の情報のうちの1以上である。検出手段20が取得する加熱対象物の状態を示す情報は、例えば、加熱対象物60の1または異なる複数の部分についてそれぞれ取得した加熱対象物の状態を示す情報であってもよい。例えば、検出手段20が取得する加熱対象物の状態を示す情報は、加熱対象物60についての温度分布、圧力分布、水分量の分布および色の分布のうちの1以上であってもよい。以下、本実施の形態においては、検出手段20が取得する加熱対象物60の状態を示す情報が温度である場合について説明する。 The detection unit 20 acquires, for example, information indicating the state of the object 60 to be heated, and detects the portion to be heated using the acquired information. The information indicating the state of the heating target 60 is, for example, information that changes depending on the state of the heating target 60. The information indicating the state of the heating target 60 is, for example, different information depending on whether the state of the heating target 60 is a state requiring heating such as insufficient heating and a state not requiring heating. It is. The information indicating the state of the heating target is, for example, one or more of temperature, pressure, moisture content, and color information of the heating target. The information indicating the state of the heating target acquired by the detection unit 20 may be, for example, information indicating the state of the heating target acquired for one or a plurality of different portions of the heating target 60. For example, the information indicating the state of the heating target obtained by the detection unit 20 may be one or more of a temperature distribution, a pressure distribution, a water content distribution, and a color distribution of the heating target 60. Hereinafter, in the present embodiment, a case will be described in which the information indicating the state of the heating target 60 acquired by the detection unit 20 is a temperature.
 検出手段20は、例えば、加熱対象物60の平面方向および高さ方向の少なくとも一方において、温度が低い部分を検出し、検出した温度が低い部分を、加熱対象部分として検出する。検出した温度が低い部分は、例えば、加熱が必要な部分や、加熱が不足している部分等であってもよい。温度が低い部分とは、例えば、温度が予め決められた閾値よりも低い部分であってもよく、加熱対象物60の他の部分や、加熱対象物60の複数の部分の平均値よりも温度が低い部分や、閾値以上温度が低い部分であってもよい。 The detection unit 20 detects, for example, a portion having a low temperature in at least one of the planar direction and the height direction of the heating target 60, and detects a detected portion having a low temperature as a heating target portion. The detected portion having a low temperature may be, for example, a portion requiring heating or a portion having insufficient heating. The portion having a low temperature may be, for example, a portion in which the temperature is lower than a predetermined threshold, and the temperature may be lower than the average value of other portions of the heating target 60 or a plurality of portions of the heating target 60. May be low or a temperature may be lower than the threshold.
 なお、検出手段20は、通常、一の加熱対象物60の一以上の部分を加熱対象部分として検出するが、複数の物体で構成される加熱対象物60のうちの、一以上の加熱の対象となる物体(例えば、加熱が必要な物体や加熱が不足している物体等)を、加熱対象部分として検出するようにしてもよく、検出しないようにしてもよい。例えば、加熱対象物60の加熱対象部分は、直方体状の加熱対象物60等の一の加熱対象物60の1以上の部分であってもよい。また、加熱対象物60の加熱対象部分は、例えば、複数のペレットや固形物等の物体で構成される加熱対象物60のうちの、1以上の物体であってもよく、粉体やゲル等の加熱対象物60の一部分であってもよい。 Note that the detection unit 20 normally detects one or more portions of one heating target 60 as a heating target portion, but detects one or more heating targets of the heating target 60 including a plurality of objects. (For example, an object that needs to be heated or an object that is insufficiently heated) may be detected as a portion to be heated, or may not be detected. For example, the heating target portion of the heating target 60 may be one or more portions of one heating target 60 such as a rectangular parallelepiped heating target 60. In addition, the heating target portion of the heating target 60 may be, for example, one or more objects of the heating target 60 composed of a plurality of objects such as pellets and solids, such as powder and gel. May be a part of the object 60 to be heated.
 以下、本実施の形態においては、検出手段20が、第一のセンサ201aおよび第二のセンサ201bと、検出処理部202とを有しており、これらを用いて、加熱対象物についての状態を示す情報から、加熱対象物60の加熱対象部分を検出する場合について説明する。なお、第一のセンサ201aと第二のセンサ201bとを区別しない場合、単にセンサ201と呼ぶ場合がある。ただし、検出手段20は、このような構成に限定されるものではない。 Hereinafter, in the present embodiment, the detection unit 20 has a first sensor 201a and a second sensor 201b, and a detection processing unit 202, and uses these to determine the state of the heating target. A case where the heating target portion of the heating target 60 is detected from the information shown will be described. When the first sensor 201a and the second sensor 201b are not distinguished, they may be simply referred to as the sensor 201. However, the detecting means 20 is not limited to such a configuration.
 第一のセンサ201aおよび第二のセンサ201bは、加熱対象物60の加熱対象部分を検出するために用いられるセンサである。第一のセンサ201aが加熱対象物60の表面61a側の温度分布を取得するセンサであり、第二のセンサ201bが加熱対象物60の裏面61b側の温度分布を取得するセンサである。第一のセンサ201aおよび第二のセンサ201bは、例えば、非接触で温度分布を取得する放射温度計等のセンサである。放射温度計は、例えば、物体から放射される赤外線を検出素子で受光して、温度分布を取得する。放射温度計は、画像解析式の非接触温度センサであってもよい。図1および図2においては、矢印110は、第一のセンサ201aおよび第二のセンサ201bが受光する赤外線を模式的に示すものである。 The first sensor 201a and the second sensor 201b are sensors used to detect a heating target portion of the heating target 60. The first sensor 201a is a sensor for acquiring the temperature distribution on the front surface 61a side of the heating target 60, and the second sensor 201b is a sensor for acquiring the temperature distribution on the rear surface 61b side of the heating target 60. The first sensor 201a and the second sensor 201b are, for example, sensors such as a radiation thermometer that acquires a temperature distribution in a non-contact manner. The radiation thermometer receives, for example, infrared rays radiated from an object by a detection element and acquires a temperature distribution. The radiation thermometer may be an image analysis type non-contact temperature sensor. In FIGS. 1 and 2, an arrow 110 schematically indicates infrared rays received by the first sensor 201a and the second sensor 201b.
 本実施の形態においては、第一のセンサ201aおよび第二のセンサ201bは、容器10内の上部と下部の、出口102よりも入口101に近い位置に設けられている場合について説明する。 In the present embodiment, a description will be given of a case where the first sensor 201a and the second sensor 201b are provided at a position closer to the inlet 101 than the outlet 102 at the upper and lower portions in the container 10.
 第一のセンサ201aは、温度分布を検出可能な領域(以下、第一の検出領域205aと称す)が、ストライプ状の領域であるセンサである。第一の検出領域205aの形状は、例えば、幅方向が長手方向である直線状の形状である。この第一の検出領域205aの形状は、例えば、加熱対象物60の搬送方向に対して直交する方向に一次元的に配置された線状の領域と考えてもよい。第一のセンサ201aは、例えば、第一の検出領域205aが、ベルト501上に載置される加熱対象物60の表面61aに位置するとともに、その長手方向が、加熱対象物60の幅方向となるよう、容器10に取付けられている。これにより、検出手段20は、加熱対象物60の幅方向、において温度分布を取得して、幅方向において加熱対象部分を検出することが可能となる。幅方向は、ここでは、加熱対象物60の搬送方向に対して直交する方向である。例えば、検出手段20は、加熱対象物60の搬送方向に対して直交する方向する方向において一次元的に線状に加熱対象部分を検出することができる。第一のセンサ201aは、例えば、温度を検出する部分(図示せず)が、直方体状の加熱対象物60の表面61aに対向するよう容器10の上方に取付けられる。なお、第一のセンサ201aは、上記のストライプ状の領域を走査して、温度分布を取得するセンサであってもよい。第一のセンサ201aは、例えば、ストライプ状の第一の検出領域205aが、幅方向において加熱対象物60全体に横切るように取付けられていることが好ましい。なお、以下、ベルト501の幅方向および直方体状の加熱対象物60の幅方向を、単に幅方向と呼ぶ場合がある。 The first sensor 201a is a sensor in which a region where a temperature distribution can be detected (hereinafter, referred to as a first detection region 205a) is a stripe-shaped region. The shape of the first detection area 205a is, for example, a linear shape whose width direction is the longitudinal direction. The shape of the first detection area 205a may be considered, for example, as a linear area one-dimensionally arranged in a direction orthogonal to the transport direction of the heating target 60. In the first sensor 201a, for example, the first detection region 205a is located on the surface 61a of the heating target 60 placed on the belt 501, and its longitudinal direction is the same as the width direction of the heating target 60. So that it is attached to the container 10. Thereby, the detecting unit 20 can acquire the temperature distribution in the width direction of the heating target 60 and detect the heating target portion in the width direction. Here, the width direction is a direction orthogonal to the transport direction of the heating target 60. For example, the detection unit 20 can detect the heating target portion in a one-dimensional linear manner in a direction orthogonal to the transport direction of the heating target 60. The first sensor 201a is mounted above the container 10 such that, for example, a portion (not shown) for detecting temperature faces the surface 61a of the rectangular parallelepiped heating object 60. Note that the first sensor 201a may be a sensor that scans the above-mentioned stripe-shaped area to obtain a temperature distribution. It is preferable that the first sensor 201a is attached so that, for example, the first detection region 205a in a stripe shape crosses the entire heating target 60 in the width direction. Hereinafter, the width direction of the belt 501 and the width direction of the rectangular parallelepiped heating object 60 may be simply referred to as the width direction.
 第二のセンサ201bは、温度を検出する部分(図示せず)が、加熱対象物60の裏面61bに対向するよう容器10の下方に取付けられ、温度分布を検出可能な領域(以下、第二の検出領域205b)が、加熱対象物60の裏面61b側に位置する点を除けば、第一のセンサ201aと同様であるため、ここでの詳細な説明は省略する。 The second sensor 201b has a portion (not shown) for detecting a temperature, which is attached below the container 10 so as to face the back surface 61b of the object 60 to be heated, and is capable of detecting a temperature distribution (hereinafter referred to as a second region). Is the same as the first sensor 201a except that the detection region 205b) is located on the back surface 61b side of the heating target 60, and therefore detailed description is omitted here.
 なお、加熱対象物60の裏面61b側と、第二のセンサ201bとの間に、メッシュ状のベルト501等の開口部を有するベルトを用いることで、第二の検出領域205bの温度分布を取得することができる。また、加熱対象物60の裏面61b側と、第二のセンサ201bとの間に、図示しない複数のローラ等が存在したとしても、このローラ同士の間のローラが存在しない部分が第二の検出領域205bとなるよう第二のセンサ201bを設けることで、第二の検出領域205bの温度分布を取得することができる。 The temperature distribution of the second detection area 205b is obtained by using a belt having an opening such as a mesh belt 501 between the back surface 61b of the heating target 60 and the second sensor 201b. can do. Further, even if a plurality of rollers (not shown) exist between the back surface 61b side of the heating target 60 and the second sensor 201b, a portion where there is no roller between the rollers is the second detection. By providing the second sensor 201b to be in the region 205b, the temperature distribution of the second detection region 205b can be obtained.
 本実施の形態においては、第一の検出領域205aと、第二の検出領域205bとの、加熱対象物60の移動方向における位置が一致する場合について説明するが、一致していなくてもよい。なお、第一の検出領域205aと、第二の検出領域205bとを区別しない場合、単に、検出領域205と呼ぶ。検出領域205は、観測視野と考えてもよい。 In the present embodiment, a case will be described where the positions of the first detection region 205a and the second detection region 205b in the moving direction of the heating target 60 match, but they do not have to match. When the first detection area 205a and the second detection area 205b are not distinguished, they are simply referred to as a detection area 205. The detection area 205 may be considered as an observation field.
 ストライプ状の第一の検出領域205aおよびストライプ状の第二の検出領域205bの幅、すなわち第一の検出領域205aおよび第二の検出領域205bの加熱対象物60の移動方向の長さは問わないが、同じであることが好ましい。 The width of the striped first detection region 205a and the striped second detection region 205b, that is, the length of the first detection region 205a and the second detection region 205b in the moving direction of the heating target 60 does not matter. Are preferably the same.
 第一のセンサ201aおよび第二のセンサ201bは、ベルトコンベア50により入口101から搬入された加熱対象物60の温度分布を取得する。例えば、ベルトコンベア50により、加熱対象物60が容器10内の長手方向に連続的に移動している場合、第一のセンサ201aは、ストライプ状の第一の検出領域205aを通過する際の加熱対象物60の表面61a側の温度分布を取得し、第二のセンサ201bは、ストライプ状の第二の検出領域205bを通過する際の加熱対象物60の裏面61b側の温度分布を取得する。第一のセンサ201aおよび第二のセンサ201bは、例えば、予め決められた時間ごとに、順次、検出領域205を通過する加熱対象物60の温度分布を取得してもよい。この時間は、例えば、加熱対象物60の任意の一点が、検出領域205を通過するために要する時間である。第一のセンサ201aおよび第二のセンサ201bが、例えば、順次、検出領域205を通過する加熱対象物60の温度分布を取得することで、結果的に加熱対象物60の検出領域205を通過した部分について、表面61a側の平面方向における温度分布と、裏面61b側の平面方向における温度分布とを取得することが可能となる。例えば、この表面61a側の平面方向における温度分布と、裏面61b側の平面方向における温度分布とを、異なる深さにおける平面方向の温度分布と考えた場合、検出手段20は、加熱対象物60の検出領域205を通過した部分について、結果的に、平面方向と高さ方向との組み合わせについて温度分布を取得することができると考えてもよい。なお、第一のセンサ201aおよび第二のセンサ201bが取得する温度分布における加熱対象物60の幅方向の位置(例えば、座標)と、第一の検出領域205aおよび第二の検出領域205b内における加熱対象物60の幅方向の位置(例えば、座標)との位置関係は予め対応づけておくことが好ましい。 The first sensor 201a and the second sensor 201b acquire the temperature distribution of the heating target 60 carried in from the entrance 101 by the belt conveyor 50. For example, when the heating object 60 is continuously moving in the longitudinal direction in the container 10 by the belt conveyor 50, the first sensor 201a performs heating when passing through the stripe-shaped first detection area 205a. The temperature distribution on the front surface 61a side of the object 60 is acquired, and the second sensor 201b acquires the temperature distribution on the back surface 61b side of the heating object 60 when passing through the second detection region 205b in a stripe shape. For example, the first sensor 201a and the second sensor 201b may sequentially acquire the temperature distribution of the heating target 60 passing through the detection region 205 at predetermined time intervals. This time is, for example, the time required for an arbitrary point of the heating target 60 to pass through the detection area 205. The first sensor 201a and the second sensor 201b, for example, sequentially acquire the temperature distribution of the heating target 60 passing through the detection region 205, and as a result, have passed the detection region 205 of the heating target 60. With respect to the portion, the temperature distribution in the plane direction on the front surface 61a side and the temperature distribution in the plane direction on the back surface 61b side can be obtained. For example, when the temperature distribution in the plane direction on the front surface 61a side and the temperature distribution in the plane direction on the back surface 61b side are considered to be temperature distributions in the plane direction at different depths, the detection unit 20 determines the temperature distribution of the heating target 60. As a result, it may be considered that a temperature distribution can be obtained for a combination of the plane direction and the height direction for a portion that has passed through the detection region 205. In addition, the position (for example, coordinates) in the width direction of the heating target 60 in the temperature distribution acquired by the first sensor 201a and the second sensor 201b, and the position in the first detection area 205a and the second detection area 205b. It is preferable that the positional relationship with the position (for example, coordinates) of the heating target 60 in the width direction is associated in advance.
 また、第一のセンサ201aおよび第二のセンサ201bの幅方向における温度分布を取得する際の温度を検出する点の数や、分解能等は問わない。 Further, the number of points for detecting the temperature and the resolution at the time of acquiring the temperature distribution in the width direction of the first sensor 201a and the second sensor 201b are not limited.
 なお、センサ201は、検出領域205が幅方向に向かってストライプ状に伸びるセンサでなくてもよい。また、第一のセンサ201aおよび第二のセンサ201bの少なくとも一方は、例えば、温度分布を検出可能な検出領域を、加熱対象物60の幅方向に走査可能なセンサであってもよい。また、第一のセンサ201aおよび第二のセンサ201bの少なくとも一方は、例えば、スポット状の領域の温度を非接触で測定可能な複数の温度センサを、そのスポット状の領域が、加熱対象物60の幅方向に配列されるよう設けたものであってもよい。また、センサ201は、非接触で温度分布を取得可能なセンサであることが好ましいが、温度分布を取得可能であれば、接触式のセンサであってもよい。例えば、センサ201は、加熱対象物60に接触させて温度を測定する複数の温度センサを、温度を測定する部分が幅方向に配列されるよう設けたものであってもよい。また、センサ201は、接触式の複数の温度センサを、温度を測定する部分が、加熱対象物60の移動方向における位置が同じであって、深さと幅方向の位置との組合せが異なるように設けたものであってもよい。ただし、加熱対象物と接触する複数の温度センサを用いる場合、無線通信等で測定した温度を示す情報を検出処理部202等に送信可能なものを用いることが好ましい。 The sensor 201 does not have to be a sensor in which the detection region 205 extends in a stripe shape in the width direction. In addition, at least one of the first sensor 201a and the second sensor 201b may be, for example, a sensor that can scan a detection region capable of detecting a temperature distribution in the width direction of the heating target 60. Further, at least one of the first sensor 201a and the second sensor 201b is, for example, a plurality of temperature sensors capable of measuring the temperature of a spot-shaped area in a non-contact manner. May be provided so as to be arranged in the width direction. The sensor 201 is preferably a sensor capable of acquiring a temperature distribution in a non-contact manner, but may be a contact sensor as long as the temperature distribution can be acquired. For example, the sensor 201 may be provided with a plurality of temperature sensors that measure the temperature by contacting the object to be heated 60 so that the portions for measuring the temperature are arranged in the width direction. In addition, the sensor 201 has a plurality of contact-type temperature sensors such that a portion for measuring temperature has the same position in the moving direction of the heating target 60 and a different combination of the depth and the position in the width direction. It may be provided. However, when a plurality of temperature sensors that come into contact with the object to be heated are used, it is preferable to use a sensor that can transmit information indicating the temperature measured by wireless communication or the like to the detection processing unit 202 or the like.
 検出処理部202は、第一のセンサ201aが取得した温度分布から、加熱対象物60の表面61a側の、第一の検出領域205aにおいて、加熱対象部分を検出する。例えば、検出処理部202は、第一のセンサ201aが取得した温度分布から、温度が低い部分を、加熱対象部分として検出する。通常、加熱対象物60において、加熱が不足している部分は、加熱が不足していない部分に対して温度が低くなるため、温度が低い部分を、加熱対象部分に検出することは、加熱不足の部分を検出することと考えてもよい。検出処理部202は、例えば、検出した加熱対象部分の位置を示す情報を取得する。ここでの位置を示す情報は、例えば、幅方向における位置を示す情報(幅方向の座標)である。 The detection processing unit 202 detects a heating target portion in the first detection area 205a on the surface 61a side of the heating target 60 from the temperature distribution acquired by the first sensor 201a. For example, from the temperature distribution acquired by the first sensor 201a, the detection processing unit 202 detects a portion having a low temperature as a portion to be heated. Usually, in the heating target 60, the portion where the heating is insufficient is lower in temperature than the portion where the heating is not insufficient. Therefore, to detect the low temperature portion as the heating target portion means that the heating is insufficient. May be considered to be detected. The detection processing unit 202 acquires, for example, information indicating the position of the detected heating target portion. The information indicating the position here is, for example, information indicating the position in the width direction (coordinates in the width direction).
 ここでの温度が低い部分とは、温度が予め決められた閾値以下である部分であってもよく、温度が、第一の検出領域205aの他の部分の最大値や最小値や平均値、中間値等の代表値よりも低い部分または閾値以上低い部分であっても良く、温度が、第一の検出領域205aの平均値や、中間値等よりも低い部分または予め決められた閾値以上低い部分等であってもよい。ここでの閾値等は、例えば、加熱対象物60の材質や、加熱の用途や、加熱後の温度の目標値等により異なる。検出処理部202が用いる閾値等は、例えば、実験やシミュレーション等により取得することが好ましい。例えば、検出処理部202は、温度分布から、温度が低い部分を検出し、この検出した部分の、幅方向における位置を示す情報(例えば、幅方向の座標)を、加熱対象部分の位置を示す情報として取得してもよい。加熱対象部分が、加熱対象物60の幅方向において連続して存在している場合、この加熱対象部分の範囲を示す情報(例えば、幅方向の座標の範囲を示す情報)を、加熱対象部分の位置を示す情報として取得してもよい。ここでの幅方向における位置は、容器10を基準としてもよく、ベルト501等を基準としてもよく、加熱対象物60を基準としてもよい。かかることは、以下の幅方向における位置や、幅方向の位置についても同様である。 Here, the low temperature portion may be a portion where the temperature is equal to or lower than a predetermined threshold, and the temperature may be a maximum value, a minimum value, or an average value of other portions of the first detection region 205a. The temperature may be a portion lower than a representative value such as an intermediate value or a portion lower than a threshold, and the temperature may be lower than the average value of the first detection region 205a, a portion lower than the intermediate value or a predetermined threshold or more. It may be a part or the like. The threshold and the like here differ depending on, for example, the material of the heating target 60, the purpose of heating, the target value of the temperature after heating, and the like. It is preferable that the threshold value and the like used by the detection processing unit 202 be acquired by, for example, an experiment or a simulation. For example, the detection processing unit 202 detects a portion having a low temperature from the temperature distribution, and indicates information indicating the position of the detected portion in the width direction (for example, coordinates in the width direction) to indicate the position of the portion to be heated. It may be obtained as information. When the heating target portion is continuously present in the width direction of the heating target 60, information indicating the range of the heating target portion (for example, information indicating the range of the coordinates in the width direction) is transmitted to the heating target portion. You may acquire as information which shows a position. The position in the width direction here may be based on the container 10, the belt 501 or the like, or the heating target 60. The same applies to the following positions in the width direction and the positions in the width direction.
 検出処理部202は、第二のセンサ201bが取得した温度分布から、加熱対象物60の裏面61b側の、第二の検出領域205bにおいて、加熱対象部分を検出する。この処理は、上記の検出処理部202が、加熱対象部分を検出する処理において、第二の検出領域205bを第二の検出領域205b、加熱対象物60の表面61a側を、裏面61b側と読み替えた処理と同様であるため、ここでは、詳細な説明を省略する。 The detection processing unit 202 detects a heating target portion in the second detection area 205b on the back surface 61b side of the heating target 60 from the temperature distribution acquired by the second sensor 201b. In this process, in the process in which the detection processing unit 202 detects the portion to be heated, the second detection region 205b is read as the second detection region 205b, and the front surface 61a of the heating target 60 is read as the back surface 61b. Since the processing is the same as that described above, a detailed description is omitted here.
 なお、検出処理部202が、温度の低い部分を検出する処理は、上記の処理に限定されるものではない。例えば、検出領域205を予め幅方向に複数の領域に分割しておくようにし、検出処理部202は、センサ201aが取得した温度分布を用いて、分割された各領域の温度の平均値を取得し、この平均値が、閾値以下である領域を、加熱対象部分として検出してもよい。検出領域205を幅方向に分割する、ということは、例えば、検出領域205について取得された温度分布を、幅方向に分割すること等であってもよい。ここで分割される検出領域205の複数の領域のそれぞれは、後述する複数の選択的集中加熱領域のいずれかと対応づけられた領域であってもよい。 The process in which the detection processing unit 202 detects a low-temperature portion is not limited to the above process. For example, the detection region 205 is divided into a plurality of regions in the width direction in advance, and the detection processing unit 202 obtains an average value of the temperatures of the divided regions using the temperature distribution obtained by the sensor 201a. Then, a region where the average value is equal to or smaller than the threshold value may be detected as a heating target portion. Dividing the detection region 205 in the width direction may be, for example, dividing the temperature distribution acquired for the detection region 205 in the width direction. Here, each of the plurality of divided detection regions 205 may be a region associated with one of a plurality of selective concentrated heating regions described later.
 また、第一のセンサ201aが取得した温度分布から、温度が低い部分を検出する際の閾値と、第二のセンサ201bが取得した温度分布から、温度が低い部分を検出する際の閾値とは同じ値であっても良く、異なる値であってもよい。例えば、加熱対象物60の裏面61b側と、第二のセンサ201bとの間に、メッシュ状のベルト等のベルト501等が存在する場合、第二のセンサ201bの温度検出の感度が低下する可能性があるため、この場合、この感度の低下にあわせて、閾値を変更してもよい。 Further, a threshold for detecting a low temperature portion from the temperature distribution obtained by the first sensor 201a and a threshold for detecting a low temperature portion from the temperature distribution obtained by the second sensor 201b are as follows. The values may be the same or different. For example, when a belt 501 such as a mesh belt exists between the back surface 61b of the heating target 60 and the second sensor 201b, the temperature detection sensitivity of the second sensor 201b may be reduced. In this case, the threshold may be changed in accordance with the decrease in sensitivity.
 3つのマイクロ波照射手段401は、それぞれマイクロ波を照射する。ここでは、この3つのマイクロ波照射手段401を、第一のマイクロ波照射手段401a、第二のマイクロ波照射手段401b、および第三のマイクロ波照射手段401cとする。ただし、これらを区別しない場合は、単にマイクロ波照射手段と呼ぶ。この3つのマイクロ波照射手段401は、出射するマイクロ波の位相をそれぞれ制御可能なものである。なお、加熱装置1が有するマイクロ波照射手段401の数は3つに限定されるものではなく、2以上であればよい。ただし、3以上であることが好ましい。ここでは、この3つのマイクロ波照射手段401が全て同じものであるとするが、同じものでなくてもよい。 (3) Each of the three microwave irradiation units 401 irradiates a microwave. Here, the three microwave irradiation units 401 are a first microwave irradiation unit 401a, a second microwave irradiation unit 401b, and a third microwave irradiation unit 401c. However, when these are not distinguished, they are simply called microwave irradiation means. The three microwave irradiation means 401 can control the phases of the emitted microwaves, respectively. In addition, the number of the microwave irradiation means 401 included in the heating device 1 is not limited to three, and may be two or more. However, the number is preferably 3 or more. Here, it is assumed that the three microwave irradiation units 401 are all the same, but they need not be the same.
 照射状態変化手段40は、3つのマイクロ波照射手段401にそれぞれマイクロ波を照射させる。照射状態変化手段40は、検出手段20が検出した加熱対象部分が集中的に加熱されるよう2以上のマイクロ波照射手段401が照射するマイクロ波の照射状態を変化させる。本実施の形態においては、照射状態変化手段40が、検出手段20が検出した加熱対象部分が集中加熱されるよう位相を制御したマイクロ波を、3つのマイクロ波照射手段401のうちの2以上に照射させる場合を例に挙げて説明する。 The irradiation state changing means 40 irradiates the microwaves to the three microwave irradiation means 401 respectively. The irradiation state changing unit 40 changes the irradiation state of the microwaves irradiated by the two or more microwave irradiation units 401 so that the heating target portion detected by the detection unit 20 is intensively heated. In the present embodiment, the irradiation state changing unit 40 applies the microwave whose phase is controlled so that the heating target portion detected by the detection unit 20 is concentratedly heated to two or more of the three microwave irradiation units 401. The case of irradiation will be described as an example.
 加熱対象部分が集中加熱される、ということは、例えば、加熱対象物60の全体が加熱されず、加熱対象部分、または、加熱対象部分とその近傍の領域が選択的に集中加熱されることである。加熱対象部分が選択的に集中加熱される、ということは、例えば、加熱処理装置の加熱対象部分、または加熱対象部分とその近傍を含む領域が、他の部分よりも強く加熱されることであってもよい。他の部分よりも強く加熱される、ということは、マイクロ波の照射による発熱量が他の部分よりも大きくなることと考えてもよく、例えば、マイクロ波の照射による発熱量が他の部分の発熱量よりも閾値以上大きくなることと考えてもよい。 The fact that the heating target portion is concentratedly heated means that, for example, the entire heating target object 60 is not heated, and the heating target portion or the heating target portion and a region in the vicinity thereof are selectively concentratedly heated. is there. The fact that the heating target portion is selectively concentratedly heated means that, for example, the heating target portion of the heat treatment apparatus or a region including the heating target portion and its vicinity is heated more than other portions. You may. Heating more strongly than other parts may mean that the amount of heat generated by microwave irradiation is greater than that of other parts.For example, the amount of heat generated by microwave irradiation may be larger than other parts. It may be considered that the heat generation amount becomes larger than the threshold value by more than the threshold value.
 加熱対象部分が集中加熱されるよう位相を制御したマイクロ波を、2以上のマイクロ波照射手段401から照射させる、ということは、例えば、加熱対象部分または加熱対象部分とその近傍の部分のマイクロ波の強度が、加熱対象物60の他の部分のマイクロ波の強度よりも高くなる(例えば、閾値以上高くなる)よう、位相をそれぞれ制御したマイクロ波を、2以上のマイクロ波照射手段401から照射することであってもよい。ここでのマイクロ波の強度は、マイクロ波の電界強度であってもよく、磁界強度であってもよい。かかることは以下においても同様である。また、加熱対象部分が集中加熱されるよう位相を制御したマイクロ波を、2以上のマイクロ波照射手段401から照射する、ということは、例えば、加熱対象部分または加熱対象部分とその近傍の部分において2以上のマイクロ波照射手段401から照射されたマイクロ波が強め合い、他の部分においてはマイクロ波が強め合わないよう、位相をそれぞれ制御したマイクロ波を、2以上のマイクロ波照射手段401から照射することであってもよい。ここでのマイクロ波照射手段401から照射されたマイクロ波は、マイクロ波照射手段401から照射され、容器10の内部等で反射されたマイクロ波も含むと考えてもよい。容器10の内壁にマイクロ波吸収性材料等を設けた場合ように、マイクロ波が反射しないようにした場合は、この限りではない。2以上のマイクロ波照射手段401から照射されたマイクロ波は、例えば、干渉等によって容器10内の各所において強め合ったり弱め合ったりするため、位相を個別に制御することで、集中加熱を行うことが可能となる。なお、照射状態変化手段40は、2以上のマイクロ波照射手段401の位相をそれぞれ制御して、集中加熱を行なわせるものであればよく、3つのマイクロ波照射手段401が照射するマイクロ波の位相を個別に制御して、加熱対象部分を集中加熱しても良く、3つのマイクロ波照射手段401のうちの2以上が照射するマイクロ波の位相を個別に制御して、加熱対象部分を集中加熱してもよい。この2以上のマイクロ波照射手段401の組合せは、集中加熱を行なう位置に応じて変更してもよい。2以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御するということは、2以上のマイクロ波のうちの一部だけのマイクロ波の位相を制御することであってもよい。 To irradiate the microwave whose phase is controlled so that the heating target portion is concentratedly heated from the two or more microwave irradiating units 401 means, for example, that the microwave is applied to the heating target portion or the heating target portion and the microwave in the vicinity thereof. Is irradiated from two or more microwave irradiation units 401 with microwaves whose phases are controlled such that the intensity of the microwave is higher (for example, higher than a threshold) than the intensity of the microwaves in the other parts of the heating target 60. It may be to do. The microwave intensity here may be the electric field intensity of the microwave or the magnetic field intensity. The same applies to the following. In addition, irradiating the microwave whose phase is controlled so that the heating target portion is concentratedly heated from the two or more microwave irradiation units 401 means that, for example, the heating target portion or the heating target portion and the portion in the vicinity thereof Microwaves whose phases are controlled are radiated from the two or more microwave radiating means 401 so that the microwaves radiated from the two or more microwave radiating means 401 reinforce each other and the microwaves do not reinforce each other. It may be to do. Here, the microwave irradiated from the microwave irradiation unit 401 may be considered to include the microwave irradiated from the microwave irradiation unit 401 and reflected inside the container 10 or the like. This is not the case when microwaves are not reflected, such as when a microwave absorbing material or the like is provided on the inner wall of the container 10. The microwaves irradiated from the two or more microwave irradiation units 401 are strengthened or weakened at various points in the container 10 due to, for example, interference. Therefore, the phases are individually controlled to perform centralized heating. Becomes possible. The irradiation state changing unit 40 may be any unit that controls the phases of the two or more microwave irradiation units 401 to perform the concentrated heating, and the phases of the microwaves irradiated by the three microwave irradiation units 401 may be used. May be individually controlled to heat the portion to be heated intensively, and the phases of the microwaves radiated by two or more of the three microwave irradiation means 401 may be individually controlled to heat the portion to be heated intensively. May be. The combination of the two or more microwave irradiation units 401 may be changed according to the position where the concentrated heating is performed. Controlling the phase of the microwave radiated by the two or more microwave irradiation means 401 may be controlling the phase of the microwave of only a part of the two or more microwaves.
 照射状態変化手段40は、例えば、以下のように、加熱対象部分が集中加熱されるよう、2以上のマイクロ波照射手段401から位相を制御したマイクロ波を照射させる。例えば、後述するような照射管理情報格納部403等に、容器10内の予め決められた1以上、好ましくは2以上の領域が集中加熱されるようにするための、2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を制御するための情報を予め格納しておくようにし、照射状態変化手段40は、この照射管理情報格納部403等に格納されている1以上の領域を集中加熱するための位相を制御するための情報から、加熱対象部分が含まれる領域を集中加熱するための位相を制御するための情報を読み出し、この情報に応じた位相のマイクロ波が照射されるよう各マイクロ波照射手段401から制御することにより、加熱対象部分を集中加熱する。照射管理情報格納部403等に予め格納されている位相を制御するための情報は、予め決められた2以上の領域をそれぞれ集中加熱するための各マイクロ波照射手段401のマイクロ波出力についての設定を示す情報と考えてもよい。かかることは、他の実施の形態等についても同様である。ただし、照射状態変化手段40が、検出手段20が検出した加熱対象部分が集中加熱されるようマイクロ波照射手段401が照射するマイクロ波の位相を制御する処理等は、このような処理等に限定されるものではない。例えば、照射状態変化手段40は、検出手段20が検出した加熱対象部分の座標(例えば、中心位置の座標)等を取得し、2以上、好ましくは3つ全てのマイクロ波照射手段401がそれぞれマイクロ波を出射する位置と加熱対象部分との距離を算出し、この距離を用いて、2以上、好ましくは3つ全てのマイクロ波照射手段401がそれぞれ照射するマイクロ波が加熱対象部分において干渉によって強め合うよう、それぞれが出射するマイクロ波の位相を制御するようにしてもよい。例えば、加熱対象部分において、各マイクロ波照射手段401から照射されるマイクロ波が同位相となるように、各マイクロ波照射手段401から照射するマイクロ波の位相を制御する。例えば、加熱対象部分から各マイクロ波照射手段401のマイクロ波が照射される照射位置までの距離の差が、各マイクロ波照射手段401から照射されるマイクロ波の波長の整数倍となるように、位相を制御したマイクロ波を各マイクロ波照射手段401から照射する。 (4) The irradiation state changing means 40 irradiates microwaves whose phases are controlled from two or more microwave irradiation means 401 so that the heating target portion is heated intensively, for example, as described below. For example, two or more microwave irradiating means for intensively heating one or more, preferably two or more predetermined regions in the container 10 in an irradiation management information storage unit 403 or the like described later. The information for controlling the phases of the microwaves to be irradiated by the respective 401 is stored in advance, and the irradiation state changing unit 40 concentrates at least one area stored in the irradiation management information storage unit 403 or the like. From the information for controlling the phase for heating, the information for controlling the phase for intensively heating the area including the portion to be heated is read, and the microwave having the phase corresponding to this information is irradiated. By controlling from each microwave irradiation unit 401, the heating target portion is intensively heated. The information for controlling the phase stored in advance in the irradiation management information storage unit 403 and the like includes the setting of the microwave output of each microwave irradiation unit 401 for centrally heating two or more predetermined areas. May be considered as information indicating The same applies to other embodiments and the like. However, the processing in which the irradiation state changing means 40 controls the phase of the microwave radiated by the microwave irradiating means 401 so that the heating target portion detected by the detecting means 20 is concentratedly heated is limited to such processing and the like. It is not something to be done. For example, the irradiation state changing means 40 acquires the coordinates (for example, the coordinates of the center position) of the heating target portion detected by the detection means 20 and the like, and two or more, preferably all three microwave irradiation means 401 The distance between the position where the wave is emitted and the portion to be heated is calculated, and using this distance, the microwaves radiated by two or more, preferably all three, microwave irradiation means 401 are strengthened by interference at the portion to be heated. The phases of the microwaves emitted from each may be controlled so as to match. For example, the phase of the microwave radiated from each microwave irradiating unit 401 is controlled so that the microwave radiated from each microwave irradiating unit 401 has the same phase in the portion to be heated. For example, such that the difference in distance from the heating target portion to the irradiation position where the microwave of each microwave irradiation unit 401 is irradiated is an integral multiple of the wavelength of the microwave irradiated from each microwave irradiation unit 401. Microwaves whose phases are controlled are irradiated from each microwave irradiation means 401.
 なお、2以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御して、集中加熱を行なう技術については、特開2017-204459号公報等において公知であるため、ここでは詳細な説明は省略する。 A technique for controlling the phase of microwaves irradiated by two or more microwave irradiation units 401 to perform concentrated heating is known in Japanese Patent Application Laid-Open No. 2017-204449 or the like. Omitted.
 以下、本実施の形態の加熱装置に関連したシミュレーション試験結果について説明する。このシミュレーション試験は、複数のマイクロ波照射手段からそれぞれ照射されるマイクロ波の位相と、発熱密度分布との関連を調べるために行なわれたものである。ここでは、5つの異なる位置から、それぞれ、容器内に位相を制御したマイクロ波を照射するシミュレーション試験を行なった。 Hereinafter, simulation test results related to the heating device of the present embodiment will be described. This simulation test was performed to examine the relationship between the phases of the microwaves respectively radiated from a plurality of microwave irradiation means and the heat generation density distribution. Here, a simulation test was performed in which microwaves with controlled phases were irradiated into the container from five different positions.
 図12は、本実施の形態の加熱装置に関連したシミュレーション試験に用いられたモデルの斜視図(図12(a))、このモデルを上方からみた模式図(図12(b))、およびサンプルの模式図(図12(c))である。
 図13(a)~図13(c)は、図12に示したモデルを用いて行なわれた発熱密度分布のシミュレーション試験結果を示す図である。容器801内を上方から見た発熱密度分図を示している。
FIG. 12 is a perspective view (FIG. 12A) of a model used in a simulation test related to the heating device of the present embodiment, a schematic view of the model as viewed from above (FIG. 12B), and a sample. FIG. 12 is a schematic diagram of FIG.
FIGS. 13A to 13C are diagrams showing the results of a simulation test of the heat generation density distribution performed using the model shown in FIG. A diagram showing a heat generation density diagram when the inside of the container 801 is viewed from above is shown.
 まず、図12のモデルについて説明する。このモデルは、容器801と、加熱の対象となる9つのサンプル802(以下、サンプル802a~802iとする)と、5つの方形導波管(規格:WRJ-2)803(以下、方形導波管803a~803eとする)とを備えている。容器801は、x軸方向が600mm、y軸方向が600mm、z軸方向が900mmの直方体形状である。5つの方形導波管803a~803eのそれぞれのポート8031(以下、ポート8031a~8031eとする)は、容器801の上面(z軸方向の位置が最も高い面)に、開口部の長手方向が、y軸と平行となるよう配置されている。ポート8031aおよびポート8031bは、x軸方向の位置(例えば、x座標)が等しくなるよう配置され、ポート8031dおよびポート8031eは、x軸方向の位置が等しくなるよう配置されている。ポート8031cは、z軸方向からみて容器801の中心に配置されている。ポート8031aと容器801のポート8031aに近いx軸方向の端部とのx軸方向の間隔、ポート8031aとポート8031cとのx軸方向の間隔、ポート8031cとポート8031dとのx軸方向の間隔、およびポート8031dと容器801のポート8031dに近いx軸方向の端部とのx軸方向の間隔は等間隔であるとする。また、ポート8031aとポート8031dとは、y軸方向の位置(例えば、y座標)が等しくなるよう配置され、ポート8031bとポート8031eとは、y軸方向の位置が等しくなるよう配置されている。ポート8031aと容器801のポート8031aに近いy軸方向の端部とのy軸方向の間隔、ポート8031aとポート8031cとのy軸方向の間隔、ポート8031cとポート8031bとのy軸方向の間隔、およびポート8031bと容器801のポート8031bに近いy軸方向の端部とのy軸方向の間隔は等間隔であるとする。なお、ここでの、ポート8031a~8031eの位置の基準は、ポートの中心とする。ただし、ここでの間隔は、端部間の間隔であるとする。 First, the model of FIG. 12 will be described. This model includes a container 801, nine samples 802 to be heated (hereinafter, referred to as samples 802a to 802i), and five rectangular waveguides (standard: WRJ-2) 803 (hereinafter, rectangular waveguides). 803a to 803e). The container 801 has a rectangular parallelepiped shape of 600 mm in the x-axis direction, 600 mm in the y-axis direction, and 900 mm in the z-axis direction. The ports 8031 of the five rectangular waveguides 803a to 803e (hereinafter, referred to as ports 8031a to 8031e) are provided on the upper surface of the container 801 (the surface having the highest position in the z-axis direction). It is arranged to be parallel to the y-axis. The port 8031a and the port 8031b are arranged so that positions in the x-axis direction (for example, the x coordinate) are equal, and the ports 8031d and 8031e are arranged so that the positions in the x-axis direction are equal. The port 8031c is disposed at the center of the container 801 when viewed from the z-axis direction. A distance in the x-axis direction between the port 8031a and the end of the container 801 in the x-axis direction near the port 8031a, a distance in the x-axis direction between the port 8031a and the port 8031c, a distance in the x-axis direction between the port 8031c and the port 8031d, The distance between the port 8031d and the end of the container 801 in the x-axis direction near the port 8031d is assumed to be equal. Further, the port 8031a and the port 8031d are arranged so that the position (for example, the y coordinate) in the y-axis direction is equal, and the port 8031b and the port 8031e are arranged so that the position in the y-axis direction is equal. A distance in the y-axis direction between the port 8031a and the end of the container 801 in the y-axis direction near the port 8031a, a distance in the y-axis direction between the port 8031a and the port 8031c, a distance in the y-axis direction between the port 8031c and the port 8031b, The distance between the port 8031b and the end of the container 801 in the y-axis direction near the port 8031b is assumed to be equal. Note that the reference of the positions of the ports 8031a to 8031e is the center of the ports. However, the interval here is an interval between the ends.
 サンプルは、z軸方向から見た形状が直径50mmの円形であるz軸方向の高さが60mの円筒形形状を有している。各サンプル802は、厚さ20mmで、比誘電率ε'=50.2,比誘電損失ε"=2.811となる層8021と、厚さ20mmで、比誘電率ε'=23.23,比誘電損失ε"=1.208となる層8022と、厚さ20mmで、比誘電率ε'=9.743,比誘電損失ε"=0.399となる層8033と、がz軸方向に下から上に向かって積層された構成を有している。サンプル802は、x軸方向およびy軸方向に、3行3列で配置されている。各行の3つのサンプル802は、x軸方向の位置が、容器801のx軸方向の長さを五等分する三点に配置される。また、各列の3つのサンプル802は、y軸方向の位置が、容器801のx軸方向の長さを五等分する三点に配置される。サンプル802aはポート8031aの下方に、サンプル802cはポート8031bの下方に、サンプル802eはポート8031cの下方に、サンプル802gはポート8031dの下方に、サンプル802aはポート8031eの下方に、それぞれ配置されている。サンプル802bはサンプル802aとサンプル802cとの間に、サンプル802dはサンプル802aとサンプル802gとの間に、サンプル802fはサンプル802cとサンプル802iとの間に、サンプル802hはサンプル802gとサンプル802iとの間に、それぞれ配置されている。容器801の底面(z軸方向の位置が最も低い面)からz軸方向の距離が145mmとなる位置には、容器801をz方向に仕切るように、比誘電率ε'=2.1,比誘電損失ε"=0.0021となる厚さ5mmのPTFE(ポリテトラフルオロエチレン)板804が配置されており、各サンプル802a~802iは、このPTFE板804上に配置されている。 The sample has a cylindrical shape with a height of 60 m in the z-axis direction, which is a circle having a diameter of 50 mm as viewed from the z-axis direction. Each sample 802 has a thickness of 20 mm, a relative dielectric constant ε ′ = 50.2, a relative dielectric loss ε ″ = 2.811, a layer 8021 with a thickness of 20 mm, a relative dielectric constant ε ′ = 23.23, A layer 8022 having a relative dielectric loss ε ″ = 1.208 and a layer 8033 having a thickness of 20 mm and having a relative dielectric constant ε ′ = 9.743 and a relative dielectric loss ε ″ = 0.399 are arranged in the z-axis direction. Samples 802 are arranged in three rows and three columns in the x-axis direction and the y-axis direction, and three samples 802 in each row are stacked in the x-axis direction. Are arranged at three points that divide the length of the container 801 in the x-axis direction into five equal parts, and the three samples 802 in each row have the positions in the y-axis direction of the container 801 in the x-axis direction. The sample 802a is placed at three points that divide the length by five. 2c is located below the port 8031b, sample 802e is located below the port 8031c, sample 802g is located below the port 8031d, and sample 802a is located below the port 8031e. The sample 802d is arranged between the sample 802a and the sample 802g, the sample 802f is arranged between the sample 802c and the sample 802i, and the sample 802h is arranged between the sample 802g and the sample 802i. At a position where the distance in the z-axis direction is 145 mm from the bottom surface of 801 (the surface having the lowest position in the z-axis direction), the relative dielectric constant ε ′ = 2.1 and the relative dielectric constant so as to partition the container 801 in the z-direction. 5 mm thick PTFE (poly) with loss ε ″ = 0.0021 Tetrafluoroethylene) plate 804 is disposed, each sample 802a ~ 802i are arranged on the PTFE plate 804.
 図12に示したモデルにおいて、方形導波管802a~803eのそれぞれから、個別に、周波数が2.45GHz、出力が0.2Wであるマイクロ波を常時照射している状態の容器801内の発熱密度分布をシミュレーション試験により取得した。シミュレーション試験には、シミュレーション試験には電場解析ソフト(ANSYS製HFSS13.0)を用いた。ここでは、各ポート8031から照射されるマイクロ波の位相を制御しなかった場合の、それぞれのポート8031から照射されるマイクロ波の位相差が「0」であるとする。 In the model shown in FIG. 12, heat generated in the container 801 in a state where microwaves having a frequency of 2.45 GHz and an output of 0.2 W are constantly irradiated from each of the rectangular waveguides 802a to 803e individually. The density distribution was obtained by a simulation test. In the simulation test, electric field analysis software (HFSS13.0 manufactured by ANSYS) was used for the simulation test. Here, it is assumed that the phase difference between the microwaves radiated from each port 8031 is “0” when the phase of the microwave radiated from each port 8031 is not controlled.
 図13(a)は、ポート8031a~8031eから位相差を「0」としたマイクロ波をそれぞれ照射した場合の発熱密度分布を示す図である。 FIG. 13A is a diagram showing a heat generation density distribution when microwaves with a phase difference of “0” are irradiated from the ports 8031a to 8031e, respectively.
 図13(b)は、ポート8031a~8031cから位相差を「0」としたマイクロ波をそれぞれ照射し、ポート8031dおよびポート8031eから、これらに対して位相差を「180°」に設定したマイクロ波をそれぞれ照射した場合の発熱密度分布を示す図である。 FIG. 13B shows a case where microwaves with a phase difference of “0” are irradiated from ports 8031a to 8031c, respectively, and a microwave with a phase difference of “180 °” is set from ports 8031d and 8031e. FIG. 4 is a diagram showing a heat generation density distribution when each is irradiated.
 図13(c)は、ポート8031a、8031b、8031dおよび8031eから位相差を「0」としたマイクロ波を照射し、ポート3031cから、これらに対して位相差を「180°」に設定したマイクロ波を照射した場合の発熱密度分布を示す図である。 FIG. 13 (c) shows a case where a microwave whose phase difference is set to “0” is emitted from ports 8031a, 8031b, 8031d and 8031e, and a microwave whose phase difference is set to “180 °” from port 3031c. FIG. 4 is a diagram showing a heat generation density distribution when irradiation is performed.
 図13(a)に示すように、ポート8031a~8031eからそれぞれ照射されるマイクロ波の位相を制御せずに、全て同位相のマイクロ波を照射した場合には、一つのサンプル802だけを選択的に集中加熱することが困難であるが、図13(b)のように、ポート8031dおよびポート8031eから位相差が「180°」のマイクロ波を照射した場合には、サンプル802bを、また、図13(c)のようにポート3031cから位相差が「180°」のマイクロ波を照射した場合、サンプル802eを集中加熱できることがわかる。 As shown in FIG. 13A, when the microwaves radiated from the ports 8031a to 8031e are not controlled and the microwaves having the same phase are irradiated, only one sample 802 is selectively used. However, as shown in FIG. 13B, when a microwave having a phase difference of “180 °” is irradiated from the port 8031d and the port 8031e as shown in FIG. As shown in FIG. 13C, when microwaves having a phase difference of “180 °” are irradiated from the port 3031c, the sample 802e can be concentratedly heated.
 このシミュレーション試験結果から、本実施の形態のように、位相をそれぞれ制御した2以上のマイクロ波を照射することで、容器内を選択的に集中加熱可能であることがわかる。例えば、上記のシミュレーション試験に用いられたモデルと同様の加熱装置においては、シミュレーション試験において選択的に集中加熱させるべきサンプルが配置されていた領域に相当する領域に、加熱対象物の加熱対象部分が位置するときに、上記のシミュレーション試験において、このサンプルを加熱する際に照射したマイクロ波と同様に位相を制御した2以上のマイクロ波を照射することで、加熱対象部分を選択的に集中加熱できることがわかる。 From the simulation test results, it can be seen that by irradiating two or more microwaves whose phases are respectively controlled as in the present embodiment, the inside of the container can be selectively concentrated and heated. For example, in a heating device similar to the model used in the above simulation test, a heating target portion of the heating target is placed in a region corresponding to a region where a sample to be selectively concentratedly heated in the simulation test is arranged. When positioned, in the above simulation test, by irradiating two or more microwaves whose phases are controlled in the same manner as the microwave radiated when heating this sample, it is possible to selectively concentrate the heating target portion I understand.
 照射状態変化手段40は、例えば、2以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御して個別に集中加熱可能な領域に、検出手段20が検出した加熱対象部分が位置するときに、この分部加熱が可能な領域が集中加熱されるよう位相を制御したマイクロ波を2以上のマイクロ波照射手段401から照射して、加熱対象部分を集中加熱する。例えば、照射状態変化手段40が、2以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御して個別に集中加熱可能な領域を、検出領域205よりも加熱対象物60の移動方向において下流となる位置に予め1または2以上の有している場合において、照射状態変化手段40は、検出手段20が検出した加熱対象部分がこの集中加熱可能な領域に位置するときに、この分部加熱が可能な領域が集中加熱されるよう位相を制御したマイクロ波を2以上のマイクロ波照射手段401から照射して、加熱対象部分を集中加熱する。加熱対象部分が集中加熱可能な領域に位置するときとは、例えば、加熱対象物60の移動によって集中加熱可能な領域に位置することとなったとき(例えば、進入した場合)である。加熱対象部分が集中加熱可能な領域に位置することは、加熱対象部分が集中加熱可能な領域に重なることと考えてもよい。かかることは、以下においても同様である。1または2以上の領域を集中加熱できるようにするということは、例えば、1または2以上の領域を集中加熱するための位相を制御するための情報を、領域ごとに予め用意しておくことであってもよく、複数の領域を集中加熱するための位相を制御するための情報を算出するために利用可能な情報を予め用意しておくことであってもよい。照射状態変化手段40は、例えば、照射管理情報格納部403に格納される1または2以上の照射管理情報に対応する照射状態変化手段40が集中加熱可能な領域、具体的には2以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御して集中加熱可能な1または2以上の領域に、検出手段20が検出した加熱対象部分が位置するときに、この領域に対応する照射管理情報を用いて、この集中加熱が可能な領域が集中加熱されるよう位相を制御したマイクロ波を2以上のマイクロ波照射手段401から照射させて、加熱対象部分を集中加熱する。照射管理情報に対応する領域は、例えば、照射管理情報により特定される集中加熱可能な領域と考えてもよく、照射管理情報に応じて2以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御することで集中加熱可能な領域と考えてもよい。 The irradiation state changing unit 40 controls, for example, the phase of the microwaves irradiated by the two or more microwave irradiation units 401 and the heating target portion detected by the detection unit 20 is located in the region where the concentrated heating can be individually performed. Then, microwaves whose phases are controlled so that the region where partial heating is possible are concentratedly heated are radiated from two or more microwave irradiating means 401 to intensively heat the portion to be heated. For example, the irradiation state changing unit 40 controls the phases of the microwaves irradiated by the two or more microwave irradiation units 401 to set the region in which the concentrated heating can be individually performed in the moving direction of the heating target 60 more than the detection region 205. In the case where one or two or more parts are provided in advance at the downstream position, the irradiation state changing means 40 determines whether or not the heating target portion detected by the detecting means 20 is located in the region where the concentrated heating is possible. Microwaves whose phases are controlled so that a region where heating is possible are concentratedly heated are radiated from two or more microwave radiating means 401 to intensively heat a portion to be heated. The time when the heating target portion is located in the region where the concentrated heating can be performed is, for example, the case where the heating target 60 is located in the region where the concentrated heating can be performed due to the movement of the heating target 60 (for example, when entering). The fact that the heating target portion is located in the region where the concentrated heating can be performed may be considered that the heating target portion overlaps the region where the concentrated heating can be performed. The same applies to the following. To be able to centrally heat one or more regions means that, for example, information for controlling a phase for centrally heating one or more regions is prepared in advance for each region. Alternatively, information that can be used to calculate information for controlling a phase for centrally heating a plurality of regions may be prepared in advance. The irradiation state changing means 40 is, for example, an area in which the irradiation state changing means 40 corresponding to one or more irradiation management information stored in the irradiation management information storage unit 403 can be concentratedly heated, specifically, two or more micro- When the heating target portion detected by the detection unit 20 is located in one or two or more regions that can be concentratedly heated by controlling the phase of the microwave irradiated by the wave irradiation unit 401, irradiation management information corresponding to this region Is used to irradiate microwaves whose phases are controlled so that the area where the concentrated heating can be performed is concentratedly heated from two or more microwave irradiating means 401, thereby intensively heating the portion to be heated. The region corresponding to the irradiation management information may be considered as, for example, a region capable of concentrated heating specified by the irradiation management information, and the phase of the microwave irradiated by two or more microwave irradiation units 401 according to the irradiation management information. May be considered as an area where concentrated heating is possible.
 ここでは、照射状態変化手段40がマイクロ波の位相を制御して集中加熱可能な1または2以上の領域をそれぞれ集中加熱領域と呼ぶ。集中加熱領域とは、照射状態変化手段40によって集中加熱できる領域である。集中加熱領域は、例えば、発熱量が閾値以上となるよう集中加熱を行なうことが可能な領域である。また、集中加熱領域は、例えば、発熱量が、加熱対象物60の他の部分の発熱量の最大値よりも閾値以上となるよう集中加熱できる領域であってもよい。また、集中加熱領域は、例えば、マイクロ波の強度が他よりも高くなる(例えば、閾値以上高くなる)領域であってもよく、2以上のマイクロ波照射手段401から照射されたマイクロ波が加熱対象物60の他の部分に比べて強め合う領域であってもよい。集中加熱領域は、照射状態変化手段40によって実際に集中加熱を行った場合に加熱される領域の一部であってもよい。例えば、実際に集中加熱を行った場合に加熱される領域内に含まれる領域であってもよい。また、集中加熱領域は、一部に集中加熱できない領域を含む領域であっても良く、集中加熱できない領域を含まない領域であってもよい。集中加熱領域406は、通常、三次元の領域であるが、二次元の領域と考えてもよい。例えば、三次元である集中加熱領域406を横切る平面を、二次元の集中加熱領域406と考えてもよい。三次元の集中加熱領域の形状は、どのような形状であってもよい。集中加熱領域の形状は、例えば、直方体形状や、立方体形状、球形状、楕円形状等、どのような形状であってもよい。例えば、集中加熱領域は、集中加熱可能な領域に収まる直方体形状や、球形状であってもよい。また、二次元の集中加熱領域の形状は、矩形等の多角形、正方形、円形、楕円形等である。なお、集中加熱が可能な領域の大きさは、例えば、マイクロ波照射手段401が照射するマイクロ波の波長の長さと同程度の大きさとなる。この大きさは、マイクロ波照射手段401が照射するマイクロ波を、マイクロ波用のレンズ(図示せず)を通して照射すること等により、狭めたり広げたりすることが可能である。このため、集中加熱領域406の大きさも、集中加熱可能な領域の大きさにあわせて変更可能である。 Here, one or two or more areas in which the irradiation state changing means 40 can control the phase of the microwaves to perform concentrated heating are each referred to as a concentrated heating area. The concentrated heating region is a region where concentrated heating can be performed by the irradiation state changing unit 40. The concentrated heating region is, for example, a region in which concentrated heating can be performed so that the heat generation amount is equal to or larger than a threshold. Further, the concentrated heating region may be, for example, a region where concentrated heating can be performed so that the calorific value becomes a threshold value or more than the maximum value of the calorific value of other portions of the heating target 60. The concentrated heating region may be, for example, a region where the intensity of microwaves is higher than others (for example, higher than a threshold), and the microwaves irradiated from two or more microwave irradiation units 401 may be heated. It may be an area that is stronger than other parts of the target object 60. The concentrated heating area may be a part of an area heated when the irradiation state changing unit 40 actually performs the concentrated heating. For example, it may be a region included in a region heated when concentrated heating is actually performed. Further, the concentrated heating region may be a region including a region that cannot be partially heated, or a region that does not include a region that cannot be concentrated heated. The concentrated heating region 406 is usually a three-dimensional region, but may be considered a two-dimensional region. For example, a plane crossing the three-dimensional concentrated heating region 406 may be considered as a two-dimensional concentrated heating region 406. The shape of the three-dimensional concentrated heating region may be any shape. The shape of the concentrated heating region may be any shape such as a rectangular parallelepiped shape, a cubic shape, a spherical shape, an elliptical shape, and the like. For example, the concentrated heating area may have a rectangular parallelepiped shape or a spherical shape that fits in the area where concentrated heating is possible. The shape of the two-dimensional concentrated heating region is a polygon such as a rectangle, a square, a circle, an ellipse, or the like. Note that the size of the region where the concentrated heating can be performed is, for example, approximately the same as the length of the wavelength of the microwave irradiated by the microwave irradiation unit 401. This size can be narrowed or widened by irradiating the microwave radiated by the microwave irradiating means 401 through a microwave lens (not shown) or the like. For this reason, the size of the concentrated heating region 406 can be changed according to the size of the region in which the concentrated heating can be performed.
 以下、本実施の形態においては、上述した3つのマイクロ波照射手段401が、それぞれ、マイクロ波発振器4011と、伝送部4012とを備えており、照射状態変化手段40が、制御部402と、照射管理情報格納部403とを有している場合を例に挙げて説明する。 Hereinafter, in the present embodiment, each of the three microwave irradiation units 401 described above includes a microwave oscillator 4011 and a transmission unit 4012, and the irradiation state changing unit 40 includes a control unit 402 The case where the management information storage unit 403 is provided will be described as an example.
 本実施の形態においては、図3(a)~図3(d)に示すように、照射状態変化手段40と3つのマイクロ波照射手段401とを用いることで、6つの集中加熱領域、すなわち、第一の集中加熱領域406a~第六の集中加熱領域406fを集中加熱できる場合を例に挙げて説明する。なお、第一の集中加熱領域406a~第六の集中加熱領域406fを区別しない場合は、単に、集中加熱領域406と呼ぶ。かかることは以下においても同様である。本実施の形態においては、集中加熱領域406が、加熱対象物60の表面61aまたは裏面61bの、二次元の領域と考える場合について説明する。この場合、表面61aの集中加熱領域406を集中加熱することは、加熱対象物60のこの表面61a側の部分を集中加熱することであり、裏面61bの集中加熱領域406を集中加熱することは、加熱対象物60のこの裏面61b側の部分を分部加熱することと考える。ただし、照射状態変化手段40は、表面61a側の集中加熱領域406を集中加熱する際には、その裏面61b側の領域は集中加熱されないように位相を制御したマイクロ波をマイクロ波照射手段401から照射させ、裏面61bの集中加熱領域406を集中加熱する際には、その表面61a側は集中加熱されないように位相を制御したマイクロ波をマイクロ波照射手段401から照射させることが好ましい。 In the present embodiment, as shown in FIGS. 3A to 3D, by using the irradiation state changing unit 40 and the three microwave irradiation units 401, six concentrated heating areas, that is, The case where the first concentrated heating area 406a to the sixth concentrated heating area 406f can be concentratedly heated will be described as an example. When the first concentrated heating region 406a to the sixth concentrated heating region 406f are not distinguished, they are simply referred to as a concentrated heating region 406. The same applies to the following. In the present embodiment, a case where concentrated heating region 406 is considered as a two-dimensional region of front surface 61a or back surface 61b of heating target 60 will be described. In this case, the concentrated heating of the concentrated heating region 406 of the front surface 61a is to centrally heat the portion of the heating object 60 on the front surface 61a side, and the concentrated heating of the concentrated heating region 406 of the back surface 61b is It is considered that the portion on the back surface 61b side of the heating object 60 is heated separately. However, when the concentrated heating region 406 on the front surface 61a side is concentratedly heated, the irradiation state changing unit 40 transmits the microwave whose phase is controlled so that the region on the rear surface 61b side is not concentratedly heated from the microwave irradiation unit 401. When irradiating and intensively heating the concentrated heating area 406 on the back surface 61b, it is preferable that the microwave irradiating means 401 irradiate the microwave whose phase is controlled so that the front surface 61a is not concentratedly heated.
 図3(a)および図3(b)に示すように、第一の集中加熱領域406a~第三の集中加熱領域406cは、加熱対象物60の表面61a側に位置する集中加熱領域であり、加熱対象物60の幅方向に向かって直線状に配列される領域であるとする。また、図3(c)および図3(d)に示すように、第四の集中加熱領域406d~第六の集中加熱領域406fは、加熱対象物60の裏面61b側に位置する集中加熱領域であり、加熱対象物60の幅方向に向かって直線状に配列される領域であるとする。第一の集中加熱領域406a~第六の集中加熱領域406fは、ここでは、同じ大きさおよび形状の領域であるとする。なお、ここでは、各集中加熱領域406の形状を、矩形形状としているが、各集中加熱領域406の形状は、どのような形状であってもよく。また集中加熱領域406の少なくとも一部の形状やサイズは他のものとは異なっていてもよい。各集中加熱領域406は、長手方向に平行な辺と、幅方向に平行な辺とを有している。 As shown in FIGS. 3A and 3B, the first concentrated heating region 406a to the third concentrated heating region 406c are concentrated heating regions located on the surface 61a side of the heating target 60, It is assumed that the region is a region linearly arranged in the width direction of the heating target 60. As shown in FIGS. 3C and 3D, the fourth concentrated heating region 406d to the sixth concentrated heating region 406f are concentrated heating regions located on the back surface 61b side of the heating target 60. It is assumed that the region is a region that is linearly arranged in the width direction of the heating target 60. Here, the first concentrated heating region 406a to the sixth concentrated heating region 406f are regions having the same size and shape. Here, the shape of each concentrated heating region 406 is rectangular, but the shape of each concentrated heating region 406 may be any shape. Further, the shape and size of at least a part of the concentrated heating region 406 may be different from the others. Each concentrated heating region 406 has a side parallel to the longitudinal direction and a side parallel to the width direction.
 第一の集中加熱領域406a~第三の集中加熱領域406cと、第四の集中加熱領域406d~第六の集中加熱領域406fとは、容器10内の高さ方向において異なる位置にある。第四の集中加熱領域406dは、第一の集中加熱領域406aの真下に位置し、第五の集中加熱領域406eは第二の集中加熱領域406bの真下に位置し、第六の集中加熱領域406fは第三の集中加熱領域406cの真下に位置している。第一の集中加熱領域406a~第三の集中加熱領域406cは、平面方向において隣り合う集中加熱領域406同士が、部分的に重なり合わず、長手方向に平行な辺同士が接している。第四の集中加熱領域406d~第六の集中加熱領域406fについても同様である。第一の集中加熱領域406a~第三の集中加熱領域406cを部分照射した場合と、第四の集中加熱領域406d~第六の集中加熱領域406fを部分照射した場合、高さ方向において異なる位置が集中加熱されるものとする。また、第一の集中加熱領域406a、第三の集中加熱領域406c、第四の集中加熱領域406dおよび第六の集中加熱領域406fは、加熱対象物60の側部からはみ出さず、それぞれの長手方向に伸びる辺の一つが、加熱対象物60の側部に接している場合について説明する。 (4) The first concentrated heating region 406a to the third concentrated heating region 406c and the fourth concentrated heating region 406d to the sixth concentrated heating region 406f are located at different positions in the height direction in the container 10. The fourth concentrated heating region 406d is located directly below the first concentrated heating region 406a, the fifth concentrated heating region 406e is located immediately below the second concentrated heating region 406b, and the sixth concentrated heating region 406f Are located immediately below the third concentrated heating region 406c. In the first concentrated heating region 406a to the third concentrated heating region 406c, the concentrated heating regions 406 adjacent in the planar direction do not partially overlap with each other, and sides parallel to the longitudinal direction are in contact with each other. The same applies to the fourth concentrated heating region 406d to the sixth concentrated heating region 406f. When the first concentrated heating region 406a to the third concentrated heating region 406c are partially irradiated, and when the fourth concentrated heating region 406d to the sixth concentrated heating region 406f are partially irradiated, different positions in the height direction are different. It shall be heated intensively. In addition, the first concentrated heating region 406a, the third concentrated heating region 406c, the fourth concentrated heating region 406d, and the sixth concentrated heating region 406f do not protrude from the side of the heating target 60, and have respective longitudinal portions. The case where one of the sides extending in the direction is in contact with the side of the heating target 60 will be described.
 なお、隣り合う集中加熱領域406同士は部分的に重なり合っていてもよい。また、予め決められた間隔を隔てていてもよい。また、第一の集中加熱領域406a、第三の集中加熱領域406c、第四の集中加熱領域406dおよび第六の集中加熱領域406fは、加熱対象物60の幅方向の端部からはみ出していてもよく、長手方向に伸びる辺の一つが、加熱対象物60の幅方向の端部と接していなくてもよい。また、第一の集中加熱領域406a~第三の集中加熱領域406cと、第四の集中加熱領域406d~第六の集中加熱領域406fとは、高さ方向において重なっていてもよく、接していてもよい。 集中 Note that the adjacent concentrated heating regions 406 may partially overlap each other. Also, a predetermined interval may be provided. Further, the first concentrated heating region 406a, the third concentrated heating region 406c, the fourth concentrated heating region 406d, and the sixth concentrated heating region 406f may protrude from the widthwise end of the heating target 60. In addition, one of the sides extending in the longitudinal direction may not be in contact with the widthwise end of the heating target 60. In addition, the first concentrated heating region 406a to the third concentrated heating region 406c and the fourth concentrated heating region 406d to the sixth concentrated heating region 406f may overlap in the height direction, and may be in contact with each other. Is also good.
 なお、第一の集中加熱領域406a~第三の集中加熱領域406cは、これらをあわせた領域が、加熱対象物60全体を幅方向において横切るよう設けられていることが好ましい。かかることは、第四の集中加熱領域406d~第六の集中加熱領域406fについても同様である。 Note that the first concentrated heating region 406a to the third concentrated heating region 406c are preferably provided such that the combined region crosses the entire heating target 60 in the width direction. The same applies to the fourth concentrated heating region 406d to the sixth concentrated heating region 406f.
 なお、第一の集中加熱領域406a~第三の集中加熱領域406cは、それぞれが設けられている幅方向の範囲を結合した範囲が、加熱対象物60全体を幅方向において横切っていることが好ましいが、幅方向に向かって同一直線上に配列されていなくてもよい。かかることは、第四の集中加熱領域406d~第六の集中加熱領域406fについても同様である。 It is preferable that the first concentrated heating region 406a to the third concentrated heating region 406c are provided so that the combined range in the width direction crosses the entire heating target 60 in the width direction. May not be arranged on the same straight line in the width direction. The same applies to the fourth concentrated heating region 406d to the sixth concentrated heating region 406f.
 マイクロ波発振器4011は、例えば、マグネトロンや、クライストロン、ジャイロトロン、半導体型発振器等である。マイクロ波発振器4011としては、位相が制御しやすい半導体型発振器を用いることが好ましい。ただし、マイクロ波発振器4011はこれらに限定されるものではない。各マイクロ波発振器4011が照射するマイクロ波の周波数や強度等は問わない。各マイクロ波発振器4011が照射するマイクロ波の周波数は、例えば、915MHzであっても良く、2.45GHzであってもよく、5.8GHzであってもよく、その他の300MHzから300GHzの範囲内の周波数であっても良く、その周波数は問わない。各マイクロ波発振器4011は、マイクロ波の位相を制御する位相器(図示せず)を備えており、各マイクロ波発振器4011内で発生したマイクロ波の位相が制御(具体的には位相を変更)され出射される。例えば、各マイクロ波発振器4011は、内部で発生したマイクロ波の位相を制御し、位相を制御したマイクロ波を増幅して出射する。 The microwave oscillator 4011 is, for example, a magnetron, a klystron, a gyrotron, a semiconductor oscillator, or the like. As the microwave oscillator 4011, a semiconductor oscillator whose phase is easily controlled is preferably used. However, the microwave oscillator 4011 is not limited to these. The frequency, intensity, and the like of the microwave irradiated by each microwave oscillator 4011 are not limited. The frequency of the microwave irradiated by each microwave oscillator 4011 may be, for example, 915 MHz, 2.45 GHz, or 5.8 GHz, and may be in the range of 300 MHz to 300 GHz. It may be a frequency, and the frequency does not matter. Each microwave oscillator 4011 includes a phase shifter (not shown) for controlling the phase of the microwave, and the phase of the microwave generated in each microwave oscillator 4011 is controlled (specifically, the phase is changed). And emitted. For example, each microwave oscillator 4011 controls the phase of the microwave generated inside, amplifies and outputs the microwave whose phase is controlled.
 なお、複数のマイクロ波照射手段401は、一のマイクロ波を発生する発振器が発生したマイクロ波を分岐して複数の位相器(図示せず)にそれぞれ入力し、複数の位相器で個別に位相を制御したマイクロ波を、必要に応じて個別にアンプ(図示せず)等で増幅してそれぞれ出射するようにしたものであってもよい。この場合、複数の位相器や、位相器毎に設けられたアンプ等の部分を、それぞれマイクロ波照射手段401と考えてもよい。 Note that the plurality of microwave irradiation means 401 splits the microwave generated by the oscillator that generates one microwave, inputs the split microwave to a plurality of phase shifters (not shown), and individually separates the phase by the plurality of phase shifters. May be individually amplified as necessary by an amplifier (not shown) or the like and emitted. In this case, portions such as a plurality of phase shifters and amplifiers provided for each phase shifter may be considered as the microwave irradiation means 401.
 また、マイクロ波照射手段401は、マイクロ波の出力の制御や、照射するマイクロ波の周波数の制御等が可能なものであってもよい。ここでの出力は、例えば、電力である。マイクロ波の出力の制御は、マイクロ波の照射を行なうか否かの制御や出力の強弱を含んでいてもよい。 The microwave irradiating means 401 may be capable of controlling the output of the microwave, the frequency of the radiated microwave, and the like. The output here is, for example, electric power. The control of the microwave output may include the control of whether or not to perform the microwave irradiation and the strength of the output.
 伝送部4012は、マイクロ波発振器4011が出力するマイクロ波を伝送する。伝送部4012は、例えば、導波管や、マイクロ波を伝送する同軸ケーブル等である。ただし、マイクロ波を伝送可能であれば、これらに限定されるものではない。ここでは、各伝送部4012が導波管である場合について説明する。各伝送部4012は、マイクロ波発振器4011と容器10との間に接続されている。 The transmission unit 4012 transmits the microwave output from the microwave oscillator 4011. The transmission unit 4012 is, for example, a waveguide, a coaxial cable for transmitting microwaves, or the like. However, it is not limited to these as long as microwaves can be transmitted. Here, a case where each transmission unit 4012 is a waveguide will be described. Each transmission unit 4012 is connected between the microwave oscillator 4011 and the container 10.
 容器10の、各伝送部4012が接続される部分には、例えば、第一の開口部105a~第三の開口部105cが設けられている。第一の開口部105a~第三の開口部105cは、第一のマイクロ波照射手段401a~第三のマイクロ波照射手段401cの伝送部4012がそれぞれ取付けられている開口部である。なお、第一の開口部105a~第三の開口部105cを区別しない場合、単に開口部105と呼ぶ。開口部105を介して、伝送部4012を伝送されるマイクロ波が容器10内に照射される。ここでは、3つの開口部105は、検出領域205bよりも後方となる位置に、容器10の幅方向に一列に配置されている場合を示しているが、第一の開口部105a~第三の開口部105cの配置はこれに限定されるものではない。開口部105は、マイクロ波透過性のプレート等で塞がれていてもよい。また、容器10内には、各伝送部4012と接続された容器10内へのマイクロ波照射に用いられるアンテナ等が設けられていてもよい。このアンテナの形状や構造等は問わない。なお、伝送部4012と、容器10との接続部分の構成等は、これらに限定されるものではない。 部分 A portion of the container 10 to which each transmission unit 4012 is connected is provided with, for example, a first opening 105a to a third opening 105c. The first opening 105a to the third opening 105c are openings to which the transmission units 4012 of the first microwave irradiation unit 401a to the third microwave irradiation unit 401c are respectively attached. When the first opening 105a to the third opening 105c are not distinguished, they are simply referred to as the opening 105. The microwave transmitted through the transmission unit 4012 is applied to the inside of the container 10 through the opening 105. Here, a case is shown where the three openings 105 are arranged in a line in the width direction of the container 10 at a position behind the detection area 205b, but the first openings 105a to the third The arrangement of the opening 105c is not limited to this. The opening 105 may be closed with a microwave-permeable plate or the like. Further, an antenna or the like used for microwave irradiation into the container 10 connected to each transmission unit 4012 may be provided in the container 10. The shape and structure of the antenna are not limited. The configuration and the like of the connection portion between the transmission unit 4012 and the container 10 are not limited to these.
 制御部402は、単なるマイクロ波の照射制御に加え、検出手段20が検出した加熱対象部分が集中加熱されるよう、2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を制御する照射状態を変化させるための手段としても機能する。2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を制御するということは、例えば、2以上のマイクロ波照射手段401を個別に制御して、検出手段20が検出した加熱対象部分が集中加熱されるよう、位相を制御したマイクロ波を、複数のマイクロ波照射手段401にそれぞれ照射させることである。 The control unit 402 controls the irradiation of the microwaves by the two or more microwave irradiation units 401 so that the heating target portion detected by the detection unit 20 is concentratedly heated in addition to the simple microwave irradiation control. It also functions as a means for changing the state. To control the phases of the microwaves irradiated by the two or more microwave irradiation units 401 means that, for example, the two or more microwave irradiation units 401 are individually controlled, and the heating target portion detected by the detection unit 20 is controlled. The purpose of this is to irradiate a plurality of microwave irradiating means 401 with microwaves whose phases are controlled so that concentrated heating is performed.
 ここでは、上述したように、検出手段20が検出した加熱対象部分が、一の集中加熱領域406に位置するときに、制御部402が、この一の集中加熱領域406が集中加熱されるよう位相を制御したマイクロ波を、3つのマイクロ波照射手段401のうちの2以上から照射する場合について説明する。加熱対象部分が1以上の集中加熱領域に位置するときとは、例えば、加熱対象部分が、加熱対象物60の移動によって、集中加熱領域406に進入したときであってもよい。 Here, as described above, when the heating target portion detected by the detection unit 20 is located in one concentrated heating region 406, the control unit 402 sets the phase so that the one concentrated heating region 406 is concentrated heated. A case in which the microwave controlled in the above manner is irradiated from two or more of the three microwave irradiation means 401 will be described. The time when the heating target portion is located in one or more concentrated heating regions may be, for example, when the heating target portion enters the concentrated heating region 406 due to the movement of the heating target 60.
 制御部402は、例えば、1以上の集中加熱領域406に、検出手段20が検出した加熱対象部分が位置するときに、この集中加熱領域406が集中加熱されるよう位相を制御したマイクロ波を2以上のマイクロ波照射手段401から照射させる。これにより、加熱対象部分を集中加熱させる。加熱対象部分が位置する集中加熱領域406は、例えば、加熱対象部分が重なる集中加熱領域406と考えてもよい。制御部402は、例えば、加熱対象部分が位置する集中加熱領域406を特定し、特定した集中加熱領域406を集中加熱するための2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を制御するための情報を取得し、取得した位相を制御する情報を用いて、特定した集中加熱領域406が集中加熱されるよう位相を制御したマイクロ波を、2以上のマイクロ波照射手段401に照射させる。ここでの集中加熱領域406は、照射管理情報格納部403に格納される照射管理情報に対応する集中加熱領域406である。照射管理情報に対応する集中加熱領域406は、例えば、照射管理情報により特定される集中加熱領域406と考えてもよく、照射管理情報に応じて二以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御することで集中加熱可能な集中加熱領域406と考えてもよい。ここでの特定される集中加熱領域406は、加熱対象部分を集中加熱する集中加熱領域406と考えてもよい。位相を制御するための情報は、例えば、各マイクロ波照射手段401が出力するマイクロ波の位相を示す情報や、各マイクロ波照射手段401間の位相差を示す情報や、各マイクロ波照射手段401が照射するマイクロ波の位相を設定する情報等である。 For example, when the heating target portion detected by the detection unit 20 is located in one or more concentrated heating regions 406, the control unit 402 transmits the microwaves whose phases are controlled so that the concentrated heating region 406 is concentrated heated. Irradiation is performed from the microwave irradiation means 401 described above. Thereby, the portion to be heated is concentratedly heated. The concentrated heating region 406 where the heating target portion is located may be considered as, for example, the concentrated heating region 406 where the heating target portions overlap. The control unit 402 specifies, for example, the concentrated heating region 406 where the heating target portion is located, and sets the phases of the microwaves irradiated by the two or more microwave irradiation units 401 for centrally heating the specified concentrated heating region 406, respectively. The information for controlling is acquired, and using the acquired information for controlling the phase, two or more microwave irradiating means 401 are irradiated with the microwave whose phase is controlled so that the specified concentrated heating region 406 is concentratedly heated. Let it. The concentrated heating area 406 here is the concentrated heating area 406 corresponding to the irradiation management information stored in the irradiation management information storage unit 403. The concentrated heating region 406 corresponding to the irradiation management information may be considered as, for example, the concentrated heating region 406 specified by the irradiation management information, and the microwaves irradiated by two or more microwave irradiation units 401 according to the irradiation management information. May be considered as a concentrated heating region 406 in which concentrated heating can be performed by controlling the phase. Here, the specified concentrated heating region 406 may be considered as a concentrated heating region 406 for centrally heating the portion to be heated. The information for controlling the phase includes, for example, information indicating the phase of the microwave output from each microwave irradiation unit 401, information indicating the phase difference between each microwave irradiation unit 401, and information indicating each microwave irradiation unit 401. Is information for setting the phase of the microwave to be irradiated.
 以下、制御部402が、加熱対象部分を集中加熱する集中加熱領域406を特定し、特定した集中加熱領域406を集中加熱するための2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を制御するための情報を取得する処理の例について説明する。 Hereinafter, the control unit 402 specifies the concentrated heating region 406 for centrally heating the heating target portion, and the phases of the microwaves irradiated by the two or more microwave irradiation units 401 for centrally heating the specified concentrated heating region 406, respectively. An example of a process of acquiring information for controlling the information will be described.
 例えば、制御部402は、検出手段20が検出した加熱対象部分が、加熱対象物60の移動に伴って位置することとなる(例えば、進入する)集中加熱領域406を特定し、特定した集中加熱領域406を集中加熱するための2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を制御するための情報を取得する。なお、加熱対象部分がどの集中加熱領域406に位置することとなるか等は、例えば、加熱対象部分の容器10の幅方向における位置を示す情報(例えば、座標)と、各集中加熱領域406の容器10の幅方向における位置を示す情報(例えば、座標)とを比較することで、判断可能である。各集中加熱領域406の幅方向における位置を示す情報等は、図示しない格納部等に予め蓄積しておいたものを適宜読み出すようにすればよい。 For example, the control unit 402 specifies the concentrated heating area 406 in which the heating target portion detected by the detection unit 20 is located (for example, enters) with the movement of the heating target 60, and specifies the specified concentrated heating. Information for controlling the phase of the microwave irradiated by each of the two or more microwave irradiation units 401 for centrally heating the region 406 is acquired. In addition, for example, information indicating the position (for example, coordinates) indicating the position of the heating target portion in the width direction of the container 10 and the position of the concentrated heating region 406 The determination can be made by comparing with information (for example, coordinates) indicating the position of the container 10 in the width direction. Information indicating the position in the width direction of each concentrated heating region 406 may be appropriately read from information previously stored in a storage unit (not shown) or the like.
 制御部402は、例えば、加熱対象物60の表面61a側の第一の検出領域205aで検出された加熱対象部分については、加熱対象物60の表面61a側に位置する第一の集中加熱領域406a~第三の集中加熱領域406cから、加熱対象部分が位置する集中加熱領域406を検出し、検出した集中加熱領域406を、加熱対象部分を集中加熱する集中加熱領域406に特定する。加熱対象物60の裏面61b側の第二の検出領域205bで検出された加熱対象部分については、加熱対象物60の裏面61b側に位置する第四の集中加熱領域406d~第六の集中加熱領域406fから、加熱対象部分が位置する集中加熱領域406を検出し、検出した集中加熱領域を、加熱対象部分を集中加熱するための集中加熱領域406に特定してもよい。これにより、高さ方向も考慮して、加熱対象部分を集中加熱することができる。 For example, for the heating target portion detected in the first detection region 205a on the front surface 61a side of the heating target 60, the control unit 402 determines the first concentrated heating region 406a located on the front surface 61a side of the heating target 60. From the third concentrated heating region 406c, the concentrated heating region 406 where the heating target portion is located is detected, and the detected concentrated heating region 406 is specified as the concentrated heating region 406 for centrally heating the heating target portion. Regarding the heating target portion detected in the second detection area 205b on the back surface 61b side of the heating target 60, the fourth concentrated heating region 406d to the sixth concentrated heating region located on the back surface 61b side of the heating target 60 From 406f, the concentrated heating region 406 where the heating target portion is located may be detected, and the detected concentrated heating region may be specified as the concentrated heating region 406 for centrally heating the heating target portion. Thus, the heating target portion can be intensively heated in consideration of the height direction.
 なお、隣り合う集中加熱領域406重なっている場合において、加熱対象部分が重なっている部分に位置することとなるときには、制御部402は、この重なっている集中加熱領域406の一つを、加熱対象部分を集中加熱する集中加熱領域406に特定するようにしてもよい。例えば、検出手段20が検出した加熱対象部分が、集中加熱領域406が重なっている部分に位置するときには、加熱対象部分が、重なっている部分のどの位置に存在するかに関わらず、予め決められたルールに従って、一の集中加熱領域を集中加熱する集中加熱領域406に特定してもよい。また、例えば、重なっている部分を、容器10の幅方向において2つに分割しておくようにし、分割された領域の一方に加熱対象部分が位置するときには、制御部402は、隣り合う集中加熱領域406のうちの、重なりあっていない部分がこの分割された領域側に位置する集中加熱領域406を、集中加熱するよう集中加熱領域に特定してもよい。この場合、重なり合う部分は、例えば、集中加熱領域406を二次元の領域と考えた場合、重なり合う部分は、隣り合う集中加熱領域406の輪郭が交わる位置を通る直線で分割することが好ましく、集中加熱領域406を三次元の領域と考えた場合、隣り合う集中加熱領域406の輪郭が交わる位置を通る面で分割することが好ましい。また、隣り合う集中加熱領域406が同じ形状およびサイズの領域である場合、重なり合う部分は、重なり合う部分の、幅方向の中心位置としてもよい。 In the case where the adjacent concentrated heating regions 406 overlap each other, when the heating target portion is located in the overlapping portion, the control unit 402 assigns one of the overlapping concentrated heating regions 406 to the heating target portion. The portion may be specified as a concentrated heating region 406 where concentrated heating is performed. For example, when the heating target portion detected by the detection means 20 is located at a portion where the concentrated heating region 406 overlaps, the heating target portion is determined in advance regardless of the position of the overlapping portion. According to the rule described above, one concentrated heating region may be specified as the concentrated heating region 406 for centrally heating. Further, for example, the overlapping portion is divided into two in the width direction of the container 10, and when the portion to be heated is located in one of the divided regions, the control unit 402 determines whether the adjacent concentrated heating is performed. The concentrated heating region 406 in which the non-overlapping portion of the region 406 is located on the side of the divided region may be specified as the concentrated heating region to perform concentrated heating. In this case, for example, when the concentrated heating region 406 is considered as a two-dimensional region, the overlapping portion is preferably divided by a straight line passing through a position where the contour of the adjacent concentrated heating region 406 intersects. When the region 406 is considered as a three-dimensional region, it is preferable to divide the region by a plane passing through a position where the contour of the adjacent concentrated heating region 406 intersects. When the adjacent concentrated heating regions 406 are regions having the same shape and size, the overlapping portion may be the center of the overlapping portion in the width direction.
 また、制御部402は、例えば、検出手段20が検出した加熱対象部分が、2以上の集中加熱領域406が重なっている領域に位置するときに、この2以上の集中加熱領域406の全てを、加熱対象部分を集中加熱する集中加熱領域406に特定し、特定した2以上の集中加熱領域406を順番に集中加熱するようにしてもよい In addition, for example, when the heating target portion detected by the detection unit 20 is located in an area where two or more concentrated heating areas 406 overlap, the control unit 402 removes all of the two or more concentrated heating areas 406, The heating target portion may be specified as the concentrated heating region 406 for concentrated heating, and the specified two or more concentrated heating regions 406 may be sequentially concentrated heated.
 なお、例えば、離れた集中加熱領域406に位置することとなる複数の加熱対象部分が同時に検出された場合や、異なる集中加熱領域にまたがる加熱対象部分が検出された場合のように、複数の集中加熱領域406でそれぞれ集中加熱しなければ加熱できない加熱対象部分が検出された場合、制御部402は、この複数の集中加熱領域406を全て、集中加熱を行う集中加熱領域406に特定し、特定した複数の集中加熱領域406を順番に集中加熱するよう2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を制御するようにしてもよい。 Note that, for example, a case where a plurality of heating target portions that are to be located in distant concentrated heating regions 406 is detected at the same time, or a case where a plurality of heating target portions extending over different concentrated heating regions are detected are detected. When a heating target portion that cannot be heated unless concentrated heating is performed is detected in each of the heating regions 406, the control unit 402 identifies all of the plurality of concentrated heating regions 406 as the concentrated heating regions 406 that perform the concentrated heating, and identifies them. Two or more microwave irradiation units 401 may control the phases of the microwaves to be irradiated, respectively, so that the plurality of concentrated heating regions 406 are sequentially heated in a concentrated manner.
 制御部402が、上記のように特定された集中加熱領域406を集中加熱するための2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を制御する情報を、どのように取得するかは問わない。例えば、特定した集中加熱領域406の位置を示す情報(例えば、集中加熱領域406の中心や重心等の代表点の位置を示す座標等)と、容器10内の複数のマイクロ波が出射される位置の座標等を用いて複数のマイクロ波が出射される位置から集中加熱領域406までの距離をそれぞれ算出し、算出した距離の情報と照射するマイクロ波の波長等とを用いて、特定の集中加熱領域406において、複数のマイクロ波が強め合うように、2以上のマイクロ波照射手段401が照射するマイクロ波の位相を算出してもよい。このとき、各集中加熱領域の位置を示す情報は、例えば、予め図示しない格納部等に格納されているものを読み出すようにすればよい。また、例えば、各集中加熱領域406を集中加熱するための2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を制御する情報を、各集中加熱領域406に対応付けて、照射管理情報格納部403に予め蓄積しておくようにし、この照射管理情報格納部403から、特定した集中加熱領域406に対応付けられた位相を制御するための情報を取得してもよい。 How the control unit 402 obtains information for controlling the phases of the microwaves radiated by the two or more microwave radiating units 401 for intensively heating the concentrated heating area 406 specified as described above. Does not matter. For example, information indicating the position of the specified concentrated heating region 406 (for example, coordinates indicating the position of a representative point such as the center or the center of gravity of the concentrated heating region 406) and the position where a plurality of microwaves are emitted in the container 10 The distance from the position from which a plurality of microwaves are emitted to the concentrated heating region 406 is calculated using the coordinates of the microwave and the like, and specific concentrated heating is performed using information on the calculated distance and the wavelength of the irradiated microwave. In the region 406, the phases of the microwaves irradiated by the two or more microwave irradiation units 401 may be calculated so that the plurality of microwaves reinforce each other. At this time, as the information indicating the position of each concentrated heating area, for example, information stored in a storage unit (not shown) or the like may be read out. Further, for example, information for controlling the phases of the microwaves radiated by the two or more microwave irradiating units 401 for intensively heating each concentrated heating region 406 is associated with each concentrated heating region 406 and irradiation management information The information may be stored in the storage unit 403 in advance, and information for controlling the phase associated with the specified concentrated heating region 406 may be acquired from the irradiation management information storage unit 403.
 なお、本実施の形態においては、検出手段20が加熱対象部分を検出する検出領域205と集中加熱領域406との位置が離れており、加熱対象物60が検出領域205側から、集中加熱領域406側に向かって移動している場合において、検出領域205の加熱対象部分が検出された位置に対応する集中加熱領域406を、位相を制御したマイクロ波を照射して集中加熱する場合について説明する。 Note that, in the present embodiment, the position of the detection area 205 where the detection unit 20 detects the heating target portion and the position of the concentrated heating area 406 are separated, and the object 60 to be heated is moved away from the detection area 205 side. A case will be described in which, when moving toward the side, the concentrated heating region 406 corresponding to the position of the detection region 205 where the object to be heated is detected is irradiated with the phase-controlled microwave to perform concentrated heating.
 具体的には、検出領域205を、加熱対象物60の移動方向とは逆方向に各集中加熱領域406を移動させた場合に重なる領域ごとに分割するようにし、分割された領域(以下、分割領域と称す)のそれぞれの幅方向の範囲を示す情報と、各分割領域に重なる集中加熱領域406を集中加熱するための2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を制御するための情報と対応付けて有する照射管理情報を、照射管理情報格納部403に格納しておくようにする。そして、制御部402が、検出手段20が加熱対象部分を検出した場合に、検出領域205の分割領域の中から、加熱対象部分が検出された領域を検出して、この検出した分割領域に対応付けられた2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を制御するための情報を照射管理情報格納部403から取得する。その後、検出領域205で検出された加熱対象部分がこの分割領域に対応する集中加熱領域406まで移動するために要する時間が経過した後に、上記で取得したマイクロ波の位相を制御するための情報を用いて、2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を制御して、集中加熱を行なう。これにより、検出手段20が検出した加熱対象部分を、集中加熱領域406において集中加熱することができる。ここでの照射管理情報は、検出領域205が幅方向に分割された分割領域の幅方向の位置を示す情報と、各分割領域を通過する加熱対象部分が移動する集中加熱領域406において集中加熱を行なうための、2以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御するための情報とを有する情報と考えてもよい。 Specifically, the detection region 205 is divided into regions that overlap when the respective concentrated heating regions 406 are moved in a direction opposite to the moving direction of the heating target 60, and the divided regions (hereinafter, referred to as divided regions) (Referred to as a region) in the width direction and two or more microwave irradiation units 401 for intensively heating the concentrated heating region 406 overlapping each divided region respectively control the phases of the microwaves irradiated. Management information stored in association with the information for use in the irradiation management information storage unit 403. Then, when the detection unit 20 detects the heating target portion, the control unit 402 detects, from the divided regions of the detection region 205, the region where the heating target portion is detected, and corresponds to the detected divided region. From the irradiation management information storage unit 403, information for controlling the phases of the microwaves irradiated by the two or more attached microwave irradiation units 401 is acquired. Thereafter, after the time required for the heating target portion detected in the detection region 205 to move to the concentrated heating region 406 corresponding to the divided region elapses, the information for controlling the phase of the microwave obtained above is used. The central heating is performed by controlling the phases of the microwaves radiated by the two or more microwave irradiating means 401 respectively. Thus, the heating target portion detected by the detection unit 20 can be concentratedly heated in the concentrated heating region 406. Here, the irradiation management information includes information indicating the position in the width direction of the divided region obtained by dividing the detection region 205 in the width direction, and performing concentrated heating in the concentrated heating region 406 in which a heating target passing through each divided region moves. It may be considered as information having information for controlling the phases of the microwaves radiated by the two or more microwave radiating means 401 to perform.
 なお、ここでの加熱対象部分が含まれる検出領域205が分割された領域を検出する処理は、分割された領域が、加熱対象部分に対して集中加熱を行なう集中加熱領域406に対応していることから、加熱対象部分に対して集中加熱を行なう集中加熱領域406を特定する処理や、加熱対象部分が移動することとなる集中加熱領域406を特定する処理に相当すると考えてよい。また、検出された分割領域に対応するマイクロ波の位相を制御するための情報は、検出された分割領域に対応する集中加熱領域を集中加熱するためのマイクロ波の位相を制御するための情報であるから、検出された分割された領域に対応するマイクロ波の位相を制御するための情報を取得する処理は、加熱対象部分に対して集中加熱を行なう集中加熱領域406を特定する処理で特定された集中加熱領域を集中加熱するためのマイクロ波の位相を制御するための情報を取得する処理と考えてよい。 In the process of detecting the divided region of the detection region 205 including the heating target portion, the divided region corresponds to the concentrated heating region 406 that performs concentrated heating on the heating target portion. Therefore, it may be considered that the process corresponds to the process of specifying the concentrated heating region 406 where the concentrated heating is performed on the heating target portion or the process of specifying the concentrated heating region 406 where the heated target portion moves. Further, the information for controlling the phase of the microwave corresponding to the detected divided region is information for controlling the phase of the microwave for intensively heating the concentrated heating region corresponding to the detected divided region. Therefore, the process of acquiring information for controlling the phase of the microwave corresponding to the detected divided region is specified by the process of specifying the concentrated heating region 406 that performs the concentrated heating on the heating target portion. It can be considered as a process of acquiring information for controlling the phase of the microwave for centrally heating the concentrated heating region.
 なお、複数の集中加熱領域406同士が重なる部分については、重なる部分を集中加熱する集中加熱領域406ごとに幅方向に分割し、これにあわせて、検出領域205を、重なる部分を分割した領域を移動させた場合に重なる領域ごとに分割し、分割した分割領域を、この分割領域と重なる集中加熱領域406の重なる部分を集中加熱するためのマイクロ波の位相を制御するための情報と対応づけて有する照射管理情報を照射管理情報格納部403に格納しておくようにしてもよい。そして、この分割領域で加熱対象部分が検出された場合、制御部402は、この照射管理情報に対応付けられた集中加熱領域を集中加熱するためのマイクロ波の位相を制御するための情報を取得するようにしてもよい。 Note that, for a portion where the plurality of concentrated heating regions 406 overlap with each other, the overlapping portion is divided in the width direction for each concentrated heating region 406 where concentrated heating is performed, and accordingly, the detection region 205 is divided into regions in which the overlapping portion is divided. In the case where it is moved, it is divided for each overlapping area, and the divided area is associated with information for controlling the phase of the microwave for centrally heating the overlapping portion of the concentrated heating area 406 overlapping this divided area. The irradiation management information stored therein may be stored in the irradiation management information storage unit 403. Then, when a portion to be heated is detected in this divided region, the control unit 402 obtains information for controlling the phase of the microwave for intensively heating the concentrated heating region associated with the irradiation management information. You may make it.
 なお、上記において、照射管理情報格納部403に格納しておく情報を、集中加熱領域406と、集中加熱領域406を集中加熱するための2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を制御するための情報と対応付けて有する複数の照射管理情報に替え、制御部402が、加熱対象部分が検出された分割領域に対応する集中加熱領域406を示す情報を取得し、取得した集中加熱領域406を集中加熱するためのマイクロ波の位相を制御するための情報を照射管理情報格納部403から取得してもよい。 Note that, in the above description, the information stored in the irradiation management information storage unit 403 is a central heating area 406 and two or more microwave irradiating units 401 for intensively heating the central heating area 406. In place of the plurality of irradiation management information items associated with the information for controlling the phase, the control unit 402 acquires and acquires the information indicating the concentrated heating region 406 corresponding to the divided region in which the heating target portion is detected. Information for controlling the phase of the microwave for centrally heating the concentrated heating region 406 may be acquired from the irradiation management information storage unit 403.
 なお、加熱対象部分が検出領域205で検出されてから、マイクロ波を照射する1以上の集中加熱領域406まで移動するために要する時間は、検出領域205と集中加熱領域406との距離と、加熱対象物60の移動速度等から算出できる。この時間は、例えば、集中加熱領域406と対応付けて予め図示しない格納部等に蓄積しておいたものを適宜読み出すようにすればよい。また、上記において、マイクロ波の位相を制御するための情報は、集中加熱を行なう直前に取得するようにしてもよい。 Note that the time required to move from the detection target portion in the detection region 205 to one or more concentrated heating regions 406 for irradiating the microwave is determined by the distance between the detection region 205 and the concentrated heating region 406 and the heating time. It can be calculated from the moving speed of the object 60 and the like. For this time, for example, what is stored in a storage unit or the like (not shown) in advance in association with the concentrated heating area 406 may be appropriately read. In the above description, the information for controlling the phase of the microwave may be obtained immediately before performing the concentrated heating.
 なお、上記の検出領域205の分割のしかたは一例であり、加熱対象部分に対して集中加熱を行なう集中加熱領域406を特定できるような分割であれば、上記以外の分割を行なうようにしてもよい。 The above-described division of the detection area 205 is an example, and any division other than the above may be performed as long as the division can specify the concentrated heating area 406 where concentrated heating is performed on the portion to be heated. Good.
 また、制御部402が、加熱対象部分を集中加熱する集中加熱領域を特定する処理は、上述した処理に限定されるものではない。 The process in which the control unit 402 specifies the concentrated heating region in which the heating target portion is concentratedly heated is not limited to the above-described process.
 制御部402は、1以上のマイクロ波照射手段401が照射するマイクロ波の出力を更に制御してもよい。この出力は、例えば、マイクロ波の強度である。マイクロ波照射手段401が照射するマイクロ波の出力は、予め決められた出力であってもよく、検出手段20の検出結果に応じて変更されてもよい。制御部402は、例えば、検出手段20が検出した加熱対象部分の温度や、広さ等に応じて1以上のマイクロ波照射手段401が照射するマイクロ波の出力を決定して制御する。例えば、温度が低くなるに従って、連続的、あるいは段階的にマイクロ波の出力が高くなるよう制御してもよい。また、例えば、加熱対象部分の広さが広くなるに従って、連続的、あるいは段階的にマイクロ波の出力が高くなるよう制御してもよい。なお、上述したような検出手段20の検出結果に応じて各マイクロ波照射手段401が照射するマイクロ波の出力は、実験やシミュレーション等に応じて決定することが好ましい。 The control unit 402 may further control the output of the microwave irradiated by the one or more microwave irradiation units 401. This output is, for example, the intensity of the microwave. The output of the microwave irradiated by the microwave irradiation unit 401 may be a predetermined output or may be changed according to the detection result of the detection unit 20. The control unit 402 determines and controls the output of the microwave radiated by the one or more microwave irradiating units 401 in accordance with, for example, the temperature of the portion to be heated detected by the detecting unit 20, the size, and the like. For example, control may be performed so that the microwave output increases continuously or stepwise as the temperature decreases. In addition, for example, control may be performed so that the output of the microwave is increased continuously or stepwise as the area to be heated is increased. In addition, it is preferable that the output of the microwave irradiated by each microwave irradiating means 401 according to the detection result of the detecting means 20 described above is determined according to an experiment, a simulation, or the like.
 照射管理情報格納部403には、集中加熱領域406を集中加熱するための二以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御するための情報である照射管理情報が格納される。照射管理情報格納部403には、例えば、集中加熱領域406を特定するための情報と、この集中加熱領域406を集中加熱するための二以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御するための情報と、が対応付けられた情報である1または2以上の照射管理情報が格納される。集中加熱領域406を特定する情報は、加熱対象部分と重なる集中加熱領域406を特定可能な情報であれば、どのような情報であってもよい。ここでは、集中加熱領域406を特定する情報が、集中加熱領域406と対応する分割領域の位置を示す情報である場合について説明する。具体的には、照射管理情報格納部403には、検出領域205の、上記のように分割された分割領域2051を示す情報と、分割領域2051で検出された加熱対象部分が移動する集中加熱領域406を集中加熱する際の2以上のマイクロ波照射手段401の位相を制御するための情報とを有する1または2以上の照射管理情報が格納されている場合について説明する。 (4) The irradiation management information storage unit 403 stores irradiation management information that is information for controlling the phases of microwaves irradiated by two or more microwave irradiation units 401 for centrally heating the concentrated heating area 406. The irradiation management information storage unit 403 stores, for example, information for specifying the concentrated heating region 406 and the phases of the microwaves irradiated by the two or more microwave irradiation units 401 for centrally heating the concentrated heating region 406. One or two or more pieces of irradiation management information, which is information in which control information is associated with the information, are stored. The information for specifying the concentrated heating region 406 may be any information as long as the information can specify the concentrated heating region 406 overlapping the heating target portion. Here, a case will be described where the information specifying the concentrated heating area 406 is information indicating the position of a divided area corresponding to the concentrated heating area 406. Specifically, the irradiation management information storage unit 403 stores information indicating the divided region 2051 of the detection region 205 divided as described above, and a concentrated heating region in which the heating target portion detected in the divided region 2051 moves. A case where one or more irradiation management information including information for controlling the phases of two or more microwave irradiation units 401 when the 406 is concentratedly heated will be described.
 分割領域を示す情報は、例えば、分割領域の平面方向の位置を示す情報である。分割領域を示す情報は、例えば、分割された領域のエリアや、容器10の幅方向における範囲を示す情報である。2以上のマイクロ波照射手段401の位相を制御するための情報は、例えば、マイクロ波照射手段401を識別する情報と、このマイクロ波照射手段401が照射するマイクロ波の位相を設定する情報とを有する2以上の情報である。この位相を設定する情報は、位相の値や、基準となる位相に対する位相の変化量の情報であってもよい。一の照射管理情報が有する2以上のマイクロ波照射手段401の位相を制御するための情報は、例えば、一の照射管理情報に対応する集中加熱領域406を集中加熱するために、シミュレーションや実験等を行なって取得された、2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を設定する情報であることが好ましい。このシミュレーションや実験は、例えば、2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相の組合せを変更して行なわれる。特に、シミュレーションは、容器10内の反射や、加熱対象物60等の誘電体によるマイクロ波の屈折や、マイクロ波の波長の変化を考慮するよう、容器10の形状や、加熱対象物60の形状や、誘電率等を用いて行なうことが好ましい。 The information indicating the divided region is, for example, information indicating the position of the divided region in the plane direction. The information indicating the divided area is, for example, information indicating an area of the divided area or a range in the width direction of the container 10. The information for controlling the phases of the two or more microwave irradiation units 401 includes, for example, information for identifying the microwave irradiation unit 401 and information for setting the phase of the microwave irradiated by the microwave irradiation unit 401. It is two or more pieces of information. The information for setting the phase may be a value of the phase or information of a change amount of the phase with respect to the reference phase. The information for controlling the phases of the two or more microwave irradiation units 401 included in one irradiation management information includes, for example, a simulation or an experiment for intensively heating the concentrated heating region 406 corresponding to the one irradiation management information. It is preferable that the information is information that sets the phases of the microwaves to be radiated by the two or more microwave radiating units 401, respectively. This simulation or experiment is performed, for example, by changing the combination of the phases of the microwaves irradiated by the two or more microwave irradiation units 401. In particular, in the simulation, the shape of the container 10 and the shape of the heating object 60 are taken into consideration in consideration of reflection in the container 10, refraction of microwaves by a dielectric such as the heating object 60, and changes in the wavelength of microwaves. It is preferable to use a dielectric constant or the like.
 なお、一の照射管理情報が有する2以上のマイクロ波照射手段401の位相を設定する情報は、例えば、同じ照射管理情報が有する集中加熱領域406を集中加熱するために、この集中加熱領域406内において位相が強めあうように、この集中加熱領域406と、2以上のマイクロ波を出射する位置との距離等から算出した位相を設定する情報であってもよい。 Note that the information for setting the phase of two or more microwave irradiation units 401 included in one irradiation management information includes, for example, the centralized heating region 406 included in the same irradiation management information in order to perform concentrated heating. The information may be information that sets a phase calculated from the distance between the concentrated heating region 406 and a position from which two or more microwaves are emitted, so that the phases are strengthened in the above.
 なお、制御部402が、図示しない格納部等に格納されている分割領域2051を示す情報と、分割領域2051に対応する集中加熱領域406の識別子(例えば、分割領域2051に位置する加熱対象部分が移動する集中加熱領域406の識別子)とを有する情報等から、加熱対象部分が位置する分割領域2051に対応する集中加熱領域406の識別子を取得する場合、部分照射管理情報は、集中加熱領域406の識別子と、この集中加熱領域406を集中加熱するための位相を制御するための情報とを有する情報であっても良い。 Note that the control unit 402 stores information indicating the divided area 2051 stored in a storage unit or the like (not shown) and an identifier of the concentrated heating area 406 corresponding to the divided area 2051 (for example, the heating target portion located in the divided area 2051 is When the identifier of the concentrated heating region 406 corresponding to the divided region 2051 where the heating target portion is located is acquired from the information including the identifier of the moving concentrated heating region 406), the partial irradiation management information The information may include an identifier and information for controlling a phase for centrally heating the concentrated heating region 406.
 なお、ここでは、照射状態変化手段40が照射管理情報格納部403を有する場合について説明するが、照射管理情報格納部403は、照射状態変化手段40の外部に設けられていてもよい。 Here, the case where the irradiation state changing unit 40 has the irradiation management information storage unit 403 will be described, but the irradiation management information storage unit 403 may be provided outside the irradiation state changing unit 40.
 照射管理情報格納部403は、不揮発性の記録媒体であってもよく、揮発性の記録媒体であってもよい。かかることは他の格納部についても同様である。 (4) The irradiation management information storage unit 403 may be a non-volatile recording medium or a volatile recording medium. The same applies to other storage units.
 次に、加熱装置1の動作の一例について、図4のフローチャートを用いて説明する。ベルトコンベア50は一定の速度でベルト501上に載置された直方体状の加熱対象物60を搬送しているものとする。ただし、加熱装置1の動作は、図4に示した動作に限定されるものではない。 Next, an example of the operation of the heating device 1 will be described with reference to the flowchart of FIG. The belt conveyor 50 conveys a rectangular parallelepiped heating object 60 placed on the belt 501 at a constant speed. However, the operation of the heating device 1 is not limited to the operation shown in FIG.
 (ステップS101)検出手段20の第一のセンサ201aが、第一の検出領域205aにおいて加熱対象物60の表面61a側の温度分布を取得する。この処理は、例えば、予め決められた周期で行なわれることが好ましい。検出手段20がセンサ201を用いて温度分布を取得する処理を行なう周期(時間間隔)は、例えば、検出領域205の移動方向の長さを、加熱対象物60移動速度で除算して得られる時間とすることが好ましい。 (Step S101) The first sensor 201a of the detecting means 20 acquires the temperature distribution on the surface 61a side of the heating target 60 in the first detection area 205a. This processing is preferably performed, for example, at a predetermined cycle. The period (time interval) at which the detecting means 20 performs the process of acquiring the temperature distribution using the sensor 201 is, for example, a time obtained by dividing the moving direction length of the detection region 205 by the moving speed of the heating target 60. It is preferable that
 (ステップS102)検出手段20の検出処理部202は、ステップS101で取得した温度分布から、加熱対象部分を検出する処理を行なう。例えば、検出処理部202は、取得した温度分布から、閾値以下の温度の部分を検出し、検出した1以上の部分の幅方向の位置を示す情報(例えば、幅方向の座標)を、加熱対象部分の位置を示す情報として取得する処理を行なう。ここでの幅方向の位置を示す情報は、幅方向の領域を示す情報(例えば、座標の範囲を示す情報)であってもよい。 (Step S102) The detection processing unit 202 of the detection means 20 performs a process of detecting a portion to be heated from the temperature distribution acquired in Step S101. For example, the detection processing unit 202 detects, from the acquired temperature distribution, a portion having a temperature equal to or lower than the threshold, and outputs information (for example, coordinates in the width direction) indicating the width direction position of the detected one or more portions to the heating target. A process of acquiring the information indicating the position of the part is performed. The information indicating the position in the width direction here may be information indicating an area in the width direction (for example, information indicating a range of coordinates).
 (ステップS103)照射状態変化手段40の制御部402は、ステップS102において、加熱対象部分が検出されたか否かを判断する。検出された場合、ステップS104に進み、検出されていない場合、ステップS106に進む。 (Step S103) The control unit 402 of the irradiation state changing unit 40 determines whether or not the heating target portion has been detected in Step S102. If detected, the process proceeds to step S104, and if not detected, the process proceeds to step S106.
 (ステップS104)制御部402は、ステップS102で検出された加熱対象部分に対して集中加熱を行なうための、2以上のマイクロ波照射手段401の位相を制御するための情報と、照射を開始する時刻とを決定する。具体的には、制御部402は、照射管理情報格納部403に格納されている第一の検出領域205aが幅方向に分割された分割領域の範囲を示す情報と、この分割領域を通過する加熱対象部分が移動する集中加熱領域406を集中加熱するための、2以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御するための情報とを有する複数の照射管理情報から、ステップS102で検出された1以上の加熱対象部分が含まれる分割領域の位置を示す情報(例えば、範囲を示す情報)を含む照射管理情報を検出し、検出した照射管理情報が有するマイクロ波の位相を制御するための情報を取得する。加熱対象部分が含まれる分割領域の範囲を示す情報は、集中加熱を行なう集中加熱領域を特定する処理と考えてもよい。また、マイクロ波の位相を制御するための情報を取得する処理は、特定した集中加熱領域を集中加熱する際のマイクロ波の位相を制御するための情報を取得する処理と考えてもよい。制御部402は、さらに、現在の時刻を図示しない時計等から取得し、取得した時刻に、検出領域205を通過した加熱対象物60が集中加熱領域406に移動するために要する時間を加算し、加算して得られた時刻を、決定したマイクロ波照射手段401がマイクロ波の照射の開始時刻として取得する。ここでは、複数の集中加熱領域406の、加熱対象物60の移動方向における位置が同じであり、第一の検出領域205aが、加熱対象物60の移動方向に対して垂直に設定されているとすると、この時間は全て同じ時間とする。 (Step S104) The control unit 402 starts irradiation with information for controlling the phases of the two or more microwave irradiation units 401 for performing concentrated heating on the heating target portion detected in step S102. Determine the time. Specifically, the control unit 402 determines the information indicating the range of the divided region obtained by dividing the first detection region 205a in the width direction, which is stored in the irradiation management information storage unit 403, and the heating that passes through the divided region. In step S102, a plurality of irradiation management information including information for controlling the phase of the microwave irradiated by the two or more microwave irradiation units 401 for concentrated heating of the concentrated heating region 406 in which the target portion moves are used. Irradiation management information including information (for example, information indicating a range) indicating a position of a divided region including the detected one or more heating target portions is detected, and a phase of a microwave included in the detected irradiation management information is controlled. To get the information for. The information indicating the range of the divided region including the heating target portion may be considered as a process for specifying a concentrated heating region for performing concentrated heating. Further, the process of acquiring information for controlling the phase of the microwave may be considered as the process of acquiring information for controlling the phase of the microwave when the specified concentrated heating region is intensively heated. The control unit 402 further obtains the current time from a clock (not shown) or the like, and adds the time required for the heating target 60 that has passed the detection area 205 to move to the concentrated heating area 406 to the obtained time, The time obtained by the addition is acquired by the determined microwave irradiation means 401 as the start time of microwave irradiation. Here, the positions of the plurality of concentrated heating regions 406 in the moving direction of the heating target 60 are the same, and the first detection region 205a is set perpendicular to the moving direction of the heating target 60. Then, this time is all the same time.
 (ステップS105)制御部402は、ステップS104で決定したマイクロ波照射手段401を示す情報とマイクロ波の照射の開始時刻とを対応付けて有する情報を、図示しない格納部に蓄積する。そして、ステップS106に進む。 (Step S105) The control unit 402 accumulates information indicating the microwave irradiation unit 401 determined in step S104 and the start time of microwave irradiation in association with each other in a storage unit (not shown). Then, the process proceeds to step S106.
 (ステップS106)検出手段20の第二のセンサ201bが、第二の検出領域205bにおいて加熱対象物60の裏面61b側の温度分布を取得する。 (Step S106) The second sensor 201b of the detection means 20 acquires the temperature distribution on the back surface 61b side of the heating target 60 in the second detection area 205b.
 (ステップS107)検出手段20の検出処理部202は、ステップS106で取得した温度分布から、加熱対象部分を検出する処理を行なう。この処理は、ステップS102と同様の処理であるため、詳細な説明は省略する。 (Step S107) The detection processing unit 202 of the detection unit 20 performs a process of detecting a portion to be heated from the temperature distribution acquired in Step S106. This process is the same as step S102, and a detailed description thereof will be omitted.
 (ステップS108)照射状態変化手段40の制御部402は、ステップS107において、加熱対象部分が検出されたか否かを判断する。検出された場合、ステップS109に進み、検出されていない場合、ステップS111に進む。 (Step S108) The control unit 402 of the irradiation state changing unit 40 determines whether or not a heating target portion has been detected in Step S107. If detected, the process proceeds to step S109. If not detected, the process proceeds to step S111.
 (ステップS109)制御部402は、ステップS107で検出された加熱対象部分に対して集中加熱を行なうための、2以上のマイクロ波照射手段401の位相を制御するための情報と、照射を開始する時刻とを決定する。この処理は、検出領域205が第二の検出領域205bである点を除けば、ステップS104と同様の処理であるため、詳細な説明は省略する。 (Step S109) The control unit 402 starts irradiation with information for controlling the phases of the two or more microwave irradiation units 401 for performing concentrated heating on the heating target portion detected in step S107. Determine the time. This process is the same as step S104 except that the detection region 205 is the second detection region 205b, and thus detailed description is omitted.
 (ステップS110)制御部402は、ステップS109で取得した位相を制御するための情報と開始時刻とを対応付けて有する情報を、ステップS105で蓄積に用いた格納部に蓄積する。そして、ステップS111に進む。 (Step S110) The control unit 402 accumulates information having the start time and the information for controlling the phase acquired in step S109 in the storage unit used for accumulation in step S105. Then, the process proceeds to step S111.
 (ステップS111)制御部402は、位相を制御したマイクロ波の照射を行なうタイミングであるか否かを判断する。具体的には、ステップS105およびステップS110でマイクロ波照射手段401を示す情報と対応付けて蓄積された照射開始時刻の中から、現在の時刻と一致するものを検索する。一致する照射開始時刻が1以上ある場合、マイクロ波照射を行なうタイミングであると判断し、一致する照射開始時刻がない場合、マイクロ波照射を行なわないタイミングであると判断する。マイクロ波照射を行なうタイミングである場合、ステップS112に進み、マイクロ波照射を行なうタイミングでない場合、ステップS101に戻る。 (Step S111) The control unit 402 determines whether or not it is time to irradiate the microwave with the phase controlled. Specifically, from the irradiation start times stored in association with the information indicating the microwave irradiation means 401 in step S105 and step S110, a search is made for the one that matches the current time. If there is at least one matching irradiation start time, it is determined that it is time to perform microwave irradiation, and if there is no matching irradiation start time, it is determined that it is time to not perform microwave irradiation. If it is the timing to perform the microwave irradiation, the process proceeds to step S112. If it is not the timing to perform the microwave irradiation, the process returns to step S101.
 (ステップS112)制御部402は、ステップS111で検出された現在の時刻と一致する照射開始時刻と対応付けられた位相を制御するための情報を取得し、取得した状得方を用いて、2以上のマイクロ波照射手段401を制御して、位相を制御したマイクロ波を照射させる。これにより、2以上のマイクロ波照射手段401からマイクロ波照射が行なわれ、集中加熱が行なわれる。そして、ステップS101に戻る。一致する照射開始時刻を有するレコードが2以上ある場合、各レコードが有する位相を制御するための情報を用いたマイクロ波照射を順番に行なう。なお、各マイクロ波照射手段401がマイクロ波を出射する時間は、例えば、検出手段20が検出を行なう時間間隔と同じ長さとしてもよい。また、各マイクロ波照射手段401からのマイクロ波照射は、例えば、予め決められた時間だけ行なうようにしてもよい。この時間は、例えば、検出手段20がセンサ201を用いて温度分布を取得する処理を行なう周期と同じ時間としてもよい。また、この時間は、例えば、加熱対象部分が、一の集中加熱領域406に入ってから、出るまでに要する時間以下とすることが好ましい。この場合、例えば、マイクロ波を照射中のマイクロ波照射手段401が、マイクロ波照射を開始した後のステップS111において、新たにマイクロ波を照射するタイミングであると判断されたときには、この新たに判断された時刻を、このマイクロ波照射手段401がマイクロ波照射を開始した時刻に更新するようにしてもよい。なお、各マイクロ波照射手段401がマイクロ波の照射を終了する条件は、上記に限定されるものではない。 (Step S112) The control unit 402 acquires information for controlling the phase associated with the irradiation start time coinciding with the current time detected in step S111, and uses the acquired form to obtain information for controlling the phase. The microwave irradiation means 401 is controlled to irradiate a microwave whose phase is controlled. Thereby, microwave irradiation is performed from two or more microwave irradiation units 401, and concentrated heating is performed. Then, the process returns to step S101. If there are two or more records having the same irradiation start time, microwave irradiation using information for controlling the phase of each record is performed in order. The time for each microwave irradiation means 401 to emit a microwave may be, for example, the same length as the time interval at which the detection means 20 performs detection. The microwave irradiation from each microwave irradiation unit 401 may be performed, for example, for a predetermined time. This time may be, for example, the same time as the period in which the detection unit 20 performs the process of acquiring the temperature distribution using the sensor 201. Further, it is preferable that this time is, for example, equal to or less than the time required for the heating target portion to enter from one concentrated heating region 406 to exit. In this case, for example, when the microwave irradiating unit 401 that is irradiating the microwave determines in step S111 after starting the microwave irradiation that it is time to newly irradiate the microwave, this new determination is performed. The performed time may be updated to the time when the microwave irradiation unit 401 starts microwave irradiation. The conditions under which each microwave irradiating means 401 terminates microwave irradiation are not limited to the above.
 なお、図4のフローチャートにおいて、電源オフや処理終了の割り込みにより処理は終了する。 In the flowchart of FIG. 4, the processing is terminated by turning off the power or interrupting the termination of the processing.
 次に、本実施の形態の加熱装置1の動作の具体例について説明する。ここでは一例として、加熱対象物60は、容器10に搬入される直前に、他の加熱を行なう装置等で加熱されたものであるとする。ここでは、ベルト501が一定の速度で、入口101から出口102に向かう方向に移動しているものとし、加熱対象物60の、検出領域205を通過した部分が、検出領域205に入るまでの時間が「t0」秒であったとする。なお、「t0」や、後述する「t1」、「t2」等は、時間を表す任意の値であるとする。 Next, a specific example of the operation of the heating device 1 according to the present embodiment will be described. Here, as an example, it is assumed that the heating target 60 is heated by another heating device or the like immediately before being carried into the container 10. Here, it is assumed that the belt 501 is moving at a constant speed in a direction from the entrance 101 to the exit 102, and the time required for the portion of the heating target 60 passing through the detection area 205 to enter the detection area 205. Is "t0" seconds. Note that “t0”, “t1”, “t2”, and the like, which will be described later, are arbitrary values representing time.
 第一の検出領域205aは、図3(a)に示すように、第一の集中加熱領域406a~第三の集中加熱領域406cを、それぞれ、加熱対象物60の移動方向の逆方向に移動させた場合に重なる3つの領域に分割されているものとする。ここでは、第一の集中加熱領域406a~第三の集中加熱領域406cに重なる領域を、それぞれ、第一分割領域2051a~第三分割領域2051cと呼ぶ。 As shown in FIG. 3A, the first detection area 205a moves the first concentrated heating area 406a to the third concentrated heating area 406c in the direction opposite to the moving direction of the heating target 60, respectively. Is assumed to be divided into three overlapping regions. Here, the areas overlapping the first concentrated heating area 406a to the third concentrated heating area 406c are referred to as first divided area 2051a to third divided area 2051c, respectively.
 同様に、第二の検出領域205bは、図3(b)に示すように、第四の集中加熱領域406d~第六の集中加熱領域406fを、それぞれ、加熱対象物60の移動方向の逆方向に移動させた場合に重なる3つの領域に分割されているものとする。ここでは、第四の集中加熱領域406d~第六の集中加熱領域406fに重なる領域を、それぞれ、第四分割領域2051e~第六分割領域2051fと呼ぶ。なお、検出領域205が分割された分割領域を、特に区別しない場合は、単に、分割領域2051と呼ぶ。 Similarly, as shown in FIG. 3B, the second detection area 205b is configured to move the fourth concentrated heating area 406d to the sixth concentrated heating area 406f in directions opposite to the moving direction of the heating target 60, respectively. It is assumed that the area is divided into three areas that are overlapped when moved to. Here, the areas overlapping the fourth concentrated heating area 406d to the sixth concentrated heating area 406f are respectively referred to as a fourth divided area 2051e to a sixth divided area 2051f. Note that the divided regions obtained by dividing the detection region 205 are simply referred to as divided regions 2051 unless particularly distinguished.
 図5は、照射管理情報格納部403に格納されている照射管理情報を示す図である。照射管理情報は、「領域」と、「制御」という属性を有している。「領域」は、更に「高さ」と「範囲」という属性を有している。「領域」は、分割領域2051を示す属性であり、「高さ」は分割領域2051が属する検出領域の高さを示しており、ここでは、表面61a側の第一の検出領域205aが分割された領域であるか、裏面61b側の第二の検出領域205bが分割領域2051であるかを示している。値「1」は、第一の検出領域205aの分割領域2051、値「2」は、第二の検出領域205bの分割領域2051を示している。「範囲」は分割領域2051を示す情報で、分割領域2051の加熱対象物60の幅方向の範囲を、幅方向の座標の範囲で示している。なお、「x1」、「x2」等は、座標を表す値であるとする。この「領域」は、集中加熱領域406を特定するための情報と考えてよい。「制御」は、3つのマイクロ波照射手段401のマイクロ波の位相を制御するために用いられる情報であり、制御対象のマイクロ波照射手段401を示す値と、その位相を表す値と、加熱対象部分が検出されてからマイクロ波の照射を開始するまでの時間とを、「:」(コロン)を挟んで組み合わせた情報の組で構成されている。この「制御」の値は、3つのマイクロ波照射手段401を制御するための後述する照射制御情報を得るためのテンプレートの情報と考えてもよい。マイクロ波照射手段401を表す値「1」~「3」は、第一のマイクロ波照射手段401a~第三のマイクロ波照射手段401cを示している。また、位相を表す値は、各マイクロ波照射手段401に設定される位相の値を示している。例えば、「1:α1:t0,2:α2:t0、3:α3:t0」は、第一のマイクロ波照射手段401aを、位相をα1に設定して、加熱対象部分を検出してから「t0」秒後にマイクロ波を照射させ、第二のマイクロ波照射手段401bを、位相をα2に設定して、加熱対象部分を検出してから「t0」秒後にマイクロ波を照射させ、また、第三のマイクロ波照射手段401cを、位相をα3に設定して、加熱対象部分を検出してから「t0」秒後にマイクロ波を照射させようそれぞれ制御することを指定する情報であるとする。なお、「α1」~「α3」等は、位相を表す値であるとする。ここでは、一の行が、照射管理情報の一のレコードであるとする。なお、ここでは、全てのレコードにおいて、加熱対象部分が検出されてから「t0」秒後にマイクロ波照射を行なうこととなっているため、この「t0」を省略してもよい。 FIG. 5 is a diagram showing irradiation management information stored in the irradiation management information storage unit 403. The irradiation management information has attributes of “region” and “control”. The “region” has attributes “height” and “range”. The “region” is an attribute indicating the divided region 2051, and the “height” indicates the height of the detection region to which the divided region 2051 belongs. Here, the first detection region 205a on the surface 61a side is divided. This indicates whether the region is a divided region or the second detection region 205b on the back surface 61b side is a divided region 2051. The value “1” indicates the divided region 2051 of the first detection region 205a, and the value “2” indicates the divided region 2051 of the second detection region 205b. “Range” is information indicating the divided region 2051, and indicates a range in the width direction of the heating target 60 in the divided region 2051 by a range of coordinates in the width direction. Note that “x1”, “x2”, and the like are values representing coordinates. This “region” may be considered as information for specifying the concentrated heating region 406. “Control” is information used to control the phases of the microwaves of the three microwave irradiation units 401, and includes a value indicating the microwave irradiation unit 401 to be controlled, a value indicating the phase, and a value indicating the heating target. It is composed of a set of information obtained by combining the time from the detection of a portion to the start of microwave irradiation with a “:” (colon) therebetween. The value of “control” may be considered as information of a template for obtaining irradiation control information described later for controlling the three microwave irradiation units 401. The values “1” to “3” representing the microwave irradiation unit 401 indicate the first microwave irradiation unit 401a to the third microwave irradiation unit 401c. The value representing the phase indicates the value of the phase set in each microwave irradiation means 401. For example, “1: α1: t0, 2: α2: t0, 3: α3: t0” means that the first microwave irradiation unit 401a sets the phase to α1, detects the portion to be heated, and then sets “1”. After t0 ”seconds, the microwave is irradiated, the second microwave irradiation means 401b sets the phase to α2, and the microwave is irradiated after t0 seconds after detecting the portion to be heated. The phase is set to α3 for the three microwave irradiating units 401c, and it is assumed that the information designates to control each of the microwave irradiating units 401c to irradiate the microwaves “t0” seconds after the detection of the portion to be heated. Note that “α1” to “α3” and the like are values representing phases. Here, it is assumed that one row is one record of the irradiation management information. Here, in all the records, the microwave irradiation is to be performed “t0” seconds after the heating target portion is detected, and thus “t0” may be omitted.
 ベルトコンベア50を駆動してベルト501を移動させると、ベルト501上に載置した加熱対象物60が入口101から容器10内に搬入され、容器10内を経て、容器10の外部に搬出される。 When the belt 501 is moved by driving the belt conveyor 50, the heating target 60 placed on the belt 501 is carried into the container 10 from the entrance 101, and is carried out of the container 10 through the container 10. .
 検出手段20の第一のセンサ201aは、第一の検出領域205aを通過する加熱対象物60の表面61a側について温度分布を検出する。そして、検出処理部202は、検出された温度分布において、予め決められた閾値以下の部分を、加熱対象部分として検出する。ここでは、例えば、図3(b)に示すように、加熱対象部分206が検出されたとする。検出処理部202は、検出した加熱対象部分206の幅方向の座標の範囲を取得する。 第一 The first sensor 201a of the detecting means 20 detects the temperature distribution on the surface 61a side of the heating target 60 passing through the first detection area 205a. Then, the detection processing unit 202 detects a portion that is equal to or less than a predetermined threshold value in the detected temperature distribution as a portion to be heated. Here, it is assumed that, for example, as shown in FIG. The detection processing unit 202 acquires the detected range of the coordinates of the heating target portion 206 in the width direction.
 制御部402は、第一の検出領域205aを分割した複数の領域である第一分割領域2051a~第三分割領域2051cから、検出手段20が検出した加熱対象部分206が含まれている分割領域2051を検出する。具体的には、図5に示した照射管理情報において、「高さ」が、検出が行なわれた第一の検出領域205aを表す「1」であって、「範囲」が、検出手段20が取得した加熱対象部分206の幅方向の座標の範囲を含むレコード(行)を検出する。ここでは、図5の上から1行目のレコードが、このような条件にあうレコードとして検出されたとすると、制御部402は、このレコードの「制御」の値を取得する。取得した値は、「1:α1:t0,2:α2:t0、3:α3:t0」であったとする。この値は、例えば、シミュレーション等で取得された第一の集中加熱領域406aを集中加熱するための、マイクロ波の照射を行う複数のマイクロ波照射手段401と、各マイクロ波照射手段401が照射するマイクロ波の位相と、加熱対象部分が検出されてから各マイクロ波照射手段401がマイクロ波の照射を開始するまでの時間と、をそれぞれ指定する情報である。 The control unit 402 divides the first detection region 205a from the first divided region 2051a to the third divided region 2051c, which are a plurality of regions, by dividing the first detection region 205a. Is detected. Specifically, in the irradiation management information shown in FIG. 5, “height” is “1” representing the first detection area 205 a where the detection is performed, and “range” is A record (row) including the acquired range of coordinates in the width direction of the heating target portion 206 is detected. Here, assuming that the record in the first line from the top in FIG. 5 is detected as a record that meets such a condition, the control unit 402 acquires the value of “control” of this record. It is assumed that the acquired values are “1: α1: t0, 2: α2: t0, 3: α3: t0”. This value is obtained, for example, by a plurality of microwave irradiating units 401 for irradiating microwaves for intensively heating the first concentrated heating region 406a obtained by a simulation or the like, and by each microwave irradiating unit 401. This is information for designating the phase of the microwave and the time from when the heating target portion is detected to when each microwave irradiating unit 401 starts to irradiate the microwave.
 また、制御部402は、現在の時刻「t1」を、図示しない時計等から取得し、上記で照射管理情報の「制御」から取得した3つのマイクロ波照射手段401のマイクロ波の位相を制御するために用いられる情報の、加熱対象部分が検出されてからマイクロ波の照射を開始するまでの時間「t0」を、全て、上記で取得した現在の時刻「t1」にこの時間「t0」を加算した照射開始時刻「t0+t1」に変更する。そして、上記で取得した図5の照射管理情報の1行目のレコードの「制御」の値の時間「t0」を、このように照射開始時刻に変更して得られた情報「1:α1:t0+t1,2:α2:t0+t1、3:α3:t0+t1」を、複数のマイクロ波照射手段401による位相を制御したマイクロ波の照射を制御する照射制御情報として、図示しない格納部に蓄積する。この照射制御情報は、制御対象の各マイクロ波照射手段401を示す値と、その位相を表す値と、各マイクロ波照射手段401の照射開始時刻とを、「:」(コロン)を挟んで組み合わせた情報の組で構成されている。なお、ここでは、各マイクロ波照射手段401を表す値「1」から「3」に対応する照射開始時刻が共通しているため、制御部402は、照射開始時刻を異なる属性として蓄積する。 In addition, the control unit 402 acquires the current time “t1” from a clock or the like (not shown) and controls the phases of the microwaves of the three microwave irradiation units 401 acquired from “control” of the irradiation management information. The time “t0” from the detection of the heating target portion to the start of microwave irradiation of the information used for this is all added to the current time “t1” obtained above, and this time “t0” is added. The irradiation start time is changed to “t0 + t1”. Then, the information “1: α1:” obtained by changing the time “t0” of the “control” value of the record in the first row of the irradiation management information of FIG. “t0 + t1, 2: α2: t0 + t1, 3: α3: t0 + t1” are stored in a storage unit (not shown) as irradiation control information for controlling the irradiation of the microwaves whose phases are controlled by the plurality of microwave irradiation units 401. The irradiation control information is a combination of a value indicating each microwave irradiation unit 401 to be controlled, a value representing the phase thereof, and an irradiation start time of each microwave irradiation unit 401 with a “:” (colon) therebetween. It consists of a set of information. Here, since the irradiation start times corresponding to the values “1” to “3” representing the respective microwave irradiation units 401 are common, the control unit 402 stores the irradiation start times as different attributes.
 図6(a)および図6(b)は、図示しない格納部に格納された照射制御情報を管理する照射制御表を示す図である。照射制御表は、「照射時刻」と、「制御」という属性を有している。「照射時刻」は、上記の照射開始時刻である。「制御」は、図5の「制御」から、マイクロ波が照射されるまでの時間を除いたものである。ここでは、一のレコード(行)が、一の照射制御情報を示している。上記の情報を蓄積した場合、図6(a)のようになる。 FIGS. 6A and 6B are diagrams showing irradiation control tables for managing irradiation control information stored in a storage unit (not shown). The irradiation control table has attributes of “irradiation time” and “control”. “Irradiation time” is the above-described irradiation start time. The “control” is the same as the “control” in FIG. 5 except for the time until microwave irradiation. Here, one record (row) indicates one irradiation control information. FIG. 6A shows the case where the above information is accumulated.
 また、検出手段20の第二のセンサ201bも、第二の検出領域205bを通過する加熱対象物60の裏面61b側について温度分布を検出する。この検出は、例えば、実際には、上記の第一のセンサ201aを用いて温度分布を検出する処理と、ほぼ同時に行なわれるものとする。そして、検出処理部202は、加熱対象部分を検出するために、検出された温度分布において、予め決められた閾値以下の部分を検出する処理を行う。 {Circle around (2)} The second sensor 201b of the detection means 20 also detects the temperature distribution on the back surface 61b side of the heating target 60 passing through the second detection area 205b. For example, this detection is actually performed almost simultaneously with the process of detecting the temperature distribution using the first sensor 201a. Then, the detection processing unit 202 performs a process of detecting a portion that is equal to or less than a predetermined threshold in the detected temperature distribution in order to detect the portion to be heated.
 ここでは、第二のセンサ201bが検出した温度分布においては、閾値以下の温度の部分が検出されなかったとすると、制御部402は、上記のような照射制御情報を取得しない。 Here, assuming that a temperature portion equal to or lower than the threshold is not detected in the temperature distribution detected by the second sensor 201b, the control unit 402 does not acquire the irradiation control information as described above.
 制御部402は、図6(a)に示した照射制御情報において、「照射時刻」の属性値が、現在の時刻「t1」と一致するレコードを検索する。ここでは、一致するレコードが検出されないため、マイクロ波照射手段401からマイクロ波の照射は行なわれない。 The control unit 402 searches the irradiation control information shown in FIG. 6A for a record in which the attribute value of “irradiation time” matches the current time “t1”. Here, since no matching record is detected, the microwave irradiation means 401 does not perform microwave irradiation.
 検出手段20は、上記と同様の、移動する加熱対象物60の第一の検出領域205aと、第二の検出領域205bとをそれぞれ通過する部分について温度分布を検出し、この温度分布を用いて加熱対象部分を検出し、検出された場合、対応する照射制御情報を取得して、図示しない格納部に追記する処理を、一定の時間間隔ごとに繰り返し行なう。 The detection means 20 detects a temperature distribution in a portion of the moving heating target 60 that passes through the first detection area 205a and the second detection area 205b, respectively, as described above, and uses this temperature distribution. The heating target portion is detected, and when it is detected, the corresponding irradiation control information is obtained, and the process of additionally writing to the storage unit (not shown) is repeated at regular time intervals.
 また、同様に、制御部402は、図6(a)に示した照射制御情報において、「照射時刻」の属性値が、現在の時刻と一致するレコードを検索する処理を繰り返す。一致するレコードが検出された場合の処理例については後述する。 Similarly, the control unit 402 repeats the process of searching for a record in which the attribute value of “irradiation time” matches the current time in the irradiation control information shown in FIG. A processing example when a matching record is detected will be described later.
 例えば、時刻「t1」以降の、ある時刻「t2」において、加熱対象物60の第一の検出領域205aを通過する部分では、温度が閾値以下である部分が検出されなかったが、加熱対象物60の第二の検出領域205bを通過する部分について第二のセンサ201bが取得した温度分布においては、例えば、図3(d)に示すように、温度が閾値以下となる加熱対象部分207が検出されたとする。 For example, at a certain time “t2” after the time “t1”, at a portion passing through the first detection area 205a of the heating target 60, a portion where the temperature is equal to or lower than the threshold is not detected. In the temperature distribution acquired by the second sensor 201b for the portion passing through the second detection region 205b of the 60, for example, as shown in FIG. Suppose it was done.
 制御部402は、第二の検出領域205bが分割された第四分割領域2051d~第六分割領域2051fから、検出手段20が検出した加熱対象部分206が含まれている領域を検出する。具体的には、図5に示した照射管理情報において、「高さ」が、検出側行なわれた第二の検出領域205bを表す「2」であって、「範囲」が、検出手段20が取得した加熱対象部分206の幅方向の座標の範囲を含むレコード(行)を検出する。ここでは、図5の上から5行目のレコードが条件にあうレコードとして検出されたとすると、制御部402は、このレコードの「制御」の値を取得する。取得した値は、「1:α13:t0,2:α14:t0、3:α15:t0」であったとする。この値は、例えば、シミュレーション等で取得された第五の集中加熱領域406eを集中加熱するための、マイクロ波の照射を行う複数のマイクロ波照射手段401と、各マイクロ波照射手段401が照射するマイクロ波の位相と、加熱対象部分が検出されてから各マイクロ波照射手段401がマイクロ波の照射を開始するまでの時間と、をそれぞれ指定する情報であるとする。 The control unit 402 detects an area including the heating target portion 206 detected by the detection unit 20 from the fourth divided area 2051d to the sixth divided area 2051f obtained by dividing the second detection area 205b. Specifically, in the irradiation management information shown in FIG. 5, “height” is “2” representing the second detection area 205 b performed on the detection side, and “range” is that the detection unit 20 A record (row) including the acquired coordinate range in the width direction of the heating target portion 206 is detected. Here, assuming that the record in the fifth row from the top in FIG. 5 is detected as a record that meets the conditions, the control unit 402 acquires the value of “control” of this record. It is assumed that the acquired values are “1: α13: t0, 2: α14: t0, 3: α15: t0”. This value is obtained, for example, by a plurality of microwave irradiating units 401 that irradiate microwaves for intensively heating the fifth concentrated heating region 406e acquired by a simulation or the like, and by each microwave irradiating unit 401. It is assumed that the information designates the phase of the microwave and the time from when the heating target portion is detected to when each microwave irradiating unit 401 starts to irradiate the microwave.
 また、制御部402は、現在の時刻「t2」を、図示しない時計等から取得し、上記で取得した3つのマイクロ波照射手段401のマイクロ波の位相を制御するために用いられる情報の加熱対象部分が検出されてからマイクロ波の照射を開始するまでの時間「t0」を、全て、上記で取得した現在の時刻「t2」にこの時間「t0」を加算した照射開始時刻「t0+t2」に変更して、照射制御情報「1:α13:t0+t2,2:α14:t0+t2、3:α15:t0+t2」を取得し、図示しない格納部に追記する。この照射制御情報を追記した照射制御表は、図6(b)のようになる。 In addition, the control unit 402 acquires the current time “t2” from a clock or the like (not shown), and heats information used to control the phases of the microwaves of the three microwave irradiation units 401 acquired above. The time “t0” from the detection of the part to the start of the microwave irradiation is changed to the irradiation start time “t0 + t2” obtained by adding the time “t0” to the current time “t2” obtained above. Then, the irradiation control information “1: α13: t0 + t2, 2: α14: t0 + t2, 3: α15: t0 + t2” is acquired and added to the storage unit (not shown). The irradiation control table to which the irradiation control information is added is as shown in FIG.
 ここで、例えば、現在の時刻が「t0+t1」になったとし、制御部402が、図6(b)に示した照射制御表において、「照射時刻」の属性値が、現在の時刻「t1+t0」と一致するレコード(行)を検出したとする。制御部402は、検出された「照射時刻」の属性値が「t1+t0」である図6(b)に示した照射制御表の上から1行目のレコードから、「制御」の属性値「1:α1,2:α2、3:α3」を取得し、この属性値を用いて、第一のマイクロ波照射手段401a~第三のマイクロ波照射手段401cを制御して、それぞれから位相を制御したマイクロ波を照射させる。具体的には、第一のマイクロ波照射手段401aから、位相をα1に設定したマイクロ波を照射させ、第二のマイクロ波照射手段401bから、位相をα2に設定したマイクロ波を照射させ、第三のマイクロ波照射手段401cから、位相をα3に設定したマイクロ波を照射させる。ここでの位相は、例えば、全ての位相を同位相とした場合を基準とした位相である。これにより、第一の集中加熱領域406aが集中加熱される。第一の検出領域205aで時刻「t0」において検出された加熱対象部分206は、時刻「t0+t1」には第一の集中加熱領域406a内まで移動しているので、加熱対象物60の加熱対象部分206が集中加熱されることとなる。 Here, for example, assuming that the current time has become “t0 + t1”, the control unit 402 sets the attribute value of “irradiation time” to the current time “t1 + t0” in the irradiation control table shown in FIG. It is assumed that a record (row) that matches is detected. The control unit 402 obtains the attribute value “1” of “control” from the record in the first row from the irradiation control table shown in FIG. 6B in which the detected attribute value of “irradiation time” is “t1 + t0”. : Α1, 2: α2, 3: α3 ”, the first microwave irradiating unit 401a to the third microwave irradiating unit 401c are controlled using the attribute values, and the phases are controlled from each. Irradiate microwave. Specifically, the first microwave irradiating unit 401a irradiates a microwave whose phase is set to α1, and the second microwave irradiating unit 401b irradiates a microwave whose phase is set to α2, Microwaves whose phases are set to α3 are irradiated from the three microwave irradiation units 401c. The phase here is, for example, a phase based on the case where all phases are the same. Thereby, the first concentrated heating area 406a is concentratedly heated. The heating target portion 206 detected at the time “t0” in the first detection region 205a has moved into the first concentrated heating region 406a at the time “t0 + t1”. 206 will be concentratedly heated.
 また、例えば、現在の時刻が「t0+t2」になったとし、制御部402は、図6(b)に示した照射制御表において、「照射時刻」の属性値が、現在の時刻「t0+t2」と一致するレコード(行)を検出したとする。制御部402は、検出された「照射時刻」の属性値が「t0+t2」であるレコードの「制御」の属性値「1:α13,2:α14、3:α15」を取得し、この属性値を用いて、第一のマイクロ波照射手段401a~第三のマイクロ波照射手段401cを制御して、それぞれから位相を制御したマイクロ波を照射させる。具体的には、第一のマイクロ波照射手段401aから、位相をα13に設定したマイクロ波を照射させ、第二のマイクロ波照射手段401bから、位相をα14に設定したマイクロ波を照射させ、第三のマイクロ波照射手段401cから、位相をα15に設定したマイクロ波を照射させる。これにより、第五の集中加熱領域406eが集中加熱される。第二の検出領域205bで時刻「t0」において検出された加熱対象部分206は、時刻「t0+t2」には第五の集中加熱領域406e内まで移動しているので、加熱対象物60の加熱対象部分206が集中加熱されることとなる。 Further, for example, assuming that the current time has become “t0 + t2”, the control unit 402 sets the attribute value of “irradiation time” to the current time “t0 + t2” in the irradiation control table shown in FIG. Suppose that a matching record (row) is detected. The control unit 402 obtains the attribute value “1: α13, 2: α14, 3: α15” of “control” of the record in which the attribute value of the detected “irradiation time” is “t0 + t2”, and acquires this attribute value. The first microwave irradiation means 401a to the third microwave irradiation means 401c are controlled to irradiate the microwaves whose phases are controlled. Specifically, the first microwave irradiation unit 401a irradiates a microwave whose phase is set to α13, and the second microwave irradiation unit 401b irradiates a microwave whose phase is set to α14, Microwaves whose phases are set to α15 are irradiated from the three microwave irradiation units 401c. Thereby, the fifth concentrated heating region 406e is concentratedly heated. The heating target portion 206 detected at the time “t0” in the second detection region 205b has moved into the fifth concentrated heating region 406e at the time “t0 + t2”. 206 will be heated intensively.
 以上、本実施の形態によれば、検出手段20が検出した加熱対象部分を、マイクロ波により集中加熱することができるため、ダイナミックかつリアルタイムに加熱対象部分を集中加熱できるとともに、集中加熱によって無駄のない効率的なマイクロ波加熱を行なうことができる。また、加熱が不要な箇所に対して行なわれるマイクロ波照射を低減させて、不要な箇所の加熱によるダメージ等を防ぐことができる。 As described above, according to the present embodiment, since the heating target portion detected by the detection means 20 can be concentratedly heated by the microwave, the heating target portion can be dynamically and in real time concentratedly heated, and the concentrated heating is wasteful. No efficient microwave heating can be performed. In addition, microwave irradiation performed on a portion that does not require heating can be reduced, and damage or the like due to heating of an unnecessary portion can be prevented.
 なお、上記実施の形態においては、ベルトコンベア50等の搬送手段により、容器10内を連続的に搬送される(すなわち、容器10内を連続的に移動する)加熱対象物60に対して、加熱等の処理を行なう場合について説明したが、加熱対象物60を、容器10内において、適宜移動させたり停止させたりしてもよい。例えば、加熱装置1は、容器10内を非連続に移動する加熱対象物60に対して、加熱等の処理を行なうものであってもよい。非連続に移動する、ということは、例えば、移動と停止とを組み合わせて移動することや、断続的に移動することである。どのようなときに、加熱対象物60を移動させ、どのようなときに、加熱対象物60を停止させるかは問わない。例えば、検出手段20が加熱対象部分を検出する際に、加熱対象物60の移動を一時的に停止させてもよく、マイクロ波照射手段401を用いて集中加熱を行う際に、加熱対象物60の移動を一時的に停止させてもよい。なお、移動を一時停止する際には、加熱対象部分を検出してから、この加熱対象部分を加熱するまでの時間を、停止した分だけ、調整するようにすることが好ましい。 In the above embodiment, the heating object 60 that is continuously conveyed in the container 10 (that is, continuously moves in the container 10) by the conveying means such as the belt conveyor 50 is heated. Although the case of performing such a process has been described, the heating target 60 may be appropriately moved or stopped in the container 10. For example, the heating apparatus 1 may perform processing such as heating on the heating target 60 that moves discontinuously in the container 10. Moving discontinuously means, for example, moving in combination with movement and stopping, or moving intermittently. It does not matter when the heating target 60 is moved and when the heating target 60 is stopped. For example, the movement of the heating target 60 may be temporarily stopped when the detection unit 20 detects the heating target portion, and when the microwave irradiation unit 401 performs the concentrated heating, the heating target 60 May be temporarily stopped. When the movement is temporarily stopped, it is preferable to adjust the time from the detection of the heating target portion to the heating of the heating target portion by the amount of the stoppage.
 (変形例1)
 なお、上記実施の形態においては、複数の集中加熱領域406を加熱対象物60の幅方向に向かって一列だけ配列した場合について説明したが、複数の集中加熱領域406を幅方向に向かって複数列配置されるようにし、照射状態変化手段40が、マイクロ波照射手段401が照射するマイクロ波の位相を制御して、検出手段20が検出した加熱対象部分が位置することとなった(例えば、進入する)集中加熱領域を、集中加熱させるようにしてもよい。すなわち、集中加熱領域406が、加熱対象物60の平面上において、p×q(p、qは2以上の整数)のマトリクス状に、隙間なく配置されていてもよい。
(Modification 1)
In the above embodiment, the case where the plurality of concentrated heating regions 406 are arranged in a single row in the width direction of the heating target 60 has been described, but the plurality of concentrated heating regions 406 are arranged in the plurality of rows in the width direction. The irradiation state changing means 40 controls the phase of the microwave radiated by the microwave irradiating means 401 so that the heating target portion detected by the detecting means 20 is located (for example, the approaching state). B) The concentrated heating area may be heated intensively. That is, the concentrated heating regions 406 may be arranged in a matrix of p × q (p and q are integers of 2 or more) on the plane of the heating target 60 without gaps.
 図7(a)~図7(d)は、このような加熱装置1の変形例を説明するための、容器10内の加熱対象物60の近傍を表面側からみた平面模式図である。図7(a)~図7(d)において、図3(a)と同一符号は同一または相当する部分を示している。集中加熱領域406a2~集中加熱領域406c2、および集中加熱領域406a3~集中加熱領域406c3は、それぞれ、上述した第一の集中加熱領域406a~集中加熱領域406cを、第一の検出領域205a側に向かって平行移動した集中加熱領域であるとする。これにより、集中加熱領域406は平面方向においてマトリクス状に配置されることとなる。なお、加熱装置1の他の構成は、上記実施の形態1と同様であるとする。 7 (a) to 7 (d) are schematic plan views of the vicinity of the heating target 60 in the container 10 as viewed from the front side, for describing such a modification of the heating device 1. FIG. 7A to 7D, the same reference numerals as those in FIG. 3A indicate the same or corresponding parts. The concentrated heating areas 406a2 to 406c2, and the concentrated heating areas 406a3 to 406c3 are respectively arranged such that the first concentrated heating area 406a to the concentrated heating area 406c are moved toward the first detection area 205a. It is assumed that the centralized heating area is translated. Thus, the concentrated heating regions 406 are arranged in a matrix in the planar direction. The other configuration of the heating device 1 is the same as that of the first embodiment.
 照射管理情報格納部403には、例えば、第一分割領域2051aの範囲を示す情報と、第一の集中加熱領域406a、集中加熱領域406a2、および集中加熱領域406a3をそれぞれ個別に集中加熱するためのマイクロ波照射手段401の位相を制御するための情報とを有する照射管理情報が格納されている。第二分割領域2051bの範囲を示す情報および第三分割領域2051cの範囲を示す情報についても同様に、幅方向の位置が一致する集中加熱領域406をそれぞれ集中加熱するためのマイクロ波照射手段401の位相を制御するための情報が対応付けられた照射管理情報が格納されている。ただし、各集中加熱領域406の位相を制御するための情報には、加熱対象部分が、検出領域205から、各集中加熱領域406に移動するまでに必要な情報が、対応付けてられているものとする。例えば、第一の集中加熱領域406aには、加熱対象部分が、検出領域205から第一の集中加熱領域406aに移動するまでの時間「t0」が対応付けられており、集中加熱領域406a2には、加熱対象部分が、検出領域205から集中加熱領域406a2に移動するまでの時間「t5」が対応付けられており、集中加熱領域406a3には、加熱対象部分が、検出領域205から集中加熱領域406a3に移動するまでの時間「t6」が対応付けられているものとする。(ただし、t0>t5>t6とする)。 The irradiation management information storage unit 403 includes, for example, information indicating the range of the first divided area 2051a and information for individually and centrally heating the first concentrated heating area 406a, the concentrated heating area 406a2, and the concentrated heating area 406a3. Irradiation management information including information for controlling the phase of the microwave irradiation means 401 is stored. Similarly, as for the information indicating the range of the second divided region 2051b and the information indicating the range of the third divided region 2051c, the microwave irradiation unit 401 for concentratedly heating the concentrated heating regions 406 having the same position in the width direction respectively. Irradiation management information associated with information for controlling the phase is stored. However, the information for controlling the phase of each concentrated heating region 406 is associated with information necessary for the heating target portion to move from the detection region 205 to each concentrated heating region 406. And For example, the time “t0” until the heating target portion moves from the detection region 205 to the first concentrated heating region 406a is associated with the first concentrated heating region 406a. The time "t5" until the heating target portion moves from the detection region 205 to the concentrated heating region 406a2 is associated with the heating target portion, and the heating target portion is moved from the detection region 205 to the concentrated heating region 406a3. It is assumed that the time “t6” before moving to is associated. (However, t0> t5> t6).
 例えば、図7(b)に示すように、第一分割領域2051aで加熱対象部分が検出された場合、制御部402は、照射管理情報格納部403の照射管理情報から、第一分割領域2051aと対応付けられた、第一の集中加熱領域406a、集中加熱領域406a2、および集中加熱領域406a3を、それぞれ個別に集中加熱するためのマイクロ波照射手段401の位相を制御するための情報を取得する。そして、制御部402は、加熱対象部分が検出されてから「t6」秒経過した時点で、取得した情報のうちの、「t6」と対応付けられた情報を用いて、複数のマイクロ波照射手段401を制御して位相を制御したマイクロ波を照射させて、加熱対象部分が集中加熱領域406b3に位置するときに、集中加熱領域406a3を集中加熱させる。また、図7(c)に示すように、加熱対象部分が検出されてから「t5」秒経過して加熱対象部分が集中加熱領域406a2に位置する時点で、取得した情報のうちの、「t5」と対応付けられた情報を用いて、複数のマイクロ波照射手段401を制御して位相を制御したマイクロ波を照射させて、集中加熱領域406a2を集中加熱させる。また、加熱対象部分が検出されてから「t0」経過した時点で、取得した情報のうちの、「t0」と対応付けられた情報を用いて、複数のマイクロ波照射手段401を制御して位相を制御したマイクロ波を照射させて、図7(d)に示すように、加熱対象部分が第一の集中加熱領域406aに位置するときに、第一の集中加熱領域406aを集中加熱させる。これにより、加熱対象部分を、加熱対象部分の移動に追従して集中加熱することができる。このようにすることで、加熱対象部分を集中加熱する時間を増やすことができる。 For example, as illustrated in FIG. 7B, when the heating target portion is detected in the first divided area 2051a, the control unit 402 determines the first divided area 2051a from the irradiation management information in the irradiation management information storage unit 403. The information for controlling the phase of the microwave irradiation means 401 for individually and centrally heating the first concentrated heating region 406a, the concentrated heating region 406a2, and the concentrated heating region 406a3 are acquired. Then, at the time when “t6” seconds have elapsed since the detection of the heating target portion, the control unit 402 uses the information associated with “t6” among the acquired information to generate a plurality of microwave irradiation units. By irradiating a microwave whose phase is controlled by controlling 401, the concentrated heating area 406a3 is concentratedly heated when the heating target portion is located in the concentrated heating area 406b3. Further, as shown in FIG. 7 (c), when the heating target portion is located in the concentrated heating area 406a2 after "t5" seconds have elapsed since the detection of the heating target portion, "t5" Using the information correlated with "", the plurality of microwave irradiating means 401 are controlled to irradiate a microwave whose phase is controlled, thereby intensively heating the concentrated heating region 406a2. Further, when “t0” has elapsed since the detection of the portion to be heated, the plurality of microwave irradiation units 401 are controlled using the information associated with “t0” in the acquired information to control the phase. Is controlled, and the first concentrated heating region 406a is concentratedly heated when the heating target portion is located in the first concentrated heating region 406a as shown in FIG. 7D. Thereby, the heating target portion can be concentratedly heated by following the movement of the heating target portion. By doing so, it is possible to increase the time for intensively heating the portion to be heated.
 なお、複数の列の集中加熱領域406aの配置は、上記のような配置に限定されるものではない。例えば、複数列の集中加熱領域406が幅方向に伸びるとともに、長手方向において前後に位置する異なる列の複数の集中加熱領域406の幅方向の位置が互いに異なるよう配置されていてもよい。 The arrangement of the concentrated heating regions 406a in the plurality of rows is not limited to the above arrangement. For example, a plurality of rows of concentrated heating regions 406 may extend in the width direction, and a plurality of concentrated heating regions 406 in different rows located in front and rear in the longitudinal direction may be arranged so as to have different width positions.
 なお、上記実施の形態においては、表面61a側の検出領域205aで検出した加熱対象物については、表面61a側の集中加熱領域のうちの、加熱対象物60の幅方向において加熱対象部分が位置することとなる集中加熱領域406を、また、裏面61b側の検出領域205bで検出した加熱対象物については、裏面61b側の集中加熱領域のうちの、加熱対象物60の幅方向において加熱対象部分が位置することとなる集中加熱領域406を、集中加熱を行なう集中加熱領域406に特定して、集中加熱を行なうようにしたが、検出手段20により、加熱対象部分の高さ方向の位置情報(例えば、高さ方向の座標)等を取得することが可能な場合、照射状態変化手段40は、幅方向だけではなく、高さ方向においても加熱対象部分が位置する集中加熱領域を、集中加熱を行なう集中加熱領域406に特定するようにしてもよい。つまり、加熱対象物60の幅方向において加熱対象部分が位置することとなる集中加熱領域406であって、高さ方向において加熱対象部分が位置することとなる集中加熱領域406を、集中加熱を行なう集中加熱領域に決定してもよい。高さ方向において、加熱対象部分が位置することとなる集中加熱領域406を特定する処理は、上述したような幅方向において加熱対象部分が位置する集中加熱領域406を特定する処理と、集中加熱領域406の配列方向等が異なる点を除けば同様であるため、ここでは詳細な説明は省略する。なお、高さ方向において加熱対象部分を検出するためには、例えば、加熱対象物60の平面方向だけではなく、高さ方向の温度分布等を取得する必要がある。 In the above-described embodiment, for the heating target detected in the detection region 205a on the front surface 61a side, the heating target portion is located in the width direction of the heating target 60 in the concentrated heating region on the front surface 61a side. Regarding the object to be heated detected in the concentrated heating region 406 to be changed and the detection region 205b on the back surface 61b side, the heating object portion in the width direction of the heating object 60 in the concentrated heating region on the back surface 61b side is The concentrated heating region 406 to be located is specified as the concentrated heating region 406 where the concentrated heating is performed, and the concentrated heating is performed. , The coordinates in the height direction) can be obtained, the irradiation state changing means 40 determines the position of the portion to be heated not only in the width direction but also in the height direction. Concentration heating region may be identified to the centralized heating area 406 which performs centralized heating. That is, the concentrated heating region 406 where the heating target portion is located in the width direction of the heating target 60 and the concentrated heating region 406 where the heating target portion is located in the height direction are subjected to concentrated heating. The central heating region may be determined. In the height direction, the process of specifying the concentrated heating region 406 where the heating target portion is located includes the process of specifying the concentrated heating region 406 where the heating target portion is located in the width direction as described above, and the process of specifying the concentrated heating region. This is the same except that the arrangement direction and the like of 406 are different, and thus detailed description is omitted here. In order to detect the heating target portion in the height direction, for example, it is necessary to acquire not only the planar direction of the heating target 60 but also the temperature distribution in the height direction.
 高さ方向において加熱対象部分を検出することは、加熱対象物60の内部の加熱対象部分を検出することであってもよく、内部の高さ方向において加熱対象部分を検出することであってもよい。例えば、検出手段20は、加熱対象物60の高さ方向において温度分布を取得、あるいは平面方向と高さ方向との組み合わせについて温度分布を取得して、この温度分布を用いて、加熱対象部分を検出する。加熱対象物60の高さ方向の温度分布を取得することは、加熱対象物60の内部の温度分布を取得することであってもよい。例えば、加熱対象物60の高さ方向の温度分布を取得することは、加熱対象物60の表面から裏面までの間において温度分布を取得することであってもよい。このためには、例えば、複数の接触式の温度センサ等のセンサを、加熱対象物60の高さ方向に取付けること(例えば、挿入させたり接触させたりすること)が考えられる。高さ方向にセンサを取り付けることは、例えば、異なる高さに1以上のセンサをそれぞれ取付けることである。また、X線センサや、超音波センサを検出手段20のセンサとして用いることにより、加熱対象物60に非接触で高さ方向の温度分布を取得するようにし、取得した高さ方向の温度分布を用いて、閾値等を利用して温度が低い部分を加熱対象部分として検出し、検出した加熱対象部分を、照射状態変化手段40および複数のマイクロ波照射手段401を用いて集中加熱するようにしてもよい。ここでのX線センサは、例えば、三次元X線サーモグラフィーである。三次元X線サーモグラフィーについては、以下の非特許文献「Akio Yoneyama 他4名、"Three-dimensional X-ray thermography using phase-contrast imaging"、 Scientific Reports、[online]、令和1年7月1日検索、インターネット〈URL:https://www.nature.com/articles/s41598-018-30443-4」」を参照されたい。また、ここでの超音波センサについては、特許文献2「特開2008-70340号公報」を参照されたい。高さ方向の温度を取得するセンサ等としては、上記以外のものを用いてもよい。加熱対象物60の高さ方向の温度分布を表面の温度や裏面の温度等を用いて、予め用意された予測式等で算出してもよい。また、高さ方向の温度は、前段の加熱処理等のシミュレーションを行なうことで、取得しても良い。 Detecting the heating target portion in the height direction may be detecting the heating target portion inside the heating target object 60, or detecting the heating target portion in the internal height direction. Good. For example, the detection unit 20 obtains a temperature distribution in the height direction of the heating target 60, or obtains a temperature distribution for a combination of the planar direction and the height direction, and uses this temperature distribution to determine a heating target portion. To detect. Obtaining the temperature distribution in the height direction of the heating target 60 may be obtaining the temperature distribution inside the heating target 60. For example, acquiring the temperature distribution in the height direction of the heating object 60 may be acquiring the temperature distribution from the front surface to the back surface of the heating object 60. For this purpose, for example, it is conceivable to attach (for example, insert or contact) a plurality of sensors such as a contact-type temperature sensor in the height direction of the heating target 60. Mounting the sensors in the height direction means, for example, mounting one or more sensors at different heights. Further, by using an X-ray sensor or an ultrasonic sensor as a sensor of the detecting means 20, the temperature distribution in the height direction is obtained without contacting the heating target 60, and the obtained temperature distribution in the height direction is obtained. Using a threshold or the like, a portion having a low temperature is detected as a portion to be heated, and the detected portion to be heated is concentratedly heated using the irradiation state changing means 40 and the plurality of microwave irradiation means 401. Is also good. The X-ray sensor here is, for example, three-dimensional X-ray thermography. Regarding the three-dimensional X-ray thermography, the following non-patent document "Akio Yoneyama et al., Four people," Three-dimensional X-ray thermography using phase-contrast imaging ", Scientific Reports, [online], July 1, 1980 Search, Internet <URL: https://www.nature.com/articles/s41598-018-30443-4 ””. For the ultrasonic sensor here, refer to Patent Document 2 “Japanese Patent Application Laid-Open No. 2008-70340”. A sensor other than the above may be used as a sensor for acquiring the temperature in the height direction. The temperature distribution in the height direction of the heating target 60 may be calculated using a temperature on the front surface, a temperature on the back surface, or the like, using a prediction formula prepared in advance or the like. Further, the temperature in the height direction may be obtained by performing a simulation such as a heat treatment in a preceding stage.
 なお、上記実施の形態1においては、検出手段20は、加熱対象物の1または2以上の集中加熱領域406に移動する部分について、温度分布を取得できるようにすることが好ましい。また、各集中加熱領域406に移動する部分について、少なくとも一箇所以上の温度が順次取得できるようにすることが好ましい。 In the first embodiment, it is preferable that the detection unit 20 be able to acquire the temperature distribution of a part of the object to be heated that moves to one or more concentrated heating areas 406. In addition, it is preferable that at least one or more temperatures can be sequentially acquired for a portion moving to each concentrated heating region 406.
 なお、上記実施の形態においては、幅方向に伸びるストライプ状の検出領域205について取得した幅方向の温度分布から、加熱対象部分の幅方向の位置を示す情報を検出する場合について説明したが、幅方向に伸びるとともに、長手方向の長さが長い検出領域を有するセンサ201を用いるようにして、幅方向と長手方向とについて温度分布を取得するようにして、加熱対象部分の長手方向の幅方向と長手方向の位置を示す情報をそれぞれ取得しても良い。この場合、制御部402は、この加熱対象部分が検出された検出領域における加熱対象部分の長手方向の位置に応じて、検出された加熱対象部分が、対応する集中加熱領域406に移動する時刻を調整するようにしてもよい。 Note that, in the above-described embodiment, a case has been described in which information indicating the position in the width direction of the portion to be heated is detected from the temperature distribution in the width direction acquired for the stripe-shaped detection region 205 extending in the width direction. While extending in the direction, by using the sensor 201 having a long detection region in the longitudinal direction, so as to obtain the temperature distribution in the width direction and the longitudinal direction, the width direction in the longitudinal direction of the heating target portion and Information indicating the position in the longitudinal direction may be obtained. In this case, the control unit 402 sets the time at which the detected heating target portion moves to the corresponding concentrated heating region 406 in accordance with the longitudinal position of the heating target portion in the detection region where the heating target portion is detected. It may be adjusted.
 なお、本実施の形態のような検出手段20と照射状態変化手段40と複数のマイクロ波照射手段401とを有する構成を、一の容器10内の長手方向において複数設けるようにして、加熱対象部分の検出と、検出した加熱対象物に対する部分照射とを複数行えるようにしてもよい。 In addition, a plurality of configurations including the detecting unit 20, the irradiation state changing unit 40, and the plurality of microwave irradiating units 401 as in the present embodiment are provided in the longitudinal direction in one container 10, so that a heating target portion is provided. And a plurality of partial irradiations on the detected object to be heated may be performed.
 (実施の形態2)
 図8は、本実施の形態における加熱装置2の機能を示すブロック図(図8(a))および外観等の斜視図(図8(b)である。図において図1と同一符号は同一または相当する部分を示している。
(Embodiment 2)
Fig. 8 is a block diagram (Fig. 8 (a)) and a perspective view (Fig. 8 (b)) of the appearance and the like showing the function of the heating device 2 in the present embodiment. The corresponding parts are shown.
 図9は、図8(b)のIXa-IXa線による断面模式図(図9(a))、およびIXb-IXb線による断面模式図(図9(b))である。 FIG. 9 is a schematic sectional view taken along the line IXa-IXa of FIG. 8B (FIG. 9A) and a schematic sectional view taken along the line IXb-IXb (FIG. 9B).
 図11は、容器10内の加熱対象物60の近傍を模式的に示す斜視図(図11(a))、容器10内の加熱対象物60の表面側近傍を上方から見た図(図11(b))および、裏面側近傍を下方から見た図(図11(c))である。 FIG. 11 is a perspective view schematically showing the vicinity of the heating target 60 in the container 10 (FIG. 11A), and a view of the vicinity of the surface side of the heating target 60 in the container 10 viewed from above (FIG. 11). FIG. 11B is a diagram (FIG. 11C) of the vicinity of the back surface viewed from below.
 加熱装置2は、容器10と、検出手段21と、第一~第三のマイクロ波照射手段401a~401cと、照射状態変化手段41と、ベルトコンベア50とを備えている。ここでの容器10は、上記実施の形態1において説明した容器10と、入口101や出口102のサイズが異なる点等を除けば、同様の容器であるとする。 The heating device 2 includes the container 10, the detection unit 21, the first to third microwave irradiation units 401a to 401c, the irradiation state changing unit 41, and the belt conveyor 50. Here, it is assumed that the container 10 is similar to the container 10 described in the first embodiment except that the size of the inlet 101 and the outlet 102 is different.
 照射状態変化手段41は、容器10内の異なる位置に設定される複数の集中加熱領域406を、2以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御して個別に集中加熱可能なものである。この集中加熱領域406は、例えば、三次元の領域である。複数の集中加熱領域406は、それぞれ、容器10の長手方向、幅方向、および高さ方向の位置の少なくとも1つが異なる位置に設定される。複数の集中加熱領域406は、例えば、容器10の長手方向、幅方向、および高さ方向のうちの少なくとも一以上の方向に配列されていてもよい。ここでは、容器10内の少なくとも一部の領域を三次元の直交格子状に分割された複数の領域が、それぞれ、集中加熱領域406となるよう、複数の集中加熱領域406が配置されている場合について例を挙げて説明する。領域が複数の集中加熱領域406である場合を例に挙げて説明する。なお、各集中加熱領域406は、辺が容器10の長手方向、幅方向、および高さ方向に伸びるよう配置されているものとする。各集中加熱領域406は、同じ大きさの直方体形状であるとする。隣り合う集中加熱領域406同士は、隙間なく接しているとともに、複数の集中加熱領域406は、長手方向、幅方向、および高さ方向に規則的には配列されている。具体的には、図8(b)、図9(a)および図9(b)に示すように、直方体形状の複数の集中加熱領域406が長手方向に2列以上、幅方向に2列以上、および高さ方向に2列以上、隙間なく配列されて、全体が長手方向に伸びる直方体形状となっている。なお、2以上の集中加熱領域406の配置は上記のような配置に限定されるものではない。例えば、2以上の集中加熱領域406は規則的に配置されていなくてもよい。例えば、長手方向、幅方向、および高さ方向のうちの一の方向において、前後に配置される二以上の集中加熱領域406の位置が、この一の方向に垂直な方向にずれるよう配置されていてもよい。また、集中加熱領域406の形状は、直方体形状に限定されるものではなく、球状等の他の三次元形状であってもよい。また、隣り合う集中加熱領域406は、空間を隔てて配置されていても良く、隣り合う集中加熱領域406は、一部が重なりあっていてもよい。ただし、他の集中加熱領域内に完全に含まれる集中加熱領域を設定しないようにすることが好ましい。 The irradiation state changing means 41 can individually and collectively heat the plurality of concentrated heating regions 406 set at different positions in the container 10 by controlling the phases of the microwaves irradiated by the two or more microwave irradiation means 401. Things. The concentrated heating area 406 is, for example, a three-dimensional area. The plurality of concentrated heating regions 406 are set at positions where at least one of positions in the longitudinal direction, the width direction, and the height direction of the container 10 is different. The plurality of concentrated heating regions 406 may be arranged, for example, in at least one of the longitudinal direction, the width direction, and the height direction of the container 10. Here, a case where a plurality of concentrated heating regions 406 are arranged such that a plurality of regions obtained by dividing at least a part of the region in the container 10 into a three-dimensional orthogonal lattice shape becomes a concentrated heating region 406, respectively. Will be described with an example. The case where the region is a plurality of concentrated heating regions 406 will be described as an example. Note that each concentrated heating region 406 is arranged so that a side extends in the longitudinal direction, the width direction, and the height direction of the container 10. Each concentrated heating region 406 is assumed to be a rectangular parallelepiped having the same size. Adjacent concentrated heating regions 406 are in contact with each other without a gap, and the plurality of concentrated heating regions 406 are regularly arranged in the longitudinal direction, the width direction, and the height direction. Specifically, as shown in FIGS. 8 (b), 9 (a) and 9 (b), a plurality of concentrated heating regions 406 having a rectangular parallelepiped shape have two or more rows in the longitudinal direction and two or more rows in the width direction. , And two or more rows are arranged in the height direction without any gap, and the whole has a rectangular parallelepiped shape extending in the longitudinal direction. The arrangement of the two or more concentrated heating regions 406 is not limited to the above arrangement. For example, the two or more concentrated heating areas 406 may not be regularly arranged. For example, in one of the longitudinal direction, the width direction, and the height direction, the positions of the two or more concentrated heating regions 406 arranged before and after are arranged so as to be shifted in a direction perpendicular to the one direction. You may. Further, the shape of the concentrated heating region 406 is not limited to a rectangular parallelepiped shape, and may be another three-dimensional shape such as a spherical shape. Further, the adjacent concentrated heating regions 406 may be arranged with a space therebetween, and the adjacent concentrated heating regions 406 may partially overlap. However, it is preferable not to set a concentrated heating region completely included in another concentrated heating region.
 複数の集中加熱領域406は、複数の集中加熱領域406を結合した三次元の領域内に、加熱対象物60の少なくとも一部、好ましくは加熱対象物60全体が重なるように配置されていることが好ましい。 The plurality of concentrated heating regions 406 may be arranged such that at least a part of the heating target 60, preferably the entire heating target 60, overlaps in a three-dimensional region in which the plurality of concentrated heating regions 406 are combined. preferable.
 また、複数の集中加熱領域406は、少なくとも加熱対象物60と重なる領域においては、隙間なく配置されることが好ましい。 Moreover, it is preferable that the plurality of concentrated heating regions 406 are arranged without any gap at least in a region overlapping with the heating target 60.
 加熱対象物60は、複数の集中加熱領域406が配列されている領域に配置される。ここでは、直方体状の加熱対象物60が複数の集中加熱領域406が配列されている領域に重なるよう配置されている場合について説明する。加熱対象物60は複数の集中加熱領域406の一部とだけ重なるよう配置されていてもよい。この加熱対象物60は形状およびサイズ以外は、上実施の形態の加熱対象物60と同じものであるとする。なお、本実施の形態においては、加熱対象物60については、上記実施の形態1において説明した加熱対象物と同様のものが利用可能である。 The heating target 60 is arranged in a region where a plurality of concentrated heating regions 406 are arranged. Here, a case will be described where the rectangular parallelepiped heating target 60 is arranged so as to overlap a region where a plurality of concentrated heating regions 406 are arranged. The heating target 60 may be arranged so as to overlap only a part of the plurality of concentrated heating regions 406. The heating target 60 is the same as the heating target 60 of the above embodiment except for the shape and size. In the present embodiment, as the heating target 60, the same heating target as that described in the first embodiment can be used.
 なお、加熱対象物60を、手動等によって、容器10内に搬入する場合等においては、ベルトコンベア50等の搬入手段は省略してもよい。また、容器10の加熱対象物60を搬出する出口等は省略してもよい。この場合、容器10内に、表面がメッシュ等の加熱対象物60を載置する載置台(図示せず)を設けるようにしてもよい。また、入口101および出口102を閉じるための蓋(図示せず)等が設けられていてもよい。 In the case where the object 60 to be heated is carried into the container 10 manually or the like, the carrying means such as the belt conveyor 50 may be omitted. Further, an outlet or the like of the container 10 for carrying out the heating target 60 may be omitted. In this case, a mounting table (not shown) for mounting the object to be heated 60 whose surface is a mesh or the like may be provided in the container 10. Further, a lid (not shown) for closing the inlet 101 and the outlet 102 may be provided.
 検出手段21は、第一のセンサ211aおよび第二のセンサ211bと、検出処理部212とを有している。第一のセンサ211aおよび第二のセンサ211bを区別しない場合は、単にセンサ211と呼ぶ。 The detection unit 21 includes a first sensor 211a and a second sensor 211b, and a detection processing unit 212. When the first sensor 211a and the second sensor 211b are not distinguished, they are simply referred to as a sensor 211.
 第一のセンサ211aは、第一の検出領域215aの温度分布を検出するセンサである。第一のセンサ211aは、第一の検出領域215aが、複数の集中加熱領域406が配置されている領域と重なるよう配置されたセンサである。例えば、第一のセンサ211aは、上述した第一のセンサ201aにおいて、検出領域205の長手方向の長さを長くしたセンサであって、複数の集中加熱領域406と重なるよう配置されたセンサである。第一のセンサ211aは、複数の集中加熱領域406の加熱対象物60の表面61a側と重なる部分が、その第一の検出領域215aと重なるよう配置されたセンサである。第一のセンサ211aは、例えば、第一の検出領域215aが二次元形状を有するセンサである。例えば、第一のセンサ211aは、幅方向の温度分布ではなく、加熱対象物60の表面61a側の、二次元方向における温度分布、例えば、幅方向および長手方向の温度分布を取得するようにしたセンサである。 The first sensor 211a is a sensor that detects a temperature distribution in the first detection area 215a. The first sensor 211a is a sensor arranged such that the first detection region 215a overlaps with the region where the plurality of concentrated heating regions 406 are arranged. For example, the first sensor 211a is a sensor in which the length of the detection region 205 in the longitudinal direction is increased in the first sensor 201a described above, and is a sensor arranged so as to overlap the plurality of concentrated heating regions 406. . The first sensor 211a is a sensor arranged such that portions of the plurality of concentrated heating regions 406 overlapping the surface 61a side of the heating target 60 overlap the first detection region 215a. The first sensor 211a is, for example, a sensor in which the first detection region 215a has a two-dimensional shape. For example, the first sensor 211a acquires not the temperature distribution in the width direction but the temperature distribution in the two-dimensional direction on the surface 61a side of the heating target 60, for example, the temperature distribution in the width direction and the longitudinal direction. It is a sensor.
 第二のセンサ211bは、第二の検出領域215bの温度分布を検出するセンサである。第二のセンサ211bは、第二の検出領域215bが、複数の集中加熱領域406が配置されている領域と重なるよう配置されたセンサである。例えば、第二のセンサ211bは、上述した第一のセンサ201aにおいて、検出領域205の長手方向の長さを長くしたセンサであって、複数の集中加熱領域406と重なるよう配置されたセンサである。第二のセンサ211bは、複数の集中加熱領域406の加熱対象物60の裏面61b側と重なる部分が、その第一の検出領域215aと重なるよう配置されたセンサである。第二のセンサ211bは、例えば、第二の検出領域215bが二次元形状を有するセンサである。例えば、第二のセンサ211bは、幅方向の温度分布ではなく、加熱対象物60の裏面61b側の、二次元方向における温度分布、例えば、幅方向および長手方向の温度分布を取得するようにしたセンサである。 The second sensor 211b is a sensor that detects the temperature distribution in the second detection area 215b. The second sensor 211b is a sensor in which the second detection area 215b is arranged so as to overlap the area where the plurality of concentrated heating areas 406 are arranged. For example, the second sensor 211b is a sensor in which the length of the detection region 205 in the longitudinal direction in the first sensor 201a described above is increased, and is a sensor arranged so as to overlap the plurality of concentrated heating regions 406. . The second sensor 211b is a sensor arranged such that portions of the plurality of concentrated heating regions 406 that overlap the back surface 61b side of the heating target 60 overlap the first detection region 215a. The second sensor 211b is, for example, a sensor in which the second detection area 215b has a two-dimensional shape. For example, the second sensor 211b acquires not the temperature distribution in the width direction but the temperature distribution in the two-dimensional direction on the back surface 61b side of the heating target 60, for example, the temperature distribution in the width direction and the longitudinal direction. It is a sensor.
 二次元方向における温度分布とは、例えば、直交する二方向における温度分布である。二次元方向における温度分布とは、例えば、幅方向の位置と長手方向の位置との組み合わせで表される複数の位置についての温度分布である。例えば、センサ211は、赤外線を検出する素子を、二次元方向に配置した放射温度計等のセンサであってもよく、平面状に広がる検出領域215を走査して、二次元方向の温度分布を取得するセンサであってもよい。なお、第一の検出領域215aおよび第二の検出領域215bを区別しない場合、単に検出領域215と呼ぶ。 温度 The temperature distribution in the two-dimensional direction is, for example, a temperature distribution in two orthogonal directions. The temperature distribution in the two-dimensional direction is, for example, a temperature distribution at a plurality of positions represented by a combination of a position in the width direction and a position in the longitudinal direction. For example, the sensor 211 may be a sensor such as a radiation thermometer in which elements for detecting infrared rays are arranged in a two-dimensional direction. The acquired sensor may be used. When the first detection region 215a and the second detection region 215b are not distinguished, they are simply referred to as a detection region 215.
 検出処理部212は、センサ211が取得した温度分布を用いて加熱対象部分を検出する。例えば、検出処理部212は、温度が低い部分を加熱対象部分として検出する。そして、検出処理部212は、検出した加熱対象部分を示す情報を取得する。検出した加熱対象部分を示す情報は、容器10内における加熱対象部分の位置を示す三次元の情報であることが好ましい。しかしながら、センサ211が本実施の形態のような非接触の温度センサである場合、センサ211が検出した加熱対象部分の位置を示す情報は、通常、二次元空間における加熱対象部分の位置を示す情報であり、具体的には平面方向における位置を示す情報であるため、ここでは、これに加えて、第一のセンサ211aが検出した領域を示す情報の高さ方向の位置を示す情報として、加熱対象物60の表面の高さ方向の位置を示す情報を取得する。同様に、第二のセンサ211bが検出した領域を示す情報の高さ方向の位置情報として、加熱対象物60の表面の高さ方向の位置情報を取得するようにする。例えば、加熱対象物60の表面および裏面の、容器10内における高さ方向の位置が予めわかっている場合、この値を図示しない格納部等に格納しておき、検出処理部212が適宜読み出して取得する。なお、加熱対象物60の表面61aおよび裏面61bの高さ方向の位置は、距離を測定するセンサ(図示せず)や、表面61aや裏面61bの高さ方向の位置を検出するセンサ(図示せず)等で取得しても良い。センサ211が取得した二次元方向の温度分布を示す情報から取得する加熱対象部分を示す情報は、加熱対象部分の二次元空間における位置を示す情報であっても良く、加熱対象部分の中心や重心等の代表点の位置を示す情報であってもよい。なお、加熱対象部分の二次元空間における位置を示す情報は、例えば、加熱対象部分に含まれる点と、含まれない点とを区別可能な情報や、加熱対象部分の内側の領域と外側の領域とを区別可能な情報である。加熱対象部分の二次元空間における位置を示す情報は、例えば、加熱対象部分の輪郭や外面を示す情報であっても良い。また、加熱対象部分が多角形で表される場合は、この多角形の頂点等を示す情報であってもよい。また、加熱対象部分が円形で表される場合、円形の中心と半径とを示す情報であっても良い。ここでの位置を示す情報は、容器10内における加熱対象部分の位置を示す三次元の情報であることが好ましい。 The detection processing unit 212 detects a heating target portion using the temperature distribution acquired by the sensor 211. For example, the detection processing unit 212 detects a low-temperature portion as a heating target portion. Then, the detection processing unit 212 acquires information indicating the detected heating target portion. It is preferable that the detected information indicating the heating target portion is three-dimensional information indicating the position of the heating target portion in the container 10. However, when the sensor 211 is a non-contact temperature sensor as in the present embodiment, the information indicating the position of the heating target detected by the sensor 211 is usually information indicating the position of the heating target in a two-dimensional space. Specifically, since the information indicates the position in the plane direction, here, in addition to this, as information indicating the position in the height direction of the information indicating the area detected by the first sensor 211a, Information indicating the position of the surface of the target object 60 in the height direction is acquired. Similarly, the position information in the height direction of the surface of the heating target 60 is obtained as the position information in the height direction of the information indicating the area detected by the second sensor 211b. For example, when the positions of the front surface and the back surface of the heating object 60 in the height direction in the container 10 are known in advance, the values are stored in a storage unit (not shown) and read out by the detection processing unit 212 as appropriate. get. In addition, the position in the height direction of the front surface 61a and the back surface 61b of the heating object 60 is determined by a sensor (not shown) that measures the distance, and the sensor that detects the height position of the front surface 61a and the back surface 61b (not shown). Zu) or the like. The information indicating the heating target portion obtained from the information indicating the two-dimensional temperature distribution obtained by the sensor 211 may be information indicating the position of the heating target portion in the two-dimensional space, such as the center or the center of gravity of the heating target portion. Or information indicating the position of the representative point. Note that the information indicating the position of the heating target portion in the two-dimensional space is, for example, information that can distinguish points included in the heating target portion and points not included therein, or an area inside and outside the heating target portion. Is information that can be distinguished. The information indicating the position of the heating target portion in the two-dimensional space may be, for example, information indicating the contour or outer surface of the heating target portion. When the heating target portion is represented by a polygon, the information may indicate information such as the vertices of the polygon. When the heating target portion is represented by a circle, the information may indicate the center and radius of the circle. The information indicating the position here is preferably three-dimensional information indicating the position of the portion to be heated in the container 10.
 なお、センサ211を用いて、三次元方向の温度分布を取得できる場合、検出処理部212が取得する加熱対象部分は、例えば、三次元空間の領域であり、検出処理部212は加熱対象部分を示す情報として三次元空間における加熱対象部分の位置を示す情報を取得することが好ましい。加熱対象部分の三次元元空間における位置を示す情報は、例えば、加熱対象部分に含まれる点と、含まれない点とを区別可能な情報であり、例えば、加熱対象部分の輪郭や外面を示す情報であっても良い。輪郭を示す情報は、例えば、三次元空間における輪郭上に位置する複数の座標群である。また、加熱対象部分が多角形で表される場合、加熱対象部分の三次元空間における位置を示す情報は、多角形が有する複数の頂点を示す座標群であっても良い。また、加熱対象部分が球形で表される場合、加熱対象部分の三次元空間における位置を示す情報は、球の中心の座標と、球の半径との組み合わせであっても良い。加熱対象部分の三次元元空間における位置を示す情報は、加熱対象物の形状およびサイズを示す情報と、加熱対象物の中心や重心等の代表点の、三次元空間内の位置を示す情報との組合せであっても良い。なお、かかることは、後述する集中加熱領域406を示す情報についても同様である。 When the temperature distribution in the three-dimensional direction can be acquired using the sensor 211, the heating target portion acquired by the detection processing unit 212 is, for example, a region in a three-dimensional space. It is preferable to acquire information indicating the position of the heating target portion in the three-dimensional space as the indicating information. The information indicating the position of the heating target portion in the three-dimensional original space is, for example, information that can distinguish a point included in the heating target portion and a point not included therein, and indicates, for example, an outline or an outer surface of the heating target portion. It may be information. The information indicating the contour is, for example, a plurality of coordinate groups located on the contour in the three-dimensional space. When the heating target portion is represented by a polygon, the information indicating the position of the heating target portion in the three-dimensional space may be a coordinate group indicating a plurality of vertices of the polygon. When the heating target portion is represented by a sphere, the information indicating the position of the heating target portion in the three-dimensional space may be a combination of the coordinates of the center of the sphere and the radius of the sphere. Information indicating the position of the heating target portion in the three-dimensional original space includes information indicating the shape and size of the heating target, and information indicating the position in the three-dimensional space of a representative point such as the center or the center of gravity of the heating target. May be combined. The same applies to the information indicating the concentrated heating area 406 described later.
 加熱手段2が有する3つのマイクロ波照射手段401については、上記実施の形態と同様であるため、ここでは、詳細な説明は省略する。なお、マイクロ波照射手段401の数は、3つに限定されるものではなく複数であればよい。 (4) The three microwave irradiation units 401 included in the heating unit 2 are the same as those in the above-described embodiment, and a detailed description thereof will be omitted. In addition, the number of the microwave irradiation means 401 is not limited to three, but may be any plural number.
 照射状態変化手段41は、制御部412と、照射管理情報格納部413とを有している。照射状態変化手段41は、集中加熱領域406に、検出手段20が検出した加熱対象部分が位置するときに、この集中加熱領域が集中加熱されるよう位相を制御したマイクロ波を2以上のマイクロ波照射手段401から照射させて、加熱対象部分を集中加熱する。照射状態変化手段41は、例えば、照射管理情報格納部413に格納される1または2以上の照射管理情報に対応する集中加熱領域に、検出手段21が検出した加熱対象部分が位置するときに、この分部加熱が可能な領域が集中加熱されるよう位相を制御したマイクロ波を2以上のマイクロ波照射手段401から照射させて、加熱対象部分を集中加熱する。 The irradiation state changing unit 41 has a control unit 412 and an irradiation management information storage unit 413. When the heating target portion detected by the detection unit 20 is located in the concentrated heating region 406, the irradiation state changing unit 41 converts the microwave whose phase is controlled so that the concentrated heating region is concentratedly heated into two or more microwaves. Irradiation is performed from the irradiating means 401 to intensively heat the portion to be heated. The irradiation state changing unit 41 is configured, for example, when the heating target portion detected by the detection unit 21 is located in the concentrated heating area corresponding to one or more irradiation management information stored in the irradiation management information storage unit 413. Microwaves whose phases are controlled so that the region where partial heating is possible are concentratedly heated are radiated from two or more microwave radiating means 401 to intensively heat the portion to be heated.
 制御部412は、加熱対象部分が集中加熱されるよう、マイクロ波照射手段401が照射するマイクロ波の位相を制御する。制御部412は、例えば、加熱対象部分が位置している、すなわち加熱対象部分と重なっている集中加熱領域が集中加熱されるよう、マイクロ波照射手段401が照射するマイクロ波の位相を制御する。このことは、加熱対象部分が集中加熱領域406に位置するときに、2以上のマイクロ波照射手段401を制御して、この集中加熱領域406が集中加熱されるよう、位相を制御したマイクロ波を照射させることと考えてもよい。ここで集中加熱領域406は、照射管理情報格納部413に格納される照射管理情報に対応する集中加熱領域406である。例えば、照射管理情報格納部413等の格納部に予め格納されている複数の集中加熱領域をそれぞれ示す情報と、検出手段21が検出した加熱対象部分を示す情報とを用いて、加熱対象部分が重なっている集中加熱領域を特定し、特定した集中加熱領域が集中加熱されるよう、二以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御する。ここでは、集中加熱領域406を示す情報として、三次元空間内における集中加熱領域406の位置を示す情報を取得する場合について説明する。三次元空間内における集中加熱領域406の位置を示す情報は、上述した加熱対象部分の位置を示す情報と同様の情報である。 The control unit 412 controls the phase of the microwave radiated by the microwave irradiating means 401 so that the portion to be heated is concentratedly heated. The control unit 412 controls the phase of the microwave irradiated by the microwave irradiation unit 401, for example, such that the concentrated heating region where the heating target portion is located, that is, the concentrated heating region overlapping the heating target portion is concentratedly heated. This means that when the portion to be heated is located in the concentrated heating area 406, two or more microwave irradiation means 401 are controlled, and the microwaves whose phases are controlled so that the concentrated heating area 406 is concentrated heated are Irradiation may be considered. Here, the concentrated heating area 406 is the concentrated heating area 406 corresponding to the irradiation management information stored in the irradiation management information storage unit 413. For example, by using information indicating a plurality of concentrated heating areas stored in advance in a storage unit such as the irradiation management information storage unit 413 and information indicating a heating target part detected by the detection unit 21, the heating target part is determined. The overlapped concentrated heating region is specified, and the phases of the microwaves irradiated by the two or more microwave irradiation units 401 are controlled so that the specified concentrated heating region is concentratedly heated. Here, a case will be described in which information indicating the position of the concentrated heating region 406 in the three-dimensional space is acquired as the information indicating the concentrated heating region 406. Information indicating the position of the concentrated heating area 406 in the three-dimensional space is the same information as the information indicating the position of the heating target portion described above.
 制御部402は、例えば、このような各集中加熱領域406の三次元空間における位置を示す情報と、加熱対象部分の位置を示す情報とを用いて、加熱対象部分と重なっている集中加熱領域406を検出する。具体的には加熱対象部分と少なくとも一部が重なる集中加熱領域406を示す情報を取得するする。このような加熱対象部分と重なる集中加熱領域406を含む集中加熱領域406を示す情報の検出を、加熱対象部分が位置する集中加熱領域を特定する処理と考えてもよい。 The control unit 402 uses, for example, information indicating the position of each of the concentrated heating regions 406 in the three-dimensional space and information indicating the position of the heating target portion, and uses the concentrated heating region 406 overlapping the heating target portion. Is detected. Specifically, information indicating the concentrated heating region 406 at least partially overlapping the heating target portion is acquired. The detection of the information indicating the concentrated heating region 406 including the concentrated heating region 406 overlapping the heating target portion may be considered as a process of specifying the concentrated heating region where the heating target portion is located.
 照射状態変化手段41は、加熱対象物60が移動している場合、加熱対象部分が位置する集中加熱領域406を特定した直後に、この集中加熱領域406が集中加熱されるようマイクロ波照射手段401を制御することが好ましい。加熱対象物60が移動していない場合は、この限りではない。 When the heating target 60 is moving, the irradiation state changing unit 41 immediately specifies the concentrated heating region 406 where the heating target portion is located, and then immediately applies the microwave irradiation unit 401 so that the concentrated heating region 406 is concentrated heated. Is preferably controlled. This is not the case when the heating target 60 is not moving.
 本実施の形態においては、例えば、照射管理情報格納部413に、予め、三次元空間における集中加熱領域406の位置を示す情報と、この集中加熱領域406を集中加熱するための二以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御するための情報とを有する複数の照射管理情報が格納されているようにし、制御部402が、上記で検出された加熱対象部分と重なる集中加熱領域406を示す情報を含む照射管理情報を検出し、検出した照射管理情報が有する二以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御するための情報を読み出して、この情報を用いて、二以上のマイクロ波照射手段401が照射するマイクロ波の位相をそれぞれ制御して、加熱対象部分を含む集中加熱領域406を集中加熱させる場合について説明する。 In the present embodiment, for example, information indicating the position of the concentrated heating region 406 in the three-dimensional space and two or more microwaves for centrally heating the concentrated heating region 406 are stored in the irradiation management information storage unit 413 in advance. A plurality of irradiation management information having information for controlling the phase of the microwave irradiated by the irradiation unit 401 is stored, and the control unit 402 controls the concentrated heating region overlapping the heating target portion detected above. The irradiation management information including the information indicating 406 is detected, the information for controlling the phase of the microwave irradiated by the two or more microwave irradiation units 401 included in the detected irradiation management information is read, and this information is used. , By controlling the phases of the microwaves radiated by the two or more microwave radiating means 401 to concentrate the concentrated heating area 406 including the portion to be heated. Description will be given of a case to be.
 なお、制御部402は、加熱対象部分と重なる特定した集中加熱領域406の中心や重心等の代表点の、三次元空間における位置を示す情報(例えば、集中加熱領域406の中心座標等)と、容器10内の複数のマイクロ波が照射される位置の座標等を用いて複数のマイクロ波が照射される位置から集中加熱領域406までの距離をそれぞれ算出し、算出した距離の情報と照射するマイクロ波の波長等とを用いて、特定の集中加熱領域406において、複数のマイクロ波が強め合うように、2以上のマイクロ波照射手段401が照射するマイクロ波の位相を算出し、算出した情報を用いて、2以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御して、特定した集中加熱領域406を集中加熱するようにしてもよい。 Note that the control unit 402 includes information indicating the position in the three-dimensional space of the representative point such as the center or the center of gravity of the specified concentrated heating region 406 overlapping the heating target portion (for example, the center coordinates of the concentrated heating region 406), Using the coordinates of the positions where the plurality of microwaves are irradiated in the container 10, the distances from the positions where the plurality of microwaves are irradiated to the concentrated heating area 406 are calculated, and information on the calculated distance and the microwave to be irradiated are calculated. Using the wavelength of the wave and the like, the phase of the microwave irradiated by the two or more microwave irradiation means 401 is calculated so that the plurality of microwaves reinforce each other in the specific concentrated heating region 406, and the calculated information is calculated. Alternatively, the specified concentrated heating region 406 may be concentratedly heated by controlling the phase of the microwaves irradiated by the two or more microwave irradiation units 401.
 照射管理情報格納部413には、集中加熱領域406を集中加熱するための二以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御するための情報である照射管理情報が格納される。本実施の形態において格納される照射管理情報は、上記実施の形態において説明した照射管理情報において、集中加熱領域を特定するための情報として、三次元空間における集中加熱領域406の位置を示す情報を有するようにしたものであるとする。なお、照射管理情報の二以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御するための情報としては、ここでは、照射の開始時刻を有していないものを用いる。ただし、開始時刻を有していても良い。ここでの集中加熱領域406は、容器10内に配置される複数の集中加熱領域406である。なお、制御部412が、図示しない格納部等に格納されている集中加熱領域406の識別子と、この集中加熱領域406を示す情報(例えば、集中加熱領域の三次元空間における位置を示す情報)等から、加熱対象部分が位置する集中加熱領域の識別子を取得する場合、部分照射管理情報は、集中加熱領域406の識別子と、この集中加熱領域406を集中加熱するための位相を制御するための情報とを有する情報であっても良い。一の照射管理情報が有する2以上のマイクロ波照射手段401の位相を制御するための情報は、上記実施の形態の照射管理情報と同様に、例えば、一の照射管理情報に対応する集中加熱領域406を集中加熱するために、シミュレーションや実験等を行なって取得された、2以上のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を設定する情報であることが好ましい。 (4) The irradiation management information storage unit 413 stores irradiation management information that is information for controlling the phase of microwaves irradiated by two or more microwave irradiation units 401 for centrally heating the concentrated heating region 406. The irradiation management information stored in the present embodiment is, in the irradiation management information described in the above embodiment, information indicating the position of the concentrated heating region 406 in the three-dimensional space as information for specifying the concentrated heating region. It is assumed that it has. Here, as the information for controlling the phases of the microwaves irradiated by the two or more microwave irradiation units 401 in the irradiation management information, information that does not have the irradiation start time is used here. However, it may have a start time. The concentrated heating area 406 here is a plurality of concentrated heating areas 406 arranged in the container 10. Note that the control unit 412 stores the identifier of the concentrated heating area 406 stored in a storage unit (not shown) and information indicating the concentrated heating area 406 (for example, information indicating the position of the concentrated heating area in the three-dimensional space) and the like. When acquiring the identifier of the concentrated heating region where the heating target portion is located, the partial irradiation management information includes the identifier of the concentrated heating region 406 and the information for controlling the phase for centrally heating the concentrated heating region 406. May be information having the following. The information for controlling the phases of two or more microwave irradiation units 401 included in one irradiation management information is, for example, a concentrated heating area corresponding to the one irradiation management information, like the irradiation management information of the above embodiment. It is preferable that the information is information obtained by performing a simulation, an experiment, or the like for performing concentrated heating of the 406 and setting the phases of the microwaves to be irradiated by the two or more microwave irradiation units 401.
 本実施の形態の加熱装置2の動作については、例えば、上記実施の形態においてフローチャートを用いて説明した動作において、加熱対象部分が位置する集中加熱領域を特定して、マイクロ波の位相を制御するための情報を取得する処理が異なる点や、加熱対象物60が移動している場合は、集中加熱領域を特定した直後にマイクロ波の照射を行い、加熱対象物60が移動していない場合は、集中加熱領域を特定した後の任意の時間にマイクロ波の照射を行うようにする点を除けば、上記実施の形態と同様であり、ここでは詳細な説明は省略する。 Regarding the operation of the heating device 2 of the present embodiment, for example, in the operation described using the flowchart in the above embodiment, the concentrated heating region where the heating target portion is located is specified, and the phase of the microwave is controlled. In the case where the process for acquiring the information for the different point or the heating target 60 is moving, the microwave irradiation is performed immediately after specifying the concentrated heating area, and when the heating target 60 is not moving, Except that the microwave irradiation is performed at an arbitrary time after the concentrated heating region is specified, the configuration is the same as that of the above embodiment, and the detailed description is omitted here.
 次に、本実施の形態の加熱装置2の動作の具体例について説明する。ここでは、加熱対象物60は、容器10に搬入される直前に、他の加熱を行なう装置等で加熱されたものであるとする。ベルトコンベア50により、入口101から容器10内に加熱対象物60を移動させた後、移動を停止させ、加熱対象部分を検出して、加熱対象部分を集中加熱する処理を行う場合について説明する。加熱処理後は、ベルトコンベア50におり、加熱対象物60を、容器10から容器10外に移動させるものとする。 Next, a specific example of the operation of the heating device 2 of the present embodiment will be described. Here, it is assumed that the heating target 60 is heated by another heating device or the like immediately before being carried into the container 10. The case where the belt 60 conveys the heating target 60 from the entrance 101 into the container 10 and then stops the movement, detects the target to be heated, and performs the process of centrally heating the target to be heated will be described. After the heat treatment, the heating target 60 is moved from the container 10 to the outside of the container 10 on the belt conveyor 50.
 図10は、照射管理情報格納部413に格納されている照射管理情報を示す図である。照射管理情報は、「集中加熱領域」と、「制御」という属性を有している。「集中加熱領域」は、容器10内の各集中加熱領域406の三次元空間における位置を示す情報であり、ここでは、直方体である集中加熱領域406の6つの頂点の座標が格納されているものとする。なお、(X1、Y1、Z1)等は、容器10内の任意のX座標、Y座標、Z座標を示している。ここでは、X座標は容器10の幅方向の座標、Y座標は容器10の幅方向の座標、Z座標は、容器10の高さ方向の座標であるとする。この「集中加熱領域」が、集中加熱領域406を特定するための情報と考えてよい。「制御」は、上記実施の形態1の具体例の「制御」と同様に、3つのマイクロ波照射手段401のマイクロ波の位相を制御するために用いられる情報であり、制御対象のマイクロ波照射手段401を示す値と、そのマイクロ波照射手段401が出射するマイクロ波の位相を示す値とを、「:」(コロン)を挟んで組み合わせた情報の組で構成されている。マイクロ波照射手段401を表す値「1」~「3」は、第一のマイクロ波照射手段401a~第三のマイクロ波照射手段401cを示している。ここでは、一の行が、照射管理情報の一のレコードであるとする。 FIG. 10 is a diagram showing irradiation management information stored in the irradiation management information storage unit 413. The irradiation management information has attributes of “centralized heating area” and “control”. The “concentrated heating area” is information indicating the position of each concentrated heating area 406 in the container 10 in the three-dimensional space. Here, the coordinates of the six vertices of the concentrated heating area 406 that is a rectangular parallelepiped are stored. And Note that (X1, Y1, Z1) and the like indicate arbitrary X, Y, and Z coordinates in the container 10. Here, it is assumed that the X coordinate is the coordinate in the width direction of the container 10, the Y coordinate is the coordinate in the width direction of the container 10, and the Z coordinate is the coordinate in the height direction of the container 10. This “concentrated heating area” may be considered as information for specifying the concentrated heating area 406. The “control” is information used to control the phases of the microwaves of the three microwave irradiation units 401 similarly to the “control” of the specific example of the first embodiment, and the microwave irradiation of the control target is performed. It is composed of a set of information in which a value indicating the unit 401 and a value indicating the phase of the microwave emitted from the microwave irradiation unit 401 are combined with a “:” (colon) therebetween. The values “1” to “3” representing the microwave irradiation unit 401 indicate the first microwave irradiation unit 401a to the third microwave irradiation unit 401c. Here, it is assumed that one row is one record of the irradiation management information.
 ベルトコンベア50で加熱対象物60が容器10内に搬入されたあと、ベルトコンベア50を停止して、加熱対象物60の移動を停止する。 (4) After the heating object 60 is carried into the container 10 by the belt conveyor 50, the belt conveyor 50 is stopped, and the movement of the heating object 60 is stopped.
 検出手段21の第一のセンサ211aは、加熱対象物60の表面61a側をカバーする第一の検出領域215aについて温度分布を検出する。検出された温度分布は、加熱対象物60の表面61aの平面方向の温度分布である。そして、検出処理部212は、検出された温度分布において、予め決められた閾値以下の部分を、加熱対象部分として検出する。ここでは、例えば、図11(b)に示すように、加熱対象部分506が検出されたとする。検出処理部202は、検出した加熱対象部分506の平面方向における位置を示す情報として、加熱対象部分の平面方向の輪郭を示す情報を取得する。平面方向の輪郭の情報は、例えば、輪郭に位置する座標群であるとする。また、ここでは、図示しない格納部に、容器10内に配置された加熱対象物60の表面61aの高さ方向の座標が配置されており、検出処理部212は、この高さ方向の座標も読み出し、上記の輪郭の座標群と、この高さ方向の座標との組を、加熱対象部分の領域を示す情報として制御部402に渡す。 The first sensor 211a of the detecting means 21 detects a temperature distribution in a first detection area 215a covering the surface 61a of the heating target 60. The detected temperature distribution is a temperature distribution in the planar direction of the surface 61a of the heating target 60. Then, the detection processing unit 212 detects a portion that is equal to or less than a predetermined threshold value in the detected temperature distribution as a portion to be heated. Here, for example, as shown in FIG. 11B, it is assumed that the heating target portion 506 is detected. The detection processing unit 202 acquires, as the information indicating the detected position of the heating target portion 506 in the planar direction, information indicating the contour of the heating target portion in the planar direction. It is assumed that the information on the contour in the plane direction is, for example, a group of coordinates located on the contour. Here, the coordinates in the height direction of the surface 61a of the heating target 60 arranged in the container 10 are arranged in a storage unit (not shown), and the detection processing unit 212 also calculates the coordinates in the height direction. The control unit 402 reads out a set of the coordinate group of the contour and the coordinates in the height direction as information indicating an area of a heating target portion.
 制御部402は、検出処理部202から受け取った加熱対象部分の領域を示す情報を用いて、照射管理情報格納部413に格納されている照射管理情報から、「集中加熱領域」の属性値が加熱対象部分の位置を示す情報と重なる照射管理情報を検出する。具体的には、制御部412は、「集中加熱領域」の属性値が示すX座標の範囲と、Y座標の範囲が、加熱対象部分の輪郭の座標群が示す領域と重なっており、「集中加熱領域」の属性値が示すZ座標の範囲が、加熱対象部分を示す情報が有する高さ方向の座標を含む照射管理情報を検索する。ここで検出される照射管理情報は、集中加熱領域406mに対応する照射管理情報であるとする。そして、制御部412は、検出された照射管理情報の「制御」の属性値を取得して、この属性値を用いて、2以上のマイクロ波照射手段401を制御して、この属性値に対応する位相のマイクロ波をそれぞれ照射させる。これにより、加熱対象部分が検出された集中加熱領域406mを、2以上のマイクロ波照射手段401から位相を制御したマイクロ波をそれぞれ照射して集中加熱することができる。集中加熱を行う時間は、一定であってもよく、加熱対象部分の温度によって、決定してもよい。 The control unit 402 uses the information indicating the area of the portion to be heated received from the detection processing unit 202 to change the attribute value of the “centralized heating area” from the irradiation management information stored in the irradiation management information storage unit 413 to the heating. Irradiation management information overlapping with information indicating the position of the target portion is detected. Specifically, the control unit 412 determines that the range of the X coordinate and the range of the Y coordinate indicated by the attribute value of the “concentrated heating area” overlap with the area indicated by the coordinate group of the outline of the heating target portion, The irradiation management information in which the range of the Z coordinate indicated by the attribute value of the “heating region” includes the coordinates in the height direction included in the information indicating the heating target portion is searched. It is assumed that the irradiation management information detected here is irradiation management information corresponding to the concentrated heating area 406m. Then, the control unit 412 acquires the attribute value of “control” of the detected irradiation management information, controls the two or more microwave irradiation units 401 using the attribute value, and responds to the attribute value. Microwaves of different phases are irradiated. Thereby, the concentrated heating area 406m in which the heating target portion is detected can be heated by irradiating the microwaves whose phases are controlled from the two or more microwave irradiating means 401, respectively. The time for performing the concentrated heating may be constant, or may be determined according to the temperature of the portion to be heated.
 なお、検出された加熱対象部分が複数の集中加熱領域406にわたって配置されている場合や、異なる集中加熱領域に位置する複数の加熱対象部分が検出された場合のように、「集中加熱領域」の属性値が加熱対象部分を含む照射管理情報が複数検出された場合、照射管理情報に応じたマイクロ波の照射を、順番に行わせるようにすることで、加熱対象部分が複数の集中加熱領域406を順番に集中加熱するようにしてもよい。 Note that, as in the case where the detected heating target portions are arranged over a plurality of concentrated heating regions 406, or when a plurality of heating target portions located in different concentrated heating regions are detected, When a plurality of pieces of irradiation management information whose attribute values include the heating target part are detected, the irradiation of the microwaves according to the irradiation management information is performed in order, so that the heating target part has a plurality of concentrated heating regions 406. May be concentratedly heated in order.
 また、検出手段20の第二のセンサ211bは、加熱対象物60の裏面側をカバーする第二の検出領域215bについて温度分布を検出する。そして、検出処理部202は、検出された温度分布において、予め決められた閾値以下の部分を、加熱対象部分として検出する。ここでは、例えば、図11(c)に示すように、加熱対象部分507が検出されたとする。検出処理部202は、検出した加熱対象部分507の平面方向における輪郭を示す情報を取得する。また、ここでは、図示しない格納部に、容器10内に配置された加熱対象物60の裏面の高さ方向の座標が配置されており、検出処理部202は、この高さ方向の座標も読み出し、上記の輪郭を示す座標群と、この高さ方向の座標との組を、加熱対象部分の位置を示す情報として制御部402に渡す。 {Circle around (2)} The second sensor 211b of the detection means 20 detects the temperature distribution in the second detection region 215b covering the back side of the heating target 60. Then, the detection processing unit 202 detects a portion that is equal to or less than a predetermined threshold value in the detected temperature distribution as a portion to be heated. Here, for example, as shown in FIG. 11C, it is assumed that the heating target portion 507 is detected. The detection processing unit 202 acquires information indicating the outline of the detected heating target portion 507 in the planar direction. Also, here, the coordinates in the height direction of the back surface of the heating target 60 arranged in the container 10 are arranged in a storage unit (not shown), and the detection processing unit 202 also reads the coordinates in the height direction. A set of a coordinate group indicating the contour and coordinates in the height direction is passed to the control unit 402 as information indicating the position of the heating target portion.
 制御部402は、上記と同様に、検出処理部202から受け取った加熱対象部分の位置を示す情報を用いて、照射管理情報格納部413に格納されている照射管理情報から、「集中加熱領域」の属性値が加熱対象部分の位置を示す情報を含む照射管理情報を検出し、検出された照射管理情報の「制御」の属性値を用いて、2以上のマイクロ波照射手段401を制御して、この属性値に対応する位相のマイクロ波をそれぞれ照射させる。これにより、加熱対象部分が検出された集中加熱領域406nを、2以上のマイクロ波照射手段401から位相を制御したマイクロ波をそれぞれ照射して集中加熱することができる。 Similarly to the above, the control unit 402 uses the information indicating the position of the heating target portion received from the detection processing unit 202 to extract the “centralized heating area” from the irradiation management information stored in the irradiation management information storage unit 413. Irradiance management information including information indicating the position of the portion to be heated is detected, and two or more microwave irradiation means 401 are controlled using the attribute value of “control” of the detected irradiation management information. Microwaves having phases corresponding to the attribute values are radiated. Thereby, the concentrated heating region 406n in which the heating target portion is detected can be heated by irradiating the microwaves whose phases are controlled from the two or more microwave irradiating means 401, respectively.
 なお、第一のセンサ201aが検出した温度分布と、第二のセンサ201bが検出した温度分布と、から同時に加熱対象部分が検出した場合、制御部402は、それぞれの加熱対象部分を集中加熱する処理を、順番に行うようにする。 Note that, when the heating target portions are detected at the same time from the temperature distribution detected by the first sensor 201a and the temperature distribution detected by the second sensor 201b, the control unit 402 intensively heats the respective heating target portions. The processing is performed in order.
 以上、本実施の形態によれば、検出手段21により加熱対象部分を検出し、検出された加熱対象部分を集中加熱することができるため、ダイナミックかつリアルタイムに加熱対象部分を集中加熱できるとともに、集中加熱によって無駄のない効率的なマイクロ波加熱を行なうことができる。また、特に、検出手段21が検出した加熱対象部分をその場で集中加熱できるため、よりリアルタイムに集中加熱を行うことができる。また、不要な箇所に対して行なわれるマイクロ波照射を低減させて、不要な箇所の加熱によるダメージ等を防ぐことができる。また、加熱対象物が移動していない場合においても、加熱対象部分を加熱することができる。 As described above, according to the present embodiment, the heating target portion can be detected by the detection means 21 and the detected heating target portion can be concentratedly heated. Heating enables efficient microwave heating without waste. In particular, since the heating target portion detected by the detection unit 21 can be concentratedly heated on the spot, the concentrated heating can be performed in real time. In addition, microwave irradiation performed on unnecessary portions can be reduced, and damage or the like due to heating of unnecessary portions can be prevented. Further, even when the object to be heated is not moving, the portion to be heated can be heated.
 なお、上記具体例においては、加熱対象部分を集中加熱するための処理を行っている際に、加熱対象物60が移動していない場合について説明したが、加熱対象物60が移動しているときに、上記のような加熱対象部分を集中加熱するための処理を行ってもよい。ただし、この場合、検出手段21が、加熱対象部分を検出した直後に、この加熱対象部分を含む集中加熱領域を特定して集中加熱を行うようにすることが望まれる。また、これらの処理は、移動に伴って繰り返し行うようにする必要がある。 Note that, in the above specific example, the case where the heating target 60 is not moving when performing the process for intensively heating the heating target portion has been described, but when the heating target 60 is moving. Further, a process for intensively heating the portion to be heated as described above may be performed. However, in this case, immediately after the detection unit 21 detects the heating target portion, it is desired that the concentrated heating region including the heating target portion be specified to perform the concentrated heating. In addition, these processes need to be repeatedly performed with the movement.
 また、集中加熱領域406が加熱対象物60の移動方向に複数配列されており、加熱対象物60が移動している場合においては、所望の時間間隔ごと(例えば、加熱対象物60が一の集中加熱領域の長手方向の長さを通過する時間間隔ごと等)に、加熱対象部分を検出して、この加熱対象部分が含まれる領域を集中加熱する処理を繰り返すことにより、移動する加熱対象部分を追従して集中加熱することができるとともに、加熱対象部分の加熱が十分となった場合には、集中加熱を行わないようにすることができる。 Further, when a plurality of concentrated heating regions 406 are arranged in the moving direction of the heating target 60 and the heating target 60 is moving, the heating target 60 is moved at desired time intervals (for example, when the heating target 60 At each time interval passing through the length of the heating region in the longitudinal direction, etc.), the process of detecting the heating target portion and repeating the process of intensively heating the region including the heating target portion allows the moving heating target portion to be detected. In addition to the concentrated heating, the concentrated heating can be prevented from being performed when the heating target portion is sufficiently heated.
 また、上記実施の形態においては、検出手段21が有するセンサ211が、非接触で加熱対象物60の表面および裏面の温度分布を取得するセンサである場合について説明したが、検出手段21が有するセンサ211は、このようなセンサに限定されるものではない。例えば、センサ211として、温度を検出する部分を、加熱対象物60の長手方向、幅方向、および高さ方向が異なる複数の位置に取り付けた複数の接触式の温度センサを用いるようにして加熱対象物60の内部の温度分布も取得するようにしてもよい。例えば、上記の実施の形態においては、加熱対象物60の表面および裏面の温度分布しか取得できず、加熱対象物60の高さ方向の温度分布は取得できないため、加熱対象物60の内部等に加熱対象部分が存在したとしても、この加熱対象部分を検出することが困難であり、この加熱対象部分を集中加熱することが難しかったが、このようなセンサ211を用いることで、加熱対象物60の内部の温度分布を取得して、内部の加熱対象部分を検出して、この加熱対象部分を集中加熱することが可能となる。 Further, in the above-described embodiment, the case has been described where the sensor 211 included in the detection unit 21 is a sensor that acquires the temperature distribution on the front surface and the back surface of the heating target 60 in a non-contact manner. 211 is not limited to such a sensor. For example, as the sensor 211, a plurality of contact-type temperature sensors, each of which has a temperature detecting portion attached to a plurality of positions in the longitudinal direction, the width direction, and the height direction of the heating target 60 different from each other, are used. The temperature distribution inside the object 60 may also be acquired. For example, in the above embodiment, only the temperature distribution on the front surface and the back surface of the heating target 60 can be obtained, and the temperature distribution in the height direction of the heating target 60 cannot be obtained. Even if there is a heating target portion, it is difficult to detect the heating target portion, and it is difficult to heat the heating target portion intensively. However, by using such a sensor 211, the heating target 60 The temperature distribution inside is obtained, the portion to be heated inside is detected, and the portion to be heated can be intensively heated.
 例えば、上記実施の形態において、検出手段21が有するセンサ211として、各集中加熱領域406(例えば、加熱対象部分が位置する各集中加熱領域406)に対して、1以上の温度を検出可能なセンサ(図示せず)をそれぞれ設けるようにし、このセンサの出力が示す加熱対象物60等の温度が閾値以上の温度である集中加熱領域406や、温度が、他の集中加熱領域406等の温度や、複数の集中加熱領域406の温度の平均値や中間値等の代表値よりも高い集中加熱領域406を、加熱対象部分と判断して、この集中加熱領域406が集中加熱されるよう、照射状態変化手段41が位相を制御したマイクロ波をマイクロ波照射手段401に照射させるようにしてもよい。なお、このような場合も、各センサの出力は、温度分布を示すものと考えられることから、かかる処理も、検出手段21が温度分布を用いて検出した加熱対象部分を、集中加熱する処理と考えてもよい。 For example, in the above embodiment, the sensor 211 included in the detection unit 21 is a sensor that can detect one or more temperatures for each concentrated heating region 406 (for example, each concentrated heating region 406 where a heating target portion is located). (Not shown), and the central heating region 406 where the temperature of the heating target 60 or the like indicated by the output of this sensor is equal to or higher than the threshold value, or the temperature of the other concentrated heating region 406 or the like. The irradiation state is determined such that the concentrated heating area 406 higher than a representative value such as an average value or an intermediate value of the temperatures of the plurality of concentrated heating areas 406 is determined as a heating target portion, and the concentrated heating area 406 is concentrated heated. The changing means 41 may irradiate the microwave irradiating means 401 with the microwave whose phase is controlled. In such a case as well, since the output of each sensor is considered to indicate a temperature distribution, such a process is also a process of intensively heating the heating target portion detected by the detecting unit 21 using the temperature distribution. You may think.
 また、上述したようなX線センサや、超音波センサを検出手段20のセンサとして用いることにより、高さ方向の温度分布を取得するようにし、取得した高さ方向の温度分布を用いて、閾値等を利用して温度が低い部分を加熱対象部分として検出し、検出した加熱対象部分を、照射状態変化手段41およびマイクロ波照射手段401を用いて集中加熱するようにしてもよい。 Further, by using the X-ray sensor or the ultrasonic sensor as described above as a sensor of the detecting means 20, a temperature distribution in the height direction is obtained, and a threshold value is obtained by using the obtained temperature distribution in the height direction. For example, a portion having a low temperature may be detected as a portion to be heated by using the method described above, and the detected portion to be heated may be concentratedly heated using the irradiation state changing means 41 and the microwave irradiation means 401.
 (変形例1)
 以下、本実施の形態の変形例として、加熱対象物内部の高さ方向においても加熱対象部分を検出し、検出した加熱対象部分を集中加熱する加熱装置について説明する。
(Modification 1)
Hereinafter, as a modified example of the present embodiment, a heating device that detects a heating target portion even in the height direction inside the heating target object and centrally heats the detected heating target portion will be described.
 図16は、本実施の形態の変形例の加熱装置3のブロック図(図16(a))および斜視図(図16(b)である。図において、図8等と同一符号は同一または相当する部分を示している。 Drawing 16 is a block diagram (Drawing 16 (a)) and a perspective view (Drawing 16 (b)) of heating device 3 of a modification of this embodiment. In Drawings, the same numerals as Drawing 8 grade are the same or equivalent. The part to be performed is shown.
 図17は、本実施の形態の変形例を説明するための加熱対象物の長手方向に対して垂直な断面模式図(図17(a)および図17(b))である。 FIG. 17 is a schematic cross-sectional view (FIGS. 17 (a) and 17 (b)) perpendicular to the longitudinal direction of the object to be heated, for explaining a modification of the present embodiment.
 この変形例の加熱装置3は、上記実施の形態2の加熱装置2において、第一のセンサ211aおよび第二のセンサ211bと、検出処理部212とを有する検出手段21の代わりに、超音波センサ211cと、この超音波センサ211cが取得する温度分布から加熱対象部分を検出する検出処理部212aとを有する検出手段24とを用いたものである。 The heating device 3 of this modification is different from the heating device 2 of the second embodiment in that an ultrasonic sensor is used instead of the detection unit 21 having the first sensor 211a and the second sensor 211b and the detection processing unit 212. The detection unit 24 has a detection unit 24 that detects a portion to be heated from the temperature distribution acquired by the ultrasonic sensor 211c.
 ここでは、加熱対象物60の代わりに、回転楕円体形状の加熱対象物60aを用いた例について説明する。この加熱対象物60aの、長手方向のある位置における長手方向に対して垂直な断面形状は、例えば、図16(a)に示すような形状であるとする。この加熱対象物60aは、上記実施の形態2と同様に、ベルト501に載置されて容器10内に移動したあと、移動していないものとする。 Here, an example in which a heating object 60a having a spheroidal shape is used instead of the heating object 60 will be described. It is assumed that the cross-sectional shape of the heating target 60a perpendicular to the longitudinal direction at a certain position in the longitudinal direction is, for example, a shape as shown in FIG. It is assumed that the heating target 60a is not moved after being placed on the belt 501 and moving into the container 10 similarly to the second embodiment.
 この超音波センサ211cは、加熱対象物60aの長手方向の異なる複数の位置の断面において温度分布を取得可能なものであるとする。この超音波センサ211cは長手方向の異なる位置において、温度分布を取得するための走査が可能なものであってもよく、長手方向の異なる位置においてそれぞれ温度分布を取得するために配置された複数の超音波の送信部および受信部((図示せず)を備えたものであってもよい。 と す る It is assumed that the ultrasonic sensor 211c can acquire a temperature distribution in cross sections at a plurality of different positions in the longitudinal direction of the heating target 60a. The ultrasonic sensor 211c may be capable of performing scanning for acquiring a temperature distribution at different positions in the longitudinal direction, and a plurality of ultrasonic sensors 211c arranged to acquire the temperature distribution at different positions in the longitudinal direction may be used. An ultrasonic wave transmission unit and a reception unit (not shown) may be provided.
 検出処理部212aは、上記実施の形態2の検出処理部212において、第一のセンサ211aおよび第二のセンサ211bが取得した情報から加熱対象部分を検出する代わりに、超音波センサ211cが長手方向の異なる位置からそれぞれ取得した温度分布から、閾値等を用いて、加熱対象部分を検出するようにしたものである。例えば、検出処理部212は、超音波センサ211cが取得する温度分布から、閾値以上の温度の領域を検出し、検出した領域を示す情報を、加熱対象部分を示す情報として取得する。なお、検出処理部212aの上記以外の構成等については、検出処理部212と同様であるため、ここでは説明を省略する。 The detection processing unit 212a is different from the detection processing unit 212 of the second embodiment in that the ultrasonic sensor 211c is used in the longitudinal direction instead of detecting the heating target portion from the information acquired by the first sensor 211a and the second sensor 211b. The target to be heated is detected from the temperature distributions obtained from different positions by using a threshold value or the like. For example, the detection processing unit 212 detects a region having a temperature equal to or higher than a threshold from the temperature distribution acquired by the ultrasonic sensor 211c, and acquires information indicating the detected region as information indicating a heating target portion. The configuration and the like of the detection processing unit 212a other than those described above are the same as those of the detection processing unit 212, and thus description thereof is omitted here.
 次に動作の具体例について説明する。加熱対象物60aについて、超音波センサ211cが、長手方向の異なる位置において、それぞれ、加熱対象物60aの長手方向に対して垂直となる断面についての温度分布を取得する。この断面は、断層と考えてもよい。各温度分布は、例えば、加熱対象物60aの幅方向の座標と、加熱対象物60aの高さ方向の座標と、の組合せで表される複数の位置の座標と、この複数の位置の温度の値を有する情報である。また、各温度分布の取得位置が、各温度分布の加熱対象物60aの長手方向の位置(例えば、座標)を示している。 Next, a specific example of the operation will be described. With respect to the heating target 60a, the ultrasonic sensor 211c acquires the temperature distributions of the cross section perpendicular to the longitudinal direction of the heating target 60a at different positions in the longitudinal direction. This cross section may be considered a fault. Each temperature distribution includes, for example, coordinates of a plurality of positions represented by a combination of coordinates in the width direction of the heating target 60a and coordinates in the height direction of the heating target 60a, and the temperature of the plurality of positions. This is information having a value. The acquisition position of each temperature distribution indicates a position (for example, coordinates) in the longitudinal direction of the heating target 60a of each temperature distribution.
 検出処理部212aは、超音波センサ211cが取得した各温度分布において、閾値を用いて、加熱対象部分を検出する処理を行う。 The detection processing unit 212a performs a process of detecting a portion to be heated using a threshold in each temperature distribution acquired by the ultrasonic sensor 211c.
 ここで、例えば、図17(b)に示すように、超音波センサ211cが加熱対象物60aの長手方向の一の位置の断面について取得した温度分布において、検出処理部212aが加熱対象部分1606を検出したとすると、制御部412は、この温度分布が取得された長手方向の位置と、検出処理部212がこの温度分布から取得した加熱対象部分1606の幅方向の位置と、高さ方向の位置とを取得し、取得した長手方向の位置と、幅方向の位置と、高さ方向の位置とで表される容器10内の位置を含む集中加熱領域406である集中加熱領域406αを、照射管理情報格納部413に格納されている照射管理情報を用いて特定する。そして、制御部412は、この集中加熱領域406αに対して集中加熱が行われるよう、照射管理情報格納部413に格納されている照射管理情報を用いて、マイクロ波照射手段401から位相を制御した複数のマイクロ波を照射させる。これにより、加熱対象物60aの内部において加熱対象部分1606を検出して、検出した加熱対象部分を集中加熱することができ、加熱対象物60aの内部において、加熱対象部分を検出して、ダイナミックかつリアルタイムに集中加熱することができる。 Here, for example, as shown in FIG. 17B, in the temperature distribution acquired by the ultrasonic sensor 211c with respect to the cross section at one position in the longitudinal direction of the heating target 60a, the detection processing unit 212a determines the heating target portion 1606 If it is detected, the control unit 412 determines the position in the longitudinal direction at which the temperature distribution is obtained, the position in the width direction of the heating target portion 1606 obtained from the temperature distribution by the detection processing unit 212, and the position in the height direction The centralized heating area 406α, which is the centralized heating area 406 including the position in the container 10 represented by the acquired longitudinal position, widthwise position, and heightwise position, is subjected to irradiation management. It is specified using the irradiation management information stored in the information storage unit 413. The control unit 412 controls the phase from the microwave irradiation unit 401 using the irradiation management information stored in the irradiation management information storage unit 413 so that the concentrated heating area 406α is subjected to the concentrated heating. Irradiate a plurality of microwaves. Thereby, the heating target portion 1606 can be detected inside the heating target object 60a, and the detected heating target portion can be concentratedly heated. Central heating can be performed in real time.
 なお、上記変形例において、加熱対象物60aが容器10内を移動するようにし、超音波センサ211cを用いて、容器10内の長手方向の一の位置を通過する加熱対象物60aについて、加熱対象部分を順次検出し、加熱対象部分が検出された場合に、この加熱対象部分が加熱対象物60aの移動にともなって進入した集中加熱領域406を、マイクロ波照射手段401から照射される位相を制御した複数のマイクロ波によって集中加熱するようにしてもよい。 In the above-described modification, the heating target 60a is moved in the container 10 and the ultrasonic sensor 211c is used to heat the heating target 60a passing through one position in the longitudinal direction in the container 10. The portions are sequentially detected, and when the heating target portion is detected, the phase of irradiating the concentrated heating region 406 into which the heating target portion enters with the movement of the heating target object 60a from the microwave irradiation unit 401 is controlled. The concentrated heating may be performed by a plurality of microwaves.
 また、上記変形例においては、加熱対象物60aの内部の温度分布を取得するセンサとして、超音波センサ211cを有する場合について説明したが、超音波センサ211cの代わりに、他の加熱対象物60aの内部の温度分布を取得するセンサを用いるようにしてもよい。例えば、検出手段24は、超音波センサ211cの代わりに、X線センサを有していてもよい。なお、かかることは、以下の超音波センサや、超音波センサを有する検出手段24を用いる実施の形態についても同様である。 Further, in the above modification, the case where the ultrasonic sensor 211c is provided as a sensor for acquiring the temperature distribution inside the heating target 60a has been described, but instead of the ultrasonic sensor 211c, the other heating target 60a A sensor for acquiring the internal temperature distribution may be used. For example, the detection unit 24 may include an X-ray sensor instead of the ultrasonic sensor 211c. The same applies to the following embodiments using the ultrasonic sensor and the detecting unit 24 having the ultrasonic sensor.
 なお、上記実施の形態においては、制御部412が、三次元空間における集中加熱領域等の位置を示す情報を用いて、加熱対象部分と重なっている集中加熱領域406を、加熱対象部分が位置する集中加熱領域406として特定して、この集中加熱領域406を集中加熱するためのマイクロ波の位相を制御するための情報を取得するようにしたが、制御部412が、加熱対象部分を含む集中加熱領域406を特定して、集中加熱領域406を集中加熱するためのマイクロ波の位相を制御するための情報を取得する処理は、上記の処理に限定されるものではない。 In the above embodiment, the control unit 412 uses the information indicating the position of the concentrated heating region or the like in the three-dimensional space to locate the concentrated heating region 406 overlapping the heating target portion, where the heating target portion is located. Although the information is specified as the concentrated heating region 406 and the information for controlling the phase of the microwave for centrally heating the concentrated heating region 406 is acquired, the control unit 412 performs the concentrated heating including the heating target portion. The process of specifying the region 406 and acquiring information for controlling the phase of the microwave for centrally heating the concentrated heating region 406 is not limited to the above process.
 例えば、上記の実施の形態において、集中加熱領域の位置を示す情報として、それぞれ上述した三次元空間における集中加熱領域406の位置を示す情報の代わりに、三次元空間における各集中加熱領域406の中心や重心等の代表点の位置を示す情報(例えば、三次元の座標)を用いるようにし、同様に、加熱対象部分の位置を示す情報として、三次元空間における加熱対象部分の中心や重心等の代表点の位置を示す情報(例えば、三次元の座標)を用いるようにし、制御部412が、各集中加熱領域406の代表点の中から、検出手段21が検出した加熱対象部分の代表点との距離が最も短くなる代表点を検出し、検出した代表点に対応する集中加熱領域406が集中加熱されるよう、複数のマイクロ波照射手段401がそれぞれ照射するマイクロ波の位相を制御するようにしてもよい。例えば、照射管理情報が、容器10内の複数の集中加熱領域についての、三次元空間における集中加熱領域406の中心や重心等の代表点の位置を示す情報(例えば、三次元の座標)と、この集中加熱領域を集中加熱するためのマイクロ波の位相を制御するための情報とを有するようにし、制御部412が、検出手段21が検出した加熱対象部分の三次元空間における代表点の位置を示す情報との距離が最も短くなる集中加熱領域406の代表点の位置を示す情報を有する照射管理情報を検出し、検出した照射管理情報が有する集中加熱領域を集中加熱するためのマイクロ波の位相を制御するための情報を取得し、この情報を用いて、複数のマイクロ波照射手段401が照射するマイクロ波の位相を制御するようにしてもよい。 For example, in the above-described embodiment, instead of the information indicating the position of the concentrated heating region 406 in the three-dimensional space described above, the center of each concentrated heating region 406 in the three-dimensional space is used as the information indicating the position of the concentrated heating region. And information indicating the position of a representative point such as the center of gravity (eg, three-dimensional coordinates), and similarly, information indicating the position of the heating target portion, such as the center or the center of gravity of the heating target portion in the three-dimensional space, is used. The information (for example, three-dimensional coordinates) indicating the position of the representative point is used, and the control unit 412 selects the representative point of the heating target portion detected by the detection unit 21 from the representative points of each concentrated heating area 406. Are detected by the plurality of microwave irradiation units 401 so that the concentrated heating area 406 corresponding to the detected representative point is concentratedly heated. It may be to control the phase of that microwave. For example, the irradiation management information is information (for example, three-dimensional coordinates) indicating the position of a representative point such as the center or the center of gravity of the concentrated heating area 406 in the three-dimensional space, for a plurality of concentrated heating areas in the container 10. The control unit 412 determines the position of the representative point in the three-dimensional space of the heating target portion detected by the detection unit 21 so as to have information for controlling the phase of the microwave for centrally heating the concentrated heating region. The phase of the microwave for detecting the irradiation management information having the information indicating the position of the representative point of the concentrated heating area 406 where the distance to the indicated information is the shortest and for centrally heating the concentrated heating area included in the detected irradiation management information May be acquired, and using this information, the phases of the microwaves irradiated by the plurality of microwave irradiation units 401 may be controlled.
 上記実施の形態においては、複数の集中加熱領域406が、三次元方向に配列されている場合を例にあげて説明したが、複数の集中加熱領域406の配列方向は、三次元方向に限定されるものではなく、例えば、二次元方向に配列されてもよく、一次元方向に配列されてもよい。ここでの二次元方向に配列される、ということは、例えば、高さ方向が一列となり、平面方向において、r×s(r、sは2以上の整数)のマトリクス状に配列されることであってもよく、長手方向が一列となり、高さ方向および幅方向が、r×s(r、sは2以上の整数)のマトリクス状に配列されることであってもよい。また、複数の集中加熱領域406が一次元方向に配列されることは、例えば、複数の集中加熱領域406が長手方向や、幅方向や任意の方向に一列に配列されることである。複数の集中加熱領域の配列は、例えば、加熱対象物60の形状等に応じたものとすることが好ましい。なお、検出手段21は、容器10内に配列された集中加熱領域406と重なるよう検出領域215が配置されるものであれば、上記のような検出領域215が配置される検出手段21に限定されるものではない。例えば、複数の集中加熱領域406が一次元方向に配列されている場合、検出手段21が有するセンサ211は、検出領域215がこの複数の集中加熱領域406に重なるよう配置された、その長手方向が、複数の集中加熱領域406の配列方向であるセンサであってもよい。 In the above embodiment, the case where the plurality of concentrated heating regions 406 are arranged in the three-dimensional direction has been described as an example. However, the arrangement direction of the plurality of concentrated heating regions 406 is limited to the three-dimensional direction. For example, they may be arranged in a two-dimensional direction or in a one-dimensional direction. Here, being arranged in the two-dimensional direction means that, for example, the height direction is arranged in a line, and is arranged in a matrix of r × s (r, s is an integer of 2 or more) in the plane direction. Alternatively, the longitudinal direction may be one line, and the height direction and the width direction may be arranged in a matrix of r × s (r and s are integers of 2 or more). The arrangement of the plurality of concentrated heating regions 406 in the one-dimensional direction means, for example, that the plurality of concentrated heating regions 406 are arranged in a line in the longitudinal direction, the width direction, or an arbitrary direction. It is preferable that the arrangement of the plurality of concentrated heating regions be in accordance with, for example, the shape of the heating target 60 or the like. Note that the detection unit 21 is limited to the detection unit 21 in which the detection region 215 is disposed as long as the detection region 215 is disposed so as to overlap the concentrated heating region 406 arranged in the container 10. Not something. For example, when a plurality of concentrated heating regions 406 are arranged in a one-dimensional direction, the sensor 211 included in the detecting unit 21 is arranged such that the detection region 215 overlaps the plurality of concentrated heating regions 406. Alternatively, the sensor may be a direction in which the plurality of concentrated heating regions 406 are arranged.
 また、上記各実施の形態においては、容器10内における集中加熱可能な集中加熱領域406が複数である場合について説明したが、集中加熱領域406は、一つであってもよい。例えば、加熱対象物60が、容器10内において長手方向に移動するものであって、一の集中加熱領域406よりも幅の狭い糸状のものや、ストライプ状のものである場合、加熱対象物60が集中加熱領域406内を通過して移動するようにするとともに、検出手段の検出領域が、この移動経路上に配置されるようにすることで、加熱対象物60の加熱対象部分を検出手段で検出して、この検出した加熱対象部分を、集中加熱領域406内に位置するとき(例えば集中加熱領域406と重なるとき)に集中加熱することができる。 In addition, in each of the above-described embodiments, the case where there are a plurality of concentrated heating regions 406 in which the concentrated heating can be performed in the container 10 is described, but the number of the concentrated heating regions 406 may be one. For example, when the heating target 60 moves in the longitudinal direction in the container 10 and has a thread shape or a stripe shape narrower than one concentrated heating region 406, the heating target 60 Is moved while passing through the concentrated heating area 406, and the detection area of the detection means is arranged on this movement path, so that the heating target portion of the heating target 60 is detected by the detection means. Upon detection, the detected heating target portion can be concentratedly heated when located in the concentrated heating region 406 (for example, when overlapping with the concentrated heating region 406).
 また、上記実施の形態2において、二次元の領域である複数の集中加熱領域406が、上記実施の形態1において説明したように、加熱対象物60の表面側および裏面側の平面方向においてそれぞれ異なる位置(例えば、長手方向の位置および幅方向の位置の少なくとも一方が異なる位置)に配置されようにし、検出手段21の第一の検出領域205aが複数の集中加熱領域406と重なる加熱対象物60の表面61a側の領域となり、検出手段21の第二の検出領域205bが複数の集中加熱領域406と重なる加熱対象物60の裏面側の領域となるようにし、照射状態変化手段41は、加熱対象部分が検出された集中加熱領域406が集中加熱されるように、上記実施の形態1と同様にマイクロ波を照射するようにしてもよい。かかることは、1つの集中加熱領域406が、加熱対象物60の表面61a側および裏面61b側の平面方向において配置される場合についても同様である。 Further, in the second embodiment, the plurality of concentrated heating regions 406, which are two-dimensional regions, differ from each other in the plane directions of the front surface side and the back surface side of the heating target 60, as described in the first embodiment. Position (for example, at least one of the position in the longitudinal direction and the position in the width direction is different) so that the first detection area 205a of the detection unit 21 overlaps the plurality of concentrated heating areas 406. The area on the front surface 61a side, the second detection area 205b of the detection means 21 is made to be the area on the back side of the heating object 60 overlapping the plurality of concentrated heating areas 406, and the irradiation state changing means 41 In the same manner as in the first embodiment, microwaves may be irradiated so that the concentrated heating region 406 in which is detected is concentratedly heated. The same applies to the case where one concentrated heating region 406 is arranged in the planar direction on the front surface 61a side and the back surface 61b side of the heating target 60.
 また、上記実施の形態においては、第一のセンサと第二のセンサとを用いて、加熱対象物60の表面側と裏面側において温度分布を取得して、加熱対象部分を検出する例について説明したが、第一のセンサと第二のセンサのいずれか一方のみを用いるようにしてもよい。特に、加熱対象物60の厚さが薄く、表面側と裏面側との温度がほとんどかわらないものである場合、第一のセンサと第二のセンサのいずれか一方のみを用いるようにしてもよい。この場合、各集中加熱領域406を、例えば、高さ方向において一層となるように配置し、加熱対象物60が、高さ方向において、この一層の集中加熱領域406内に収まるように配置、あるいは移動させることが好ましい。 Further, in the above-described embodiment, an example in which the first sensor and the second sensor are used to acquire the temperature distribution on the front surface side and the back surface side of the heating target 60 and detect the heating target portion will be described. However, only one of the first sensor and the second sensor may be used. In particular, when the thickness of the heating target 60 is thin and the temperature on the front surface side and the temperature on the rear surface side hardly change, only one of the first sensor and the second sensor may be used. . In this case, for example, each concentrated heating region 406 is arranged so as to be one layer in the height direction, and the heating object 60 is arranged so as to fit in the one layer concentrated heating region 406 in the height direction, or It is preferable to move.
 なお、上記各実施の形態においては、検出手段20が加熱対象物60の温度を取得して、加熱対象部分を検出する場合について説明したが、検出手段が加熱部分を検出するために取得する加熱対象物60の状態を示す情報は、温度に限定されるものではない。例えば、検出手段が加熱部分を検出するために取得する加熱対象物60の状態を示す情報は、温度、圧力、水分、および色のうちの1以上であっても良い。また、また、センサは、上記実施の形態において説明されたセンサに限定されるものではない。検出手段が有するセンサは、温度センサ、圧力センサ、水分センサ、および色を取得するセンサのうちの1以上であっても良い。 In each of the above-described embodiments, the case has been described where the detecting unit 20 acquires the temperature of the heating target 60 and detects the portion to be heated. Information indicating the state of the target object 60 is not limited to the temperature. For example, the information indicating the state of the heating target 60 acquired by the detection unit to detect the heated portion may be one or more of temperature, pressure, moisture, and color. Further, the sensor is not limited to the sensor described in the above embodiment. The sensor included in the detecting means may be one or more of a temperature sensor, a pressure sensor, a moisture sensor, and a sensor for acquiring color.
 例えば、検出手段は、例えば、加熱対象物60の平面方向および高さ方向の少なくとも一方において、水分量が高い部分を検出し、検出した水分量が高い部分を、加熱対象部分として検出してもよい。例えば、加熱対象物60が、加熱によって水分量が減少するもの(例えば、加熱によって乾燥するもの)である場合、検出した水分量が高い部分は、例えば、加熱が必要な部分や、加熱が不足している部分等と考えてもよい。水分量が高い部分は、例えば、水分量が予め決められた閾値よりも高い部分であってもよく、加熱対象物60の他の部分や、加熱対象物60の複数の部分の平均値よりも閾値以上、水分量が高い部分であってもよい。 For example, the detection unit may detect, for example, a portion having a high moisture content in at least one of the planar direction and the height direction of the heating target 60, and may detect the portion having a high detected moisture content as the heating target portion. Good. For example, in the case where the heating target 60 has a reduced moisture content due to heating (for example, a product that is dried by heating), a portion having a high detected moisture content is, for example, a portion requiring heating or insufficient heating. It may be considered as a part that does. The portion having a high moisture content may be, for example, a portion having a moisture content higher than a predetermined threshold, and may be a portion having a higher moisture content than other portions of the heating target 60 or an average value of a plurality of portions of the heating target 60. It may be a portion with a water content higher than the threshold value.
 例えば、検出手段20は、加熱対象物の状態を示す情報を取得する一以上のセンサとして、非接触で加熱対象物60の水分量を検出可能なセンサを用いて、上記実施の形態で説明した検出領域と同様の検出領域において、加熱対象物60の水分量の分布を検出し、この水分量が閾値以上である部分を、加熱対象部分として検出するようにしてもよい。非接触で水分量を検出するセンサとして、マイクロ波を所望の位置に照射して、反射されるマイクロ波から、水分量を検出するセンサ等が利用可能である。また、加熱対象物60の長手方向の位置、幅方向の位置、および高さ方向の位置の一以上が異なる複数の位置に接触するよう設けられた1または2以上の接触式の水分量を測定するセンサ等を用いて、上記実施の形態で説明した検出領域と同様の検出領域において加熱対象物60の水分量の分布を検出し、閾値以上の水分量が検出された部分を、加熱対象部分として検出してもよい。 For example, the detection unit 20 has been described in the above embodiment using, as one or more sensors that acquire information indicating the state of the heating target, a sensor capable of detecting the moisture content of the heating target 60 without contact. In the same detection region as the detection region, the distribution of the moisture content of the heating target 60 may be detected, and a portion where the moisture content is equal to or larger than the threshold may be detected as the heating target portion. As a sensor for detecting the amount of water in a non-contact manner, a sensor that irradiates a microwave to a desired position and detects the amount of water from the reflected microwave can be used. Further, one or two or more contact-type water amounts provided so that at least one of a position in the longitudinal direction, a position in the width direction, and a position in the height direction of the heating object 60 are in contact with a plurality of different positions are measured. Using a sensor or the like, the distribution of the water content of the heating target 60 is detected in the same detection region as the detection region described in the above embodiment, and the portion where the water content equal to or larger than the threshold is detected is regarded as the heating target portion. May be detected.
 また、例えば、検出手段20は、例えば、加熱対象物60の平面方向および高さ方向の少なくとも一方において、圧力が低い部分を検出し、検出した圧力が低い部分を、加熱対象部分として検出してもよい。例えば、加熱対象物60が、加熱によって圧力が増加するものである場合、検出した圧力が低い部分は、例えば、加熱が必要な部分や、加熱が不足している部分等と考えてもよい。圧力が低い部分とは、例えば、圧力が予め決められた閾値よりも低い部分であってもよく、加熱対象物60の平均値や、加熱対象物60の他の部分の平均値等よりも閾値以上圧力が低い部分であってもよい。 In addition, for example, the detection unit 20 detects, for example, a portion where the pressure is low in at least one of the planar direction and the height direction of the heating target 60, and detects the detected low pressure portion as the heating target portion. Is also good. For example, when the pressure of the heating target 60 increases due to the heating, the portion where the detected pressure is low may be considered as, for example, a portion requiring heating or a portion lacking heating. The portion where the pressure is low may be, for example, a portion where the pressure is lower than a predetermined threshold, and the threshold is lower than the average value of the heating target 60 or the average value of other portions of the heating target 60 or the like. The above may be a portion where the pressure is low.
 例えば、検出手段20は、加熱対象物60の長手方向の位置、幅方向の位置、および高さ方向の位置の一以上が異なる複数の位置に接触するよう設けられた1または2以上の接触式の水分量を測定するセンサ等を用いて、上記実施の形態で説明した検出領域と同様の検出領域において加熱対象物60の水分量の分布を検出し、閾値以上の水分量が検出された部分を、加熱対象部分として検出してもよい。 For example, the detection unit 20 includes one or two or more contact types provided so that at least one of a position in the longitudinal direction, a position in the width direction, and a position in the height direction of the heating target 60 is different from each other. Using a sensor or the like that measures the amount of moisture in the detection area similar to the detection area described in the above embodiment, the distribution of the amount of moisture in the heating target 60 is detected, and a portion where the amount of moisture equal to or greater than the threshold is detected May be detected as the portion to be heated.
 また、検出手段20は、例えば、加熱対象物60の平面方向および高さ方向の少なくとも一方において、色を検出し、検出した色が、予め決められた色である部分を、加熱対象部分として検出する。予め決められた色である部分とは、例えば、色の明度、色相、彩度の1以上が所望の範囲内の値となる部分である。例えば、加熱対象物60が、加熱によって色が変色するものである場合(例えば、加熱によって色が黒くなったり、呈色反応を起こして変色するものである場合)、変色が起こっていない色を有する部分を、加熱が必要な部分や、加熱が不足している部分等として検出してもよい。 In addition, the detection unit 20 detects a color in at least one of the plane direction and the height direction of the heating target 60, and detects a portion in which the detected color is a predetermined color as a heating target portion. I do. The portion having a predetermined color is, for example, a portion in which one or more of the lightness, hue, and saturation of the color have a value within a desired range. For example, when the heating target 60 changes color by heating (for example, when the color turns black due to heating or changes color by causing a color reaction), a color that has not changed color is used. The portion having the heat may be detected as a portion requiring heating, a portion having insufficient heating, or the like.
 例えば、検出手段20は、加熱対象物の状態を示す情報を取得する一以上のセンサとして、非接触で加熱対象物60表面の色を取得可能なイメージセンサやラインセンサ等を用いて、上記実施の形態で説明した検出領域と同様の検出領域において、加熱対象物60の色の分布を検出し、特定の色の部分を、加熱対象部分として検出するようにしてもよい。特定の色の部分は、例えば、色相、彩度、明度のうちの1以上が特定の範囲にある色である。 For example, the detecting unit 20 may use an image sensor or a line sensor capable of acquiring the color of the surface of the heating target 60 in a non-contact manner as one or more sensors that obtain information indicating the state of the heating target. In a detection region similar to the detection region described in the embodiment, the color distribution of the heating target 60 may be detected, and a specific color portion may be detected as a heating target portion. The specific color portion is, for example, a color in which one or more of hue, saturation, and lightness are in a specific range.
 なお、温度以外の状態を示す情報を利用する場合、例えば、上記各実施の形態の温度に関する記載は、適宜、温度以外の状態を示す情報に読み替えるようにすればよい。 When information indicating a state other than the temperature is used, for example, the description of the temperature in each of the above embodiments may be appropriately replaced with information indicating a state other than the temperature.
 なお、上各記実施の形態において、検出手段が、加熱対象物60についての状態を示す情報から加熱対象部分を検出して、この加熱対象部分についての、中心や重心等の代表点の三次元空間における位置を示す情報を取得し、照射状態変化手段の制御部が、容器10内の2以上のマイクロ波が出射される位置の座標等を用いて2以上のマイクロ波が出射される位置から加熱対象部分の代表点までの距離をそれぞれ算出し、算出した距離の情報と照射するマイクロ波の波長等とを用いて、加熱対象部分の代表点とその周辺部において、複数のマイクロ波が強め合うように、2以上のマイクロ波照射手段401が照射するマイクロ波の位相を算出して、2以上のマイクロ波照射手段401が照射するマイクロ波の位相を制御するための情報を取得するようにし、この情報を用いてマイクロ波照射手段401を制御して、加熱対象部分を集中加熱するようにしてもよい。このとき、各集中加熱領域の位置を示す情報は、例えば、予め図示しない格納部等に格納されているものを読み出すようにすればよい。ここで算出する位相は、例えば、2以上のマイクロ波照射手段401が照射するマイクロ波の位相差が0になる位相であってもよい。 In each of the above embodiments, the detecting means detects the heating target portion from the information indicating the state of the heating target object 60, and the three-dimensional representative points such as the center and the center of gravity of the heating target portion are detected. The information indicating the position in the space is acquired, and the control unit of the irradiation state changing unit uses the coordinates of the position where the two or more microwaves are emitted in the container 10 from the position where the two or more microwaves are emitted. Calculate the distance to the representative point of the heating target part, and use the information on the calculated distance and the wavelength of the microwave to be irradiated to strengthen the microwaves at the representative point of the heating target part and the surrounding area. In order to match, the phase of the microwave radiated by the two or more microwave irradiation units 401 is calculated, and information for controlling the phase of the microwave radiated by the two or more microwave irradiation units 401 is obtained. To make it in, by controlling the microwave irradiation means 401 by using this information, the heat target portion may be centralized heating. At this time, as the information indicating the position of each concentrated heating area, for example, information stored in a storage unit (not shown) or the like may be read out. The phase calculated here may be, for example, a phase at which the phase difference between the microwaves irradiated by the two or more microwave irradiation units 401 becomes zero.
 (実施の形態3)
 上記実施の形態1および2においては、検出手段で検出された加熱対象部分が集中加熱されるよう、位相を制御したマイクロ波を照射する場合について説明したが、本実施の形態においては、照射状態変化手段が、マイクロ波を照射する1以上のマイクロ波照射手段を備えており、検出手段が検出した加熱対象部分が集中加熱されるよう、この1以上のマイクロ波照射手段が照射するマイクロ波の出力を変更するようにした加熱装置について説明する。
(Embodiment 3)
In the above first and second embodiments, the case where the microwave whose phase is controlled is irradiated so that the heating target portion detected by the detection unit is heated intensively has been described. The changing means includes one or more microwave irradiating means for irradiating the microwave, and the microwave irradiating the one or more microwave irradiating means so that the heating target portion detected by the detecting means is concentratedly heated. A heating device whose output is changed will be described.
 図18は、本実施の形態の加熱装置4のブロック図(図18(a))および斜視図(図18(b))である。図において、図1等と同一符号は同一または相当する部分を示している。 FIG. 18 is a block diagram (FIG. 18A) and a perspective view (FIG. 18B) of the heating device 4 of the present embodiment. In the figure, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts.
 加熱装置4は、検出手段20と、第一~第三のマイクロ波照射手段421a~421cと、照射状態変化手段42とを備えている。照射状態変化手段42は、制御部422と、照射管理情報格納部423とを備えている。 The heating device 4 includes the detection unit 20, first to third microwave irradiation units 421a to 421c, and an irradiation state changing unit 42. The irradiation state changing unit 42 includes a control unit 422 and an irradiation management information storage unit 423.
 第一~第三のマイクロ波照射手段421a~421cは、個別に出力が変更可能なマイクロ波照射手段である。出力を個別に変更可能とは、出力を個別に制御可能であることと考えてもよい。個別に出力が変更可能とは、例えば、マイクロ波の出力を個別に大きくしたり小さくしたり変更できることであってもよく、出力のオンおよびオフを個別に変更できることであってもよい。ここでは、一例として、マイクロ波の出力の変更が、オンおよびオフの変更(例えば、オンおよびオフの制御)である場合を例に挙げて説明する。ここでの第一~第三のマイクロ波照射手段421a~421cが、位相が変更できるものであるか否かは問わない。ここでは、第一~第三のマイクロ波照射手段421a~421cが、それぞれ、個別に出力が変更可能なマイクロ波発振器4211と、上記各実施の形態と同様の伝送部4012とを有している場合について説明する。マイクロ波発振器4211は、上記実施の形態で説明したマイクロ波発振器4011と同様のマイクロ波発振器であって、出力を変更可能なマイクロ波発振器である。ただし、マイクロ波発振器4211が、マイクロ波発振器4011のように、位相を変更可能なものであるか否かは問わない。例えば、マイクロ波発振器4211は、位相器を有していなくてもよい。なお、複数のマイクロ波照射手段421は、一つのマイクロ波発振器が出射するマイクロ波を、分岐構造を有する伝送部で分岐して伝送して容器10内に照射するものであって、分岐されたマイクロ波の出力を伝送部等に設けられたアンプ(図示せず)等を用いてそれぞれ変更可能なものであってもよく、この場合、出力をそれぞれ変更するアンプ等を、それぞれ、マイクロ波照射手段と考えてもよい。なお、第一~第三のマイクロ波照射手段421a~421cとしては、例えば、上記以外の構成が、上記実施の形態1の第一~第三のマイクロ波照射手段401a~401cと同様のものが利用可能である。なお、第一~第三のマイクロ波照射手段421a~421cのそれぞれを区別しない場合、単にマイクロ波照射手段421と呼ぶ場合がある。 The first to third microwave irradiation means 421a to 421c are microwave irradiation means whose output can be individually changed. To be able to individually change the output may be considered that the output can be individually controlled. The individually changeable output may mean, for example, that the microwave output can be individually increased or decreased or changed, or that the output can be individually turned on and off. Here, as an example, a case where the change of the microwave output is a change of ON and OFF (for example, a control of ON and OFF) will be described as an example. It does not matter whether the first to third microwave irradiation means 421a to 421c can change the phase. Here, each of the first to third microwave irradiation means 421a to 421c has a microwave oscillator 4211 whose output can be individually changed, and a transmission unit 4012 similar to each of the above embodiments. The case will be described. The microwave oscillator 4211 is a microwave oscillator similar to the microwave oscillator 4011 described in the above embodiment, and is a microwave oscillator whose output can be changed. However, it does not matter whether the microwave oscillator 4211 can change the phase like the microwave oscillator 4011. For example, the microwave oscillator 4211 may not have a phase shifter. The plurality of microwave irradiating means 421 is for irradiating microwaves emitted from one microwave oscillator into the container 10 by branching and transmitting the microwaves at a transmission unit having a branch structure. The output of the microwave may be changeable using an amplifier (not shown) provided in a transmission unit or the like. In this case, the amplifier or the like that changes the output may be irradiated with the microwave. It may be considered as a means. The first to third microwave irradiating units 421a to 421c have the same configuration as the first to third microwave irradiating units 401a to 401c of the first embodiment except for the above. Available. When the first to third microwave irradiation means 421a to 421c are not distinguished from each other, they may be simply referred to as microwave irradiation means 421.
 本実施の形態の集中加熱領域406a~406fは、上記実施の形態1と同様のマイクロ波によって集中加熱される領域であるが、上記実施の形態1とは異なり、第一~第三のマイクロ波照射手段421a~421cがそれぞれ照射するマイクロ波が個別に照射される領域であるとする。ここでは、第一~第三のマイクロ波照射手段421a~421cのそれぞれの伝送部4012が、容器10の上部に設けられた開口部105であって、加熱対象物60の幅方向に向かって直線状に配列されている三つの開口部105にそれぞれ取り付けられているものとする。マイクロ波は、各開口部105から下方に向かって照射される。また、集中加熱領域406a~406cが、加熱対象物60の表面61aに、幅方向に向かって直線状に配列されている。また、集中加熱領域406d~406fが、加熱対象物60の裏面61bに、幅方向に向かって直線状に配列されている。第一のマイクロ波照射手段421aの伝送部4012は、集中加熱領域406aおよび406dの上方に位置する開口部105に取り付けられている。第二のマイクロ波照射手段421bの伝送部4012は、集中加熱領域406bおよび406eの上方に位置する開口部105に取り付けられている。第三のマイクロ波照射手段421cの伝送部4012は、集中加熱領域406cおよび406fの上方に位置する開口部105に取り付けられている。 The concentrated heating regions 406a to 406f of the present embodiment are regions that are concentrated and heated by the same microwaves as in the first embodiment, but different from the first embodiment, the first to third microwaves. It is assumed that each of the irradiation units 421a to 421c is a region individually irradiated with the microwaves to be irradiated. Here, each transmission section 4012 of the first to third microwave irradiation means 421a to 421c is an opening 105 provided at the upper part of the container 10 and is a straight line in the width direction of the heating target 60. It is assumed that they are respectively attached to three openings 105 arranged in a shape. The microwave is applied downward from each opening 105. In addition, the concentrated heating regions 406a to 406c are linearly arranged on the surface 61a of the heating target 60 in the width direction. In addition, the concentrated heating regions 406d to 406f are linearly arranged on the back surface 61b of the heating target 60 in the width direction. The transmission section 4012 of the first microwave irradiation means 421a is attached to the opening 105 located above the concentrated heating areas 406a and 406d. The transmission section 4012 of the second microwave irradiation means 421b is attached to the opening 105 located above the concentrated heating areas 406b and 406e. The transmission section 4012 of the third microwave irradiation means 421c is attached to the opening 105 located above the concentrated heating areas 406c and 406f.
 ただし、第一~第三のマイクロ波照射手段421a~421cは、対応する集中加熱領域406a~406fにマイクロ波が照射可能となるように取り付けられていればよく、第一~第三のマイクロ波照射手段421a~421cの取り付け位置や、集中加熱領域406の配置等については上記に限定されるものではない。集中加熱領域406a~406fの形状や配置等については、上記実施の形態1と同様の形状や配置等が利用可能であり、ここでは、詳細な説明は省略する。例えば、隣り合う集中加熱領域406は、一部が重なりあっていてもよい。 However, the first to third microwave irradiation means 421a to 421c only need to be attached so that the corresponding concentrated heating areas 406a to 406f can be irradiated with microwaves. The mounting positions of the irradiation units 421a to 421c and the arrangement of the concentrated heating area 406 are not limited to the above. Regarding the shape, arrangement, and the like of the concentrated heating regions 406a to 406f, the same shape, arrangement, and the like as in the first embodiment can be used, and a detailed description thereof is omitted here. For example, adjacent concentrated heating regions 406 may partially overlap.
 照射状態変化手段42は、検出手段20が検出した加熱対象部分が集中加熱されるよう、各マイクロ波照射手段421が照射するマイクロ波の出力を変更する。 (4) The irradiation state changing means 42 changes the output of the microwave irradiated by each microwave irradiation means 421 so that the heating target portion detected by the detection means 20 is concentratedly heated.
 制御部422は、上記実施の形態において説明したような各マイクロ波照射手段の位相の制御を行なう代わりに、加熱対象部分が集中加熱されるよう各マイクロ波照射手段421の出力を制御する。 The control unit 422 controls the output of each microwave irradiating unit 421 so that the portion to be heated is concentratedly heated, instead of controlling the phase of each microwave irradiating unit as described in the above embodiment.
 照射管理情報格納部403には、照射管理情報として、集中加熱領域406を特定する情報と、この情報で特定される集中加熱領域406にマイクロ波を照射するマイクロ波照射手段421を特定する情報とを対応付けて有する複数の情報が格納されている。集中加熱領域406を特定する情報は、集中加熱領域406に対応する分割領域2051を特定する情報であってもよい。 The irradiation management information storage unit 403 includes, as irradiation management information, information for specifying the concentrated heating region 406 and information for specifying the microwave irradiation unit 421 that irradiates the microwave to the concentrated heating region 406 specified by the information. Are stored in association with each other. The information specifying the concentrated heating region 406 may be information specifying the divided region 2051 corresponding to the concentrated heating region 406.
 上記以外の加熱装置4の構成等については、上記実施の形態1と同様であるため、ここでは詳細な説明を省略する。 構成 The configuration and the like of the heating device 4 other than those described above are the same as those in the first embodiment, and thus detailed description is omitted here.
 次に、本実施の形態による加熱装置4の動作を、上記実施の形態1の図3を利用して、具体例を挙げて説明する。なお、検出手段20が加熱対象物60の表面について加熱対象部分を検出する処理については、上記実施の形態1と同様であるため、ここでは説明を省略する。
 図3(b)に示すように、移動している加熱対象物60の表面61aにおいて、検出手段20が時刻「t1」に加熱対象部分206を検出したとすると、照射状態変化手段40の制御部422は、照射管理情報格納部403に格納された照射管理情報を用いて、加熱対象部分206が検出された第一の検出領域205aの第一分割領域2051aに対応する第一の集中加熱領域406aに対してマイクロ波を照射する第一のマイクロ波照射手段401aを特定し、上記実施の形態1と同様に時刻「t1+t0」に、この第一のマイクロ波照射手段421aから集中加熱領域406aに対して、マイクロ波照射を開始させる。つまり、マイクロ波の出力をオンにする。また、他の第二のマイクロ波照射手段421bおよび第三のマイクロ波照射手段421cからはマイクロ波の照射を行わない。つまり、マイクロ波の出力をオフとする。これにより、検出された加熱対象部分206がマイクロ波によって集中加熱される。また、加熱対象部分206を含まない第二の集中加熱領域406bおよび第三の集中加熱領域406cは集中加熱されない。このマイクロ波照射は、例えば、加熱対象物60の一の地点が、集中加熱領域406を通過するために要する時間だけ行われる。
Next, the operation of the heating device 4 according to the present embodiment will be described using a specific example with reference to FIG. 3 of the first embodiment. The process in which the detection unit 20 detects the portion to be heated on the surface of the object to be heated 60 is the same as that in the first embodiment, and thus the description is omitted here.
As shown in FIG. 3B, when the detecting unit 20 detects the heating target portion 206 at the time “t1” on the surface 61 a of the moving heating target 60, the control unit of the irradiation state changing unit 40. Reference numeral 422 denotes a first concentrated heating area 406a corresponding to the first divided area 2051a of the first detection area 205a in which the heating target portion 206 is detected, using the irradiation management information stored in the irradiation management information storage unit 403. The first microwave irradiating means 401a for irradiating the microwave with respect to is specified, and at the time “t1 + t0” as in the first embodiment, the first microwave irradiating means 421a transmits the microwave to the concentrated heating area 406a. To start microwave irradiation. That is, the microwave output is turned on. In addition, the other second microwave irradiation means 421b and the third microwave irradiation means 421c do not perform microwave irradiation. That is, the microwave output is turned off. Thereby, the detected heating target portion 206 is concentratedly heated by the microwave. Further, the second concentrated heating region 406b and the third concentrated heating region 406c that do not include the heating target portion 206 are not concentratedly heated. The microwave irradiation is performed, for example, for a time required for one point of the heating target 60 to pass through the concentrated heating region 406.
 また、図3(d)に示すように、移動している加熱対象物60の裏面61bにおいて、検出手段20が時刻「t2」に加熱対象部分207を検出したとすると、照射状態変化手段40の制御部422は、照射管理情報格納部403に格納された照射管理情報を用いて、加熱対象部分207が検出された第二の検出領域205bの第五分割領域2051eに対応する第五の集中加熱領域406eに対してマイクロ波を照射する第二のマイクロ波照射手段421bを特定し、上記実施の形態1と同様に時刻「t2+t0」に、この第二のマイクロ波照射手段421bから第五の集中加熱領域406eに対して、マイクロ波照射を開始させる。つまり、マイクロ波の出力をオンとする。照射されたマイクロ波は、加熱対象物60の表面61aを通過して、裏面61b側の第五の集中加熱領域406eに照射される。また、他の第二および第三のマイクロ波照射手段421bおよび421cからはマイクロ波の照射を行わない。つまり、マイクロ波の出力をオフとする。これにより、検出された加熱対象部分207がマイクロ波によって集中加熱される。また、加熱対象部分207を含まない第四の集中加熱領域406dおよび第六の集中加熱領域406fは集中加熱されない。このマイクロ波照射は、例えば、加熱対象物60の一の地点が、集中加熱領域406を通過するために要する時間だけ行われる。 Further, as shown in FIG. 3D, when the detecting unit 20 detects the heating target portion 207 at the time “t2” on the back surface 61 b of the moving heating target 60, the irradiation state changing unit 40 detects The control unit 422 uses the irradiation management information stored in the irradiation management information storage unit 403 to perform the fifth concentrated heating corresponding to the fifth divided area 2051e of the second detection area 205b where the heating target portion 207 is detected. The second microwave irradiating unit 421b that irradiates the microwave to the region 406e is specified, and at the time “t2 + t0”, the fifth microwave irradiating unit 421b receives the fifth concentrated light similarly to the first embodiment. Microwave irradiation is started on the heating region 406e. That is, the output of the microwave is turned on. The irradiated microwave passes through the front surface 61a of the heating target 60, and is irradiated to the fifth concentrated heating area 406e on the back surface 61b side. Further, the other second and third microwave irradiation means 421b and 421c do not perform microwave irradiation. That is, the microwave output is turned off. Thereby, the detected heating target portion 207 is concentratedly heated by the microwave. The fourth concentrated heating region 406d and the sixth concentrated heating region 406f that do not include the heating target portion 207 are not concentratedly heated. The microwave irradiation is performed, for example, for a time required for one point of the heating target 60 to pass through the concentrated heating region 406.
 以上、本実施の形態によれば、複数のマイクロ波照射手段421の出力を制御することにより、検出手段20により検出した加熱対象領域を、ダイナミックかつリアルタイムに集中加熱することができるとともに、集中加熱によって無駄のない効率的なマイクロ波加熱を行なうことができる。また、複数のマイクロ波の位相等を考慮せず、マイクロ波照射手段421から出射されたマイクロ波が照射される領域を加熱対象領域とするため、加熱対象領域が設定しやすい。 As described above, according to the present embodiment, by controlling the outputs of the plurality of microwave irradiation means 421, the heating target area detected by the detection means 20 can be concentrated and heated in real time in a dynamic manner. Thus, efficient microwave heating without waste can be performed. Further, the region to be irradiated with the microwaves emitted from the microwave irradiating unit 421 is set as the heating target region without considering the phases of the plurality of microwaves, so that the heating target region can be easily set.
 なお、本実施の形態においては、マイクロ波照射手段421が3つである場合について説明したが、マイクロ波照射手段421の数は1または2以上であれば、3つに限定されるものではない。 In this embodiment, the case where the number of the microwave irradiation means 421 is three has been described, but the number of the microwave irradiation means 421 is not limited to three as long as the number is one or two or more. .
 また、隣り合う集中加熱領域406が重なっている場合において、この重なっている部分に検出手段20が検出した加熱対象部分が位置する場合、この重なる集中加熱領域のそれぞれマイクロ波を照射する異なるマイクロ波照射手段421の両方からマイクロ波を出力するようにしてもよい。この場合、各マイクロ波照射手段421が照射するマイクロ波の出力は、重ならない集中加熱領域に加熱対象部分が位置する場合に照射するマイクロ波の出力よりも低い出力(例えば、重ならない場合に照射される出力の半分の出力)としてもよい。かかることは、以下の各変形例についても同様である。 When adjacent concentrated heating regions 406 are overlapped with each other and the heating target portion detected by the detection unit 20 is located in the overlapped portion, different microwaves for irradiating microwaves in the overlapped concentrated heating regions are used. Microwaves may be output from both of the irradiation units 421. In this case, the output of the microwave radiated by each microwave irradiating unit 421 is lower than the output of the microwave radiated when the heating target portion is located in the non-overlapping concentrated heating area (for example, when the microwave is not overlapped, (Half of the output). The same applies to the following modifications.
 また、上記においては、検出手段20が検出した加熱対象部分が集中加熱領域に位置する場合(例えば、集中加熱領域に加熱対象部分が進入した場合)に、この集中加熱領域に対してマイクロ波を照射可能なマイクロ波照射手段だけが、マイクロ波を照射する例について説明したが、この集中加熱領域に対してマイクロ波を照射可能なマイクロ波照射手段以外のマイクロ波照射手段もマイクロ波を出力するようにするとともに、この集中加熱領域に対してマイクロ波を照射可能なマイクロ波照射手段が出力するマイクロの波の出力を、他のマイクロ波照射手段よりも強くするようにしてもよい。かかることは、以下の各変形例についても同様である。 In the above description, when the heating target portion detected by the detection unit 20 is located in the concentrated heating region (for example, when the heating target portion enters the concentrated heating region), the microwave is applied to the concentrated heating region. Although the example in which only the microwave irradiating means that can irradiate irradiates the microwave has been described, the microwave irradiating means other than the microwave irradiating means that can irradiate the microwave to the concentrated heating area also outputs the microwave. In addition, the output of the microwave emitted by the microwave irradiating means capable of irradiating the microwave to the concentrated heating area may be made stronger than the other microwave irradiating means. The same applies to the following modifications.
 (変形例1)
 なお、上記実施の形態においては、3つのマイクロ波照射手段421を加熱対象物60の表面61aの上方に設けた場合について説明したが、加熱対象物60の裏面側の下方等にも、複数のマイクロ波照射手段421を設けるようにしてもよい。
(Modification 1)
In the above embodiment, the case where three microwave irradiation means 421 are provided above the front surface 61a of the heating target 60 has been described. Microwave irradiation means 421 may be provided.
 図19はこのような加熱装置4の変形例1である加熱装置を示すブロック図(図19(a))および斜視図(図19(b))である。この加熱装置4aは、上記の加熱装置4において、容器10の加熱対象物60の裏面側となる部分の、第四~第六の集中加熱領域406d~406fに対してマイクロ波を照射可能な位置、ここでは、一例として、第四~第六の集中加熱領域406d~406fのそれぞれの直下に、第一~第三のマイクロ波照射手段421a~421cと同様の出力の制御が可能な第四~第六のマイクロ波照射手段421d~421fをさらに設けるようにし、検出手段20が、加熱対象物60の裏面61b側で検出した加熱対象部分が、第四~第六の集中加熱領域406d~406fのいずれか1つに入った場合に、この加熱対象部分が入った第四~第六の集中加熱領域406d~406fに対応する第四~第六のマイクロ波照射手段421d~421fがマイクロ波を出力するようマイクロ波照射手段421の出力を制御するようにしたものである。ここでの6つのマイクロ波照射手段421の出力の制御は、照射状態変化手段42の制御部422により行われる。なお、照射状態変化手段42の構成については、出力を制御するマイクロ波照射手段421の数が異なる点を除けば、上記実施の形態3と同様であるため、ここでは詳細な説明を省略する。 FIG. 19 is a block diagram (FIG. 19 (a)) and a perspective view (FIG. 19 (b)) showing a heating device which is a first modification of the heating device 4. The heating device 4a is provided at a position where the microwaves can be applied to the fourth to sixth concentrated heating regions 406d to 406f in the portion of the heating device 4 on the back surface side of the object 60 to be heated. Here, as an example, immediately below each of the fourth to sixth concentrated heating regions 406d to 406f, the fourth to sixth microwave irradiation units 421a to 421c can control the same output as the fourth to fourth microwave irradiation units 421a to 421c. Sixth microwave irradiation means 421d to 421f are further provided, and the heating target portion detected by the detection means 20 on the back surface 61b side of the heating target 60 is the fourth to sixth concentrated heating regions 406d to 406f. When entering any one of them, the fourth to sixth microwave irradiation means 421d to 421f corresponding to the fourth to sixth concentrated heating areas 406d to 406f in which the heating target portion has entered. It is obtained so as to control the output of the microwave irradiation means 421 to output a microwave. The control of the outputs of the six microwave irradiation units 421 is performed by the control unit 422 of the irradiation state changing unit 42. The configuration of the irradiation state changing unit 42 is the same as that of the third embodiment except that the number of the microwave irradiation units 421 for controlling the output is different, and thus the detailed description is omitted here.
 このような加熱装置4aにおいては、図3(b)に示すように、検出手段20が時刻「t1」に加熱対象部分206を検出したとすると、上記実施の形態と同様に時刻「t1+t0」に、第一のマイクロ波照射手段421aから集中加熱領域406aに対して、マイクロ波照射が開始され、他の第二~第六のマイクロ波照射手段421b~421fからはマイクロ波の照射を行わないことで、検出された加熱対象部分206がマイクロ波によって集中加熱される。 In such a heating device 4a, as shown in FIG. 3B, assuming that the detection unit 20 detects the heating target portion 206 at the time “t1”, at the time “t1 + t0” as in the above embodiment. The microwave irradiation is started from the first microwave irradiation means 421a to the concentrated heating area 406a, and the microwave irradiation is not performed from the other second to sixth microwave irradiation means 421b to 421f. Then, the detected heating target portion 206 is concentratedly heated by the microwave.
 また、図3(d)に示すように、移動している加熱対象物60の裏面61bにおいて、検出手段20が時刻「t2」に加熱対象部分207を検出したとすると、照射状態変化手段42の制御部422は、照射管理情報格納部403に格納された照射管理情報を用いて、加熱対象部分207が検出された第二の検出領域205bの第五分割領域2051eに対応する第五の集中加熱領域406eに対してマイクロ波を照射する第五のマイクロ波照射手段421eを特定し、上記実施の形態1と同様に時刻「t2+t0」に、裏面61b側の第五のマイクロ波照射手段421eから第五の集中加熱領域406eに対してマイクロ波照射を開始させる。また、他の第一~第四および第六のマイクロ波照射手段421a~421dおよび421fからはマイクロ波の照射を行わない。これにより、検出された加熱対象部分207がマイクロ波によって集中加熱される。 Further, as shown in FIG. 3D, if the detecting unit 20 detects the heating target portion 207 at the time “t2” on the back surface 61b of the moving heating target 60, the irradiation state changing unit 42 The control unit 422 uses the irradiation management information stored in the irradiation management information storage unit 403 to perform the fifth concentrated heating corresponding to the fifth divided area 2051e of the second detection area 205b where the heating target portion 207 is detected. The fifth microwave irradiating means 421e for irradiating the region 406e with the microwave is specified, and the fifth microwave irradiating means 421e on the back surface 61b side is used to specify the fifth microwave irradiating means 421e at the time "t2 + t0" as in the first embodiment. Microwave irradiation is started for the five concentrated heating regions 406e. The other first to fourth and sixth microwave irradiation means 421a to 421d and 421f do not perform microwave irradiation. Thereby, the detected heating target portion 207 is concentratedly heated by the microwave.
 このような変形例においても、上記と同様の効果を奏するとともに、表面61a側で検出された加熱対象部分に対しては表面側から、また、裏面61b側で検出された加熱対象部分に対しては裏面側からそれぞれマイクロ波を照射することができ、効率良く加熱対象部分を加熱することができる。 In such a modified example, the same effect as described above can be obtained, and the heating target portion detected on the front surface 61a side is applied from the front side, and the heating target portion detected on the back surface 61b side is applied. Can be irradiated with microwaves from the back side, and the portion to be heated can be efficiently heated.
 (変形例2)
 図20は、本実施の形態の変形例2の加熱装置を示す斜視図(図20(a))および加熱対象物60を上方から見た模式図(図20(b))である。
 この変形例2の加熱装置4bは、上記実施の形態1において図7を用いて変形例と同様に、幅方向に配列された1または2以上の集中加熱領域の列が、長手方向に複数列配置されるように、各集中加熱領域にマイクロ波を照射する複数のマイクロ波照射手段421を設けるようにし、検出手段20が検出した加熱対象部分が一つの集中加熱領域406内に位置するときに(例えば、進入したときに)、照射状態変化手段42がこの集中加熱領域406にマイクロ波を照射可能なマイクロ波照射手段421の出力を制御して(例えば、マイクロ波照射を開始するよう制御して)、この集中加熱領域406を集中加熱するようにしたものである。
(Modification 2)
FIG. 20 is a perspective view (FIG. 20 (a)) showing a heating device of Modification 2 of the present embodiment and a schematic diagram (FIG. 20 (b)) of a heating target 60 viewed from above.
The heating device 4b according to Modification 2 includes a plurality of rows of one or more concentrated heating regions arranged in the width direction in the longitudinal direction, similarly to the modification in FIG. A plurality of microwave irradiating means 421 for irradiating each concentrated heating area with a microwave is provided so that the heating target portion detected by the detecting means 20 is located in one concentrated heating area 406 so as to be arranged. The irradiation state changing means 42 controls the output of the microwave irradiation means 421 capable of irradiating the concentrated heating area 406 with microwaves (for example, when entering) (for example, controlling to start microwave irradiation). ), The concentrated heating area 406 is heated in a concentrated manner.
 加熱装置4bは、図18(a)に示した上記実施の形態3の加熱装置4において、9つのマイクロ波照射手段421を備えているようにしたものである。また、照射状態変化手段42がこの9つのマイクロ波照射手段421の出力を制御するようにしたものである。なお、これ以外の加熱装置4bの構成は、加熱装置4や加熱装置4aと同様であるため、ここでは説明を省略する。9つのマイクロ波照射手段421は、加熱対象物60の表面61aに図7と同様の3行3列のマトリクス状に集中加熱領域406が配置されるよう、容器10のそれぞれの集中加熱領域406の上方にそれぞれの出射部が取り付けられている。例えば、各集中加熱領域406の上方に、各マイクロ波照射手段421が取り付けられる開口部105が設けられている。また、加熱対象物60の表面61aの各集中加熱領域406が設けられている位置の裏面61b側にも、それぞれ集中加熱領域(図示せず)が設けられている。 The heating device 4b is the same as the heating device 4 of the third embodiment shown in FIG. 18A, except that the heating device 4b includes nine microwave irradiation means 421. Further, the irradiation state changing means 42 controls the outputs of the nine microwave irradiation means 421. The other configuration of the heating device 4b is the same as that of the heating device 4 or the heating device 4a, and thus the description is omitted here. The nine microwave irradiating units 421 are provided in the respective concentrated heating regions 406 of the container 10 so that the concentrated heating regions 406 are arranged on the surface 61a of the heating target 60 in a matrix of three rows and three columns as in FIG. Each emission part is attached above. For example, an opening 105 to which each microwave irradiation unit 421 is attached is provided above each concentrated heating area 406. A concentrated heating region (not shown) is also provided on the back surface 61b side of the surface 61a of the heating target 60 where each concentrated heating region 406 is provided.
 このような加熱装置4bにおいては、検出手段20が検出した加熱対象部分が移動して一の集中加熱領域406に進入するごとに、照射状態変化手段42が、この集中加熱領域406の上方に配置されたマイクロ波照射手段421からマイクロ波を照射させることで、進入した集中加熱領域406をダイナミックかつリアルタイムに集中加熱することができる。 In such a heating device 4b, each time the heating target portion detected by the detection means 20 moves and enters one concentrated heating area 406, the irradiation state changing means 42 is disposed above the concentrated heating area 406. By irradiating the microwaves from the microwave irradiating means 421, the centralized heating area 406 that has entered can be heated in a dynamic and real-time manner.
 なお、集中加熱領域406および集中加熱領域406上にそれぞれ配置されるマイクロ波照射手段421は、3行3列のマトリクス状に配置されたものに限定されるものではなく、r×s(r、sは2以上の整数)のマトリクス状に配置されたものであってもよい。また、複数の集中加熱領域406およびマイクロ波照射手段421の配置等は、マトリクス状に限定されるものではなく、どのような配置であってもよい。 Note that the concentrated heating region 406 and the microwave irradiating means 421 respectively arranged on the concentrated heating region 406 are not limited to those arranged in a matrix of 3 rows and 3 columns, and are not limited to r × s (r, (s is an integer of 2 or more). Further, the arrangement of the plurality of concentrated heating regions 406 and the microwave irradiation means 421 is not limited to a matrix, but may be any arrangement.
 なお、上記変形例2においても、上記変形例1と同様に、加熱対象物60の裏面側の下方等にも、裏面側の1以上の集中加熱領域406にマイクロ波をそれぞれ照射する1以上のマイクロ波照射手段421を設けるようにし、検出手段20が検出した加熱対象部分が裏面側の集中加熱領域406に位置する場合に、照射状態変化手段42が、裏面側に設けられたマイクロ波照射手段421のうちの、この集中加熱領域406にマイクロ波を照射可能なマイクロ波照射手段421からマイクロ波を照射させるようにしてもよい。 In addition, also in the said modification 2, similarly to the above-mentioned modification 1, one or more irradiating microwaves to the one or more concentrated heating areas 406 on the back side also on the lower side of the back side of the heating object 60, etc. The microwave irradiation means 421 is provided, and when the heating target portion detected by the detection means 20 is located in the concentrated heating area 406 on the back side, the irradiation state changing means 42 is provided by the microwave irradiation means provided on the back side. The microwave may be irradiated from the microwave irradiation means 421 which can irradiate the microwave to the concentrated heating region 406 of the 421.
 また、上記実施の形態3やその変形例において、検出手段20の第一のセンサ201aおよび第二のセンサ201bのいずれか一方を省略して、省略したセンサによって検出していた加熱対象部分の集中加熱を行わないようにしてもよい。 Further, in the third embodiment or its modification, one of the first sensor 201a and the second sensor 201b of the detecting means 20 is omitted, and the concentration of the heating target portion detected by the omitted sensor is omitted. Heating may not be performed.
 また、上記の変形例2において、検出手段20を用いる代わりに、上記実施の形態2において説明したような、加熱対象物60の表面61aおよび裏面61bの、二次元方向の温度分布(すなわち長手方向および幅方向の組み合わせについての温度分布)を取得可能な第一のセンサ211aおよび第二のセンサ211bを有する検出手段21を用いるようにし、照射状態変化手段42が、検出手段21の検出処理部212が表面61aおよび裏面61bで検出した加熱対象部分が位置する集中加熱領域406に対して、この集中加熱領域406にマイクロ波を照射可能なマイクロ波照射手段421からマイクロ波を出力させるようにしてもよい。 In the second modification, instead of using the detection means 20, the two-dimensional temperature distribution (that is, the longitudinal direction) of the front surface 61a and the back surface 61b of the heating target 60 as described in the second embodiment is used. And a temperature distribution for a combination in the width direction) using the detection unit 21 having the first sensor 211a and the second sensor 211b, and the irradiation state changing unit 42 is configured to use the detection processing unit 212 of the detection unit 21. May output microwaves from a microwave irradiating unit 421 capable of irradiating microwaves to the concentrated heating region 406 where the heating target portion detected on the front surface 61a and the back surface 61b is located. Good.
 (実施の形態4)
 本実施の形態は、上記実施の形態2やその変形例1の加熱装置において、位相を制御したマイクロ波を照射して三次元に配置された集中加熱領域に位置する加熱対象部分を集中加熱する代わりに、三次元に設定された1以上の集中加熱領域に対して、それぞれ、異なる二方向からマイクロ波を照射することで、各集中加熱領域内に位置する加熱対象部分を集中加熱するようにしたものである。
(Embodiment 4)
In the present embodiment, in the heating apparatus according to the second embodiment or the modification 1 thereof, the heating target portion located in the concentrated heating region arranged three-dimensionally by irradiating the microwave with the phase controlled is concentratedly heated. Instead, one or more concentrated heating areas set in three dimensions are irradiated with microwaves from two different directions, respectively, so that the heating target portions located in each concentrated heating area are concentratedly heated. It was done.
 図21は、本実施の形態の加熱装置のブロック図(図21(a))、および斜視図(図21(b)である。図において、図16等と同一符号は同一または相当する部分を示している。
 加熱装置5は、検出手段24と、9個の縦マイクロ波照射手段431aと、9個の横マイクロ波照射手段431bと、照射状態変化手段44とを備えている。
Fig. 21 is a block diagram (Fig. 21 (a)) and a perspective view (Fig. 21 (b)) of the heating device according to the present embodiment, in which the same reference numerals as those in Fig. 16 and the like denote the same or corresponding parts. Is shown.
The heating device 5 includes the detection unit 24, nine vertical microwave irradiation units 431a, nine horizontal microwave irradiation units 431b, and the irradiation state changing unit 44.
 9個の縦マイクロ波照射部マイクロ波照射手段431aは、高さ方向にマイクロ波を照射する。9個の横マイクロ波照射部マイクロ波照射手段431bは、幅方向にマイクロ波を照射する。ここでは、9つの縦マイクロ波照射手段431は、容器10の加熱対象物60の上方となる位置に、マイクロ波を出射する部分(例えば、伝送部4012等)が、3行3列のマトリクス状に取り付けられている。また、9個の横マイクロ波照射手段441bは、加熱対象物60の幅方向に位置する容器10の側面の一方に、マイクロ波を出射する部分が3行3列のマトリクス状に取り付けられている。また、ここでは、各縦マイクロ波照射手段431aが照射するマイクロ波と、各横マイクロ波照射手段441bが照射するマイクロ波とが重なる領域(空間)を、集中加熱領域436としている。ここでは、幅方向3列×長手方向3列×高さ方向3列の、計27個の集中加熱領域436が設定されている。縦マイクロ波照射手段431aおよび横マイクロ波照射手段431bのそれぞれは、上記実施の形態3のマイクロ波照射手段421と同様のものであり、ここでは、詳細な説明を省略する。 # 9 vertical microwave irradiation units The microwave irradiation means 431a irradiates microwaves in the height direction. The nine transverse microwave irradiators 431b irradiate microwaves in the width direction. Here, the nine vertical microwave irradiating units 431 are arranged such that a portion for emitting microwaves (for example, the transmission unit 4012 or the like) is arranged in a matrix of three rows and three columns at a position above the heating object 60 of the container 10. Attached to. The nine transverse microwave irradiators 441b have microwave emitting portions attached to one of the side surfaces of the container 10 located in the width direction of the heating target 60 in a matrix of three rows and three columns. . Here, a region (space) where the microwave irradiated by each vertical microwave irradiation unit 431a and the microwave irradiated by each horizontal microwave irradiation unit 441b overlap is defined as a concentrated heating region 436. Here, a total of 27 concentrated heating regions 436 of three rows in the width direction, three rows in the longitudinal direction, and three rows in the height direction are set. Each of the vertical microwave irradiation unit 431a and the horizontal microwave irradiation unit 431b is the same as the microwave irradiation unit 421 of the third embodiment, and the detailed description is omitted here.
 照射状態変化手段44は、制御部432と、照射管理情報格納部433とを備えている。照射状態変化手段44は、加熱対象部分がマイクロ波照射によって集中加熱されるよう、縦マイクロ波照射手段431aと、横マイクロ波照射手段431bとの出力を制御する。 The irradiation state changing unit 44 includes a control unit 432 and an irradiation management information storage unit 433. The irradiation state changing means 44 controls the outputs of the vertical microwave irradiation means 431a and the horizontal microwave irradiation means 431b so that the portion to be heated is heated intensively by the microwave irradiation.
 制御部432は、加熱対象部分がマイクロ波照射によって集中加熱されるよう、縦マイクロ波照射手段431aと、横マイクロ波照射手段431bとの出力を制御する。例えば、検出手段21が検出した加熱対象部分が含まれる集中加熱領域436を検出し、この集中加熱領域436にマイクロ波を照射する縦マイクロ波照射手段431aと横マイクロ波照射手段431bとがマイクロ波を出力するよう制御する。例えば、制御部432は、一の集中加熱領域436にマイクロ波を照射する縦マイクロ波照射手段431aおよび横マイクロ波照射手段431bを、照射管理情報格納部433に格納されている照射管理情報を用いて検出する。制御部432のこれ以外の構成については、制御部412等と同様であるため、ここでは詳細な説明を省略する。 The control unit 432 controls the outputs of the vertical microwave irradiation unit 431a and the horizontal microwave irradiation unit 431b so that the heating target portion is heated intensively by the microwave irradiation. For example, the vertical heating unit 431a and the horizontal microwave irradiation unit 431b that detect the concentrated heating region 436 including the heating target portion detected by the detection unit 21 and irradiate the concentrated heating region 436 with the microwave are connected to the microwave. Is output. For example, the control unit 432 controls the vertical microwave irradiation unit 431a and the horizontal microwave irradiation unit 431b that irradiate the microwave to one concentrated heating area 436 using the irradiation management information stored in the irradiation management information storage unit 433. To detect. Other configurations of the control unit 432 are the same as those of the control unit 412 and the like, and thus detailed description is omitted here.
 照射管理情報格納部433には、1または2以上の照射管理情報が格納される。この照射管理情報は、例えば、上記実施の形態2において説明したものと同様の集中加熱領域436を特定する情報と、この集中加熱領域436にマイクロ波を照射する縦マイクロ波照射手段431aおよび横マイクロ波照射手段431bをそれぞれ特定する情報である。 The irradiation management information storage unit 433 stores one or more irradiation management information. The irradiation management information includes, for example, information for specifying the concentrated heating region 436 similar to that described in the second embodiment, the vertical microwave irradiation unit 431a that irradiates the concentrated heating region 436 with microwaves, and the horizontal microwave irradiation unit 431a. This is information for specifying each of the wave irradiation units 431b.
 次に、本実施の形態の加熱装置5の動作の具体例について説明する。
 例えば、検出処理部212aが、超音波センサ211cが加熱対象物60の長手方向の一の位置から取得した温度分布から加熱対象部分1706を検出したとすると、制御部432は、この温度分布を取得した長手方向の位置と、この温度分布において検出処理部212aが取得した加熱対象部分の幅方向の位置と、高さ方向の位置を取得し、取得した長手方向の位置と、幅方向の位置と、高さ方向の位置とで表される加熱対象部分1706の位置を含む集中加熱領域436を、照射管理情報等を用いて特定し、この加熱領域に対してマイクロ波を照射する縦マイクロ波照射手段431aと、横マイクロ波照射手段431bとを特定する。例えば、ここで特定した集中加熱領域436が、図21(b)に示すよう、集中加熱領域436aであるとすると、制御部432は、照射管理情報を用いて、この集中加熱領域436aにマイクロ波を照射する縦マイクロ波照射手段431aである縦マイクロ波照射手段431a1と、この集中加熱領域436aにマイクロ波を照射する横マイクロ波照射手段431bである横マイクロ波照射手段431b1と、を特定する情報を取得する。そして、制御部432は、縦マイクロ波照射手段431a1と、横マイクロ波照射手段431b1とにマイクロ波を照射させる。図21(b)の矢印は、縦マイクロ波照射手段431a1と、横マイクロ波照射手段431b1とからそれぞれ照射されるマイクロ波を模式的に表すものである。縦マイクロ波照射手段431a1と、横マイクロ波照射手段431b1とから照射されるマイクロ波は、集中加熱領域436aで交わるため、この部分のマイクロ波強度が最も強くなり、集中加熱される。一方、集中加熱領域436a以外の縦マイクロ波照射手段431a1と、横マイクロ波照射手段431b1とから照射されるマイクロ波が通過する集中加熱領域においては、縦マイクロ波照射手段431a1および横マイクロ波照射手段431b1の一方から照射されるマイクロ波しか照射されないため、マイクロ波の強度が弱く、集中加熱領域436aよりも集中加熱されにくい。これにより、加熱領域436aが最も強く集中加熱することができる。
Next, a specific example of the operation of the heating device 5 of the present embodiment will be described.
For example, when the detection processing unit 212a detects the heating target portion 1706 from the temperature distribution acquired by the ultrasonic sensor 211c from one position in the longitudinal direction of the heating target 60, the control unit 432 acquires this temperature distribution. The obtained position in the longitudinal direction, the position in the width direction and the position in the height direction of the heating target portion acquired by the detection processing unit 212a in this temperature distribution, and the acquired position in the longitudinal direction and the position in the width direction are acquired. , A concentrated heating area 436 including the position of the heating target portion 1706 represented by the position in the height direction is specified using irradiation management information and the like, and the microwave irradiation is performed on the heating area. The means 431a and the transverse microwave irradiation means 431b are specified. For example, assuming that the concentrated heating region 436 specified here is the concentrated heating region 436a as shown in FIG. 21B, the control unit 432 uses the irradiation management information to transmit the microwave to the concentrated heating region 436a. For identifying the vertical microwave irradiating means 431a1, which is the vertical microwave irradiating means 431a for irradiating the microwave, and the horizontal microwave irradiating means 431b1, which is the horizontal microwave irradiating means 431b for irradiating the concentrated heating area 436a with the microwave. To get. And the control part 432 irradiates a microwave to the vertical microwave irradiation means 431a1 and the horizontal microwave irradiation means 431b1. The arrows in FIG. 21B schematically represent the microwaves irradiated from the vertical microwave irradiation means 431a1 and the horizontal microwave irradiation means 431b1, respectively. Since the microwaves emitted from the vertical microwave irradiation means 431a1 and the horizontal microwave irradiation means 431b1 intersect in the concentrated heating area 436a, the microwave intensity in this portion becomes the strongest and the parts are concentratedly heated. On the other hand, in the concentrated heating area through which the microwaves irradiated from the vertical microwave irradiation means 431a1 other than the concentrated heating area 436a and the horizontal microwave irradiation means 431b1 pass, the vertical microwave irradiation means 431a1 and the horizontal microwave irradiation means are used. Since only the microwave radiated from one of the 431b1 is radiated, the intensity of the microwave is weak and the intensive heating is less likely to be performed than the intensive heating region 436a. Thus, concentrated heating of the heating region 436a can be performed most strongly.
 以上、本実施の形態によれば、検出手段24が検出した加熱対象部分に、異なる二方向から照射されるマイクロ波が照射されるようにしたことにより、加熱対象部分をダイナミックかつリアルタイムに集中加熱することができる。例えば、三次元方向で検出された加熱対象部分を適切に集中加熱することができる。また、加熱対象部分以外の部分におけるマイクロ波照射による加熱等の影響を抑えることができる。 As described above, according to the present embodiment, the heating target portion detected by the detection unit 24 is irradiated with the microwaves radiated from two different directions. can do. For example, the heating target portion detected in the three-dimensional direction can be appropriately concentratedly heated. In addition, it is possible to suppress the influence of heating or the like due to microwave irradiation on a portion other than the portion to be heated.
 なお、複数の縦マイクロ波照射手段431aの数および配置や、複数の横マイクロ波照射手段431bの数および配置は一例であり、上記以外の数および配置であってもよい。例えば、縦マイクロ波照射手段431aは、3行3列のマトリクス状に配置されたものに限定されるものではなく、r1×s1(r1、s1は2以上の整数)のマトリクス状に配置されたものであってもよい。同様に、例えば、横マイクロ波照射手段431bは、3行3列のマトリクス状に配置されたものに限定されるものではなく、r2×s2(r2、s2は2以上の整数)のマトリクス状に配置されたものであってもよい。 The number and arrangement of the plurality of vertical microwave irradiation units 431a and the number and arrangement of the plurality of horizontal microwave irradiation units 431b are merely examples, and may be other numbers and arrangements. For example, the vertical microwave irradiation means 431a is not limited to those arranged in a matrix of 3 rows and 3 columns, but is arranged in a matrix of r1 × s1 (r1, s1 is an integer of 2 or more). It may be something. Similarly, for example, the horizontal microwave irradiating means 431b is not limited to those arranged in a matrix of three rows and three columns, but may be arranged in a matrix of r2 × s2 (r2, s2 is an integer of 2 or more). They may be arranged.
 なお、本実施の形態においては、複数の縦マイクロ波照射手段431aおおび横マイクロ波照射手段431bを用いて、1または2以上の集中加熱領域に対して、それぞれ高さ方向と幅方向との二方向からマイクロ波を照射するようにしたが、これ以外の異なる二方向からマイクロ波を照射するようにしても良い。また、マイクロ波を照射する方向は、幅方向、高さ方向、および長手方向のうちの二つの方向に限定されるものではない。例えば、加熱対象物60に対して右斜め上と、左斜め上とから、マイクロ波を照射して、マイクロ波が重なる位置を集中加熱するようにしてもよい。例えば、本実施の形態の加熱装置は、第一の方向と、第二の方向とからマイクロ波を照射する加熱装置と考えてもよい。例えば、上記実施の形態の高さ方向および幅方向を第一の方向および第二の方向と考えてもよい。 Note that, in the present embodiment, a plurality of vertical microwave irradiation units 431a and a plurality of horizontal microwave irradiation units 431b are used to control one or two or more concentrated heating regions in the height direction and the width direction, respectively. Although the microwaves are irradiated from two directions, the microwaves may be irradiated from two different directions. Further, the direction in which the microwave is irradiated is not limited to two directions of the width direction, the height direction, and the longitudinal direction. For example, the heating target 60 may be irradiated with microwaves from diagonally upper right and diagonally upper left, so that the position where the microwaves overlap is concentratedly heated. For example, the heating device of the present embodiment may be considered as a heating device that emits microwaves from a first direction and a second direction. For example, the height direction and the width direction in the above embodiment may be considered as a first direction and a second direction.
 また、異なる三以上の方向から1または2以上の集中加熱領域に対して、マイクロ波を照射するようにしてもよい。上記のような、高さ方向と幅方向とからのマイクロ波照射に加えて、長手方向からもマイクロ波を照射できるようにしてもよい。なお、マイクロ波を照射する異なる方向は、直交する方向であることが好ましい。また、異なる方向は、同一直線状にない二方向であることが好ましい。 マ イ ク ロ Alternatively, microwaves may be applied to one or more concentrated heating regions from three or more different directions. In addition to the microwave irradiation in the height direction and the width direction as described above, the microwave irradiation may be performed in the longitudinal direction. Note that the different directions in which microwaves are irradiated are preferably orthogonal directions. Further, it is preferable that the different directions are two directions that are not co-linear.
 なお、二以上の方向から加熱対象部分に対してマイクロ波を照射するようにした加熱装置は、例えば、第一から第k(kは二以上の整数)の異なる方向にマイクロ波を照射するマイクロ波照射手段を、第一から第kの各方向毎に複数有しており、この各方向に対応するマイクロ波照射手段のうちの、検出手段が検出した加熱対象部分に対してマイクロ波を照射可能なマイクロ波照射手段から、それぞれマイクロ波を照射するようにした加熱装置である。 In addition, the heating device configured to irradiate the microwave to the heating target portion from two or more directions includes, for example, a microwave that irradiates the microwave from the first to the k-th (k is an integer of two or more) different directions. A plurality of wave irradiating means are provided for each of the first to k-th directions, and microwave irradiation is performed on the heating target portion detected by the detecting means among the microwave irradiating means corresponding to each direction. The heating device is configured to irradiate microwaves from possible microwave irradiating means.
 なお、本実施の形態においても、上記実施の形態2と同様に、加熱対象物60は、容器10内を移動しないようにしてもよく、移動するようにしてもよい。また、加熱対象部分を検出するためのセンサは、上記のような超音波センサ211cに限定されるものではなく、上記実施の形態2において説明したものと同様のセンサ等が利用可能である。 In the present embodiment, similarly to the second embodiment, the object to be heated 60 may not be moved in the container 10 or may be moved. Further, the sensor for detecting the portion to be heated is not limited to the ultrasonic sensor 211c as described above, and the same sensor as that described in the second embodiment can be used.
 (実施の形態5)
 本実施の形態の加熱装置は、上記実施の形態3の変形例2において、加熱対象部分が位置する集中加熱領域が集中加熱されるようマイクロ波照射手段が出力するマイクロ波の出力を変更する照射状態変化手段を用いる代わりに、マイクロ波照射手段のマイクロ波を出射する出射部の配置を、検出手段が検出した加熱対象部分が集中加熱されるよう変更する配置変更部と、を有する照射状態変化手段を備えるようにしたものである。
(Embodiment 5)
The heating device according to the present embodiment is the irradiation device according to the second modification of the third embodiment, in which the output of the microwave output from the microwave irradiation unit is changed so that the concentrated heating region where the portion to be heated is located is heated intensively. Instead of using the state changing unit, the irradiation state change unit having an arrangement changing unit that changes the arrangement of the emission unit that emits the microwave of the microwave irradiation unit so that the heating target portion detected by the detection unit is concentratedly heated. Means.
 図22は、本実施の形態の加熱装置のブロック図(図22(a))、本実施の形態の加熱装置の上方から見た一部切欠平面図(図22(b))、および図22(b)の幅方向に垂直な断面図(図22(c))である。図において、図8等と同一符号は同一または相当する部分を示している。 FIG. 22 is a block diagram of the heating device of the present embodiment (FIG. 22A), a partially cutaway plan view of the heating device of the present embodiment as viewed from above (FIG. 22B), and FIG. It is sectional drawing (FIG.22 (c)) perpendicular to the width direction of (b). In the figure, the same reference numerals as those in FIG. 8 indicate the same or corresponding parts.
 本実施の形態5の加熱装置6は、検出手段21と、マイクロ波照射手段441と、照射状態変化手段44とを備えている。マイクロ波照射手段441は、マイクロ波発振器4211と伝送部4412と、出射部4413とを備えている。照射状態変化手段44は、制御部442と、配置変更部443とを備えている。 The heating device 6 according to the fifth embodiment includes the detection unit 21, the microwave irradiation unit 441, and the irradiation state changing unit 44. The microwave irradiation unit 441 includes a microwave oscillator 4211, a transmission unit 4412, and an emission unit 4413. The irradiation state changing unit 44 includes a control unit 442 and an arrangement changing unit 443.
 伝送部4412は、マイクロ波発振器4211と出射部4413とに接続されており、マイクロ波発振器4211で発生したマイクロ波を出射部4413まで伝送する。ここでは、出射部4413が配置変更部443によって容器10内を移動するため、出射部4413の配置の変更に追従して形状や長さ等を変更可能な可変伝送部が用いられる。可変伝送部は、例えば、同軸ケーブルまたは可変導波管である。可変導波管は、例えば、フレキシブル導波管やスライド式導波管である。フレキシブル導波管とは、可撓性を有しており、フレキシブルに曲げたり伸したりすることができる導波管である。スライド式導波管(図示せず)は、伸縮性を有する可変導波管である。スライド式導波管のスライド機構は、例えば、ズームレンズや望遠鏡等と同様の、管や筒の伸縮機構であってもよい。また、可変伝送部は、同軸ケーブルと可変導波管または可変ではない導波管とを組み合わせたものであってもよい。なお、ここでは、一例として伝送部4412として、同軸ケーブルを用いた場合について説明する。なお、これ以外の点については、上記実施の形態1の伝送部4012等と同様であるため、ここでは詳細な説明を省略する。 The transmission unit 4412 is connected to the microwave oscillator 4211 and the emission unit 4413, and transmits the microwave generated by the microwave oscillator 4211 to the emission unit 4413. Here, since the emission unit 4413 is moved in the container 10 by the arrangement changing unit 443, a variable transmission unit that can change the shape, the length, and the like according to the change in the arrangement of the emission unit 4413 is used. The variable transmission unit is, for example, a coaxial cable or a variable waveguide. The variable waveguide is, for example, a flexible waveguide or a slide type waveguide. A flexible waveguide is a waveguide that has flexibility and can be flexibly bent or stretched. A sliding waveguide (not shown) is a variable waveguide having elasticity. The slide mechanism of the slide type waveguide may be, for example, a tube or cylinder extension mechanism similar to a zoom lens or a telescope. The variable transmission section may be a combination of a coaxial cable and a variable waveguide or a non-variable waveguide. Here, a case where a coaxial cable is used as the transmission unit 4412 will be described as an example. Note that the other points are the same as those of the transmission section 4012 and the like in the first embodiment, and thus detailed description is omitted here.
 出射部4413は、伝送部4412により伝送されるマイクロ波出射する。出射部4413は、ここでは、マイクロ波用のアンテナである場合を例に挙げて説明する。このアンテナとしては、指向性の高いものを用いることが好ましい。また、集中加熱を行うためには、マイクロ波が照射される領域は狭い方がより好ましい。出射部4413は、配置変更部443に取り付けられており、配置変更部443が動作することによって、配置が変更可能となっている。出射部4413の配置の変更とは、例えば、出射部4413の容器10内での位置の変更や、出射部4413の向きの変更である。出射部4413の向きの変更は、出射部4413のマイクロ波を照射する方向の変更である。出射部4413は、加熱対象物60の一部に対してマイクロ波照射が可能となるように、配置変更部443に取り付けられている。ここでは、出射部4413は、下方に向かってマイクロ波が照射可能となるよう、加熱対象物60の上方に配置されている。なお、出射部4413は、マイクロ波を出射するものであれば、アンテナに限定されるものではない。例えば、出射部4413は、同軸ケーブルや、可変導波管等の伝送部4412の加熱対象物60側の端部や開口部((図示せず))であってもよい。 The emission unit 4413 emits the microwave transmitted by the transmission unit 4412. Here, the case where the emission unit 4413 is a microwave antenna will be described as an example. It is preferable to use an antenna having high directivity as the antenna. Further, in order to perform the concentrated heating, it is more preferable that the region irradiated with the microwave is narrow. The emission unit 4413 is attached to the arrangement change unit 443, and the arrangement can be changed by the operation of the arrangement change unit 443. The change in the arrangement of the emission unit 4413 is, for example, a change in the position of the emission unit 4413 in the container 10 or a change in the direction of the emission unit 4413. The change in the direction of the emission unit 4413 is a change in the direction in which the emission unit 4413 irradiates the microwave. The emission unit 4413 is attached to the arrangement change unit 443 so that microwave irradiation can be performed on a part of the heating target 60. Here, the emission unit 4413 is disposed above the heating target 60 so that the microwave can be irradiated downward. Note that the emitting unit 4413 is not limited to an antenna as long as it emits microwaves. For example, the emission unit 4413 may be a coaxial cable or an end (not shown) of the transmission unit 4412 such as a variable waveguide on the heating target 60 side.
 照射状態変化手段44は、検出手段21が検出した加熱対象部分が集中加熱されるよう1以上のマイクロ波照射手段(ここでは一つのマイクロ波照射手段441)の出射部の配置を変更し、1以上のマイクロ波照射手段からマイクロ波を照射して加熱対象部分を集中加熱する。 The irradiation state changing means 44 changes the arrangement of the emission portions of one or more microwave irradiation means (here, one microwave irradiation means 441) so that the heating target portion detected by the detection means 21 is concentratedly heated. Microwaves are radiated from the above-described microwave irradiating means to intensively heat the heating target portion.
 配置変更部443は、マイクロ波照射手段441の出射部4413の配置を変更するものである。配置変更部443は、検出手段21が検出した加熱対象部分が集中加熱されるよう出射部4413の配置を変更する。配置変更部443には、出射部4413が取り付けられ、配置変更部443は、この出射部4413の配置を変更する。 The arrangement change section 443 changes the arrangement of the emission section 4413 of the microwave irradiation means 441. The arrangement change unit 443 changes the arrangement of the emission unit 4413 so that the heating target portion detected by the detection unit 21 is concentratedly heated. The emission unit 4413 is attached to the arrangement change unit 443, and the arrangement change unit 443 changes the arrangement of the emission unit 4413.
 配置変更部443は、二次元方向に先端部4431の位置を変更可能な多関節ロボットアームである。先端部4431は終端部とも呼ばれる。先端部4431にマイクロ波照射手段441の出射部4413が取り付けられる。二次元方向の位置の変更は、平面方向の位置の変更である。平面方向での位置の変更は、例えば水平方向での位置の変更である。平面方向での位置の変更は、平面に沿った位置の変更と考えてもよい。ここでは、配置変更部443として、加熱対象部60の長手方向および幅方向において出射部4413の位置を変更可能な多関節ロボットアームを用いている。配置変更部443は、ここでは、加熱対象物60の上方に設置されており、加熱対象物60の上方において出射部4413の位置を変更する。また、ここでは、出射部4413は、マイクロ波の出射方向が平面方向に対して垂直下向き(例えば、鉛直下向き)に固定されており、下向きにマイクロ波を照射するものとする。 The arrangement change unit 443 is an articulated robot arm that can change the position of the tip 4431 in the two-dimensional direction. The distal end 4431 is also called a terminal end. The emission part 4413 of the microwave irradiation means 441 is attached to the tip part 4431. Changing the position in the two-dimensional direction is changing the position in the planar direction. Changing the position in the plane direction is, for example, changing the position in the horizontal direction. Changing the position in the plane direction may be considered as changing the position along the plane. Here, as the arrangement change unit 443, an articulated robot arm that can change the position of the emission unit 4413 in the longitudinal direction and the width direction of the heating target unit 60 is used. Here, the arrangement changing unit 443 is installed above the heating target 60, and changes the position of the emission unit 4413 above the heating target 60. In addition, here, the emission unit 4413 has a microwave emission direction fixed vertically downward (for example, vertically downward) with respect to the plane direction, and irradiates the microwave downward.
 配置変更部443は、検出手段21が検出した加熱対象部分が集中加熱されるよう出射部4413の配置を変更する。ここでは、配置変更部443は、検出手段21が検出した加熱対象部分の上方に出射部4413を移動させる。配置変更部443は、検出手段21が検出した加熱対象部分の中心が、出射部4413がマイクロ波を照射する照射方向の軸心上に位置するように、出射部4413を移動させることが好ましい。例えば、ここでは、出射部4413からのマイクロ波の出射方向が平面方向に対して垂直下向きであるため、配置変更部443は、検出手段21が検出した加熱対象部分の中心の平面方向の位置と、出射部4413の中心の平面方向の位置とが一致するように、出射部4413を移動させることが好ましい。 The arrangement change unit 443 changes the arrangement of the emission unit 4413 so that the heating target portion detected by the detection unit 21 is concentratedly heated. Here, the arrangement changing unit 443 moves the emission unit 4413 above the heating target portion detected by the detection unit 21. It is preferable that the arrangement changing unit 443 moves the emission unit 4413 so that the center of the heating target portion detected by the detection unit 21 is positioned on the axis in the irradiation direction in which the emission unit 4413 irradiates the microwave. For example, here, since the emission direction of the microwave from the emission unit 4413 is vertically downward with respect to the plane direction, the arrangement change unit 443 determines the position of the center of the heating target portion detected by the detection unit 21 in the plane direction. It is preferable to move the light emitting unit 4413 so that the position of the center of the light emitting unit 4413 in the plane direction matches.
 なお、多関節ロボットアームとしては、取り付けられた出射部4413を二次元方向に移動可能なものであれば、どのような多関節ロボットアームを用いてもよい。多関節ロボットアームについては公知技術であるため、詳細な説明は省略する。 多 As the articulated robot arm, any articulated robot arm may be used as long as it can move the attached emission unit 4413 in two-dimensional directions. Since the articulated robot arm is a known technique, a detailed description is omitted.
 また、配置変更部443として、多関節ロボットアームを用いた場合について説明するが、二次元方向に出射部4413を移動可能なものであれば、配置変更部443として、多関節ロボットアーム以外のものを用いてもよい。例えば、多関節ロボットアーム以外のロボットアームを用いてもよく、二次元方向にステージやテーブル等を移動可能な移動機構等を配置変更部として用い、この移動機構のテーブル等に出射部4413を取り付けるようにしてもよい。このようなテーブルの移動機構については、例えば、特開2002-82190号公報等の移動機構を参照されたい。 Also, a case where an articulated robot arm is used as the arrangement changing unit 443 will be described. However, as long as the emitting unit 4413 can be moved in the two-dimensional direction, the arrangement changing unit 443 other than the articulated robot arm is used. May be used. For example, a robot arm other than the articulated robot arm may be used. A moving mechanism or the like capable of moving a stage or a table in a two-dimensional direction is used as an arrangement changing unit, and the emission unit 4413 is attached to a table or the like of the moving mechanism. You may do so. For such a table moving mechanism, see, for example, a moving mechanism disclosed in JP-A-2002-82190.
 制御部442は、配置変更部443の制御と、マイクロ波照射手段441からのマイクロ波の照射の制御とを行う。制御部442は、例えば、出射部4413の配置が、検出手段21が検出した加熱対象部分が集中加熱されるような配置となるように、配置変更部443を動作させる。例えば、制御部442は、例えば、出射部4413が、検出手段21が検出した加熱対象部分の上方に移動するように、配置変更部443を動作させる。なお、上記以外の制御部442が行う制御については、上記実施の形態1の制御部402等と同様であり、ここでは詳細な説明を省略する。なお、出射部4413を、加熱対象部分が位置する領域を集中加熱可能となる位置に移動させるための設定等の情報等を図示しない照射管理情報格納部等に予め格納しておくようにし、制御部442は、この情報を用いて、検出された加熱対象部分を集中加熱可能な位置に出射部4413を移動させるよう配置変更部443を制御してもよい。 The control unit 442 controls the arrangement changing unit 443 and controls the microwave irradiation from the microwave irradiation unit 441. The control unit 442 operates the arrangement changing unit 443 such that, for example, the arrangement of the emission unit 4413 is such that the heating target portion detected by the detection unit 21 is concentratedly heated. For example, the control unit 442 operates the arrangement changing unit 443 such that, for example, the emission unit 4413 moves above the heating target portion detected by the detection unit 21. The control performed by the control unit 442 other than the above is the same as that of the control unit 402 and the like in the first embodiment, and a detailed description thereof will be omitted. In addition, information such as setting for moving the emission unit 4413 to a position where concentrated heating can be performed on the region where the heating target portion is located is stored in advance in an irradiation management information storage unit (not shown) or the like. The unit 442 may use this information to control the arrangement changing unit 443 to move the emission unit 4413 to a position where the detected heating target portion can be concentratedly heated.
 次に、本実施の形態の加熱装置6の動作の一例について具体的に説明する。
 図23は、本実施の形態の加熱装置の動作を説明するための平面模式図(図23(a)~図23(d))である。この図は、加熱装置6から容器10やマイクロ波発振器4211等を省略したものを示す図である。
Next, an example of the operation of the heating device 6 of the present embodiment will be specifically described.
FIG. 23 is a schematic plan view (FIGS. 23 (a) to 23 (d)) for explaining the operation of the heating device of the present embodiment. This figure is a diagram showing the heating device 6 from which the container 10, the microwave oscillator 4211 and the like are omitted.
 検出手段21が、加熱対象物60の表面61aにおいて、図23(a)に示すように、加熱対象部分226を検出したとする。制御部442は、検出手段21から、加熱対象部分226の平面方向における座標(例えば、長手方向の座標と、幅方向の座標とで表される座標)を受取り、先端部4431に取り付けられた出射部4413が、加熱対象部分226の上方に位置するよう、配置変更部443を動作させる。例えば、出射部4413の中心の平面方向における座標が、加熱対象部分226の座標と一致するように、配置変更部443を動作させる。これに応じて、配置変更部443は、図23(b)に示すように、先端部4431に取り付けられた出射部4413を、加熱対象部分226の上方に移動させる。そして、制御部442の制御に応じて、マイクロ波照射手段441がマイクロ波照射を行い、出射部4413から、この出射部4413の下方に位置する加熱対象部分226にマイクロ波が照射され、加熱対象部分226が集中加熱される。 と す る It is assumed that the detection unit 21 has detected the heating target portion 226 on the surface 61a of the heating target 60 as shown in FIG. The control unit 442 receives the coordinates (for example, the coordinates represented by the coordinates in the longitudinal direction and the coordinates in the width direction) of the heating target portion 226 in the plane direction from the detection unit 21, and outputs the light attached to the distal end portion 4431. The arrangement changing unit 443 is operated such that the unit 4413 is located above the heating target portion 226. For example, the arrangement changing unit 443 is operated such that the coordinates of the center of the emission unit 4413 in the plane direction match the coordinates of the heating target portion 226. In response to this, as shown in FIG. 23B, the arrangement changing unit 443 moves the emission unit 4413 attached to the distal end 4431 above the heating target portion 226. Then, under the control of the control unit 442, the microwave irradiating means 441 irradiates the microwave, and the microwave is irradiated from the emission unit 4413 to the heating target portion 226 located below the emission unit 4413, and Portion 226 is heated intensively.
 検出手段21が加熱対象物60の裏面61bにおいて、図23(c)のように加熱対象部分227を検出した場合においても、上記と同様に、配置変更部443は、図23(d)に示すように、先端部4431に取り付けられた出射部4413を、加熱対象部分227の上方に移動させる。そして、マイクロ波照射手段441がマイクロ波照射を行い、出射部4413から、この出射部4413の下方に位置する加熱対象部分227にマイクロ波が照射され、表面61aを通過したマイクロ波によって、裏面61b側の加熱対象部分227が集中加熱される。 Even when the detecting unit 21 detects the heating target portion 227 on the back surface 61b of the heating target 60 as shown in FIG. 23C, the arrangement changing unit 443 also performs the operation shown in FIG. As described above, the emission unit 4413 attached to the tip 4431 is moved above the heating target portion 227. Then, the microwave irradiating means 441 irradiates the microwave, and the microwave is irradiated from the emitting portion 4413 to the heating target portion 227 located below the emitting portion 4413, and the microwave passed through the front surface 61 a causes the back surface 61 b to be heated. The heating target portion 227 on the side is concentratedly heated.
 以上、本実施の形態によれば、検出手段21により加熱対象部分を検出し、マイクロ波照射手段441の出射部4413を、検出手段21が検出した加熱対象部分にマイクロ波を照射可能な位置に移動させて、マイクロ波を照射することにより、加熱対象部分をダイナミックかつリアルタイムに集中加熱することができる。また、一つのマイクロ波照射手段441で異なる位置を集中加熱できるため、マイクロ波照射手段の数を削減することができる。 As described above, according to the present embodiment, the portion to be heated is detected by the detecting unit 21, and the emission unit 4413 of the microwave irradiating unit 441 is positioned at a position where the microwave can be irradiated to the portion to be heated detected by the detecting unit 21. By moving it and irradiating it with microwaves, the heating target portion can be heated in a concentrated manner dynamically and in real time. Further, since different positions can be concentratedly heated by one microwave irradiation unit 441, the number of microwave irradiation units can be reduced.
 なお、上記実施の形態においては、配置変更部443が出射部4413を平面方向に移動させる場合について説明したが、配置変更部443による移動は、平面方向の移動に限定されるものではない。例えば、移動は、平面方向(例えば、水平方向)に垂直な面方向の移動であってもよい。 In the above embodiment, the case where the arrangement changing unit 443 moves the light emitting unit 4413 in the plane direction has been described, but the movement by the arrangement changing unit 443 is not limited to the movement in the plane direction. For example, the movement may be a movement in a plane direction perpendicular to a plane direction (for example, a horizontal direction).
 また、上記においては、配置変更部443として、二次元方向において出射部の位置を変更するものを用いていたが、配置変更部443による出射部4413の移動は、二次元方向の移動に限定されるものではなく、一次元方向の移動であってもよく、三次元方向の移動であってもよい。一次元方向の移動は、例えば、加熱対象物60の幅方向の移動である。例えば、上記実施の形態3のように、幅方向において移動中に検出された加熱対象物60の加熱対象部分を、容器10内の長手方向の予め決められた位置において、幅方向の異なる位置に検出された加熱対象部分を加熱する場合、この長手方向の予め決められた位置において出射部を幅方向に移動させる配置変更部を用いるようにして、検出された加熱対象部分上に出射部を移動させてマイクロ波を照射するようにしてもよい。なお、一次元方向に移動させるための配置変更部としては、多関節ロボットアームや、一次元方向に移動する移動ステージ機構等が利用可能である。また、三次元方向に移動させるための配置変更部としては、多関節ロボットアームや、三次元方向に移動する移動ステージ機構等が利用可能である。 In the above description, the arrangement changing unit 443 that changes the position of the emitting unit in the two-dimensional direction is used. However, the movement of the emitting unit 4413 by the arrangement changing unit 443 is limited to the movement in the two-dimensional direction. However, the movement may be one-dimensional movement or three-dimensional movement. The one-dimensional movement is, for example, the movement of the heating target 60 in the width direction. For example, as in the third embodiment, the heating target portion of the heating target 60 detected during movement in the width direction is placed at a predetermined position in the longitudinal direction in the container 10 at a different position in the width direction. When heating the detected portion to be heated, the emitting portion is moved onto the detected portion to be heated by using an arrangement changing portion that moves the emitting portion in the width direction at a predetermined position in the longitudinal direction. Then, microwaves may be irradiated. Note that an articulated robot arm, a moving stage mechanism that moves in a one-dimensional direction, or the like can be used as the arrangement changing unit for moving the object in the one-dimensional direction. Further, as an arrangement change unit for moving in the three-dimensional direction, an articulated robot arm, a moving stage mechanism that moves in the three-dimensional direction, or the like can be used.
 また、上記においては、出射部4413の出射方向が固定されている場合について説明したが、配置変更部443は、出射部4413の出射方向を変更可能なものであってもよい。例えば、配置変更部443は、出射部4413の位置と出射方向とを変更可能なものであってもよく、出射方向のみを変更可能なものであってもよい。出射方向の変更は、例えば、出射方向の回転および傾きの少なくとも一方の変更である。配置変更部443は、例えば、加熱対象部分にマイクロ波が照射されるよう、出射部4413の出射方向を変更するものであってもよい。このような出射方向を変更可能な機構等としては、スポットライトや監視カメラ等の方向を変更する機構等の公知技術が利用可能である。 In the above description, the case where the emission direction of the emission unit 4413 is fixed has been described, but the arrangement change unit 443 may be capable of changing the emission direction of the emission unit 4413. For example, the arrangement change unit 443 may be capable of changing the position of the emission unit 4413 and the emission direction, or may be one capable of changing only the emission direction. The change of the emission direction is, for example, at least one of rotation and inclination of the emission direction. For example, the arrangement changing unit 443 may change the emission direction of the emission unit 4413 so that the microwave is applied to the portion to be heated. As such a mechanism that can change the emission direction, a known technique such as a mechanism that changes the direction of a spotlight, a monitoring camera, or the like can be used.
 また、上記実施の形態においては、出射部4413の代わりに、マイクロ波照射手段441全体を配置変更部443等に取り付けること等によって、マイクロ波照射手段441全体の配置を配置変更部443により変更することで、結果的に出射部4413の配置を変更できるようにしてもよい。 In the above embodiment, the entire arrangement of the microwave irradiation means 441 is changed by the arrangement change section 443 by attaching the entire microwave irradiation means 441 to the arrangement change section 443 or the like instead of the emission section 4413. As a result, the arrangement of the emission unit 4413 may be changed as a result.
 また、上記実施の形態においては、マイクロ波照射手段441の出射部の位置を変更する場合について説明したが、配置変更部443は、検出手段が検出した加熱対象部分が集中加熱されるよう、1または2以上のマイクロ波照射手段の出射部の位置を変更可能なものであれば、上記で説明したようなものに限定されるものではない。 Further, in the above-described embodiment, the case where the position of the emission unit of the microwave irradiation unit 441 is changed has been described. However, the arrangement change unit 443 performs one-step heating such that the heating target portion detected by the detection unit is concentratedly heated. Alternatively, the position is not limited to the one described above as long as the position of the emission unit of the two or more microwave irradiation units can be changed.
 (実施の形態6)
 図24は、本実施の形態の加熱装置のブロック図(図24(a))、本実施の形態の加熱装置の一部切欠平面図(図24(b))、および一部切欠側面図(図24(c))である。図において、図16および図22等と同一符号は同一または相当する部分を示している。
(Embodiment 6)
FIG. 24 is a block diagram of the heating device of the present embodiment (FIG. 24A), a partially cutaway plan view of the heating device of the present embodiment (FIG. 24B), and a partially cutaway side view ( FIG. 24C). In the drawing, the same reference numerals as those in FIGS. 16 and 22 indicate the same or corresponding parts.
 本実施の形態の加熱装置7は、上記実施の形態5において説明した加熱装置6において、検出手段21の代わりに、上記実施の形態4において説明したような加熱対象物60の長手方向の異なる位置の断面において、高さ方向の温度分布を取得して、この温度分布から加熱対象部分を検出する検出手段24を用いるようにし、マイクロ波照射手段441の代わりに、出射部4413aを有する第一のマイクロ波照射手段441aおよび出射部4413bを有する第二のマイクロ波照射手段441bを設け、照射状態変化手段44が、配置変更部443の代わりに出射部4413aの配置を変更可能な第一の配置変更部443aおよび出射部4413bの配置を変更可能な第二の配置変更部443bを有するようにしたものである。この照射状態変化手段44は、第一のマイクロ波照射手段441aの出射部4413aおよび第二のマイクロ波照射手段441bの出射部4413bの配置を検出手段21が検出した加熱対象部分が集中加熱されるよう変更するものである。 The heating device 7 according to the present embodiment is different from the heating device 6 according to the fifth embodiment in that, instead of the detection unit 21, a different position in the longitudinal direction of the heating target 60 as described in the fourth embodiment. In the cross-section, a temperature distribution in the height direction is acquired, and the detection unit 24 that detects a portion to be heated from the temperature distribution is used. In place of the microwave irradiation unit 441, a first unit having an emission unit 4413a is used. A second microwave irradiation unit 441b having a microwave irradiation unit 441a and an emission unit 4413b is provided, and the irradiation state changing unit 44 changes the arrangement of the emission unit 4413a in place of the arrangement change unit 443. This has a second arrangement changing section 443b capable of changing the arrangement of the section 443a and the emission section 4413b. In the irradiation state changing unit 44, the heating target portion where the detection unit 21 detects the arrangement of the emission unit 4413a of the first microwave irradiation unit 441a and the emission unit 4413b of the second microwave irradiation unit 441b is concentratedly heated. It is changed as follows.
 第一のマイクロ波照射手段441aおよび第一の配置変更部443aについては、上記実施の形態5のマイクロ波照射手段441および配置変更部443と同様のものであって、同様の位置に取り付けられているものであり、ここでは、詳細な説明を省略する。 The first microwave irradiation unit 441a and the first arrangement changing unit 443a are the same as the microwave irradiation unit 441 and the arrangement changing unit 443 of the fifth embodiment, and are attached at the same positions. Here, the detailed description is omitted.
 第二のマイクロ波照射手段441bおよび第二の配置変更部443bは、上記実施の形態5のマイクロ波照射手段441および配置変更部443と同様のものを、第二のマイクロ波照射手段441bの出射部4413bの移動方向が、加熱対象物60の幅方向に対して垂直な面方向(例えば、垂直な面に沿った方向の移動)となるように、容器10の幅方向の側面に所定の間隔を隔てて配置したものであり、その他の構成等は、上記実施の形態5のマイクロ波照射手段441および配置変更部443と同様のものであるため、ここでは説明を省略する。なお、出射部4413bの出射方向は、ここでは一例として幅方向に固定されているものとする。例えば、第二の配置変更部443bによる配置の変更は、移動方向が異なる点を除けば、実質的に配置変更部443と同様の動作で行うことができる。 The second microwave irradiating unit 441b and the second arrangement changing unit 443b are the same as the microwave irradiating unit 441 and the arrangement changing unit 443 of the fifth embodiment described above, and are output from the second microwave irradiating unit 441b. A predetermined interval is provided on the side surface in the width direction of the container 10 so that the movement direction of the portion 4413b is in a plane direction perpendicular to the width direction of the heating target 60 (for example, movement in a direction along the vertical plane). The other configuration and the like are the same as those of the microwave irradiation unit 441 and the arrangement change unit 443 of the fifth embodiment, and thus the description is omitted here. Here, the emission direction of the emission section 4413b is assumed to be fixed in the width direction as an example here. For example, the change of the arrangement by the second arrangement changing unit 443b can be performed by substantially the same operation as that of the arrangement changing unit 443 except that the moving direction is different.
 本実施の形態においては、検出手段24が、加熱対象物60において加熱対象部分を検出した場合、この加熱対象部分にマイクロ波が照射されるよう、第一の配置変更部443aが第一のマイクロ波照射手段441aの出射部4413aの平面方向の位置、具体的には長手方向および幅方向の位置を変更する。そして、第一のマイクロ波照射手段441aが出射部4413aからマイクロ波を照射する。また、検出された加熱対象部分にマイクロ波が照射されるよう、第二の配置変更部443bが第二のマイクロ波照射手段441bの出射部4413bの幅方向に垂直な面方向の位置、具体的には高さ方向および長手方向の位置を変更する。そして、第二のマイクロ波照射手段441bが出射部4413bからマイクロ波を照射する。 In the present embodiment, when the detection unit 24 detects a heating target portion in the heating target 60, the first arrangement changing unit 443a transmits the microwave to the heating target portion so as to irradiate the microwave. The position of the emission section 4413a of the wave irradiation means 441a in the plane direction, specifically, the position in the longitudinal direction and the width direction is changed. Then, the first microwave irradiating unit 441a irradiates the microwave from the emission unit 4413a. Further, the second arrangement changing unit 443b is positioned in a plane direction perpendicular to the width direction of the emission unit 4413b of the second microwave irradiation unit 441b so that the detected heating target portion is irradiated with microwaves, specifically. Changes the position in the height direction and the longitudinal direction. Then, the second microwave irradiating unit 441b irradiates the microwave from the emission unit 4413b.
 制御部442については、第一のマイクロ波照射手段441aの出力の制御、第一の配置変更部443aの動作の制御、第二のマイクロ波照射手段441bの出力の制御、および第二の配置変更部443bの動作の制御を行うものである。これらの制御については、上記実施の形態5の制御と同様であるため、ここでは、詳細な説明を省略する。また、他の構成等については、上記実施の形態5の制御部442と同様であるため、ここでは、詳細な説明を省略する。 The control unit 442 controls the output of the first microwave irradiation unit 441a, controls the operation of the first arrangement change unit 443a, controls the output of the second microwave irradiation unit 441b, and changes the second arrangement. The operation of the unit 443b is controlled. Since these controls are the same as those in the above-described fifth embodiment, detailed description will be omitted here. Further, other configurations and the like are the same as those of the control unit 442 of the fifth embodiment, and thus detailed description is omitted here.
 次に、本実施の形態の加熱装置7の動作の一例について具体的に説明する。
 図25は、本実施の形態の加熱装置の動作を説明するための模式図(図25(a)~図25(d))である。この図は、加熱装置7から容器10等を省略したものを示す図である。図25(a)および図25(c)は、平面模式図であり、図25(b)および図25(d)は幅方向から見た模式図である。
Next, an example of the operation of the heating device 7 of the present embodiment will be specifically described.
FIG. 25 is a schematic diagram (FIGS. 25A to 25D) for explaining the operation of the heating device of the present embodiment. This figure is a view showing the heating device 7 with the container 10 and the like omitted. FIGS. 25A and 25C are schematic plan views, and FIGS. 25B and 25D are schematic diagrams viewed from the width direction.
 検出手段24が、加熱対象物60の表面61aにおいて、図25(a)および図25(b)に示すように、加熱対象部分236を検出したとする。制御部442は、検出手段24から、加熱対象部分226の三次元の座標(例えば、長手方向の座標と、幅方向の座標と、高さ方向の座標とで表される座標)を受取る。 と す る It is assumed that the detection unit 24 has detected the heating target portion 236 on the surface 61a of the heating target 60 as shown in FIGS. 25 (a) and 25 (b). The control unit 442 receives three-dimensional coordinates (for example, coordinates represented by coordinates in a longitudinal direction, coordinates in a width direction, and coordinates in a height direction) of the heating target portion 226 from the detection unit 24.
 制御部442は、受取った座標から、平面方向の座標(例えば、長手方向の座標と、幅方向の座標とで表される座標)を取得し、第一の配置変更部443aの先端部4431に取り付けられた第一のマイクロ波照射手段441aの出射部4413aが、加熱対象部分236の上方に位置するよう、第一の配置変更部443aを動作させる。例えば、出射部4413の中心の平面方向における座標が、加熱対象部分236の平面方向における座標と一致するように、第一の配置変更部443aを動作させる。これに応じて、第一の配置変更部443aは、図25(c)に示すように、先端部4431に取り付けられた出射部4413aを、加熱対象部分236の上方に移動させる。 The control unit 442 acquires the coordinates in the plane direction (for example, the coordinates represented by the coordinates in the longitudinal direction and the coordinates in the width direction) from the received coordinates, and stores the coordinates in the tip end 4431 of the first arrangement change unit 443a. The first arrangement changing section 443a is operated such that the emission section 4413a of the attached first microwave irradiation means 441a is located above the heating target portion 236. For example, the first arrangement changing unit 443a is operated such that the coordinates of the center of the emission unit 4413 in the plane direction coincide with the coordinates of the heating target portion 236 in the plane direction. In response, as shown in FIG. 25C, the first arrangement changing unit 443a moves the emission unit 4413a attached to the distal end portion 4431 above the heating target portion 236.
 また、制御部442は、上記で受取った座標から、幅方向に垂直な面方向の座標(例えば、長手方向の座標と、高さ方向の座標とで表される座標)を取得し、第二の配置変更部443bの先端部4431に取り付けられた第二のマイクロ波照射手段441bの出射部4413bが、加熱対象部分236の幅方向の延長上に位置するよう、第二の配置変更部443bを動作させる。例えば、出射部4413の中心の、加熱対象物60の幅方向に垂直な面方向における座標が、加熱対象部分236の、加熱対象物60の幅方向に垂直な面方向における座標と一致するように、第二の配置変更部443bを動作させる。これに応じて、第二の配置変更部443bは、図25(d)に示すように、先端部4431に取り付けられた出射部4413bを、加熱対象部分236の幅方向の延長上に移動させる。 Further, the control unit 442 acquires the coordinates in the plane direction perpendicular to the width direction (for example, the coordinates represented by the coordinates in the longitudinal direction and the coordinates in the height direction) from the coordinates received above, and acquires the second The second arrangement changing section 443b is arranged such that the emission section 4413b of the second microwave irradiation means 441b attached to the tip end 4431 of the arrangement changing section 443b is located on the widthwise extension of the portion 236 to be heated. Make it work. For example, the coordinates of the center of the emission section 4413 in the plane direction perpendicular to the width direction of the heating target 60 coincide with the coordinates of the heating target portion 236 in the plane direction perpendicular to the width direction of the heating target 60. Then, the second arrangement changing unit 443b is operated. In response to this, as shown in FIG. 25D, the second arrangement changing unit 443b moves the emission unit 4413b attached to the distal end portion 4431 on the extension of the heating target portion 236 in the width direction.
 そして、制御部442の制御に応じて、第一のマイクロ波照射手段441aがマイクロ波照射を行い、出射部4413aから、この出射部4413aの下方に位置する加熱対象部分236にマイクロ波が照射される。また、制御部442の制御に応じて、第二のマイクロ波照射手段441bがマイクロ波照射を行い、出射部4413bから、この出射部4413bの幅方向の延長上に位置する加熱対象部分236にマイクロ波が照射される。これにより、出射部4413aから照射されるマイクロ波と、出射部4413bから照射されるマイクロ波とにより、加熱対象部分236が集中加熱される。また、ここでは、加熱対象部分236は、二方向から照射されるマイクロ波の交点に位置するため、最も強く集中加熱され、交点以外のマイクロ波が通過する部分は、加熱対象部分236よりも弱く加熱されるため、加熱対象部分236以外の部分のマイクロ波照射による影響を抑えることができる。 Then, under the control of the control unit 442, the first microwave irradiation unit 441a performs microwave irradiation, and the microwave is irradiated from the emission unit 4413a to the heating target portion 236 located below the emission unit 4413a. You. Further, under the control of the control unit 442, the second microwave irradiating means 441b irradiates microwaves, and the microwaves are emitted from the emission unit 4413b to the heating target portion 236 located on the widthwise extension of the emission unit 4413b. Waves are irradiated. Thus, the heating target portion 236 is intensively heated by the microwaves emitted from the emission unit 4413a and the microwaves emitted from the emission unit 4413b. In addition, here, since the heating target portion 236 is located at the intersection of the microwaves irradiated from two directions, concentrated heating is performed most strongly, and the portion through which the microwave passes other than the intersection is weaker than the heating target portion 236. Since the heating is performed, the influence of the microwave irradiation on portions other than the heating target portion 236 can be suppressed.
 以上、本実施の形態によれば、検出手段が検出した加熱対象部分に異なる二方向から照射されるマイクロ波が照射されるよう、第一のマイクロ波照射手段441aの出射部4413aおよび第二のマイクロ波照射手段441bの出射部4413bの出射部の配置をそれぞれ変更できるようにしたことにより、加熱対象部分をダイナミックかつリアルタイムに集中加熱することができる。例えば、ダイナミックかつリアルタイムに三次元方向で検出された加熱対象部分を適切に集中加熱することができる。また、加熱対象部分以外の部分におけるマイクロ波照射による加熱等の影響を抑えることができる。 As described above, according to the present embodiment, the emission section 4413a of the first microwave irradiation means 441a and the second emission section 4413a of the second microwave irradiation means irradiate the heating target portion detected by the detection means with the microwaves irradiated from two different directions. Since the arrangement of the emission sections of the emission section 4413b of the microwave irradiation means 441b can be respectively changed, the heating target portion can be dynamically and intensively heated in real time. For example, the heating target portion detected in the three-dimensional direction dynamically and in real time can be appropriately concentratedly heated. In addition, it is possible to suppress the influence of heating or the like due to microwave irradiation on a portion other than the portion to be heated.
 また、上記実施の形態5および6において、出射部4413および出射部4413aの出射方向が平面に対して垂直下向きである場合について説明したが、出射部4413および出射部4413aの出射方向は平面に対して0度および90度以外の角度で傾斜していてもよく、この場合、配置変更部443や第一の配置変更部443aは、出射部4413および出射部4413aの出射方向に、加熱対象部分が含まれるよう、出射部4413および出射部4413aの位置を移動させるようにすればよい。 Further, in the fifth and sixth embodiments, the case has been described where the emission direction of the emission unit 4413 and the emission unit 4413a is vertically downward with respect to the plane, but the emission direction of the emission unit 4413 and the emission unit 4413a is relative to the plane. May be inclined at an angle other than 0 ° and 90 °. In this case, the arrangement change unit 443 and the first arrangement change unit 443a are arranged such that the heating target part is arranged in the emission direction of the emission unit 4413 and the emission unit 4413a. The positions of the emission unit 4413 and the emission unit 4413a may be moved so as to be included.
 また、上記実施の形態において、出射部4413bの出射方向が、加熱対象物60の幅方向である場合について説明したが、出射部4413bの出射方向は幅方向に対して0度および90度以外の角度で傾斜していてもよく、この場合、第二の配置変更部443bは、出射部4413bの出射方向に、加熱対象部分が含まれるよう、出射部4413bの位置を移動させるようにすればよい。 Further, in the above-described embodiment, a case has been described where the emission direction of the emission unit 4413b is the width direction of the heating target 60. However, the emission direction of the emission unit 4413b is other than 0 ° and 90 ° with respect to the width direction. The position may be inclined, and in this case, the second arrangement changing unit 443b may move the position of the emission unit 4413b in the emission direction of the emission unit 4413b so that the heating target portion is included. .
 なお、上記実施の形態においては、第一の配置変更部443aが出射部4413aを平面方向に移動させ、第二の配置変更部443bが出射部4413bを幅方向に垂直な面方向に移動させる場合について説明したが、第一の配置変更部443aおよび第二の配置変更部443bによる移動は、上記のような移動に限定されるものではない。例えば、第一の配置変更部443aおよび第二の配置変更部443bによる移動は、互いに異なる面方向における移動であればよい。この互いに異なる面方向は、平行ではない面方向であることが好ましい。また、第一の配置変更部443aや第二の配置変更部443bの取り付け位置や取り付け方向等も上記に限定されるものではない。 Note that, in the above embodiment, the case where the first arrangement changing unit 443a moves the emission unit 4413a in the plane direction, and the case where the second arrangement changing unit 443b moves the emission unit 4413b in the plane direction perpendicular to the width direction. However, the movement by the first arrangement changing unit 443a and the second arrangement changing unit 443b is not limited to the above movement. For example, the movements by the first arrangement changing unit 443a and the second arrangement changing unit 443b may be movements in different plane directions. The different plane directions are preferably plane directions that are not parallel. Further, the mounting position, the mounting direction, and the like of the first layout changing section 443a and the second layout changing section 443b are not limited to the above.
 また、上記実施の形態においては、1つまたは2つのマイクロ波照射手段の出射部の位置をそれぞれ変更する場合について説明したが、出射部の配置を変更するマイクロ波照射手段の数は、1または2以上であれば、その数は問わない。例えば、3以上のマイクロ波照射手段の出射部の位置をそれぞれ変更して、加熱対象部分にそれぞれから出射されるマイクロ波を照射して集中加熱するようにしても良い。この場合、照射状態変化手段44は、例えば、出射部の数に応じた数の配置変更部を有するようにすればよい。 Further, in the above-described embodiment, the case where the position of the emission unit of one or two microwave irradiation units is changed has been described. However, the number of the microwave irradiation units for changing the arrangement of the emission units is one or one. Any number is acceptable as long as it is 2 or more. For example, the positions of the emission units of three or more microwave irradiation units may be respectively changed, and the heating target portions may be irradiated with microwaves emitted from the respective portions to perform concentrated heating. In this case, the irradiation state changing unit 44 may have, for example, a number of arrangement changing units corresponding to the number of the emission units.
 なお、上記実施の形態における第一の配置変更部443aおよび第二の配置変更部443bのそれぞれの移動は、二次元方向の移動に限定されるものではなく、一次元方向や三次元方向の移動であってもよい。 In addition, the movement of each of the first arrangement changing unit 443a and the second arrangement changing unit 443b in the above embodiment is not limited to the movement in the two-dimensional direction, and may be the movement in the one-dimensional direction or the three-dimensional direction. It may be.
 また、上記実施の形態においては、出射部4413aの出射方向が固定されている場合について説明したが、第一の配置変更部443aは、出射部4413aの出射方向を変更可能なものであってもよい。同様に、第二の配置変更部443bは、出射部4413bの出射方向を変更可能なものであってもよい。 Further, in the above-described embodiment, the case where the emission direction of emission section 4413a is fixed has been described, but first arrangement changing section 443a may change the emission direction of emission section 4413a. Good. Similarly, the second arrangement change unit 443b may be capable of changing the emission direction of the emission unit 4413b.
 また、上記実施の形態においては、出射部4413aおよび出射部4413bを第一の配置変更部443aおよび第二の配置変更部443b等の先端部4431に取り付ける代わりに、第一のマイクロ波照射手段441a全体および第二のマイクロ波照射手段441b全体を第一の配置変更部443aおよび第二の配置変更部443b等に取り付けること等によって、第一のマイクロ波照射手段441a全体および第二のマイクロ波照射手段441b全体の配置をそれぞれ第一の配置変更部443aおよび第二の配置変更部443bにより変更できるようにすることで、結果的に出射部4413aおよび出射部4413bの配置をそれぞれ変更できるようにしてもよい。 Further, in the above-described embodiment, instead of attaching the emitting section 4413a and the emitting section 4413b to the tip section 4431 such as the first arrangement changing section 443a and the second arrangement changing section 443b, the first microwave irradiation means 441a is used. By attaching the entirety and the entirety of the second microwave irradiation means 441b to the first arrangement changing section 443a, the second arrangement changing section 443b, and the like, the entire first microwave irradiation means 441a and the second microwave irradiation are performed. The arrangement of the entire means 441b can be changed by the first arrangement changing section 443a and the second arrangement changing section 443b, respectively, so that the arrangement of the emission section 4413a and the emission section 4413b can be changed as a result. Is also good.
 (実施の形態7)
 上記実施の形態1および2においては、位相を制御した複数のマイクロ波を照射することで、加熱対象部分を集中加熱する加熱装置について説明したが、本実施の形態においては、一以上のマイクロ波の周波数を変更することにより、加熱対象部分を集中加熱する加熱装置について説明する。
(Embodiment 7)
In the first and second embodiments, the heating device that radiates a plurality of microwaves whose phases are controlled to intensively heat the portion to be heated has been described. In the present embodiment, one or more microwaves are used. A heating device for intensively heating the portion to be heated by changing the frequency will be described.
 図26は、本実施の形態7の加熱装置のブロック図(図26(a))および斜視図(図26(b))である。図において、図8等と同一符号は同一または相当する部分を示している。 FIG. 26 is a block diagram (FIG. 26 (a)) and a perspective view (FIG. 26 (b)) of the heating device of the seventh embodiment. In the figure, the same reference numerals as those in FIG. 8 indicate the same or corresponding parts.
 加熱装置8は、上記実施の形態2の検出手段24と、マイクロ波照射手段461と、照射状態変化手段46とを備えている。照射状態変化手段46は、制御部462と、照射管理情報格納部463とを備えている。 The heating device 8 includes the detection unit 24 of the second embodiment, the microwave irradiation unit 461, and the irradiation state changing unit 46. The irradiation state changing means 46 includes a control unit 462 and an irradiation management information storage unit 463.
 マイクロ波照射手段461は、照射するマイクロ波の周波数を変更可能なマイクロ波照射手段である。マイクロ波照射手段461は、例えば、周波数を変更可能なマイクロ波発振器4611と、伝送部4612とを備えている。周波数を変更可能なマイクロ波照射手段については、公知技術であるため、ここでは詳細な説明は省略する。 The microwave irradiation means 461 is a microwave irradiation means capable of changing the frequency of the microwave to be irradiated. The microwave irradiation means 461 includes, for example, a microwave oscillator 4611 whose frequency can be changed, and a transmission unit 4612. Since the microwave irradiation means whose frequency can be changed is a known technique, a detailed description thereof will be omitted here.
 ここでは、図26(b)に示すように、容器10内には、複数の三次元形状の集中加熱領域406が設定されている。この集中加熱領域406は、マイクロ波照射手段461が照射するマイクロ波を変更した場合に、集中加熱される領域であるとする。一の集中加熱領域406は、例えば、周波数を変更した場合に、少なくとも一度は集中加熱される領域である。 Here, as shown in FIG. 26B, a plurality of three-dimensional concentrated heating regions 406 are set in the container 10. This concentrated heating region 406 is assumed to be a region that is concentratedly heated when the microwave irradiated by the microwave irradiation unit 461 is changed. One concentrated heating area 406 is an area that is heated at least once at a time when the frequency is changed, for example.
 照射状態変化手段44は、検出手段24が検出した加熱対象部分が集中加熱されるようなマイクロ波の強度分布となるように、2以上の異なる周波数のマイクロ波を照射する1または2以上のマイクロ波照射手段461に、各周波数のマイクロ波を照射させる。例えば、マイクロ波照射手段461が照射するマイクロ波の周波数を変化させる。 The irradiation state changing means 44 irradiates one or two or more microwaves with two or more different frequencies so that the heating target portion detected by the detection means 24 has a microwave intensity distribution that is concentratedly heated. The microwave irradiating means 461 irradiates microwaves of each frequency. For example, the frequency of the microwave irradiated by the microwave irradiation means 461 is changed.
 制御部462は、検出手段24が検出した加熱対象部分が集中加熱されるようなマイクロ波の強度分布となるように、各マイクロ波照射手段461が照射するマイクロ波の周波数を変更させる。例えば、制御部462は、照射管理情報格納部463に予め格納されている周波数変更用の照射管理情報を用いて変更する周波数を決定する。この周波数変更用の照射管理情報は、容器10内に照射されるマイクロ波の周波数と、この周波数のマイクロ波が容器10内に照射されることによってマイクロ波の強度が高くなる容器10内の一以上の領域の位置情報とを有する情報である。位置情報は、例えば、強度が高くなる領域を含む集中加熱領域を特定する情報や、強度が高くなる領域の座標である。ここでは、照射管理情報が、強度が高くなる領域を含む集中加熱領域を特定する情報である場合を例に挙げて説明する。ここでのマイクロ波の強度は、電界強度であってもよく、磁界強度であってもよく、その両方であってもよい。マイクロ波の強度が高くなる領域は、マイクロ波により集中加熱される領域と考えてもよい。制御部462は、検出手段24が検出した加熱対象部分を含む集中加熱領域、または加熱対象部分に最も近いマイクロ波の強度が高い領域等を、照射管理情報を用いて検出し、検出した集中加熱領域または加熱対象部分に最も近いマイクロ波の強度が高い領域に対応付けられた周波数を取得し、マイクロ波照射手段461から取得した周波数のマイクロ波を容器10内に照射させる。ただし、制御部462がマイクロ波照射手段461から照射させるマイクロ波の周波数を決定する処理は、上記の処理に限定されるものではない。なお、ここでは、制御部462が、集中加熱領域を検出する例について説明する。 The control unit 462 changes the frequency of the microwave radiated by each microwave irradiating unit 461 so that the intensity distribution of the microwave is such that the heating target portion detected by the detecting unit 24 is concentratedly heated. For example, the control unit 462 determines the frequency to be changed using the irradiation management information for frequency change stored in the irradiation management information storage unit 463 in advance. The irradiation management information for changing the frequency includes the frequency of the microwave radiated into the container 10 and one of the frequencies in the container 10 where the intensity of the microwave is increased by irradiating the microwave with the frequency into the container 10. This is information having the above-described area position information. The position information is, for example, information for specifying a concentrated heating region including a region where the intensity is high, and coordinates of the region where the intensity is high. Here, an example will be described in which the irradiation management information is information for specifying a concentrated heating region including a region where the intensity is high. The microwave intensity here may be the electric field intensity, the magnetic field intensity, or both. The region where the intensity of the microwave is high may be considered as a region that is concentratedly heated by the microwave. The control unit 462 detects, using the irradiation management information, a concentrated heating region including the heating target portion detected by the detection unit 24, or a region having a high microwave intensity closest to the heating target portion. The frequency corresponding to the region or the region having the highest microwave intensity closest to the heating target portion is acquired, and the microwave having the frequency acquired from the microwave irradiating unit 461 is irradiated into the container 10. However, the process in which the control unit 462 determines the frequency of the microwave to be irradiated from the microwave irradiation unit 461 is not limited to the above process. Here, an example in which the control unit 462 detects a concentrated heating region will be described.
 照射管理情報格納部463には、上記のような周波数変更用の照射管理情報が格納される。この照射管理情報は、例えば、シミュレーションや計算等を行って取得されたものであってもよく、実験等を行って取得されたものであってもよい。容器10内に照射されるマイクロ波の周波数が変更されると、容器10内のマイクロ波の強度分布が変化し、マイクロ波の強度が高い領域が変化する。このため、シミュレーションや実験等を行って、周波数毎に、このマイクロ波の強度の高い一以上の領域の情報を取得することで、照射管理情報を取得することができる。ここでは、一例として、容器10内に照射されるマイクロ波の周波数と、この周波数のマイクロ波を照射した場合に集中加熱される図26(b)に示したような複数の集中加熱領域のうちの一以上の集中加熱領域を特定する情報とを有する1または2以上の照射管理情報が格納されている場合について説明する。 The irradiation management information storage unit 463 stores the irradiation management information for changing the frequency as described above. The irradiation management information may be, for example, information obtained by performing a simulation, calculation, or the like, or may be information obtained by performing an experiment, or the like. When the frequency of the microwave irradiated into the container 10 is changed, the intensity distribution of the microwave in the container 10 changes, and the region where the intensity of the microwave is high changes. For this reason, irradiation management information can be obtained by acquiring information of one or more regions where the intensity of the microwave is high for each frequency by performing a simulation, an experiment, or the like. Here, as an example, the frequency of the microwave applied to the inside of the container 10 and the plurality of concentrated heating areas as shown in FIG. A case will be described in which one or more pieces of irradiation management information including information for specifying one or more concentrated heating areas are stored.
 次に、本実施の形態の加熱装置8の動作について、具体例を挙げて説明する。
 検出手段24が、上記実施の形態4と同様に、加熱対象部分を検出したとすると、制御部462は、照射管理情報格納部463に格納されている照射管理情報を用いて、この加熱対象部分を含む集中加熱領域を検出し、検出した集中加熱領域に対応付けられた周波数を取得する。そして、マイクロ波照射手段461に取得した周波数のマイクロ波を出力させる。これに応じて、マイクロ波照射手段461はこの周波数のマイクロ波を出力する。マイクロ波照射手段461が容器10内にこの周波数のマイクロ波を照射すると、容器10内のマイクロ波の強度分布が、照射されるマイクロ波の周波数に応じたマイクロ波の強度分布となり、加熱対象部分を含む集中加熱領域が集中加熱される。
Next, the operation of the heating device 8 of the present embodiment will be described with a specific example.
Assuming that the detecting unit 24 detects the portion to be heated in the same manner as in the above-described fourth embodiment, the control unit 462 uses the irradiation management information stored in the irradiation management information storage unit 463 to perform this heating. Is detected, and a frequency associated with the detected concentrated heating region is obtained. Then, the microwave of the acquired frequency is output to the microwave irradiation means 461. In response, the microwave irradiating means 461 outputs a microwave having this frequency. When the microwave irradiating means 461 irradiates the container 10 with the microwave having this frequency, the microwave intensity distribution in the container 10 becomes the microwave intensity distribution corresponding to the frequency of the irradiated microwave, and Is concentratedly heated.
 以上、本実施の形態によれば、検出手段24が加熱対象部分を検出し、検出された加熱対象部分の位置においてマイクロ波強度が強くなるよう、周波数を変更したマイクロ波を照射することにより、加熱対象部分をダイナミックかつリアルタイムに集中加熱することが得きる。 As described above, according to the present embodiment, the detecting unit 24 detects the heating target portion, and irradiates the microwave with the changed frequency so that the microwave intensity becomes strong at the position of the detected heating target portion. It is possible to perform dynamic and real-time centralized heating of the heating target portion.
 なお、上記においては、マイクロ波を一箇所から容器10内に照射するようにしたが、複数箇所から容器10内にマイクロ波を照射してもよい。例えば、一のマイクロ波発振器4611と接続される伝送部4612を分岐して、容器10と異なる箇所で接続してもよい。また、複数のマイクロ波発振器4611を、それぞれ、伝送部4612を介して容器10に取り付けるようにしてもよい。なお、複数のマイクロ波発振器4611から、容器10内にマイクロ波を照射する場合、各マイクロ波発振器4611からに照射されるマイクロ波の周波数は、同じであっても良く、異なっていても良い。 In the above description, the microwave is irradiated into the container 10 from one place, but the microwave may be irradiated into the container 10 from a plurality of places. For example, the transmission unit 4612 connected to one microwave oscillator 4611 may be branched and connected at a location different from the container 10. Further, a plurality of microwave oscillators 4611 may be attached to the container 10 via the transmission unit 4612, respectively. Note that when microwaves are radiated into the container 10 from the plurality of microwave oscillators 4611, the frequencies of the microwaves radiated from the microwave oscillators 4611 may be the same or different.
 また、上記においては、周波数を変更可能なマイクロ波照射手段461を用いて、異なる周波数のマイクロ波を照射するようにしたが、照射状態変化手段46が異なる周波数のマイクロ波を照射する複数のマイクロ波照射手段461を有するようにし、この複数のマイクロ波照射手段461のうちの、所望の周波数のマイクロ波を出力するマイクロ波照射手段からマイクロ波を出力するようにして、容器10内に異なる周波数のマイクロ波をそれぞれ照射できるようにしてもよい。この場合、一の周波数のマイクロ波を照射するマイクロ波発振器を複数設けるようにしてもよい。また、一の周波数のマイクロ波を照射するマイクロ波発振器から照射される分岐してマイクロ波を複数箇所で容器10と接続するようにしてもよい。 Further, in the above description, the microwave irradiation means 461 capable of changing the frequency is used to irradiate microwaves of different frequencies. However, the irradiation state changing means 46 uses a plurality of microwaves irradiating microwaves of different frequencies. The microwave irradiating means 461 is provided, and microwaves are output from the microwave irradiating means for outputting a microwave of a desired frequency among the plurality of microwave irradiating means 461, so that different frequencies are provided in the container 10. May be radiated. In this case, a plurality of microwave oscillators for irradiating microwaves of one frequency may be provided. Alternatively, the microwave may be branched from a microwave oscillator that radiates a microwave of one frequency, and the microwave may be connected to the container 10 at a plurality of locations.
 つまり、本実施の形態においては、加熱装置が有する1または2以上のマイクロ波照射手段が、2以上の異なる周波数のマイクロ波を照射するものであればよい。なお、2以上のマイクロ波照射手段が、2以上の異なる周波数のマイクロ波を照射する、ということは、例えば、互いに異なる周波数のマイクロ波を照射するマイクロ波照射手段を2以上備えていることであっても良く、異なる2以上の周波数のマイクロ波を照射するマイクロ波照射手段を2以上備えていることであっても良い。 In other words, in the present embodiment, one or more microwave irradiating means of the heating device may irradiate microwaves of two or more different frequencies. In addition, that two or more microwave irradiation means irradiates microwaves of two or more different frequencies means that, for example, two or more microwave irradiation means for irradiating microwaves of different frequencies are provided. Alternatively, two or more microwave irradiation means for irradiating microwaves of two or more different frequencies may be provided.
 なお、上記各実施の形態において、マイクロ波照射手段が照射するマイクロ波の出力は、予め決められた出力であってもよく、任意の出力であってもよく、検出手段が検出した加熱対象部分の温度に応じた出力であってもよい。例えば、加熱対象部分の温度が高くなるに従って、連続的または段階的に高くなる出力であってもよい。出力は、例えば、加熱対象部分の温度を引数とした予め決められた関数(例えば、増加関数)で決定されてもよく、加熱対象部分の温度の範囲と、出力との対応表を用いて決定されてもよい。 In each of the above embodiments, the output of the microwave irradiated by the microwave irradiating means may be a predetermined output or an arbitrary output, and the heating target portion detected by the detecting means may be used. May be an output corresponding to the temperature. For example, the output may increase continuously or stepwise as the temperature of the portion to be heated increases. The output may be determined by, for example, a predetermined function (for example, an increasing function) using the temperature of the heating target portion as an argument, and is determined using a correspondence table between the temperature range of the heating target portion and the output. May be done.
 なお、検出手段は、加熱対象物についての状態を示す情報を用いて、加熱の対象となる加熱対象部分を検出するものであれば、上記各実施の形態において説明された検出手段に限定されるものではない。また、照射状態変化手段は、検出手段が検出した加熱対象部分が集中加熱されるようマイクロ波を照射するものであれば、上記各実施の形態において説明された検出手段に限定されるものではない。 Note that the detection unit is limited to the detection unit described in each of the above embodiments as long as the detection unit detects the heating target portion to be heated using the information indicating the state of the heating target object. Not something. Further, the irradiation state changing means is not limited to the detection means described in each of the above embodiments, as long as it irradiates the microwave so that the heating target portion detected by the detection means is concentratedly heated. .
 なお、上記各実施の形態においては、加熱装置が、複数のマイクロ波照射状態変化手段が照射するマイクロ波の位相の制御や、1または2以上のマイクロ波照射状態変化手段が照射するマイクロ波の出力の制御(例えば、出力のオン、オフ)や、1または2以上のマイクロ波照射状態変化手段が照射するマイクロ波の周波数の制御(例えば、変更)や、1または2以上のマイクロ波照射状態変化手段の出射部の配置の制御(例えば、変更)等より、加熱対象部分を集中加熱する例について説明したが、加熱装置は、これらの制御のうちの2以上を行なうことにより、加熱対象部分の集中加熱を行なうようにしても良い。なお、上記の複数の制御のうちの、加熱装置が行なう2以上の制御が、照射するマイクロ波の位相の制御を含む場合、加熱装置が有するマイクロ波照射状態変化手段は、2以上であることが好ましい。 In each of the above embodiments, the heating device controls the phase of the microwave irradiated by the plurality of microwave irradiation state changing units, or controls the microwave irradiation by one or more microwave irradiation state changing units. Output control (for example, output on / off), control (for example, change) of the frequency of microwaves irradiated by one or more microwave irradiation state changing means, and one or more microwave irradiation states The example in which the heating target portion is intensively heated by controlling (for example, changing) the arrangement of the emission portion of the changing unit has been described. However, the heating device performs two or more of these controls to thereby perform the heating target portion. Concentrated heating may be performed. When two or more controls performed by the heating device out of the plurality of controls include control of the phase of the microwave to be irradiated, the microwave irradiation state changing means of the heating device must be two or more. Is preferred.
 また、上記各実施の形態において、検出手段が、加熱対象物の平面方向や高さ方向において、あるいは、加熱対象物の表面や裏面において加熱対象部分を検出する場合について説明したが、上記各実施の形態の加熱装置において用いられる検出手段は、各加熱装置において集中加熱可能な位置に存在する加熱対象部分を検出可能なものであれば、どのような方向やどのような領域において加熱対象部分を検出可能なものを用いるかは問わない。例えば、上記各実施の形態の加熱装置において用いられる検出手段は、加熱対象物の少なくとも互いに平行でない2方向に沿って加熱対象部分を検出するようにしてもよい。これにより、加熱対象物について、二次元的、更には、三次元的に加熱対象部分を検出して、検出した加熱対象部分を集中加熱することができる。少なくとも互いに平行でない2方向は、例えば、同一平面上になく互いに平行でない3方向であっても良い。また、検出手段は、例えば、加熱対象物の互いに直交する3方向のうちの少なくとも2以上の方向に沿って加熱対象部分を検出するものであってもよい。この2以上の方向は、例えば、各加熱装置で集中加熱可能な位置に存在する加熱対象部分が検出可能な方向に適宜設定すればよい。例えば、この2方向を、加熱対象物の幅方向と長手方向とにすることで、加熱対象物の平面方向において、加熱対象部分を検出することが可能となる。 Further, in each of the above embodiments, the case has been described where the detecting means detects the heating target portion in the plane direction or the height direction of the heating target object, or on the front surface or the back surface of the heating target object. The detection means used in the heating device of the form described above can detect the heating target portion in any direction and in any region as long as it can detect the heating target portion existing at the position where the centralized heating can be performed in each heating device. It does not matter whether a detectable one is used. For example, the detection unit used in the heating device of each of the above embodiments may detect a heating target portion along at least two directions that are not parallel to each other. This makes it possible to two-dimensionally and further three-dimensionally detect the heating target portion of the object to be heated, and to centrally heat the detected heating target portion. At least two directions that are not parallel to each other may be, for example, three directions that are not on the same plane and are not parallel to each other. Further, the detecting means may detect, for example, a heating target portion along at least two or more of three directions orthogonal to each other on the heating target. These two or more directions may be set appropriately, for example, in a direction in which a heating target portion existing at a position where concentrated heating can be performed by each heating device can be detected. For example, by setting these two directions as the width direction and the longitudinal direction of the object to be heated, it is possible to detect the portion to be heated in the plane direction of the object to be heated.
 また、上記各実施の形態においては、照射管理情報格納部に格納される照射管理情報がマイクロ波照射手段の位相や、出力、位置、および周波数等を制御するための情報を有する場合について説明したが、照射管理情報格納部に格納される照射管理情報は、例えば、予め決められた2以上の領域と、この各領域を集中加熱するための、1または2以上のマイクロ波照射手段を制御するための情報と、が対応付けられた情報であればよい。また、照射状態変化手段は、この照射管理情報によって、検出手段が検出した加熱対象部分が位置する領域に対応付けられたマイクロ波照射手段を制御するための情報を用いて、この加熱対象部分が位置する領域を集中加熱するようマイクロ波照射手段にマイクロ波を照射させるようにすればよい。 Further, in each of the above embodiments, the case has been described where the irradiation management information stored in the irradiation management information storage unit has information for controlling the phase, output, position, frequency, and the like of the microwave irradiation unit. However, the irradiation management information stored in the irradiation management information storage unit controls, for example, two or more predetermined regions and one or two or more microwave irradiation units for centrally heating the respective regions. And any other information that is associated with the information. Further, the irradiation state changing means uses the irradiation management information to control the microwave irradiation means associated with the area where the heating target part detected by the detection means is located, and to control the heating target part by using the information. What is necessary is just to irradiate the microwave to the microwave irradiating means so that the located area is concentratedly heated.
 なお、上記実施の形態において、各処理(各機能)は、単一の装置(システム)によって集中処理されることによって実現されてもよく、あるいは、複数の装置によって分散処理されることによって実現されてもよい。 In the above embodiment, each process (each function) may be realized by centralized processing by a single device (system), or may be realized by distributed processing by a plurality of devices. You may.
 また、上記各実施の形態において、各構成要素は専用のハードウェアにより構成されてもよく、あるいは、ソフトウェアにより実現可能な構成要素については、プログラムを実行することによって実現されてもよい。例えば、ハードディスクや半導体メモリ等の記録媒体に記録されたソフトウェア・プログラムをCPU等のプログラム実行部が読み出して実行することによって、各構成要素が実現され得る。その実行時に、プログラム実行部は、格納部(例えば、ハードディスクやメモリ等の記録媒体)にアクセスしながらプログラムを実行してもよい。 In each of the above embodiments, each component may be configured by dedicated hardware, or a component that can be realized by software may be realized by executing a program. For example, each component can be realized by a program execution unit such as a CPU reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory. At the time of execution, the program execution unit may execute the program while accessing a storage unit (for example, a recording medium such as a hard disk or a memory).
 なお、上記実施の形態の検出手段のセンサが取得した情報から加熱対象部分を検出する処理(例えば、検出処理部等が行なう処理)および照射状態変化手段が、加熱対象部分を集中加熱させるための制御を行なう処理(例えば、制御部等が行なう処理)の少なくとも一方は、例えば、一の情報処理装置として実現してもよい。また、このような情報処理装置を実現するソフトウェアは、以下のようなプログラムである。つまり、このプログラムは、コンピュータに、加熱対象物についての状態を示す情報を用いて、集中して加熱すべき加熱対象部分を検出するステップと、加熱対象部分を検出するステップで検出した加熱対象部分が集中的に加熱されるよう、加熱対象物にマイクロ波を照射する1または2以上のマイクロ波照射手段に、マイクロ波の照射状態を変化させるステップと、を実行させるためのプログラムである。ただし、上記プログラムにおいては、ハードウェアでしか行われない処理は含まれない。 In addition, the process of detecting the portion to be heated from the information obtained by the sensor of the detecting unit of the above-described embodiment (for example, the process performed by the detection processing unit or the like) and the irradiation state changing unit perform the concentrated heating of the portion to be heated. At least one of the processes for performing the control (for example, the process performed by the control unit or the like) may be realized as, for example, one information processing device. The software for realizing such an information processing apparatus is a program as described below. In other words, the program uses the information indicating the state of the object to be heated by the computer to detect the portion to be heated to be concentrated and the portion to be heated detected in the step of detecting the portion to be heated. And changing one or more microwave irradiating means for irradiating microwaves to the object to be heated so that the object is heated intensively. However, the above program does not include processing that is performed only by hardware.
 このプログラムを実行するコンピュータは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、あるいは分散処理を行ってもよい。 コ ン ピ ュ ー タ The computer that executes this program may be a single computer or multiple computers. That is, centralized processing or distributed processing may be performed.
 図14は、上記プログラムを実行して、上記実施の形態による情報処理装置を実現するコンピュータの外観の一例を示す模式図である。上記実施の形態は、コンピュータハードウェア及びその上で実行されるコンピュータプログラムによって実現されうる。 FIG. 14 is a schematic diagram illustrating an example of the external appearance of a computer that executes the program and realizes the information processing apparatus according to the embodiment. The above embodiment can be realized by computer hardware and a computer program executed on the computer hardware.
 図14において、コンピュータシステム900は、CD-ROM(Compact Disk Read Only Memory)ドライブ905を含むコンピュータ901と、キーボード902と、マウス903と、モニタ904とを備える。 In FIG. 14, the computer system 900 includes a computer 901 including a CD-ROM (Compact Disk Read Only Memory) drive 905, a keyboard 902, a mouse 903, and a monitor 904.
 図15は、コンピュータシステム900の内部構成を示す図である。図15において、コンピュータ901は、CD-ROMドライブ905に加えて、MPU(Micro Processing Unit)911と、ブートアッププログラム等のプログラムを記憶するためのROM912と、MPU911に接続され、アプリケーションプログラムの命令を一時的に記憶すると共に、一時記憶空間を提供するRAM(Random Access Memory)913と、アプリケーションプログラム、システムプログラム、及びデータを記憶するハードディスク914と、MPU911、ROM912等を相互に接続するバス915とを備える。なお、コンピュータ901は、LANへの接続を提供する図示しないネットワークカードを含んでいてもよい。 FIG. 15 is a diagram showing an internal configuration of the computer system 900. As shown in FIG. In FIG. 15, in addition to a CD-ROM drive 905, a computer 901 is connected to an MPU (Micro Processing Unit) 911, a ROM 912 for storing a program such as a boot-up program, and an MPU 911, and executes instructions of an application program. A RAM (Random Access Memory) 913 for temporarily storing and providing a temporary storage space, a hard disk 914 for storing application programs, system programs, and data, and a bus 915 for interconnecting the MPU 911, the ROM 912, and the like. Prepare. Note that the computer 901 may include a network card (not shown) that provides a connection to a LAN.
 コンピュータシステム900に、上記実施の形態による情報処理装置等の機能を実行させるプログラムは、CD-ROM921に記憶されて、CD-ROMドライブ905に挿入され、ハードディスク914に転送されてもよい。これに代えて、そのプログラムは、図示しないネットワークを介してコンピュータ901に送信され、ハードディスク914に記憶されてもよい。プログラムは実行の際にRAM913にロードされる。なお、プログラムは、CD-ROM921、またはネットワークから直接、ロードされてもよい。 A program that causes the computer system 900 to execute the functions of the information processing apparatus and the like according to the above-described embodiment may be stored in the CD-ROM 921, inserted into the CD-ROM drive 905, and transferred to the hard disk 914. Alternatively, the program may be transmitted to the computer 901 via a network (not shown) and stored in the hard disk 914. The program is loaded into the RAM 913 at the time of execution. Note that the program may be loaded directly from the CD-ROM 921 or a network.
 プログラムは、コンピュータ901に、上記実施の形態による加熱装置の機能を実行させるオペレーティングシステム(OS)、またはサードパーティプログラム等を必ずしも含んでいなくてもよい。プログラムは、制御された態様で適切な機能(モジュール)を呼び出し、所望の結果が得られるようにする命令の部分のみを含んでいてもよい。コンピュータシステム900がどのように動作するのかについては周知であり、詳細な説明は省略する。 The program does not necessarily include an operating system (OS) or a third-party program that causes the computer 901 to execute the function of the heating device according to the above-described embodiment. The program may include only a part of an instruction for calling an appropriate function (module) in a controlled manner and obtaining a desired result. It is well known how the computer system 900 operates, and a detailed description thereof will be omitted.
 本発明は、以上の実施の形態に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。 The present invention is not limited to the above-described embodiments, and various changes can be made, and it goes without saying that they are also included in the scope of the present invention.
 以上のように、本発明にかかる加熱装置等は、加熱対象物を加熱する装置等として適しており、特に、マイクロ波を利用して加熱を行なう装置等として有用である。 As described above, the heating apparatus according to the present invention is suitable as an apparatus for heating an object to be heated, and is particularly useful as an apparatus for heating using microwaves.

Claims (11)

  1. 加熱対象物に1または2以上のマイクロ波照射手段によりマイクロ波を照射することで該加熱対象物を加熱する加熱装置であって、
    前記加熱対象物についての状態を示す情報に応じて、集中して加熱すべき加熱対象部分を検出する検出手段と、
    前記検出手段が検出した加熱対象部分が集中的に加熱されるようマイクロ波の照射状態を変化させる照射状態変化手段と、を備えた加熱装置。
    A heating device that heats the object to be heated by irradiating the object with microwaves by one or more microwave irradiation means,
    According to information indicating the state of the object to be heated, detection means for detecting a portion to be heated to be concentratedly heated,
    An irradiation state changing unit that changes an irradiation state of the microwave so that the heating target portion detected by the detection unit is intensively heated.
  2. 2以上の前記マイクロ波照射手段を備えており、
    前記照射状態変化手段は、前記検出手段が検出した加熱対象部分が集中加熱されるよう位相を制御したマイクロ波を、前記2以上のマイクロ波照射手段から照射させる請求項1記載の加熱装置。
    Comprising two or more microwave irradiation means,
    The heating device according to claim 1, wherein the irradiation state changing unit irradiates a microwave whose phase is controlled such that the heating target portion detected by the detection unit is concentratedly heated from the two or more microwave irradiation units.
  3. 前記1または2以上の前記マイクロ波照射手段は、2以上の異なる周波数のマイクロ波を照射するものであり、
    前記照射状態変化手段は、前記検出手段が検出した加熱対象部分が集中加熱されるようなマイクロ波の強度分布となるように前記マイクロ波照射手段に各周波数のマイクロ波を照射させる請求項1記載の加熱装置。
    The one or more microwave irradiating means irradiates microwaves of two or more different frequencies,
    2. The irradiation state changing means irradiates the microwave irradiating means with microwaves of each frequency such that the heating target portion detected by the detecting means has a microwave intensity distribution such that the heating is performed intensively. Heating equipment.
  4. 2以上の前記マイクロ波照射手段を備えており、
    前記照射状態変化手段は、前記検出手段が検出した加熱対象部分が集中加熱されるよう、前記マイクロ波照射手段が照射するマイクロ波の出力を変更する請求項1記載の加熱装置。
    Comprising two or more microwave irradiation means,
    The heating device according to claim 1, wherein the irradiation state changing unit changes an output of the microwave irradiated by the microwave irradiation unit such that the heating target portion detected by the detection unit is concentratedly heated.
  5. 前記照射状態変化手段は、前記マイクロ波照射手段のマイクロ波を出射する出射部の配置を変更する配置変更部を備えており、
    前記配置変更部は、前記検出手段が検出した加熱対象部分が集中加熱されるよう前記出射部の配置を変更する請求項1記載の加熱装置。
    The irradiation state changing unit includes an arrangement changing unit that changes an arrangement of an emission unit that emits microwaves of the microwave irradiation unit,
    The heating device according to claim 1, wherein the arrangement changing unit changes the arrangement of the emission unit such that the heating target portion detected by the detection unit is heated intensively.
  6. 前記照射状態変化手段は、
    前記検出手段が検出した加熱対象部分が集中加熱されるよう位相を制御したマイクロ波の、2以上の前記マイクロ波照射手段からの照射、
    前記検出手段が検出した加熱対象部分が集中加熱されるようなマイクロ波の強度分布とするための、2以上の異なる周波数のマイクロ波を照射する前記マイクロ波照射手段からの各周波数のマイクロ波の照射、
    前記検出手段が検出した加熱対象部分が集中加熱されるようにするための、2以上の前記マイクロ波照射手段からの出力を変更したマイクロ波の照射、および、
    当該照射状態変化手段が備えている前記マイクロ波照射手段のマイクロ波を出射する出射部の配置を変更する配置変更部により、前記検出手段が検出した加熱対象部分が集中加熱されるよう前出射部の配置を変更させて行なわれるマイクロ波の照射、からなる群より選ばれた少なくとも2以上のマイクロ波の照射を行なわせる請求項1記載の加熱装置。
    The irradiation state changing means,
    Irradiation from two or more of the microwave irradiating means of the microwave whose phase is controlled so that the heating target portion detected by the detecting means is concentratedly heated,
    In order to make the intensity distribution of the microwave such that the heating target portion detected by the detection means is concentratedly heated, microwaves of each frequency from the microwave irradiation means for irradiating microwaves of two or more different frequencies are used. Irradiation,
    Irradiation of microwaves whose output from two or more microwave irradiation means has been changed, so that the heating target portion detected by the detection means is concentratedly heated, and
    By the arrangement changing unit that changes the arrangement of the emission unit that emits the microwave of the microwave irradiation unit provided in the irradiation state changing unit, the front emission unit is configured to centrally heat the heating target portion detected by the detection unit. 2. The heating device according to claim 1, wherein at least two or more microwaves selected from the group consisting of microwave irradiation performed by changing the arrangement of the microwaves are applied.
  7. 前記検出手段は、前記加熱対象物の少なくとも互いに平行でない2方向に沿って加熱対象部分を検出する請求項1記載の加熱装置。 The heating device according to claim 1, wherein the detection unit detects a portion to be heated along at least two directions not parallel to each other of the object to be heated.
  8. 前記検出手段は、X線センサ、超音波センサ、温度センサ、圧力センサ、水分センサ、および色を取得するセンサのうちの1以上を有している請求項1記載の加熱装置。 The heating device according to claim 1, wherein the detection unit includes at least one of an X-ray sensor, an ultrasonic sensor, a temperature sensor, a pressure sensor, a moisture sensor, and a sensor for acquiring color.
  9. 前記加熱対象物を搬送する搬送手段をさらに備え、
    前記検出手段は、前記加熱対象物の搬送方向と直交する方向において1次元的に線状に加熱対象部分を検出し、
    前記照射手段は、前記加熱対象物の搬送方向において検出手段の下流に位置し、加熱対象部分を集中加熱するようマイクロ波を照射可能なものであり、前記加熱対象物が搬送されて、前記検出手段が検出した加熱対象部分がマイクロ波を照射可能な位置に搬送されたときに、集中加熱するようマイクロ波を照射する請求項1記載の加熱装置。
    The apparatus further includes a transport unit that transports the object to be heated,
    The detecting means detects the heating target portion linearly in a one-dimensional manner in a direction orthogonal to the conveying direction of the heating target,
    The irradiating unit is located downstream of the detecting unit in the transport direction of the object to be heated, and is capable of irradiating microwaves to intensively heat the portion to be heated. The heating device according to claim 1, wherein the heating unit irradiates the microwave so as to perform concentrated heating when the heating target portion detected by the means is transported to a position where the microwave can be irradiated.
  10. 予め決められた2以上の領域と、当該各領域を集中加熱するための、前記1または2以上のマイクロ波照射手段を制御するための情報と、が対応付けて格納された照射管理情報格納部を更に備え、
    前記照射状態変化手段は、
    前記予め決められた2以上の領域のうちの、前記検出手段が検出した加熱対象部分が位置する領域に対応付けられた前記マイクロ波照射手段を制御するための情報を用いて、当該加熱対象部分が位置する領域を集中加熱するよう前記マイクロ波照射手段にマイクロ波を照射させる請求項1記載の加熱装置。
    An irradiation management information storage unit in which two or more predetermined regions and information for controlling the one or more microwave irradiation units for centrally heating the respective regions are stored in association with each other. Further comprising
    The irradiation state changing means,
    Using information for controlling the microwave irradiating means associated with the area where the heating target part detected by the detecting means is located, of the two or more predetermined areas, the heating target part is used. The heating device according to claim 1, wherein the microwave irradiating unit irradiates the microwave with the microwave so as to centrally heat an area where the unit is located.
  11. コンピュータに、
    加熱対象物についての状態を示す情報に応じて、集中して加熱すべき加熱対象部分を検出するステップと、
    前記加熱対象部分を検出するステップで検出した加熱対象部分が集中的に加熱されるよう、前記加熱対象物にマイクロ波を照射する1または2以上のマイクロ波照射手段に、マイクロ波の照射状態を変化させるステップと、を実行させるためのプログラム。
    On the computer,
    According to the information indicating the state of the object to be heated, a step of detecting a portion to be heated to be concentratedly heated,
    One or more microwave irradiating means for irradiating the microwave to the object to be heated, so that the portion to be heated detected in the step of detecting the portion to be heated is heated intensively, the microwave irradiation state is changed. A step for changing, and a program for executing the step.
PCT/JP2019/033602 2018-09-03 2019-08-28 Heating apparatus and program WO2020050107A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020541151A JP7465548B2 (en) 2018-09-03 2019-08-28 Heating device and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018164261 2018-09-03
JP2018-164261 2018-09-03

Publications (1)

Publication Number Publication Date
WO2020050107A1 true WO2020050107A1 (en) 2020-03-12

Family

ID=69722676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033602 WO2020050107A1 (en) 2018-09-03 2019-08-28 Heating apparatus and program

Country Status (3)

Country Link
JP (1) JP7465548B2 (en)
TW (1) TW202015485A (en)
WO (1) WO2020050107A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012605A (en) * 2004-06-25 2006-01-12 Shimada Phys & Chem Ind Co Ltd Microwave irradiation treating device
JP6088690B1 (en) * 2016-05-13 2017-03-01 マイクロ波化学株式会社 Microwave processing device, program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332381A (en) 2000-05-22 2001-11-30 Matsushita Electric Ind Co Ltd High frequency heating device
JP3825644B2 (en) 2001-02-28 2006-09-27 三洋電機株式会社 microwave

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012605A (en) * 2004-06-25 2006-01-12 Shimada Phys & Chem Ind Co Ltd Microwave irradiation treating device
JP6088690B1 (en) * 2016-05-13 2017-03-01 マイクロ波化学株式会社 Microwave processing device, program

Also Published As

Publication number Publication date
TW202015485A (en) 2020-04-16
JP7465548B2 (en) 2024-04-11
JPWO2020050107A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
CN103039123B (en) Space controlled energy is sent
CN105283076B (en) Temperature testing equipment and Equipment for Heating Processing
US9414444B2 (en) Interface for controlling energy application apparatus
US7280227B2 (en) Device, method and system for measuring the distribution of selected properties in a material
TWI682161B (en) Radar device, method and computer program pdoduct for detecting the characteristics of an object
CN103149372A (en) Method and facility for inspecting and/or sorting, combining surface analysis and volume analysis
Pastorino et al. A microwave tomographic system for wood characterization in the forest products industry
US20180287264A1 (en) Waveguide coupling configuration for a line scanner
EP3101420A1 (en) Sensor for monitoring freezing status of products
CN102812345B (en) A kind of substance detecting method
Brodie The influence of load geometry on temperature distribution during microwave heating
EP3030070B2 (en) Method and apparatus for estimating a seed germination ability
Catarinucci et al. Near field UHF RFID antenna system enabling the tracking of small laboratory animals
WO2020050107A1 (en) Heating apparatus and program
JP6088690B1 (en) Microwave processing device, program
CN114167507B (en) Multi-channel static CT device
Pan et al. Phased array antenna calibration method experimental validation and comparison
Ma et al. Three-dimensional grain angle measurement of softwood (Hinoki cypress) using near infrared spatially and spectrally resolved imaging (NIR-SSRI)
US20230422362A1 (en) Microwave irradiation device
Erzin et al. Barrier coverage problem in 2D
Elshennawy Large Intelligent Surface-Assisted Wireless Communication and Path Loss Prediction Model Based on Electromagnetics and Machine Learning Algorithms.
Toktas Multi-objective design of multilayer microwave dielectric filters using artificial bee colony algorithm
Su et al. Knowledge Development Trajectories of the Radio Frequency Identification Domain: An Academic Study Based on Citation and Main Paths Analysis
Kim et al. Development of the Tele-Measurement of Plasma Uniformity via Surface Wave Information (TUSI) Probe for Non-Invasive In-Situ Monitoring of Electron Density Uniformity in Plasma Display Fabrication Process
US10591423B1 (en) Inline fabric conductivity measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541151

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857064

Country of ref document: EP

Kind code of ref document: A1