WO2020050034A1 - Traveling system - Google Patents

Traveling system Download PDF

Info

Publication number
WO2020050034A1
WO2020050034A1 PCT/JP2019/032716 JP2019032716W WO2020050034A1 WO 2020050034 A1 WO2020050034 A1 WO 2020050034A1 JP 2019032716 W JP2019032716 W JP 2019032716W WO 2020050034 A1 WO2020050034 A1 WO 2020050034A1
Authority
WO
WIPO (PCT)
Prior art keywords
armatures
armature
traveling
magnetic sensors
section
Prior art date
Application number
PCT/JP2019/032716
Other languages
French (fr)
Japanese (ja)
Inventor
康武 山田
謙治 角口
清水 哲也
良行 東
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Publication of WO2020050034A1 publication Critical patent/WO2020050034A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/03Electric propulsion by linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes

Definitions

  • the present invention relates to a traveling system that causes a carriage to travel along a traveling path by a linear motor.
  • Patent Literature 1 includes a bogie including a row of magnets and having a mover that moves on a movement path, and a plurality of stators disposed on the movement path and each including an armature such as a three-phase synchronous motor.
  • a mobile system is disclosed. In this mobile system, the position of the mover is measured by using a pair of Hall elements arranged at both ends of each stator, and the current flowing through each stator is individually controlled.
  • Hall elements as magnetic sensors for detecting the position of the magnet row are arranged at both ends of each stator. In a portion where a plurality of magnetic sensors are arranged between adjacent stators, it is necessary to increase the distance between the stators compared to a portion where only one magnetic sensor is arranged.
  • the present invention has been made in view of the above problems, and provides a traveling system that can reduce the distance between stators.
  • a traveling system is a traveling system including a bogie that runs on a predetermined running path, and a ground-side facility including a running rail that defines the running path, wherein the bogie has a magnetic effect. And the ground-side equipment is discretely arranged along the travel path, and moves the magnet row by a magnetic action of a magnetic field generated by a current flowing through each of the magnet rows.
  • K armatures (where K is an integer of 2 or more) and L magnetic sensors (the K armatures) that are alternately arranged along the traveling path with the K armatures and detect a magnetic field generated by the magnet row.
  • L is an integer of 2 or more
  • M is an integer of 2 or more
  • the K armatures are arranged in N pieces along the first section of the traveling path.
  • the N is 2 or more and the K
  • O second armatures where O is greater than or equal to 2 and K
  • the L magnetic sensors are disposed between the N first armatures
  • the (N-1) first magnetic sensors are disposed between the N first armatures.
  • (O-1) second magnetic sensors disposed between the O second armatures, and a shared magnetic field disposed between the first armature group and the second armature group.
  • a first controller for controlling a current flowing through the first armature group based on detection values of the (N-1) first magnetic sensors and the shared magnetic sensors. Based on the detected values of the (O-1) second magnetic sensors and the shared magnetic sensor. And a second controller for controlling the current flowing through the second armature unit.
  • a shared magnetic sensor that outputs a detection value to both the first controller that controls the current of the first armature group and the second controller that controls the current of the second armature group is provided by the first armature. It is provided between the group and the second armature group. For this reason, the detection value of the shared magnetic sensor is used even when the bogie straddles the first section in which the first armature group is arranged and the second section in which the second armature group is arranged.
  • the first controller and the second controller can control the currents of the first armature group and the second armature group, respectively. Therefore, the distance between the armature groups can be reduced as compared with a configuration in which a plurality of magnetic sensors are arranged between adjacent armature groups.
  • the first controller may be configured such that the magnet array has at least one side of the N first armatures based on detection values of the (N-1) first magnetic sensors and the shared magnetic sensor. While determining that the magnet row is located at least one side of the N first armatures, An electric current is caused to flow through each of the armatures, and the second controller sets the magnet array to the O second electric motors based on the detection values of the (O-1) second magnetic sensors and the shared magnetic sensor. Determining whether or not the magnet row is positioned on at least one side of the O armature; and determining that the magnet row is positioned on at least one side of the O second armatures. A current may flow through each of the O second armatures.
  • the first controller supplies current to each of the N first armatures when the cart overlaps with at least a part of the first armature group.
  • the second controller supplies current to each of the O second armatures when the cart overlaps at least a part of the second armature group. Therefore, when the trolley straddles the first section and the second section, the trolley can be operated efficiently.
  • At least one of the first section and the second section may be a curved section in which the travel path is a curve.
  • the magnet row when the magnet row aligned in a straight line of the bogie passes through the curved section, the magnet row includes a first region in which the ratio of overlapping with one armature is larger than a predetermined ratio and one armature.
  • the second region has an overlapping ratio equal to or less than a predetermined ratio. Therefore, in order to operate the bogie efficiently, it is necessary to control the armature group so that thrust acts on the first region of the magnet row, and it is necessary to detect the position of the magnet row of the bogie more accurately. Become.
  • two magnetic sensors are arranged at both ends of one first armature group in which the first controller controls the current, and whether the bogie is located in the first section where the one armature group is arranged The determination is not made using the two magnetic sensors.
  • a magnetic sensor disposed between a plurality of first armatures constituting the one armature group and a second armature group adjacent to the one first armature group are disposed. The position of the cart is detected using the shared magnetic sensor. For this reason, the position of the bogie in the curved section where the first armature group is arranged can be accurately detected, and the bogie can be operated efficiently. Similarly, even when the second section is a curved section, the position of the bogie in the curved section in which the second armature group is arranged can be accurately detected, and the bogie can be operated efficiently.
  • At least one of the N pieces and the O pieces may be the number of the armatures at which the magnet rows overlap at the same time when the bogie is located in the curved section.
  • the bogie when the bogie is located in a curved section, the current flowing through the first armature group constituted by the three armatures arranged adjacent to each other is controlled. Also, a large thrust can be applied to the bogie. Further, when the bogie is positioned over two sections, it is possible to obtain a combined thrust from the two armature groups equivalent to the maximum thrust of each armature group. For this reason, even when the magnet array of the cart straddles two sections including the curved section, the cart can be operated efficiently.
  • a traveling system is a traveling system including a bogie traveling on a predetermined traveling path, and a ground-side facility including a traveling rail that defines the traveling path, wherein the bogie includes: A magnet array that moves along the travel path under a magnetic action, wherein the ground-side equipment is discretely arranged along the travel path, and the magnet array is magnetically generated by a magnetic field generated by a current flowing through each of the magnet rows; A plurality of armatures to move, a plurality of magnetic sensors arranged alternately with the plurality of armatures along the traveling path, and a plurality of magnetic sensors for detecting a magnetic field by the magnet array, and a current flowing through one or more armatures. And a plurality of controllers for controlling, and a part of the plurality of magnetic sensors outputs detection values to both of a pair of controllers for controlling a current to a pair of armatures sandwiching the magnetic sensors.
  • a magnetic sensor that outputs a detection value to both the pair of controllers that controls the currents of the pair of armatures is provided between the pair of armatures. For this reason, even when the bogie straddles the pair of armatures, the pair of controllers can control the current of the pair of armatures using the detection value of the magnetic sensor. . Therefore, the distance between the armature groups can be reduced as compared with a configuration in which a plurality of magnetic sensors are arranged between adjacent armature groups.
  • the traveling system of the present invention can reduce the distance between the armature groups as compared with a configuration in which a plurality of magnetic sensors are arranged between the armature groups.
  • FIG. 1 is a perspective view showing a traveling system according to the embodiment.
  • FIG. 2 is a diagram illustrating the ground equipment and the bogie of the traveling device according to the embodiment from the traveling direction.
  • FIG. 3 is a plan view of the traveling system according to the embodiment except for a traveling rail.
  • FIG. 4 is a plan view showing a case where the bogie exists at a position straddling different curved sections in the traveling system according to the embodiment.
  • FIG. 5 is a diagram illustrating the magnitude of the thrust exerted on the magnet row according to the position of the magnet row, which is obtained from three armatures forming one armature group in the embodiment.
  • FIG. 6 is a diagram illustrating a configuration of the armature according to the embodiment.
  • FIG. 1 is a perspective view showing a traveling system according to the embodiment.
  • FIG. 2 is a diagram illustrating the ground equipment and the bogie of the traveling device according to the embodiment from the traveling direction.
  • FIG. 3 is a plan view of the traveling system according
  • FIG. 7 is a diagram showing the magnitude of the thrust exerted on the magnet array according to the position of the magnet array, obtained from the two armature groups in the embodiment.
  • FIG. 8 is a plan view of a traveling system according to a modified example excluding a traveling rail.
  • FIG. 1 is a perspective view showing the traveling system.
  • FIG. 2 is a diagram illustrating the ground-side equipment of the traveling device and the bogie from the traveling direction.
  • the traveling direction of the straight section in the traveling system 100 is defined as the X-axis direction
  • the direction substantially perpendicular to the traveling direction in the horizontal direction is defined as the Y-axis direction
  • the vertical direction is defined as the Z-axis direction.
  • a traveling system 100 holds a product 10 along a traveling path (for example, a part of an oval-shaped traveling path is shown in FIG. 1). It travels to the transfer space 101 and transfers the article 10.
  • the traveling system 100 is a system including a cart 211, a transfer mechanism 212 attached to the cart 211, and a carry-in device 400 for carrying the article 10 into the predetermined transfer space 101.
  • the carry-in device 400 is a device that carries the article 10 to the carriage 211 arranged in the transfer space 101 in a direction (Y-axis direction) intersecting with the traveling path.
  • the type of the loading device 400 is not particularly limited, and in the case of the present embodiment, a belt conveyor is employed.
  • the carry-in device 400 keeps the article 10 at a position upstream of the flow of the article 10 and accelerates the article 10 to a predetermined speed based on information that the carriage 211 arrives at the transfer space 101, The article 10 can be carried into the carriage 211 in the transfer space 101.
  • the traveling system 100 is a device that causes the plurality of carriages 211 to travel along a traveling path by using a linear motor.
  • the traveling system 100 includes ground-side facilities that form a traveling path, and a bogie 211 that travels along the traveling path.
  • the ground-side equipment is provided with a traveling rail 110 that defines a traveling path, a plurality of armatures 120 arranged along the traveling path, and a plurality of armatures 120 arranged alternately along the traveling path.
  • a plurality of magnetic sensors 130 for detecting a magnetic field by the H.225.
  • the carriage 211 travels along a traveling path defined by the traveling rail 110.
  • the carriage 211 does not include a battery or an electric motor.
  • the drive source for running the carriage 211 is a linear motor that obtains a driving force in the running direction by an external magnetic action.
  • the cart 211 includes a magnet row 225 in which a plurality of permanent magnets are arranged.
  • the magnet array 225 of the carriage 211 generates a thrust in the traveling direction by receiving a magnetic action from the armature 120 arranged continuously or discretely along the traveling path of the carriage 211. As a result, the carriage 211 travels along the traveling path.
  • the magnet row 225 is constituted by, for example, a plurality of permanent magnets.
  • the plurality of permanent magnets constituting the magnet row 225 are arranged side by side in the traveling direction with respect to the carriage 211.
  • the plurality of permanent magnets forming the magnet row 225 are arranged in a straight line along the traveling direction of the carriage 211.
  • two magnet rows 225 of the carriage 211 are arranged in the Z-axis direction so as to sandwich the armature 120 (see FIG. 2).
  • a plurality of permanent magnets are arranged on both sides of the armature 120 in the running direction.
  • the plurality of permanent magnets arranged on one side of the armature 120 have a Halbach array, and are arranged on the side facing the armature 120 such that N poles and S poles are alternately oriented. Further, the plurality of permanent magnets arranged on the other side of the armature 120 have a Halbach array in which the arrangement of N poles and S poles is different from the plurality of permanent magnets arranged on one side.
  • the magnet array 225 may be arranged only on one side of the armature 120.
  • the cart 211 includes a base 219 serving as a structural base.
  • the transfer mechanism 212 and the transfer movable element 213 are attached to the base 219 in addition to the magnet row 225. Further, four wheels 218 mounted on the traveling rail 110 and rolling are attached to a lower portion of the base 219 of the carriage 211.
  • the transfer mechanism 212 is provided on the carriage 211, receives the article 10 from the carry-in device 400 in the transfer space 101 set in the traveling path, moves the article 10 to a predetermined location in the carriage 211, and This is a mechanism for moving the article 10 conveyed by the carriage 211 in the mounting space 101 to an unloading device (not shown).
  • the type of the transfer mechanism 212 is not particularly limited, in the case of the present embodiment, the transfer mechanism 212 is a so-called belt that can move the article 10 in a direction orthogonal to the traveling direction of the carriage 211. It is a conveyor.
  • the transfer mechanism 212 is driven by an endless annular member 221 that moves the article 10 in a mounted state, a pair of rollers 222 that circulates the endless annular member 221 along a predetermined track, and a transfer stator 224. And a transmission member 223 for transmitting a driving force from the transfer movable element 213 to one roller 222.
  • the transfer mechanism 212 is not limited to the above.
  • a roller conveyor without the endless annular member 221 may be used.
  • the traveling rail 110 is a member for forming a traveling path on which the carriage 211 travels.
  • the traveling rail 110 is made of, for example, a metal such as aluminum or an aluminum alloy. Note that the traveling rail 110 may be made of another metal or resin.
  • the travel rail 110 forms, for example, a track-like travel path, and the travel path has a straight section and a circular section. And a curve section which is a curve.
  • the curved section has a semicircular arc shape, and the running rails 110 arranged in the curved section are also curved in a semicircular arc shape and are arranged inside and outside the curved section in parallel.
  • FIG. 3 is a plan view of the traveling system without the traveling rail.
  • FIG. 3 shows armatures 120a to 120i, 124a to 124d, magnetic sensors 130a to 130i, 131a to 131d, and controllers 310, 320, 330, 341 to 344 as ground-side facilities.
  • FIG. 3 shows one carriage 211.
  • the plurality of armatures 120 described in FIG. 1 and FIG. 2 will be described as armatures 120a to 120i and 124a to 124d, which have different reference numerals depending on the arrangement position.
  • the plurality of magnetic sensors 130 described in FIG. 1 will be described as magnetic sensors 130a to 130i and 131a to 131d assigned different reference numerals depending on the arrangement position.
  • the numbers of armatures, magnetic sensors, and controllers included in the entire traveling system 100 may be described as K, L, and M, respectively.
  • the thirteen armatures 120a to 120i and 124a to 124d are arranged discretely over the entire traveling path.
  • that the armatures are discretely arranged means that the configuration of the coil or the like that substantially functions as the armature is discretely arranged.
  • the package (base member) of the armature is common. May be constituted.
  • nine armatures 120a to 120i are arranged in first to third sections 401 to 403 in which the running path is a curved section, and four The armatures 124a to 124d are arranged in fourth and fifth sections 404 and 405 in which the traveling path is a straight section.
  • the intervals at which the nine armatures 120a to 120i arranged in the first to third sections 401 to 403 are discretely arranged are the interval at which the armatures 124a and 124b are discretely arranged in the fourth section 404, and the armature 124c. , 124d are smaller than the intervals at which the discrete intervals are arranged in the fifth section 405.
  • the linearly extending magnet rows 225 can easily overlap with the plurality of armatures 120 arranged in a straight line at the same time, whereas the first to This is because in the third sections 401 to 403, it is difficult for the linearly extending magnet row 225 to overlap with the plurality of armatures 120 arranged in a curved line at the same time. That is, in the first to third sections 401 to 403, the number of the armatures 120 per unit distance of the traveling path is arranged more than in the fourth and fifth sections 404 and 405, so that the magnet array of the bogie 211 is arranged. It is adjusted so that the magnetic action on 225 works more.
  • the # 9 armatures 120a to 120i include a first armature group 121, a second armature group 122, and a third armature group 123.
  • the first armature group 121 includes N (N is an integer of 2 or more and less than L, and 3 in the present embodiment) N adjacent first along the first section 401 of the traveling path. It is composed of armatures 120a to 120c.
  • the second armature group 122 includes O pieces (O is an integer of 2 or more and less than L, which are arranged adjacent to each other along the second section 402 adjacent to the first section 401 of the traveling path. In the embodiment, it is constituted by the second armatures 120d to 120f of 3).
  • the third armature group 123 includes three third armatures 120g to 120i arranged adjacent to each other along a third section 403 adjacent to the second section 402 of the traveling road.
  • the thirteen magnetic sensors 130a to 130i and 131a to 131d are discretely arranged over the entire travel path similarly to the thirteen armatures 120a to 120i and 124a to 124d, and the thirteen armatures 120a to 120i are arranged. , 124a to 124d.
  • the thirteen armatures 120a to 120i, 124a to 124d and the thirteen magnetic sensors 130a to 130i, 131a to 131d overlap each other in a direction substantially perpendicular to the traveling direction (the Z-axis direction in the present embodiment). Is located without.
  • the nine magnetic sensors 130a to 130i include (N-1) (two in the present embodiment) first magnetic sensors 130a and 130b and (O-1) (two in the present embodiment).
  • the second magnetic sensors 130d and 130e, the two third magnetic sensors 130g and 130h, the shared magnetic sensors 130c and 130f, and the magnetic sensor 130i are arranged in the first section 401 between the three first armatures 120a to 120c.
  • the two second magnetic sensors 130d and 130e are arranged in the second section 402 between the three second armatures 120d to 120f.
  • the two third magnetic sensors 130g and 130h are arranged in the third section 403 between the three third armatures 120g to 120i.
  • the shared magnetic sensor 130c is arranged between the first armature group 121 and the second armature group 122. That is, the shared magnetic sensor 130c is arranged near the boundary between the first section 401 and the second section 402.
  • the shared magnetic sensor 130f is arranged between the second armature group 122 and the third armature group 123. That is, the shared magnetic sensor 130f is arranged near the boundary between the second section 402 and the third section 403.
  • the magnetic sensor 130i is arranged between the third armature group 123 and the armature 124c.
  • the 13 magnetic sensors 130a to 130i and 131a to 131d are arranged on one side (for example, the front side in the traveling direction) of the 13 armatures 120a to 120i and 124a to 124d. Conversely, the thirteen magnetic sensors 130a to 130i, 131a to 131d may be disposed on the other side (for example, on the rear side in the traveling direction) of the thirteen armatures 120a to 120i, 124a to 124d, respectively.
  • the thirteen magnetic sensors 130a to 130i and 131a to 131d may be formed integrally with the thirteen armatures 120a to 120i and 124a to 124d, respectively.
  • the armature and the magnetic sensor can be arranged at a time, so that the thirteen armatures 120a to 120i, 124a to 124d, and 13
  • the labor required for arranging the magnetic sensors 130a to 130i and 131a to 131d can be reduced.
  • the seven controllers 310, 320, 330, and 341 to 344 are connected to the thirteen armatures 120a to 120i and 124a to 124d in accordance with the detection values obtained by the thirteen magnetic sensors 130a to 130i and 131a to 131d. Control the flowing current.
  • the seven controllers 310, 320, 330, 341 to 344 control the traveling of the carriage 211.
  • the # 7 controllers 310, 320, 330, 341 to 344 include a first controller 310, a second controller 320, and a third controller 330.
  • the first controller 310 controls a current flowing through the first armature group 121 based on detection values of the two first magnetic sensors 130a and 130b and the shared magnetic sensor 130c.
  • the first controller 310 detects the position of the bogie 211 in the first section 401 of the traveling path from the detection values of the two first magnetic sensors 130a and 130b and the shared magnetic sensor 130c, and according to the detected position of the bogie 211.
  • the thrust by the magnetic action acting on the carriage 211 is controlled.
  • the first controller 310 determines that the magnet array 225 of the carriage 211 has at least one of the three first armatures 120a to 120c. It is determined whether it is located on one side (in this embodiment, above). While the first controller 310 determines that the magnet array 225 is located on at least one side of the three first armatures 120a to 120c, the three first armatures 120a to 120c are determined. Apply current to each of the.
  • the first controller 310 starts flowing current to the first armature 120a at the timing when the magnet array 225 enters above the first armature 120a, and the magnet array 225 retreats from above the first armature 120a. At the timing, the current is completely passed through the first armature 120a.
  • the first controller 310 similarly controls the current for the first armatures 120b and 120c.
  • the U-phase, V-phase, and W-phase coils are electrically connected to each other.
  • An equal current flows through one armature 120a, 120b, 120c.
  • the first controller 310 controls the current flowing through the first armatures 120a, 120b, 120c such that the speed (positional deviation) of the bogie 211 is substantially constant by the thrusts of the first armatures 120a, 120b, 120c. .
  • a change in thrust due to the individual armatures shown in FIG. 5 is obtained.
  • a predetermined current is applied to the first armatures 120a, 120b, and 120c as described later with reference to FIG.
  • the thrust given to the carriage 211 by the first armatures 120a, 120b, 120c is substantially constant regardless of the position of the carriage 211, controlling the current flowing through the first armatures 120a, 120b, 120c allows the carriage to be controlled.
  • the speed of 211 can be made substantially constant.
  • the change in thrust reflects the size of the area where each armature and the magnet row 225 overlap.
  • the first controller 310 is electrically connected to the relay board 311 communicably connected to the two first magnetic sensors 130a and 130b and the shared magnetic sensor 130c, and to the first armature group 121. And an amplifier substrate 312.
  • the relay board 311 and the amplifier board 312 are communicably connected so that the amplifier board 312 can acquire detection values from the magnetic sensors 130a to 130c connected to the relay board 311 via the relay board 311. I have.
  • the amplifier board 312 controls the magnitude of the current supplied to the first armature group 121 using the detection values obtained from the magnetic sensors 130a to 130c in the relay board 311.
  • the amplifier board 312 is connected to a power supply (not shown), and power is supplied from the power supply. Note that the relay board 311 and the amplifier board 312 may be formed of the same board.
  • the second controller 320 controls the current flowing through the second armature group 122 based on the detection values of the two second magnetic sensors 130d and 130e and the shared magnetic sensors 130c and 130f.
  • the second controller 320 detects the position of the bogie 211 in the second section 402 of the traveling path from the detection values of the two second magnetic sensors 130d and 130e and the shared magnetic sensors 130c and 130f, and By controlling the current flowing through the second armature group 122 accordingly, the thrust by the magnetic action acting on the carriage 211 is controlled. For example, based on the detection values of the two second magnetic sensors 130d and 130e and the shared magnetic sensors 130c and 130f, the second controller 320 generates the magnet array 225 of the bogie 211 with the three second armatures 120d to 120f.
  • the second controller 320 determines that the magnet array 225 is located on at least one side of the three second armatures 120d to 120f while the three second armatures 120d to 120f. Apply current to each of the. At this time, the second controller 320 starts flowing a current to the second armature 120d at a timing when the magnet array 225 enters above the second armature 120d, and the magnet array 225 retreats from above the second armature 120d. At the timing, the current is completely passed through the second armature 120d. The second controller 320 similarly controls the current for the first armatures 120e and 120f. As a result, a change in thrust by each armature shown in FIG. 5 is obtained.
  • the second controller 320 electrically connects the second armature group 122 with the relay board 321 communicably connected to the two second magnetic sensors 130d and 130e and the shared magnetic sensors 130c and 130f.
  • an amplifier substrate 322 connected to the The relay board 321 and the amplifier board 322 are communicably connected so that the amplifier board 322 can acquire detection values from the magnetic sensors 130c to 130f connected to the relay board 321 via the relay board 321. I have.
  • the amplifier board 322 controls the magnitude of the current supplied to the second armature group 122 using the detection values from the magnetic sensors 130c to 130f acquired by the relay board 321.
  • the amplifier board 322 is connected to a power supply (not shown), and is supplied with power from the power supply. Note that the relay board 321 and the amplifier board 322 may be formed of the same board.
  • the third controller 330 controls the current flowing through the second armature group 122 based on the detection values of the two third magnetic sensors 130g and 130h, the shared magnetic sensor 130f, and the magnetic sensor 130i.
  • the third controller 330 detects the position of the bogie 211 in the third section 403 of the traveling path from the detection values of the two third magnetic sensors 130g and 130h, the shared magnetic sensor 130f, and the magnetic sensor 130i, and detects the detected bogie 211
  • By controlling the current flowing through the third armature group 123 in accordance with the position of, the thrust by the magnetic action acting on the carriage 211 is controlled.
  • the third controller 330 includes three magnet arrays 225 of the carriage 211 and three third armatures 120g. It is determined whether or not it is located on at least one side (upper in the present embodiment) of .about.120i. The third controller 330 determines that the magnet array 225 is located on at least one side of the three third armatures 120g to 120i while the three third armatures 120g to 120i. Apply current to each of the.
  • the third controller 330 starts flowing a current to the third armature 120g at the timing when the magnet array 225 enters above the third armature 120g, and the magnet array 225 retreats from above the third armature 120g. At the timing, the current is completely passed through the third armature 120g.
  • the third controller 330 controls the current for the first armatures 120h and 120i in the same manner. As a result, a change in thrust by each armature shown in FIG. 5 is obtained.
  • the third controller 330 includes a relay board 331 communicably connected to the two third magnetic sensors 130g and 130h, the shared magnetic sensor 130f, and the magnetic sensor 130i, and the third armature group 123 And an amplifier board 332 that is electrically connected to the amplifier board 332.
  • the relay board 331 and the amplifier board 332 are communicably connected so that the amplifier board 332 can acquire detection values from the magnetic sensors 130f to 130i connected to the relay board 331 via the relay board 331.
  • the amplifier board 332 controls the magnitude of the current supplied to the third armature group 123 using the detection values obtained from the magnetic sensors 130f to 130i in the relay board 331.
  • the amplifier board 332 is connected to a power supply (not shown), and is supplied with power from the power supply. Note that the relay board 331 and the amplifier board 332 may be formed of the same board.
  • Each of the controllers 310 to 330 controls the operation of one carriage 211 at an arbitrary time. For this reason, when one carriage 211 exists at a position corresponding to one armature group, the arrangement of each armature and the carriage so that the other carriage 211 cannot enter the position corresponding to the armature group.
  • the dimensions etc. are defined.
  • FIG. 4 is a plan view showing a case where the bogie exists at a position straddling different curved sections in the traveling system according to the embodiment.
  • FIG. 5 is a diagram illustrating the magnitude of the thrust exerted on the magnet row according to the position of the magnet row, which is obtained from three armatures forming one armature group in the embodiment.
  • FIG. 7 is a diagram showing the magnitude of the thrust exerted on the magnet array according to the position of the magnet array, obtained from the two armature groups in the embodiment.
  • the first to third controllers 310, 320, and 330 flow through first to third armature groups 121 to 123 each of which includes three armatures arranged in first to third sections 401 to 403, respectively.
  • the current is controlled by the three armatures in conjunction.
  • the number of armatures constituting each armature group 121 to 123 controlled by each of the controllers 310, 320 and 330 is determined when the bogie 211 is located in the corresponding first to third section 401 to 403.
  • the number of armatures 225 of 211 magnet rows are set to the number of armatures overlapping at the same time.
  • the magnet row 225 of the carriage 211 when the magnet row 225 of the carriage 211 is located in the first to third sections 401 to 403, it can overlap with a maximum of three armatures. Therefore, the number of armatures whose current is controlled by one controller at a time is set to three. Further, as shown in FIG. 5, one armature group is composed of three armatures arranged adjacent to each other, so that a larger thrust can be obtained than when a current is individually supplied to each armature. Can be
  • the magnet array 225 is located above the first armatures 120b and 120c and the second armature 120d, and the magnetic sensors 130b and 130c detect the magnet array 225.
  • the detection values detected by the magnetic sensors 130b and 130c are input to the first controller 310.
  • none of the magnetic sensors 130d to 130f detect the magnet array 225, but the detection value detected by the shared magnetic sensor 130c is input to the second controller 320.
  • the detection value detected by the shared magnetic sensor 130c is output to both the first controller 310 and the second controller 320, so that the carriage 211 straddles the first section 401 and the second section 402.
  • the second controller 320 can start to supply current to the second armature group 122 while the first controller 310 keeps supplying current to the first armature group 121.
  • the maximum thrust of each of the armature groups 121 and 122 is equal to the thrust.
  • a combined thrust from the two armature groups 121 and 122 can be obtained.
  • FIG. 7 illustrates the magnitude of the thrust obtained from the first armatures 120a, 120b, 120c and the second armatures 120d, 120e, 120f.
  • the magnetic sensor 130 is disposed at a position shifted (offset) in the traveling direction of the traveling path with respect to the armature 120, for example, the magnetic sensor 130 is disposed at the second armature 120 d, 120 e, 120 f.
  • the magnetic sensors 130d, 130e, and 130f detect correspondingly, the operation range by the armature and the detection range by the magnetic sensor are shifted. Therefore, in this embodiment, as shown in FIG.
  • the magnetic sensors 130c, 130d, 130e, and 130f detect the second armatures 120d, 120e, and 120f, respectively. That is, the detection results of the magnetic sensors 130c, 130d, 130e, and 130f are input to the second controller 320 that controls the second armatures 120d, 120e, and 120f.
  • the operation range of the armature can be reliably covered by the detection range of the magnetic sensor.
  • the area where the individual armature overlaps the magnet row 225 tends to be smaller than the area in the straight section, and the direction of the armature and the direction of the magnet row 225 may not be aligned. Therefore, the thrust obtained from each armature tends to be smaller than the thrust in the straight section. Therefore, in a curved section, it is highly necessary to obtain a combined thrust from a plurality of armatures.
  • the first controller 310 and the second controller 320 transmit the current to the first armature group 121 and the second armature group 122 when the shared magnetic sensor 130c detects the magnet array 225 of the carriage 211. Since the current flows, the cart 211 can be operated efficiently when the magnet array 225 of the cart 211 straddles the first section 401 and the second section 402.
  • the four controllers 341 to 344 control the current flowing through the four armatures 124a to 124d based on the detection values of the four magnetic sensors 131a to 131d, respectively.
  • the four controllers 341 to 344 are respectively connected to the four magnetic sensors 131a to 131d and the four armatures 124a to 124d in a one-to-one correspondence.
  • the seven controllers 310, 320, 330, and 341 to 344 are connected to a higher-level controller (not shown), and control the traveling of the bogie 211 by receiving control signals corresponding to the respective control results from the higher-level controller. Good.
  • the seven controllers 310, 320, 330, 341 to 344 may be communicably connected to each other, and may control the traveling of the bogie 211 according to the control results of each other.
  • the communication-enabled connection in the present embodiment is a wired connection or a wireless connection capable of exchanging control signals.
  • FIG. 6 is a diagram showing a configuration of the armature according to the embodiment.
  • each of the armatures 120a to 120i is, for example, a three-phase synchronous motor having three coils of a U-phase coil 120aa, a V-phase coil 120ab, and a W-phase coil 120ac. is there. These coils 120aa, 120ab, 120ac are arranged side by side in the traveling direction of the traveling path without overlapping each other.
  • the width of each of the armatures 120a to 120i in the running direction is smaller than the width of the magnet array 225 in the running direction.
  • the U-phase, V-phase, and W-phase coils are mutually connected. It is electrically connected. That is, the U-phase coil 120aa in the armature 120a and the U-phase coil 120ba in the armature 120b are the same as the V-phase coil 120ab in the armature 120a and the V-phase coil 120bb in the armature 120b.
  • the W-phase coil 120ac and the W-phase coil 120bc in the armature 120b are electrically connected to each other. With this configuration, currents of the same magnitude flow through the U-phase, V-phase, and W-phase coils of each armature in the same armature group.
  • the armatures 124a to 124d are three-phase synchronous motors having six coils including two U-phase coils, two V-phase coils, and two W-phase coils. . These six coils are arranged side by side in the traveling direction of the traveling path without overlapping each other.
  • the armatures 124a to 124d only need to include at least one U-phase, V-phase, and W-phase coil, and are not limited to a configuration having six coils.
  • a configuration having 3P (P is a natural number) coils, such as a configuration having nine coils, may be used.
  • first controller 310 that controls the current of first armature group 121
  • the shared magnetic sensor 130c that outputs a detection value to the second controller 320 that controls the current of the second armature group 122 is provided. For this reason, even when the carriage 211 straddles the first section 401 where the first armature group 121 is arranged and the second section 402 where the second armature group 122 is arranged, the shared magnetic sensor Using the detected value of 130c, the first controller 310 and the second controller 320 can control the current of the first armature group 121 and the second armature group 122, respectively.
  • the number of magnetic sensors used in the traveling system 100 can be reduced, and the distance between the armature groups, that is, each armature group can be reduced, as compared with a configuration in which a plurality of magnetic sensors are arranged between adjacent armature groups.
  • the distance between the armatures located at the ends can be reduced.
  • the first controller 310 and the second controller 320 also use the detection values of the shared magnetic sensor 130c arranged near the boundary between the first section 401 and the second section 402 to generate the first armature group 121 and the second armature group. Since the current of the second armature group 122 is controlled, the corresponding armature group can be appropriately controlled even when the bogie is located near the boundary between the first section 401 and the second section 402. . Therefore, a change in the speed of the bogie 211 (fluctuation in position deviation) can be suppressed in a transition portion between the adjacent armature groups, and the bogie 211 operates efficiently in the traveling system 100 using a controller having less than the number of armatures. Can be done.
  • first controller 310 determines whether three first magnets 225 of bogie 211 overlap with at least a part of first armature group 121.
  • a current is applied to each of the armatures 120a to 120c.
  • the second controller 320 supplies a current to each of the three second armatures 120d to 120f when the magnet array 225 of the carriage 211 overlaps at least a part of the second armature group 122. Therefore, when the magnet array 225 of the cart 211 straddles the first section 401 and the second section 402, the cart 211 can be operated efficiently.
  • first section 401 in which first armature group 121 is arranged and second section 402 in which second armature group 122 is arranged. Is a curved section in which the travel path is a curve.
  • the three first armatures 120a to 120c and the three second armatures 120d to 120f are arranged along the curve of the traveling path, so that the carriage 211
  • the magnet array 225 includes a first region in which the ratio of overlapping with one armature is larger than a predetermined ratio and one magnet region.
  • the second region having a ratio overlapping with the armature of the first region is equal to or less than a predetermined ratio. For this reason, in order to operate the carriage 211 efficiently, it is necessary to control the armature group so that the thrust acts on the first region of the magnet row 225. Therefore, the position of the magnet row 225 of the carriage 211 is more accurately determined. It needs to be detected.
  • the first controller 310 arranges two magnetic sensors at both ends of one first armature group 121 for controlling current, and the one armature group 121 is arranged by the two magnetic sensors.
  • the number of the armatures constituting each armature group 121 to 123 controlled by each of the controllers 310, 320, and 330 is the first to third armatures corresponding to the bogie 211.
  • the magnet row 225 of the carriage 211 is set to the number of armatures overlapping at the same time. For this reason, when the bogie 211 is located in the first section 401, the current flowing through the first armature group 121 composed of three adjacent armatures is controlled. A larger thrust can be applied to the bogie 211 than a current flows.
  • the cart is synthesized from the two armature groups 121 and 122 equivalent to the maximum thrust of the individual armature groups 121 and 122. Thrust can be obtained. Therefore, even when the magnet array 225 of the carriage 211 straddles the first section 401 and the second section 402, the carriage 211 can be operated efficiently.
  • the traveling direction of the bogie 211 has been described as one-way from the section 404 to the section 405 through the sections 401, 402, and 403 in FIG. 3, but the armatures 120a to 120i, The relative arrangement of the magnetic sensors 124a to 124d and the magnetic sensors 130a to 130i and 131a to 131d does not change. That is, the bogie 211 can travel from the section 405 to the section 404 via the sections 403, 402, and 401 with the layout of the traveling system shown in FIG.
  • the present invention is not limited to the above embodiment.
  • another embodiment that is realized by arbitrarily combining the components described in this specification and excluding some of the components may be an embodiment of the present invention.
  • the gist of the present invention with respect to the above-described embodiment that is, modified examples obtained by performing various modifications conceivable by those skilled in the art without departing from the meaning indicated by the words described in the claims are also included in the present invention. It is.
  • the relationship between the first and second armature groups 121 and 122, the magnetic sensors 130a to 130f, and the first and second controllers 310 and 320 is the same as that of the second armature group 122.
  • the third armature group 123, the magnetic sensors 130c to 130i, and the second and third controllers 330 is, the structure in which the detection value of the shared magnetic sensor is input to two controllers that control the armature groups adjacent to each other may be repeatedly provided two or more times in the traveling system.
  • the first controller 310 and the second controller 320 are connected to the shared magnetic sensor 130c, but the present invention is not limited to this.
  • the relay board 311A of the first controller 310A is connected to the shared magnetic sensor 130c and the relay board 321A of the second controller 320A is not connected to the shared magnetic sensor 130c.
  • the relay board 311A of the first controller 310A is communicably connected to the relay board 321A of the second controller 320A, and outputs a detection value obtained from each of the magnetic sensors 130a to 130c to the relay board 321A. You may. Even with such a configuration, the second controller 320A can obtain the detection value of the shared magnetic sensor 130c.
  • the second controller 320 and the third controller 330 are connected to the shared magnetic sensor 130f, but are not limited to this.
  • a configuration in which the relay board 321A of the second controller 320A is connected to the shared magnetic sensor 130f and the relay board 331A of the third controller 330A is not connected to the shared magnetic sensor 130f may be adopted.
  • the relay board 321A of the second controller 320A is communicably connected to the relay board 331A of the third controller 330A, and outputs detection values obtained from the magnetic sensors 130d to 130f to the relay board 331A. You may. Even with such a configuration, the third controller 330A can obtain the detection value of the shared magnetic sensor 130f.
  • FIG. 8 is a plan view of the traveling system according to the modified example excluding the traveling rail.
  • each of the relay boards of the first to third controllers may be formed of one and the same board. Even with such a configuration, the second controller can obtain the detection value of the shared magnetic sensor 130c, and the third controller can obtain the detection value of the shared magnetic sensor 130f.
  • each controller the number of armatures controlled by each controller is three, but in a modified example, it may be four or more, or may be one.
  • each magnetic sensor outputs a detection value to both of a pair of controllers that control a current to a pair of armatures sandwiching the magnetic sensor.
  • each armature 120 includes one set of UVW-phase coils.
  • two or more sets of UVW-phase coils may be provided.
  • each set of UVW phase coils may be physically independent. That is, each armature 120 may be configured as an aggregate of a plurality of armatures.
  • the present invention can be used for facilities that transport goods at high speed, such as distribution bases, automatic warehouses, factories, and the like.

Abstract

This traveling system (100) has: a cart (211) having a magnet array (225); a first armature group (121) configured by three first armatures (120a-120c) arranged in a first section (401); a second armature group (122) configured by three second armatures (120d-120f) arranged in a second section (402); two first magnetic sensors (130a, 130b) arranged between the three first armatures; two second magnetic sensors (130d, 130e) arranged between the three second armatures; a shared magnetic sensor (130c) arranged between the first armature group and the second armature group; a first controller (310) that controls the current flowing through the first armature group on the basis of the detection values of the two first magnetic sensors and the shared magnetic sensor; and a second controller (320) that controls the current flowing through the second armature group on the basis of the detection values of the two second magnetic sensors and the shared magnetic sensor.

Description

走行システムTraveling system
 本発明は、リニアモータにより台車を走行路に沿って走行させる走行システムに関する。 The present invention relates to a traveling system that causes a carriage to travel along a traveling path by a linear motor.
 特許文献1には、磁石列からなり、移動経路上を移動する可動子を有する台車と、移動経路上に配置されそれぞれが3相同期モータなどの電機子からなる複数の固定子と、を備える移動体システムが開示されている。この移動体システムでは、各固定子の両端に配置される一対のホール素子を用いることで、可動子の位置を測定し、各固定子に流れる電流を個別に制御している。 Patent Literature 1 includes a bogie including a row of magnets and having a mover that moves on a movement path, and a plurality of stators disposed on the movement path and each including an armature such as a three-phase synchronous motor. A mobile system is disclosed. In this mobile system, the position of the mover is measured by using a pair of Hall elements arranged at both ends of each stator, and the current flowing through each stator is individually controlled.
特開2011-50200号公報JP 2011-50200 A
 特許文献1に示す移動体システムでは、磁石列の位置を検出する磁気センサとしてのホール素子が、各固定子の両端に配置されている。隣り合う固定子相互間に複数の磁気センサが配置される部分では、1つの磁気センサのみ配置される部分に比べて、固定子相互間の距離を広くとる必要がある。 In the moving body system disclosed in Patent Document 1, Hall elements as magnetic sensors for detecting the position of the magnet row are arranged at both ends of each stator. In a portion where a plurality of magnetic sensors are arranged between adjacent stators, it is necessary to increase the distance between the stators compared to a portion where only one magnetic sensor is arranged.
 本発明は、上記課題に鑑みてなされたものであり、固定子相互間の距離を短縮できる走行システムを提供する。 The present invention has been made in view of the above problems, and provides a traveling system that can reduce the distance between stators.
 本発明の一態様に係る走行システムは、所定の走行路を走行する台車と、前記走行路を規定する走行レールを備える地上側設備と、を備える走行システムであって、前記台車は、磁気作用を受けて前記走行路に沿って移動する磁石列を有し、前記地上側設備は、前記走行路に沿って離散配置され、それぞれに流れる電流により発生する磁場の磁気作用により前記磁石列を移動させるK個の電機子(前記Kは2以上の整数)と、前記走行路に沿って前記K個の電機子と交互に配置され、前記磁石列による磁界を検出するL個の磁気センサ(前記Lは2以上の整数)と、M個のコントローラ(前記Mは2以上の整数)と、を備え、前記K個の電機子は、前記走行路の第1区間に沿って配置されるN個の第1電機子(前記Nは2以上かつ前記K未満の整数)により構成される第1電機子群と、前記走行路の前記第1区間に隣り合う第2区間に沿って配置されるO個の第2電機子(前記Oは2以上かつ前記K未満の整数)により構成される第2電機子群とを含み、前記L個の磁気センサは、前記N個の第1電機子の間に配置される(N-1)個の第1磁気センサと、前記O個の第2電機子の間に配置される(O-1)個の第2磁気センサと、前記第1電機子群および前記第2電機子群の間に配置される共有磁気センサとを含み、前記M個のコントローラは、前記(N-1)個の第1磁気センサおよび前記共有磁気センサの検出値に基づいて前記第1電機子群に流れる電流を制御する第1コントローラと、前記(O-1)個の第2磁気センサおよび前記共有磁気センサの検出値に基づいて前記第2電機子群に流れる電流を制御する第2コントローラとを含む。 A traveling system according to an aspect of the present invention is a traveling system including a bogie that runs on a predetermined running path, and a ground-side facility including a running rail that defines the running path, wherein the bogie has a magnetic effect. And the ground-side equipment is discretely arranged along the travel path, and moves the magnet row by a magnetic action of a magnetic field generated by a current flowing through each of the magnet rows. K armatures (where K is an integer of 2 or more) and L magnetic sensors (the K armatures) that are alternately arranged along the traveling path with the K armatures and detect a magnetic field generated by the magnet row. L is an integer of 2 or more) and M controllers (M is an integer of 2 or more), and the K armatures are arranged in N pieces along the first section of the traveling path. Of the first armature (the N is 2 or more and the K ) And O second armatures (where O is greater than or equal to 2 and K) that are arranged along a second section adjacent to the first section of the travel path. (An integer less than), the L magnetic sensors are disposed between the N first armatures, and the (N-1) first magnetic sensors are disposed between the N first armatures. And (O-1) second magnetic sensors disposed between the O second armatures, and a shared magnetic field disposed between the first armature group and the second armature group. And a first controller for controlling a current flowing through the first armature group based on detection values of the (N-1) first magnetic sensors and the shared magnetic sensors. Based on the detected values of the (O-1) second magnetic sensors and the shared magnetic sensor. And a second controller for controlling the current flowing through the second armature unit.
 これによれば、第1電機子群の電流を制御する第1コントローラ、および、第2電機子群の電流を制御する第2コントローラの双方に検出値を出力する共有磁気センサを第1電機子群と第2電機子群との間に備える。このため、第1電機子群が配置される第1区間および第2電機子群が配置される第2区間に台車が跨がっている場合であっても、共有磁気センサの検出値を用いて、第1コントローラおよび第2コントローラは、それぞれ、第1電機子群および第2電機子群の電流を制御することができる。よって、隣り合う電機子群相互間に複数の磁気センサを配置する構成に比べて、電機子群相互間の距離を短縮できる。 According to this, a shared magnetic sensor that outputs a detection value to both the first controller that controls the current of the first armature group and the second controller that controls the current of the second armature group is provided by the first armature. It is provided between the group and the second armature group. For this reason, the detection value of the shared magnetic sensor is used even when the bogie straddles the first section in which the first armature group is arranged and the second section in which the second armature group is arranged. Thus, the first controller and the second controller can control the currents of the first armature group and the second armature group, respectively. Therefore, the distance between the armature groups can be reduced as compared with a configuration in which a plurality of magnetic sensors are arranged between adjacent armature groups.
 また、前記第1コントローラは、前記(N-1)個の第1磁気センサおよび前記共有磁気センサの検出値に基づいて、前記磁石列が前記N個の第1電機子の少なくとも1個の側方に位置しているか否かを判定し、前記磁石列が前記N個の第1電機子の少なくとも1個の側方に位置していると判定している間に、前記N個の第1電機子のそれぞれに電流を流し、前記第2コントローラは、前記(O-1)個の第2磁気センサおよび前記共有磁気センサの検出値に基づいて、前記磁石列が前記O個の第2電機子の少なくとも1つの側方に位置しているか否かを判定し、前記磁石列が前記O個の第2電機子の少なくとも1つの側方に位置していると判定している間に、前記O個の第2電機子のそれぞれに電流を流してもよい。 In addition, the first controller may be configured such that the magnet array has at least one side of the N first armatures based on detection values of the (N-1) first magnetic sensors and the shared magnetic sensor. While determining that the magnet row is located at least one side of the N first armatures, An electric current is caused to flow through each of the armatures, and the second controller sets the magnet array to the O second electric motors based on the detection values of the (O-1) second magnetic sensors and the shared magnetic sensor. Determining whether or not the magnet row is positioned on at least one side of the O armature; and determining that the magnet row is positioned on at least one side of the O second armatures. A current may flow through each of the O second armatures.
 これによれば、第1コントローラは、台車が第1電機子群の少なくとも一部と重なっている場合に、N個の第1電機子のそれぞれに電流を流す。第2コントローラは、台車が第2電機子群の少なくとも一部と重なっている場合に、O個の第2電機子のそれぞれに電流を流す。このため、台車が第1区間および第2区間に跨がっている場合に、台車を効率よく動作させることができる。 According to this, the first controller supplies current to each of the N first armatures when the cart overlaps with at least a part of the first armature group. The second controller supplies current to each of the O second armatures when the cart overlaps at least a part of the second armature group. Therefore, when the trolley straddles the first section and the second section, the trolley can be operated efficiently.
 また、前記第1区間および前記第2区間の少なくとも一方は、前記走行路が曲線である曲線区間であってもよい。 At least one of the first section and the second section may be a curved section in which the travel path is a curve.
 例えば、第1区間が曲線区間である場合、第1区間では、N個の第1電機子が走行路の曲線に沿って並ぶ。このため、台車の直線状に並ぶ磁石列が当該曲線区間を通過する場合、磁石列は、1個の電機子と重なる割合が所定の割合よりも大きい第1領域と、1個の電機子と重なる割合が所定の割合以下の第2領域とを有することになる。したがって、台車を効率よく動作させるためには、磁石列の第1領域に推力がはたらくように電機子群を制御する必要があり、台車の磁石列の位置をより精度よく検出することが必要となる。走行システムでは、第1コントローラが電流を制御する1つの第1電機子群の両端に2つの磁気センサを配置し、当該1つの電機子群が配置されている第1区間に台車が位置するか否かを当該2つの磁気センサを用いて検出するのではない。走行システムでは、当該1つの電機子群を構成する複数の第1電機子の間に配置される磁気センサと、当該1つの第1電機子群に隣り合う第2電機子群との間に配置される共有磁気センサとを用いて台車の位置を検出する。このため、当該第1電機子群が配置される曲線区間における台車の位置を精度よく検出することができ、台車を効率よく動作させることができる。第2区間が曲線区間である場合でも同様に、第2電機子群が配置される曲線区間における台車の位置を精度よく検出することができ、台車を効率よく動作させることができる。 For example, if the first section is a curved section, in the first section, N first armatures are arranged along the curve of the traveling path. For this reason, when the magnet row aligned in a straight line of the bogie passes through the curved section, the magnet row includes a first region in which the ratio of overlapping with one armature is larger than a predetermined ratio and one armature. The second region has an overlapping ratio equal to or less than a predetermined ratio. Therefore, in order to operate the bogie efficiently, it is necessary to control the armature group so that thrust acts on the first region of the magnet row, and it is necessary to detect the position of the magnet row of the bogie more accurately. Become. In the traveling system, two magnetic sensors are arranged at both ends of one first armature group in which the first controller controls the current, and whether the bogie is located in the first section where the one armature group is arranged The determination is not made using the two magnetic sensors. In the traveling system, a magnetic sensor disposed between a plurality of first armatures constituting the one armature group and a second armature group adjacent to the one first armature group are disposed. The position of the cart is detected using the shared magnetic sensor. For this reason, the position of the bogie in the curved section where the first armature group is arranged can be accurately detected, and the bogie can be operated efficiently. Similarly, even when the second section is a curved section, the position of the bogie in the curved section in which the second armature group is arranged can be accurately detected, and the bogie can be operated efficiently.
 また、前記N個および前記O個の少なくとも一方は、前記台車が前記曲線区間に位置する場合に前記磁石列が同時に重なる前記電機子の数であってもよい。 At least one of the N pieces and the O pieces may be the number of the armatures at which the magnet rows overlap at the same time when the bogie is located in the curved section.
 このため、曲線区間に台車が位置する場合、3つの隣り合って配置される電機子により構成される第1電機子群に流れる電流を制御するため、個々の電機子に個別に電流を流すよりも大きな推力を台車に作用させることができる。また、2つの区間に跨がって台車が位置する場合、個々の電機子群の最大推力と同等の、2つの電機子群からの合成された推力を得ることができる。このため、台車の磁石列が曲線区間を含む2つの区間に跨がっている場合であっても、台車を効率よく動作させることができる。 For this reason, when the bogie is located in a curved section, the current flowing through the first armature group constituted by the three armatures arranged adjacent to each other is controlled. Also, a large thrust can be applied to the bogie. Further, when the bogie is positioned over two sections, it is possible to obtain a combined thrust from the two armature groups equivalent to the maximum thrust of each armature group. For this reason, even when the magnet array of the cart straddles two sections including the curved section, the cart can be operated efficiently.
 本発明の他の一態様に係る走行システムは、所定の走行路を走行する台車と、前記走行路を規定する走行レールを備える地上側設備と、を備える走行システムであって、前記台車は、磁気作用を受けて前記走行路に沿って移動する磁石列を有し、前記地上側設備は、前記走行路に沿って離散配置され、それぞれに流れる電流により発生する磁場の磁気作用により前記磁石列を移動させる複数の電機子と、前記走行路に沿って前記複数の電機子と交互に配置され、前記磁石列による磁界を検出する複数の磁気センサと、一つ以上の電機子に流れる電流を制御する複数のコントローラと、を備え、複数の磁気センサの一部は、当該磁気センサを挟む一対の電機子への電流を制御する一対のコントローラの双方に検出値を出力する。 A traveling system according to another aspect of the present invention is a traveling system including a bogie traveling on a predetermined traveling path, and a ground-side facility including a traveling rail that defines the traveling path, wherein the bogie includes: A magnet array that moves along the travel path under a magnetic action, wherein the ground-side equipment is discretely arranged along the travel path, and the magnet array is magnetically generated by a magnetic field generated by a current flowing through each of the magnet rows; A plurality of armatures to move, a plurality of magnetic sensors arranged alternately with the plurality of armatures along the traveling path, and a plurality of magnetic sensors for detecting a magnetic field by the magnet array, and a current flowing through one or more armatures. And a plurality of controllers for controlling, and a part of the plurality of magnetic sensors outputs detection values to both of a pair of controllers for controlling a current to a pair of armatures sandwiching the magnetic sensors.
 これによれば、一対の電機子の電流を制御する一対のコントローラの双方に検出値を出力する磁気センサを当該一対の電機子の間に備える。このため、一対の電機子に台車が跨がっている場合であっても、当該磁気センサの検出値を用いて、当該一対のコントローラは、当該一対の電機子の電流を制御することができる。よって、隣り合う電機子群相互間に複数の磁気センサを配置する構成に比べて、電機子群相互間の距離を短縮できる。 According to this, a magnetic sensor that outputs a detection value to both the pair of controllers that controls the currents of the pair of armatures is provided between the pair of armatures. For this reason, even when the bogie straddles the pair of armatures, the pair of controllers can control the current of the pair of armatures using the detection value of the magnetic sensor. . Therefore, the distance between the armature groups can be reduced as compared with a configuration in which a plurality of magnetic sensors are arranged between adjacent armature groups.
 本発明の走行システムは、電機子群相互間に複数の磁気センサを配置する構成に比べて、電機子群相互間の距離を短縮できる。 The traveling system of the present invention can reduce the distance between the armature groups as compared with a configuration in which a plurality of magnetic sensors are arranged between the armature groups.
図1は、実施の形態における走行システムを示す斜視図である。FIG. 1 is a perspective view showing a traveling system according to the embodiment. 図2は、実施の形態における走行装置の地上側設備と台車とを走行方向から示す図である。FIG. 2 is a diagram illustrating the ground equipment and the bogie of the traveling device according to the embodiment from the traveling direction. 図3は、実施の形態における走行システムにおいて走行レールを除いた平面図である。FIG. 3 is a plan view of the traveling system according to the embodiment except for a traveling rail. 図4は、実施の形態における走行システムにおいて台車が異なる曲線区間に跨がった位置に存在する場合を示す平面図である。FIG. 4 is a plan view showing a case where the bogie exists at a position straddling different curved sections in the traveling system according to the embodiment. 図5は、実施の形態における1つの電機子群を構成する3つの電機子から得られる、磁石列の位置に応じた当該磁石列に及ぼす推力の大きさを示す図である。FIG. 5 is a diagram illustrating the magnitude of the thrust exerted on the magnet row according to the position of the magnet row, which is obtained from three armatures forming one armature group in the embodiment. 図6は、実施の形態にかかる電機子の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of the armature according to the embodiment. 図7は、実施の形態における2つの電機子群から得られる、磁石列の位置に応じた当該磁石列に及ぼす推力の大きさを示す図である。FIG. 7 is a diagram showing the magnitude of the thrust exerted on the magnet array according to the position of the magnet array, obtained from the two armature groups in the embodiment. 図8は、変形例にかかる走行システムにおいて走行レールを除いた平面図である。FIG. 8 is a plan view of a traveling system according to a modified example excluding a traveling rail.
 次に、本発明に係る走行装置の実施の形態について、図面を参照しつつ説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Next, an embodiment of the traveling device according to the present invention will be described with reference to the drawings. Each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and do not limit the present invention. In addition, among the components in the following embodiments, components not described in the independent claims indicating the highest concept are described as arbitrary components.
 また、図面は、本発明を示すために適宜強調や省略、比率の調整を行った模式的な図となっており、実際の形状や位置関係、比率とは異なる場合がある。 In addition, the drawings are schematic diagrams in which emphasis, omission, and adjustment of ratios are appropriately performed to show the present invention, and may be different from actual shapes, positional relationships, and ratios.
 図1は、走行システムを示す斜視図である。図2は、走行装置の地上側設備と台車とを走行方向から示す図である。なお、以降の図では、走行システム100において直線区間の走行方向をX軸方向とし、水平方向において当該走行方向に略垂直に交差する方向をY軸方向とし、上下方向をZ軸方向とする。 FIG. 1 is a perspective view showing the traveling system. FIG. 2 is a diagram illustrating the ground-side equipment of the traveling device and the bogie from the traveling direction. In the following figures, the traveling direction of the straight section in the traveling system 100 is defined as the X-axis direction, the direction substantially perpendicular to the traveling direction in the horizontal direction is defined as the Y-axis direction, and the vertical direction is defined as the Z-axis direction.
 これらの図に示すように、本実施の形態にかかる走行システム100は、物品10を保持した状態で走行路(例えば図1中はオーバル形状の走行路の一部を示す)に沿って所定の移載スペース101まで走行し、物品10を移載する。 As shown in these drawings, a traveling system 100 according to the present embodiment holds a product 10 along a traveling path (for example, a part of an oval-shaped traveling path is shown in FIG. 1). It travels to the transfer space 101 and transfers the article 10.
 走行システム100は、台車211と、台車211に取り付けられる移載機構212と、所定の移載スペース101に物品10を搬入する搬入装置400とを備えるシステムである。 The traveling system 100 is a system including a cart 211, a transfer mechanism 212 attached to the cart 211, and a carry-in device 400 for carrying the article 10 into the predetermined transfer space 101.
 搬入装置400は、走行路と交差する方向(Y軸方向)において、移載スペース101内に配置されている台車211に対して物品10を搬入する装置である。搬入装置400の種類は、特に限定されるものではなく、本実施の形態の場合、ベルトコンベアが採用されている。また、搬入装置400は、物品10の流れの上流の位置において物品10を待機させておき、移載スペース101に台車211が到着する情報に基づき物品10を所定の速度になるまで加速して、移載スペース101内の台車211に物品10を搬入することができるものとなっている。 The carry-in device 400 is a device that carries the article 10 to the carriage 211 arranged in the transfer space 101 in a direction (Y-axis direction) intersecting with the traveling path. The type of the loading device 400 is not particularly limited, and in the case of the present embodiment, a belt conveyor is employed. In addition, the carry-in device 400 keeps the article 10 at a position upstream of the flow of the article 10 and accelerates the article 10 to a predetermined speed based on information that the carriage 211 arrives at the transfer space 101, The article 10 can be carried into the carriage 211 in the transfer space 101.
 走行システム100は、走行路に沿って複数の台車211をリニアモータによって走行させる装置である。走行システム100は、走行路を形成する地上側設備と、走行路に沿って走行する台車211とを備える。地上側設備は、走行路を規定する走行レール110と、走行路に沿って配置される複数の電機子120と、走行路に沿って複数の電機子120と交互に配置され、後述の磁石列225による磁界を検出する複数の磁気センサ130とを備えている。 The traveling system 100 is a device that causes the plurality of carriages 211 to travel along a traveling path by using a linear motor. The traveling system 100 includes ground-side facilities that form a traveling path, and a bogie 211 that travels along the traveling path. The ground-side equipment is provided with a traveling rail 110 that defines a traveling path, a plurality of armatures 120 arranged along the traveling path, and a plurality of armatures 120 arranged alternately along the traveling path. And a plurality of magnetic sensors 130 for detecting a magnetic field by the H.225.
 台車211は、走行レール110によって規定される走行路に沿って走行する。本実施の形態の場合、台車211はバッテリーまたは電動モータを備えない。台車211を走行させるための駆動源は、外部からの磁気作用によって走行方向の駆動力を得るリニアモータである。具体的に台車211は、複数の永久磁石が配列された磁石列225を備える。台車211の磁石列225は、台車211の走行路に沿って連続的に、または離散的に配置される電機子120からの磁気作用を受けることにより走行方向の推力を発生させる。これにより、台車211は、走行路に沿って走行する。 The carriage 211 travels along a traveling path defined by the traveling rail 110. In the case of the present embodiment, the carriage 211 does not include a battery or an electric motor. The drive source for running the carriage 211 is a linear motor that obtains a driving force in the running direction by an external magnetic action. Specifically, the cart 211 includes a magnet row 225 in which a plurality of permanent magnets are arranged. The magnet array 225 of the carriage 211 generates a thrust in the traveling direction by receiving a magnetic action from the armature 120 arranged continuously or discretely along the traveling path of the carriage 211. As a result, the carriage 211 travels along the traveling path.
 磁石列225は、例えば、複数の永久磁石により構成される。磁石列225を構成する複数の永久磁石は、台車211に対し走行方向に並んで配置される。具体的には、磁石列225を構成する複数の永久磁石は、台車211の走行方向に沿って直線状に並んで配置されている。本実施の形態の場合、台車211の磁石列225は、電機子120を挟むようにZ軸方向に二つ配置される(図2参照)。つまり、磁石列225では、電機子120の両側において、複数の永久磁石が走行方向に並んで配置されている。電機子120の一方側に並ぶ複数の永久磁石はハルバッハ配列であり、電機子120に対向する側にN極とS極とが交互に向いているように配置されている。また、電機子120の他方側に並ぶ複数の永久磁石は、N極とS極との並びが、一方側に並ぶ複数の永久磁石と異なるように配置されたハルバッハ配列である。なお、磁石列225は、電機子120の一方側にのみ配置されるものでもよい。 The magnet row 225 is constituted by, for example, a plurality of permanent magnets. The plurality of permanent magnets constituting the magnet row 225 are arranged side by side in the traveling direction with respect to the carriage 211. Specifically, the plurality of permanent magnets forming the magnet row 225 are arranged in a straight line along the traveling direction of the carriage 211. In the case of the present embodiment, two magnet rows 225 of the carriage 211 are arranged in the Z-axis direction so as to sandwich the armature 120 (see FIG. 2). In other words, in the magnet row 225, a plurality of permanent magnets are arranged on both sides of the armature 120 in the running direction. The plurality of permanent magnets arranged on one side of the armature 120 have a Halbach array, and are arranged on the side facing the armature 120 such that N poles and S poles are alternately oriented. Further, the plurality of permanent magnets arranged on the other side of the armature 120 have a Halbach array in which the arrangement of N poles and S poles is different from the plurality of permanent magnets arranged on one side. The magnet array 225 may be arranged only on one side of the armature 120.
 台車211は、構造的基礎となる基台219を備える。基台219には、磁石列225の他、移載機構212と、移載用可動子213とが取り付けられている。また、台車211の基台219の下部には、走行レール110上に載置されて転がる四つの車輪218が取り付けられている。 The cart 211 includes a base 219 serving as a structural base. The transfer mechanism 212 and the transfer movable element 213 are attached to the base 219 in addition to the magnet row 225. Further, four wheels 218 mounted on the traveling rail 110 and rolling are attached to a lower portion of the base 219 of the carriage 211.
 移載機構212は、台車211に設けられ、走行路中に設定される移載スペース101において搬入装置400から物品10を受け取って物品10を台車211内の所定の場所まで移動させ、また、移載スペース101において台車211が搬送した物品10を搬出装置(図示せず)まで移動させる機構である。移載機構212の種類は、特に限定されるものではないが、本実施の形態の場合、移載機構212は、台車211の走行方向と直交する方向に物品10を移動させることができるいわゆるベルトコンベアである。移載機構212は、物品10を載置した状態で移動させる無端環状部材221と、無端環状部材221を所定の軌道に沿って循環させる一対のローラ222と、移載用固定子224によって駆動された移載用可動子213から片方のローラ222に駆動力を伝達する伝達部材223とを備えている。 The transfer mechanism 212 is provided on the carriage 211, receives the article 10 from the carry-in device 400 in the transfer space 101 set in the traveling path, moves the article 10 to a predetermined location in the carriage 211, and This is a mechanism for moving the article 10 conveyed by the carriage 211 in the mounting space 101 to an unloading device (not shown). Although the type of the transfer mechanism 212 is not particularly limited, in the case of the present embodiment, the transfer mechanism 212 is a so-called belt that can move the article 10 in a direction orthogonal to the traveling direction of the carriage 211. It is a conveyor. The transfer mechanism 212 is driven by an endless annular member 221 that moves the article 10 in a mounted state, a pair of rollers 222 that circulates the endless annular member 221 along a predetermined track, and a transfer stator 224. And a transmission member 223 for transmitting a driving force from the transfer movable element 213 to one roller 222.
 なお、移載機構212は上記に限定されるものでは無く、例えば無端環状部材221を備えない、ローラコンベヤなどでもかまわない。 The transfer mechanism 212 is not limited to the above. For example, a roller conveyor without the endless annular member 221 may be used.
 走行レール110は、台車211が走行する走行路を形成するための部材である。走行レール110の形状などは特に限定されるものではないが、本実施の形態の場合、長尺状の部材である。走行レール110は、例えば、アルミニウム、アルミニウム合金などの金属により構成される。なお、走行レール110は、その他の金属、樹脂により構成してもよい。本実施の形態では、図1に一部省略して示しているが、走行レール110は、例えばトラック状の走行路を形成しており、走行路が直線の直線区間と走行路が円弧状の曲線である曲線区間とを備えている。本実施の形態の場合、曲線区間は半円弧形状であり、曲線区間に配置される走行レール110も、半円弧形状に湾曲し、曲線区間の内側と外側に平行に配置されている。 The traveling rail 110 is a member for forming a traveling path on which the carriage 211 travels. Although the shape of the traveling rail 110 is not particularly limited, in the case of the present embodiment, it is a long member. The traveling rail 110 is made of, for example, a metal such as aluminum or an aluminum alloy. Note that the traveling rail 110 may be made of another metal or resin. In the present embodiment, although partially omitted in FIG. 1, the travel rail 110 forms, for example, a track-like travel path, and the travel path has a straight section and a circular section. And a curve section which is a curve. In the case of the present embodiment, the curved section has a semicircular arc shape, and the running rails 110 arranged in the curved section are also curved in a semicircular arc shape and are arranged inside and outside the curved section in parallel.
 図3は、走行システムにおいて走行レールを除いた平面図である。 FIG. 3 is a plan view of the traveling system without the traveling rail.
 図3には、地上側設備として、電機子120a~120i、124a~124dと、磁気センサ130a~130i、131a~131dと、コントローラ310、320、330、341~344とが示されている。また、図3には、1台の台車211が示されている。 FIG. 3 shows armatures 120a to 120i, 124a to 124d, magnetic sensors 130a to 130i, 131a to 131d, and controllers 310, 320, 330, 341 to 344 as ground-side facilities. FIG. 3 shows one carriage 211.
 なお、図3では、図1および図2において説明した複数の電機子120を、配置位置に応じて異なる符号を付した電機子120a~120i、124a~124dとして説明する。同様に、図3では、図1において説明した複数の磁気センサ130を、配置位置に応じて異なる符号を付した磁気センサ130a~130i、131a~131dとして説明する。図3では走行システム100の一部が図示省略されているが、以下では走行システム100全体に含まれる電機子、磁気センサ、コントローラの個数をそれぞれ、K、L、Mと記載することがある。 In FIG. 3, the plurality of armatures 120 described in FIG. 1 and FIG. 2 will be described as armatures 120a to 120i and 124a to 124d, which have different reference numerals depending on the arrangement position. Similarly, in FIG. 3, the plurality of magnetic sensors 130 described in FIG. 1 will be described as magnetic sensors 130a to 130i and 131a to 131d assigned different reference numerals depending on the arrangement position. Although a part of the traveling system 100 is not shown in FIG. 3, the numbers of armatures, magnetic sensors, and controllers included in the entire traveling system 100 may be described as K, L, and M, respectively.
 図3に示すように、13個の電機子120a~120i、124a~124dは、走行路の全体にわたって離散配置される。ここで、電機子が離散配置されているとは、実質的に電機子として機能するコイル等の構成が離散的に配置されているという意味であり、たとえば電機子のパッケージ(ベース部材)は共通の部材から構成されていてもよい。13個の電機子120a~120i、124a~124dのうち、9個の電機子120a~120iは、走行路が曲線の曲線区間である第1~第3区間401~403に配置され、4個の電機子124a~124dは、走行路が直線の直線区間である第4及び第5区間404、405に配置される。第1~第3区間401~403に配置される9個の電機子120a~120iが離散配置される間隔は、電機子124a、124bが第4区間404に離散配置される間隔、及び電機子124c、124dが第5区間405に離散配置される間隔よりも小さい。これは、第4及び第5区間404、405では、直線状の延びる磁石列225が、直線状に並んだ複数個の電機子120と同時に大きく重なることが容易であるのに対し、第1~第3区間401~403では、直線状の延びる磁石列225が、曲線状に並んだ複数個の電機子120と同時に大きく重なることが困難であるからである。つまり、第1~第3区間401~403では、走行路の単位距離当たりの電機子120の数を、第4及び第5区間404、405においてよりも多く配置することで、台車211の磁石列225への磁気作用がより大きくはたらくように調整している。 13As shown in FIG. 3, the thirteen armatures 120a to 120i and 124a to 124d are arranged discretely over the entire traveling path. Here, that the armatures are discretely arranged means that the configuration of the coil or the like that substantially functions as the armature is discretely arranged. For example, the package (base member) of the armature is common. May be constituted. Of the thirteen armatures 120a to 120i and 124a to 124d, nine armatures 120a to 120i are arranged in first to third sections 401 to 403 in which the running path is a curved section, and four The armatures 124a to 124d are arranged in fourth and fifth sections 404 and 405 in which the traveling path is a straight section. The intervals at which the nine armatures 120a to 120i arranged in the first to third sections 401 to 403 are discretely arranged are the interval at which the armatures 124a and 124b are discretely arranged in the fourth section 404, and the armature 124c. , 124d are smaller than the intervals at which the discrete intervals are arranged in the fifth section 405. This is because in the fourth and fifth sections 404 and 405, the linearly extending magnet rows 225 can easily overlap with the plurality of armatures 120 arranged in a straight line at the same time, whereas the first to This is because in the third sections 401 to 403, it is difficult for the linearly extending magnet row 225 to overlap with the plurality of armatures 120 arranged in a curved line at the same time. That is, in the first to third sections 401 to 403, the number of the armatures 120 per unit distance of the traveling path is arranged more than in the fourth and fifth sections 404 and 405, so that the magnet array of the bogie 211 is arranged. It is adjusted so that the magnetic action on 225 works more.
 9個の電機子120a~120iは、第1電機子群121と、第2電機子群122と、第3電機子群123とを含む。第1電機子群121は、走行路の第1区間401に沿って隣り合って配置されるN個(Nは、2以上かつL未満の整数であり、本実施の形態では3)の第1電機子120a~120cにより構成される。第2電機子群122は、走行路の第1区間401に隣り合う第2区間402に沿って隣り合って配置されるO個(Oは、2以上かつL未満の整数であり、本実施の形態では3)の第2電機子120d~120fにより構成される。第3電機子群123は、走行路の第2区間402に隣り合う第3区間403に沿って隣り合って配置される3個の第3電機子120g~120iにより構成される。 The # 9 armatures 120a to 120i include a first armature group 121, a second armature group 122, and a third armature group 123. The first armature group 121 includes N (N is an integer of 2 or more and less than L, and 3 in the present embodiment) N adjacent first along the first section 401 of the traveling path. It is composed of armatures 120a to 120c. The second armature group 122 includes O pieces (O is an integer of 2 or more and less than L, which are arranged adjacent to each other along the second section 402 adjacent to the first section 401 of the traveling path. In the embodiment, it is constituted by the second armatures 120d to 120f of 3). The third armature group 123 includes three third armatures 120g to 120i arranged adjacent to each other along a third section 403 adjacent to the second section 402 of the traveling road.
 また、13個の磁気センサ130a~130i、131a~131dは、13個の電機子120a~120i、124a~124dと同様に走行路の全体に亘って離散配置され、13個の電機子120a~120i、124a~124dと交互に配置される。13個の電機子120a~120i、124a~124dと、13個の磁気センサ130a~130i、131a~131dとは、走行方向に略直交する方向(本実施の形態ではZ軸方向)に互いに重なることなく配置されている。9個の磁気センサ130a~130iは、(N-1)個(本実施の形態では2個)の第1磁気センサ130a、130bと、(O-1)個(本実施の形態では2個)の第2磁気センサ130d、130eと、2個の第3磁気センサ130g、130hと、共有磁気センサ130c、130fと、磁気センサ130iとを含む。2個の第1磁気センサ130a、130bは、第1区間401において3個の第1電機子120a~120cの間に配置される。2個の第2磁気センサ130d、130eは、第2区間402において3個の第2電機子120d~120fの間に配置される。2個の第3磁気センサ130g、130hは、第3区間403において3個の第3電機子120g~120iの間に配置される。共有磁気センサ130cは、第1電機子群121と第2電機子群122との間に配置される。つまり、共有磁気センサ130cは、第1区間401と第2区間402との境界付近に配置される。共有磁気センサ130fは、第2電機子群122と第3電機子群123との間に配置される。つまり、共有磁気センサ130fは、第2区間402と第3区間403との境界付近に配置される。磁気センサ130iは、第3電機子群123と電機子124cとの間に配置される。 The thirteen magnetic sensors 130a to 130i and 131a to 131d are discretely arranged over the entire travel path similarly to the thirteen armatures 120a to 120i and 124a to 124d, and the thirteen armatures 120a to 120i are arranged. , 124a to 124d. The thirteen armatures 120a to 120i, 124a to 124d and the thirteen magnetic sensors 130a to 130i, 131a to 131d overlap each other in a direction substantially perpendicular to the traveling direction (the Z-axis direction in the present embodiment). Is located without. The nine magnetic sensors 130a to 130i include (N-1) (two in the present embodiment) first magnetic sensors 130a and 130b and (O-1) (two in the present embodiment). , The second magnetic sensors 130d and 130e, the two third magnetic sensors 130g and 130h, the shared magnetic sensors 130c and 130f, and the magnetic sensor 130i. The two first magnetic sensors 130a and 130b are arranged in the first section 401 between the three first armatures 120a to 120c. The two second magnetic sensors 130d and 130e are arranged in the second section 402 between the three second armatures 120d to 120f. The two third magnetic sensors 130g and 130h are arranged in the third section 403 between the three third armatures 120g to 120i. The shared magnetic sensor 130c is arranged between the first armature group 121 and the second armature group 122. That is, the shared magnetic sensor 130c is arranged near the boundary between the first section 401 and the second section 402. The shared magnetic sensor 130f is arranged between the second armature group 122 and the third armature group 123. That is, the shared magnetic sensor 130f is arranged near the boundary between the second section 402 and the third section 403. The magnetic sensor 130i is arranged between the third armature group 123 and the armature 124c.
 なお、13個の磁気センサ130a~130i、131a~131dは、それぞれ、13個の電機子120a~120i、124a~124dの一方側(例えば、走行方向における前側)に配置される。反対に、13個の磁気センサ130a~130i、131a~131dは、それぞれ、13個の電機子120a~120i、124a~124dの他方側(例えば、走行方向における後側)に配置されてもよい。 The 13 magnetic sensors 130a to 130i and 131a to 131d are arranged on one side (for example, the front side in the traveling direction) of the 13 armatures 120a to 120i and 124a to 124d. Conversely, the thirteen magnetic sensors 130a to 130i, 131a to 131d may be disposed on the other side (for example, on the rear side in the traveling direction) of the thirteen armatures 120a to 120i, 124a to 124d, respectively.
 また、13個の磁気センサ130a~130i、131a~131dは、それぞれ、13個の電機子120a~120i、124a~124dと一体に形成されていてもよい。このように、電機子および磁気センサが組となった組立体を配置すれば、電機子および磁気センサを一括に配置することができるため、13個の電機子120a~120i、124a~124dと13個の磁気センサ130a~130i、131a~131dとの配置にかかる手間を軽減することができる。 The thirteen magnetic sensors 130a to 130i and 131a to 131d may be formed integrally with the thirteen armatures 120a to 120i and 124a to 124d, respectively. Thus, by arranging the assembly in which the armature and the magnetic sensor are paired, the armature and the magnetic sensor can be arranged at a time, so that the thirteen armatures 120a to 120i, 124a to 124d, and 13 The labor required for arranging the magnetic sensors 130a to 130i and 131a to 131d can be reduced.
 7個のコントローラ310、320、330、341~344は、13個の磁気センサ130a~130i、131a~131dにより得られた検出値に応じて、13個の電機子120a~120i、124a~124dに流れる電流を制御する。これにより、7個のコントローラ310、320、330、341~344は、台車211の走行を制御する。 The seven controllers 310, 320, 330, and 341 to 344 are connected to the thirteen armatures 120a to 120i and 124a to 124d in accordance with the detection values obtained by the thirteen magnetic sensors 130a to 130i and 131a to 131d. Control the flowing current. Thus, the seven controllers 310, 320, 330, 341 to 344 control the traveling of the carriage 211.
 7個のコントローラ310、320、330、341~344は、第1コントローラ310と、第2コントローラ320と、第3コントローラ330とを含む。 The # 7 controllers 310, 320, 330, 341 to 344 include a first controller 310, a second controller 320, and a third controller 330.
 第1コントローラ310は、2個の第1磁気センサ130a、130bおよび共有磁気センサ130cの検出値に基づいて第1電機子群121に流れる電流を制御する。第1コントローラ310は、2個の第1磁気センサ130a、130bおよび共有磁気センサ130cの検出値から走行路の第1区間401における台車211の位置を検出し、検出した台車211の位置に応じて第1電機子群121に流れる電流を制御することで台車211にはたらく磁気作用による推力を制御する。例えば、第1コントローラ310は、2個の第1磁気センサ130a、130bおよび共有磁気センサ130cの検出値に基づいて、台車211の磁石列225が3個の第1電機子120a~120cの少なくとも1個の側方(本実施の形態では上方)に位置しているか否かを判定する。第1コントローラ310は、磁石列225が3個の第1電機子120a~120cの少なくとも1個の側方に位置していると判定している間に、3個の第1電機子120a~120cのそれぞれに電流を流す。このとき、第1コントローラ310は、磁石列225が第1電機子120aの上方に突入するタイミングで電流を第1電機子120aに流し始め、磁石列225が第1電機子120aの上方から退出するタイミングで電流を第1電機子120aに流し終える。第1コントローラ310は、第1電機子120b、120cについても同様に電流を制御する。 The first controller 310 controls a current flowing through the first armature group 121 based on detection values of the two first magnetic sensors 130a and 130b and the shared magnetic sensor 130c. The first controller 310 detects the position of the bogie 211 in the first section 401 of the traveling path from the detection values of the two first magnetic sensors 130a and 130b and the shared magnetic sensor 130c, and according to the detected position of the bogie 211. By controlling the current flowing through the first armature group 121, the thrust by the magnetic action acting on the carriage 211 is controlled. For example, based on the detection values of the two first magnetic sensors 130a and 130b and the shared magnetic sensor 130c, the first controller 310 determines that the magnet array 225 of the carriage 211 has at least one of the three first armatures 120a to 120c. It is determined whether it is located on one side (in this embodiment, above). While the first controller 310 determines that the magnet array 225 is located on at least one side of the three first armatures 120a to 120c, the three first armatures 120a to 120c are determined. Apply current to each of the. At this time, the first controller 310 starts flowing current to the first armature 120a at the timing when the magnet array 225 enters above the first armature 120a, and the magnet array 225 retreats from above the first armature 120a. At the timing, the current is completely passed through the first armature 120a. The first controller 310 similarly controls the current for the first armatures 120b and 120c.
 後述するように、同一の電機子群において相互に隣り合う電機子120では、U相、V相、W相のコイルが相互に電気的に連結されているため、第1電機子群121における第1電機子120a、120b、120cには等しい電流が流される。第1コントローラ310は、第1電機子120a、120b、120cによる推力により、台車211の速度(位置偏差)が略一定となるように、第1電機子120a、120b、120cに流れる電流を制御する。これにより、図5に示される個々の電機子による推力の変化が得られるが、図7を用いて後述するように、第1電機子120a、120b、120cに所定の電流を流した際、それら第1電機子120a、120b、120cにより台車211に付与される推力は、その台車211の位置によらず略一定なので、第1電機子120a、120b、120cに流れる電流を制御することにより、台車211の速度を略一定とできる。なお、推力の変化は、個々の電機子と磁石列225とが重なる面積の大きさを反映している。 As described later, in the armature 120 adjacent to each other in the same armature group, the U-phase, V-phase, and W-phase coils are electrically connected to each other. An equal current flows through one armature 120a, 120b, 120c. The first controller 310 controls the current flowing through the first armatures 120a, 120b, 120c such that the speed (positional deviation) of the bogie 211 is substantially constant by the thrusts of the first armatures 120a, 120b, 120c. . As a result, a change in thrust due to the individual armatures shown in FIG. 5 is obtained. However, when a predetermined current is applied to the first armatures 120a, 120b, and 120c as described later with reference to FIG. Since the thrust given to the carriage 211 by the first armatures 120a, 120b, 120c is substantially constant regardless of the position of the carriage 211, controlling the current flowing through the first armatures 120a, 120b, 120c allows the carriage to be controlled. The speed of 211 can be made substantially constant. The change in thrust reflects the size of the area where each armature and the magnet row 225 overlap.
 また、第1コントローラ310は、2個の第1磁気センサ130a、130bおよび共有磁気センサ130cと通信可能に接続されている中継基板311と、第1電機子群121と電気的に接続されているアンプ基板312とを有する。中継基板311とアンプ基板312とは、アンプ基板312が中継基板311を介して、中継基板311に接続されている磁気センサ130a~130cからの検出値を取得できるように、通信可能に接続されている。アンプ基板312は、中継基板311において取得された磁気センサ130a~130cからの検出値を用いて、第1電機子群121に供給する電流の大きさを制御する。アンプ基板312は、図示しない電源に接続されており、電源から電力が供給されている。なお、中継基板311とアンプ基板312とは、同一の基板で構成されていてもよい。 The first controller 310 is electrically connected to the relay board 311 communicably connected to the two first magnetic sensors 130a and 130b and the shared magnetic sensor 130c, and to the first armature group 121. And an amplifier substrate 312. The relay board 311 and the amplifier board 312 are communicably connected so that the amplifier board 312 can acquire detection values from the magnetic sensors 130a to 130c connected to the relay board 311 via the relay board 311. I have. The amplifier board 312 controls the magnitude of the current supplied to the first armature group 121 using the detection values obtained from the magnetic sensors 130a to 130c in the relay board 311. The amplifier board 312 is connected to a power supply (not shown), and power is supplied from the power supply. Note that the relay board 311 and the amplifier board 312 may be formed of the same board.
 第2コントローラ320は、2個の第2磁気センサ130d、130eおよび共有磁気センサ130c、130fの検出値に基づいて第2電機子群122に流れる電流を制御する。第2コントローラ320は、2個の第2磁気センサ130d、130eおよび共有磁気センサ130c、130fの検出値から走行路の第2区間402における台車211の位置を検出し、検出した台車211の位置に応じて第2電機子群122に流れる電流を制御することで台車211にはたらく磁気作用による推力を制御する。例えば、第2コントローラ320は、2個の第2磁気センサ130d、130eおよび共有磁気センサ130c、130fの検出値に基づいて、台車211の磁石列225が3個の第2電機子120d~120fの少なくとも1個の側方(本実施の形態では上方)に位置しているか否かを判定する。第2コントローラ320は、磁石列225が3個の第2電機子120d~120fの少なくとも1個の側方に位置していると判定している間に、3個の第2電機子120d~120fのそれぞれに電流を流す。このとき、第2コントローラ320は、磁石列225が第2電機子120dの上方に突入するタイミングで電流を第2電機子120dに流し始め、磁石列225が第2電機子120dの上方から退出するタイミングで電流を第2電機子120dに流し終える。第2コントローラ320は、第1電機子120e、120fについても同様に電流を制御する。これにより、図5に示される個々の電機子による推力の変化が得られる。 The second controller 320 controls the current flowing through the second armature group 122 based on the detection values of the two second magnetic sensors 130d and 130e and the shared magnetic sensors 130c and 130f. The second controller 320 detects the position of the bogie 211 in the second section 402 of the traveling path from the detection values of the two second magnetic sensors 130d and 130e and the shared magnetic sensors 130c and 130f, and By controlling the current flowing through the second armature group 122 accordingly, the thrust by the magnetic action acting on the carriage 211 is controlled. For example, based on the detection values of the two second magnetic sensors 130d and 130e and the shared magnetic sensors 130c and 130f, the second controller 320 generates the magnet array 225 of the bogie 211 with the three second armatures 120d to 120f. It is determined whether or not it is positioned on at least one side (in this embodiment, above). The second controller 320 determines that the magnet array 225 is located on at least one side of the three second armatures 120d to 120f while the three second armatures 120d to 120f. Apply current to each of the. At this time, the second controller 320 starts flowing a current to the second armature 120d at a timing when the magnet array 225 enters above the second armature 120d, and the magnet array 225 retreats from above the second armature 120d. At the timing, the current is completely passed through the second armature 120d. The second controller 320 similarly controls the current for the first armatures 120e and 120f. As a result, a change in thrust by each armature shown in FIG. 5 is obtained.
 具体的には、第2コントローラ320は、2個の第2磁気センサ130d、130eおよび共有磁気センサ130c、130fと通信可能に接続されている中継基板321と、第2電機子群122と電気的に接続されているアンプ基板322とを有する。中継基板321とアンプ基板322とは、アンプ基板322が中継基板321を介して、中継基板321に接続されている磁気センサ130c~130fからの検出値を取得できるように、通信可能に接続されている。アンプ基板322は、中継基板321において取得された磁気センサ130c~130fからの検出値を用いて、第2電機子群122に供給する電流の大きさを制御する。アンプ基板322は、図示しない電源に接続されており、電源から電力が供給されている。なお、中継基板321とアンプ基板322とは、同一の基板で構成されていてもよい。 Specifically, the second controller 320 electrically connects the second armature group 122 with the relay board 321 communicably connected to the two second magnetic sensors 130d and 130e and the shared magnetic sensors 130c and 130f. And an amplifier substrate 322 connected to the The relay board 321 and the amplifier board 322 are communicably connected so that the amplifier board 322 can acquire detection values from the magnetic sensors 130c to 130f connected to the relay board 321 via the relay board 321. I have. The amplifier board 322 controls the magnitude of the current supplied to the second armature group 122 using the detection values from the magnetic sensors 130c to 130f acquired by the relay board 321. The amplifier board 322 is connected to a power supply (not shown), and is supplied with power from the power supply. Note that the relay board 321 and the amplifier board 322 may be formed of the same board.
 第3コントローラ330は、2個の第3磁気センサ130g、130h、共有磁気センサ130f、および磁気センサ130iの検出値に基づいて第2電機子群122に流れる電流を制御する。第3コントローラ330は、2個の第3磁気センサ130g、130h、共有磁気センサ130f、および磁気センサ130iの検出値から走行路の第3区間403における台車211の位置を検出し、検出した台車211の位置に応じて第3電機子群123に流れる電流を制御することで台車211にはたらく磁気作用による推力を制御する。例えば、第3コントローラ330は、2個の第3磁気センサ130g、130h、共有磁気センサ130f、および磁気センサ130iの検出値に基づいて、台車211の磁石列225が3個の第3電機子120g~120iの少なくとも1個の側方(本実施の形態では上方)に位置しているか否かを判定する。第3コントローラ330は、磁石列225が3個の第3電機子120g~120iの少なくとも1個の側方に位置していると判定している間に、3個の第3電機子120g~120iのそれぞれに電流を流す。このとき、第3コントローラ330は、磁石列225が第3電機子120gの上方に突入するタイミングで電流を第3電機子120gに流し始め、磁石列225が第3電機子120gの上方から退出するタイミングで電流を第3電機子120gに流し終える。第3コントローラ330は、第1電機子120h、120iについても同様に電流を制御する。これにより、図5に示される個々の電機子による推力の変化が得られる。 The third controller 330 controls the current flowing through the second armature group 122 based on the detection values of the two third magnetic sensors 130g and 130h, the shared magnetic sensor 130f, and the magnetic sensor 130i. The third controller 330 detects the position of the bogie 211 in the third section 403 of the traveling path from the detection values of the two third magnetic sensors 130g and 130h, the shared magnetic sensor 130f, and the magnetic sensor 130i, and detects the detected bogie 211 By controlling the current flowing through the third armature group 123 in accordance with the position of, the thrust by the magnetic action acting on the carriage 211 is controlled. For example, based on the detection values of the two third magnetic sensors 130g and 130h, the shared magnetic sensor 130f, and the magnetic sensor 130i, the third controller 330 includes three magnet arrays 225 of the carriage 211 and three third armatures 120g. It is determined whether or not it is located on at least one side (upper in the present embodiment) of .about.120i. The third controller 330 determines that the magnet array 225 is located on at least one side of the three third armatures 120g to 120i while the three third armatures 120g to 120i. Apply current to each of the. At this time, the third controller 330 starts flowing a current to the third armature 120g at the timing when the magnet array 225 enters above the third armature 120g, and the magnet array 225 retreats from above the third armature 120g. At the timing, the current is completely passed through the third armature 120g. The third controller 330 controls the current for the first armatures 120h and 120i in the same manner. As a result, a change in thrust by each armature shown in FIG. 5 is obtained.
 具体的には、第3コントローラ330は、2個の第3磁気センサ130g、130h、共有磁気センサ130f、および磁気センサ130iと通信可能に接続されている中継基板331と、第3電機子群123と電気的に接続されているアンプ基板332とを有する。中継基板331とアンプ基板332とは、アンプ基板332が中継基板331を介して、中継基板331に接続されている磁気センサ130f~130iからの検出値を取得できるように通信可能に接続されている。アンプ基板332は、中継基板331において取得された磁気センサ130f~130iからの検出値を用いて、第3電機子群123に供給する電流の大きさを制御する。アンプ基板332は、図示しない電源に接続されており、電源から電力が供給されている。なお、中継基板331とアンプ基板332とは、同一の基板で構成されていてもよい。 Specifically, the third controller 330 includes a relay board 331 communicably connected to the two third magnetic sensors 130g and 130h, the shared magnetic sensor 130f, and the magnetic sensor 130i, and the third armature group 123 And an amplifier board 332 that is electrically connected to the amplifier board 332. The relay board 331 and the amplifier board 332 are communicably connected so that the amplifier board 332 can acquire detection values from the magnetic sensors 130f to 130i connected to the relay board 331 via the relay board 331. . The amplifier board 332 controls the magnitude of the current supplied to the third armature group 123 using the detection values obtained from the magnetic sensors 130f to 130i in the relay board 331. The amplifier board 332 is connected to a power supply (not shown), and is supplied with power from the power supply. Note that the relay board 331 and the amplifier board 332 may be formed of the same board.
 なお、各コントローラ310~330は、ある任意の時刻においてそれぞれ1台の台車211の動作を制御する。このため、1つの電機子群に対応する位置に一台の台車211が存在する際、他の台車211は当該電機子群に対応する位置へは進入できないように、各電機子の配置及び台車の寸法等が定められている。 Each of the controllers 310 to 330 controls the operation of one carriage 211 at an arbitrary time. For this reason, when one carriage 211 exists at a position corresponding to one armature group, the arrangement of each armature and the carriage so that the other carriage 211 cannot enter the position corresponding to the armature group. The dimensions etc. are defined.
 ここで、各コントローラ310~330により、制御される1つの電機子群により得られる推力について説明する。 Here, the thrust obtained by one armature group controlled by each of the controllers 310 to 330 will be described.
 図4は、実施の形態における走行システムにおいて台車が異なる曲線区間に跨がった位置に存在する場合を示す平面図である。図5は、実施の形態における1つの電機子群を構成する3つの電機子から得られる、磁石列の位置に応じた当該磁石列に及ぼす推力の大きさを示す図である。図7は、実施の形態における2つの電機子群から得られる、磁石列の位置に応じた当該磁石列に及ぼす推力の大きさを示す図である。 FIG. 4 is a plan view showing a case where the bogie exists at a position straddling different curved sections in the traveling system according to the embodiment. FIG. 5 is a diagram illustrating the magnitude of the thrust exerted on the magnet row according to the position of the magnet row, which is obtained from three armatures forming one armature group in the embodiment. FIG. 7 is a diagram showing the magnitude of the thrust exerted on the magnet array according to the position of the magnet array, obtained from the two armature groups in the embodiment.
 第1~第3コントローラ310、320、330は、それぞれ、第1~第3区間401~403に配置される3個の電機子を組とする第1~第3電機子群121~123に流れる電流を、3個の電機子で連動させて制御する。ここで、各コントローラ310、320、330が制御する各電機子群121~123を構成する電機子の数は、台車211が対応する第1~第3区間401~403に位置する場合に当該台車211の磁石列225が同時に重なる電機子の数に設定される。 The first to third controllers 310, 320, and 330 flow through first to third armature groups 121 to 123 each of which includes three armatures arranged in first to third sections 401 to 403, respectively. The current is controlled by the three armatures in conjunction. Here, the number of armatures constituting each armature group 121 to 123 controlled by each of the controllers 310, 320 and 330 is determined when the bogie 211 is located in the corresponding first to third section 401 to 403. The number of armatures 225 of 211 magnet rows are set to the number of armatures overlapping at the same time.
 本実施の形態では、図4に示されるように、台車211の磁石列225は、第1~第3区間401~403に位置する場合に、最大で3個の電機子と重なることができる。このため、1つのコントローラにより一度に電流が制御される電機子の数は3個に設定されている。また、図5に示されるように、1つの電機子群は、3個の隣り合って配置される電機子により構成されるため、個々の電機子に個別に電流を流すよりも大きな推力が得られる。 In the present embodiment, as shown in FIG. 4, when the magnet row 225 of the carriage 211 is located in the first to third sections 401 to 403, it can overlap with a maximum of three armatures. Therefore, the number of armatures whose current is controlled by one controller at a time is set to three. Further, as shown in FIG. 5, one armature group is composed of three armatures arranged adjacent to each other, so that a larger thrust can be obtained than when a current is individually supplied to each armature. Can be
 また、例えば、図4に示されるように、第1電機子群121が配置される第1区間401と、第2電機子群122が配置される第2区間402とに跨がった位置に台車211が存在する場合、磁石列225は、第1電機子120b、120cおよび第2電機子120dの上方に位置しており、磁気センサ130b、130cが磁石列225を検出している。この場合に、磁気センサ130b、130cにより検出される検出値が第1コントローラ310に入力される。一方、磁気センサ130d~130fのいずれも磁石列225を検出しないが、共有磁気センサ130cにより検出される検出値が第2コントローラ320に入力される。 In addition, for example, as shown in FIG. 4, at a position straddling a first section 401 where the first armature group 121 is arranged and a second section 402 where the second armature group 122 is arranged. When the carriage 211 is present, the magnet array 225 is located above the first armatures 120b and 120c and the second armature 120d, and the magnetic sensors 130b and 130c detect the magnet array 225. In this case, the detection values detected by the magnetic sensors 130b and 130c are input to the first controller 310. On the other hand, none of the magnetic sensors 130d to 130f detect the magnet array 225, but the detection value detected by the shared magnetic sensor 130c is input to the second controller 320.
 すなわち、共有磁気センサ130cにより検出される検出値が第1コントローラ310および第2コントローラ320の両方に出力されることにより、台車211が第1区間401と第2区間402とに跨がっている場合であっても、第1コントローラ310によって第1電機子群121に電流を流し続けた状態で、第2コントローラ320によって第2電機子群122に電流を流し始めることができる。これにより、台車211が第1区間401と第2区間402とに跨がっている場合であっても、図7に示されるように、個々の電機子群121、122の最大推力と同等の、2つの電機子群121、122からの合成された推力を得ることができる。 That is, the detection value detected by the shared magnetic sensor 130c is output to both the first controller 310 and the second controller 320, so that the carriage 211 straddles the first section 401 and the second section 402. Even in this case, the second controller 320 can start to supply current to the second armature group 122 while the first controller 310 keeps supplying current to the first armature group 121. Thus, even when the carriage 211 straddles the first section 401 and the second section 402, as shown in FIG. 7, the maximum thrust of each of the armature groups 121 and 122 is equal to the thrust. Thus, a combined thrust from the two armature groups 121 and 122 can be obtained.
 図7においては、第1電機子120a、120b、120cと、第2電機子120d、120e、120fとから得られる推力の大きさを例示している。図3に示すように、磁気センサ130は、電機子120に対して、走行路の走行方向にずれた(オフセットした)位置に配置されているため、たとえば第2電機子120d、120e、120fに対応して磁気センサ130d、130e、130fが検出する構成では、電機子による動作範囲と磁気センサによる検出範囲とがずれてしまう。そこで、本実施例においては、図7に示されるように、たとえば第2電機子120d、120e、120fに対応して磁気センサ130c、130d、130e、130fが検出する構成とされる。すなわち、第2電機子120d、120e、120fを制御する第2コントローラ320に、磁気センサ130c、130d、130e、130fの検出結果が入力されるように構成されている。これにより、電機子による動作範囲を磁気センサによる検出範囲が確実にカバーできる。 FIG. 7 illustrates the magnitude of the thrust obtained from the first armatures 120a, 120b, 120c and the second armatures 120d, 120e, 120f. As shown in FIG. 3, since the magnetic sensor 130 is disposed at a position shifted (offset) in the traveling direction of the traveling path with respect to the armature 120, for example, the magnetic sensor 130 is disposed at the second armature 120 d, 120 e, 120 f. In the configuration in which the magnetic sensors 130d, 130e, and 130f detect correspondingly, the operation range by the armature and the detection range by the magnetic sensor are shifted. Therefore, in this embodiment, as shown in FIG. 7, for example, the magnetic sensors 130c, 130d, 130e, and 130f detect the second armatures 120d, 120e, and 120f, respectively. That is, the detection results of the magnetic sensors 130c, 130d, 130e, and 130f are input to the second controller 320 that controls the second armatures 120d, 120e, and 120f. Thus, the operation range of the armature can be reliably covered by the detection range of the magnetic sensor.
 図4のような曲線区間においては、個々の電機子と磁石列225とが重なる面積が直線区間における面積と比べて小さくなりやすく、電機子の向きと磁石列225の向きが揃わない場合があるので、個々の電機子から得られる推力は、直線区間における推力よりも小さくなりやすい。そのため、曲線区間においては、複数の電機子からの合成された推力を得る必要性が高い。このように、第1コントローラ310および第2コントローラ320は、共有磁気センサ130cが台車211の磁石列225を検出している場合に、第1電機子群121および第2電機子群122に電流を流すため、台車211の磁石列225が第1区間401および第2区間402に跨がっている場合に、台車211を効率よく動作させることができる。 In the curved section as shown in FIG. 4, the area where the individual armature overlaps the magnet row 225 tends to be smaller than the area in the straight section, and the direction of the armature and the direction of the magnet row 225 may not be aligned. Therefore, the thrust obtained from each armature tends to be smaller than the thrust in the straight section. Therefore, in a curved section, it is highly necessary to obtain a combined thrust from a plurality of armatures. As described above, the first controller 310 and the second controller 320 transmit the current to the first armature group 121 and the second armature group 122 when the shared magnetic sensor 130c detects the magnet array 225 of the carriage 211. Since the current flows, the cart 211 can be operated efficiently when the magnet array 225 of the cart 211 straddles the first section 401 and the second section 402.
 4つのコントローラ341~344は、それぞれ、4つの磁気センサ131a~131dの検出値に基づいて4つの電機子124a~124dに流れる電流を制御する。4つのコントローラ341~344は、それぞれ、4つの磁気センサ131a~131dおよび4つの電機子124a~124dに、1対1対1で対応して接続されている。 #The four controllers 341 to 344 control the current flowing through the four armatures 124a to 124d based on the detection values of the four magnetic sensors 131a to 131d, respectively. The four controllers 341 to 344 are respectively connected to the four magnetic sensors 131a to 131d and the four armatures 124a to 124d in a one-to-one correspondence.
 なお、7個のコントローラ310、320、330、341~344は、図示しない上位コントローラに接続され、互いの制御結果に応じた制御信号を上位コントローラから受けることで台車211の走行を制御してもよい。また、7個のコントローラ310、320、330、341~344は、互いに通信可能に接続されていてもよく、互いの制御結果に応じて台車211の走行の制御を行ってもよい。 The seven controllers 310, 320, 330, and 341 to 344 are connected to a higher-level controller (not shown), and control the traveling of the bogie 211 by receiving control signals corresponding to the respective control results from the higher-level controller. Good. In addition, the seven controllers 310, 320, 330, 341 to 344 may be communicably connected to each other, and may control the traveling of the bogie 211 according to the control results of each other.
 なお、本実施の形態における通信可能に接続とは、制御信号のやり取りが可能な有線接続または無線接続である。 The communication-enabled connection in the present embodiment is a wired connection or a wireless connection capable of exchanging control signals.
 ここで、図6を用いて、電機子120a~120iの構成について説明する。 Here, the configuration of the armatures 120a to 120i will be described with reference to FIG.
 図6は、実施の形態にかかる電機子の構成を示す図である。 FIG. 6 is a diagram showing a configuration of the armature according to the embodiment.
 図6に示すように、電機子120a~120iのそれぞれは、例えば、U相のコイル120aaと、V相のコイル120abと、W相のコイル120acとの3つのコイルを有する、3相同期モータである。これらのコイル120aa、120ab、120acは、互いに重なることなく、走行路の走行方向に並んで配置されている。なお、電機子120a~120iのそれぞれの走行方向における幅は、磁石列225の走行方向における幅よりも小さい。また、同一の電機子群において相互に隣り合う電機子120、たとえば第1電機子群121において相互に隣り合う電機子120a及び電機子120bでは、U相、V相、W相のコイルが相互に電気的に連結されている。すなわち、電機子120aにおけるU相のコイル120aaと電機子120bにおけるU相のコイル120baとが、電機子120aにおけるV相のコイル120abと電機子120bにおけるV相のコイル120bbとが、電機子120aにおけるW相のコイル120acと電機子120bにおけるW相のコイル120bcとが、相互に電気的に連結されている。かかる構成により、同一の電機子群における各電機子のU相、V相、W相のコイルには、それぞれ同じ大きさの電流が流れるようになっている。 As shown in FIG. 6, each of the armatures 120a to 120i is, for example, a three-phase synchronous motor having three coils of a U-phase coil 120aa, a V-phase coil 120ab, and a W-phase coil 120ac. is there. These coils 120aa, 120ab, 120ac are arranged side by side in the traveling direction of the traveling path without overlapping each other. The width of each of the armatures 120a to 120i in the running direction is smaller than the width of the magnet array 225 in the running direction. Further, in the armatures 120 adjacent to each other in the same armature group, for example, in the armatures 120a and 120b adjacent to each other in the first armature group 121, the U-phase, V-phase, and W-phase coils are mutually connected. It is electrically connected. That is, the U-phase coil 120aa in the armature 120a and the U-phase coil 120ba in the armature 120b are the same as the V-phase coil 120ab in the armature 120a and the V-phase coil 120bb in the armature 120b. The W-phase coil 120ac and the W-phase coil 120bc in the armature 120b are electrically connected to each other. With this configuration, currents of the same magnitude flow through the U-phase, V-phase, and W-phase coils of each armature in the same armature group.
 なお、図示しないが、電機子124a~124dは、2つのU相のコイルと、2つのV相のコイルと、2つのW相のコイルとからなる6つのコイルを有する、3相同期モータである。これらの6つのコイルは、互いに重なることなく、走行路の走行方向に並んで配置されている。電機子124a~124dは、少なくともU相、V相、W相のコイルを1つずつ備えればよく、6つのコイルを有する構成には限定されない。たとえば、9つのコイルを有する構成等、3P(Pは自然数)個のコイルを有するものであってもよい。 Although not shown, the armatures 124a to 124d are three-phase synchronous motors having six coils including two U-phase coils, two V-phase coils, and two W-phase coils. . These six coils are arranged side by side in the traveling direction of the traveling path without overlapping each other. The armatures 124a to 124d only need to include at least one U-phase, V-phase, and W-phase coil, and are not limited to a configuration having six coils. For example, a configuration having 3P (P is a natural number) coils, such as a configuration having nine coils, may be used.
 本実施の形態にかかる走行システム100によれば、第1電機子群121と第2電機子群122との間に、第1電機子群121の電流を制御する第1コントローラ310、および、第2電機子群122の電流を制御する第2コントローラ320に検出値を出力する共有磁気センサ130cを備える。このため、第1電機子群121が配置される第1区間401および第2電機子群122が配置される第2区間402に台車211が跨がっている場合であっても、共有磁気センサ130cの検出値を用いて、第1コントローラ310および第2コントローラ320は、それぞれ、第1電機子群121および第2電機子群122の電流を制御することができる。よって、走行システム100に用いる磁気センサの数を低減することができ、隣り合う電機子群相互間に複数の磁気センサを配置する構成に比べて、電機子群相互間の距離すなわち各電機子群の端に位置する電機子相互間の距離を短縮できる。 According to traveling system 100 according to the present embodiment, between first armature group 121 and second armature group 122, first controller 310 that controls the current of first armature group 121, The shared magnetic sensor 130c that outputs a detection value to the second controller 320 that controls the current of the second armature group 122 is provided. For this reason, even when the carriage 211 straddles the first section 401 where the first armature group 121 is arranged and the second section 402 where the second armature group 122 is arranged, the shared magnetic sensor Using the detected value of 130c, the first controller 310 and the second controller 320 can control the current of the first armature group 121 and the second armature group 122, respectively. Therefore, the number of magnetic sensors used in the traveling system 100 can be reduced, and the distance between the armature groups, that is, each armature group can be reduced, as compared with a configuration in which a plurality of magnetic sensors are arranged between adjacent armature groups. The distance between the armatures located at the ends can be reduced.
 このように、第1コントローラ310および第2コントローラ320は、第1区間401および第2区間402の境界付近に配置されている共有磁気センサ130cの検出値も用いて第1電機子群121および第2電機子群122の電流の制御を行うため、第1区間401および第2区間402の境界付近に台車が位置する場合であっても、対応する電機子群の制御を適切に行うことができる。よって、隣り合う電機子群相互間の渡り部分で、台車211の速度変化(位置偏差の変動)を抑制でき、電機子の数よりも少ないコントローラを用いる走行システム100において、台車211を効率よく動作させることができる。 As described above, the first controller 310 and the second controller 320 also use the detection values of the shared magnetic sensor 130c arranged near the boundary between the first section 401 and the second section 402 to generate the first armature group 121 and the second armature group. Since the current of the second armature group 122 is controlled, the corresponding armature group can be appropriately controlled even when the bogie is located near the boundary between the first section 401 and the second section 402. . Therefore, a change in the speed of the bogie 211 (fluctuation in position deviation) can be suppressed in a transition portion between the adjacent armature groups, and the bogie 211 operates efficiently in the traveling system 100 using a controller having less than the number of armatures. Can be done.
 また、本実施の形態に係る走行システム100によれば、第1コントローラ310は、台車211の磁石列225が第1電機子群121の少なくとも一部と重なっている場合に、3個の第1電機子120a~120cのそれぞれに電流を流す。第2コントローラ320は、台車211の磁石列225が第2電機子群122の少なくとも一部と重なっている場合に、3個の第2電機子120d~120fのそれぞれに電流を流す。このため、台車211の磁石列225が第1区間401および第2区間402に跨がっている場合に、台車211を効率よく動作させることができる。 Further, according to traveling system 100 according to the present embodiment, first controller 310 determines whether three first magnets 225 of bogie 211 overlap with at least a part of first armature group 121. A current is applied to each of the armatures 120a to 120c. The second controller 320 supplies a current to each of the three second armatures 120d to 120f when the magnet array 225 of the carriage 211 overlaps at least a part of the second armature group 122. Therefore, when the magnet array 225 of the cart 211 straddles the first section 401 and the second section 402, the cart 211 can be operated efficiently.
 また、本実施の形態にかかる走行システム100によれば、第1電機子群121が配置される第1区間401と、第2電機子群122が配置される第2区間402との少なくとも一方は、走行路が曲線である曲線区間である。このような第1区間401および第2区間402では、3個の第1電機子120a~120cおよび3個の第2電機子120d~120fは、走行路の曲線に沿って並ぶため、台車211の直線状に並ぶ磁石列225が当該第1区間401および第2区間402を通過する場合、磁石列225は、1個の電機子と重なる割合が所定の割合よりも大きい第1領域と、1個の電機子と重なる割合が所定の割合以下の第2領域とを有することになる。このため、台車211を効率よく動作させるためには、磁石列225の第1領域に推力がはたらくように電機子群を制御する必要があるため、台車211の磁石列225の位置をより精度よく検出することが必要となる。走行システム100では、第1コントローラ310が電流を制御する1つの第1電機子群121の両端に2つの磁気センサを配置し、当該2つの磁気センサで当該1つの電機子群121が配置されている区間に台車211が位置するか否かを検出するのではなく、当該1つの電機子群121を構成する複数の第1電機子120a~120cの間に配置される磁気センサ130a、130bと、当該1つの第1電機子群121に隣り合う第2電機子群122との間に配置される共有磁気センサ130cとを用いて台車211の位置を検出する。このため、当該第1電機子群121が配置される第1区間401における台車211の位置を精度よく検出することができ、台車211を効率よく動作させることができる。 Further, according to traveling system 100 according to the present embodiment, at least one of first section 401 in which first armature group 121 is arranged and second section 402 in which second armature group 122 is arranged. , Is a curved section in which the travel path is a curve. In the first section 401 and the second section 402, the three first armatures 120a to 120c and the three second armatures 120d to 120f are arranged along the curve of the traveling path, so that the carriage 211 When the magnet array 225 arranged in a straight line passes through the first section 401 and the second section 402, the magnet array 225 includes a first region in which the ratio of overlapping with one armature is larger than a predetermined ratio and one magnet region. And the second region having a ratio overlapping with the armature of the first region is equal to or less than a predetermined ratio. For this reason, in order to operate the carriage 211 efficiently, it is necessary to control the armature group so that the thrust acts on the first region of the magnet row 225. Therefore, the position of the magnet row 225 of the carriage 211 is more accurately determined. It needs to be detected. In the traveling system 100, the first controller 310 arranges two magnetic sensors at both ends of one first armature group 121 for controlling current, and the one armature group 121 is arranged by the two magnetic sensors. Magnetic sensors 130a, 130b arranged between the plurality of first armatures 120a to 120c constituting the one armature group 121, instead of detecting whether or not the carriage 211 is located in the section where The position of the carriage 211 is detected by using the shared magnetic sensor 130c disposed between the one first armature group 121 and the second armature group 122 adjacent thereto. For this reason, the position of the carriage 211 in the first section 401 where the first armature group 121 is arranged can be accurately detected, and the carriage 211 can be operated efficiently.
 また、本実施の形態にかかる走行システムによれば、各コントローラ310、320、330が制御する各電機子群121~123を構成する電機子の数は、台車211が対応する第1~第3区間401~403に位置する場合に当該台車211の磁石列225が同時に重なる電機子の数に設定される。このため、第1区間401に台車211が位置する場合、3つの隣り合って配置される電機子により構成される第1電機子群121に流れる電流を制御するため、個々の電機子に個別に電流を流すよりも大きな推力を台車211に作用させることができる。また、第1区間401および第2区間402に跨がって台車211が位置する場合、個々の電機子群121、122の最大推力と同等の、2つの電機子群121、122からの合成された推力を得ることができる。このため、台車211の磁石列225が第1区間401および第2区間402に跨がっている場合であっても、台車211を効率よく動作させることができる。 Further, according to the traveling system according to the present embodiment, the number of the armatures constituting each armature group 121 to 123 controlled by each of the controllers 310, 320, and 330 is the first to third armatures corresponding to the bogie 211. When positioned in the sections 401 to 403, the magnet row 225 of the carriage 211 is set to the number of armatures overlapping at the same time. For this reason, when the bogie 211 is located in the first section 401, the current flowing through the first armature group 121 composed of three adjacent armatures is controlled. A larger thrust can be applied to the bogie 211 than a current flows. Further, when the bogie 211 is located across the first section 401 and the second section 402, the cart is synthesized from the two armature groups 121 and 122 equivalent to the maximum thrust of the individual armature groups 121 and 122. Thrust can be obtained. Therefore, even when the magnet array 225 of the carriage 211 straddles the first section 401 and the second section 402, the carriage 211 can be operated efficiently.
 本実施形態では、台車211の走行方向は、図3において区間404から区間401,402,403を経て区間405に至る一方通行として説明したが、双方向通行であっても電機子120a~120i,124a~124dおよび磁気センサ130a~130i,131a~131dの相対的な配置関係は変わらない。つまり、図3の走行システムのレイアウトそのままで、台車211は区間405から区間403,402,401を経て区間404まで走行できる。 In the present embodiment, the traveling direction of the bogie 211 has been described as one-way from the section 404 to the section 405 through the sections 401, 402, and 403 in FIG. 3, but the armatures 120a to 120i, The relative arrangement of the magnetic sensors 124a to 124d and the magnetic sensors 130a to 130i and 131a to 131d does not change. That is, the bogie 211 can travel from the section 405 to the section 404 via the sections 403, 402, and 401 with the layout of the traveling system shown in FIG.
 なお、本発明は、上記実施の形態に限定されるものではない。例えば、本明細書において記載した構成要素を任意に組み合わせて、また、構成要素のいくつかを除外して実現される別の実施の形態を本発明の実施の形態としてもよい。また、上記実施の形態に対して本発明の主旨、すなわち、請求の範囲に記載される文言が示す意味を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本発明に含まれる。 The present invention is not limited to the above embodiment. For example, another embodiment that is realized by arbitrarily combining the components described in this specification and excluding some of the components may be an embodiment of the present invention. In addition, the gist of the present invention with respect to the above-described embodiment, that is, modified examples obtained by performing various modifications conceivable by those skilled in the art without departing from the meaning indicated by the words described in the claims are also included in the present invention. It is.
 上記の実施の形態から明らかなように、第1および第2電機子群121、122、磁気センサ130a~130f、第1および第2コントローラ310、320の間の関係は、第2電機子群122、第3電機子群123、磁気センサ130c~130i、第2および第3コントローラ330の間の関係と同様である。すなわち、共有磁気センサの検出値が、相互に隣り合う電機子群を制御する2つのコントローラに入力される構造が、走行システム内に2回以上繰り返し設けられていてもよい。 As is clear from the above embodiment, the relationship between the first and second armature groups 121 and 122, the magnetic sensors 130a to 130f, and the first and second controllers 310 and 320 is the same as that of the second armature group 122. , The third armature group 123, the magnetic sensors 130c to 130i, and the second and third controllers 330. That is, the structure in which the detection value of the shared magnetic sensor is input to two controllers that control the armature groups adjacent to each other may be repeatedly provided two or more times in the traveling system.
 例えば、上記実施の形態では、第1コントローラ310および第2コントローラ320は、共有磁気センサ130cと接続されていることとしたがこれに限らない。図8に示すように、第1コントローラ310Aの中継基板311Aが共有磁気センサ130cと接続されており、第2コントローラ320Aの中継基板321Aが共有磁気センサ130cと接続されていない構成が採用されてもよい。この場合、第1コントローラ310Aの中継基板311Aは、第2コントローラ320Aの中継基板321Aと通信可能に接続されており、各磁気センサ130a~130cから得られた検出値を中継基板321Aに出力していてもよい。このような構成であっても第2コントローラ320Aは、共有磁気センサ130cの検出値を得ることができる。 For example, in the above embodiment, the first controller 310 and the second controller 320 are connected to the shared magnetic sensor 130c, but the present invention is not limited to this. As shown in FIG. 8, even when a configuration is adopted in which the relay board 311A of the first controller 310A is connected to the shared magnetic sensor 130c and the relay board 321A of the second controller 320A is not connected to the shared magnetic sensor 130c. Good. In this case, the relay board 311A of the first controller 310A is communicably connected to the relay board 321A of the second controller 320A, and outputs a detection value obtained from each of the magnetic sensors 130a to 130c to the relay board 321A. You may. Even with such a configuration, the second controller 320A can obtain the detection value of the shared magnetic sensor 130c.
 同様に、第2コントローラ320および第3コントローラ330は、共有磁気センサ130fと接続されていることとしたがこれに限らない。第2コントローラ320Aの中継基板321Aが共有磁気センサ130fと接続されており、第3コントローラ330Aの中継基板331Aが共有磁気センサ130fと接続されていない構成が採用されてもよい。この場合、第2コントローラ320Aの中継基板321Aは、第3コントローラ330Aの中継基板331Aと通信可能に接続されており、各磁気センサ130d~130fから得られた検出値を中継基板331Aに出力していてもよい。このような構成であっても第3コントローラ330Aは、共有磁気センサ130fの検出値を得ることができる。 Similarly, the second controller 320 and the third controller 330 are connected to the shared magnetic sensor 130f, but are not limited to this. A configuration in which the relay board 321A of the second controller 320A is connected to the shared magnetic sensor 130f and the relay board 331A of the third controller 330A is not connected to the shared magnetic sensor 130f may be adopted. In this case, the relay board 321A of the second controller 320A is communicably connected to the relay board 331A of the third controller 330A, and outputs detection values obtained from the magnetic sensors 130d to 130f to the relay board 331A. You may. Even with such a configuration, the third controller 330A can obtain the detection value of the shared magnetic sensor 130f.
 なお、図8は、変形例にかかる走行システムにおいて走行レールを除いた平面図である。 FIG. 8 is a plan view of the traveling system according to the modified example excluding the traveling rail.
 また、図示しないが、第1~第3コントローラの各中継基板は、1つの同一の基板で構成されていてもよい。このような構成であっても、第2コントローラは共有磁気センサ130cの検出値を得ることができ、第3コントローラは共有磁気センサ130fの検出値を得ることができる。 Although not shown, each of the relay boards of the first to third controllers may be formed of one and the same board. Even with such a configuration, the second controller can obtain the detection value of the shared magnetic sensor 130c, and the third controller can obtain the detection value of the shared magnetic sensor 130f.
 上記実施の形態では、各コントローラによって制御される電機子の個数は3個だが、変形例では、4個以上であってもよく、また、1個であってもよい。個数が1個である場合では、各磁気センサは、当該磁気センサを挟む一対の電機子への電流を制御する一対のコントローラの双方に検出値を出力する。 In the above embodiment, the number of armatures controlled by each controller is three, but in a modified example, it may be four or more, or may be one. When the number is one, each magnetic sensor outputs a detection value to both of a pair of controllers that control a current to a pair of armatures sandwiching the magnetic sensor.
 上記実施の形態では、各電機子120は1組のUVW相のコイルを備えるが、変形例では、2組以上のUVW相のコイルを備えていてもよい。この場合に、各組のUVW相のコイルが物理的に独立していてもよい。すなわち、各電機子120は複数の電機子の集合体として構成されていてもよい。 In the above embodiment, each armature 120 includes one set of UVW-phase coils. However, in a modified example, two or more sets of UVW-phase coils may be provided. In this case, each set of UVW phase coils may be physically independent. That is, each armature 120 may be configured as an aggregate of a plurality of armatures.
 本発明は、物流拠点、自動倉庫、工場など、物品を高速で搬送する設備などに利用可能である。 The present invention can be used for facilities that transport goods at high speed, such as distribution bases, automatic warehouses, factories, and the like.
 10  物品
100  走行システム
101  移載スペース
110  走行レール
120、120a~120i、124a~124d  電機子
120aa  U相のコイル
120ab  V相のコイル
120ac  W相のコイル
121  第1電機子群
122  第2電機子群
123  第3電機子群
130、130a~130i、131a~131d  磁気センサ
211  台車
212  移載機構
213  移載用可動子
218  車輪
219  基台
221  無端環状部材
222  ローラ
223  伝達部材
224  移載用固定子
225  磁石列
310、310A  第1コントローラ
311、311A、321、321A、331、331A  中継基板
312、322、332  アンプ基板
320、320A  第2コントローラ
330、330A  第3コントローラ
341~344  コントローラ
401  第1区間
402  第2区間
403  第3区間
404  第4区間
405  第5区間
Reference Signs List 10 Article 100 Travel system 101 Transfer space 110 Travel rails 120, 120a to 120i, 124a to 124d Armature 120aa U-phase coil 120ab V-phase coil 120ac W-phase coil 121 First armature group 122 Second armature group 123 Third armature group 130, 130a to 130i, 131a to 131d Magnetic sensor 211 Carriage 212 Transfer mechanism 213 Transfer movable element 218 Wheel 219 Base 221 Endless annular member 222 Roller 223 Transmission member 224 Transfer stator 225 Magnet arrays 310, 310A First controllers 311, 311A, 321, 321A, 331, 331A Relay boards 312, 322, 332 Amplifier boards 320, 320A Second controllers 330, 330A Third controllers 341-344 Controller 401 first section 402 second interval 403 third section 404 fourth section 405 fifth section

Claims (5)

  1.  所定の走行路を走行する台車と、前記走行路を規定する走行レールを備える地上側設備と、を備える走行システムであって、
     前記台車は、磁気作用を受けて前記走行路に沿って移動する磁石列を有し、
     前記地上側設備は、
     前記走行路に沿って離散配置され、それぞれに流れる電流により発生する磁場の磁気作用により前記磁石列を移動させるK個の電機子(前記Kは2以上の整数)と、
     前記走行路に沿って前記K個の電機子と交互に配置され、前記磁石列による磁界を検出するL個の磁気センサ(前記Lは2以上の整数)と、
     M個のコントローラ(前記Mは2以上の整数)と、を備え、
     前記K個の電機子は、前記走行路の第1区間に沿って配置されるN個の第1電機子(前記Nは2以上かつ前記K未満の整数)により構成される第1電機子群と、前記走行路の前記第1区間に隣り合う第2区間に沿って配置されるO個の第2電機子(前記Oは2以上かつ前記K未満の整数)により構成される第2電機子群とを含み、
     前記L個の磁気センサは、前記N個の第1電機子の間に配置される(N-1)個の第1磁気センサと、前記O個の第2電機子の間に配置される(O-1)個の第2磁気センサと、前記第1電機子群および前記第2電機子群の間に配置される共有磁気センサとを含み、
     前記M個のコントローラは、前記(N-1)個の第1磁気センサおよび前記共有磁気センサの検出値に基づいて前記第1電機子群に流れる電流を制御する第1コントローラと、前記(O-1)個の第2磁気センサおよび前記共有磁気センサの検出値に基づいて前記第2電機子群に流れる電流を制御する第2コントローラとを含む
     走行システム。
    A traveling system including a bogie that travels on a predetermined traveling path and a ground-side facility including a traveling rail that defines the traveling path,
    The cart has a magnet row that moves along the traveling path under a magnetic action,
    The ground-side equipment includes:
    K armatures (K is an integer of 2 or more) that are discretely arranged along the traveling path and move the magnet array by a magnetic effect of a magnetic field generated by a current flowing through each of the armatures;
    L magnetic sensors (the L is an integer of 2 or more) that are alternately arranged with the K armatures along the traveling path and detect a magnetic field generated by the magnet row;
    M controllers (M is an integer of 2 or more),
    The K armatures are a first armature group including N first armatures (N is an integer of 2 or more and less than K) arranged along a first section of the traveling path. And a second armature composed of O second armatures (where O is an integer greater than or equal to 2 and less than K) arranged along a second section adjacent to the first section of the travel path. Group and
    The L magnetic sensors are disposed between (N-1) first magnetic sensors disposed between the N first armatures and the O second armatures ( O-1) second magnetic sensors, and a shared magnetic sensor disposed between the first armature group and the second armature group,
    The M controllers include a first controller that controls a current flowing through the first armature group based on detection values of the (N−1) first magnetic sensors and the shared magnetic sensor, and the (O) -1) A traveling system including: a second controller that controls a current flowing through the second armature group based on detection values of the second magnetic sensors and the shared magnetic sensor.
  2.  前記第1コントローラは、
      前記(N-1)個の第1磁気センサおよび前記共有磁気センサの検出値に基づいて、前記磁石列が前記N個の第1電機子の少なくとも1個の側方に位置しているか否かを判定し、
      前記磁石列が前記N個の第1電機子の少なくとも1個の側方に位置していると判定している間に、前記N個の第1電機子のそれぞれに電流を流し、
     前記第2コントローラは、
      前記(O-1)個の第2磁気センサおよび前記共有磁気センサの検出値に基づいて、前記磁石列が前記O個の第2電機子の少なくとも1つの側方に位置しているか否かを判定し、
      前記磁石列が前記O個の第2電機子の少なくとも1つの側方に位置していると判定している間に、前記O個の第2電機子のそれぞれに電流を流す
     請求項1に記載の走行システム。
    The first controller includes:
    Based on the detection values of the (N-1) first magnetic sensors and the shared magnetic sensor, whether or not the magnet array is located on at least one side of the N first armatures Judge,
    Applying a current to each of the N first armatures while determining that the magnet array is located on at least one side of the N first armatures;
    The second controller includes:
    Based on the detection values of the (O-1) second magnetic sensors and the shared magnetic sensor, it is determined whether or not the magnet array is located at least on one side of the O second armatures. Judge,
    The current flows through each of the O second armatures while determining that the magnet array is located at least on one side of the O second armatures. Traveling system.
  3.  前記第1区間および前記第2区間の少なくとも一方は、前記走行路が曲線である曲線区間である
     請求項1または2に記載の走行システム。
    The traveling system according to claim 1, wherein at least one of the first section and the second section is a curved section in which the traveling path is a curve.
  4.  前記N個および前記O個の少なくとも一方は、前記台車が前記曲線区間に位置する場合に前記磁石列が同時に重なる前記電機子の数である
     請求項3に記載の走行システム。
    The traveling system according to claim 3, wherein at least one of the N pieces and the O pieces is the number of the armatures in which the magnet rows overlap at the same time when the bogie is located in the curved section.
  5.  所定の走行路を走行する台車と、前記走行路を規定する走行レールを備える地上側設備と、を備える走行システムであって、
     前記台車は、磁気作用を受けて前記走行路に沿って移動する磁石列を有し、
     前記地上側設備は、
     前記走行路に沿って離散配置され、それぞれに流れる電流により発生する磁場の磁気作用により前記磁石列を移動させる複数の電機子と、
     前記走行路に沿って前記複数の電機子と交互に配置され、前記磁石列による磁界を検出する複数の磁気センサと、
     一つ以上の電機子に流れる電流を制御する複数のコントローラと、を備え、
     複数の磁気センサの一部は、当該磁気センサを挟む一対の電機子への電流を制御する一対のコントローラの双方に検出値を出力する
     走行システム。
    A traveling system including a bogie that travels on a predetermined traveling path and a ground-side facility including a traveling rail that defines the traveling path,
    The cart has a magnet row that moves along the traveling path under a magnetic action,
    The ground-side equipment includes:
    A plurality of armatures that are discretely arranged along the traveling path and move the magnet array by magnetic action of a magnetic field generated by a current flowing therethrough,
    A plurality of magnetic sensors arranged alternately with the plurality of armatures along the traveling path and detecting a magnetic field by the magnet row,
    A plurality of controllers for controlling the current flowing through one or more armatures,
    A traveling system in which a part of the plurality of magnetic sensors outputs detection values to both a pair of controllers that control a current to a pair of armatures sandwiching the magnetic sensors.
PCT/JP2019/032716 2018-09-07 2019-08-21 Traveling system WO2020050034A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018168087 2018-09-07
JP2018-168087 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020050034A1 true WO2020050034A1 (en) 2020-03-12

Family

ID=69722491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032716 WO2020050034A1 (en) 2018-09-07 2019-08-21 Traveling system

Country Status (2)

Country Link
TW (1) TW202021244A (en)
WO (1) WO2020050034A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591606A (en) * 1991-09-24 1993-04-09 Ebara Corp Travel control mechanism for conveying table
US20180212504A1 (en) * 2014-06-02 2018-07-26 Ats Tooling Systems Inc. Linear motor system with powered curvilinear track sections

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591606A (en) * 1991-09-24 1993-04-09 Ebara Corp Travel control mechanism for conveying table
US20180212504A1 (en) * 2014-06-02 2018-07-26 Ats Tooling Systems Inc. Linear motor system with powered curvilinear track sections

Also Published As

Publication number Publication date
TW202021244A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
US20210039502A1 (en) Linear motor transport for packaging and other uses
US10442637B2 (en) Linear drive system having central, distributed and group control
KR101596336B1 (en) Linear motor and linear conveyance device
US8763792B2 (en) Conveyance system
US8794426B2 (en) Pallet-based position adjustment system and method
JP4924995B2 (en) Mobile system
JP2009120318A (en) Carrying device for work
US10256023B2 (en) Method and apparatus for interleaved switching of track segments in a motion control system
US11780333B2 (en) System and method for collision prevention in a linear motion system
US10532891B2 (en) Transport route of a long stator linear motor
US20190305661A1 (en) Curvilinear motor
WO2020050034A1 (en) Traveling system
WO2018139098A1 (en) Article transferring device
JP2002078107A (en) Conveyer system
US11599101B2 (en) Independent mover transport system and method of extending range of operations in an independent mover transport system
JP2904967B2 (en) Transfer device
JP3932730B2 (en) Transport system and control method of transport system
JP7006657B2 (en) Traveling device
JP6996531B2 (en) Transport device
JP4445086B2 (en) Sorting conveyor control method and sorting conveyor
KR100615551B1 (en) Linear motor conveyor equipped with turning device
JP3709779B2 (en) Linear conveyor
JP4089610B2 (en) Tracked bogie system and tracked bogie travel control method
JP2022023497A (en) Conveying device
JPS61135303A (en) Controlling method of linear motor conveyor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP