WO2020050000A1 - Base station device, terminal device, and communication method - Google Patents

Base station device, terminal device, and communication method Download PDF

Info

Publication number
WO2020050000A1
WO2020050000A1 PCT/JP2019/032368 JP2019032368W WO2020050000A1 WO 2020050000 A1 WO2020050000 A1 WO 2020050000A1 JP 2019032368 W JP2019032368 W JP 2019032368W WO 2020050000 A1 WO2020050000 A1 WO 2020050000A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
report
codebook
terminal device
base station
Prior art date
Application number
PCT/JP2019/032368
Other languages
French (fr)
Japanese (ja)
Inventor
良太 山田
宏道 留場
難波 秀夫
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2020050000A1 publication Critical patent/WO2020050000A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a base station device, a terminal device, and a communication method.
  • This application claims priority based on Japanese Patent Application No. 2018-165979 filed in Japan on September 5, 2018, the contents of which are incorporated herein by reference.
  • An aspect of the present invention has been made in view of such circumstances, and an object thereof is to provide a base station device and a terminal device capable of improving throughput and frequency use efficiency by flexible transmission control in a spatial domain. And a communication method.
  • the configurations of the base station apparatus, the terminal apparatus, and the communication method according to the present invention for solving the above-described problems are as follows.
  • a terminal device is a terminal device that communicates with a base station device, a receiving unit that receives a report setting of channel state information (CSI) and a channel state information reference signal (CSI-RS), A measuring unit that obtains CSI based on the CSI report setting and the CSI-RS; and a transmitting unit that transmits the CSI to the base station device, wherein the CSI report setting includes a codebook setting and a report If the codebook setting indicates a type 1 codebook, the number of CQIs for each report is 2 and the rank index (RI) is 4 or more, the channel quality index of two codewords ( CQI), the codebook setting indicates a type 2 codebook, the number of CQIs for each report is 2 and the rank index (RI) is 2 or more And calculating the CQI of the two codewords and transmitting the CSI including the precoding matrix index (PMI), the RI, and the CQI obtained from the type 1 codebook or the type 2 codebook.
  • CSI report setting includes a
  • the CSI report setting includes a report amount and a CQI number for each low-rank report, and the report amount includes a setting for reporting RI and CQI and not reporting PMI.
  • the number of CQIs for each of the low-rank reports is two, the CQIs of two codewords are obtained, and the CSI including the RI and the CQI is transmitted.
  • the CSI report setting includes a CQI table setting for each of two codewords, and when determining a CQI of the two codewords, the CQI is a CQI for each codeword. Refer to the table to determine.
  • a base station apparatus is a base station apparatus that communicates with a terminal apparatus, and includes a transmission unit that transmits a channel state information (CSI) report setting and a channel state information reference signal (CSI-RS). And a receiving unit for receiving the CSI, wherein the CSI report setting includes a codebook setting and a CQI number for each report, the codebook setting indicates a type 1 codebook, and a CQI for each report. If the number is 2, the rank index (RI) is 4 or more, the channel quality indicator (CQI) of two codewords, the PMI of type 1 codebook, and the RI are received from the terminal device, and the codebook setting is performed.
  • CSI channel state information
  • CSI-RS channel state information reference signal
  • the CSI report setting includes a report amount and a CQI number for each low-rank report, and the report amount is set to report RI and CQI and not report PMI. In the case where the number of CQIs per low-rank report is two, CQI and RI of two codewords are received.
  • the CSI report setting includes a CQI table setting for each of two codewords, and when the CQI of the two codewords is received, the CQI is set to each codeword.
  • a communication method is a communication method in a terminal device that communicates with a base station device, and receives a report setting of channel state information (CSI) and a channel state information reference signal (CSI-RS).
  • CSI channel state information
  • CSI-RS channel state information reference signal
  • Channel quality indicator of two codewords when the codebook setting indicates a type 1 codebook and the number of CQIs per report is 2 and the rank index (RI) is 4 or more.
  • CQI codebook setting indicates a type 2 codebook and the number of CQIs for each report is two
  • the index (RI) is 2 or more
  • the CQI of two codewords is obtained
  • the precoding matrix index (PMI) obtained by the type 1 codebook or the type 2 codebook, the RI, and the CQI are included.
  • Send CSI When the index (RI) is 2 or more, the CQI of two codewords is obtained, and the precoding matrix index (PMI) obtained by the type 1 codebook or the type 2 codebook, the RI, and the CQI are included.
  • Send CSI Send CSI.
  • a communication method is a communication method in a base station apparatus that communicates with a terminal apparatus, in which a report setting of channel state information (CSI) and a channel state information reference signal (CSI-RS) are transmitted. And receiving the CSI, wherein the CSI report settings include a codebook setting and a number of CQIs per report, wherein the codebook setting indicates a type 1 codebook, and a CQI per report. If the number is 2 and the rank indicator (RI) is 4 or more, the channel quality indicator (CQI) of the two codewords, the PMI of the type 1 codebook, and the RI are received from the terminal device, and the codebook is received. If the setting indicates a type 2 codebook, the number of CQIs for each report is 2, and the rank index (RI) is 2 or more, Receives two code words CQI, Type 2 codebook PMI, and RI.
  • CSI channel state information
  • CSI-RS channel state information reference signal
  • throughput and frequency use efficiency can be improved by flexible transmission control in the spatial domain.
  • FIG. 1 is a diagram illustrating an example of a communication system according to an embodiment.
  • FIG. 4 is a block diagram illustrating a configuration example of a base station device according to the present embodiment.
  • FIG. 2 is a block diagram illustrating a configuration example of a terminal device according to the present embodiment.
  • FIG. 1 is a diagram illustrating an example of a communication system according to an embodiment.
  • the communication system includes a base station device (transmitting device, cell, transmitting point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB, transmitting point, transmitting / receiving point, transmitting panel, access point, subarray) and terminal Devices (terminals, mobile terminals, receiving points, receiving terminals, receiving devices, receiving antenna groups, receiving antenna port groups, UEs, receiving points, receiving panels, stations, sub arrays) are provided.
  • a base station device connected to a terminal device is called a serving cell.
  • the base station device and the terminal device according to the present embodiment can communicate in a frequency band requiring a license (license band) and / or in a frequency band not requiring a license (unlicensed band).
  • X / Y includes the meaning of “X or Y”. In the present embodiment, “X / Y” includes the meanings of “X and Y”. In the present embodiment, “X / Y” includes the meaning of “X and / or Y”.
  • FIG. 1 is a diagram illustrating an example of a communication system according to the present embodiment.
  • the communication system according to the present embodiment includes a base station device 1A and a terminal device 2A.
  • the coverage 1-1 is a range (communication area) in which the base station device 1A can connect to the terminal device.
  • Base station device 1A is also simply referred to as a base station device.
  • the terminal device 2A is also simply referred to as a terminal device.
  • the following uplink physical channels are used in uplink wireless communication from the terminal device 2A to the base station device 1A.
  • the uplink physical channel is used for transmitting information output from an upper layer.
  • -PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • PUCCH is used to transmit uplink control information (Uplink Control Information: UCI).
  • the uplink control information includes ACK (a positive acknowledgment) or NACK (a negative acknowledgment) (ACK / NACK) for downlink data (downlink transport block, Downlink-Shared Channel: DL-SCH).
  • ACK / NACK for downlink data is also referred to as HARQ-ACK or HARQ feedback.
  • the uplink control information includes channel state information (Channel State Information: CSI) for the downlink. Also, the uplink control information includes a scheduling request (Scheduling Request: SR) used to request resources of the uplink shared channel (Uplink-Shared Channel: UL-SCH).
  • the channel state information includes a rank indicator RI (Rank @ Indicator) for specifying a suitable number of spatial multiplexing, a precoding matrix indicator PMI (Precoding @ Matrix @ Indicator) for specifying a suitable precoder, and a channel quality indicator CQI for specifying a suitable transmission rate.
  • CSI-RS Reference Signal
  • CRI CSI-RS Resource Indicator
  • SS Synchronization Signal
  • RSRP Reference ⁇ Signal ⁇ Received ⁇ Power
  • the channel quality indicator CQI (hereinafter, CQI value) may be a suitable modulation scheme (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) in a predetermined band (details will be described later), and a coding rate (coding rate). it can.
  • the CQI value may be an index (CQI Index) determined by the change method and the coding rate.
  • the CQI value can be a value predetermined by the system.
  • the CRI indicates a CSI-RS resource having a preferable reception power / reception quality from a plurality of CSI-RS resources.
  • the rank index and the precoding quality index can be determined in advance by the system.
  • the rank index or the precoding matrix index may be an index determined by the number of spatial multiplexing or precoding matrix information.
  • a part or all of the CQI value, the PMI value, the RI value, and the CRI value are also collectively referred to as a CSI value.
  • PUSCH is used to transmit uplink data (uplink transport block, UL-SCH). Also, the PUSCH may be used to transmit ACK / NACK and / or channel state information along with uplink data. PUSCH may be used to transmit only uplink control information.
  • PU PUSCH is used for transmitting an RRC message.
  • the RRC message is information / signal processed in a radio resource control (Radio Resource Control: $ RRC) layer.
  • PUSCH is used for transmitting MAC @ CE (Control @ Element).
  • MAC @ CE is information / signal processed (transmitted) in a medium access control (MAC: ⁇ Medium ⁇ Access ⁇ Control) layer.
  • the power headroom may be included in the MAC @ CE and reported via the PUSCH. That is, the MAC @ CE field may be used to indicate the power headroom level.
  • PRACH is used to transmit a random access preamble.
  • an uplink reference signal (Uplink Reference Signal: UL RS) is used as an uplink physical signal.
  • the uplink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
  • the uplink reference signal includes DMRS (Demodulation Reference Signal), SRS (Sounding Reference Signal), and PT-RS (Phase-Tracking reference signal).
  • DMRS is related to the transmission of PUSCH or PUCCH.
  • the base station apparatus 1A uses the DMRS to correct the propagation path of the PUSCH or the PUCCH.
  • the base station apparatus 1A uses the SRS to measure an uplink channel state.
  • the SRS is used for uplink observation (sounding).
  • PT-RS is used to compensate for phase noise.
  • the uplink DMRS is also referred to as uplink DMRS.
  • the following downlink physical channels are used in downlink wireless communication from the base station device 1A to the terminal device 2A.
  • the downlink physical channel is used for transmitting information output from an upper layer.
  • PBCH Physical Broadcast Channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid automatic repeat request Indicator Channel; HARQ instruction channel
  • -PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • -PDSCH Physical Downlink Shared Channel
  • the PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) commonly used in the terminal device.
  • the PCFICH is used to transmit information indicating a region used for transmission of the PDCCH (for example, the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols).
  • MIB is also called minimum system information.
  • $ PHICH is used to transmit ACK / NACK for uplink data (transport block, codeword) received by base station apparatus 1A. That is, the PHICH is used to transmit a HARQ indicator (HARQ feedback) indicating ACK / NACK for uplink data. ACK / NACK is also referred to as HARQ-ACK.
  • the terminal device 2A notifies the upper layer of the received ACK / NACK.
  • the ACK / NACK is ACK indicating that the data was correctly received, NACK indicating that the data was not correctly received, and DTX indicating that there was no corresponding data. If there is no PHICH for the uplink data, the terminal device 2A notifies the upper layer of an ACK.
  • PDCCH and EPDCCH are used for transmitting downlink control information (Downlink Control Information: DCI).
  • DCI Downlink Control Information
  • a plurality of DCI formats are defined for transmission of downlink control information. That is, the field for the downlink control information is defined in the DCI format and mapped to information bits.
  • a DCI format 1A used for scheduling one PDSCH (transmission of one downlink transport block) in one cell is defined.
  • the DCI format for the downlink includes information on resource allocation of PDSCH, information on MCS (Modulation and Coding Scheme) for PDSCH, and downlink control information such as a TPC command for PUCCH.
  • the DCI format for the downlink is also referred to as a downlink grant (or downlink assignment).
  • DCI format 0 used for scheduling one PUSCH (transmission of one uplink transport block) in one cell is defined as the DCI format for the uplink.
  • the DCI format for the uplink includes information on PUSCH resource allocation, information on the MCS for the PUSCH, and uplink control information such as a TPC command for the PUSCH.
  • the DCI format for the uplink is also referred to as an uplink grant (or an uplink assignment).
  • the DCI format for the uplink can be used to request downlink channel state information (CSI; Channel ⁇ State ⁇ Information; also referred to as reception quality information).
  • CSI downlink channel state information
  • reception quality information also referred to as reception quality information
  • the DCI format for the uplink can be used for the setting indicating the uplink resource that maps the channel state information report (CSI feedback report) that the terminal device feeds back to the base station device.
  • the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic @ CSI).
  • the channel state information report can be used for a mode setting (CSI @ report @ mode) for periodically reporting the channel state information.
  • the channel state information report can be used for setting indicating an uplink resource for reporting irregular channel state information (Aperiodic @ CSI).
  • the channel state information report can be used for a mode setting (CSI @ report @ mode) for reporting the channel state information irregularly.
  • the channel state information report can be used for setting indicating an uplink resource for reporting semi-persistent channel state information (semi-persistent CSI).
  • the channel state information report can be used for a mode setting (CSI @ report @ mode) for semi-permanently reporting the channel state information.
  • the semi-permanent CSI report is a CSI report that is periodically performed during a period in which activation is performed using an upper layer signal or downlink control information and then deactivation is performed.
  • the DCI format for the uplink can be used for setting indicating the type of channel state information report that the terminal device feeds back to the base station device.
  • the types of the channel state information report include a wideband CSI (for example, Wideband @ CQI) and a narrowband CSI (for example, Subband @ CQI).
  • the terminal device When the PDSCH resource is scheduled using the downlink assignment, the terminal device receives the downlink data on the scheduled PDSCH. Further, when a PUSCH resource is scheduled using an uplink grant, the terminal device transmits uplink data and / or uplink control information on the scheduled PUSCH.
  • the PDSCH is used for transmitting downlink data (downlink transport block, DL-SCH).
  • the PDSCH is used for transmitting a system information block type 1 message.
  • the system information block type 1 message is cell-specific (cell-specific) information.
  • the PDPDSCH is used for transmitting a system information message.
  • the system information message includes a system information block X other than the system information block type 1.
  • the system information message is cell-specific (cell-specific) information.
  • PD PDSCH is used to transmit an RRC message.
  • the RRC message transmitted from the base station device may be common to a plurality of terminal devices in the cell.
  • the RRC message transmitted from the base station device 1A may be a message dedicated to a certain terminal device 2A (also referred to as dedicated signaling). That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message.
  • PDSCH is used to transmit MAC @ CE.
  • the RRC message and / or the MAC CE are also referred to as higher layer (signaling.
  • the PDSCH can also be used to request downlink channel state information.
  • the PDSCH can be used to transmit an uplink resource that maps a channel state information report (CSI feedback_report) that is fed back from the terminal device to the base station device.
  • CSI feedback_report a channel state information report
  • the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic @ CSI).
  • the channel state information report can be used for a mode setting (CSI @ report @ mode) for periodically reporting the channel state information.
  • the types of downlink channel state information reports include broadband CSI (eg, Wideband CSI) and narrowband CSI (eg, Subband CSI).
  • Broadband CSI calculates one piece of channel state information for a system band of a cell.
  • the narrowband CSI divides a system band into predetermined units, and calculates one piece of channel state information for the division.
  • a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink reference signal: DL RS) are used as downlink physical signals.
  • the downlink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
  • the synchronization signal includes a primary synchronization signal (Primary @ Synchronization @ Signal: @PSS) and a secondary synchronization signal (Secondary @ Synchronization @ Signal: @SSS).
  • the synchronization signal is used by the terminal device to synchronize the downlink frequency domain and the time domain.
  • the synchronization signal is used for measuring reception power, reception quality, or a signal-to-interference noise power ratio (Signal-to-Interference noise power Noise Ratio power SINR).
  • SINR Signal-to-Interference noise power Noise Ratio power
  • the received power measured with the synchronization signal is SS-RSRP (Synchronization Signal-Reference Signal Received Power)
  • the reception quality measured with the synchronization signal is SS-RSRQ (Reference Signal Received Quality)
  • SINR measured with the synchronization signal is SS-RSRP.
  • SINR SINR
  • SS-RSRQ is the ratio of SS-RSRP to RSSI.
  • RSSI Receiveived ⁇ Signal ⁇ Strength ⁇ Indicator
  • RSSI Received ⁇ Signal ⁇ Strength ⁇ Indicator
  • the synchronization signal / downlink reference signal is used by the terminal device to perform channel correction of the downlink physical channel.
  • the synchronization signal / downlink reference signal is used by the terminal device to calculate downlink channel state information.
  • the downlink reference signal includes DMRS (Demodulation Reference Signal; demodulation reference signal), NZP CSI-RS (Non-Zero Power Channel State Information-Reference Signal), and ZP CSI-RS (Zero Power Channel State-Information Reference Signal). Signal), PT-RS, TRS (Tracking Reference Signal).
  • the downlink DMRS is also referred to as a downlink DMRS.
  • CSI-RS when simply referred to as CSI-RS, it includes NZP @ CSI-RS and / or ZP @ CSI-RS.
  • the DMRS is transmitted in a subframe and a band used for transmission of the PDSCH / PBCH / PDCCH / EPDCCH to which the DMRS is related, and is used for demodulating the PDSCH / PBCH / PDCCH / EPDCCH to which the DMRS is related.
  • the resources of ⁇ NZP ⁇ CSI-RS are set by the base station device 1A.
  • the terminal device 2A performs signal measurement (channel measurement) or interference measurement using NZP @ CSI-RS.
  • the NZP @ CSI-RS is used for beam scanning for searching for a suitable beam direction, beam recovery for recovering when reception power / reception quality in the beam direction has deteriorated, and the like.
  • the ZP @ CSI-RS resources are set by the base station apparatus 1A.
  • Base station apparatus 1A transmits ZP @ CSI-RS with zero output.
  • the terminal device 2A measures the interference in the resource corresponding to the ZP @ CSI-RS.
  • a resource for measuring interference corresponding to the ZP @ CSI-RS is also referred to as a CSI-IM (Interference @ Measurement) resource.
  • the base station apparatus 1A transmits (sets) NZP @ CSI-RS resource settings for NZP @ CSI-RS resources.
  • the NZP @ CSI-RS resource configuration includes one or more NZP @ CSI-RS resource mappings, a CSI-RS resource configuration ID of each NZP @ CSI-RS resource, and part or all of the number of antenna ports.
  • the CSI-RS resource mapping is information (for example, resource element) indicating an OFDM symbol and a subcarrier in a slot in which the CSI-RS resource is arranged.
  • the CSI-RS resource setting ID is used to specify an NZP @ CSI-RS resource.
  • the base station apparatus 1A transmits (sets) CSI-IM resource settings.
  • the CSI-IM resource configuration includes one or more CSI-IM resource mappings and a CSI-IM resource configuration ID for each CSI-IM resource.
  • the CSI-IM resource mapping is information (for example, a resource element) indicating an OFDM symbol and a subcarrier in a slot in which the CSI-IM resource is arranged.
  • the CSI-IM resource setting ID is used to specify a CSI-IM setting resource.
  • the CSI-RS is used for measuring received power, received quality, or SINR.
  • the received power measured by CSI-RS is also called CSI-RSRP
  • the reception quality measured by CSI-RS is also called CSI-RSRQ
  • the SINR measured by CSI-RS is also called CSI-SINR.
  • CSI-RSRQ is a ratio between CSI-RSRP and RSSI.
  • CSI-RS is transmitted regularly / irregularly / semi-permanently.
  • a terminal device is set in an upper layer.
  • a report setting as a CSI report setting
  • a resource setting as a resource setting for measuring CSI
  • a measurement link setting for linking the report setting and the resource setting for CSI measurement.
  • One or more report settings, resource settings, and measurement link settings are set.
  • the report settings include a report setting ID, a report setting type, a codebook setting, a report amount, a CQI table, group-based beam reporting, the number of CQIs for each report, and a part or all of the number of CQIs for each low rank report.
  • the report setting ID is used to specify a report setting.
  • the report setting type indicates a regular / irregular / semi-permanent CSI report.
  • the report amount indicates a CSI report amount (value, type) and is, for example, a part or all of CRI, RI, PMI, CQI, or RSRP.
  • the CQI table indicates the CQI table when calculating the CQI.
  • the CQI table includes, for example, a CQI table with a maximum modulation scheme of 64 QAM (also referred to as a first CQI table), a CQI table with a maximum modulation scheme of 256 QAM (also referred to as a second CQI table), and a maximum of low frequency use efficiency.
  • a 64QAM CQI table also referred to as a third CQI table.
  • the first CQI table and the second CQI table have an assumed (target) error rate of the transport block (codeword) of 0.1 or less
  • the third CQI table has a transport block (codeword) of the transport block (codeword).
  • the assumed (target) error rate is 0.00001 or less.
  • the second CQI table can achieve higher frequency use efficiency at a higher SINR than the first CQI table, but fine adaptive control becomes difficult at a lower SINR.
  • the third CQI table enables more reliable communication than the first CQI table, but has a lower maximum frequency use efficiency.
  • ON / OFF (valid / invalid) is set for group-based beam reporting.
  • the number of CQIs for each report indicates the maximum number of CSI for each CSI report. Indicates the maximum number of CQIs for each report when the RI is 4 or less. Note that the number of CQIs per report in the low rank may be applied when the number of CQIs per report is 2.
  • the codebook setting includes a codebook type and a setting of the codebook.
  • the code book type indicates a type 1 code book or a type 2 code book.
  • the resource setting includes a resource setting ID, a synchronization signal block resource measurement list, a resource setting type, and some or all of one or more resource set settings.
  • the resource setting ID is used to specify a resource setting.
  • the synchronization signal block resource setting list is a list of resources for which measurement using the synchronization signal is performed.
  • the resource configuration type indicates whether the CSI-RS is transmitted periodically, irregularly, or semi-permanently. In the case of a setting for transmitting a CSI-RS semi-permanently, the CSI-RS is transmitted periodically during a period from activation by a signal of an upper layer or downlink control information to deactivation. .
  • the resource set setting includes a part or all of information indicating a resource set setting ID, resource repetition, and one or more CSI-RS resources.
  • the resource set setting ID is used to specify the resource set setting.
  • the resource repetition indicates ON / OFF of the resource repetition in the resource set.
  • the resource repetition is ON, it means that the base station apparatus uses a fixed (identical) transmission beam for each of a plurality of CSI-RS resources in the resource set.
  • the terminal device assumes that the base station device uses a fixed (identical) transmission beam for each of the plurality of CSI-RS resources in the resource set.
  • the information indicating the CSI-RS resource includes one or a plurality of CSI-RS resource setting IDs, and one or a plurality of CSI-IM resource setting IDs.
  • the measurement link setting includes part or all of the measurement link setting ID, the report setting ID, and the resource setting ID, and the report setting and the resource setting are linked.
  • the measurement link setting ID is used to specify the measurement link setting.
  • ⁇ MBSFN (Multimedia Broadcast multicast service single Frequency Network) ⁇ RS is transmitted in the entire band of the subframe used for PMCH transmission.
  • MBSFN @ RS is used for demodulating PMCH.
  • the PMCH is transmitted on an antenna port used for transmitting MBSFN @ RS.
  • downlink physical channels and downlink physical signals are collectively referred to as downlink signals.
  • uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal.
  • the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • Channels used in the MAC layer are called transport channels.
  • the unit of the transport channel used in the MAC layer is also referred to as a transport block (Transport ⁇ Block: ⁇ TB) or a MAC ⁇ PDU (Protocol ⁇ Data ⁇ Unit).
  • the transport block is a unit of data that the MAC layer passes (delivers) to the physical layer. In the physical layer, transport blocks are mapped to codewords, and coding processing and the like are performed for each codeword.
  • the base station device can integrate and communicate with a plurality of component carriers (CC; ⁇ Component ⁇ Carrier) for wider band transmission.
  • CC component carriers
  • SCell Secondary @ Cell
  • serving cells are set as a set of serving cells.
  • a master cell group MCG; Master Cell Group
  • SCG Secondary Cell Group
  • the MCG includes a PCell and, optionally, one or more SCells.
  • the SCG includes a primary SCell (PSCell) and optionally one or more SCells.
  • the base station device can communicate using a radio frame.
  • the radio frame is composed of a plurality of subframes (subsections).
  • the radio frame length can be 10 milliseconds (ms) and the subframe length can be 1 ms.
  • the radio frame is composed of ten subframes.
  • a slot is composed of 14 OFDM symbols. Since the OFDM symbol length can change depending on the subcarrier interval, the slot length can also change at the subcarrier interval.
  • a minislot is composed of fewer OFDM symbols than slots.
  • a slot / minislot can be a scheduling unit. Note that the terminal device can know the slot-based scheduling / mini-slot-based scheduling from the position (arrangement) of the first downlink DMRS. In slot-based scheduling, the first downlink DMRS is placed in the third or fourth symbol of a slot. In the minislot-based scheduling, the first downlink DMRS is arranged in the first symbol of the scheduled data (resource, PDSCH).
  • a resource block is defined by 12 consecutive subcarriers.
  • a resource element is defined by a frequency domain index (for example, a subcarrier index) and a time domain index (for example, an OFDM symbol index).
  • Resource elements are classified as uplink resource elements, downlink elements, flexible resource elements, and reserved resource elements. In the reserved resource element, the terminal device does not transmit an uplink signal and does not receive a downlink signal.
  • subcarrier spacing SSC
  • SCS subcarrier spacing
  • the base station device / terminal device can communicate with a licensed band or an unlicensed band.
  • the base station apparatus / terminal apparatus can communicate with at least one SCell operating in the unlicensed band by carrier aggregation with the licensed band being PCell.
  • the base station device / terminal device can perform dual connectivity in which the master cell group communicates in the license band and the secondary cell group communicates in the unlicensed band.
  • the base station device / terminal device can communicate only with the PCell in the unlicensed band.
  • the base station device / terminal device can communicate with CA or DC using only the unlicensed band.
  • LAA Licensed-Assisted @ Access
  • ULSA unlicensed-standalone access
  • LA licensed access
  • FIG. 2 is a schematic block diagram showing the configuration of the base station device according to the present embodiment.
  • the base station apparatus includes an upper layer processing unit (upper layer processing step) 101, a control unit (control step) 102, a transmitting unit (transmitting step) 103, a receiving unit (receiving step) 104, and a transmitting / receiving antenna. 105 and a measurement unit (measurement step) 106.
  • the upper layer processing unit 101 includes a radio resource control unit (radio resource control step) 1011 and a scheduling unit (scheduling step) 1012.
  • transmitting section 103 includes coding section (coding step) 1031, modulation section (modulation step) 1032, downlink reference signal generation section (downlink reference signal generation step) 1033, multiplexing section (multiplexing step) 1034, radio A transmission unit (wireless transmission step) 1035 is included.
  • the receiving unit 104 includes a wireless receiving unit (wireless receiving step) 1041, a demultiplexing unit (multiplexing / demultiplexing step) 1042, a demodulating unit (demodulating step) 1043, and a decoding unit (decoding step) 1044.
  • the upper layer processing unit 101 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control (Radio). Resource Control: RRC) layer processing. Further, upper layer processing section 101 generates information necessary for controlling transmission section 103 and reception section 104 and outputs the information to control section 102.
  • Medium Access Control: MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio Resource Control
  • the upper layer processing unit 101 receives information about the terminal device, such as the function of the terminal device (UE capability), from the terminal device. In other words, the terminal device transmits its function to the base station device by a higher layer signal.
  • the terminal device such as the function of the terminal device (UE capability)
  • the information on the terminal device includes information indicating whether the terminal device supports a predetermined function, or information indicating that the terminal device has completed the introduction and test for the predetermined function.
  • whether or not a predetermined function is supported includes whether or not introduction and testing of the predetermined function have been completed.
  • the terminal device when the terminal device supports a predetermined function, the terminal device transmits information (parameter) indicating whether the terminal device supports the predetermined function.
  • the terminal device does not transmit information (parameter) indicating whether the terminal device supports the predetermined function. That is, whether or not to support the predetermined function is notified by transmitting or not transmitting information (parameter) indicating whether or not to support the predetermined function.
  • the information (parameter) indicating whether or not a predetermined function is supported may be notified using one bit of 1 or 0.
  • the radio resource control unit 1011 generates downlink data (transport block), system information, an RRC message, a MAC $ CE, etc., arranged in the downlink PDSCH, or obtains the information from an upper node. Radio resource control section 1011 outputs downlink data to transmitting section 103 and outputs other information to control section 102.
  • the wireless resource control unit 1011 manages various setting information of the terminal device.
  • the scheduling unit 1012 determines the frequency and subframe to which the physical channels (PDSCH and PUSCH) are to be allocated, the coding rate and modulation scheme (or MCS) of the physical channels (PDSCH and PUSCH), the transmission power, and the like.
  • the scheduling unit 1012 outputs the determined information to the control unit 102.
  • ⁇ Scheduling section 1012 generates information used for physical channel (PDSCH and PUSCH) scheduling based on the scheduling result. Scheduling section 1012 outputs the generated information to control section 102.
  • PDSCH and PUSCH physical channel scheduling
  • Control section 102 generates a control signal for controlling transmission section 103 and reception section 104 based on information input from upper layer processing section 101.
  • the control unit 102 generates downlink control information based on the information input from the upper layer processing unit 101, and outputs the generated downlink control information to the transmission unit 103.
  • the transmission unit 103 generates a downlink reference signal according to the control signal input from the control unit 102, and encodes the HARQ indicator, downlink control information, and downlink data input from the upper layer processing unit 101. And modulates the PHICH, the PDCCH, the EPDCCH, the PDSCH, and the downlink reference signal, and transmits the signal to the terminal device 2A via the transmission / reception antenna 105.
  • the coding unit 1031 performs block coding, convolutional coding, turbo coding, LDPC (Low Density Parity Check: Low Density Check) on the HARQ indicator, downlink control information, and downlink data input from the upper layer processing unit 101. Encoding is performed using a predetermined encoding method such as parity @ check) encoding or Polar encoding, or encoding is performed using an encoding method determined by the radio resource control unit 1011.
  • the modulation unit 1032 converts the coded bits input from the coding unit 1031 into a predetermined value such as BPSK (Binary Phase Shift Keying), QPSK (quadrature Phase Shift Keying), 16 QAM (quadrature amplitude modulation), 64 QAM, 256 QAM, or the like. Alternatively, modulation is performed using the modulation method determined by the radio resource control unit 1011.
  • the downlink reference signal generation unit 1033 performs downlink reference to a sequence known to the terminal device 2A, which is obtained by a predetermined rule based on a physical cell identifier (PCI, cell ID) for identifying the base station device 1A and the like. Generate as a signal.
  • PCI physical cell identifier
  • the multiplexing unit 1034 multiplexes the modulated modulation symbol of each channel, the generated downlink reference signal, and the downlink control information. That is, multiplexing section 1034 arranges the modulated modulation symbol of each channel, the generated downlink reference signal, and the downlink control information in the resource element.
  • the radio transmission unit 1035 generates an OFDM symbol by performing an inverse fast Fourier transform (Inverse Fast Fourier Transform: IFFT) on the multiplexed modulation symbol and the like, and adds a cyclic prefix (cyclic prefix: CP) to the OFDM symbol to generate a base.
  • IFFT inverse Fast Fourier Transform
  • CP cyclic prefix
  • Receiving section 104 separates, demodulates, and decodes a received signal received from terminal apparatus 2A via transmission / reception antenna 105 in accordance with the control signal input from control section 102, and outputs the decoded information to upper layer processing section 101. .
  • the wireless reception unit 1041 converts an uplink signal received via the transmission / reception antenna 105 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is appropriately maintained.
  • the level is controlled, quadrature demodulation is performed based on the in-phase and quadrature components of the received signal, and the quadrature demodulated analog signal is converted into a digital signal.
  • the radio receiving unit 1041 removes a portion corresponding to the CP from the converted digital signal.
  • the wireless receiving unit 1041 performs fast Fourier transform (Fast Fourier Transform: FFT) on the signal from which the CP has been removed, extracts a signal in the frequency domain, and outputs the signal to the demultiplexing unit 1042.
  • FFT Fast Fourier transform
  • the demultiplexing unit 1042 separates the signal input from the radio reception unit 1041 into signals such as PUCCH, PUSCH, and uplink reference signals. This separation is performed based on the radio resource allocation information included in the uplink grant determined by the base station apparatus 1A in advance in the radio resource control unit 1011 and notified to each terminal apparatus 2A.
  • the demultiplexing section 1042 compensates for the propagation paths of PUCCH and PUSCH. Also, the demultiplexing section 1042 separates an uplink reference signal.
  • the demodulation unit 1043 performs an inverse discrete Fourier transform (Inverse Discrete Fourier Transform: IDFT) on the PUSCH, obtains a modulation symbol, and performs BPSK, QPSK, 16QAM, 64QAM, 256QAM, or the like for each of the PUCCH and PUSCH modulation symbols.
  • IDFT inverse discrete Fourier Transform
  • the terminal performs demodulation of the received signal using a predetermined or predetermined modulation scheme notified to the terminal apparatus 2A by an uplink grant.
  • the decoding unit 1044 converts the demodulated coded bits of the PUCCH and the PUSCH into a predetermined coding scheme, at a predetermined coding rate, or at a coding rate previously notified to the terminal apparatus 2A by the own apparatus through the uplink grant. It performs decoding and outputs the decoded uplink data and uplink control information to the upper layer processing unit 101.
  • decoding section 1044 performs decoding using the coded bits held in the HARQ buffer input from higher layer processing section 101 and the coded bits demodulated.
  • the measurement unit 106 observes the received signal and obtains various measurement values such as RSRP / RSRQ / RSSI. Further, measuring section 106 obtains reception power, reception quality, and a suitable SRS resource index from the SRS transmitted from the terminal device.
  • FIG. 3 is a schematic block diagram illustrating the configuration of the terminal device according to the present embodiment.
  • the terminal device includes an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, a transmitting unit (transmission step) 203, a receiving unit (receiving step) 204, a measuring unit ( It comprises a (measurement step) 205 and a transmitting / receiving antenna 206.
  • the upper layer processing unit 201 is configured to include a radio resource control unit (radio resource control step) 2011 and a scheduling information interpretation unit (scheduling information interpretation step) 2012.
  • transmitting section 203 includes coding section (coding step) 2031, modulation section (modulation step) 2032, uplink reference signal generation section (uplink reference signal generation step) 2033, multiplexing section (multiplexing step) 2034, radio A transmission unit (wireless transmission step) 2035 is included.
  • the receiving unit 204 includes a wireless receiving unit (wireless receiving step) 2041, a demultiplexing unit (multiplexing / demultiplexing step) 2042, and a signal detecting unit (signal detecting step) 2043.
  • the upper layer processing unit 201 outputs the uplink data (transport block) generated by a user operation or the like to the transmission unit 203.
  • the upper layer processing unit 201 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control. (Radio ⁇ Resource ⁇ Control: ⁇ RRC) layer processing.
  • Medium Access Control Medium Access Control: MAC
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC radio resource control
  • the upper layer processing unit 201 outputs information indicating the function of the terminal device supported by the own terminal device to the transmitting unit 203.
  • the radio resource control unit 2011 manages various setting information of the terminal device itself. In addition, the radio resource control unit 2011 generates information to be allocated to each uplink channel and outputs the information to the transmission unit 203.
  • the radio resource control unit 2011 acquires the setting information transmitted from the base station device and outputs the setting information to the control unit 202.
  • the scheduling information interpreting section 2012 interprets the downlink control information received via the receiving section 204 and determines scheduling information. Further, scheduling information interpreting section 2012 generates control information for controlling receiving section 204 and transmitting section 203 based on the scheduling information, and outputs the generated control information to control section 202.
  • the control unit 202 generates a control signal for controlling the receiving unit 204, the measuring unit 205, and the transmitting unit 203 based on the information input from the upper layer processing unit 201.
  • the control unit 202 outputs the generated control signal to the receiving unit 204, the measuring unit 205, and the transmitting unit 203 to control the receiving unit 204 and the transmitting unit 203.
  • the control unit 202 controls the transmitting unit 203 to transmit the CSI / RSRP / RSRQ / RSSI generated by the measuring unit 205 to the base station device.
  • Receiving section 204 separates, demodulates, and decodes the received signal received from the base station apparatus via transmission / reception antenna 206 according to the control signal input from control section 202, and outputs the decoded information to upper layer processing section 201. I do.
  • the wireless reception unit 2041 converts the downlink signal received via the transmission / reception antenna 206 into a baseband signal by down-conversion, removes unnecessary frequency components, and increases the amplification level so that the signal level is appropriately maintained. To perform quadrature demodulation based on the in-phase and quadrature components of the received signal, and convert the quadrature-demodulated analog signal into a digital signal.
  • the wireless receiving unit 2041 removes a portion corresponding to the CP from the converted digital signal, performs fast Fourier transform on the signal from which the CP has been removed, and extracts a signal in the frequency domain.
  • the demultiplexing unit 2042 demultiplexes the extracted signal into a PHICH, a PDCCH, an EPDCCH, a PDSCH, and a downlink reference signal. Further, the demultiplexing unit 2042 compensates for the channels of PHICH, PDCCH, and EPDCCH based on the channel estimation value of the desired signal obtained from the channel measurement, detects downlink control information, and controls the control unit 202. Output. Further, control section 202 outputs the channel estimation values of the PDSCH and the desired signal to signal detection section 2043.
  • Signal detecting section 2043 demodulates and decodes using PDSCH and the channel estimation value, and outputs the result to upper layer processing section 201.
  • the measurement unit 205 performs various measurements such as CSI measurement, RRM (Radio Resource Management) measurement, RLM (Radio Link Monitoring) measurement, and obtains CSI / RSRP / RSRQ / RSSI and the like.
  • CSI measurement Radio Resource Management
  • RLM Radio Link Monitoring
  • Transmitting section 203 generates an uplink reference signal according to the control signal input from control section 202, encodes and modulates uplink data (transport block) input from upper layer processing section 201, and performs PUCCH,
  • the PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus via the transmission / reception antenna 206.
  • the coding unit 2031 performs coding such as convolution coding, block coding, turbo coding, LDPC coding, and Polar coding on the uplink control information or the uplink data input from the upper layer processing unit 201.
  • Modulating section 2032 modulates the coded bits input from coding section 2031 in a modulation scheme notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation scheme predetermined for each channel. .
  • the uplink reference signal generating unit 2033 uses a physical cell identifier (physical cell identity: referred to as PCI, Cell ID, or the like) for identifying the base station device, a bandwidth in which the uplink reference signal is arranged, and an uplink grant. Based on the notified cyclic shift, the value of the parameter for generating the DMRS sequence, and the like, a sequence determined by a predetermined rule (expression) is generated.
  • a physical cell identifier physical cell identity: referred to as PCI, Cell ID, or the like
  • the multiplexing unit 2034 multiplexes the PUCCH and PUSCH signals and the generated uplink reference signal for each transmission antenna port. That is, multiplexing section 2034 arranges the PUCCH and PUSCH signals and the generated uplink reference signal in the resource element for each transmission antenna port.
  • the radio transmission unit 2035 performs an inverse fast Fourier transform (Inverse Fast Fourier Transform: IFFT) on the multiplexed signal, performs OFDM modulation, generates an OFDMA symbol, adds a CP to the generated OFDMA symbol, Generate a baseband digital signal, convert the baseband digital signal to an analog signal, remove extra frequency components, convert to a carrier frequency by up-conversion, amplify power, output to transmit / receive antenna 206, and transmit I do.
  • IFFT inverse Fast Fourier transform
  • the terminal device can perform modulation not only in the OFDMA system but also in the SC-FDMA system.
  • ultra-wideband transmission utilizing a high frequency band is desired.
  • For transmission in a high frequency band it is necessary to compensate for path loss, and beamforming is important.
  • an ultra-dense network (Ultra-dense network) in which base station devices are densely arranged. network) is valid.
  • SNR signal-to-noise power ratio
  • strong interference due to beamforming may come. Therefore, in order to realize ultra-large-capacity communication with all terminal devices in the limited area, interference control (avoidance, suppression, and elimination) in consideration of beamforming and / or cooperative communication of a plurality of base stations are required. Required.
  • FIG. 4 shows an example of a downlink communication system according to the present embodiment.
  • the communication system shown in FIG. 4 includes a base station device 3A, a base station device 5A, and a terminal device 4A.
  • the terminal device 4A can use the base station device 3A and / or the base station device 5A as a serving cell.
  • the base station device 3A or the base station device 5A has a large number of antennas, the large number of antennas are divided into a plurality of sub-arrays (panels, sub-panels, transmission antenna ports, transmission antenna groups, reception antenna ports, reception antenna groups). And transmit / receive beamforming can be applied for each sub-array.
  • each sub-array can include a communication device, and the configuration of the communication device is the same as the configuration of the base station device illustrated in FIG. 2 unless otherwise specified.
  • the terminal device 4A can transmit or receive by beamforming.
  • the terminal device 4A includes a large number of antennas, the large number of antennas can be divided into a plurality of sub-arrays (panel, sub-panel, transmission antenna port, transmission antenna group, reception antenna port, reception antenna group). Different transmit / receive beamforming can be applied for each.
  • Each sub-array can include a communication device, and the configuration of the communication device is the same as the terminal device configuration shown in FIG. 3 unless otherwise specified.
  • the base station devices 3A and 5A are also simply referred to as base station devices.
  • the terminal device 4A is also simply referred to as a terminal device.
  • the synchronization signal is used to determine a suitable transmission beam for the base station device and a suitable reception beam for the terminal device.
  • the base station device transmits a synchronization signal block including PSS, PBCH, and SSS.
  • One or more synchronization signal blocks are transmitted in the time domain within a synchronization signal block burst set cycle set by the base station apparatus, and a time index is set for each synchronization signal block.
  • the terminal apparatus may determine that the synchronization signal block having the same time index within the synchronization signal block burst set period has a delay spread, a Doppler spread, a Doppler shift, an average gain, an average delay, a spatial reception parameter, and / or a spatial transmission parameter.
  • the spatial reception parameter is, for example, a spatial correlation of a channel, an angle of arrival (Angle of Arrival), a reception beam direction, and the like.
  • the spatial transmission parameters include, for example, spatial correlation of the channel, transmission angle (Angle of Departure), transmission beam direction, and the like. That is, the terminal device can assume that the synchronization signal blocks having the same time index are transmitted by the same transmission beam and the synchronization signal blocks having different time indexes are transmitted by different beams within the synchronization signal block burst set period.
  • the base station device can know a transmission beam suitable for the terminal device. Further, the terminal device can obtain a reception beam suitable for the terminal device by using the synchronization signal blocks having the same time index in different synchronization signal block burst set periods. For this reason, the terminal device can associate the time index of the synchronization signal block with the reception beam direction and / or the sub-array. In addition, when the terminal device includes a plurality of sub-arrays, when connecting to a different cell, the terminal device may use a different sub-array.
  • QCL type A is a relationship (state) in which Doppler shift, Doppler spread, average delay, and delay spread become QCL.
  • QCL type B is a relationship (state) in which Doppler shift and Doppler spread become QCL.
  • QCL type C is a relationship (state) in which the average delay and the Doppler shift become QCL.
  • QCL type D is a relationship (state) in which the spatial reception parameter is QCL.
  • the terminal device sets up to M TCI (Transmit Configuration Indicator) states in upper layer signals.
  • the TCI state includes a TCI-RS set setting of a reference signal set (RS set).
  • the TCI-RS set setting includes a parameter for setting a QCL relationship between a reference signal included in the RS set and a DMSCH port (DMRS port group) of the PDSCH.
  • the RS set includes a QCL type associated with one or two downlink reference signals (DL RS). When the RS set includes two DL @ RS, the QCL type for each is not the same.
  • the TCI state is included in DCI and used for demodulation (decoding) of the associated PDSCH. If QCL type D is set in the received TCI state, the terminal device can know the reception beam direction of the associated PDSCH. Therefore, the TCI can be said to be information related to the receiving beam direction of the terminal device.
  • CSI-RS can be used to determine the preferred transmit beam of the base station device and the preferred receive beam of the terminal device.
  • the terminal device receives the CSI-RS using the resource set in the resource setting, calculates CSI or RSRP from the CSI-RS, and reports the result to the base station device. Further, when the CSI-RS resource configuration includes a plurality of CSI-RS resource configurations and / or when resource repetition is OFF, the terminal device receives the CSI-RS with the same reception beam on each CSI-RS resource, Calculate CRI. For example, if the CSI-RS resource set configuration includes K (K is an integer of 2 or more) CSI-RS resource configurations, the CRI indicates N preferred CSI-RS resources from the K CSI-RS resources. . Here, N is a positive integer less than K.
  • the terminal device may report the CSI-RSRP measured with each CSI-RS resource to the base station device in order to indicate which CSI-RS resource has good quality. it can.
  • the base station apparatus transmits the CSI-RS by beamforming (precoding) in different beam directions with the plurality of set CSI-RS resources and transmits the CSI-RS, the base station apparatus suitable for the terminal apparatus based on the CRI reported from the terminal apparatus.
  • the transmission beam direction can be known.
  • a suitable receiving beam direction of the terminal device can be determined using a CSI-RS resource in which the transmitting beam of the base station device is fixed.
  • the terminal device transmits, in each CSI-RS resource, a CSI-RS received in a different reception beam direction.
  • a suitable receiving beam direction can be obtained from the RS.
  • the terminal device may report the CSI-RSRP after determining a suitable reception beam direction.
  • the terminal device can select a suitable sub-array when obtaining a suitable reception beam direction.
  • the preferred receiving beam direction of the terminal device may be associated with the CRI.
  • the base station device can fix the transmission beam using the CSI-RS resource associated with each CRI.
  • the terminal device can determine a suitable receiving beam direction for each CRI.
  • the base station apparatus can transmit a downlink signal / channel in association with a CRI.
  • the terminal device has to receive with the reception beam associated with the CRI.
  • different base station apparatuses can transmit CSI-RSs in a plurality of set CSI-RS resources. In this case, the network side can know which base station apparatus has good communication quality from the CRI.
  • the terminal device when the terminal device has a plurality of sub-arrays, it is possible to receive signals at a plurality of sub-arrays at the same timing. Therefore, if the base station device transmits a CRI in association with each of a plurality of layers (codewords, transport blocks) in downlink control information or the like, the terminal device uses a sub-array and a reception beam corresponding to each CRI, Multiple layers can be received. However, when an analog beam is used, if one sub-array has one receive beam direction used at the same timing, and if two CRIs corresponding to one sub-array of the terminal device are set at the same time, the terminal device becomes It may not be possible to receive with multiple receive beams.
  • the base station apparatus divides a plurality of set CSI-RS resources into groups, and obtains a CRI within the group using the same sub-array. If different sub-arrays are used between groups, the base station apparatus can know a plurality of CRIs that can be set at the same timing.
  • the CSI-RS resource group may be a CSI-RS resource set in resource setting or resource set setting.
  • the CRI that can be set at the same timing may be a QCL.
  • the terminal device can transmit the CRI in association with the QCL information.
  • the QCL information is information on the QCL for a predetermined antenna port, a predetermined signal, or a predetermined channel.
  • the long-term characteristics of the channel on which symbols on one antenna port are carried can be inferred from the channel on which symbols on the other antenna port are carried, then those antenna ports are QCL. Is called.
  • the long-term properties include delay spread, Doppler spread, Doppler shift, average gain, average delay, spatial reception parameters, and / or spatial transmission parameters.
  • the terminal device can regard that the long-term characteristics at those antenna ports are the same. For example, if the terminal device discriminates and reports a CRI that is a QCL for the spatial reception parameter and a CRI that is not the QCL for the spatial reception parameter, the base station device determines that the CRI that is the QCL for the spatial reception parameter is the same.
  • the base station device may request CSI for each sub-array of the terminal device.
  • the terminal device reports CSI for each sub-array.
  • the terminal device may report only CRIs other than the QCL.
  • a codebook in which candidates for a predetermined precoding (beamforming) matrix (vector) are specified is used.
  • the base station device transmits the CSI-RS, and the terminal device obtains a suitable precoding (beamforming) matrix from the codebook and reports it to the base station device as PMI. Thereby, the base station apparatus can know the transmission beam direction suitable for the terminal apparatus.
  • the codebook includes a precoding (beamforming) matrix for combining antenna ports and a precoding (beamforming) matrix for selecting antenna ports. When using a codebook for selecting an antenna port, the base station apparatus can use a different transmission beam direction for each antenna port.
  • the base station device can know a preferred transmission beam direction.
  • the preferred receiving beam of the terminal device may be the receiving beam direction associated with the CRI, or the preferred receiving beam direction may be determined again.
  • the receiving beam direction for receiving the CSI-RS is the receiving beam direction associated with the CRI. It is desirable to receive in the direction.
  • the terminal device can associate the PMI with the reception beam direction even when using the reception beam direction associated with the CRI.
  • each antenna port may be transmitted from a different base station device (cell). In this case, if the terminal device reports the PMI, the base station device can know which base station device (cell) the communication quality is preferable. In this case, the antenna ports of different base station devices (cells) may not be QCLs.
  • Codebooks are classified into type 1 codebooks and type 2 codebooks.
  • type 1 codebook a precoding (beamforming) matrix (vector) is shown in a table.
  • Type 2 codebooks are represented by a linear combination of vectors and are more accurate than type 1 codebooks.
  • the maximum number of vectors to be linearly combined is set by an upper layer signal.
  • the vector to be synthesized is included in the type 1 codebook.
  • the vectors to be combined are orthogonal to each other.
  • there are three types of weights for linear synthesis wideband amplitude coefficient, subband amplitude coefficient, and subband phase coefficient.
  • the sub-band amplitude coefficient can be turned ON / OFF by a signal of an upper layer.
  • the codebook setting information is included in the CSI report settings.
  • the code book setting information includes code book setting information such as a code book type.
  • the codebook type indicates whether the codebook for obtaining the PMI is a type 1 codebook or a type2 codebook.
  • the RI supported by the type 2 codebook is smaller than the RI supported by the type 1 codebook. For example, a type 1 codebook supports a maximum of 8 RIs, and a type 2 codebook supports a maximum of 2 or 4 RIs.
  • CRI / CQI / RI can be included in the CSI report, but PMI can be omitted.
  • the base station apparatus can estimate a downlink channel from an uplink signal (for example, SRS) received from the terminal apparatus, and can obtain a highly accurate precoding vector (matrix).
  • Coordinated communication of a plurality of base station devices can be performed to improve reliability and frequency use efficiency.
  • Cooperative communication between a plurality of base station devices includes, for example, Dynamic Point Selection (DPS) for dynamically switching suitable base station devices (transmission / reception points), and a plurality of base station devices (transmission / reception points).
  • DPS Dynamic Point Selection
  • JT Joint @ Transmission
  • the terminal device 4A can use the sub-array 1 when communicating with the base station device 3A, and can use the sub-array 2 when communicating with the base station device 5A. Further, when the terminal device performs cooperative communication with a plurality of base station devices, there is a possibility that a plurality of sub-arrays are dynamically switched or transmitted and received at the same timing in a plurality of sub-arrays. At this time, it is desirable that the terminal device 4A and the base station devices 3A / 5A share information on the sub-array of the terminal device used for communication.
  • the terminal device can include the CSI setting information in the CSI report.
  • the CSI setting information can include information indicating a sub-array.
  • the terminal device can transmit a CSI report including a CRI and an index indicating a sub-array.
  • the base station apparatus can associate the transmission beam direction with the sub-array of the terminal apparatus.
  • the terminal device can transmit a CRI report including a plurality of CRIs. In this case, if it is defined that a part of the plurality of CRIs is related to the sub-array 1 and the remaining CRIs are related to the sub-array 2, the base station apparatus can associate the index indicating the sub-array with the CRI.
  • the terminal device can transmit the CRI report by joint coding the CRI and the index indicating the sub-array.
  • N is an integer of 2 or more bits indicating the CRI
  • one bit indicates the sub-array 1 or the sub-array 2
  • the remaining bits indicate the CRI.
  • the terminal device reports the CSI including the index indicating the sub-array, when the number of CSI-RS resources indicated by the resource setting is larger than the number capable of expressing the CRI, the terminal device transmits the CRI from some CSI-RS resources. You can ask.
  • the base station device will You can know CSI.
  • the CSI setting information can include setting information for CSI measurement.
  • the setting information for CSI measurement may be a measurement link setting or other setting information.
  • the terminal device can associate the setting information of the CSI measurement with the sub-array and / or the reception beam direction.
  • the setting of the CSI-RS for channel measurement transmitted by the base station device 3A is referred to as resource setting 1
  • the setting of the CSI-RS for channel measurement transmitted by the base station device 5A is referred to as resource setting 2.
  • setting information 1 can be resource setting 1
  • setting information 2 can be resource setting 2
  • setting information 3 can be resource setting 1 and resource setting 2.
  • each setting information may include a setting of an interference measurement resource. If the CSI is measured based on the setting information 1, the terminal device can measure the CSI using the CSI-RS transmitted from the base station device 3A. If the CSI measurement is performed based on the setting information 2, the terminal device can measure the CSI transmitted from the base station device 5A. If the CSI is measured based on the setting information 3, the terminal device can measure the CSI using the CSI-RS transmitted from the base station device 3A and the base station device 5A. The terminal device can associate the sub-array used for CSI measurement and / or the reception beam direction with each of the setting information 1 to 3.
  • the base station apparatus can indicate a suitable sub-array and / or a reception beam direction used by the terminal apparatus by indicating the setting information 1 to 3.
  • the terminal device obtains CSI for the resource setting 1 and / or CSI for the resource setting 2.
  • the terminal device can associate a sub-array and / or a reception beam direction with each of resource setting 1 and / or resource setting 2.
  • resource setting 1 and / or resource setting 2 can be associated with a codeword (transport block).
  • the CSI for resource setting 1 can be the CSI for codeword 1 (transport block 1)
  • the CSI for resource setting 2 can be the CSI for codeword 2 (transport block 2).
  • the terminal device can determine one CSI in consideration of the resource setting 1 and the resource setting 2.
  • the terminal device can associate the sub-array and / or the reception beam direction for each of resource setting 1 and resource setting 2 even when one CSI is required.
  • the CSI when a plurality of resource settings are set (for example, when the above-described setting information 3 is set), the CSI includes one CRI or a CRI for each of the plurality of resource settings. It may include information indicating whether it is included.
  • the CSI setting information may include a resource setting ID for which a CRI has been calculated. Based on the CSI setting information, the base station apparatus can know what assumption the terminal apparatus has calculated the CSI or which resource setting has good reception quality.
  • the base station device can transmit a CSI request for requesting a CSI report to the terminal device.
  • the CSI request may include whether to report CSI in one sub-array or to report CSI in multiple sub-arrays.
  • the terminal device transmits a CSI report that does not include an index indicating the sub-array.
  • the terminal device transmits a CSI report including an index indicating the sub-array.
  • the base station apparatus can instruct the sub-array for which the terminal device calculates the CSI by using an index indicating the sub-array or a resource setting ID.
  • the terminal device calculates CSI using the sub-array specified by the base station device.
  • the base station apparatus can transmit the CSI request including the setting information of the CSI measurement.
  • the terminal device obtains CSI based on the CSI measurement setting information.
  • the terminal device reports the CSI to the base station device, but does not have to report the setting information of the CSI measurement.
  • the terminal device and the base station device can newly set a virtual antenna port in order to select a suitable sub-array.
  • the virtual antenna ports are each associated with a physical sub-array and / or a receive beam.
  • the base station device can notify the terminal device of the virtual antenna port, and the terminal device can select a sub-array for receiving PDSCH.
  • a QCL can be set for the virtual antenna port.
  • the base station device can notify the virtual antenna port to a plurality of terminal devices.
  • the terminal device can receive the associated PDSCH using one sub-array when the notified virtual antenna port is the QCL, and the notified virtual antenna port is not included in the QCL. If not, two or more sub-arrays can be used to receive the associated PDSCH.
  • the virtual antenna port can be associated with one or more of the CSI-RS resource, the DMRS resource, and the SRS resource.
  • the base station apparatus sets a sub-array when the terminal apparatus transmits an RS using one or more of the CSI-RS resource, the DMRS resource, and the SRS resource using the resource. Can be set.
  • the terminal apparatus When a plurality of base station apparatuses perform cooperative communication, it is desirable that the terminal apparatus receive a signal in a sub-array and / or a receiving beam direction suitable for the PDSCH transmitted by each base station apparatus. For this reason, the base station device transmits information that allows the terminal device to receive in a suitable sub-array and / or reception beam direction. For example, the base station apparatus can transmit the CSI setting information or information indicating the CSI setting information by including the information in downlink control information. Upon receiving the CSI setting information, the terminal device can receive the CSI setting information in the sub-array and / or the receiving beam direction associated with the CSI setting information.
  • the base station apparatus can transmit information indicating the sub-array and / or the direction of the received beam as the CSI setting information.
  • the CSI setting information may be transmitted in a predetermined DCI format.
  • the information indicating the reception beam direction may be a CRI, a PMI, or a time index of a synchronization signal block.
  • the terminal device can know a suitable sub-array and / or reception beam direction from the received DCI.
  • the information indicating the sub-array is represented by 1 bit or 2 bits. When the information indicating the sub-array is indicated by one bit, the base station device can indicate the sub-array 1 or the sub-array 2 to the terminal device by “0” or “1”.
  • the base station apparatus can instruct the terminal apparatus to switch the sub-array and to receive the signal using the two sub-arrays.
  • the base station apparatus can indicate the sub-array of the terminal apparatus by transmitting the DCI including the resource setting ID.
  • the base station device can transmit the CSI measurement setting information as the CSI setting information.
  • the terminal device can receive the PDSCH in the sub-array and / or the reception beam direction associated with the CSI fed back with the received CSI measurement setting information.
  • the setting information of the CSI measurement indicates the setting information 1 or the setting information 2
  • the CSI setting information indicates that the PDSCH transmission is related to one piece of resource setting information.
  • the setting information of the CSI measurement indicates the setting information 3
  • the CSI setting information indicates that the PDSCH transmission is related to a plurality of pieces of resource setting information.
  • the CSI setting information may be associated with a parameter (field) included in DCI, such as a scrambling identity ( ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ SCID) of DMRS.
  • the base station apparatus can set the association between the SCID and the setting information of the CSI measurement.
  • the terminal device can refer to the setting information of the CSI measurement from the SCID included in the DCI and receive the PDSCH in the sub-array and / or the receiving beam direction associated with the setting information of the CSI measurement.
  • the base station apparatus can set two DMRS antenna port groups. These two DMRS port groups are also referred to as DMRS port group 1 (first DMRS port group) and DMRS port group 2 (second DMRS port group).
  • the antenna ports in the DMRS antenna port group are QCL, and the antenna ports between the DMRS antenna port groups are not QCL. Therefore, if the DMRS antenna port group is associated with the terminal device sub-array, the base station device can instruct the terminal device sub-array using the DMRS antenna port number included in the DCI. For example, when the DMRS antenna port number included in the DCI is included in one DMRS antenna port group, the terminal device receives the data in one sub-array corresponding to the DMRS antenna port group.
  • the terminal device receives the terminal device in two sub arrays.
  • One DMRS antenna port group may be associated with one codeword (transport block). The relationship between the DMRS antenna port group and the index of the codeword (transport block) may be determined in advance, or may be instructed by the base station apparatus.
  • the number of codewords is uniquely determined by the number of layers (number of ranks, number of DMRS antenna ports). Decided. For example, when the number of layers is four or less, the number of codewords is one, and when the number of layers is five or more, the number of codewords is two. When the DMRS antenna port numbers included in the DCI belong to two DMRS port groups, the number of codewords is 2 even if the total number of layers is 4 or less.
  • DMRS antenna port numbers indicated by DCI are four ports of 1000, 1001, 1002, and 1003, DMRS antenna port numbers 1000 and 1001 belong to DMRS port group 0, and DMRS antenna port numbers 1002 and 1003 are DMRS port groups. Assume that it belongs to 1. At this time, DMRS antenna port numbers 1000 and 1001 are associated with codeword 0, and DMRS antenna port numbers 1002 and 1003 are associated with codeword 1. However, the number of layers of one codeword is four or less. That is, when a codeword is set for each DMRS port group, the number of DMRS antenna ports set in one DMRS port group is four or less.
  • the terminal device can specify the resource setting ID or the CSI-RS resource, and can know the sub-array and / or the receiving beam direction.
  • the base station apparatus can set the DMRS antenna port group and the CSI setting information in association with each other.
  • the CSI setting information includes the setting information of the CSI measurement and the setting information of the CSI measurement indicates the setting information 3
  • the terminal device corresponds to the resource setting 1 in the case of the DMRS antenna port included in the DMRS antenna port group 1.
  • demodulation is performed in the sub array and / or reception beam direction corresponding to the resource setting 2.
  • the terminal device performs different 1, 2, or Report four different CRIs or SSBRIs.
  • the terminal device transmits two different CRI or Report SSBRI.
  • two CSI-RS resources or two SSBs can be received simultaneously by one spatial domain reception filter or a plurality of spatial domain reception filters.
  • the terminal device receives the reception filter (panel, sub-array) of one spatial region.
  • the two CSI-RS resources are called a first CSI-RS resource and a second CSI-RS resource, respectively.
  • the CRI indicating the first CSI-RS resource is also called a first CRI
  • the CRI indicating the second CSI-RS resource is also called a second CRI.
  • the RI obtained from the first CSI-RS resource is also referred to as a first RI
  • the RI obtained from the second CSI-RS resource is also referred to as a second RI. If the RI is 4 or less (four layers), the number of codewords is 1, and if the RI is greater than 4, the number of codewords is 2. Therefore, the CSI reported by the terminal device may change depending on whether the sum of the first RI and the second RI is less than or greater than four. When the sum of the first RI and the second RI is equal to or less than 4, the CQI obtained by considering both the first CSI-RS and the second CSI-RS is obtained.
  • the terminal device obtains the CSI in consideration of the first CRI, the second CRI, the first RI, the second RI, and both the first CSI-RS and the second CSI-RS. Report the CQI.
  • the terminal device reports the first CRI, the second CRI, the first RI, the second RI, the first CQI, and the second CQI as CSI.
  • the terminal device receives one or more reception filters in one spatial region.
  • CSI is obtained based on two CSI-RS resources that can be received simultaneously by the reception filter in the spatial domain.
  • the PMI for the first CSI-RS resource is also called a first PMI
  • the PMI for the second CSI-RS resource is also called a second PMI.
  • the first PMI and the second PMI may be obtained in consideration of both the first CRI and the second CRI. In this case, a first PMI and a second PMI in which mutual interference is considered are obtained.
  • PMI is divided into PMI-1 and PMI-2 when the CSI-RS has four or more antenna ports.
  • PMI-1 is wideband information, and indicates a codebook index obtained based on at least N1 and N2.
  • the number of CSI-RS antenna ports is represented by 2N1N2.
  • N1 and N2 are both integers equal to or greater than 1
  • N1 represents the number of antenna ports in a first dimension (for example, vertical direction)
  • N2 represents the number of antenna ports in a second dimension (for example, horizontal direction).
  • the number of polarization antennas is two.
  • PMI-1 includes one or more pieces of information depending on the values of N1 and N2 and the RI (number of layers).
  • PMI-2 is wideband or subband information and indicates at least phase rotation.
  • PMI-1 and PMI-2 obtained from the first CSI-RS resource are also referred to as first PMI-1 and first PMI-2, respectively.
  • PMI-1 and PMI-2 obtained by the second CSI-RS resource are also referred to as second PMI-1 and second PMI-2, respectively.
  • the report amount may be set as CRI, RI, PMI-1, and CQI.
  • CRI, RI, and CQI it is the same as that when the report amount is set by CRI, RI, and CQI. Therefore, when the total of the first RI and the second RI is equal to or less than 4, the terminal device determines the first CRI, the second CRI, the first RI, the second RI, and the first PMI as CSI.
  • the terminal device determines the first CRI, the second CRI, the first RI, the second RI, and the first PMI as CSI.
  • the number of layers of codeword number 1 is equal to or smaller than the number of layers of codeword number 2, and thus the first RI is equal to the second RI. Same or smaller. That is, when the RI is reported, the first CRI and the second CRI are not the first CRI if the received power (RSRP) / the received quality (RSRQ) is better, but the first CRI or the first CRI depending on the value of the RI.
  • a second CRI is determined. When the number of layers of codeword 1 is different from the number of layers of codeword 2, the difference is 1. That is, when the total of the first RI and the second RI is 5, the first RI is 2 and the second RI is 3.
  • the terminal device may report the CSI of either the first CRI or the second CRI, for example, the one with the larger RI value. . Note that, because of the above rule, the terminal device may report the total value of the first RI and the second RI without reporting the first RI and the second RI separately.
  • the first CRI and the second CRI are used. May have different codewords.
  • the first CQI and the second CQI are reported as the CQI.
  • the total of the first RI and the second RI is 8 or less, and the RI in one CRI is 4 or less.
  • the base station apparatus may instruct the terminal apparatus.
  • the difference may be set to 1 when the number of layers of the codeword 1 and the number of layers of the codeword 2 are different.
  • the first RI and the second RI is 4
  • the first RI is 2 and the second RI is 2.
  • the sum of the first RI and the second RI is 3, the first RI is 1 and the second RI is 2.
  • the sum of the first RI and the second RI is 2, the first RI is 1 and the second RI is 1.
  • the priority of CSI reporting is set higher for CRIs with higher RI. That is, in the present embodiment, the second CRI has a higher priority than the second CRI. For example, when the information amount of the PUCCH is insufficient, the second CRI and the RI / PMI / CQI obtained by the second CRI are reported, and the first CRI and the RI / PMI / CQI obtained by the first CRI are: Drop. When a CQI is reported by one of the CRIs, the CQI determined by one of the CRIs is reported even if the total of the first RI and the second RI is 4 or less.
  • the MIMO channel matrix can be diagonalized by eigenmode transmission, for example.
  • throughput can be improved by setting appropriate parameters such as power allocation and link adaptation for each of the diagonalized channels.
  • the CQI is reported for each codeword (transport block)
  • the terminal device sets the number of codewords to 1,5 when the RI is 4 or less.
  • the codeword number is set to 2 and the CSI report is made.
  • the CSI report setting when the group-based beam reporting is OFF, the number of CQIs for each report is 2, the number of CQIs for each low-ranked report is 2 and the type 1 codebook is set, the terminal device performs the RI Is 2 or more, and the number of codewords is 2, and a CSI report is made.
  • the terminal apparatus sets the codeword number to 2 when the RI is 2 or more. Report CSI.
  • the terminal device When the type 2 codebook is set in the CSI report setting and the number of CQIs for each report is 1, the terminal device performs a CSI report including the CQI of one codeword. Similarly, in the case of the CSI report setting that does not report the PMI, if the number of CQIs for each report is set to 2 and the number of CQIs for each low-rank report is set to 2 in the CSI report setting, the terminal device sets the RI to 2 In the above case, a CSI report including the CQI of each of the two codewords is provided.
  • the base station apparatus may include a CQI table to be referred for each codeword in the report settings.
  • the terminal device can determine the CQI by referring to a different CQI table for each codeword.
  • the base station apparatus can set the second CQI table for codeword 0, which is assumed to be of high quality, and set the first CQI table for codeword 1.
  • appropriate adaptive control can be performed on each codeword, so that throughput and frequency use efficiency can be improved.
  • the CSI report includes a type 1 CSI report and a type 2 CSI report.
  • CSI based on the type 1 codebook also referred to as type 1 CSI
  • type 2 CSI report CSI based on the type 2 codebook (also referred to as type 2 CSI) is reported.
  • the two parts are also referred to as a first part (part 1, CSI part 1) and a second part (part 2, CSI part 2). Note that the first part has a higher priority for CSI reporting than the second part.
  • the first part is the sum of the first RI and the second RI (or the second RI), the second CRI, the CQI based on the first CRI and the second CRI. (Or part or all of the second CQI).
  • the second part includes a part or all of the first CRI, the first RI, the first CQI, the first PMI, and the second PMI. If the RI is greater than four, the first part includes the sum of the first RI and the second RI (or a second RI), a second CRI, some or all of a second CQI.
  • the second part includes a part or all of the first CRI, the first RI, the first CQI, the first PMI, and the second PMI.
  • the third part is also called a third part (part 3, CSI part 3).
  • the third part has a lower priority than the second part.
  • the first part is a sum of the first RI and the second RI (or a second RI), a second CRI, a CQI based on the first CRI and the second CRI (or a second CQI).
  • the second part includes the first CRI, the first RI, and some or all of the first CQI.
  • the third part includes part or all of the first PMI and the second PMI.
  • the terminal device may divide the CSI based on the first CRI and the CSI based on the second CRI into two parts and report the two parts.
  • the two parts of the CSI based on the first CRI are also referred to as a first part 1 and a first part 2.
  • the two parts of the CSI based on the second CRI are also referred to as a second part 1 and a second part 2.
  • the first part 1 includes a part or all of the first CRI, the first RI, and the first CQI.
  • the first part 2 includes a first PMI.
  • the second part 1 includes a part or all of the second CRI, the second RI, and the second CQI.
  • the second part 2 includes a second PMI.
  • the priority of CSI can be set higher in the order of the second part 1, the first part 1, the second part 2, and the first part 2.
  • the terminal device reports a long-period (with little change) CSI in the second CRI and the first CRI, and the base station device and the terminal device transmit at least the first CRI and the second CRI. Communication can be performed using limited parameters.
  • the priority of CSI can be set higher in the order of the second part 1, the second part 2, the first part 1, and the first part 2.
  • the terminal device reports the complete CSI in the second CRI with priority, so that the base station device and the terminal device can communicate using detailed parameters related to the second CRI.
  • the terminal device determines the CSI based on the first CRI and the second CRI. Report information indicating that one or both of the based CSIs will be reported. Note that information indicating that both or one of the CSI based on the first CRI and the CSI based on the second CRI is reported is included in the first part of the CSI. The information indicating that the CSI based on the first CRI and / or the CSI based on the second CRI is reported indicates whether the first CRI is included in the second part of the CSI. May be.
  • the first part is information of RI, CQI, and information indicating the number of non-zero wideband amplitude coefficients of type 2 CSI for each layer. Including some or all.
  • the second part includes the PMI of type 2 CSI.
  • the first part indicates the RI, the CQI of codeword 0, and the number of non-zero wideband amplitude coefficients of type 2 CSI for each layer. Contains some or all of the information.
  • the second part includes the CQI of codeword 1, part or all of the PMI of type 2 CSI.
  • the codeword may be divided into three parts.
  • the first part includes RI, CQI of codeword 0, and non-type 2 CSI of each layer.
  • the second part contains the CQI of codeword 1 and the third part contains the PMI of type 2 CSI, including information indicating the number of zero wideband amplitude coefficients.
  • the type 1 CSI report when the number of CQIs per report in the low rank is 2, when the RI is 2 or more, the second part includes the CQI of codeword 1.
  • the information indicating the CQI of codeword 1 may be difference information from the information indicating the CQI of codeword 0. In this case, the number of bits of information indicating the CQI of codeword 1 is smaller than the number of bits of information indicating the CQI of codeword 0.
  • information indicating the CQI of the codeword 1 may be included in the first part.
  • the CQI of codeword 1 may not be included in the second part.
  • information indicating the CQI of codeword 1 can be arranged in a part of a bit field in which information indicating the CQI of codeword 0 is arranged.
  • the bit field can be simply divided into two, and three bits are allocated to the information indicating the CQI of the codeword 0, and one bit is allocated to the information indicating the CQI of the codeword 1. , Can be divided by different bit lengths.
  • the elements of the CQI table referred to by the information indicating the CQIs of codeword 0 and codeword 1 can be notified by higher layer signaling.
  • each element of the CQI table referred to by the information indicating the CQI of codeword 0 and codeword 1 can be specified by the bitmap. That is, when the CQI table includes 16 elements, 16 bits of bitmap information can indicate which of the 16 elements is valid.
  • the information indicating the CQI of the codeword 1 may be difference information of the information indicating the CQI of the codeword 0.
  • the terminal device When the terminal device is instructed to report the CQI of codeword 1, the terminal device receives the NZP @ CSI-RS (or the NZP @ CSI-RS allocated to the CSI-RS resource set by the CSI-RS setting information). ) Can be interpreted as not being a QCL. In addition, the terminal device may not report the CQI of codeword 1 when the received NZP @ CSI-RS (same as above) is set as QCL (or is set as QCL for the same target). it can.
  • DMRS for PDSCH or PUSCH is set to DMRS configuration type 1 (first DMRS configuration type) or DMRS configuration type 2 (second DMRS configuration type).
  • DMRS setting type 1 supports up to 8 DMRS antenna ports
  • DMRS setting type 2 supports up to 12 DMRS antenna ports.
  • the DMRS is code-multiplexed (Code Division Multiplexing; CDM) with an orthogonal cover code (Orthogonal Cover Code; OCC).
  • the OCC code length is 4, having a length of 2 in the frequency direction and a length of 2 in the time direction.
  • 4DMRS antenna ports are multiplexed in OCC.
  • the 4DMRS antenna ports subjected to CDM are also called a CDM group (DMRSDMCDM group).
  • DMRS configuration type 1 has two CDM groups
  • DMRS configuration type 2 has three CDM groups. DMRSs of different CDM groups are arranged in orthogonal resources.
  • the two CDM groups of DMRS setting type 1 are also referred to as CDM group 0 (first CDM group) and CDM group 1 (second CDM group).
  • the three CDM groups of DMRS setting type 2 are also referred to as CDM group 0 (first CDM group), CDM group 1 (second CDM group), and CDM group 2 (third CDM group).
  • CDM group 0 includes DMRS antenna ports 1000, 1001, 1004, and 1005
  • CDM group 1 includes DMRS antenna ports 1002, 1003, 1006, and 1007.
  • CDM group 0 includes DMRS antenna ports 1000, 1001, 1006, 1007, CDM group 1 includes DMRS antenna ports 1002, 1003, 1008, 1009, and CDM group 2 includes DMRS antenna ports. Ports 1004, 1005, 1010, and 1011 are included. Note that a CDM group related to DMRS is also called a DMRS @ CDM group.
  • the number of CDM groups is indicated by DCI.
  • the terminal device can know the number of DMRS antenna ports from the number of designated DMRS antenna port numbers. Further, the number of DMRS / CDM groups without data indicates that the PDSCH is not allocated to the resource where the DMRS of the related CDM group is allocated.
  • the CDM group to be referred to is CDM group 0 and when the number of DMRS @ CDM groups without data is 2, the CDM groups to be referred to are CDM group 0 and CDM group 1. If the number of DMRSs without data and the number of CDM groups are 3, the CDM groups to be referred to are CDM group 0, CDM group 1, and CDM group 2.
  • the power of the DMRS for the PDSCH or PUSCH may be different from that of the PDSCH.
  • the base station apparatus spatially multiplexes and transmits a 4-layer PDSCH to each of two terminal apparatuses. That is, the base station apparatus spatially multiplexes and transmits PDSCH of eight layers in total.
  • the base station device indicates the DMRS antenna port number of CDM group 0 to one terminal device and the DMRS antenna port number of CDM group 1 to the other terminal device. Further, the base station apparatus instructs the two terminal apparatuses that the number of DMRS CDM groups without data is two.
  • the number of spatial multiplexing of the DMRS is 4, while the number of spatial multiplexing of the PDSCH is 8, and the power ratio (offset) between the DMRS and the PDSCH is doubled (different by 3 dB).
  • the base station apparatus spatially multiplexes and transmits the four-layer PDSCH to each of the three terminal apparatuses. That is, the base station apparatus spatially multiplexes and transmits the PDSCH of 12 layers in total.
  • the base station device indicates the DMRS antenna port numbers of CDM group 0, CDM group 1, and CDM group 2 to the three terminal devices. Further, the base station apparatus instructs three terminal apparatuses that the number of DMRS CDM groups without data is three.
  • the spatial multiplexing number of the DMRS is 4, while the spatial multiplexing number of the PDSCH is 12, and the power ratio of the DMRS to the PDSCH is tripled (differs by 4.77 dB). Therefore, the base station apparatus or the terminal apparatus transmits the DMRS and the PDSCH in consideration of the power ratio of the DMRS and the PDSCH which is several times the number of the CDM groups. Further, the base station apparatus or the terminal apparatus demodulates (decodes) the PDSCH in consideration of the power ratio of the DMRS and the PDSCH which is several times the number of the CDM groups. Similarly, in the case of SU-MIMO (Single @ user @ MIMO) transmission with a large number of spatial multiplexing, the power ratio between DMRS and PDSCH, which is a multiple of the number of CDM groups, is also considered.
  • SU-MIMO Single @ user @ MIMO
  • the power ratio between DMRS and PDSCH may be different from the above.
  • each base station device spatially multiplexes and transmits PDSCH of four layers.
  • one or two base station apparatuses indicate that the number of DMRS / CDM groups without data is two.
  • the terminal device needs to know (determine) whether to demodulate (decode) the PDSCH in consideration of the power ratio between the DMRS and the PDSCH.
  • each base station device may transmit the PDSCH with the power of PDSCH reduced according to the number of DMRS CDM groups without data. In this case, reliability and throughput decrease.
  • the base station apparatus can transmit information indicating whether to demodulate (decode) the PDSCH in consideration of the power ratio between DMRS and PDSCH or the power ratio between DMRS and PDSCH to the terminal apparatus.
  • the terminal apparatus can demodulate (decode) the PDSCH according to the information indicating whether to demodulate (decode) the PDSCH in consideration of the received power ratio of DMRS and PDSCH or the power ratio of DMRS and PDSCH. it can.
  • the terminal device can also determine the power ratio between DMRS and PDSCH from the setting of the DMRS port group. For example, in the DMRS setting type 1, the DMRS port group 1 is set (associated) with the CDM group 0, that is, the DMRS ports 1000, 1001, 1004, and 1005, and the DMRS port group 2 is set with the CDM group 1, that is, the DMRS ports 1002, 1003, It is assumed that 1006 and 1007 are set (associated).
  • the terminal device transmits the DMRS and the PDSCH
  • the PDSCH is demodulated (decoded) with the power ratio set to 1 (0 dB).
  • the terminal device demodulates (decodes) the PDSCH with the power ratio between DMRS and PDSCH being 1 (0 dB).
  • the terminal device can determine the power ratio between DMRS and PDSCH based on TCI. If the received TCI is a setting related to two DMRS port groups, the terminal sets the PDSCH to 1 (0 dB) as the power ratio between the DMRS and the PDSCH even if the number of DMRSs without CDM CDM groups is 2 or 3. Demodulate (decode). In other cases, the terminal device obtains the power ratio between DMRS and PDSCH according to the number of DMRS CDM groups without data.
  • the initial value of the DMRS sequence is calculated based on at least the NID and the SCID.
  • the SCID is set at most two ways and is indicated by 0 or 1.
  • the SCID is included in DCI.
  • the SCID may indicate whether to demodulate (decode) the PDSCH in consideration of the power ratio between the DMRS and the PDSCH.
  • each base station apparatus uses a different terminal apparatus. Spatial multiplexing by MU-MIMO is possible. For example, consider a case where PDCCH1 (DCI1) is transmitted from base station apparatus 3A to terminal apparatus 4A, and PDCCH2 (DCI2) is transmitted from base station apparatus 5A to terminal apparatus 4A. Note that PDCCH1 and PDCCH2 are transmitted in the same slot. Although not shown, it is assumed that base station apparatus 5A spatially multiplexes terminal apparatus 4A and terminal apparatus 4B.
  • base station apparatus 3A sets DMRS ports 1000, 1001, 1006, and 1007 as DMRS port group 1 and sets DMRS ports 1002 and 1003 as DMRS port group 2 for terminal apparatus 4A.
  • 1008 and 1009 are set.
  • the DMRS port numbers included in DCI1 are 1000, 1001, 1006, and 1007, and the number of CDM groups without data is two.
  • the DMRS port numbers included in DCI1 are 1002, 1003, 1008, and 1009, and the number of CDM groups without data is three.
  • the base station device 5A communicates with the terminal device 4B using the DMRS port numbers 1004, 1005, 1010, and 1011.
  • the terminal device 4A understands that DCI1 indicates the DMRS of the DMRS port group 1 and DCI2 indicates the DMRS of the DMRS port group 2. Accordingly, since the two data-less DMRS CDM groups indicated by DCI1 are used for transmission to the own device, the power ratio between the DMRS DMRS ports 1000, 1001, 1006, 1007 indicated by DCI1 and the corresponding PDSCH Can be determined to be 1 (0 dB). Further, among the three CDM groups without data indicated by DCI2, the CDM groups without two data are used for transmission to the own device, so that DMRS ports 1002, 1003, 1008, and 1009 indicated by DCI2 It can be determined that the power ratio with the corresponding PDSCH is 2 (3 dB).
  • the terminal device when receiving two PDCCHs in the same slot, the terminal device considers the number of DMRSs without data indicated by one DCI the number of CDM groups minus one, and considers the power of DMRS and PDSCH The ratio can be determined.
  • the base station apparatus knows high-precision downlink precoding due to a type 2 codebook or channel reciprocity (channel @ reciprocity), the codeword (transport block) is used between codewords (transport blocks). By allocating different powers, throughput may be improved.
  • the communication quality of codeword 0 is better than that of codeword 1, unless otherwise specified.
  • the power allocated to the codeword 0 may be increased.
  • the bandwidth and the number of layers are determined, the maximum data rate of one codeword is limited by the MCS.
  • the base station apparatus can increase the power of codeword 0 or codeword 1 and transmit it.
  • the base station apparatus instructs the terminal apparatus with control information to know that the terminal apparatus has changed the power allocation between codewords. For example, when there is a possibility that power allocation may be changed between codewords, the base station apparatus sets power allocation information between codewords using a signal of an upper layer.
  • the power allocation information between codewords may indicate the power allocation of codeword 0 or codeword 1. If the total of codeword 0 and codeword 1 is normalized to 1, knowing the power allocation of one knows the power allocation of the other.
  • the base station apparatus can notify the terminal apparatus of the maximum number of codewords (transport blocks) scheduled by one DCI by using an upper layer signal.
  • the terminal device transmits a DCI including parameters related to one codeword (for example, MCS, redundancy version (RV), New ⁇ Data ⁇ Indicator ⁇ (NDI)). Decrypt. If the maximum number of codewords (transport blocks) scheduled in one DCI is 1, the terminal device decodes DCI including parameters (eg, MCS, RV, NDI) related to one codeword (transport block). .
  • the terminal device decodes DCI including parameters (for example, MCS, RV, New ⁇ Data ⁇ Indicator) (NDI) related to two codewords (transport blocks). .
  • the maximum number of codewords (transport blocks) scheduled in one DCI is 2, and the MCS index of one codeword (transport block) of the two codewords (transport blocks) is 26.
  • RV index (RVID) is 1, it indicates that the codeword (transport block) is invalid. Note that two codewords (transport blocks) can be invalidated.
  • the above-described power allocation information between codewords indicates that the maximum number of codewords (transport blocks) scheduled in one DCI is 2, and two codewords (transport blocks) are valid in DCI. May be used.
  • the power allocation information between codewords is such that the maximum number of codewords (transport blocks) scheduled in one DCI is 2, two codewords (transport blocks) are valid in DCI, and It may be used when the indicated number of DMRS antenna ports is four or less.
  • MU-MIMO When changing the power allocation between codewords, MU-MIMO may not be performed. For example, when two codewords (transport blocks) are valid and the number of DMRS antenna ports indicated by DCI is four or less, the number of DMRS CDM groups without data may be only one. When two codewords (transport blocks) are valid, the number of DMRS antenna ports indicated by DCI is 4 or less, and the number of DMRS port groups is 2, even if the number of DMRSMCDM groups without data is 2, Good.
  • the base station device may set the MCS table for each codeword.
  • the MCS table includes, for example, an MCS table having a maximum modulation scheme of 64 QAM (also referred to as a first MCS table), an MCS table having a maximum modulation scheme of 256 QAM (also referred to as a second MCS table), and a maximum of low frequency use efficiency.
  • the second MCS table can achieve higher frequency use efficiency at a higher SINR than the first MCS table, but it is difficult to perform fine adaptive control at a low SINR.
  • the third MCS table enables more reliable communication than the first MCS table, but the maximum frequency use efficiency is low.
  • the terminal device refers to the MCS table set in each codeword (transport block) to perform modulation. You can know the method.
  • the frequency band used by the communication device (base station device, terminal device) according to the present embodiment is not limited to the license band and the unlicensed band described above.
  • the frequency band targeted by the present embodiment is not actually used for the purpose of preventing interference between frequencies, although the use permission for a specific service is given from the country or region.
  • Frequency bands called white bands (white space) for example, frequency bands allocated for television broadcasting but not used in some areas), or previously exclusively allocated to specific operators,
  • a shared frequency band (license shared band) that is expected to be shared by multiple operators in the future is also included.
  • the program that operates on the device according to the present invention may be a program that controls a central processing unit (CPU) or the like to cause a computer to function so as to realize the functions of the embodiment according to the present invention.
  • the program or information handled by the program is temporarily stored in a volatile memory such as a Random Access Memory (RAM), a non-volatile memory such as a flash memory, a Hard Disk Drive (HDD), or another storage device system.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • a program for realizing the functions of the embodiment according to the present invention may be recorded on a computer-readable recording medium.
  • the program may be realized by causing a computer system to read and execute the program recorded on the recording medium.
  • the “computer system” is a computer system built in the device, and includes an operating system and hardware such as peripheral devices.
  • the “computer-readable recording medium” is a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium that dynamically holds a program for a short time, or another computer-readable recording medium. Is also good.
  • Each functional block or various features of the device used in the above-described embodiment may be implemented or executed by an electric circuit, for example, an integrated circuit or a plurality of integrated circuits.
  • An electrical circuit designed to perform the functions described herein may be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA), or other Logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof.
  • a general purpose processor may be a microprocessor, or may be a conventional processor, controller, microcontroller, or state machine.
  • the above-described electric circuit may be configured by a digital circuit or an analog circuit.
  • one or more aspects of the present invention can use a new integrated circuit based on the technology.
  • the present invention is not limited to the above embodiment.
  • an example of the device is described.
  • the present invention is not limited to this, and stationary or non-movable electronic devices installed indoors and outdoors, for example, AV devices, kitchen devices, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
  • the present invention is suitable for use in a base station device, a terminal device, and a communication method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention enhances a throughput and frequency use efficiency by means of a flexible transmission control in a spatial region. The present invention includes: a measurement unit which obtains CSI on the basis of a CSI report setting and a CSI-RS; and a transmission unit which transmits the CSI to a base station, wherein the CSI report setting includes a codebook setting and a channel quality index (CQI) number for each report. When the codebook setting indicates a type 1 codebook, the CQI number for each report is 2 and a rank index (RI) is 4 or greater, CQIs of two codewords are obtained. When the codebook setting indicates a type 2 codebook, the CQI number for each report is 2, and the rank index (RI) is 2 or greater, CQIs of the two codewords are obtained. The CSI is transmitted which includes a precoding matrix index (PMI) obtained with the type 1 codebook or type 2 codebook, the RI and the CQI.

Description

基地局装置、端末装置および通信方法Base station device, terminal device, and communication method
 本発明は、基地局装置、端末装置および通信方法に関する。本願は、2018年9月5日に日本で出願された特願2018-165979号に基づき優先権を主張し、その内容をここに援用する。 << The present invention relates to a base station device, a terminal device, and a communication method. This application claims priority based on Japanese Patent Application No. 2018-165979 filed in Japan on September 5, 2018, the contents of which are incorporated herein by reference.
 2020年頃の商業サービス開始を目指し、第5世代移動無線通信システム(5Gシステム)に関する研究・開発活動が盛んに行なわれている。最近、国際標準化機関である国際電気通信連合 無線通信部門(International Telecommunication Union Radio communications Sector:ITU-R)より、5Gシステムの標準方式(International mobile telecommunication - 2020 and beyond:IMT-2020)に関するビジョン勧告が報告された(非特許文献1参照)。 With the aim of launching commercial services around 2020, research and development activities related to the fifth generation mobile radio communication system (5G system) are being actively conducted. Recently, the International Telecommunications Union Radio Communications Sector (ITU-R), an international standardization organization, has issued a vision recommendation on the standard system of 5G systems (International mobile telecommunications-2020 and IMT-2020). It was reported (see Non-Patent Document 1).
 通信システムがデータトラフィックの急増に対処していく上で、スループット、周波数利用効率の向上は重要な課題である。例えば、5Gシステムでは、多数アンテナ、高精度なチャネル状態情報(CSI)フィードバック推定に基づくビームフォーミングやプリコーディングを用いたSingle User/Multi-User MIMO (Multiple Input Multiple Output)によって高い周波数利用効率を実現している。(非特許文献2参照) (4) Improving throughput and frequency utilization efficiency are important issues for communication systems to cope with the rapid increase in data traffic. For example, in a 5G system, high frequency utilization efficiency is achieved by using multiple antennas and Single User / Multi-User MIMO (Multiple Input Multiple Output) using beamforming and precoding based on highly accurate channel state information (CSI) feedback estimation. are doing. (See Non-Patent Document 2)
 しかしながら、さらなるスループット、周波数利用効率を向上するためには、空間領域おいて、より柔軟な送信制御が必要となる。 However, in order to further improve the throughput and the frequency use efficiency, more flexible transmission control in the spatial domain is required.
 本発明の一態様はこのような事情を鑑みてなされたものであり、その目的は、空間領域における柔軟な送信制御により、スループット、周波数利用効率を向上させることができる、基地局装置、端末装置、通信方法を提供することにある。 An aspect of the present invention has been made in view of such circumstances, and an object thereof is to provide a base station device and a terminal device capable of improving throughput and frequency use efficiency by flexible transmission control in a spatial domain. And a communication method.
 上述した課題を解決するために本発明に係る基地局装置、端末装置及び通信方法の構成は、次の通りである。 The configurations of the base station apparatus, the terminal apparatus, and the communication method according to the present invention for solving the above-described problems are as follows.
 本発明の一態様に係る端末装置は、基地局装置と通信する端末装置であって、チャネル状態情報(CSI)のレポート設定及びチャネル状態情報参照信号(CSI-RS)を受信する受信部と、前記CSIレポート設定及び前記CSI-RSに基づいて、CSIを求める測定部と、前記CSIを前記基地局装置に送信する送信部と、を備え、前記CSIレポート設定は、コードブック設定、及びレポート毎のCQI数を含み、前記コードブック設定がタイプ1コードブックを示し、前記レポート毎のCQI数が2の場合で、ランク指標(RI)が4以上の場合、2つのコードワードのチャネル品質指標(CQI)を求め、前記コードブック設定がタイプ2コードブックを示し、前記レポート毎のCQI数が2の場合で、ランク指標(RI)が2以上の場合、2つのコードワードのCQIを求め、前記タイプ1コードブック又はタイプ2コードブックで求めたプリコーディング行列指標(PMI)、前記RI、及び前記CQIを含む前記CSIを送信する。 A terminal device according to an aspect of the present invention is a terminal device that communicates with a base station device, a receiving unit that receives a report setting of channel state information (CSI) and a channel state information reference signal (CSI-RS), A measuring unit that obtains CSI based on the CSI report setting and the CSI-RS; and a transmitting unit that transmits the CSI to the base station device, wherein the CSI report setting includes a codebook setting and a report If the codebook setting indicates a type 1 codebook, the number of CQIs for each report is 2 and the rank index (RI) is 4 or more, the channel quality index of two codewords ( CQI), the codebook setting indicates a type 2 codebook, the number of CQIs for each report is 2 and the rank index (RI) is 2 or more And calculating the CQI of the two codewords and transmitting the CSI including the precoding matrix index (PMI), the RI, and the CQI obtained from the type 1 codebook or the type 2 codebook.
 また本発明の一態様に係る端末装置において、前記CSIレポート設定は、レポート量及び低ランクのレポート毎のCQI数を含み、前記レポート量が、RI及びCQIを報告してPMIを報告しない設定を示し、前記低ランクのレポート毎のCQI数が2の場合、2つのコードワードのCQIを求め、前記RI、CQIを含む前記CSIを送信する。 Further, in the terminal device according to an aspect of the present invention, the CSI report setting includes a report amount and a CQI number for each low-rank report, and the report amount includes a setting for reporting RI and CQI and not reporting PMI. When the number of CQIs for each of the low-rank reports is two, the CQIs of two codewords are obtained, and the CSI including the RI and the CQI is transmitted.
 また本発明の一態様に係る端末装置において、前記CSIレポート設定は、2つのコードワードの各々に対するCQIテーブル設定を含み、2つのコードワードのCQIを求める場合、前記CQIは各々のコードワードに対するCQIテーブルを参照して求める。 Further, in the terminal device according to one aspect of the present invention, the CSI report setting includes a CQI table setting for each of two codewords, and when determining a CQI of the two codewords, the CQI is a CQI for each codeword. Refer to the table to determine.
 また本発明の一態様に係る基地局装置は、端末装置と通信する基地局装置であって、チャネル状態情報(CSI)のレポート設定及びチャネル状態情報参照信号(CSI-RS)を送信する送信部と、前記CSIを受信する受信部と、を備え、前記CSIレポート設定は、コードブック設定、及びレポート毎のCQI数を含み、前記コードブック設定がタイプ1コードブックを示し、前記レポート毎のCQI数が2の場合、ランク指標(RI)が4以上の場合、前記端末装置から2つのコードワードのチャネル品質指標(CQI)、タイプ1コードブックのPMI、及びRIを受信し、前記コードブック設定がタイプ2コードブックを示し、前記レポート毎のCQI数が2の場合、ランク指標(RI)が2以上の場合に、前記端末装置から、2つのコードワードのCQI、タイプ2コードブックのPMI、及びRIを受信する。 A base station apparatus according to an aspect of the present invention is a base station apparatus that communicates with a terminal apparatus, and includes a transmission unit that transmits a channel state information (CSI) report setting and a channel state information reference signal (CSI-RS). And a receiving unit for receiving the CSI, wherein the CSI report setting includes a codebook setting and a CQI number for each report, the codebook setting indicates a type 1 codebook, and a CQI for each report. If the number is 2, the rank index (RI) is 4 or more, the channel quality indicator (CQI) of two codewords, the PMI of type 1 codebook, and the RI are received from the terminal device, and the codebook setting is performed. Indicates a type 2 codebook, and when the number of CQIs for each report is 2, when the rank index (RI) is 2 or more, two codewords are transmitted from the terminal device. Receiving CQI, PMI type 2 codebook, and RI.
 また本発明の一態様に係る基地局装置において、前記CSIレポート設定は、レポート量及び低ランクのレポート毎のCQI数を含み、前記レポート量が、RI及びCQIを報告してPMIを報告しない設定を示し、前記低ランクのレポート毎のCQI数が2の場合、2つのコードワードのCQI及びRIを受信する。 Further, in the base station apparatus according to one aspect of the present invention, the CSI report setting includes a report amount and a CQI number for each low-rank report, and the report amount is set to report RI and CQI and not report PMI. In the case where the number of CQIs per low-rank report is two, CQI and RI of two codewords are received.
 また本発明の一態様に係る基地局装置において、前記CSIレポート設定は、2つのコードワードの各々に対するCQIテーブル設定を含み、2つのコードワードのCQIを受信する場合、前記CQIは各々のコードワードに対するCQIテーブルを参照して求める。 Further, in the base station apparatus according to one aspect of the present invention, the CSI report setting includes a CQI table setting for each of two codewords, and when the CQI of the two codewords is received, the CQI is set to each codeword. With reference to the CQI table for
 また本発明の一態様に係る通信方法は、基地局装置と通信する端末装置における通信方法であって、チャネル状態情報(CSI)のレポート設定及びチャネル状態情報参照信号(CSI-RS)を受信するステップと、前記CSIレポート設定及び前記CSI-RSに基づいて、CSIを求めるステップと、前記CSIを前記基地局装置に送信するステップと、を備え、前記CSIレポート設定は、コードブック設定、及びレポート毎のCQI数を含み、前記コードブック設定がタイプ1コードブックを示し、前記レポート毎のCQI数が2の場合で、ランク指標(RI)が4以上の場合、2つのコードワードのチャネル品質指標(CQI)を求め、前記コードブック設定がタイプ2コードブックを示し、前記レポート毎のCQI数が2の場合で、ランク指標(RI)が2以上の場合、2つのコードワードのCQIを求め、前記タイプ1コードブック又はタイプ2コードブックで求めたプリコーディング行列指標(PMI)、前記RI、及び前記CQIを含む前記CSIを送信する。 A communication method according to an aspect of the present invention is a communication method in a terminal device that communicates with a base station device, and receives a report setting of channel state information (CSI) and a channel state information reference signal (CSI-RS). A step of obtaining CSI based on the CSI report setting and the CSI-RS, and a step of transmitting the CSI to the base station apparatus, wherein the CSI report setting includes a codebook setting and a report. Channel quality indicator of two codewords when the codebook setting indicates a type 1 codebook and the number of CQIs per report is 2 and the rank index (RI) is 4 or more. (CQI), and when the codebook setting indicates a type 2 codebook and the number of CQIs for each report is two, When the index (RI) is 2 or more, the CQI of two codewords is obtained, and the precoding matrix index (PMI) obtained by the type 1 codebook or the type 2 codebook, the RI, and the CQI are included. Send CSI.
 また本発明の一態様に係る通信方法は、端末装置と通信する基地局装置における通信方法であって、チャネル状態情報(CSI)のレポート設定及びチャネル状態情報参照信号(CSI-RS)を送信するステップと、前記CSIを受信するステップと、を備え、前記CSIレポート設定は、コードブック設定、及びレポート毎のCQI数を含み、前記コードブック設定がタイプ1コードブックを示し、前記レポート毎のCQI数が2の場合で、ランク指標(RI)が4以上の場合、前記端末装置から2つのコードワードのチャネル品質指標(CQI)、タイプ1コードブックのPMI、及びRIを受信し、前記コードブック設定がタイプ2コードブックを示し、前記レポート毎のCQI数が2の場合で、ランク指標(RI)が2以上の場合に、前記端末装置から、2つのコードワードのCQI、タイプ2コードブックのPMI、及びRIを受信する。 Further, a communication method according to an aspect of the present invention is a communication method in a base station apparatus that communicates with a terminal apparatus, in which a report setting of channel state information (CSI) and a channel state information reference signal (CSI-RS) are transmitted. And receiving the CSI, wherein the CSI report settings include a codebook setting and a number of CQIs per report, wherein the codebook setting indicates a type 1 codebook, and a CQI per report. If the number is 2 and the rank indicator (RI) is 4 or more, the channel quality indicator (CQI) of the two codewords, the PMI of the type 1 codebook, and the RI are received from the terminal device, and the codebook is received. If the setting indicates a type 2 codebook, the number of CQIs for each report is 2, and the rank index (RI) is 2 or more, Receives two code words CQI, Type 2 codebook PMI, and RI.
 本発明の一態様によれば、空間領域における柔軟な送信制御により、スループット、周波数利用効率を向上させることができる。 According to one aspect of the present invention, throughput and frequency use efficiency can be improved by flexible transmission control in the spatial domain.
本実施形態に係る通信システムの例を示す図であるFIG. 1 is a diagram illustrating an example of a communication system according to an embodiment. 本実施形態に係る基地局装置の構成例を示すブロック図であるFIG. 4 is a block diagram illustrating a configuration example of a base station device according to the present embodiment. 本実施形態に係る端末装置の構成例を示すブロック図であるFIG. 2 is a block diagram illustrating a configuration example of a terminal device according to the present embodiment. 本実施形態に係る通信システムの例を示す図であるFIG. 1 is a diagram illustrating an example of a communication system according to an embodiment.
 本実施形態における通信システムは、基地局装置(送信装置、セル、送信点、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、eNodeB、送信ポイント、送受信ポイント、送信パネル、アクセスポイント、サブアレー)および端末装置(端末、移動端末、受信点、受信端末、受信装置、受信アンテナ群、受信アンテナポート群、UE、受信ポイント、受信パネル、ステーション、サブアレー)を備える。また端末装置と接続している(無線リンクを確立している)基地局装置をサービングセルと呼ぶ。 The communication system according to the present embodiment includes a base station device (transmitting device, cell, transmitting point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB, transmitting point, transmitting / receiving point, transmitting panel, access point, subarray) and terminal Devices (terminals, mobile terminals, receiving points, receiving terminals, receiving devices, receiving antenna groups, receiving antenna port groups, UEs, receiving points, receiving panels, stations, sub arrays) are provided. A base station device connected to a terminal device (establishing a wireless link) is called a serving cell.
 本実施形態における基地局装置及び端末装置は、免許が必要な周波数帯域(ライセンスバンド)及び/又は免許不要の周波数帯域(アンライセンスバンド)で通信することができる。 The base station device and the terminal device according to the present embodiment can communicate in a frequency band requiring a license (license band) and / or in a frequency band not requiring a license (unlicensed band).
 本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。 に お い て In the present embodiment, “X / Y” includes the meaning of “X or Y”. In the present embodiment, “X / Y” includes the meanings of “X and Y”. In the present embodiment, “X / Y” includes the meaning of “X and / or Y”.
 図1は、本実施形態に係る通信システムの例を示す図である。図1に示すように、本実施形態における通信システムは、基地局装置1A、端末装置2Aを備える。また、カバレッジ1-1は、基地局装置1Aが端末装置と接続可能な範囲(通信エリア)である。また基地局装置1Aを単に基地局装置とも呼ぶ。また端末装置2Aを単に端末装置とも呼ぶ。 FIG. 1 is a diagram illustrating an example of a communication system according to the present embodiment. As shown in FIG. 1, the communication system according to the present embodiment includes a base station device 1A and a terminal device 2A. The coverage 1-1 is a range (communication area) in which the base station device 1A can connect to the terminal device. Base station device 1A is also simply referred to as a base station device. The terminal device 2A is also simply referred to as a terminal device.
 図1において、端末装置2Aから基地局装置1Aへの上りリンクの無線通信では、以下の上りリンク物理チャネルが用いられる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PUCCH(Physical Uplink Control Channel)・PUSCH(Physical Uplink Shared Channel)・PRACH(Physical Random Access Channel)
In FIG. 1, the following uplink physical channels are used in uplink wireless communication from the terminal device 2A to the base station device 1A. The uplink physical channel is used for transmitting information output from an upper layer.
-PUCCH (Physical Uplink Control Channel)-PUSCH (Physical Uplink Shared Channel)-PRACH (Physical Random Access Channel)
 PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。ここで、上りリンク制御情報は、下りリンクデータ(下りリンクトランスポートブロック、Downlink-Shared Channel: DL-SCH)に対するACK(a positive acknowledgement)またはNACK(a negative acknowledgement)(ACK/NACK)を含む。下りリンクデータに対するACK/NACKを、HARQ-ACK、HARQフィードバックとも称する。 PUCCH is used to transmit uplink control information (Uplink Control Information: UCI). Here, the uplink control information includes ACK (a positive acknowledgment) or NACK (a negative acknowledgment) (ACK / NACK) for downlink data (downlink transport block, Downlink-Shared Channel: DL-SCH). ACK / NACK for downlink data is also referred to as HARQ-ACK or HARQ feedback.
 また、上りリンク制御情報は、下りリンクに対するチャネル状態情報(Channel State Information: CSI)を含む。また、上りリンク制御情報は、上りリンク共用チャネル(Uplink-Shared Channel: UL-SCH)のリソースを要求するために用いられるスケジューリング要求(Scheduling Request: SR)を含む。前記チャネル状態情報は、好適な空間多重数を指定するランク指標RI(Rank Indicator)、好適なプレコーダを指定するプレコーディング行列指標PMI(Precoding Matrix Indicator)、好適な伝送レートを指定するチャネル品質指標CQI(Channel Quality Indicator)、好適なCSI-RSリソースを示すCSI-RS(Reference Signal、参照信号)リソース指標CRI(CSI-RS Resource Indicator)、CSI-RS又はSS(Synchronization Signal; 同期信号)により測定されたRSRP(Reference Signal Received Power)などが該当する。 Also, the uplink control information includes channel state information (Channel State Information: CSI) for the downlink. Also, the uplink control information includes a scheduling request (Scheduling Request: SR) used to request resources of the uplink shared channel (Uplink-Shared Channel: UL-SCH). The channel state information includes a rank indicator RI (Rank @ Indicator) for specifying a suitable number of spatial multiplexing, a precoding matrix indicator PMI (Precoding @ Matrix @ Indicator) for specifying a suitable precoder, and a channel quality indicator CQI for specifying a suitable transmission rate. (Channel Quality Indicator), CSI-RS (Reference Signal) indicating a suitable CSI-RS resource, resource indicator CRI (CSI-RS Resource Indicator), measured by CSI-RS or SS (Synchronization Signal). RSRP (Reference \ Signal \ Received \ Power).
 前記チャネル品質指標CQIは(以下、CQI値)、所定の帯域(詳細は後述)における好適な変調方式(例えば、QPSK、16QAM、64QAM、256QAMなど)、符号化率(coding rate)とすることができる。CQI値は、前記変更方式や符号化率により定められたインデックス(CQI Index)とすることができる。前記CQI値は、予め当該システムで定めたものをすることができる。 The channel quality indicator CQI (hereinafter, CQI value) may be a suitable modulation scheme (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) in a predetermined band (details will be described later), and a coding rate (coding rate). it can. The CQI value may be an index (CQI Index) determined by the change method and the coding rate. The CQI value can be a value predetermined by the system.
 前記CRIは、複数のCSI-RSリソースから受信電力/受信品質が好適なCSI-RSリソースを示す。 The CRI indicates a CSI-RS resource having a preferable reception power / reception quality from a plurality of CSI-RS resources.
 なお、前記ランク指標、前記プレコーディング品質指標は、予めシステムで定めたものとすることができる。前記ランク指標や前記プレコーディング行列指標は、空間多重数やプレコーディング行列情報により定められたインデックスとすることができる。なお、前記CQI値、PMI値、RI値及びCRI値の一部又は全部をCSI値とも総称する。 The rank index and the precoding quality index can be determined in advance by the system. The rank index or the precoding matrix index may be an index determined by the number of spatial multiplexing or precoding matrix information. A part or all of the CQI value, the PMI value, the RI value, and the CRI value are also collectively referred to as a CSI value.
 PUSCHは、上りリンクデータ(上りリンクトランスポートブロック、UL-SCH)を送信するために用いられる。また、PUSCHは、上りリンクデータと共に、ACK/NACKおよび/またはチャネル状態情報を送信するために用いられても良い。また、PUSCHは、上りリンク制御情報のみを送信するために用いられても良い。 PUSCH is used to transmit uplink data (uplink transport block, UL-SCH). Also, the PUSCH may be used to transmit ACK / NACK and / or channel state information along with uplink data. PUSCH may be used to transmit only uplink control information.
 また、PUSCHは、RRCメッセージを送信するために用いられる。RRCメッセージは、無線リソース制御(Radio Resource Control: RRC)層において処理される情報/信号である。また、PUSCHは、MAC CE(Control Element)を送信するために用いられる。ここで、MAC CEは、媒体アクセス制御(MAC: Medium Access Control)層において処理(送信)される情報/信号である。 PU PUSCH is used for transmitting an RRC message. The RRC message is information / signal processed in a radio resource control (Radio Resource Control: $ RRC) layer. PUSCH is used for transmitting MAC @ CE (Control @ Element). Here, MAC @ CE is information / signal processed (transmitted) in a medium access control (MAC: \ Medium \ Access \ Control) layer.
 例えば、パワーヘッドルームは、MAC CEに含まれ、PUSCHを経由して報告されても良い。すなわち、MAC CEのフィールドが、パワーヘッドルームのレベルを示すために用いられても良い。 {For example, the power headroom may be included in the MAC @ CE and reported via the PUSCH. That is, the MAC @ CE field may be used to indicate the power headroom level.
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられる。 PRACH is used to transmit a random access preamble.
 また、上りリンクの無線通信では、上りリンク物理信号として上りリンク参照信号(Uplink Reference Signal: UL RS)が用いられる。上りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。ここで、上りリンク参照信号には、DMRS(Demodulation Reference Signal)、SRS(Sounding Reference Signal)、PT-RS(Phase-Tracking reference signal)が含まれる。 In uplink wireless communication, an uplink reference signal (Uplink Reference Signal: UL RS) is used as an uplink physical signal. The uplink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer. Here, the uplink reference signal includes DMRS (Demodulation Reference Signal), SRS (Sounding Reference Signal), and PT-RS (Phase-Tracking reference signal).
 DMRSは、PUSCHまたはPUCCHの送信に関連する。例えば、基地局装置1Aは、PUSCHまたはPUCCHの伝搬路補正を行なうためにDMRSを使用する。例えば、基地局装置1Aは、上りリンクのチャネル状態を測定するためにSRSを使用する。またSRSは上りリンクの観測(サウンディング)に用いられる。またPT-RSは位相雑音を補償するために用いられる。なお、上りリンクのDMRSを上りリンクDMRSとも呼ぶ。 DMRS is related to the transmission of PUSCH or PUCCH. For example, the base station apparatus 1A uses the DMRS to correct the propagation path of the PUSCH or the PUCCH. For example, the base station apparatus 1A uses the SRS to measure an uplink channel state. The SRS is used for uplink observation (sounding). PT-RS is used to compensate for phase noise. Note that the uplink DMRS is also referred to as uplink DMRS.
 図1において、基地局装置1Aから端末装置2Aへの下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PBCH(Physical Broadcast Channel;報知チャネル)
・PCFICH(Physical Control Format Indicator Channel;制御フォーマット指示チャネル)
・PHICH(Physical Hybrid automatic repeat request Indicator Channel;HARQ指示チャネル)
・PDCCH(Physical Downlink Control Channel;下りリンク制御チャネル)
・EPDCCH(Enhanced Physical Downlink Control Channel;拡張下りリンク制御チャネル)
・PDSCH(Physical Downlink Shared Channel;下りリンク共有チャネル)
In FIG. 1, the following downlink physical channels are used in downlink wireless communication from the base station device 1A to the terminal device 2A. The downlink physical channel is used for transmitting information output from an upper layer.
・ PBCH (Physical Broadcast Channel)
・ PCFICH (Physical Control Format Indicator Channel)
・ PHICH (Physical Hybrid automatic repeat request Indicator Channel; HARQ instruction channel)
-PDCCH (Physical Downlink Control Channel)
EPDCCH (Enhanced Physical Downlink Control Channel)
-PDSCH (Physical Downlink Shared Channel)
 PBCHは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB, Broadcast Channel: BCH)を報知するために用いられる。PCFICHは、PDCCHの送信に用いられる領域(例えば、OFDM(Orthogonal Frequency Division Multiplexing;直交周波数分割多重)シンボルの数)を指示する情報を送信するために用いられる。なお、MIBは最小システムインフォメーションとも呼ぶ。 The PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) commonly used in the terminal device. The PCFICH is used to transmit information indicating a region used for transmission of the PDCCH (for example, the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols). Note that MIB is also called minimum system information.
 PHICHは、基地局装置1Aが受信した上りリンクデータ(トランスポートブロック、コードワード)に対するACK/NACKを送信するために用いられる。すなわち、PHICHは、上りリンクデータに対するACK/NACKを示すHARQインディケータ(HARQフィードバック)を送信するために用いられる。また、ACK/NACKは、HARQ-ACKとも呼称する。端末装置2Aは、受信したACK/NACKを上位レイヤに通知する。ACK/NACKは、正しく受信されたことを示すACK、正しく受信しなかったことを示すNACK、対応するデータがなかったことを示すDTXである。また、上りリンクデータに対するPHICHが存在しない場合、端末装置2AはACKを上位レイヤに通知する。 $ PHICH is used to transmit ACK / NACK for uplink data (transport block, codeword) received by base station apparatus 1A. That is, the PHICH is used to transmit a HARQ indicator (HARQ feedback) indicating ACK / NACK for uplink data. ACK / NACK is also referred to as HARQ-ACK. The terminal device 2A notifies the upper layer of the received ACK / NACK. The ACK / NACK is ACK indicating that the data was correctly received, NACK indicating that the data was not correctly received, and DTX indicating that there was no corresponding data. If there is no PHICH for the uplink data, the terminal device 2A notifies the upper layer of an ACK.
 PDCCHおよびEPDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。ここで、下りリンク制御情報の送信に対して、複数のDCIフォーマットが定義される。すなわち、下りリンク制御情報に対するフィールドがDCIフォーマットに定義され、情報ビットへマップされる。 PDCCH and EPDCCH are used for transmitting downlink control information (Downlink Control Information: DCI). Here, a plurality of DCI formats are defined for transmission of downlink control information. That is, the field for the downlink control information is defined in the DCI format and mapped to information bits.
 例えば、下りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPDSCH(1つの下りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット1Aが定義される。 For example, as a DCI format for the downlink, a DCI format 1A used for scheduling one PDSCH (transmission of one downlink transport block) in one cell is defined.
 例えば、下りリンクに対するDCIフォーマットには、PDSCHのリソース割り当てに関する情報、PDSCHに対するMCS(Modulation and Coding Scheme)に関する情報、PUCCHに対するTPCコマンドなどの下りリンク制御情報が含まれる。ここで、下りリンクに対するDCIフォーマットを、下りリンクグラント(または、下りリンクアサインメント)とも称する。 For example, the DCI format for the downlink includes information on resource allocation of PDSCH, information on MCS (Modulation and Coding Scheme) for PDSCH, and downlink control information such as a TPC command for PUCCH. Here, the DCI format for the downlink is also referred to as a downlink grant (or downlink assignment).
 また、例えば、上りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPUSCH(1つの上りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット0が定義される。 {Also, for example, DCI format 0 used for scheduling one PUSCH (transmission of one uplink transport block) in one cell is defined as the DCI format for the uplink.
 例えば、上りリンクに対するDCIフォーマットには、PUSCHのリソース割り当てに関する情報、PUSCHに対するMCSに関する情報、PUSCHに対するTPCコマンドなど上りリンク制御情報が含まれる。上りリンクに対するDCIフォーマットを、上りリンクグラント(または、上りリンクアサインメント)とも称する。 For example, the DCI format for the uplink includes information on PUSCH resource allocation, information on the MCS for the PUSCH, and uplink control information such as a TPC command for the PUSCH. The DCI format for the uplink is also referred to as an uplink grant (or an uplink assignment).
 また、上りリンクに対するDCIフォーマットは、下りリンクのチャネル状態情報(CSI;Channel State Information。受信品質情報とも称する。)を要求(CSI request)するために用いることができる。 {In addition, the DCI format for the uplink can be used to request downlink channel state information (CSI; Channel \ State \ Information; also referred to as reception quality information).
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを示す設定のために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(Periodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。 {Also, the DCI format for the uplink can be used for the setting indicating the uplink resource that maps the channel state information report (CSI feedback report) that the terminal device feeds back to the base station device. For example, the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic @ CSI). The channel state information report can be used for a mode setting (CSI @ report @ mode) for periodically reporting the channel state information.
 例えば、チャネル状態情報報告は、不定期なチャネル状態情報(Aperiodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、不定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。 {For example, the channel state information report can be used for setting indicating an uplink resource for reporting irregular channel state information (Aperiodic @ CSI). The channel state information report can be used for a mode setting (CSI @ report @ mode) for reporting the channel state information irregularly.
 例えば、チャネル状態情報報告は、半永続的なチャネル状態情報(semi-persistent CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、半永続的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。なお、半永続的なCSI報告は、上位層の信号又は下りリンク制御情報でアクティベーションされてからデアクティベーションされる期間に、周期的にCSI報告ことである。 For example, the channel state information report can be used for setting indicating an uplink resource for reporting semi-persistent channel state information (semi-persistent CSI). The channel state information report can be used for a mode setting (CSI @ report @ mode) for semi-permanently reporting the channel state information. The semi-permanent CSI report is a CSI report that is periodically performed during a period in which activation is performed using an upper layer signal or downlink control information and then deactivation is performed.
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告の種類を示す設定のために用いることができる。チャネル状態情報報告の種類は、広帯域CSI(例えばWideband CQI)と狭帯域CSI(例えば、Subband CQI)などがある。 DC Also, the DCI format for the uplink can be used for setting indicating the type of channel state information report that the terminal device feeds back to the base station device. The types of the channel state information report include a wideband CSI (for example, Wideband @ CQI) and a narrowband CSI (for example, Subband @ CQI).
 端末装置は、下りリンクアサインメントを用いてPDSCHのリソースがスケジュールされた場合、スケジュールされたPDSCHで下りリンクデータを受信する。また、端末装置は、上りリンクグラントを用いてPUSCHのリソースがスケジュールされた場合、スケジュールされたPUSCHで上りリンクデータおよび/または上りリンク制御情報を送信する。 When the PDSCH resource is scheduled using the downlink assignment, the terminal device receives the downlink data on the scheduled PDSCH. Further, when a PUSCH resource is scheduled using an uplink grant, the terminal device transmits uplink data and / or uplink control information on the scheduled PUSCH.
 PDSCHは、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH)を送信するために用いられる。また、PDSCHは、システムインフォメーションブロックタイプ1メッセージを送信するために用いられる。システムインフォメーションブロックタイプ1メッセージは、セルスペシフィック(セル固有)な情報である。 PDSCH is used for transmitting downlink data (downlink transport block, DL-SCH). The PDSCH is used for transmitting a system information block type 1 message. The system information block type 1 message is cell-specific (cell-specific) information.
 また、PDSCHは、システムインフォメーションメッセージを送信するために用いられる。システムインフォメーションメッセージは、システムインフォメーションブロックタイプ1以外のシステムインフォメーションブロックXを含む。システムインフォメーションメッセージは、セルスペシフィック(セル固有)な情報である。 PDPDSCH is used for transmitting a system information message. The system information message includes a system information block X other than the system information block type 1. The system information message is cell-specific (cell-specific) information.
 また、PDSCHは、RRCメッセージを送信するために用いられる。ここで、基地局装置から送信されるRRCメッセージは、セル内における複数の端末装置に対して共通であっても良い。また、基地局装置1Aから送信されるRRCメッセージは、ある端末装置2Aに対して専用のメッセージ(dedicated signalingとも称する)であっても良い。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のメッセージを使用して送信される。また、PDSCHは、MAC CEを送信するために用いられる。 PD PDSCH is used to transmit an RRC message. Here, the RRC message transmitted from the base station device may be common to a plurality of terminal devices in the cell. Further, the RRC message transmitted from the base station device 1A may be a message dedicated to a certain terminal device 2A (also referred to as dedicated signaling). That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message. PDSCH is used to transmit MAC @ CE.
 ここで、RRCメッセージおよび/またはMAC CEを、上位層の信号(higher layer signaling)とも称する。 Here, the RRC message and / or the MAC CE are also referred to as higher layer (signaling.
 また、PDSCHは、下りリンクのチャネル状態情報を要求するために用いることができる。また、PDSCHは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを送信するために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(Periodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。 PDSCH can also be used to request downlink channel state information. The PDSCH can be used to transmit an uplink resource that maps a channel state information report (CSI feedback_report) that is fed back from the terminal device to the base station device. For example, the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic @ CSI). The channel state information report can be used for a mode setting (CSI @ report @ mode) for periodically reporting the channel state information.
 下りリンクのチャネル状態情報報告の種類は広帯域CSI(例えばWideband CSI)と狭帯域CSI(例えば、Subband CSI)がある。広帯域CSIは、セルのシステム帯域に対して1つのチャネル状態情報を算出する。狭帯域CSIは、システム帯域を所定の単位に区分し、その区分に対して1つのチャネル状態情報を算出する。 種類 The types of downlink channel state information reports include broadband CSI (eg, Wideband CSI) and narrowband CSI (eg, Subband CSI). Broadband CSI calculates one piece of channel state information for a system band of a cell. The narrowband CSI divides a system band into predetermined units, and calculates one piece of channel state information for the division.
 また、下りリンクの無線通信では、下りリンク物理信号として同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)が用いられる。下りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。なお、同期信号には、プライマリ同期信号(Primary Synchronization Signal: PSS)とセカンダリ同期信号(Secondary Synchronization Signal: SSS)がある。 In downlink wireless communication, a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink reference signal: DL RS) are used as downlink physical signals. The downlink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer. Note that the synchronization signal includes a primary synchronization signal (Primary @ Synchronization @ Signal: @PSS) and a secondary synchronization signal (Secondary @ Synchronization @ Signal: @SSS).
 同期信号は、端末装置が、下りリンクの周波数領域および時間領域の同期を取るために用いられる。また、同期信号は受信電力、受信品質又は信号対干渉雑音電力比(Signal-to-Interference and Noise power Ratio: SINR)を測定するために用いられる。なお、同期信号で測定した受信電力をSS-RSRP(Synchronization Signal - Reference Signal Received Power)、同期信号で測定した受信品質をSS-RSRQ(Reference Signal Received Quality)、同期信号で測定したSINRをSS-SINRとも呼ぶ。なお、SS-RSRQはSS-RSRPとRSSIの比である。RSSI(Received Signal Strength Indicator)はある観測期間におけるトータルの平均受信電力である。また、同期信号/下りリンク参照信号は、端末装置が、下りリンク物理チャネルの伝搬路補正を行なうために用いられる。例えば、同期信号/下りリンク参照信号は、端末装置が、下りリンクのチャネル状態情報を算出するために用いられる。 The synchronization signal is used by the terminal device to synchronize the downlink frequency domain and the time domain. The synchronization signal is used for measuring reception power, reception quality, or a signal-to-interference noise power ratio (Signal-to-Interference noise power Noise Ratio power SINR). Note that the received power measured with the synchronization signal is SS-RSRP (Synchronization Signal-Reference Signal Received Power), the reception quality measured with the synchronization signal is SS-RSRQ (Reference Signal Received Quality), and the SINR measured with the synchronization signal is SS-RSRP. Also called SINR. Note that SS-RSRQ is the ratio of SS-RSRP to RSSI. RSSI (Received \ Signal \ Strength \ Indicator) is the total average received power in a certain observation period. Also, the synchronization signal / downlink reference signal is used by the terminal device to perform channel correction of the downlink physical channel. For example, the synchronization signal / downlink reference signal is used by the terminal device to calculate downlink channel state information.
 ここで、下りリンク参照信号には、DMRS(Demodulation Reference Signal;復調参照信号)、NZP CSI-RS(Non-Zero Power Channel State Information - Reference Signal)、ZP CSI-RS(Zero Power Channel State Information - Reference Signal)、PT-RS、TRS(Tracking Reference Signal)が含まれる。なお、下りリンクのDMRSを下りリンクDMRSとも呼ぶ。なお、以降の実施形態で、単にCSI-RSといった場合、NZP CSI-RS及び/又はZP CSI-RSを含む。 Here, the downlink reference signal includes DMRS (Demodulation Reference Signal; demodulation reference signal), NZP CSI-RS (Non-Zero Power Channel State Information-Reference Signal), and ZP CSI-RS (Zero Power Channel State-Information Reference Signal). Signal), PT-RS, TRS (Tracking Reference Signal). The downlink DMRS is also referred to as a downlink DMRS. In the following embodiments, when simply referred to as CSI-RS, it includes NZP @ CSI-RS and / or ZP @ CSI-RS.
 DMRSは、DMRSが関連するPDSCH/PBCH/PDCCH/EPDCCHの送信に用いられるサブフレームおよび帯域で送信され、DMRSが関連するPDSCH/PBCH/PDCCH/EPDCCHの復調を行なうために用いられる。 The DMRS is transmitted in a subframe and a band used for transmission of the PDSCH / PBCH / PDCCH / EPDCCH to which the DMRS is related, and is used for demodulating the PDSCH / PBCH / PDCCH / EPDCCH to which the DMRS is related.
 NZP CSI-RSのリソースは、基地局装置1Aによって設定される。例えば、端末装置2Aは、NZP CSI-RSを用いて信号の測定(チャネルの測定)又は干渉の測定を行なう。またNZP CSI-RSは、好適なビーム方向を探索するビーム走査やビーム方向の受信電力/受信品質が劣化した際にリカバリするビームリカバリ等に用いられる。ZP CSI-RSのリソースは、基地局装置1Aによって設定される。基地局装置1Aは、ZP CSI-RSをゼロ出力で送信する。例えば、端末装置2Aは、ZP CSI-RSが対応するリソースにおいて干渉の測定を行なう。なお、ZP CSI-RSが対応する干渉測定するためのリソースをCSI-IM(Interference Measurement)リソースとも呼ぶ。 The resources of {NZP} CSI-RS are set by the base station device 1A. For example, the terminal device 2A performs signal measurement (channel measurement) or interference measurement using NZP @ CSI-RS. The NZP @ CSI-RS is used for beam scanning for searching for a suitable beam direction, beam recovery for recovering when reception power / reception quality in the beam direction has deteriorated, and the like. The ZP @ CSI-RS resources are set by the base station apparatus 1A. Base station apparatus 1A transmits ZP @ CSI-RS with zero output. For example, the terminal device 2A measures the interference in the resource corresponding to the ZP @ CSI-RS. A resource for measuring interference corresponding to the ZP @ CSI-RS is also referred to as a CSI-IM (Interference @ Measurement) resource.
 基地局装置1Aは、NZP CSI-RSのリソースのためにNZP CSI-RSリソース設定を送信(設定)する。NZP CSI-RSリソース設定は、1又は複数のNZP CSI-RSリソースマッピング、各々のNZP CSI-RSリソースのCSI-RSリソース設定ID、アンテナポート数の一部又は全部を含む。CSI-RSリソースマッピングは、CSI-RSリソースが配置されるスロット内のOFDMシンボル、サブキャリアを示す情報(例えばリソースエレメント)である。CSI-RSリソース設定IDは、NZP CSI-RSリソースを特定するために用いられる。 The base station apparatus 1A transmits (sets) NZP @ CSI-RS resource settings for NZP @ CSI-RS resources. The NZP @ CSI-RS resource configuration includes one or more NZP @ CSI-RS resource mappings, a CSI-RS resource configuration ID of each NZP @ CSI-RS resource, and part or all of the number of antenna ports. The CSI-RS resource mapping is information (for example, resource element) indicating an OFDM symbol and a subcarrier in a slot in which the CSI-RS resource is arranged. The CSI-RS resource setting ID is used to specify an NZP @ CSI-RS resource.
 基地局装置1Aは、CSI-IMリソース設定を送信(設定)する。CSI-IMリソース設定は、1又は複数のCSI-IMリソースマッピング、各々のCSI-IMリソースに対するCSI-IMリソース設定IDを含む。CSI-IMリソースマッピングは、CSI-IMリソースが配置されるスロット内のOFDMシンボル、サブキャリアを示す情報(例えばリソースエレメント)である。CSI-IMリソース設定IDは、CSI-IM設定リソースを特定するために用いられる。 (4) The base station apparatus 1A transmits (sets) CSI-IM resource settings. The CSI-IM resource configuration includes one or more CSI-IM resource mappings and a CSI-IM resource configuration ID for each CSI-IM resource. The CSI-IM resource mapping is information (for example, a resource element) indicating an OFDM symbol and a subcarrier in a slot in which the CSI-IM resource is arranged. The CSI-IM resource setting ID is used to specify a CSI-IM setting resource.
 またCSI-RSは、受信電力、受信品質、又はSINRの測定に用いられる。CSI-RSで測定した受信電力をCSI-RSRP、CSI-RSで測定した受信品質をCSI-RSRQ、CSI-RSで測定したSINRをCSI-SINRとも呼ぶ。なお、CSI-RSRQは、CSI-RSRPとRSSIとの比である。 The CSI-RS is used for measuring received power, received quality, or SINR. The received power measured by CSI-RS is also called CSI-RSRP, the reception quality measured by CSI-RS is also called CSI-RSRQ, and the SINR measured by CSI-RS is also called CSI-SINR. Note that CSI-RSRQ is a ratio between CSI-RSRP and RSSI.
 またCSI-RSは、定期的/非定期的/半永続的に送信される。 Also, CSI-RS is transmitted regularly / irregularly / semi-permanently.
 CSIに関して、端末装置は上位層で設定される。例えば、CSIレポートの設定であるレポート設定、CSIを測定するためのリソースの設定であるリソース設定、CSI測定のためにレポート設定とリソース設定をリンクさせる測定リンク設定がある。また、レポート設定、リソース設定及び測定リンク設定は、1又は複数設定される。 Regarding CSI, a terminal device is set in an upper layer. For example, there are a report setting as a CSI report setting, a resource setting as a resource setting for measuring CSI, and a measurement link setting for linking the report setting and the resource setting for CSI measurement. One or more report settings, resource settings, and measurement link settings are set.
 レポート設定は、レポート設定ID、レポート設定タイプ、コードブック設定、レポート量、CQIテーブル、グループベースドビームレポーティング、レポート毎のCQI数、低ランクにおけるレポート毎のCQI数の一部又は全部を含む。レポート設定IDはレポート設定を特定するために用いられる。レポート設定タイプは、定期的/非定期的/半永続的なCSIレポートを示す。レポート量は、CSI報告する量(値、タイプ)を示し、例えばCRI、RI、PMI、CQI、又はRSRPの一部又は全部である。CQIテーブルは、CQIを計算するときのCQIテーブルを指示する。CQIテーブルは、例えば、最大の変調方式が64QAMのCQIテーブル(第1のCQIテーブルとも呼ぶ)、最大の変調方式が256QAMのCQIテーブル(第2のCQIテーブルとも呼ぶ)、低周波数利用効率の最大の変調方式が64QAMのCQIテーブル(第3のCQIテーブルとも呼ぶ)がある。なお、第1のCQIテーブルと第2のCQIテーブルは、トランスポートブロック(コードワード)の想定(ターゲット)誤り率は0.1以下であり、第3のCQIテーブルは、トランスポートブロック(コードワード)の想定(ターゲット)誤り率は0.00001以下である。なお、第2のCQIテーブルは第1のCQIテーブルと比べて、高SINRで高い周波数利用効率が実現できるが、低SINRでは細かい適応制御は困難となる。また、第3のCQIテーブルは第1のCQIテーブルと比べて、高信頼性通信が可能となるが、最大の周波数利用効率は低い。グループベースドビームレポーティングは、ON/OFF(有効/無効)が設定される。レポート毎のCQI数はCSIレポート毎のCSIの最大数を示す。RIが4以下の場合におけるレポート毎のCQI数の最大数を示す。なお、低ランクにおけるレポート毎のCQI数は、レポート毎のCQI数が2のときに適用されてもよい。コードブック設定は、コードブックタイプ及びそのコードブックの設定を含む。コードブックタイプはタイプ1コードブック又はタイプ2コードブックを示す。 The report settings include a report setting ID, a report setting type, a codebook setting, a report amount, a CQI table, group-based beam reporting, the number of CQIs for each report, and a part or all of the number of CQIs for each low rank report. The report setting ID is used to specify a report setting. The report setting type indicates a regular / irregular / semi-permanent CSI report. The report amount indicates a CSI report amount (value, type) and is, for example, a part or all of CRI, RI, PMI, CQI, or RSRP. The CQI table indicates the CQI table when calculating the CQI. The CQI table includes, for example, a CQI table with a maximum modulation scheme of 64 QAM (also referred to as a first CQI table), a CQI table with a maximum modulation scheme of 256 QAM (also referred to as a second CQI table), and a maximum of low frequency use efficiency. Is a 64QAM CQI table (also referred to as a third CQI table). The first CQI table and the second CQI table have an assumed (target) error rate of the transport block (codeword) of 0.1 or less, and the third CQI table has a transport block (codeword) of the transport block (codeword). The assumed (target) error rate is 0.00001 or less. Note that the second CQI table can achieve higher frequency use efficiency at a higher SINR than the first CQI table, but fine adaptive control becomes difficult at a lower SINR. In addition, the third CQI table enables more reliable communication than the first CQI table, but has a lower maximum frequency use efficiency. ON / OFF (valid / invalid) is set for group-based beam reporting. The number of CQIs for each report indicates the maximum number of CSI for each CSI report. Indicates the maximum number of CQIs for each report when the RI is 4 or less. Note that the number of CQIs per report in the low rank may be applied when the number of CQIs per report is 2. The codebook setting includes a codebook type and a setting of the codebook. The code book type indicates a type 1 code book or a type 2 code book.
 リソース設定は、リソース設定ID、同期信号ブロックリソース測定リスト、リソース設定タイプ、1又は複数のリソースセット設定の一部又は全部を含む。リソース設定IDはリソース設定を特定するために用いられる。同期信号ブロックリソース設定リストは、同期信号を用いた測定が行われるリソースのリストである。リソース設定タイプは、CSI-RSが定期的、非定期的又は半永続的に送信されるかを示す。なお、半永続的にCSI-RSを送信する設定の場合、上位層の信号又は下りリンク制御情報でアクティベーションされてからデアクティベーションされるまでの期間に、周期的にCSI-RSが送信される。 The resource setting includes a resource setting ID, a synchronization signal block resource measurement list, a resource setting type, and some or all of one or more resource set settings. The resource setting ID is used to specify a resource setting. The synchronization signal block resource setting list is a list of resources for which measurement using the synchronization signal is performed. The resource configuration type indicates whether the CSI-RS is transmitted periodically, irregularly, or semi-permanently. In the case of a setting for transmitting a CSI-RS semi-permanently, the CSI-RS is transmitted periodically during a period from activation by a signal of an upper layer or downlink control information to deactivation. .
 リソースセット設定は、リソースセット設定ID、リソース繰返し、1又は複数のCSI-RSリソースを示す情報の一部又は全部を含む。リソースセット設定IDは、リソースセット設定を特定するために用いられる。リソース繰返しは、リソースセット内で、リソース繰返しのON/OFFを示す。リソース繰返しがONの場合、基地局装置はリソースセット内の複数のCSI-RSリソースの各々で固定(同一)の送信ビームを用いることを意味する。言い換えると、リソース繰返しがONの場合、端末装置は基地局装置がリソースセット内の複数のCSI-RSリソースの各々で固定(同一)の送信ビームを用いていることを想定する。リソース繰返しがOFFの場合、基地局装置はリソースセット内の複数のCSI-RSリソースの各々で固定(同一)の送信ビームを用いないことを意味する。言い換えると、リソース繰返しがOFFの場合、端末装置は基地局装置がリソースセット内の複数のCSI-RSリソースの各々で固定(同一)の送信ビームを用いていないことを想定する。CSI-RSリソースを示す情報は、1又は複数のCSI-RSリソース設定ID、1又は複数のCSI-IMリソース設定IDを含む。 The resource set setting includes a part or all of information indicating a resource set setting ID, resource repetition, and one or more CSI-RS resources. The resource set setting ID is used to specify the resource set setting. The resource repetition indicates ON / OFF of the resource repetition in the resource set. When the resource repetition is ON, it means that the base station apparatus uses a fixed (identical) transmission beam for each of a plurality of CSI-RS resources in the resource set. In other words, when the resource repetition is ON, the terminal device assumes that the base station device uses a fixed (identical) transmission beam for each of the plurality of CSI-RS resources in the resource set. When the resource repetition is OFF, it means that the base station apparatus does not use a fixed (identical) transmission beam in each of the plurality of CSI-RS resources in the resource set. In other words, when the resource repetition is OFF, the terminal apparatus assumes that the base station apparatus does not use a fixed (identical) transmission beam in each of the plurality of CSI-RS resources in the resource set. The information indicating the CSI-RS resource includes one or a plurality of CSI-RS resource setting IDs, and one or a plurality of CSI-IM resource setting IDs.
 測定リンク設定は、測定リンク設定ID、レポート設定ID、リソース設定IDの一部又は全部を含み、レポート設定とリソース設定がリンクされる。測定リンク設定IDは測定リンク設定を特定するために用いられる。 (4) The measurement link setting includes part or all of the measurement link setting ID, the report setting ID, and the resource setting ID, and the report setting and the resource setting are linked. The measurement link setting ID is used to specify the measurement link setting.
 MBSFN(Multimedia Broadcast multicast service Single Frequency Network) RSは、PMCHの送信に用いられるサブフレームの全帯域で送信される。MBSFN RSは、PMCHの復調を行なうために用いられる。PMCHは、MBSFN RSの送信に用いられるアンテナポートで送信される。 {MBSFN (Multimedia Broadcast multicast service single Frequency Network)} RS is transmitted in the entire band of the subframe used for PMCH transmission. MBSFN @ RS is used for demodulating PMCH. The PMCH is transmitted on an antenna port used for transmitting MBSFN @ RS.
 ここで、下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号とも称する。また、上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号とも称する。また、下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルとも称する。また、下りリンク物理信号および上りリンク物理信号を総称して、物理信号とも称する。 Here, downlink physical channels and downlink physical signals are collectively referred to as downlink signals. In addition, the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal. Further, the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel. Further, the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
 また、BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC層で用いられるチャネルを、トランスポートチャネルと称する。また、MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(Transport Block: TB)、または、MAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliverする)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理などが行なわれる。 B Also, BCH, UL-SCH and DL-SCH are transport channels. Channels used in the MAC layer are called transport channels. The unit of the transport channel used in the MAC layer is also referred to as a transport block (Transport \ Block: \ TB) or a MAC \ PDU (Protocol \ Data \ Unit). The transport block is a unit of data that the MAC layer passes (delivers) to the physical layer. In the physical layer, transport blocks are mapped to codewords, and coding processing and the like are performed for each codeword.
 また、キャリアアグリゲーション(CA; Carrier Aggregation)をサポートしている端末装置に対して、基地局装置は、より広帯域伝送のため複数のコンポーネントキャリア(CC; Component Carrier)を統合して通信することができる。キャリアアグリゲーションでは、1つのプライマリセル(PCell;Primary Cell)及び1または複数のセカンダリセル(SCell;Secondary Cell)がサービングセルの集合として設定される。 In addition, for a terminal device supporting carrier aggregation (CA), the base station device can integrate and communicate with a plurality of component carriers (CC; \ Component \ Carrier) for wider band transmission. . In the carrier aggregation, one primary cell (PCell; Primary @ Cell) and one or more secondary cells (SCell; Secondary @ Cell) are set as a set of serving cells.
 また、デュアルコネクティビティ(DC; Dual Connectivity)では、サービングセルのグループとして、マスターセルグループ(MCG; Master Cell Group)とセカンダリセルグループ(SCG; Secondary Cell Group)が設定される。MCGはPCellとオプションで1又は複数のSCellから構成される。またSCGはプライマリSCell(PSCell)とオプションで1又は複数のSCellから構成される。 In the dual connectivity (DC; Dual Connectivity), a master cell group (MCG; Master Cell Group) and a secondary cell group (SCG; Secondary Cell Group) are set as serving cell groups. The MCG includes a PCell and, optionally, one or more SCells. The SCG includes a primary SCell (PSCell) and optionally one or more SCells.
 基地局装置は無線フレームを用いて通信することができる。無線フレームは複数のサブフレーム(サブ区間)から構成される。フレーム長を時間で表現する場合、例えば、無線フレーム長は10ミリ秒(ms)、サブフレーム長は1msとすることができる。この例では無線フレームは10個のサブフレームで構成される。 The base station device can communicate using a radio frame. The radio frame is composed of a plurality of subframes (subsections). When the frame length is expressed in time, for example, the radio frame length can be 10 milliseconds (ms) and the subframe length can be 1 ms. In this example, the radio frame is composed of ten subframes.
 またスロットは、14個のOFDMシンボルで構成される。OFDMシンボル長はサブキャリア間隔によって変わり得るため、サブキャリア間隔でスロット長も代わり得る。またミニスロットは、スロットよりも少ないOFDMシンボルで構成される。スロット/ミニスロットは、スケジューリング単位になることができる。なお端末装置は、スロットベーススケジューリング/ミニスロットベーススケジューリングは、最初の下りリンクDMRSの位置(配置)によって知ることができる。スロットベーススケジューリングでは、スロットの3番目又は4番目のシンボルに最初の下りリンクDMRSが配置される。またミニスロットベーススケジューリングでは、スケジューリングされたデータ(リソース、PDSCH)の最初のシンボルに最初の下りリンクDMRSが配置される。 A slot is composed of 14 OFDM symbols. Since the OFDM symbol length can change depending on the subcarrier interval, the slot length can also change at the subcarrier interval. A minislot is composed of fewer OFDM symbols than slots. A slot / minislot can be a scheduling unit. Note that the terminal device can know the slot-based scheduling / mini-slot-based scheduling from the position (arrangement) of the first downlink DMRS. In slot-based scheduling, the first downlink DMRS is placed in the third or fourth symbol of a slot. In the minislot-based scheduling, the first downlink DMRS is arranged in the first symbol of the scheduled data (resource, PDSCH).
 またリソースブロックは、12個の連続するサブキャリアで定義される。またリソースエレメントは、周波数領域のインデックス(例えばサブキャリアインデックス)と時間領域のインデックス(例えばOFDMシンボルインデックス)で定義される。リソースエレメントは、上りリンクリソースエレメント、下りリンクエレメント、フレキシブルリソースエレメント、予約されたリソースエレメントとして分類される。予約されたリソースエレメントでは、端末装置は、上りリンク信号を送信しないし、下りリンク信号を受信しない。 リ ソ ー ス A resource block is defined by 12 consecutive subcarriers. A resource element is defined by a frequency domain index (for example, a subcarrier index) and a time domain index (for example, an OFDM symbol index). Resource elements are classified as uplink resource elements, downlink elements, flexible resource elements, and reserved resource elements. In the reserved resource element, the terminal device does not transmit an uplink signal and does not receive a downlink signal.
 また複数のサブキャリア間隔(Subcarrier spacing: SCS)がサポートされる。例えばSCSは、15/30/60/120/240/480 kHzである。 Also, multiple subcarrier spacings (Subcarrier spacing: SSC) are supported. For example, the SCS is 15/30/60/120/240/480 @kHz.
 基地局装置/端末装置はライセンスバンド又はアンライセンスバンドで通信することができる。基地局装置/端末装置は、ライセンスバンドがPCellとなり、アンライセンスバンドで動作する少なくとも1つのSCellとキャリアアグリゲーションで通信することができる。また、基地局装置/端末装置は、マスターセルグループがライセンスバンドで通信し、セカンダリセルグループがアンライセンスバンドで通信する、デュアルコネクティビティで通信することができる。また、基地局装置/端末装置は、アンライセンスバンドにおいて、PCellのみで通信することができる。また、基地局装置/端末装置は、アンライセンスバンドのみでCA又はDCで通信することができる。なお、ライセンスバンドがPCellとなり、アンライセンスバンドのセル(SCell、PSCell)を、例えばCA、DCなどでアシストして通信することを、LAA(Licensed-Assisted Access)とも呼ぶ。また、基地局装置/端末装置がアンライセンスバンドのみで通信することを、アンライセンススタンドアロンアクセス(ULSA;Unlicensed-standalone access)とも呼ぶ。また、基地局装置/端末装置がライセンスバンドのみで通信することを、ライセンスアクセス(LA;Licensed Access)とも呼ぶ。 The base station device / terminal device can communicate with a licensed band or an unlicensed band. The base station apparatus / terminal apparatus can communicate with at least one SCell operating in the unlicensed band by carrier aggregation with the licensed band being PCell. Further, the base station device / terminal device can perform dual connectivity in which the master cell group communicates in the license band and the secondary cell group communicates in the unlicensed band. Further, the base station device / terminal device can communicate only with the PCell in the unlicensed band. In addition, the base station device / terminal device can communicate with CA or DC using only the unlicensed band. Note that the communication with the unlicensed band cells (SCell, PSCell) assisted by, for example, CA, DC, etc., is also referred to as LAA (Licensed-Assisted @ Access). The communication between the base station apparatus and the terminal apparatus using only the unlicensed band is also referred to as unlicensed-standalone access (ULSA). The communication between the base station device and the terminal device using only the license band is also referred to as licensed access (LA).
 図2は、本実施形態における基地局装置の構成を示す概略ブロック図である。図2に示すように、基地局装置は、上位層処理部(上位層処理ステップ)101、制御部(制御ステップ)102、送信部(送信ステップ)103、受信部(受信ステップ)104と送受信アンテナ105、測定部(測定ステップ)106を含んで構成される。また、上位層処理部101は、無線リソース制御部(無線リソース制御ステップ)1011、スケジューリング部(スケジューリングステップ)1012を含んで構成される。また、送信部103は、符号化部(符号化ステップ)1031、変調部(変調ステップ)1032、下りリンク参照信号生成部(下りリンク参照信号生成ステップ)1033、多重部(多重ステップ)1034、無線送信部(無線送信ステップ)1035を含んで構成される。また、受信部104は、無線受信部(無線受信ステップ)1041、多重分離部(多重分離ステップ)1042、復調部(復調ステップ)1043、復号部(復号ステップ)1044を含んで構成される。 FIG. 2 is a schematic block diagram showing the configuration of the base station device according to the present embodiment. As shown in FIG. 2, the base station apparatus includes an upper layer processing unit (upper layer processing step) 101, a control unit (control step) 102, a transmitting unit (transmitting step) 103, a receiving unit (receiving step) 104, and a transmitting / receiving antenna. 105 and a measurement unit (measurement step) 106. The upper layer processing unit 101 includes a radio resource control unit (radio resource control step) 1011 and a scheduling unit (scheduling step) 1012. Also, transmitting section 103 includes coding section (coding step) 1031, modulation section (modulation step) 1032, downlink reference signal generation section (downlink reference signal generation step) 1033, multiplexing section (multiplexing step) 1034, radio A transmission unit (wireless transmission step) 1035 is included. The receiving unit 104 includes a wireless receiving unit (wireless receiving step) 1041, a demultiplexing unit (multiplexing / demultiplexing step) 1042, a demodulating unit (demodulating step) 1043, and a decoding unit (decoding step) 1044.
 上位層処理部101は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部101は、送信部103および受信部104の制御を行なうために必要な情報を生成し、制御部102に出力する。 The upper layer processing unit 101 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control (Radio). Resource Control: RRC) layer processing. Further, upper layer processing section 101 generates information necessary for controlling transmission section 103 and reception section 104 and outputs the information to control section 102.
 上位層処理部101は、端末装置の機能(UE capability)等、端末装置に関する情報を端末装置から受信する。言い換えると、端末装置は、自身の機能を基地局装置に上位層の信号で送信する。 (4) The upper layer processing unit 101 receives information about the terminal device, such as the function of the terminal device (UE capability), from the terminal device. In other words, the terminal device transmits its function to the base station device by a higher layer signal.
 なお、以下の説明において、端末装置に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。なお、以下の説明において、所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。 In the following description, the information on the terminal device includes information indicating whether the terminal device supports a predetermined function, or information indicating that the terminal device has completed the introduction and test for the predetermined function. In the following description, whether or not a predetermined function is supported includes whether or not introduction and testing of the predetermined function have been completed.
 例えば、端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しない。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知してもよい。 For example, when the terminal device supports a predetermined function, the terminal device transmits information (parameter) indicating whether the terminal device supports the predetermined function. When the terminal device does not support the predetermined function, the terminal device does not transmit information (parameter) indicating whether the terminal device supports the predetermined function. That is, whether or not to support the predetermined function is notified by transmitting or not transmitting information (parameter) indicating whether or not to support the predetermined function. The information (parameter) indicating whether or not a predetermined function is supported may be notified using one bit of 1 or 0.
 無線リソース制御部1011は、下りリンクのPDSCHに配置される下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ、MAC CEなどを生成、又は上位ノードから取得する。無線リソース制御部1011は、下りリンクデータを送信部103に出力し、他の情報を制御部102に出力する。また、無線リソース制御部1011は、端末装置の各種設定情報の管理をする。 The radio resource control unit 1011 generates downlink data (transport block), system information, an RRC message, a MAC $ CE, etc., arranged in the downlink PDSCH, or obtains the information from an upper node. Radio resource control section 1011 outputs downlink data to transmitting section 103 and outputs other information to control section 102. The wireless resource control unit 1011 manages various setting information of the terminal device.
 スケジューリング部1012は、物理チャネル(PDSCHおよびPUSCH)を割り当てる周波数およびサブフレーム、物理チャネル(PDSCHおよびPUSCH)の符号化率および変調方式(あるいはMCS)および送信電力などを決定する。スケジューリング部1012は、決定した情報を制御部102に出力する。 The scheduling unit 1012 determines the frequency and subframe to which the physical channels (PDSCH and PUSCH) are to be allocated, the coding rate and modulation scheme (or MCS) of the physical channels (PDSCH and PUSCH), the transmission power, and the like. The scheduling unit 1012 outputs the determined information to the control unit 102.
 スケジューリング部1012は、スケジューリング結果に基づき、物理チャネル(PDSCHおよびPUSCH)のスケジューリングに用いられる情報を生成する。スケジューリング部1012は、生成した情報を制御部102に出力する。 {Scheduling section 1012 generates information used for physical channel (PDSCH and PUSCH) scheduling based on the scheduling result. Scheduling section 1012 outputs the generated information to control section 102.
 制御部102は、上位層処理部101から入力された情報に基づいて、送信部103および受信部104の制御を行なう制御信号を生成する。制御部102は、上位層処理部101から入力された情報に基づいて、下りリンク制御情報を生成し、送信部103に出力する。 Control section 102 generates a control signal for controlling transmission section 103 and reception section 104 based on information input from upper layer processing section 101. The control unit 102 generates downlink control information based on the information input from the upper layer processing unit 101, and outputs the generated downlink control information to the transmission unit 103.
 送信部103は、制御部102から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、および、下りリンクデータを、符号化および変調し、PHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号を多重して、送受信アンテナ105を介して端末装置2Aに信号を送信する。 The transmission unit 103 generates a downlink reference signal according to the control signal input from the control unit 102, and encodes the HARQ indicator, downlink control information, and downlink data input from the upper layer processing unit 101. And modulates the PHICH, the PDCCH, the EPDCCH, the PDSCH, and the downlink reference signal, and transmits the signal to the terminal device 2A via the transmission / reception antenna 105.
 符号化部1031は、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、および下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化、LDPC(低密度パリティチェック:Low density parity check)符号化、Polar符号化等の予め定められた符号化方式を用いて符号化を行なう、または無線リソース制御部1011が決定した符号化方式を用いて符号化を行なう。変調部1032は、符号化部1031から入力された符号化ビットをBPSK(Binary Phase Shift Keying)、QPSK(quadrature Phase Shift Keying)、16QAM(quadrature amplitude modulation)、64QAM、256QAM等の予め定められた、または無線リソース制御部1011が決定した変調方式で変調する。 The coding unit 1031 performs block coding, convolutional coding, turbo coding, LDPC (Low Density Parity Check: Low Density Check) on the HARQ indicator, downlink control information, and downlink data input from the upper layer processing unit 101. Encoding is performed using a predetermined encoding method such as parity @ check) encoding or Polar encoding, or encoding is performed using an encoding method determined by the radio resource control unit 1011. The modulation unit 1032 converts the coded bits input from the coding unit 1031 into a predetermined value such as BPSK (Binary Phase Shift Keying), QPSK (quadrature Phase Shift Keying), 16 QAM (quadrature amplitude modulation), 64 QAM, 256 QAM, or the like. Alternatively, modulation is performed using the modulation method determined by the radio resource control unit 1011.
 下りリンク参照信号生成部1033は、基地局装置1Aを識別するための物理セル識別子(PCI、セルID)などを基に予め定められた規則で求まる、端末装置2Aが既知の系列を下りリンク参照信号として生成する。 The downlink reference signal generation unit 1033 performs downlink reference to a sequence known to the terminal device 2A, which is obtained by a predetermined rule based on a physical cell identifier (PCI, cell ID) for identifying the base station device 1A and the like. Generate as a signal.
 多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とを多重する。つまり、多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とをリソースエレメントに配置する。 The multiplexing unit 1034 multiplexes the modulated modulation symbol of each channel, the generated downlink reference signal, and the downlink control information. That is, multiplexing section 1034 arranges the modulated modulation symbol of each channel, the generated downlink reference signal, and the downlink control information in the resource element.
 無線送信部1035は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)してOFDMシンボルを生成し、OFDMシンボルにサイクリックプレフィックス(cyclic prefix: CP)を付加してベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、フィルタリングにより余分な周波数成分を除去し、搬送周波数にアップコンバートし、電力増幅し、送受信アンテナ105に出力して送信する。 The radio transmission unit 1035 generates an OFDM symbol by performing an inverse fast Fourier transform (Inverse Fast Fourier Transform: IFFT) on the multiplexed modulation symbol and the like, and adds a cyclic prefix (cyclic prefix: CP) to the OFDM symbol to generate a base. A digital signal of a band is generated, a digital signal of a baseband is converted into an analog signal, an unnecessary frequency component is removed by filtering, up-converted to a carrier frequency, power-amplified, and output to the transmitting / receiving antenna 105 for transmission. .
 受信部104は、制御部102から入力された制御信号に従って、送受信アンテナ105を介して端末装置2Aから受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部101に出力する。 Receiving section 104 separates, demodulates, and decodes a received signal received from terminal apparatus 2A via transmission / reception antenna 105 in accordance with the control signal input from control section 102, and outputs the decoded information to upper layer processing section 101. .
 無線受信部1041は、送受信アンテナ105を介して受信された上りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。 The wireless reception unit 1041 converts an uplink signal received via the transmission / reception antenna 105 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is appropriately maintained. The level is controlled, quadrature demodulation is performed based on the in-phase and quadrature components of the received signal, and the quadrature demodulated analog signal is converted into a digital signal.
 無線受信部1041は、変換したディジタル信号からCPに相当する部分を除去する。無線受信部1041は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出し多重分離部1042に出力する。 (4) The radio receiving unit 1041 removes a portion corresponding to the CP from the converted digital signal. The wireless receiving unit 1041 performs fast Fourier transform (Fast Fourier Transform: FFT) on the signal from which the CP has been removed, extracts a signal in the frequency domain, and outputs the signal to the demultiplexing unit 1042.
 多重分離部1042は、無線受信部1041から入力された信号をPUCCH、PUSCH、上りリンク参照信号などの信号に分離する。なお、この分離は、予め基地局装置1Aが無線リソース制御部1011で決定し、各端末装置2Aに通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行なわれる。 The demultiplexing unit 1042 separates the signal input from the radio reception unit 1041 into signals such as PUCCH, PUSCH, and uplink reference signals. This separation is performed based on the radio resource allocation information included in the uplink grant determined by the base station apparatus 1A in advance in the radio resource control unit 1011 and notified to each terminal apparatus 2A.
 また、多重分離部1042は、PUCCHとPUSCHの伝搬路の補償を行なう。また、多重分離部1042は、上りリンク参照信号を分離する。 (4) The demultiplexing section 1042 compensates for the propagation paths of PUCCH and PUSCH. Also, the demultiplexing section 1042 separates an uplink reference signal.
 復調部1043は、PUSCHを逆離散フーリエ変換(Inverse Discrete Fourier Transform: IDFT)し、変調シンボルを取得し、PUCCHとPUSCHの変調シンボルそれぞれに対して、BPSK、QPSK、16QAM、64QAM、256QAM等の予め定められた、または自装置が端末装置2Aに上りリンクグラントで予め通知した変調方式を用いて受信信号の復調を行なう。 The demodulation unit 1043 performs an inverse discrete Fourier transform (Inverse Discrete Fourier Transform: IDFT) on the PUSCH, obtains a modulation symbol, and performs BPSK, QPSK, 16QAM, 64QAM, 256QAM, or the like for each of the PUCCH and PUSCH modulation symbols. The terminal performs demodulation of the received signal using a predetermined or predetermined modulation scheme notified to the terminal apparatus 2A by an uplink grant.
 復号部1044は、復調されたPUCCHとPUSCHの符号化ビットを、予め定められた符号化方式の、予め定められた、又は自装置が端末装置2Aに上りリンクグラントで予め通知した符号化率で復号を行ない、復号した上りリンクデータと、上りリンク制御情報を上位層処理部101へ出力する。PUSCHが再送信の場合は、復号部1044は、上位層処理部101から入力されるHARQバッファに保持している符号化ビットと、復調された符号化ビットを用いて復号を行なう。 The decoding unit 1044 converts the demodulated coded bits of the PUCCH and the PUSCH into a predetermined coding scheme, at a predetermined coding rate, or at a coding rate previously notified to the terminal apparatus 2A by the own apparatus through the uplink grant. It performs decoding and outputs the decoded uplink data and uplink control information to the upper layer processing unit 101. When PUSCH is retransmitted, decoding section 1044 performs decoding using the coded bits held in the HARQ buffer input from higher layer processing section 101 and the coded bits demodulated.
 測定部106は、受信信号を観測し、RSRP/RSRQ/RSSIなどの様々な測定値を求める。また測定部106は、端末装置から送信されたSRSから受信電力、受信品質、好適なSRSリソースインデックスを求める。 The measurement unit 106 observes the received signal and obtains various measurement values such as RSRP / RSRQ / RSSI. Further, measuring section 106 obtains reception power, reception quality, and a suitable SRS resource index from the SRS transmitted from the terminal device.
 図3は、本実施形態における端末装置の構成を示す概略ブロック図である。図3に示すように、端末装置は、上位層処理部(上位層処理ステップ)201、制御部(制御ステップ)202、送信部(送信ステップ)203、受信部(受信ステップ)204、測定部(測定ステップ)205と送受信アンテナ206を含んで構成される。また、上位層処理部201は、無線リソース制御部(無線リソース制御ステップ)2011、スケジューリング情報解釈部(スケジューリング情報解釈ステップ)2012を含んで構成される。また、送信部203は、符号化部(符号化ステップ)2031、変調部(変調ステップ)2032、上りリンク参照信号生成部(上りリンク参照信号生成ステップ)2033、多重部(多重ステップ)2034、無線送信部(無線送信ステップ)2035を含んで構成される。また、受信部204は、無線受信部(無線受信ステップ)2041、多重分離部(多重分離ステップ)2042、信号検出部(信号検出ステップ)2043を含んで構成される。 FIG. 3 is a schematic block diagram illustrating the configuration of the terminal device according to the present embodiment. As shown in FIG. 3, the terminal device includes an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, a transmitting unit (transmission step) 203, a receiving unit (receiving step) 204, a measuring unit ( It comprises a (measurement step) 205 and a transmitting / receiving antenna 206. The upper layer processing unit 201 is configured to include a radio resource control unit (radio resource control step) 2011 and a scheduling information interpretation unit (scheduling information interpretation step) 2012. Also, transmitting section 203 includes coding section (coding step) 2031, modulation section (modulation step) 2032, uplink reference signal generation section (uplink reference signal generation step) 2033, multiplexing section (multiplexing step) 2034, radio A transmission unit (wireless transmission step) 2035 is included. The receiving unit 204 includes a wireless receiving unit (wireless receiving step) 2041, a demultiplexing unit (multiplexing / demultiplexing step) 2042, and a signal detecting unit (signal detecting step) 2043.
 上位層処理部201は、ユーザの操作等によって生成された上りリンクデータ(トランスポートブロック)を、送信部203に出力する。また、上位層処理部201は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。 (4) The upper layer processing unit 201 outputs the uplink data (transport block) generated by a user operation or the like to the transmission unit 203. The upper layer processing unit 201 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control. (Radio \ Resource \ Control: \ RRC) layer processing.
 上位層処理部201は、自端末装置がサポートしている端末装置の機能を示す情報を、送信部203に出力する。 (4) The upper layer processing unit 201 outputs information indicating the function of the terminal device supported by the own terminal device to the transmitting unit 203.
 無線リソース制御部2011は、自端末装置の各種設定情報の管理をする。また、無線リソース制御部2011は、上りリンクの各チャネルに配置される情報を生成し、送信部203に出力する。 (4) The radio resource control unit 2011 manages various setting information of the terminal device itself. In addition, the radio resource control unit 2011 generates information to be allocated to each uplink channel and outputs the information to the transmission unit 203.
 無線リソース制御部2011は、基地局装置から送信された設定情報を取得し、制御部202に出力する。 The radio resource control unit 2011 acquires the setting information transmitted from the base station device and outputs the setting information to the control unit 202.
 スケジューリング情報解釈部2012は、受信部204を介して受信した下りリンク制御情報を解釈し、スケジューリング情報を判定する。また、スケジューリング情報解釈部2012は、スケジューリング情報に基づき、受信部204、および送信部203の制御を行なうために制御情報を生成し、制御部202に出力する。 The scheduling information interpreting section 2012 interprets the downlink control information received via the receiving section 204 and determines scheduling information. Further, scheduling information interpreting section 2012 generates control information for controlling receiving section 204 and transmitting section 203 based on the scheduling information, and outputs the generated control information to control section 202.
 制御部202は、上位層処理部201から入力された情報に基づいて、受信部204、測定部205および送信部203の制御を行なう制御信号を生成する。制御部202は、生成した制御信号を受信部204、測定部205および送信部203に出力して受信部204、および送信部203の制御を行なう。 The control unit 202 generates a control signal for controlling the receiving unit 204, the measuring unit 205, and the transmitting unit 203 based on the information input from the upper layer processing unit 201. The control unit 202 outputs the generated control signal to the receiving unit 204, the measuring unit 205, and the transmitting unit 203 to control the receiving unit 204 and the transmitting unit 203.
 制御部202は、測定部205が生成したCSI/RSRP/RSRQ/RSSIを基地局装置に送信するように送信部203を制御する。 (4) The control unit 202 controls the transmitting unit 203 to transmit the CSI / RSRP / RSRQ / RSSI generated by the measuring unit 205 to the base station device.
 受信部204は、制御部202から入力された制御信号に従って、送受信アンテナ206を介して基地局装置から受信した受信信号を、分離、復調、復号し、復号した情報を上位層処理部201に出力する。 Receiving section 204 separates, demodulates, and decodes the received signal received from the base station apparatus via transmission / reception antenna 206 according to the control signal input from control section 202, and outputs the decoded information to upper layer processing section 201. I do.
 無線受信部2041は、送受信アンテナ206を介して受信した下りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。 The wireless reception unit 2041 converts the downlink signal received via the transmission / reception antenna 206 into a baseband signal by down-conversion, removes unnecessary frequency components, and increases the amplification level so that the signal level is appropriately maintained. To perform quadrature demodulation based on the in-phase and quadrature components of the received signal, and convert the quadrature-demodulated analog signal into a digital signal.
 また、無線受信部2041は、変換したディジタル信号からCPに相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換を行い、周波数領域の信号を抽出する。 {Circle around (4)} The wireless receiving unit 2041 removes a portion corresponding to the CP from the converted digital signal, performs fast Fourier transform on the signal from which the CP has been removed, and extracts a signal in the frequency domain.
 多重分離部2042は、抽出した信号をPHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。また、多重分離部2042は、チャネル測定から得られた所望信号のチャネルの推定値に基づいて、PHICH、PDCCH、およびEPDCCHのチャネルの補償を行ない、下りリンク制御情報を検出し、制御部202に出力する。また、制御部202は、PDSCHおよび所望信号のチャネル推定値を信号検出部2043に出力する。 The demultiplexing unit 2042 demultiplexes the extracted signal into a PHICH, a PDCCH, an EPDCCH, a PDSCH, and a downlink reference signal. Further, the demultiplexing unit 2042 compensates for the channels of PHICH, PDCCH, and EPDCCH based on the channel estimation value of the desired signal obtained from the channel measurement, detects downlink control information, and controls the control unit 202. Output. Further, control section 202 outputs the channel estimation values of the PDSCH and the desired signal to signal detection section 2043.
 信号検出部2043は、PDSCH、チャネル推定値を用いて、復調、復号し、上位層処理部201に出力する。 Signal detecting section 2043 demodulates and decodes using PDSCH and the channel estimation value, and outputs the result to upper layer processing section 201.
 測定部205は、CSI測定、RRM(Radio Resource Management)測定、RLM(Radio Link Monitoring)測定などの各種測定を行い、CSI/RSRP/RSRQ/RSSIなどを求める。 The measurement unit 205 performs various measurements such as CSI measurement, RRM (Radio Resource Management) measurement, RLM (Radio Link Monitoring) measurement, and obtains CSI / RSRP / RSRQ / RSSI and the like.
 送信部203は、制御部202から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部201から入力された上りリンクデータ(トランスポートブロック)を符号化および変調し、PUCCH、PUSCH、および生成した上りリンク参照信号を多重し、送受信アンテナ206を介して基地局装置に送信する。 Transmitting section 203 generates an uplink reference signal according to the control signal input from control section 202, encodes and modulates uplink data (transport block) input from upper layer processing section 201, and performs PUCCH, The PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus via the transmission / reception antenna 206.
 符号化部2031は、上位層処理部201から入力された上りリンク制御情報又は上りリンクデータを畳み込み符号化、ブロック符号化、ターボ符号化、LDPC符号化、Polar符号化等の符号化を行う。 The coding unit 2031 performs coding such as convolution coding, block coding, turbo coding, LDPC coding, and Polar coding on the uplink control information or the uplink data input from the upper layer processing unit 201.
 変調部2032は、符号化部2031から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の下りリンク制御情報で通知された変調方式または、チャネル毎に予め定められた変調方式で変調する。 Modulating section 2032 modulates the coded bits input from coding section 2031 in a modulation scheme notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation scheme predetermined for each channel. .
 上りリンク参照信号生成部2033は、基地局装置を識別するための物理セル識別子(physical cell identity: PCI、Cell IDなどと称される)、上りリンク参照信号を配置する帯域幅、上りリンクグラントで通知されたサイクリックシフト、DMRSシーケンスの生成に対するパラメータの値などを基に、予め定められた規則(式)で求まる系列を生成する。 The uplink reference signal generating unit 2033 uses a physical cell identifier (physical cell identity: referred to as PCI, Cell ID, or the like) for identifying the base station device, a bandwidth in which the uplink reference signal is arranged, and an uplink grant. Based on the notified cyclic shift, the value of the parameter for generating the DMRS sequence, and the like, a sequence determined by a predetermined rule (expression) is generated.
 多重部2034は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎に多重する。つまり、多重部2034は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎にリソースエレメントに配置する。 The multiplexing unit 2034 multiplexes the PUCCH and PUSCH signals and the generated uplink reference signal for each transmission antenna port. That is, multiplexing section 2034 arranges the PUCCH and PUSCH signals and the generated uplink reference signal in the resource element for each transmission antenna port.
 無線送信部2035は、多重された信号を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、OFDM方式の変調を行い、OFDMAシンボルを生成し、生成されたOFDMAシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、余分な周波数成分を除去し、アップコンバートにより搬送周波数に変換し、電力増幅し、送受信アンテナ206に出力して送信する。 The radio transmission unit 2035 performs an inverse fast Fourier transform (Inverse Fast Fourier Transform: IFFT) on the multiplexed signal, performs OFDM modulation, generates an OFDMA symbol, adds a CP to the generated OFDMA symbol, Generate a baseband digital signal, convert the baseband digital signal to an analog signal, remove extra frequency components, convert to a carrier frequency by up-conversion, amplify power, output to transmit / receive antenna 206, and transmit I do.
 なお、端末装置はOFDMA方式に限らず、SC-FDMA方式の変調を行うことができる。 Note that the terminal device can perform modulation not only in the OFDMA system but also in the SC-FDMA system.
 超高精細映像伝送など、超大容量通信が要求される場合、高周波数帯を活用した超広帯域伝送が望まれる。高周波数帯における伝送は、パスロスを補償することが必要であり、ビームフォーミングが重要となる。また、ある限定されたエリアに複数の端末装置が存在する環境において、各端末装置に対して超大容量通信が要求される場合、基地局装置を高密度に配置した超高密度ネットワーク(Ultra-dense network)が有効である。しかしながら、基地局装置を高密度に配置した場合、SNR(信号対雑音電力比:Signal to noise power ratio)は大きく改善するものの、ビームフォーミングによる強い干渉が到来する可能性がある。従って、限定エリア内のあらゆる端末装置に対して、超大容量通信を実現するためには、ビームフォーミングを考慮した干渉制御(回避、抑圧、除去)、及び/又は、複数の基地局の協調通信が必要となる。 超 When ultra-high-capacity communication such as ultra-high-definition video transmission is required, ultra-wideband transmission utilizing a high frequency band is desired. For transmission in a high frequency band, it is necessary to compensate for path loss, and beamforming is important. In addition, in an environment where a plurality of terminal devices are present in a certain limited area, when ultra-high capacity communication is required for each terminal device, an ultra-dense network (Ultra-dense network) in which base station devices are densely arranged. network) is valid. However, when base stations are arranged at high density, although signal-to-noise power ratio (SNR) is greatly improved, strong interference due to beamforming may come. Therefore, in order to realize ultra-large-capacity communication with all terminal devices in the limited area, interference control (avoidance, suppression, and elimination) in consideration of beamforming and / or cooperative communication of a plurality of base stations are required. Required.
 図4は、本実施形態に係る下りリンクの通信システムの例を示す。図4に示す通信システムは基地局装置3A、基地局装置5A、端末装置4Aを備える。端末装置4Aは、基地局装置3A及び/又は基地局装置5Aをサービングセルとすることができる。また基地局装置3A又は基地局装置5Aが多数のアンテナを備えている場合、多数のアンテナを複数のサブアレー(パネル、サブパネル、送信アンテナポート、送信アンテナ群、受信アンテナポート、受信アンテナ群)に分けることができ、サブアレー毎に送信/受信ビームフォーミングを適用できる。この場合、各サブアレーは通信装置を備えることができ、通信装置の構成は特に断りがない限り、図2で示した基地局装置構成と同様である。また端末装置4Aが複数のアンテナを備えている場合、端末装置4Aはビームフォーミングにより送信又は受信することができる。また、端末装置4Aが多数のアンテナを備えている場合、多数のアンテナを複数のサブアレー(パネル、サブパネル、送信アンテナポート、送信アンテナ群、受信アンテナポート、受信アンテナ群)に分けることができ、サブアレー毎に異なる送信/受信ビームフォーミングを適用できる。各サブアレーは通信装置を備えることができ、通信装置の構成は特に断りがない限り、図3で示した端末装置構成と同様である。なお、基地局装置3A、基地局装置5Aを単に基地局装置とも呼ぶ。なお、端末装置4Aを単に端末装置とも呼ぶ。 FIG. 4 shows an example of a downlink communication system according to the present embodiment. The communication system shown in FIG. 4 includes a base station device 3A, a base station device 5A, and a terminal device 4A. The terminal device 4A can use the base station device 3A and / or the base station device 5A as a serving cell. When the base station device 3A or the base station device 5A has a large number of antennas, the large number of antennas are divided into a plurality of sub-arrays (panels, sub-panels, transmission antenna ports, transmission antenna groups, reception antenna ports, reception antenna groups). And transmit / receive beamforming can be applied for each sub-array. In this case, each sub-array can include a communication device, and the configuration of the communication device is the same as the configuration of the base station device illustrated in FIG. 2 unless otherwise specified. When the terminal device 4A has a plurality of antennas, the terminal device 4A can transmit or receive by beamforming. Further, when the terminal device 4A includes a large number of antennas, the large number of antennas can be divided into a plurality of sub-arrays (panel, sub-panel, transmission antenna port, transmission antenna group, reception antenna port, reception antenna group). Different transmit / receive beamforming can be applied for each. Each sub-array can include a communication device, and the configuration of the communication device is the same as the terminal device configuration shown in FIG. 3 unless otherwise specified. Note that the base station devices 3A and 5A are also simply referred to as base station devices. Note that the terminal device 4A is also simply referred to as a terminal device.
 基地局装置の好適な送信ビーム、端末装置の好適な受信ビームを決定するために、同期信号が用いられる。基地局装置は、PSS、PBCH、SSSで構成される同期信号ブロックを送信する。なお、基地局装置が設定する同期信号ブロックバーストセット周期内で、同期信号ブロックは、時間領域に1又は複数個送信され、各々の同期信号ブロックには、時間インデックスが設定される。端末装置は、同期信号ブロックバーストセット周期内で同じ時間インデックスの同期信号ブロックは、遅延スプレッド、ドップラースプレッド、ドップラーシフト、平均利得、平均遅延、空間的な受信パラメータ、及び/又は空間的な送信パラメータが同じとみなせるような、ある程度同じ位置(quasi co-located: QCL)から送信されたと見なしてよい。なお、空間的な受信パラメータ(Rxパラメータ)は、例えば、チャネルの空間相関、到来角(Angle of Arrival)、受信ビーム方向などである。また空間的な送信パラメータは、例えば、チャネルの空間相関、送信角(Angle of Departure)、送信ビーム方向などである。つまり端末装置は、同期信号ブロックバーストセット周期内で同じ時間インデックスの同期信号ブロックは同じ送信ビームで送信され、異なる時間インデックスの同期信号ブロックは異なるビームで送信されたと想定することができる。従って、端末装置が同期信号ブロックバーストセット周期内の好適な同期信号ブロックの時間インデックスを示す情報を基地局装置に報告すれば、基地局装置は端末装置に好適な送信ビームを知ることができる。また、端末装置は、異なる同期信号ブロックバーストセット周期で同じ時間インデックスの同期信号ブロックを用いて端末装置に好適な受信ビームを求めることができる。このため、端末装置は、同期信号ブロックの時間インデックスと受信ビーム方向及び/又はサブアレーを関連付けることができる。なお、端末装置は、複数のサブアレーを備えている場合、異なるセルと接続するときは、異なるサブアレーを用いるとしてもよい。 The synchronization signal is used to determine a suitable transmission beam for the base station device and a suitable reception beam for the terminal device. The base station device transmits a synchronization signal block including PSS, PBCH, and SSS. One or more synchronization signal blocks are transmitted in the time domain within a synchronization signal block burst set cycle set by the base station apparatus, and a time index is set for each synchronization signal block. The terminal apparatus may determine that the synchronization signal block having the same time index within the synchronization signal block burst set period has a delay spread, a Doppler spread, a Doppler shift, an average gain, an average delay, a spatial reception parameter, and / or a spatial transmission parameter. May be considered to have been transmitted from the same location (quasi co-located: QCL) to the extent that they can be considered the same. The spatial reception parameter (Rx parameter) is, for example, a spatial correlation of a channel, an angle of arrival (Angle of Arrival), a reception beam direction, and the like. The spatial transmission parameters include, for example, spatial correlation of the channel, transmission angle (Angle of Departure), transmission beam direction, and the like. That is, the terminal device can assume that the synchronization signal blocks having the same time index are transmitted by the same transmission beam and the synchronization signal blocks having different time indexes are transmitted by different beams within the synchronization signal block burst set period. Therefore, if the terminal device reports information indicating a time index of a suitable synchronization signal block in the synchronization signal block burst set period to the base station device, the base station device can know a transmission beam suitable for the terminal device. Further, the terminal device can obtain a reception beam suitable for the terminal device by using the synchronization signal blocks having the same time index in different synchronization signal block burst set periods. For this reason, the terminal device can associate the time index of the synchronization signal block with the reception beam direction and / or the sub-array. In addition, when the terminal device includes a plurality of sub-arrays, when connecting to a different cell, the terminal device may use a different sub-array.
 また、QCLの状態を示す、4つのQCLタイプがある。4つのQCLタイプは、それぞれQCLタイプA、QCLタイプB、QCLタイプC、QCLタイプDと呼ばれる。QCLタイプAは、ドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッドがQCLとなる関係性(状態)である。QCLタイプBは、ドップラーシフト、ドップラースプレッドがQCLとなる関係性(状態)である。QCLタイプCは、平均遅延、ドップラーシフトがQCLとなる関係性(状態)である。QCLタイプDは空間的な受信パラメータがQCLとなる関係性(状態)である。なお、上記4つのQCLタイプは、各々組み合わせることも可能である。例えば、QCLタイプA+QCLタイプD、QCLタイプB+QCLタイプDなどである。 There are also four QCL types that indicate the status of the QCL. The four QCL types are called QCL type A, QCL type B, QCL type C, and QCL type D, respectively. QCL type A is a relationship (state) in which Doppler shift, Doppler spread, average delay, and delay spread become QCL. QCL type B is a relationship (state) in which Doppler shift and Doppler spread become QCL. QCL type C is a relationship (state) in which the average delay and the Doppler shift become QCL. QCL type D is a relationship (state) in which the spatial reception parameter is QCL. The above four QCL types can be combined with each other. For example, QCL type A + QCL type D, QCL type B + QCL type D, and the like.
 また端末装置は、上位層の信号でTCI(Transmit Configuration Indicator;送信構成指標)状態を高々M個まで設定される可能性がある。TCI状態は、参照信号セット(RSセット)のTCI-RSセット設定を含む。TCI-RSセット設定は、RSセットに含まれる参照信号とPDSCHのDMRSポート(DMRSポートグループ)との間のQCL関係を設定するためのパラメータが含まれる。RSセットは、1又は2の下りリンク参照信号(DL RS)と関連するQCLタイプを含む。なお、RSセットが2つのDL RSを含む場合、各々に対するQCLタイプは同じではない。なお、TCI状態はDCIに含まれ、関連するPDSCHの復調(復号)に用いられる。なお、受信したTCI状態にQCLタイプDが設定されている場合、端末装置は関連するPDSCHの受信ビーム方向を知ることができる。このため、TCIは端末装置の受信ビーム方向と関連する情報と言える。 {Also, there is a possibility that the terminal device sets up to M TCI (Transmit Configuration Indicator) states in upper layer signals. The TCI state includes a TCI-RS set setting of a reference signal set (RS set). The TCI-RS set setting includes a parameter for setting a QCL relationship between a reference signal included in the RS set and a DMSCH port (DMRS port group) of the PDSCH. The RS set includes a QCL type associated with one or two downlink reference signals (DL RS). When the RS set includes two DL @ RS, the QCL type for each is not the same. The TCI state is included in DCI and used for demodulation (decoding) of the associated PDSCH. If QCL type D is set in the received TCI state, the terminal device can know the reception beam direction of the associated PDSCH. Therefore, the TCI can be said to be information related to the receiving beam direction of the terminal device.
 また、好適な基地局装置の送信ビームと好適な端末装置の受信ビームを決定するために、CSI-RSを用いることができる。 C Also, CSI-RS can be used to determine the preferred transmit beam of the base station device and the preferred receive beam of the terminal device.
 端末装置は、リソース設定で設定されたリソースでCSI-RSを受信し、CSI-RSからCSI又はRSRPを算出し、基地局装置に報告する。また、CSI-RSリソース設定が複数のCSI-RSリソース設定を含む場合及び/又はリソース繰返しがOFFの場合、端末装置は、各々のCSI-RSリソースで同じ受信ビームでCSI-RSを受信し、CRIを計算する。例えば、CSI-RSリソースセット設定がK(Kは2以上の整数)個のCSI-RSリソース設定を含む場合、CRIはK個のCSI-RSリソースから好適なN個のCSI-RSリソースを示す。ただし、NはK未満の正の整数である。また端末装置が複数のCRIを報告する場合、どのCSI-RSリソースの品質が良いかを示すために、端末装置は各CSI-RSリソースで測定したCSI-RSRPを基地局装置に報告することができる。基地局装置は、複数設定したCSI-RSリソースで各々異なるビーム方向でCSI-RSをビームフォーミング(プリコーディング)して送信すれば、端末装置から報告されたCRIにより端末装置に好適な基地局装置の送信ビーム方向を知ることができる。一方、好適な端末装置の受信ビーム方向は、基地局装置の送信ビームが固定されたCSI-RSリソースを用いて決定できる。例えば、CSI-RSリソース設定が複数のCSI-RSリソース設定を含む場合及び/又はリソース繰返しがONの場合、端末装置は、各々のCSI-RSリソースにおいて、各々異なる受信ビーム方向で受信したCSI-RSから好適な受信ビーム方向を求めることができる。なお、端末装置は、好適な受信ビーム方向を決定した後、CSI-RSRPを報告してもよい。なお、端末装置が複数のサブアレーを備えている場合、端末装置は、好適な受信ビーム方向を求める際に、好適なサブアレーを選択することができる。なお、端末装置の好適な受信ビーム方向は、CRIと関連付けられても良い。また端末装置が複数のCRIを報告した場合、基地局装置は、各CRIと関連付けられたCSI-RSリソースで送信ビームを固定することができる。このとき、端末装置は、CRI毎に、好適な受信ビーム方向を決定することができる。例えば、基地局装置は下りリンク信号/チャネルとCRIを関連付けて送信することができる。このとき、端末装置は、CRIと関連付けられた受信ビームで受信しなければならない。また、設定された複数のCSI-RSリソースにおいて、異なる基地局装置がCSI-RSを送信することができる。この場合、CRIによりどの基地局装置からの通信品質が良いかをネットワーク側が知ることができる。また、端末装置が複数のサブアレーを備えている場合、同じタイミングで複数のサブアレーで受信することができる。従って、基地局装置が下りリンク制御情報などで複数レイヤ(コードワード、トランスポートブロック)の各々にCRIを関連付けて送信すれば、端末装置は、各CRIに対応するサブアレー、受信ビームを用いて、複数レイヤを受信することができる。ただし、アナログビームを用いる場合、1つのサブアレーで同じタイミングで用いられる受信ビーム方向が1つであるとき、端末装置の1つのサブアレーに対応する2つのCRIが同時に設定された場合に、端末装置は複数の受信ビームで受信することができない可能性がある。この問題を回避するために、例えば、基地局装置は設定した複数のCSI-RSリソースをグループ分けし、グループ内は、同じサブアレーを用いてCRIを求める。またグループ間で異なるサブアレーを用いれば、基地局装置は同じタイミングで設定することができる複数のCRIを知ることができる。なお、CSI-RSリソースのグループは、リソース設定又はリソースセット設定で設定されるCSI-RSリソースでもよい。なお、同じタイミングで設定できるCRIをQCLであるとしてもよい。このとき、端末装置は、QCL情報と関連付けてCRIを送信することができる。QCL情報は、所定のアンテナポート、所定の信号、又は所定のチャネルに対するQCLに関する情報である。2つのアンテナポートにおいて、一方のアンテナポート上のシンボルが搬送されるチャネルの長区間特性が、もう一方のアンテナポート上のシンボルが搬送されるチャネルから推測できる場合、それらのアンテナポートはQCLであると呼称される。長区間特性は、遅延スプレッド、ドップラースプレッド、ドップラーシフト、平均利得、平均遅延、空間的な受信パラメータ、及び/又は空間的な送信パラメータを含む。例えば、2つのアンテナポートがQCLである場合、端末装置はそれらのアンテナポートにおける長区間特性が同じであると見なすことができる。例えば、端末装置は、空間的な受信パラメータに関してQCLであるCRIと空間的な受信パラメータに関してQCLではないCRIを区別して報告すれば、基地局装置は空間的な受信パラメータに関してQCLであるCRIは同じタイミングに設定せず、空間的な受信パラメータに関してQCLではないCRIは同じタイミングに設定する、ことができる。また、基地局装置は、端末装置のサブアレー毎にCSIを要求してもよい。この場合、端末装置は、サブアレー毎にCSIを報告する。なお、端末装置は複数のCRIを基地局装置に報告する場合、QCLでないCRIのみを報告しても良い。 The terminal device receives the CSI-RS using the resource set in the resource setting, calculates CSI or RSRP from the CSI-RS, and reports the result to the base station device. Further, when the CSI-RS resource configuration includes a plurality of CSI-RS resource configurations and / or when resource repetition is OFF, the terminal device receives the CSI-RS with the same reception beam on each CSI-RS resource, Calculate CRI. For example, if the CSI-RS resource set configuration includes K (K is an integer of 2 or more) CSI-RS resource configurations, the CRI indicates N preferred CSI-RS resources from the K CSI-RS resources. . Here, N is a positive integer less than K. When the terminal device reports a plurality of CRIs, the terminal device may report the CSI-RSRP measured with each CSI-RS resource to the base station device in order to indicate which CSI-RS resource has good quality. it can. If the base station apparatus transmits the CSI-RS by beamforming (precoding) in different beam directions with the plurality of set CSI-RS resources and transmits the CSI-RS, the base station apparatus suitable for the terminal apparatus based on the CRI reported from the terminal apparatus. The transmission beam direction can be known. On the other hand, a suitable receiving beam direction of the terminal device can be determined using a CSI-RS resource in which the transmitting beam of the base station device is fixed. For example, when the CSI-RS resource configuration includes a plurality of CSI-RS resource configurations and / or when the resource repetition is ON, the terminal device transmits, in each CSI-RS resource, a CSI-RS received in a different reception beam direction. A suitable receiving beam direction can be obtained from the RS. Note that the terminal device may report the CSI-RSRP after determining a suitable reception beam direction. When the terminal device has a plurality of sub-arrays, the terminal device can select a suitable sub-array when obtaining a suitable reception beam direction. Note that the preferred receiving beam direction of the terminal device may be associated with the CRI. Further, when the terminal device reports a plurality of CRIs, the base station device can fix the transmission beam using the CSI-RS resource associated with each CRI. At this time, the terminal device can determine a suitable receiving beam direction for each CRI. For example, the base station apparatus can transmit a downlink signal / channel in association with a CRI. At this time, the terminal device has to receive with the reception beam associated with the CRI. In addition, different base station apparatuses can transmit CSI-RSs in a plurality of set CSI-RS resources. In this case, the network side can know which base station apparatus has good communication quality from the CRI. Further, when the terminal device has a plurality of sub-arrays, it is possible to receive signals at a plurality of sub-arrays at the same timing. Therefore, if the base station device transmits a CRI in association with each of a plurality of layers (codewords, transport blocks) in downlink control information or the like, the terminal device uses a sub-array and a reception beam corresponding to each CRI, Multiple layers can be received. However, when an analog beam is used, if one sub-array has one receive beam direction used at the same timing, and if two CRIs corresponding to one sub-array of the terminal device are set at the same time, the terminal device becomes It may not be possible to receive with multiple receive beams. In order to avoid this problem, for example, the base station apparatus divides a plurality of set CSI-RS resources into groups, and obtains a CRI within the group using the same sub-array. If different sub-arrays are used between groups, the base station apparatus can know a plurality of CRIs that can be set at the same timing. Note that the CSI-RS resource group may be a CSI-RS resource set in resource setting or resource set setting. The CRI that can be set at the same timing may be a QCL. At this time, the terminal device can transmit the CRI in association with the QCL information. The QCL information is information on the QCL for a predetermined antenna port, a predetermined signal, or a predetermined channel. At two antenna ports, if the long-term characteristics of the channel on which symbols on one antenna port are carried can be inferred from the channel on which symbols on the other antenna port are carried, then those antenna ports are QCL. Is called. The long-term properties include delay spread, Doppler spread, Doppler shift, average gain, average delay, spatial reception parameters, and / or spatial transmission parameters. For example, when two antenna ports are QCLs, the terminal device can regard that the long-term characteristics at those antenna ports are the same. For example, if the terminal device discriminates and reports a CRI that is a QCL for the spatial reception parameter and a CRI that is not the QCL for the spatial reception parameter, the base station device determines that the CRI that is the QCL for the spatial reception parameter is the same. Without timing, CRIs that are not QCLs with respect to spatial reception parameters can be set at the same timing. Further, the base station device may request CSI for each sub-array of the terminal device. In this case, the terminal device reports CSI for each sub-array. When reporting a plurality of CRIs to the base station device, the terminal device may report only CRIs other than the QCL.
 また、好適な基地局装置の送信ビームを決定するために、所定のプリコーディング(ビームフォーミング)行列(ベクトル)の候補が規定されたコードブックが用いられる。基地局装置はCSI-RSを送信し、端末装置はコードブックの中から好適なプリコーディング(ビームフォーミング)行列を求め、PMIとして基地局装置に報告する。これにより、基地局装置は、端末装置にとって好適な送信ビーム方向を知ることができる。なお、コードブックにはアンテナポートを合成するプリコーディング(ビームフォーミング)行列と、アンテナポートを選択するプリコーディング(ビームフォーミング)行列がある。アンテナポートを選択するコードブックを用いる場合、基地局装置はアンテナポート毎に異なる送信ビーム方向を用いることができる。従って、端末装置がPMIとして好適なアンテナポートを報告すれば、基地局装置は好適な送信ビーム方向を知ることができる。なお、端末装置の好適な受信ビームは、CRIに関連付けられた受信ビーム方向でもよいし、再度好適な受信ビーム方向を決定しても良い。アンテナポートを選択するコードブックを用いる場合に、端末装置の好適な受信ビーム方向がCRIに関連付けられた受信ビーム方向とする場合、CSI-RSを受信する受信ビーム方向はCRIに関連付けられた受信ビーム方向で受信することが望ましい。なお、端末装置は、CRIに関連付けられた受信ビーム方向を用いる場合でも、PMIと受信ビーム方向を関連付けることができる。また、アンテナポートを選択するコードブックを用いる場合、各々のアンテナポートは異なる基地局装置(セル)から送信されても良い。この場合、端末装置がPMIを報告すれば、基地局装置はどの基地局装置(セル)との通信品質が好適かを知ることができる。なお、この場合、異なる基地局装置(セル)のアンテナポートはQCLではないとすることができる。 コ ー ド Further, in order to determine a suitable transmission beam of the base station apparatus, a codebook in which candidates for a predetermined precoding (beamforming) matrix (vector) are specified is used. The base station device transmits the CSI-RS, and the terminal device obtains a suitable precoding (beamforming) matrix from the codebook and reports it to the base station device as PMI. Thereby, the base station apparatus can know the transmission beam direction suitable for the terminal apparatus. The codebook includes a precoding (beamforming) matrix for combining antenna ports and a precoding (beamforming) matrix for selecting antenna ports. When using a codebook for selecting an antenna port, the base station apparatus can use a different transmission beam direction for each antenna port. Therefore, if the terminal device reports a preferred antenna port as the PMI, the base station device can know a preferred transmission beam direction. Note that the preferred receiving beam of the terminal device may be the receiving beam direction associated with the CRI, or the preferred receiving beam direction may be determined again. When using a codebook for selecting an antenna port, if the preferred receiving beam direction of the terminal device is the receiving beam direction associated with the CRI, the receiving beam direction for receiving the CSI-RS is the receiving beam direction associated with the CRI. It is desirable to receive in the direction. Note that the terminal device can associate the PMI with the reception beam direction even when using the reception beam direction associated with the CRI. When a codebook for selecting an antenna port is used, each antenna port may be transmitted from a different base station device (cell). In this case, if the terminal device reports the PMI, the base station device can know which base station device (cell) the communication quality is preferable. In this case, the antenna ports of different base station devices (cells) may not be QCLs.
 コードブックは、タイプ1コードブックとタイプ2コードブックに分類される。タイプ1コードブックは、プリコーディング(ビームフォーミング)行列(ベクトル)がテーブルに示される。タイプ2コードブックは、ベクトルの線形合成で表され、タイプ1コードブックよりも精度が高い。線形合成されるベクトルの最大数は上位層の信号で設定される。また、合成されるベクトルはタイプ1コードブックに含まれる。また、合成されるベクトルは互いに直交している。また、線形合成の重みは、ワイドバンド振幅係数、サブバンド振幅係数、サブバンド位相係数の3種類ある。なお、サブバンド振幅係数は上位層の信号でON/OFFが可能である。また、コードブックの設定情報はCSIのレポート設定に含まれる。コードブックの設定情報は、コードブックタイプなど、コードブックの設定情報が含まれる。コードブックタイプは、PMIを求めるコードブックが、タイプ1コードブックかタイプ2コードブックかを示す。なお、タイプ2コードブックがサポートしているRIは、タイプ1コードブックがサポートしているRIよりも小さい。例えば、タイプ1コードブックがサポートしているRIは最大8であり、タイプ2コードブックがサポートしているRIは最大2又は4である。 Codebooks are classified into type 1 codebooks and type 2 codebooks. In the type 1 codebook, a precoding (beamforming) matrix (vector) is shown in a table. Type 2 codebooks are represented by a linear combination of vectors and are more accurate than type 1 codebooks. The maximum number of vectors to be linearly combined is set by an upper layer signal. The vector to be synthesized is included in the type 1 codebook. Also, the vectors to be combined are orthogonal to each other. In addition, there are three types of weights for linear synthesis: wideband amplitude coefficient, subband amplitude coefficient, and subband phase coefficient. The sub-band amplitude coefficient can be turned ON / OFF by a signal of an upper layer. The codebook setting information is included in the CSI report settings. The code book setting information includes code book setting information such as a code book type. The codebook type indicates whether the codebook for obtaining the PMI is a type 1 codebook or a type2 codebook. The RI supported by the type 2 codebook is smaller than the RI supported by the type 1 codebook. For example, a type 1 codebook supports a maximum of 8 RIs, and a type 2 codebook supports a maximum of 2 or 4 RIs.
 また、CSIレポートにCRI/CQI/RIは含めるが、PMIは含めないことも可能である。この場合、基地局装置は、端末装置から受信した上りリンク信号(例えばSRS)から下りリンクのチャネルを推定でき、精度の高いプリコーディングベクトル(行列)を求めることができる。 Also, CRI / CQI / RI can be included in the CSI report, but PMI can be omitted. In this case, the base station apparatus can estimate a downlink channel from an uplink signal (for example, SRS) received from the terminal apparatus, and can obtain a highly accurate precoding vector (matrix).
 信頼性の向上や周波数利用効率の向上のために、複数の基地局装置(送受信ポイント)の協調通信をすることができる。複数の基地局装置(送受信ポイント)の協調通信は、例えば、好適な基地局装置(送受信ポイント)をダイナミックに切り替えるDPS(Dynamic Point Selection; 動的ポイント選択)、複数の基地局装置(送受信ポイント)からデータ信号を送信するJT(Joint Transmission)などがある。端末装置は、複数の基地局装置と通信する場合、複数のサブアレーを用いて通信する可能性がある。例えば、端末装置4Aは、基地局装置3Aと通信する場合はサブアレー1を用い、基地局装置5Aと通信する場合はサブアレー2を用いることができる。また、端末装置は、複数の基地局装置と協調通信する場合、複数のサブアレーをダイナミックに切替えたり、複数のサブアレーで同じタイミングで送受信したりする可能性がある。このとき、端末装置4Aと基地局装置3A/5Aは、通信に用いる端末装置のサブアレーに関する情報を共有することが望ましい。 協調 Coordinated communication of a plurality of base station devices (transmission / reception points) can be performed to improve reliability and frequency use efficiency. Cooperative communication between a plurality of base station devices (transmission / reception points) includes, for example, Dynamic Point Selection (DPS) for dynamically switching suitable base station devices (transmission / reception points), and a plurality of base station devices (transmission / reception points). JT (Joint @ Transmission) for transmitting a data signal from the Internet. When a terminal device communicates with a plurality of base station devices, there is a possibility that the terminal device will communicate using a plurality of sub-arrays. For example, the terminal device 4A can use the sub-array 1 when communicating with the base station device 3A, and can use the sub-array 2 when communicating with the base station device 5A. Further, when the terminal device performs cooperative communication with a plurality of base station devices, there is a possibility that a plurality of sub-arrays are dynamically switched or transmitted and received at the same timing in a plurality of sub-arrays. At this time, it is desirable that the terminal device 4A and the base station devices 3A / 5A share information on the sub-array of the terminal device used for communication.
 端末装置は、CSI報告に、CSI設定情報を含めることができる。例えばCSI設定情報はサブアレーを示す情報を含むことができる。例えば、端末装置は、CRI及びサブアレーを示すインデックスを含むCSI報告を送信することができる。これにより、基地局装置は、送信ビーム方向と端末装置のサブアレーを関連付けることができる。もしくは、端末装置は、複数のCRIを含むCRI報告を送信することができる。この場合、複数のCRIの一部がサブアレー1に関連し、残りのCRIがサブアレー2に関連することが規定されていれば、基地局装置は、サブアレーを示すインデックスとCRIを関連付けることができる。また、端末装置は、制御情報を低減するために、CRIとサブアレーを示すインデックスをジョイントコーディングしてCRI報告を送信することができる。この場合、CRIを示すN(Nは2以上の整数)ビットのうち、1ビットがサブアレー1又はサブアレー2を示し、残りのビットがCRIを示す。なお、ジョイントコーディングの場合、1ビットがサブアレーを示すインデックスに用いられるため、CRIを表現できるビット数が減ってしまう。そのため、端末装置は、サブアレーを示すインデックスを含めてCSI報告する場合、リソース設定で示されるCSI-RSリソースの数がCRIを表現できる数よりも大きい場合、一部のCSI-RSリソースからCRIを求めることができる。なお、異なるリソース設定では、異なるサブアレーでCSIを算出することが決められている場合、端末装置はリソース設定ID毎に異なるサブアレーで算出したCSIを送信すれば、基地局装置は端末のサブアレーごとのCSIを知ることができる。 The terminal device can include the CSI setting information in the CSI report. For example, the CSI setting information can include information indicating a sub-array. For example, the terminal device can transmit a CSI report including a CRI and an index indicating a sub-array. Thereby, the base station apparatus can associate the transmission beam direction with the sub-array of the terminal apparatus. Alternatively, the terminal device can transmit a CRI report including a plurality of CRIs. In this case, if it is defined that a part of the plurality of CRIs is related to the sub-array 1 and the remaining CRIs are related to the sub-array 2, the base station apparatus can associate the index indicating the sub-array with the CRI. Also, in order to reduce the control information, the terminal device can transmit the CRI report by joint coding the CRI and the index indicating the sub-array. In this case, of N (N is an integer of 2 or more) bits indicating the CRI, one bit indicates the sub-array 1 or the sub-array 2, and the remaining bits indicate the CRI. In the case of joint coding, since one bit is used for an index indicating a sub-array, the number of bits that can express a CRI decreases. Therefore, when the terminal device reports the CSI including the index indicating the sub-array, when the number of CSI-RS resources indicated by the resource setting is larger than the number capable of expressing the CRI, the terminal device transmits the CRI from some CSI-RS resources. You can ask. In addition, in different resource settings, when it is determined that CSI is calculated in different sub-arrays, if the terminal device transmits CSI calculated in different sub-arrays for each resource setting ID, the base station device will You can know CSI.
 またCSI設定情報は、CSI測定の設定情報を含むことができる。例えば、CSI測定の設定情報は、測定リンク設定でも良いし、他の設定情報でもよい。これにより端末装置は、CSI測定の設定情報とサブアレー及び/又は受信ビーム方向を関連付けることができる。例えば、2つの基地局装置(例えば基地局装置3A、5A)との協調通信を考えると、いくつかの設定情報があることが望ましい。基地局装置3Aが送信するチャネル測定用のCSI-RSの設定をリソース設定1、基地局装置5Aが送信するチャネル測定用のCSI-RSの設定をリソース設定2とする。この場合、設定情報1はリソース設定1、設定情報2はリソース設定2、設定情報3はリソース設定1及びリソース設定2とすることができる。なお、各設定情報は干渉測定リソースの設定を含んでも良い。設定情報1に基づいてCSI測定をすれば、端末装置は、基地局装置3Aから送信されたCSI-RSでCSIを測定することができる。設定情報2に基づいてCSI測定をすれば、端末装置は、基地局装置5Aから送信されたCSIを測定することができる。設定情報3に基づいてCSI測定をすれば、端末装置は、基地局装置3A及び基地局装置5Aから送信されたCSI-RSでCSIを測定することができる。端末装置は、設定情報1から3の各々に対して、CSI測定に用いたサブアレー及び/又は受信ビーム方向を関連付けることができる。従って、基地局装置は、設定情報1から3を指示することによって、端末装置が用いる好適なサブアレー及び/又は受信ビーム方向を指示することができる。なお、設定情報3が設定された場合、端末装置は、リソース設定1に対するCSI及び/又はリソース設定2に対するCSIを求める。このとき、端末装置は、リソース設定1及び/又はリソース設定2の各々に対してサブアレー及び/又は受信ビーム方向を関連付けることができる。また、リソース設定1及び/又はリソース設定2をコードワード(トランスポートブロック)と関連付けることも可能である。例えば、リソース設定1に対するCSIをコードワード1(トランスポートブロック1)のCSIとし、リソース設定2に対するCSIをコードワード2(トランスポートブロック2)のCSIとすることができる。また、端末装置は、リソース設定1及びリソース設定2を考慮して1つのCSIを求めることも可能である。ただし、端末装置は、1つのCSIを求める場合でも、リソース設定1及びリソース設定2の各々に対するサブアレー及び/又は受信ビーム方向を関連付けることができる。 The CSI setting information can include setting information for CSI measurement. For example, the setting information for CSI measurement may be a measurement link setting or other setting information. Thereby, the terminal device can associate the setting information of the CSI measurement with the sub-array and / or the reception beam direction. For example, considering cooperative communication with two base station devices (for example, the base station devices 3A and 5A), it is desirable that there be some setting information. The setting of the CSI-RS for channel measurement transmitted by the base station device 3A is referred to as resource setting 1, and the setting of the CSI-RS for channel measurement transmitted by the base station device 5A is referred to as resource setting 2. In this case, setting information 1 can be resource setting 1, setting information 2 can be resource setting 2, and setting information 3 can be resource setting 1 and resource setting 2. Note that each setting information may include a setting of an interference measurement resource. If the CSI is measured based on the setting information 1, the terminal device can measure the CSI using the CSI-RS transmitted from the base station device 3A. If the CSI measurement is performed based on the setting information 2, the terminal device can measure the CSI transmitted from the base station device 5A. If the CSI is measured based on the setting information 3, the terminal device can measure the CSI using the CSI-RS transmitted from the base station device 3A and the base station device 5A. The terminal device can associate the sub-array used for CSI measurement and / or the reception beam direction with each of the setting information 1 to 3. Therefore, the base station apparatus can indicate a suitable sub-array and / or a reception beam direction used by the terminal apparatus by indicating the setting information 1 to 3. When the setting information 3 is set, the terminal device obtains CSI for the resource setting 1 and / or CSI for the resource setting 2. At this time, the terminal device can associate a sub-array and / or a reception beam direction with each of resource setting 1 and / or resource setting 2. It is also possible to associate resource setting 1 and / or resource setting 2 with a codeword (transport block). For example, the CSI for resource setting 1 can be the CSI for codeword 1 (transport block 1), and the CSI for resource setting 2 can be the CSI for codeword 2 (transport block 2). In addition, the terminal device can determine one CSI in consideration of the resource setting 1 and the resource setting 2. However, the terminal device can associate the sub-array and / or the reception beam direction for each of resource setting 1 and resource setting 2 even when one CSI is required.
 また、CSI設定情報は、複数のリソース設定が設定された場合(例えば上述の設定情報3が設定された場合)に、前記CSIが1つのCRIを含むか、複数のリソース設定の各々に対するCRIを含むかを示す情報を含んでも良い。前記CSIが1つのCRIを含む場合、前記CSI設定情報は、CRIを算出したリソース設定IDを含んでも良い。CSI設定情報により、基地局装置は、どのような想定で端末装置がCSIを算出したのか、又は、どのリソース設定の受信品質が良かったのかを知ることができる。 Also, when a plurality of resource settings are set (for example, when the above-described setting information 3 is set), the CSI includes one CRI or a CRI for each of the plurality of resource settings. It may include information indicating whether it is included. When the CSI includes one CRI, the CSI setting information may include a resource setting ID for which a CRI has been calculated. Based on the CSI setting information, the base station apparatus can know what assumption the terminal apparatus has calculated the CSI or which resource setting has good reception quality.
 基地局装置は、端末装置にCSI報告を要求するCSI要求を送信することができる。CSI要求は1つのサブアレーにおけるCSIを報告するか複数のサブアレーにおけるCSIを報告するかを含むことができる。このとき、端末装置は、1つのサブアレーにおけるCSIを報告するように求められた場合、サブアレーを示すインデックスを含まないCSI報告を送信する。また、複数のサブアレーにおけるCSIを報告するように求められた場合、端末装置は、サブアレーを示すインデックスを含むCSI報告を送信する。なお、基地局装置は、1つのサブアレーにおけるCSI報告を要求する場合、サブアレーを示すインデックス又はリソース設定IDによって、端末装置がCSI算出するサブアレーを指示することができる。この場合、端末装置は、基地局装置から指示されたサブアレーでCSIを算出する。 The base station device can transmit a CSI request for requesting a CSI report to the terminal device. The CSI request may include whether to report CSI in one sub-array or to report CSI in multiple sub-arrays. At this time, when requested to report CSI in one sub-array, the terminal device transmits a CSI report that does not include an index indicating the sub-array. Further, when the terminal device is requested to report CSI in a plurality of sub-arrays, the terminal device transmits a CSI report including an index indicating the sub-array. When requesting a CSI report in one sub-array, the base station apparatus can instruct the sub-array for which the terminal device calculates the CSI by using an index indicating the sub-array or a resource setting ID. In this case, the terminal device calculates CSI using the sub-array specified by the base station device.
 また基地局装置は、CSI要求にCSI測定の設定情報を含めて送信することができる。端末装置は、CSI要求にCSI測定の設定情報が含まれている場合、CSI測定の設定情報に基づいてCSIを求める。端末装置は、CSIを基地局装置に報告するが、CSI測定の設定情報は報告しなくても良い。 Also, the base station apparatus can transmit the CSI request including the setting information of the CSI measurement. When the CSI request includes CSI measurement setting information, the terminal device obtains CSI based on the CSI measurement setting information. The terminal device reports the CSI to the base station device, but does not have to report the setting information of the CSI measurement.
 本実施形態に係る端末装置及び基地局装置は、好適なサブアレーを選択するために、新たに仮想的なアンテナポートを設定することができる。該仮想的なアンテナポートは、それぞれ物理的なサブアレー及び/又は受信ビームと関連付けられている。基地局装置は、該仮想的なアンテナポートを端末装置に通知することにでき、端末装置はPDSCHを受信するためのサブアレーを選択することができる。また、該仮想的なアンテナポートは、QCLが設定されることができる。基地局装置は、該仮想的なアンテナポートを複数端末装置に通知することができる。端末装置は、通知された該仮想的なアンテナポートがQCLである場合、1つのサブアレーを用いて、関連するPDSCHを受信することができ、また、通知された該仮想的なアンテナポートがQCLではない場合、2つ、ないし複数のサブアレーを用いて、関連するPDSCHを受信することができる。該仮想的なアンテナポートは、CSI-RSリソース、DMRSリソース、およびSRSリソースの何れか1つ、ないし複数について、それぞれ関連付けられることができる。基地局装置は該仮想的なアンテナポートを設定することによって、端末装置がCSI-RSリソース、DMRSリソース、およびSRSリソースの何れか1つ、ないし複数において、該リソースでRSを送る場合のサブアレーを設定することができる。 端末 The terminal device and the base station device according to the present embodiment can newly set a virtual antenna port in order to select a suitable sub-array. The virtual antenna ports are each associated with a physical sub-array and / or a receive beam. The base station device can notify the terminal device of the virtual antenna port, and the terminal device can select a sub-array for receiving PDSCH. Also, a QCL can be set for the virtual antenna port. The base station device can notify the virtual antenna port to a plurality of terminal devices. The terminal device can receive the associated PDSCH using one sub-array when the notified virtual antenna port is the QCL, and the notified virtual antenna port is not included in the QCL. If not, two or more sub-arrays can be used to receive the associated PDSCH. The virtual antenna port can be associated with one or more of the CSI-RS resource, the DMRS resource, and the SRS resource. By setting the virtual antenna port, the base station apparatus sets a sub-array when the terminal apparatus transmits an RS using one or more of the CSI-RS resource, the DMRS resource, and the SRS resource using the resource. Can be set.
 複数の基地局装置が協調通信する場合、端末装置は各基地局装置が送信したPDSCHに好適なサブアレー及び/又は受信ビーム方向で受信することが望ましい。このため、基地局装置は端末装置が好適なサブアレー及び/又は受信ビーム方向で受信できるための情報を送信する。例えば、基地局装置は、CSI設定情報又はCSI設定情報を示す情報を下りリンク制御情報に含めて送信することができる。端末装置は、CSI設定情報を受信すれば、CSI設定情報に関連付けられているサブアレー及び/又は受信ビーム方向で受信することができる。 場合 When a plurality of base station apparatuses perform cooperative communication, it is desirable that the terminal apparatus receive a signal in a sub-array and / or a receiving beam direction suitable for the PDSCH transmitted by each base station apparatus. For this reason, the base station device transmits information that allows the terminal device to receive in a suitable sub-array and / or reception beam direction. For example, the base station apparatus can transmit the CSI setting information or information indicating the CSI setting information by including the information in downlink control information. Upon receiving the CSI setting information, the terminal device can receive the CSI setting information in the sub-array and / or the receiving beam direction associated with the CSI setting information.
 例えば、基地局装置は、CSI設定情報としてサブアレー及び/又は受信ビーム方向を示す情報を送信することができる。なお、CSI設定情報は所定のDCIフォーマットで送信できるとしてもよい。また、受信ビーム方向を示す情報は、CRI、PMI、同期信号ブロックの時間インデックスでもよい。端末装置は、受信したDCIから、好適なサブアレー及び/又は受信ビーム方向を知ることができる。なお、サブアレーを示す情報は、1ビット又は2ビットで表現される。サブアレーを示す情報が1ビットで示される場合、基地局装置は、“0”、“1”でサブアレー1又はサブアレー2を端末装置に指示することができる。また、サブアレーを示す情報が2ビットで示される場合、基地局装置は、サブアレーの切替え及び2つのサブアレーで受信することを端末装置に指示することができる。なお、異なるリソース設定では、異なるサブアレーでCSIを算出することが決められている場合、基地局装置はDCIにリソース設定IDを含めて送信すれば、端末装置のサブアレーを示すことができる。 For example, the base station apparatus can transmit information indicating the sub-array and / or the direction of the received beam as the CSI setting information. Note that the CSI setting information may be transmitted in a predetermined DCI format. Further, the information indicating the reception beam direction may be a CRI, a PMI, or a time index of a synchronization signal block. The terminal device can know a suitable sub-array and / or reception beam direction from the received DCI. The information indicating the sub-array is represented by 1 bit or 2 bits. When the information indicating the sub-array is indicated by one bit, the base station device can indicate the sub-array 1 or the sub-array 2 to the terminal device by “0” or “1”. Further, when the information indicating the sub-array is indicated by 2 bits, the base station apparatus can instruct the terminal apparatus to switch the sub-array and to receive the signal using the two sub-arrays. In addition, in different resource settings, when it is determined that the CSI is calculated in different sub-arrays, the base station apparatus can indicate the sub-array of the terminal apparatus by transmitting the DCI including the resource setting ID.
 例えば、基地局装置は、CSI設定情報としてCSI測定の設定情報を送信することができる。この場合、端末装置は、受信したCSI測定の設定情報でフィードバックしたCSIに関連付けられたサブアレー及び/又は受信ビーム方向で、PDSCHを受信することができる。なお、CSI測定の設定情報が設定情報1又は設定情報2を示す場合、CSI設定情報は、PDSCH送信が1つのリソース設定情報に関連することを示す。また、CSI測定の設定情報が設定情報3を示す場合、CSI設定情報は、PDSCH送信が複数のリソース設定情報に関連することを示す。 For example, the base station device can transmit the CSI measurement setting information as the CSI setting information. In this case, the terminal device can receive the PDSCH in the sub-array and / or the reception beam direction associated with the CSI fed back with the received CSI measurement setting information. When the setting information of the CSI measurement indicates the setting information 1 or the setting information 2, the CSI setting information indicates that the PDSCH transmission is related to one piece of resource setting information. When the setting information of the CSI measurement indicates the setting information 3, the CSI setting information indicates that the PDSCH transmission is related to a plurality of pieces of resource setting information.
 また、CSI設定情報は、DMRSのスクランブルアイデンティティ(Scrambling identity; SCID)など、DCIに含まれるパラメータ(フィールド)と関連付けられても良い。例えば、基地局装置は、SCIDとCSI測定の設定情報の関連付けを設定することができる。この場合、端末装置は、DCIに含まれるSCIDから、CSI測定の設定情報を参照し、CSI測定の設定情報に関連付けられたサブアレー及び/又は受信ビーム方向で、PDSCHを受信することができる。 Also, the CSI setting information may be associated with a parameter (field) included in DCI, such as a scrambling identity (ア イ デ ン テ ィ テ ィ SCID) of DMRS. For example, the base station apparatus can set the association between the SCID and the setting information of the CSI measurement. In this case, the terminal device can refer to the setting information of the CSI measurement from the SCID included in the DCI and receive the PDSCH in the sub-array and / or the receiving beam direction associated with the setting information of the CSI measurement.
 また基地局装置は、2つのDMRSアンテナポートグループを設定することができる。この2つのDMRSポートグループをDMRSポートグループ1(第1のDMRSポートグループ)、DMRSポートグループ2(第2のDMRSポートグループ)とも呼ぶ。DMRSアンテナポートグループ内のアンテナポートはQCLであり、DMRSアンテナポートグループ間のアンテナポートはQCLではない。従って、DMRSアンテナポートグループと端末装置のサブアレーが関連付けられていれば、基地局装置はDCIに含まれるDMRSアンテナポート番号で端末装置のサブアレーを指示することができる。例えば、DCIに含まれるDMRSアンテナポート番号が1つのDMRSアンテナポートグループに含まれている場合、端末装置は前記DMRSアンテナポートグループに対応する1つのサブアレーで受信する。また、DCIに含まれるDMRSアンテナポート番号が2つのDMRSアンテナポートグループの両方に含まれている場合、端末装置は、端末装置は2つのサブアレーで受信する。1つのDMRSアンテナポートグループは1つのコードワード(トランスポートブロック)に関連してもよい。DMRSアンテナポートグループとコードワード(トランスポートブロック)のインデックスとの関係は、予め決まっていても良いし、基地局装置が指示しても良い。 Also, the base station apparatus can set two DMRS antenna port groups. These two DMRS port groups are also referred to as DMRS port group 1 (first DMRS port group) and DMRS port group 2 (second DMRS port group). The antenna ports in the DMRS antenna port group are QCL, and the antenna ports between the DMRS antenna port groups are not QCL. Therefore, if the DMRS antenna port group is associated with the terminal device sub-array, the base station device can instruct the terminal device sub-array using the DMRS antenna port number included in the DCI. For example, when the DMRS antenna port number included in the DCI is included in one DMRS antenna port group, the terminal device receives the data in one sub-array corresponding to the DMRS antenna port group. Further, when the DMRS antenna port number included in the DCI is included in both of the two DMRS antenna port groups, the terminal device receives the terminal device in two sub arrays. One DMRS antenna port group may be associated with one codeword (transport block). The relationship between the DMRS antenna port group and the index of the codeword (transport block) may be determined in advance, or may be instructed by the base station apparatus.
 なお、DMRSアンテナポートグループの設定がない場合、又は、DCIに含まれるDMRSアンテナポート番号が1つのDMRSポートグループに属する場合、コードワード数はレイヤ数(ランク数、DMRSアンテナポート数)によって一意に決まる。例えば、レイヤ数が4以下の場合、コードワード数は1であり、レイヤ数が5以上の場合、コードワード数は2である。またDCIに含まれるDMRSアンテナポート番号が2つのDMRSポートグループに属する場合、トータルのレイヤ数が4以下であっても、コードワード数は2である。例えば、DCIで示されるDMRSアンテナポート番号が、1000、1001、1002、1003の4ポートで、DMRSアンテナポート番号1000、1001はDMRSポートグループ0に属し、DMRSアンテナポート番号1002、1003はDMRSポートグループ1に属すると仮定する。このとき、DMRSアンテナポート番号1000、1001はコードワード0と関連し、DMRSアンテナポート番号1002、1003はコードワード1と関連する。ただし、1つのコードワードのレイヤ数は4以下である。つまり、DMRSポートグループ毎にコードワードが設定される場合、1つのDMRSポートグループで設定されるDMRSアンテナポート数は4以下である。 If no DMRS antenna port group is set, or if the DMRS antenna port number included in DCI belongs to one DMRS port group, the number of codewords is uniquely determined by the number of layers (number of ranks, number of DMRS antenna ports). Decided. For example, when the number of layers is four or less, the number of codewords is one, and when the number of layers is five or more, the number of codewords is two. When the DMRS antenna port numbers included in the DCI belong to two DMRS port groups, the number of codewords is 2 even if the total number of layers is 4 or less. For example, DMRS antenna port numbers indicated by DCI are four ports of 1000, 1001, 1002, and 1003, DMRS antenna port numbers 1000 and 1001 belong to DMRS port group 0, and DMRS antenna port numbers 1002 and 1003 are DMRS port groups. Assume that it belongs to 1. At this time, DMRS antenna port numbers 1000 and 1001 are associated with codeword 0, and DMRS antenna port numbers 1002 and 1003 are associated with codeword 1. However, the number of layers of one codeword is four or less. That is, when a codeword is set for each DMRS port group, the number of DMRS antenna ports set in one DMRS port group is four or less.
 なお、異なるリソース設定では、異なるサブアレーでCSIを算出することが決められている場合、DMRSアンテナポートグループとリソース設定ID又はCSI-RSリソースが関連付けられていれば、DCIに含まれるDMRSアンテナポートによって、端末装置は、リソース設定ID又はCSI-RSリソースを特定することができ、サブアレー及び/又は受信ビーム方向を知ることができる。 Note that in different resource settings, when it is determined that CSI is calculated in different sub-arrays, if a DMRS antenna port group is associated with a resource setting ID or CSI-RS resource, the DMRS antenna port included in DCI The terminal device can specify the resource setting ID or the CSI-RS resource, and can know the sub-array and / or the receiving beam direction.
 また基地局装置は、DMRSアンテナポートグループとCSI設定情報を関連付けて設定することができる。なお、CSI設定情報がCSI測定の設定情報を含み、CSI測定の設定情報が設定情報3を示す場合、端末装置は、DMRSアンテナポートグループ1に含まれるDMRSアンテナポートの場合、リソース設定1に対応するサブアレー及び/又は受信ビーム方向で復調し、DMRSアンテナポートグループ2に含まれるDMRSアンテナポートの場合、リソース設定2に対応するサブアレー及び/又は受信ビーム方向で復調する。 Also, the base station apparatus can set the DMRS antenna port group and the CSI setting information in association with each other. When the CSI setting information includes the setting information of the CSI measurement and the setting information of the CSI measurement indicates the setting information 3, the terminal device corresponds to the resource setting 1 in the case of the DMRS antenna port included in the DMRS antenna port group 1. In the case of a DMRS antenna port included in the DMRS antenna port group 2, demodulation is performed in the sub array and / or reception beam direction corresponding to the resource setting 2.
 また、CSIレポート設定で、レポート量がCRI/RSRP又はSSBRI/RSRPに設定された場合で、グループベースドビームレポーティングがOFFに設定されている場合、端末装置は、1つのレポートで異なる1、2又は4つの異なるCRI又はSSBRIをレポートする。また、CSIレポート設定で、レポート量がCRI/RSRP又はSSBRI/RSRPに設定された場合で、グループベースドビームレポーティングがONに設定されている場合、端末装置は、1つのレポートで2つの異なるCRI又はSSBRIをレポートする。ただし、2つのCSI-RSリソース又は2つのSSBは、1つの空間領域の受信フィルタ又は複数の空間領域の受信フィルタによって同時に受信できるものである。 In addition, in the case where the report amount is set to CRI / RSRP or SSBRI / RSRP in the CSI report setting, and the group-based beam reporting is set to OFF, the terminal device performs different 1, 2, or Report four different CRIs or SSBRIs. Also, in the CSI report setting, when the report amount is set to CRI / RSRP or SSBRI / RSRP, and when group-based beam reporting is set to ON, the terminal device transmits two different CRI or Report SSBRI. However, two CSI-RS resources or two SSBs can be received simultaneously by one spatial domain reception filter or a plurality of spatial domain reception filters.
 また、CSIレポート設定で、レポート量がCRI、RI、CQIに設定された場合で、グループベースドビームレポーティングがONに設定されている場合、端末装置は、1つの空間領域の受信フィルタ(パネル、サブアレー)又は複数の空間領域の受信フィルタ(パネル、サブアレー)によって同時に受信できる2つのCSI-RSリソースに基づいて、CSIを求める。2つのCSI-RSリソースをそれぞれ第1のCSI-RSリソース、第2のCSI-RSリソースと呼ぶ。また、第1のCSI-RSリソースを示すCRIを第1のCRI、第2のCSI-RSリソースを示すCRIを第2のCRIとも呼ぶ。また、第1のCSI-RSリソースで求めたRIを第1のRI、第2のCSI-RSリソースで求めたRIを第2のRIとも呼ぶ。なお、RIが4(4レイヤ)以下の場合、コードワード数は1、RIが4より大きい場合、コードワード数は2である。従って、第1のRIと第2のRIの合計が4以下であるか又は4より大きいかによって、端末装置が報告するCSIは変わってもよい。第1のRIと第2のRIの合計が4以下の場合、第1のCSI-RS及び第2のCSI-RSの両方を考慮して求めたCQIを求める。このとき端末装置は、CSIとして、第1のCRI、第2のCRI、第1のRI、第2のRI、及び第1のCSI-RS及び第2のCSI-RSの両方を考慮して求めたCQIを報告する。第1のRIと第2のRIの合計が4より大きい場合、第1のCSI-RSで求めた第1のCQI、第2のCSI-RSで求めた第2のCQIを求める。このとき端末装置は、CSIとして、第1のCRI、第2のCRI、第1のRI、第2のRI、第1のCQI、及び第2のCQIを報告する。 Also, in the CSI report setting, when the report amount is set to CRI, RI, and CQI, and when the group-based beam reporting is set to ON, the terminal device receives the reception filter (panel, sub-array) of one spatial region. ) Or two CSI-RS resources that can be received simultaneously by reception filters (panels, sub-arrays) in a plurality of spatial domains. The two CSI-RS resources are called a first CSI-RS resource and a second CSI-RS resource, respectively. Further, the CRI indicating the first CSI-RS resource is also called a first CRI, and the CRI indicating the second CSI-RS resource is also called a second CRI. Also, the RI obtained from the first CSI-RS resource is also referred to as a first RI, and the RI obtained from the second CSI-RS resource is also referred to as a second RI. If the RI is 4 or less (four layers), the number of codewords is 1, and if the RI is greater than 4, the number of codewords is 2. Therefore, the CSI reported by the terminal device may change depending on whether the sum of the first RI and the second RI is less than or greater than four. When the sum of the first RI and the second RI is equal to or less than 4, the CQI obtained by considering both the first CSI-RS and the second CSI-RS is obtained. At this time, the terminal device obtains the CSI in consideration of the first CRI, the second CRI, the first RI, the second RI, and both the first CSI-RS and the second CSI-RS. Report the CQI. When the sum of the first RI and the second RI is greater than 4, the first CQI obtained by the first CSI-RS and the second CQI obtained by the second CSI-RS are obtained. At this time, the terminal device reports the first CRI, the second CRI, the first RI, the second RI, the first CQI, and the second CQI as CSI.
 また、CSIレポート設定で、レポート量がCRI、RI、PMI、CQIに設定された場合で、グループベースドビームレポーティングがONに設定されている場合、端末装置は、1つの空間領域の受信フィルタ又は複数の空間領域の受信フィルタによって同時に受信できる2つのCSI-RSリソースに基づいて、CSIを求める。また、第1のCSI-RSリソースのためのPMIを第1のPMI、第2のCSI-RSリソースのためのPMIを第2のPMIとも呼ぶ。なお、第1のPMI及び第2のPMIは、第1のCRI及び第2のCRIの両方を考慮して求められても良い。この場合、互いの干渉が考慮された第1のPMI及び第2のPMIが求められる。なお、PMIは、CSI-RSが4アンテナポート以上の場合、PMI-1とPMI-2に分けられる。PMI-1はワイドバンドの情報であり、少なくともN1とN2に基づいて求まるコードブックインデックスを示す。なお、CSI-RSのアンテナポート数は2N1N2で表される。なお、N1、N2は共に1以上の整数であり、N1は第1の次元(例えば垂直方向)のアンテナポート数、N2は第2の次元(例えば水平方向)のアンテナポート数を表す。また、偏波アンテナ数は2である。また、PMI-1はN1、N2の値やRI(レイヤ数)によって、1又は複数の情報を含む。また、PMI-2はワイドバンド又はサブバンドの情報であり、少なくとも位相回転を示す。なお、第1のCSI-RSリソースで求めたPMI-1、PMI-2をそれぞれ第1のPMI-1、第1のPMI-2とも呼ぶ。また、第2のCSI-RSリソースで求めたPMI-1、PMI-2をそれぞれ第2のPMI-1、第2のPMI-2とも呼ぶ。なお、レポート量はCRI、RI、PMI-1、CQIと設定されても良い。なお、CRI、RI、CQIについては、レポート量がCRI、RI、CQIで設定された場合と同様である。従って、第1のRIと第2のRIの合計が4以下の場合、端末装置は、CSIとして、第1のCRI、第2のCRI、第1のRI、第2のRI、第1のPMI(PMI-1)、第2のPMI(PMI-1)、及び第1のCSI-RS及び第2のCSI-RSの両方を考慮して求めたCQIを報告する。また、第1のRIと第2のRIの合計が4より大きい場合、端末装置は、CSIとして、第1のCRI、第2のCRI、第1のRI、第2のRI、第1のPMI(PMI-1)、第2のPMI(PMI-1)、第1のCQI、及び第2のCQIを報告する。 Also, in the CSI report setting, when the report amount is set to CRI, RI, PMI, and CQI, and when the group-based beam reporting is set to ON, the terminal device receives one or more reception filters in one spatial region. CSI is obtained based on two CSI-RS resources that can be received simultaneously by the reception filter in the spatial domain. Further, the PMI for the first CSI-RS resource is also called a first PMI, and the PMI for the second CSI-RS resource is also called a second PMI. Note that the first PMI and the second PMI may be obtained in consideration of both the first CRI and the second CRI. In this case, a first PMI and a second PMI in which mutual interference is considered are obtained. Note that PMI is divided into PMI-1 and PMI-2 when the CSI-RS has four or more antenna ports. PMI-1 is wideband information, and indicates a codebook index obtained based on at least N1 and N2. The number of CSI-RS antenna ports is represented by 2N1N2. Note that N1 and N2 are both integers equal to or greater than 1, N1 represents the number of antenna ports in a first dimension (for example, vertical direction), and N2 represents the number of antenna ports in a second dimension (for example, horizontal direction). The number of polarization antennas is two. Further, PMI-1 includes one or more pieces of information depending on the values of N1 and N2 and the RI (number of layers). PMI-2 is wideband or subband information and indicates at least phase rotation. Note that PMI-1 and PMI-2 obtained from the first CSI-RS resource are also referred to as first PMI-1 and first PMI-2, respectively. Further, PMI-1 and PMI-2 obtained by the second CSI-RS resource are also referred to as second PMI-1 and second PMI-2, respectively. The report amount may be set as CRI, RI, PMI-1, and CQI. In addition, about CRI, RI, and CQI, it is the same as that when the report amount is set by CRI, RI, and CQI. Therefore, when the total of the first RI and the second RI is equal to or less than 4, the terminal device determines the first CRI, the second CRI, the first RI, the second RI, and the first PMI as CSI. (PMI-1), the second PMI (PMI-1), and the CQI determined in consideration of both the first CSI-RS and the second CSI-RS. Further, when the sum of the first RI and the second RI is greater than 4, the terminal device determines the first CRI, the second CRI, the first RI, the second RI, and the first PMI as CSI. (PMI-1), the second PMI (PMI-1), the first CQI, and the second CQI.
 なお、第1のRIと第2のRIの合計が4より大きい場合、コードワード数1のレイヤ数はコードワード数2のレイヤ数と同じか小さいため、第1のRIは第2のRIと同じか小さい。つまり、RIが報告される場合、第1のCRIと第2のCRIは受信電力(RSRP)/受信品質(RSRQ)が良い方が第1のCRIではなく、RIの値によって第1のCRI又は第2のCRIは決定される。また、コードワード1のレイヤ数とコードワード2のレイヤ数が異なる場合、差分は1である。つまり、第1のRIと第2のRIの合計が5場合、第1のRIは2で第2のRIは3である。また、第1のRIと第2のRIの合計が6場合、第1のRIは3で第2のRIは3である。第1のRIと第2のRIの合計が7場合、第1のRIは3で第2のRIは4である。第1のRIと第2のRIの合計が8場合、第1のRIは4で第2のRIは4である。第1のRIと第2のRIの差分が1より大きい場合、端末装置は第1のCRI又は第2のCRIのいずれか一方、例えばRIの値が大きい方、のCSIを報告しても良い。なお、上記のルールがあるため、端末装置は、第1のRI及び第2のRIを別々に報告せずに、第1のRIと第2のRIの合計値を報告してもよい。なお、グループベースドビームレポーティングがONに設定されている場合で、レポート量がCRI、RI、CQI又はCRI、RI、PMI(PMI-1)、CQIに設定された場合、第1のCRI及び第2のCRIで異なるコードワードとなってもよい。このとき、CQIは第1のCQI及び第2のCQIが報告される。ただし、第1のRIと第2のRIの合計は8以下であり、1つのCRIにおけるRIは4以下である。なお、第1のCRI及び第2のCRIで異なるコードワードとする場合、基地局装置から端末装置に指示されてもよい。なお、第1のCRI及び第2のCRIで異なるコードワードの場合でも、コードワード1のレイヤ数とコードワード2のレイヤ数が異なる場合、差分は1としてよい。このとき、第1のRIと第2のRIの合計が4の場合、第1のRIは2で第2のRIは2である。第1のRIと第2のRIの合計が3の場合、第1のRIは1で第2のRIは2である。第1のRIと第2のRIの合計が2の場合、第1のRIは1で第2のRIは1である。 When the sum of the first RI and the second RI is greater than 4, the number of layers of codeword number 1 is equal to or smaller than the number of layers of codeword number 2, and thus the first RI is equal to the second RI. Same or smaller. That is, when the RI is reported, the first CRI and the second CRI are not the first CRI if the received power (RSRP) / the received quality (RSRQ) is better, but the first CRI or the first CRI depending on the value of the RI. A second CRI is determined. When the number of layers of codeword 1 is different from the number of layers of codeword 2, the difference is 1. That is, when the total of the first RI and the second RI is 5, the first RI is 2 and the second RI is 3. When the total of the first RI and the second RI is 6, the first RI is 3 and the second RI is 3. If the sum of the first RI and the second RI is 7, the first RI is 3 and the second RI is 4. If the sum of the first RI and the second RI is 8, the first RI is 4 and the second RI is 4. If the difference between the first RI and the second RI is greater than 1, the terminal device may report the CSI of either the first CRI or the second CRI, for example, the one with the larger RI value. . Note that, because of the above rule, the terminal device may report the total value of the first RI and the second RI without reporting the first RI and the second RI separately. When the group-based beam reporting is set to ON and the report amount is set to CRI, RI, CQI or CRI, RI, PMI (PMI-1), CQI, the first CRI and the second CRI are used. May have different codewords. At this time, the first CQI and the second CQI are reported as the CQI. However, the total of the first RI and the second RI is 8 or less, and the RI in one CRI is 4 or less. When different codewords are used for the first CRI and the second CRI, the base station apparatus may instruct the terminal apparatus. In addition, even when the first CRI and the second CRI use different codewords, the difference may be set to 1 when the number of layers of the codeword 1 and the number of layers of the codeword 2 are different. At this time, if the total of the first RI and the second RI is 4, the first RI is 2 and the second RI is 2. If the sum of the first RI and the second RI is 3, the first RI is 1 and the second RI is 2. If the sum of the first RI and the second RI is 2, the first RI is 1 and the second RI is 1.
 また、CSI報告の優先度は、RIが大きい方のCRIを高く設定する。つまり、本実施形態では第2のCRIは第2のCRIよりも優先度が高い。例えば、PUCCHの情報量が不足する場合、第2のCRI及び第2のCRIで求めたRI/PMI/CQIを報告し、第1のCRI及び第1のCRIで求めたRI/PMI/CQIはドロップする。なお、いずれか一方のCRIでCQIが報告される場合、第1のRIと第2のRIの合計が4以下の場合でも、一方のCRIで求めたCQIが報告される。 Also, the priority of CSI reporting is set higher for CRIs with higher RI. That is, in the present embodiment, the second CRI has a higher priority than the second CRI. For example, when the information amount of the PUCCH is insufficient, the second CRI and the RI / PMI / CQI obtained by the second CRI are reported, and the first CRI and the RI / PMI / CQI obtained by the first CRI are: Drop. When a CQI is reported by one of the CRIs, the CQI determined by one of the CRIs is reported even if the total of the first RI and the second RI is 4 or less.
 また、基地局装置が推定できる下りリンクのプリコーディングの精度が上がると、例えば固有モード伝送によってMIMOチャネル行列を対角化することができる。このとき、対角化されたチャネルの各々に対して、電力割当て、リンクアダプテーションなど適切なパラメータを設定することで、スループットを向上させることができる。例えば、CQIはコードワード(トランスポートブロック)毎にレポートされるため、CSIレポートで複数のコードワードのCQIをレポートすることでスループットを向上させることができる。CSIレポート設定で、グループベースドビームレポーティングがOFFで、レポート毎のCQI数が2で、タイプ1コードブックが設定されている場合、端末装置は、RIが4以下の場合コードワード数は1、5以上の場合コードワード数は2としてCSIレポートする。CSIレポート設定で、グループベースドビームレポーティングがOFFで、レポート毎のCQI数が2で、低ランクのレポート毎のCQI数が2で、タイプ1コードブックが設定されている場合、端末装置は、RIが2以上の場合でコードワード数は2としてCSIレポートする。CSIレポート設定で、グループベースドビームレポーティングがOFFで、レポート毎のCQI数が2で、タイプ2コードブックが設定されている場合、端末装置は、RIが2以上の場合でコードワード数が2としてCSIレポートする。CSIレポート設定で、タイプ2コードブックが設定されて、レポート毎のCQI数が1の場合、端末装置は、1つのコードワードのCQIを含むCSIレポートする。また、PMIをレポートしないCSIレポート設定の場合も同様に、CSIレポート設定で、レポート毎のCQI数が2、低ランクのレポート毎のCQI数が2と設定された場合、端末装置はRIが2以上の場合に2つのコードワードの各々のCQIを含むCSIレポートする。 と Also, when the accuracy of downlink precoding that can be estimated by the base station apparatus increases, the MIMO channel matrix can be diagonalized by eigenmode transmission, for example. At this time, throughput can be improved by setting appropriate parameters such as power allocation and link adaptation for each of the diagonalized channels. For example, since the CQI is reported for each codeword (transport block), it is possible to improve the throughput by reporting the CQIs of a plurality of codewords in the CSI report. In the CSI report setting, when group-based beam reporting is OFF, the number of CQIs for each report is 2, and the type 1 codebook is set, the terminal device sets the number of codewords to 1,5 when the RI is 4 or less. In the above case, the codeword number is set to 2 and the CSI report is made. In the CSI report setting, when the group-based beam reporting is OFF, the number of CQIs for each report is 2, the number of CQIs for each low-ranked report is 2 and the type 1 codebook is set, the terminal device performs the RI Is 2 or more, and the number of codewords is 2, and a CSI report is made. In the CSI report setting, when the group-based beam reporting is OFF, the number of CQIs per report is 2, and the type 2 codebook is set, the terminal apparatus sets the codeword number to 2 when the RI is 2 or more. Report CSI. When the type 2 codebook is set in the CSI report setting and the number of CQIs for each report is 1, the terminal device performs a CSI report including the CQI of one codeword. Similarly, in the case of the CSI report setting that does not report the PMI, if the number of CQIs for each report is set to 2 and the number of CQIs for each low-rank report is set to 2 in the CSI report setting, the terminal device sets the RI to 2 In the above case, a CSI report including the CQI of each of the two codewords is provided.
 なお、複数コードワードのCQIを報告する場合、基地局装置はコードワード毎に参照するCQIテーブルをレポート設定に含めてもよい。このとき端末装置は、コードワード毎に異なるCQIテーブルを参照してCQIを求めることができる。例えば、基地局装置は、品質が良いことが想定されるコードワード0には第2のCQIテーブルを設定し、コードワード1には第1のCQIテーブルを設定することができる。これにより、各コードワードに対して、適切な適応制御が可能となるため、スループットや周波数利用効率を向上させることができる。 When reporting CQIs of a plurality of codewords, the base station apparatus may include a CQI table to be referred for each codeword in the report settings. At this time, the terminal device can determine the CQI by referring to a different CQI table for each codeword. For example, the base station apparatus can set the second CQI table for codeword 0, which is assumed to be of high quality, and set the first CQI table for codeword 1. As a result, appropriate adaptive control can be performed on each codeword, so that throughput and frequency use efficiency can be improved.
 PUSCHでCSIが報告される場合、又はPUCCHでサブバンドCSIが報告される場合、CSIは2つのパートに分割されて報告される。また、CSI報告は、タイプ1CSI報告とタイプ2CSI報告がある。タイプ1CSI報告では、タイプ1コードブックに基づくCSI(タイプ1CSIとも呼ぶ)が報告される。タイプ2CSI報告では、タイプ2コードブックに基づくCSI(タイプ2CSIとも呼ぶ)が報告される。また、2つのパートを第1のパート(パート1、CSIパート1)、第2のパート(パート2、CSIパート2)とも呼ぶ。なお、第1のパートは第2のパートよりもCSI報告の優先度は高い。例えば、RIが4以下の場合、第1のパートは第1のRIと第2のRIの合計(又は第2のRI)、第2のCRI、第1のCRI及び第2のCRIに基づくCQI(又は第2のCQI)の一部又は全部を含む。第2のパートは第1のCRI、第1のRI、第1のCQI、第1のPMI、第2のPMIの一部又は全部を含む。RIが4よりも大きい場合、第1のパートは、第1のRIと第2のRIの合計(又は第2のRI)、第2のCRI、第2のCQIの一部又は全部を含む。第2のパートは、第1のCRI、第1のRI、第1のCQI、第1のPMI、第2のPMIの一部又は全部を含む。なお、CSIを3つに分割しても良い。3つ目のパートを第3のパート(パート3、CSIパート3)とも呼ぶ。第3のパートは第2のパートよりも優先度は低い。このとき、第1のパートは第1のRIと第2のRIの合計(又は第2のRI)、第2のCRI、第1のCRI及び第2のCRIに基づくCQI(又は第2のCQI)の一部又は全部を含む。第2のパートは第1のCRI、第1のRI、第1のCQIの一部又は全部を含む。第3のパートは、第1のPMI、第2のPMIの一部又は全部を含む。 When CSI is reported on PUSCH or subband CSI is reported on PUCCH, CSI is divided into two parts and reported. The CSI report includes a type 1 CSI report and a type 2 CSI report. In the type 1 CSI report, CSI based on the type 1 codebook (also referred to as type 1 CSI) is reported. In the type 2 CSI report, CSI based on the type 2 codebook (also referred to as type 2 CSI) is reported. The two parts are also referred to as a first part (part 1, CSI part 1) and a second part (part 2, CSI part 2). Note that the first part has a higher priority for CSI reporting than the second part. For example, if RI is 4 or less, the first part is the sum of the first RI and the second RI (or the second RI), the second CRI, the CQI based on the first CRI and the second CRI. (Or part or all of the second CQI). The second part includes a part or all of the first CRI, the first RI, the first CQI, the first PMI, and the second PMI. If the RI is greater than four, the first part includes the sum of the first RI and the second RI (or a second RI), a second CRI, some or all of a second CQI. The second part includes a part or all of the first CRI, the first RI, the first CQI, the first PMI, and the second PMI. Note that the CSI may be divided into three. The third part is also called a third part (part 3, CSI part 3). The third part has a lower priority than the second part. At this time, the first part is a sum of the first RI and the second RI (or a second RI), a second CRI, a CQI based on the first CRI and the second CRI (or a second CQI). ). The second part includes the first CRI, the first RI, and some or all of the first CQI. The third part includes part or all of the first PMI and the second PMI.
 なお、端末装置は、第1のCRIに基づくCSIと第2のCRIに基づくCSIの各々で2つのパートに分割して報告しても良い。なお、第1のCRIに基づくCSIの2つのパートを第1のパート1、第1のパート2とも呼ぶ。また、第2のCRIに基づくCSIの2つのパートを第2のパート1、第2のパート2とも呼ぶ。なお、第1のパート1は、第1のCRI、第1のRI、第1のCQIの一部又は全部を含む。また、第1のパート2は、第1のPMIを含む。また、第2のパート1は、第2のCRI、第2のRI、第2のCQIの一部又は全部を含む。また、第2のパート2は、第2のPMIを含む。なお、CSIの優先度は、第2のパート1、第1のパート1、第2のパート2、第1のパート2の順に高く設定することができる。このとき、端末装置は第2のCRI及び第1のCRIで長周期(変化の少ない)なCSIを報告することになり、基地局装置及び端末装置は第1のCRI及び第2のCRIに関する最低限のパラメータを用いて通信することができる。また、CSIの優先度は、第2のパート1、第2のパート2、第1のパート1、第1のパート2の順に高く設定することができる。このとき、端末装置は第2のCRIにおける完全なCSIを優先的に報告することで、基地局装置及び端末装置は第2のCRIに関する詳細なパラメータを用いて通信することができる。 Note that the terminal device may divide the CSI based on the first CRI and the CSI based on the second CRI into two parts and report the two parts. The two parts of the CSI based on the first CRI are also referred to as a first part 1 and a first part 2. The two parts of the CSI based on the second CRI are also referred to as a second part 1 and a second part 2. Note that the first part 1 includes a part or all of the first CRI, the first RI, and the first CQI. Also, the first part 2 includes a first PMI. Also, the second part 1 includes a part or all of the second CRI, the second RI, and the second CQI. Also, the second part 2 includes a second PMI. The priority of CSI can be set higher in the order of the second part 1, the first part 1, the second part 2, and the first part 2. At this time, the terminal device reports a long-period (with little change) CSI in the second CRI and the first CRI, and the base station device and the terminal device transmit at least the first CRI and the second CRI. Communication can be performed using limited parameters. Also, the priority of CSI can be set higher in the order of the second part 1, the second part 2, the first part 1, and the first part 2. At this time, the terminal device reports the complete CSI in the second CRI with priority, so that the base station device and the terminal device can communicate using detailed parameters related to the second CRI.
 なお、第1のRIと第2のRIが4以下で、第1のCRIと第2のCRIで別々のコードワードなる場合、端末装置は、第1のCRIに基づくCSIと第2のCRIに基づくCSIの両方又は一方が報告されることを示す情報を報告する。なお、第1のCRIに基づくCSIと第2のCRIに基づくCSIの両方又は一方が報告されることを示す情報は、CSIの第1のパートに含まれる。なお、第1のCRIに基づくCSIと第2のCRIに基づくCSIの両方又は一方が報告されることを示す情報は、CSIの第2のパートに第1のCRIが含まれるか否かを示しても良い。 If the first RI and the second RI are 4 or less and the first CRI and the second CRI are different codewords, the terminal device determines the CSI based on the first CRI and the second CRI. Report information indicating that one or both of the based CSIs will be reported. Note that information indicating that both or one of the CSI based on the first CRI and the CSI based on the second CRI is reported is included in the first part of the CSI. The information indicating that the CSI based on the first CRI and / or the CSI based on the second CRI is reported indicates whether the first CRI is included in the second part of the CSI. May be.
 また、タイプ2CSI報告において、レポートするコードワード(トランスポートブロック)数が1の場合、第1のパートはRI、CQI、レイヤ毎のタイプ2CSIの非ゼロのワイドバンド振幅係数の数を示す情報の一部又は全部を含む。第2のパートは、タイプ2CSIのPMIを含む。タイプ2CSI報告において、レポートするコードワード(トランスポートブロック)数が2の場合、第1のパートはRI、コードワード0のCQI、レイヤ毎のタイプ2CSIの非ゼロのワイドバンド振幅係数の数を示す情報の一部又は全部を含む。第2のパートは、コードワード1のCQI、タイプ2CSIのPMIの一部又は全部を含む。なお、レポートするコードワード(トランスポートブロック)数が2の場合、3つのパートに分割されてもよく、この場合、第1のパートはRI、コードワード0のCQI、レイヤ毎のタイプ2CSIの非ゼロのワイドバンド振幅係数の数を示す情報を含み、第2のパートはコードワード1のCQIを含み、第3のパートはタイプ2CSIのPMIを含む。なお、タイプ1CSI報告において、低ランクにおけるレポート毎のCQI数が2の場合、RIが2以上の場合、第2のパートはコードワード1のCQIを含む。 In the type 2 CSI report, if the number of codewords (transport blocks) to be reported is 1, the first part is information of RI, CQI, and information indicating the number of non-zero wideband amplitude coefficients of type 2 CSI for each layer. Including some or all. The second part includes the PMI of type 2 CSI. In the type 2 CSI report, if the number of codewords (transport blocks) to be reported is 2, the first part indicates the RI, the CQI of codeword 0, and the number of non-zero wideband amplitude coefficients of type 2 CSI for each layer. Contains some or all of the information. The second part includes the CQI of codeword 1, part or all of the PMI of type 2 CSI. When the number of codewords (transport blocks) to be reported is 2, the codeword may be divided into three parts. In this case, the first part includes RI, CQI of codeword 0, and non-type 2 CSI of each layer. The second part contains the CQI of codeword 1 and the third part contains the PMI of type 2 CSI, including information indicating the number of zero wideband amplitude coefficients. In the type 1 CSI report, when the number of CQIs per report in the low rank is 2, when the RI is 2 or more, the second part includes the CQI of codeword 1.
 なお、タイプ2CSI報告において、コードワード1のCQIを示す情報は、コードワード0のCQIを示す情報に対する差分情報であってもよい。この場合、コードワード1のCQIを示す情報のビット数は、コードワード0のCQIを示す情報のビット数より少ない。 In the type 2 CSI report, the information indicating the CQI of codeword 1 may be difference information from the information indicating the CQI of codeword 0. In this case, the number of bits of information indicating the CQI of codeword 1 is smaller than the number of bits of information indicating the CQI of codeword 0.
 なお、コードワード1のCQIを示す情報の少なくとも一部が、第1のパートに含まれてもよい。この場合、第2のパートにコードワード1のCQIは含まれないこともできる。例えば、コードワード0のCQIを示す情報が配置されるビットフィールドの一部に、コードワード1のCQIを示す情報が配置されることができる。当該のビットフィールドは単純に2分割されることができるし、コードワード0のCQIを示す情報に対して3ビット割り当てられ、コードワード1のCQIを示す情報に対して1ビットが割り当てられるように、異なるビット長で分割されることができる。当該のビットフィールドを分割する場合、コードワード0およびコードワード1のCQIを示す情報が参照するCQIテーブルの要素は、上位レイヤのシグナリングによって通知されることができる。例えば、ビットマップによって、コードワード0およびコードワード1のCQIを示す情報が参照するCQIテーブルの各要素を指定することができる。すなわち、当該のCQIテーブルが16個の要素を備えている場合、16ビットのビットマップ情報によって、16個の要素のいずれが有効であるかが示されることができる。当然、コードワード1のCQIを示す情報は、コードワード0のCQIを示す情報の差分情報であってもよい。 Note that at least a part of the information indicating the CQI of the codeword 1 may be included in the first part. In this case, the CQI of codeword 1 may not be included in the second part. For example, information indicating the CQI of codeword 1 can be arranged in a part of a bit field in which information indicating the CQI of codeword 0 is arranged. The bit field can be simply divided into two, and three bits are allocated to the information indicating the CQI of the codeword 0, and one bit is allocated to the information indicating the CQI of the codeword 1. , Can be divided by different bit lengths. When the bit field is divided, the elements of the CQI table referred to by the information indicating the CQIs of codeword 0 and codeword 1 can be notified by higher layer signaling. For example, each element of the CQI table referred to by the information indicating the CQI of codeword 0 and codeword 1 can be specified by the bitmap. That is, when the CQI table includes 16 elements, 16 bits of bitmap information can indicate which of the 16 elements is valid. Naturally, the information indicating the CQI of the codeword 1 may be difference information of the information indicating the CQI of the codeword 0.
 なお、端末装置は、コードワード1のCQIの報告が指示された場合、受信したNZP CSI-RS(もしくはCSI-RSの設定情報によって設定されているCSI-RSリソースに配置されたNZP CSI-RS)の少なくとも一部同士はQCLではないと解釈することができる。また、端末装置は受信したNZP CSI-RS(同上)が、QCLと設定されている(もしくは同じ対象に対してQCLと設定されている)場合、コードワード1のCQIの報告は行わないこともできる。 When the terminal device is instructed to report the CQI of codeword 1, the terminal device receives the NZP @ CSI-RS (or the NZP @ CSI-RS allocated to the CSI-RS resource set by the CSI-RS setting information). ) Can be interpreted as not being a QCL. In addition, the terminal device may not report the CQI of codeword 1 when the received NZP @ CSI-RS (same as above) is set as QCL (or is set as QCL for the same target). it can.
 また、PDSCH又はPUSCHのためのDMRSは、DMRS設定タイプ1(第1のDMRS設定タイプ)又はDMRS設定タイプ2(第2のDMRS設定タイプ)が設定される。DMRS設定タイプ1は、8DMRSアンテナポートまで対応し、DMRS設定タイプ2は、12DMRSアンテナポートまで対応する。またDMRSは、直交カバーコード(Orthogonal Cover Code; OCC)によりコード多重(Code Division Multiplexing; CDM)される。OCCのコード長は4であり、周波数方向に長さ2、時間方向に長さ2を持つ。OCCで4DMRSアンテナポートが多重される。なお、CDMされる4DMRSアンテナポートをCDMグループ(DMRS CDMグループ)とも呼ぶ。この場合、DMRS設定タイプ1は2つのCDMグループを持ち、DMRS設定タイプ2は3つのCDMグループを持つ。異なるCDMグループのDMRSは、直交するリソースに配置される。なおDMRS設定タイプ1の2つのCDMグループをCDMグループ0(第1のCDMグループ)、CDMグループ1(第2のCDMグループ)とも呼ぶ。また、DMRS設定タイプ2の3つのCDMグループをCDMグループ0(第1のCDMグループ)、CDMグループ1(第2のCDMグループ)、CDMグループ2(第3のCDMグループ)とも呼ぶ。DMRS設定タイプ1の場合、CDMグループ0は、DMRSアンテナポート1000、1001、1004、1005を含み、CDMグループ1は、DMRSアンテナポート1002、1003、1006、1007を含む。DMRS設定タイプ2の場合、CDMグループ0は、DMRSアンテナポート1000、1001、1006、1007を含み、CDMグループ1は、DMRSアンテナポート1002、1003、1008、1009を含み、CDMグループ2は、DMRSアンテナポート1004、1005、1010、1011を含む。なお、DMRSに関連するCDMグループをDMRS CDMグループとも呼ぶ。 In addition, DMRS for PDSCH or PUSCH is set to DMRS configuration type 1 (first DMRS configuration type) or DMRS configuration type 2 (second DMRS configuration type). DMRS setting type 1 supports up to 8 DMRS antenna ports, and DMRS setting type 2 supports up to 12 DMRS antenna ports. The DMRS is code-multiplexed (Code Division Multiplexing; CDM) with an orthogonal cover code (Orthogonal Cover Code; OCC). The OCC code length is 4, having a length of 2 in the frequency direction and a length of 2 in the time direction. 4DMRS antenna ports are multiplexed in OCC. The 4DMRS antenna ports subjected to CDM are also called a CDM group (DMRSDMCDM group). In this case, DMRS configuration type 1 has two CDM groups, and DMRS configuration type 2 has three CDM groups. DMRSs of different CDM groups are arranged in orthogonal resources. Note that the two CDM groups of DMRS setting type 1 are also referred to as CDM group 0 (first CDM group) and CDM group 1 (second CDM group). The three CDM groups of DMRS setting type 2 are also referred to as CDM group 0 (first CDM group), CDM group 1 (second CDM group), and CDM group 2 (third CDM group). In the case of DMRS setting type 1, CDM group 0 includes DMRS antenna ports 1000, 1001, 1004, and 1005, and CDM group 1 includes DMRS antenna ports 1002, 1003, 1006, and 1007. For DMRS configuration type 2, CDM group 0 includes DMRS antenna ports 1000, 1001, 1006, 1007, CDM group 1 includes DMRS antenna ports 1002, 1003, 1008, 1009, and CDM group 2 includes DMRS antenna ports. Ports 1004, 1005, 1010, and 1011 are included. Note that a CDM group related to DMRS is also called a DMRS @ CDM group.
 またPDSCH又はPUSCHのためのDMRSアンテナポート番号及びデータのないDMRS CDMグループ数は、DCIで指示される。端末装置は、指示されたDMRSアンテナポート番号の数で、DMRSアンテナポート数を知ることができる。また、データのないDMRS CDMグループ数は、関連するCDMグループのDMRSが配置されるリソースにはPDSCHは配置されないことを示す。なお、データのないDMRS CDMグループ数が1の場合、参照するCDMグループはCDMグループ0であり、データのないDMRS CDMグループ数が2の場合、参照するCDMグループはCDMグループ0及びCDMグループ1であり、データのないDMRS CDMグループ数が3の場合、参照するCDMグループはCDMグループ0、CDMグループ1及びCDMグループ2である。 {The DMRS antenna port number for PDSCH or PUSCH and DMRS without data} The number of CDM groups is indicated by DCI. The terminal device can know the number of DMRS antenna ports from the number of designated DMRS antenna port numbers. Further, the number of DMRS / CDM groups without data indicates that the PDSCH is not allocated to the resource where the DMRS of the related CDM group is allocated. When the number of DMRS @ CDM groups without data is 1, the CDM group to be referred to is CDM group 0, and when the number of DMRS @ CDM groups without data is 2, the CDM groups to be referred to are CDM group 0 and CDM group 1. If the number of DMRSs without data and the number of CDM groups are 3, the CDM groups to be referred to are CDM group 0, CDM group 1, and CDM group 2.
 なお、例えばMU-MIMO(Multi User - Multiple Input Multiple Output)伝送する場合、PDSCH又はPUSCHのためのDMRSは、PDSCHと電力が異なる可能性がある。例えば、基地局装置が2つの端末装置の各々に対し、4レイヤのPDSCHを空間多重して送信したとする。つまり基地局装置は合計で8レイヤのPDSCHを空間多重して送信する。この場合、基地局装置は、一方の端末装置にはCDMグループ0のDMRSアンテナポート番号を指示し、他方の端末装置にはCDMグループ1のDMRSアンテナポート番号を指示する。また、基地局装置は、2つの端末装置に対して、データのないDMRS CDMグループ数は2と指示する。このとき、DMRSの空間多重数は4に対し、PDSCHの空間多重数は8となり、DMRSとPDSCHの電力比(オフセット)は2倍となる(3dB異なる)。また、例えば、基地局装置が3つの端末装置の各々に対し、4レイヤのPDSCHを空間多重して送信したとする。つまり基地局装置は合計で12レイヤのPDSCHを空間多重して送信する。この場合、基地局装置は、3つの端末装置に対して、それぞれCDMグループ0、CDMグループ1、CDMグループ2のDMRSアンテナポート番号を指示する。また基地局装置は、3つの端末装置に対して、データのないDMRS CDMグループ数は3と指示する。このとき、DMRSの空間多重数は4に対し、PDSCHの空間多重数は12となり、DMRSとPDSCHの電力比は3倍となる(4.77dB異なる)。従って、基地局装置又は端末装置は、CDMグループ数倍のDMRSとPDSCHの電力比を考慮して、DMRS及びPDSCHを送信する。また、基地局装置又は端末装置は、CDMグループ数倍のDMRSとPDSCHの電力比を考慮して、PDSCHを復調(復号)する。なお、空間多重数が多いSU-MIMO(Single user MIMO)伝送の場合も同様にCDMグループ数倍のDMRSとPDSCHの電力比が考慮される。 For example, in the case of MU-MIMO (Multi User-Multiple Input Multiple Output) transmission, the power of the DMRS for the PDSCH or PUSCH may be different from that of the PDSCH. For example, suppose that the base station apparatus spatially multiplexes and transmits a 4-layer PDSCH to each of two terminal apparatuses. That is, the base station apparatus spatially multiplexes and transmits PDSCH of eight layers in total. In this case, the base station device indicates the DMRS antenna port number of CDM group 0 to one terminal device and the DMRS antenna port number of CDM group 1 to the other terminal device. Further, the base station apparatus instructs the two terminal apparatuses that the number of DMRS CDM groups without data is two. At this time, the number of spatial multiplexing of the DMRS is 4, while the number of spatial multiplexing of the PDSCH is 8, and the power ratio (offset) between the DMRS and the PDSCH is doubled (different by 3 dB). Also, for example, it is assumed that the base station apparatus spatially multiplexes and transmits the four-layer PDSCH to each of the three terminal apparatuses. That is, the base station apparatus spatially multiplexes and transmits the PDSCH of 12 layers in total. In this case, the base station device indicates the DMRS antenna port numbers of CDM group 0, CDM group 1, and CDM group 2 to the three terminal devices. Further, the base station apparatus instructs three terminal apparatuses that the number of DMRS CDM groups without data is three. At this time, the spatial multiplexing number of the DMRS is 4, while the spatial multiplexing number of the PDSCH is 12, and the power ratio of the DMRS to the PDSCH is tripled (differs by 4.77 dB). Therefore, the base station apparatus or the terminal apparatus transmits the DMRS and the PDSCH in consideration of the power ratio of the DMRS and the PDSCH which is several times the number of the CDM groups. Further, the base station apparatus or the terminal apparatus demodulates (decodes) the PDSCH in consideration of the power ratio of the DMRS and the PDSCH which is several times the number of the CDM groups. Similarly, in the case of SU-MIMO (Single @ user @ MIMO) transmission with a large number of spatial multiplexing, the power ratio between DMRS and PDSCH, which is a multiple of the number of CDM groups, is also considered.
 ただし、端末装置が複数の基地局装置(送受信ポイント)と通信する場合、DMRSとPDSCHの電力比は上記と異なってもよい。例えば、端末装置が2つの基地局装置(送受信ポイント)と通信する場合、各々の基地局装置から4レイヤのPDSCHを空間多重して送信すると仮定する。この場合、一方の基地局装置又は2つの基地局装置から、データのないDMRS CDMグループ数は2と指示される。しかしながら、各々の基地局装置から送信される、DMRSの空間多重数とPDSCHの空間多重数は共に4であるため、DMRSとPDSCHの電力比は1(0dB)となり、DMRSとPDSCHの電力比は考慮しなくてよい。従って、端末装置は、DMRSとPDSCHの電力比を考慮してPDSCHを復調(復号)するか否かを知る(判断する)必要がある。なお、端末装置が複数の基地局装置(送受信ポイント)と通信する場合、各々の基地局装置(送受信ポイント)がデータのないDMRS CDMグループ数に従ってPDSCHの電力を下げて送信しても良いが、この場合、信頼性やスループットが低下する。 However, when the terminal device communicates with a plurality of base station devices (transmission / reception points), the power ratio between DMRS and PDSCH may be different from the above. For example, when a terminal device communicates with two base station devices (transmission / reception points), it is assumed that each base station device spatially multiplexes and transmits PDSCH of four layers. In this case, one or two base station apparatuses indicate that the number of DMRS / CDM groups without data is two. However, since the number of spatial multiplexes of DMRS and the number of spatial multiplexes of PDSCH both transmitted from each base station apparatus are 4, the power ratio between DMRS and PDSCH is 1 (0 dB), and the power ratio between DMRS and PDSCH is You don't need to consider it. Therefore, the terminal device needs to know (determine) whether to demodulate (decode) the PDSCH in consideration of the power ratio between the DMRS and the PDSCH. When the terminal device communicates with a plurality of base station devices (transmission / reception points), each base station device (transmission / reception point) may transmit the PDSCH with the power of PDSCH reduced according to the number of DMRS CDM groups without data. In this case, reliability and throughput decrease.
 基地局装置は、DMRSとPDSCHの電力比又はDMRSとPDSCHの電力比を考慮してPDSCHを復調(復号)するか否かを示す情報を端末装置に送信することができる。この場合、端末装置は、受信したDMRSとPDSCHの電力比又はDMRSとPDSCHの電力比を考慮してPDSCHを復調(復号)するか否かを示す情報に従って、PDSCHを復調(復号)することができる。 The base station apparatus can transmit information indicating whether to demodulate (decode) the PDSCH in consideration of the power ratio between DMRS and PDSCH or the power ratio between DMRS and PDSCH to the terminal apparatus. In this case, the terminal apparatus can demodulate (decode) the PDSCH according to the information indicating whether to demodulate (decode) the PDSCH in consideration of the received power ratio of DMRS and PDSCH or the power ratio of DMRS and PDSCH. it can.
 また、端末装置は、DMRSポートグループの設定から、DMRSとPDSCHの電力比を判断することもできる。例えば、DMRS設定タイプ1において、DMRSポートグループ1はCDMグループ0、つまりDMRSポート1000、1001、1004、1005が設定(関連付け)され、DMRSポートグループ2はCDMグループ1、つまりDMRSポート1002、1003、1006、1007が設定(関連付け)されているとする。このとき、2つのDMRSポートグループに設定されているDMRSアンテナポート番号がDCIで指示されている場合、データのないDMRS CDMグループ数は2が示されていても、端末装置は、DMRSとPDSCHの電力比は1(0dB)としてPDSCHを復調(復号)する。また、1つのDMRSポートグループのみに設定されているDMRSアンテナポート番号がDCIで指示されている場合、端末装置は、DMRSとPDSCHの電力比は1(0dB)としてPDSCHを復調(復号)する。 端末 The terminal device can also determine the power ratio between DMRS and PDSCH from the setting of the DMRS port group. For example, in the DMRS setting type 1, the DMRS port group 1 is set (associated) with the CDM group 0, that is, the DMRS ports 1000, 1001, 1004, and 1005, and the DMRS port group 2 is set with the CDM group 1, that is, the DMRS ports 1002, 1003, It is assumed that 1006 and 1007 are set (associated). At this time, if the DMRS antenna port numbers set in the two DMRS port groups are indicated by DCI, even if the number of DMRS CDM groups without data indicates 2, the terminal device transmits the DMRS and the PDSCH The PDSCH is demodulated (decoded) with the power ratio set to 1 (0 dB). Further, when the DMRS antenna port number set in only one DMRS port group is indicated by DCI, the terminal device demodulates (decodes) the PDSCH with the power ratio between DMRS and PDSCH being 1 (0 dB).
 また、端末装置は、TCIによって、DMRSとPDSCHの電力比を判断することもできる。端末装置は、受信したTCIが2つのDMRSポートグループに関する設定である場合、データのないDMRS CDMグループ数が2又は3であったとしても、DMRSとPDSCHの電力比は1(0dB)としてPDSCHを復調(復号)する。それ以外の場合、端末装置は、データのないDMRS CDMグループ数に従って、DMRSとPDSCHの電力比を求める。 端末 Also, the terminal device can determine the power ratio between DMRS and PDSCH based on TCI. If the received TCI is a setting related to two DMRS port groups, the terminal sets the PDSCH to 1 (0 dB) as the power ratio between the DMRS and the PDSCH even if the number of DMRSs without CDM CDM groups is 2 or 3. Demodulate (decode). In other cases, the terminal device obtains the power ratio between DMRS and PDSCH according to the number of DMRS CDM groups without data.
 また、DMRS系列の初期値は、少なくともNIDとSCIDに基づいて算出される。SCIDは高々2通り設定され、0又は1で示される。NIDはSCIDと関連付けられて上位層の信号で設定される。例えば、SCID=0の場合のNID、SCID=1の場合のNIDが設定される。もし、NID又はSCIDが設定されていない場合は、SCID=0で、NIDは物理セルIDとなる。SCIDはDCIに含まれる。またSCIDは、DMRSとPDSCHの電力比を考慮してPDSCHを復調(復号)するか否かを示してもよい。例えば、SCID=0の場合、端末装置は、データのないDMRS CDMグループ数に従ってDMRSとPDSCHの電力比を考慮してPDSCHを復調(復号)し、SCID=1の場合、DMRSとPDSCHの電力比を考慮せずにPDSCHを復調(復号)する。また、SCIDとDMRSポートグループが関連付けられてもよい。例えば、DMRSポートグループ1に関連するDMRSはSCID=0で系列が生成され、DMRSポートグループ2に関連するDMRSはSCID=1で系列が生成される。 初期 Also, the initial value of the DMRS sequence is calculated based on at least the NID and the SCID. The SCID is set at most two ways and is indicated by 0 or 1. The NID is set by an upper layer signal in association with the SCID. For example, an NID when SCID = 0 and an NID when SCID = 1 are set. If NID or SCID is not set, SCID = 0 and NID is a physical cell ID. The SCID is included in DCI. The SCID may indicate whether to demodulate (decode) the PDSCH in consideration of the power ratio between the DMRS and the PDSCH. For example, when SCID = 0, the terminal device demodulates (decodes) the PDSCH in consideration of the power ratio of the DMRS and the PDSCH according to the number of DMRSs without CDM CDM groups, and when the SCID = 1, the power ratio of the DMRS and the PDSCH Is demodulated (decoded) without taking into account. Further, the SCID and the DMRS port group may be associated with each other. For example, a sequence is generated with SCID = 0 for DMRS related to DMRS port group 1 and a sequence is generated with SCID = 1 for DMRS related to DMRS port group 2.
 なお、複数の基地局装置(送受信ポイント)と端末装置が通信する場合に、各々の基地局装置が同じスロットでPDCCHをその端末装置に送信する場合、各々の基地局装置は、異なる端末装置をMU-MIMOによる空間多重できる。例えば、基地局装置3AからPDCCH1(DCI1)を端末装置4Aに送信し、基地局装置5AからPDCCH2(DCI2)を端末装置4Aに送信する場合を考える。なお、PDCCH1とPDCCH2は同じスロットで送信される。また、図示していないが、基地局装置5Aは端末装置4Aと端末装置4Bを空間多重しているとする。また、DMRS設定タイプ2を仮定し、基地局装置3Aは、端末装置4Aに対し、DMRSポートグループ1としてDMRSポート1000、1001、1006、1007を設定し、DMRSポートグループ2としてDMRSポート1002、1003、1008、1009を設定するとする。またDCI1に含まれるDMRSポート番号は1000、1001、1006、1007で、データのないCDMグループ数は2とする。またDCI1に含まれるDMRSポート番号は1002、1003、1008、1009で、データのないCDMグループ数は3とする。このとき、基地局装置5AはDMRSポート番号1004、1005、1010、1011を用いて端末装置4Bと通信する。このとき、端末装置4Aは、DCI1でDMRSポートグループ1のDMRSが示され、DCI2でDMRSポートグループ2のDMRSが示されていることがわかる。従って、DCI1で示された2つのデータのないDMRS CDMグループが自装置宛の送信に用いられているため、DCI1で示されるDMRS DMRSポート1000、1001、1006、1007と対応するPDSCHとの電力比は1(0dB)と判断できる。また、DCI2で示される3つのデータのないCDMグループのうち、2つのデータのないCDMグループが自装置宛の送信に用いられているため、DCI2で示されるDMRSポート1002、1003、1008、1009と対応するPDSCHとの電力比は2(3dB)と判断できる。別の言い方では、端末装置は、同じスロットで2つのPDCCHを受信する場合、一方のDCIで示されたデータのないDMRS CDMグループ数から1を引いた数を考慮して、DMRSとPDSCHの電力比を判断することができる。 When a plurality of base station apparatuses (transmission / reception points) communicate with a terminal apparatus, when each base station apparatus transmits a PDCCH to the terminal apparatus in the same slot, each base station apparatus uses a different terminal apparatus. Spatial multiplexing by MU-MIMO is possible. For example, consider a case where PDCCH1 (DCI1) is transmitted from base station apparatus 3A to terminal apparatus 4A, and PDCCH2 (DCI2) is transmitted from base station apparatus 5A to terminal apparatus 4A. Note that PDCCH1 and PDCCH2 are transmitted in the same slot. Although not shown, it is assumed that base station apparatus 5A spatially multiplexes terminal apparatus 4A and terminal apparatus 4B. Also, assuming DMRS setting type 2, base station apparatus 3A sets DMRS ports 1000, 1001, 1006, and 1007 as DMRS port group 1 and sets DMRS ports 1002 and 1003 as DMRS port group 2 for terminal apparatus 4A. , 1008 and 1009 are set. The DMRS port numbers included in DCI1 are 1000, 1001, 1006, and 1007, and the number of CDM groups without data is two. The DMRS port numbers included in DCI1 are 1002, 1003, 1008, and 1009, and the number of CDM groups without data is three. At this time, the base station device 5A communicates with the terminal device 4B using the DMRS port numbers 1004, 1005, 1010, and 1011. At this time, the terminal device 4A understands that DCI1 indicates the DMRS of the DMRS port group 1 and DCI2 indicates the DMRS of the DMRS port group 2. Accordingly, since the two data-less DMRS CDM groups indicated by DCI1 are used for transmission to the own device, the power ratio between the DMRS DMRS ports 1000, 1001, 1006, 1007 indicated by DCI1 and the corresponding PDSCH Can be determined to be 1 (0 dB). Further, among the three CDM groups without data indicated by DCI2, the CDM groups without two data are used for transmission to the own device, so that DMRS ports 1002, 1003, 1008, and 1009 indicated by DCI2 It can be determined that the power ratio with the corresponding PDSCH is 2 (3 dB). In other words, when receiving two PDCCHs in the same slot, the terminal device considers the number of DMRSs without data indicated by one DCI the number of CDM groups minus one, and considers the power of DMRS and PDSCH The ratio can be determined.
 また、例えば、タイプ2コードブックやチャネル相反性(channel reciprocity)により、基地局装置が高精度な下りリンクのプリコーディングを知っている場合、コードワード(トランスポートブロック)間(又はレイヤ間)に異なる電力を割当てることにより、スループットを向上できる可能性がある。なお、本実施例では特に断りがない限り、コードワード0の通信品質はコードワード1よりも良いと仮定する。一般的に、通信品質の良いチャネルに多くの電力を割り当てるとチャネルキャパシティが向上することが知られている。従って、スループットを向上させたい場合、コードワード0に割り当てる電力を増やせばよい。ただし、本実施例に通信システムでは、帯域幅やレイヤ数が決まっている場合、1つのコードワードの最大データレートはMCSによって制限される。例えば、コードワード0の通信品質が非常に良い場合でもMCSの最大値を超えるデータレートは達成できない。この場合、MCS最大値を満たすコードワード0の余剰電力をコードワード1に割り当てれば、コードワード1のデータレートを向上させることができ、コードワード0及びコードワード1を合わせたデータレートを向上させることができる。従って、基地局装置は、コードワード0又はコードワード1の電力を上昇させて送信することができる。また、基地局装置は、端末装置がコードワード間の電力割当を変えたことを知るために、制御情報で端末装置に指示する。例えば、基地局装置は、コードワード間で電力割当を変える可能性がある場合、上位層の信号でコードワード間の電力割当情報を設定する。コードワード間の電力割当情報はコードワード0又はコードワード1の電力割当を示してもよい。コードワード0及びコードワード1のトータルが1に正規化されている場合、一方の電力割当がわかれば他方の電力割当はわかる。なお、コードワード間の電力割当情報はコードワード0又はコードワード1が等しい電力割当の場合を含んでも良い。なお、コードワード間の電力割当情報は複数の値(候補)が示されても良い。この場合、基地局装置はDCIで複数の値のうちの1つの値を指示する。また、DMRSのSCIDとコードワード間の電力割当情報が関連付けられても良い。例えば、上位層の信号で、SCID=0の場合とSCID=1の場合とで、異なるコードワード間の電力割当情報が設定されれば、DCIに含まれるSCIDで動的にコードワード間の電力割当情報が切り替えられる。 Also, for example, if the base station apparatus knows high-precision downlink precoding due to a type 2 codebook or channel reciprocity (channel @ reciprocity), the codeword (transport block) is used between codewords (transport blocks). By allocating different powers, throughput may be improved. In this embodiment, it is assumed that the communication quality of codeword 0 is better than that of codeword 1, unless otherwise specified. Generally, it is known that allocating a large amount of power to a channel with good communication quality improves channel capacity. Therefore, when it is desired to improve the throughput, the power allocated to the codeword 0 may be increased. However, in the communication system according to the present embodiment, when the bandwidth and the number of layers are determined, the maximum data rate of one codeword is limited by the MCS. For example, even when the communication quality of codeword 0 is very good, a data rate exceeding the maximum value of MCS cannot be achieved. In this case, if the surplus power of codeword 0 that satisfies the MCS maximum value is assigned to codeword 1, the data rate of codeword 1 can be improved, and the data rate of codeword 0 and codeword 1 combined can be improved. Can be done. Therefore, the base station apparatus can increase the power of codeword 0 or codeword 1 and transmit it. In addition, the base station apparatus instructs the terminal apparatus with control information to know that the terminal apparatus has changed the power allocation between codewords. For example, when there is a possibility that power allocation may be changed between codewords, the base station apparatus sets power allocation information between codewords using a signal of an upper layer. The power allocation information between codewords may indicate the power allocation of codeword 0 or codeword 1. If the total of codeword 0 and codeword 1 is normalized to 1, knowing the power allocation of one knows the power allocation of the other. The power allocation information between codewords may include the case of power allocation in which codeword 0 or codeword 1 is equal. A plurality of values (candidates) may be indicated as the power allocation information between codewords. In this case, the base station device indicates one of a plurality of values by DCI. Further, power allocation information between the SCID of the DMRS and the codeword may be associated with each other. For example, if power allocation information between different codewords is set between SCID = 0 and SCID = 1 in the signal of the upper layer, the power between codewords is dynamically determined by the SCID included in DCI. The assignment information is switched.
 また、基地局装置は、1つのDCIでスケジューリングされる最大のコードワード(トランスポートブロック)数を上位層の信号で端末装置に通知することができる。1つのDCIでスケジューリングされる最大のコードワード数が1の場合、端末装置は1つのコードワードに関するパラメータ(例えばMCS、リダンダンシーバージョン(RV)、New Data Indicator (NDI))が含まれているDCIを復号する。1つのDCIでスケジューリングされる最大のコードワード(トランスポートブロック)数が1の場合、端末装置は1つのコードワード(トランスポートブロック)に関するパラメータ(例えばMCS、RV、NDI)を含むDCIを復号する。1つのDCIでスケジューリングされる最大のコードワード数が2の場合、端末装置は2つのコードワード(トランスポートブロック)に関するパラメータ(例えばMCS、RV、New Data Indicator (NDI))を含むDCIを復号する。なお、1つのDCIでスケジューリングされる最大のコードワード(トランスポートブロック)数が2で、2つのコードワード(トランスポートブロック)のうちの1つのコードワード(トランスポートブロック)のMCSのインデックスが26で、RVのインデックス(RVID)が1の場合、そのコードワード(トランスポートブロック)は無効であることを示す。なお2つのコードワード(トランスポートブロック)が無効になることも可能である。 {Also, the base station apparatus can notify the terminal apparatus of the maximum number of codewords (transport blocks) scheduled by one DCI by using an upper layer signal. When the maximum number of codewords scheduled in one DCI is 1, the terminal device transmits a DCI including parameters related to one codeword (for example, MCS, redundancy version (RV), New {Data} Indicator} (NDI)). Decrypt. If the maximum number of codewords (transport blocks) scheduled in one DCI is 1, the terminal device decodes DCI including parameters (eg, MCS, RV, NDI) related to one codeword (transport block). . If the maximum number of codewords scheduled in one DCI is 2, the terminal device decodes DCI including parameters (for example, MCS, RV, New {Data} Indicator) (NDI) related to two codewords (transport blocks). . The maximum number of codewords (transport blocks) scheduled in one DCI is 2, and the MCS index of one codeword (transport block) of the two codewords (transport blocks) is 26. If the RV index (RVID) is 1, it indicates that the codeword (transport block) is invalid. Note that two codewords (transport blocks) can be invalidated.
 なお、上述のコードワード間の電力割当情報は、1つのDCIでスケジューリングされる最大のコードワード(トランスポートブロック)数が2で、DCIで2つのコードワード(トランスポートブロック)が有効になる場合に用いられてもよい。なお、コードワード間の電力割当情報は、1つのDCIでスケジューリングされる最大のコードワード(トランスポートブロック)数が2で、DCIで2つのコードワード(トランスポートブロック)が有効になり、DCIで示されるDMRSアンテナポート数が4以下の場合に用いられてもよい。 The above-described power allocation information between codewords indicates that the maximum number of codewords (transport blocks) scheduled in one DCI is 2, and two codewords (transport blocks) are valid in DCI. May be used. The power allocation information between codewords is such that the maximum number of codewords (transport blocks) scheduled in one DCI is 2, two codewords (transport blocks) are valid in DCI, and It may be used when the indicated number of DMRS antenna ports is four or less.
 なお、コードワード間の電力割当てを変える場合、MU-MIMOをしないとしてもよい。例えば、2つのコードワード(トランスポートブロック)が有効で、DCIで示されるDMRSアンテナポート数が4以下の場合、データのないDMRS CDMグループ数は1のみとしてもよい。なお、2つのコードワード(トランスポートブロック)が有効で、DCIで示されるDMRSアンテナポート数が4以下の場合で、DMRSポートグループ数が2の場合、データのないDMRS CDMグループ数は2としてもよい。 When changing the power allocation between codewords, MU-MIMO may not be performed. For example, when two codewords (transport blocks) are valid and the number of DMRS antenna ports indicated by DCI is four or less, the number of DMRS CDM groups without data may be only one. When two codewords (transport blocks) are valid, the number of DMRS antenna ports indicated by DCI is 4 or less, and the number of DMRS port groups is 2, even if the number of DMRSMCDM groups without data is 2, Good.
 なお、基地局装置は、コードワード毎にMCSテーブルを設定してもよい。MCSテーブルは、例えば、最大の変調方式が64QAMのMCSテーブル(第1のMCSテーブルとも呼ぶ)、最大の変調方式が256QAMのMCSテーブル(第2のMCSテーブルとも呼ぶ)、低周波数利用効率の最大の変調方式が64QAMのMCSテーブル(第3のMCSテーブルとも呼ぶ)がある。なお、第2のMCSテーブルは第1のMCSテーブルと比べて、高SINRで高い周波数利用効率が実現できるが、低SINRでは細かい適応制御は困難となる。また、第3のMCSテーブルは第1のMCSテーブルと比べて、高信頼性通信が可能となるが、最大の周波数利用効率は低い。このとき、端末装置は、受信したDCIで2つのコードワード(トランスポートブロック)が有効になっている場合、各々のコードワード(トランスポートブロック)で設定されているMCSテーブルを参照して、変調方式等を知ることができる。 The base station device may set the MCS table for each codeword. The MCS table includes, for example, an MCS table having a maximum modulation scheme of 64 QAM (also referred to as a first MCS table), an MCS table having a maximum modulation scheme of 256 QAM (also referred to as a second MCS table), and a maximum of low frequency use efficiency. There is an MCS table (also referred to as a third MCS table) whose modulation method is 64QAM. Note that the second MCS table can achieve higher frequency use efficiency at a higher SINR than the first MCS table, but it is difficult to perform fine adaptive control at a low SINR. Further, the third MCS table enables more reliable communication than the first MCS table, but the maximum frequency use efficiency is low. At this time, if two codewords (transport blocks) are valid in the received DCI, the terminal device refers to the MCS table set in each codeword (transport block) to perform modulation. You can know the method.
 なお、本実施形態に係る通信装置(基地局装置、端末装置)が使用する周波数バンドは、これまで説明してきたライセンスバンドやアンライセンスバンドには限らない。本実施形態が対象とする周波数バンドには、国や地域から特定サービスへの使用許可が与えられているにも関わらず、周波数間の混信を防ぐ等の目的により、実際には使われていないホワイトバンド(ホワイトスペース)と呼ばれる周波数バンド(例えば、テレビ放送用として割り当てられたものの、地域によっては使われていない周波数バンド)や、これまで特定の事業者に排他的に割り当てられていたものの、将来的に複数の事業者で共用することが見込まれる共用周波数バンド(ライセンス共有バンド)も含まれる。 The frequency band used by the communication device (base station device, terminal device) according to the present embodiment is not limited to the license band and the unlicensed band described above. The frequency band targeted by the present embodiment is not actually used for the purpose of preventing interference between frequencies, although the use permission for a specific service is given from the country or region. Frequency bands called white bands (white space) (for example, frequency bands allocated for television broadcasting but not used in some areas), or previously exclusively allocated to specific operators, A shared frequency band (license shared band) that is expected to be shared by multiple operators in the future is also included.
 本発明に関わる装置で動作するプログラムは、本発明に関わる実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、一時的にRandom Access Memory(RAM)などの揮発性メモリあるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)、あるいはその他の記憶装置システムに格納される。 The program that operates on the device according to the present invention may be a program that controls a central processing unit (CPU) or the like to cause a computer to function so as to realize the functions of the embodiment according to the present invention. The program or information handled by the program is temporarily stored in a volatile memory such as a Random Access Memory (RAM), a non-volatile memory such as a flash memory, a Hard Disk Drive (HDD), or another storage device system.
 尚、本発明に関わる実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体、短時間動的にプログラムを保持する媒体、あるいはコンピュータが読み取り可能なその他の記録媒体であっても良い。 Note that a program for realizing the functions of the embodiment according to the present invention may be recorded on a computer-readable recording medium. The program may be realized by causing a computer system to read and execute the program recorded on the recording medium. Here, the “computer system” is a computer system built in the device, and includes an operating system and hardware such as peripheral devices. In addition, the “computer-readable recording medium” is a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium that dynamically holds a program for a short time, or another computer-readable recording medium. Is also good.
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、たとえば、集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、ディジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、ディジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、本発明の一又は複数の態様は当該技術による新たな集積回路を用いることも可能である。 Each functional block or various features of the device used in the above-described embodiment may be implemented or executed by an electric circuit, for example, an integrated circuit or a plurality of integrated circuits. An electrical circuit designed to perform the functions described herein may be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA), or other Logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof. A general purpose processor may be a microprocessor, or may be a conventional processor, controller, microcontroller, or state machine. The above-described electric circuit may be configured by a digital circuit or an analog circuit. In addition, in the case where a technology for forming an integrated circuit that substitutes for a current integrated circuit appears due to the progress of semiconductor technology, one or more aspects of the present invention can use a new integrated circuit based on the technology.
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。 発 明 Note that the present invention is not limited to the above embodiment. In the embodiment, an example of the device is described. However, the present invention is not limited to this, and stationary or non-movable electronic devices installed indoors and outdoors, for example, AV devices, kitchen devices, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to the embodiments, and may include design changes within the scope of the present invention. Further, the present invention can be variously modified within the scope shown in the claims, and the technical scope of the present invention includes embodiments obtained by appropriately combining technical means disclosed in different embodiments. It is. The elements described in each of the above embodiments also include a configuration in which elements having the same effects are replaced with each other.
 本発明は、基地局装置、端末装置および通信方法に用いて好適である。 The present invention is suitable for use in a base station device, a terminal device, and a communication method.

Claims (8)

  1.  基地局装置と通信する端末装置であって、
     チャネル状態情報(CSI)のレポート設定及びチャネル状態情報参照信号(CSI-RS)を受信する受信部と、
     前記CSIレポート設定及び前記CSI-RSに基づいて、CSIを求める測定部と、
     前記CSIを前記基地局装置に送信する送信部と、を備え、
     前記CSIレポート設定は、コードブック設定、及びレポート毎のCQI数を含み、
     前記コードブック設定がタイプ1コードブックを示し、前記レポート毎のCQI数が2の場合で、ランク指標(RI)が4以上の場合、2つのコードワードのチャネル品質指標(CQI)を求め、
     前記コードブック設定がタイプ2コードブックを示し、前記レポート毎のCQI数が2の場合で、ランク指標(RI)が2以上の場合、2つのコードワードのCQIを求め、
     前記タイプ1コードブック又はタイプ2コードブックで求めたプリコーディング行列指標(PMI)、前記RI、及び前記CQIを含む前記CSIを送信する、
     端末装置。
    A terminal device that communicates with a base station device,
    A receiver for receiving a report setting of channel state information (CSI) and a channel state information reference signal (CSI-RS);
    A measuring unit for obtaining CSI based on the CSI report setting and the CSI-RS;
    A transmitting unit that transmits the CSI to the base station device,
    The CSI report settings include codebook settings and the number of CQIs per report,
    When the codebook setting indicates a type 1 codebook and the number of CQIs for each report is 2 and the rank index (RI) is 4 or more, a channel quality index (CQI) of two codewords is obtained;
    When the codebook setting indicates a type 2 codebook and the number of CQIs for each report is 2 and the rank index (RI) is 2 or more, CQIs of two codewords are obtained;
    Transmitting the precoding matrix indicator (PMI) obtained from the type 1 codebook or type 2 codebook, the RI, and the CSI including the CQI,
    Terminal device.
  2.  前記CSIレポート設定は、レポート量及び低ランクのレポート毎のCQI数を含み、
     前記レポート量が、RI及びCQIを報告してPMIを報告しない設定を示し、
     前記低ランクのレポート毎のCQI数が2の場合、2つのコードワードのCQIを求め、
     前記RI、CQIを含む前記CSIを送信する、
     請求項1に記載の端末装置。
    The CSI report settings include the amount of reports and the number of CQIs per low ranked report,
    The report amount indicates a setting for reporting RI and CQI and not reporting PMI,
    If the number of CQIs for each of the low rank reports is two, the CQIs for the two codewords are determined
    Transmitting the CSI including the RI and CQI,
    The terminal device according to claim 1.
  3.  前記CSIレポート設定は、2つのコードワードの各々に対するCQIテーブル設定を含み、
     2つのコードワードのCQIを求める場合、前記CQIは各々のコードワードに対するCQIテーブルを参照して求める、
     請求項1又は2に記載の端末装置。
    The CSI report settings include a CQI table setting for each of two codewords,
    When determining the CQI of two codewords, the CQI is determined by referring to a CQI table for each codeword.
    The terminal device according to claim 1.
  4.  端末装置と通信する基地局装置であって、
     チャネル状態情報(CSI)のレポート設定及びチャネル状態情報参照信号(CSI-RS)を送信する送信部と、
     前記CSIを受信する受信部と、を備え、
     前記CSIレポート設定は、コードブック設定、及びレポート毎のCQI数を含み、
     前記コードブック設定がタイプ1コードブックを示し、前記レポート毎のCQI数が2の場合、ランク指標(RI)が4以上の場合、前記端末装置から2つのコードワードのチャネル品質指標(CQI)、タイプ1コードブックのPMI、及びRIを受信し、
     前記コードブック設定がタイプ2コードブックを示し、前記レポート毎のCQI数が2の場合、ランク指標(RI)が2以上の場合に、前記端末装置から、2つのコードワードのCQI、タイプ2コードブックのPMI、及びRIを受信する、
     基地局装置。
    A base station device communicating with the terminal device,
    A transmitter configured to transmit a report setting of channel state information (CSI) and a channel state information reference signal (CSI-RS);
    A receiving unit for receiving the CSI,
    The CSI report settings include codebook settings and the number of CQIs per report,
    When the codebook setting indicates a type 1 codebook and the number of CQIs for each report is 2, the rank index (RI) is 4 or more, the channel quality index (CQI) of two codewords from the terminal device; Receives PMI and RI of type 1 codebook,
    When the codebook setting indicates a type 2 codebook and the number of CQIs for each report is 2, and when the rank index (RI) is 2 or more, the terminal device sends two codeword CQIs and a type 2 code. Receive the book's PMI and RI,
    Base station device.
  5.  前記CSIレポート設定は、レポート量及び低ランクのレポート毎のCQI数を含み、
     前記レポート量が、RI及びCQIを報告してPMIを報告しない設定を示し、
     前記低ランクのレポート毎のCQI数が2の場合、2つのコードワードのCQI及びRIを受信する、
     請求項4に記載の基地局装置。
    The CSI report settings include the amount of reports and the number of CQIs per low ranked report,
    The report amount indicates a setting for reporting RI and CQI and not reporting PMI,
    If the number of CQIs per low-rank report is 2, receive CQI and RI of two codewords;
    The base station device according to claim 4.
  6.  前記CSIレポート設定は、2つのコードワードの各々に対するCQIテーブル設定を含み、
     2つのコードワードのCQIを受信する場合、前記CQIは各々のコードワードに対するCQIテーブルを参照して求める、
     請求項4又は5に記載の基地局装置。
    The CSI report settings include a CQI table setting for each of two codewords,
    When receiving CQIs of two codewords, the CQIs are determined by referring to a CQI table for each codeword,
    The base station device according to claim 4.
  7.  基地局装置と通信する端末装置における通信方法であって、
     チャネル状態情報(CSI)のレポート設定及びチャネル状態情報参照信号(CSI-RS)を受信するステップと、
     前記CSIレポート設定及び前記CSI-RSに基づいて、CSIを求めるステップと、
     前記CSIを前記基地局装置に送信するステップと、を備え、
     前記CSIレポート設定は、コードブック設定、及びレポート毎のCQI数を含み、
     前記コードブック設定がタイプ1コードブックを示し、前記レポート毎のCQI数が2の場合で、ランク指標(RI)が4以上の場合、2つのコードワードのチャネル品質指標(CQI)を求め、
     前記コードブック設定がタイプ2コードブックを示し、前記レポート毎のCQI数が2の場合で、ランク指標(RI)が2以上の場合、2つのコードワードのCQIを求め、
     前記タイプ1コードブック又はタイプ2コードブックで求めたプリコーディング行列指標(PMI)、前記RI、及び前記CQIを含む前記CSIを送信する、
     通信方法。
    A communication method in a terminal device that communicates with a base station device,
    Receiving a channel state information (CSI) report setting and a channel state information reference signal (CSI-RS);
    Determining CSI based on the CSI report settings and the CSI-RS;
    Transmitting the CSI to the base station apparatus,
    The CSI report settings include codebook settings and the number of CQIs per report,
    When the codebook setting indicates a type 1 codebook and the number of CQIs for each report is 2 and the rank index (RI) is 4 or more, a channel quality index (CQI) of two codewords is obtained;
    When the codebook setting indicates a type 2 codebook and the number of CQIs for each report is 2 and the rank index (RI) is 2 or more, CQIs of two codewords are obtained;
    Transmitting the precoding matrix indicator (PMI) obtained from the type 1 codebook or type 2 codebook, the RI, and the CSI including the CQI,
    Communication method.
  8.  端末装置と通信する基地局装置における通信方法であって、
     チャネル状態情報(CSI)のレポート設定及びチャネル状態情報参照信号(CSI-RS)を送信するステップと、
     前記CSIを受信するステップと、を備え、
     前記CSIレポート設定は、コードブック設定、及びレポート毎のCQI数を含み、
     前記コードブック設定がタイプ1コードブックを示し、前記レポート毎のCQI数が2の場合で、ランク指標(RI)が4以上の場合、前記端末装置から2つのコードワードのチャネル品質指標(CQI)、タイプ1コードブックのPMI、及びRIを受信し、
     前記コードブック設定がタイプ2コードブックを示し、前記レポート毎のCQI数が2の場合で、ランク指標(RI)が2以上の場合に、前記端末装置から、2つのコードワードのCQI、タイプ2コードブックのPMI、及びRIを受信する、
     通信方法。
    A communication method in a base station device that communicates with a terminal device,
    Transmitting a channel state information (CSI) report setting and a channel state information reference signal (CSI-RS);
    Receiving the CSI.
    The CSI report settings include codebook settings and the number of CQIs per report,
    If the codebook setting indicates a type 1 codebook, the number of CQIs per report is 2 and the rank index (RI) is 4 or more, the channel quality index (CQI) of two codewords from the terminal device , Type 1 codebook PMI and RI,
    When the codebook setting indicates a type 2 codebook and the number of CQIs for each report is 2 and the rank index (RI) is 2 or more, the CQI of two codewords, type 2 Receive the PMI and RI of the codebook,
    Communication method.
PCT/JP2019/032368 2018-09-05 2019-08-20 Base station device, terminal device, and communication method WO2020050000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-165979 2018-09-05
JP2018165979A JP2020039073A (en) 2018-09-05 2018-09-05 Base station device, terminal and communication method

Publications (1)

Publication Number Publication Date
WO2020050000A1 true WO2020050000A1 (en) 2020-03-12

Family

ID=69722472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032368 WO2020050000A1 (en) 2018-09-05 2019-08-20 Base station device, terminal device, and communication method

Country Status (2)

Country Link
JP (1) JP2020039073A (en)
WO (1) WO2020050000A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4145893A4 (en) * 2020-04-30 2024-02-21 Ntt Docomo Inc Terminal, wireless communication method, and base station

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157260A1 (en) * 2022-02-18 2023-08-24 株式会社Nttドコモ Terminal, base station, and communication method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168396A1 (en) * 2016-04-01 2017-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Low complexity multi-configuration csi reporting
WO2017193934A1 (en) * 2016-05-12 2017-11-16 Qualcomm Incorporated Hybrid class b fd-mimo

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168396A1 (en) * 2016-04-01 2017-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Low complexity multi-configuration csi reporting
WO2017193934A1 (en) * 2016-05-12 2017-11-16 Qualcomm Incorporated Hybrid class b fd-mimo

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Remaining issues on CSI reporting", 3GPP TSG RAN WG1 #93, R1-1807144, 12 May 2018 (2018-05-12), XP051462944, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_93/Docs/R1-1807144.zip> *
ERICSSON: "Corrections for CSI reporting", 3GPP TSG RAN WG1 ADHOC_NR_AH_18 01, R1-1800697, 13 January 2018 (2018-01-13), XP051385015, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1801/Docs/R1-1800697.zip> *
ERICSSON: "Summary of views on CSI reporting v1", 3GPP TSG RAN WG1 #94, R1-1809724, 21 August 2018 (2018-08-21), XP051517085, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WGl_RLl/TSGRl_94/Docs/R1-1809724.zip> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4145893A4 (en) * 2020-04-30 2024-02-21 Ntt Docomo Inc Terminal, wireless communication method, and base station

Also Published As

Publication number Publication date
JP2020039073A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
WO2019111619A1 (en) Terminal device, base station device and communication method
WO2019130938A1 (en) Base station device, terminal device and communication method
JP6843110B2 (en) Terminal equipment, base station equipment and communication method
WO2019130810A1 (en) Base station device, terminal device, and communication method
JP6904938B2 (en) Terminal device and communication method
WO2020003897A1 (en) Base station device, terminal device, and communication method
WO2019130847A1 (en) Base station device, terminal device and communication method
JP7085347B2 (en) Base station equipment, terminal equipment and communication method
WO2019065189A1 (en) Base station device, terminal device, and communication method
WO2020054607A1 (en) Base station device, terminal device, and communications method
JP6933785B2 (en) Terminal device and communication method
WO2020054606A1 (en) Base station device, terminal device, and communications method
WO2019065191A1 (en) Base station device, terminal device, and communication method
WO2019111589A1 (en) Base station device, terminal device and communication method
WO2020050000A1 (en) Base station device, terminal device, and communication method
WO2019111590A1 (en) Base station device, terminal device, and communication method
WO2020138003A1 (en) Base station device, terminal device, and communication method
WO2020090623A1 (en) Terminal device and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858240

Country of ref document: EP

Kind code of ref document: A1