WO2020049238A1 - Disque de rotor avec arret axial des aubes, ensemble d'un disque et d'un anneau et turbomachine - Google Patents

Disque de rotor avec arret axial des aubes, ensemble d'un disque et d'un anneau et turbomachine Download PDF

Info

Publication number
WO2020049238A1
WO2020049238A1 PCT/FR2019/051963 FR2019051963W WO2020049238A1 WO 2020049238 A1 WO2020049238 A1 WO 2020049238A1 FR 2019051963 W FR2019051963 W FR 2019051963W WO 2020049238 A1 WO2020049238 A1 WO 2020049238A1
Authority
WO
WIPO (PCT)
Prior art keywords
disc
outlet
inlet
downstream
cell
Prior art date
Application number
PCT/FR2019/051963
Other languages
English (en)
Inventor
Patrick Jean Laurent SULTANA
Arnaud Lasantha GENILIER
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Priority to EP19774140.8A priority Critical patent/EP3847339B1/fr
Priority to CN201980053668.3A priority patent/CN112585334B/zh
Priority to US17/266,653 priority patent/US11486252B2/en
Publication of WO2020049238A1 publication Critical patent/WO2020049238A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/082Cooling fluid being directed on the side of the rotor disc or at the roots of the blades on the side of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • F01D11/006Sealing the gap between rotor blades or blades and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/087Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in the radial passages of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3007Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3007Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type
    • F01D5/3015Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type with side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/32Locking, e.g. by final locking blades or keys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Definitions

  • the present disclosure relates to a rotor disc for a turbomachine, for example a low pressure turbine rotor disc of a turbojet engine.
  • a turbomachine comprises an aerodynamic stream in which succeed mobile wheels (part of the rotor) which recover the energy of the gases from the combustion chamber and the distributors (part of the stator) which straighten the gas flow in the aerodynamic stream.
  • the movable wheels generally comprise a movable disc rotating around an axis of rotation, the disc being provided with blades.
  • the blades can be manufactured separately and assembled on the disk by fitting the blade roots into the cells of the disk.
  • the shape of the cells is generally obtained by pinning each cell. The cells are therefore through.
  • the blades are generally blocked axially on their upstream and downstream faces by retaining rings.
  • the axial retaining rings of the blades generally located upstream and downstream of the blade roots are subjected to stresses which can cause gas leaks, in particular the retaining ring downstream which is subjected to more stresses than the upstream retaining ring, since it is subjected to mechanical and thermal stresses which are greater, in particular because of the aerodynamic axial force which tends to push the dawn downstream.
  • the blade is also blocked axially by a movable ring bearing against the downstream retaining ring.
  • This movable ring rotates around the axis of rotation with the rotor and generally bears against two successive stages of the turbine rotor, the movable ring being clamped axially between the two stages in order to guarantee the axial locking of the blades in the disc.
  • the lifetime of the retaining rings, in particular of the downstream retaining ring, and of the movable ring is dependent on the mechanical and thermal stresses that these parts undergo in operation. Replacing these parts can prove to be a very complex and costly operation, particularly in terms of time.
  • upstream and downstream are defined with respect to the direction of air circulation in the turbomachine.
  • the present description aims to remedy these drawbacks at least in part.
  • the present disclosure relates to a rotor disk for a turbomachine, the disk extending circumferentially around an axis and comprising a plurality of cells configured to receive blade roots, each cell comprising a downstream radial wall configured to axially block the root of the blade in the cell, each downstream radial wall comprising a ventilation channel for the cell, comprising an inlet orifice which opens into the cell and an outlet orifice which opens on a downstream surface of the disc.
  • the axis of rotation of the disc defines an axial direction which corresponds to the direction of the axis of symmetry (or quasi-symmetry) of the disc.
  • the radial direction is a direction perpendicular to the axis around which the disc extends circumferentially and intersecting this axis.
  • an axial plane is a plane containing the axis of the disc and a radial plane is a plane perpendicular to this axis.
  • the adjectives inside / inside and outside / outside are used with reference to a radial direction so that the inside of an element is, in a radial direction, closer to the axis of rotation of the disc as the outer part of the same element.
  • Each cell having a downstream radial wall it is possible to axially block the blade in the cell and to dispense with the use of a downstream retaining ring. It is understood that the downstream radial wall may have come integrally with the disc. In addition, due to the absence of the downstream retaining ring, it is also possible to remove the retaining hook of the downstream retaining ring of the blade. Thus, the blade, in particular the blade root and the internal platform, can have a simpler geometric shape. The manufacture of dawn is therefore less complex.
  • the movable disc may no longer be in compression between two rotor stages to maintain the downstream retaining ring.
  • the assembly of the rotor stages, and in particular of the blades on the discs of the different rotor stages is less complex and involves the use of a reduced number of elements. A reduction in rotor weight is thus obtained.
  • the cooling of the disc is controlled by the size of the outlet of the ventilation channel.
  • the turbomachine can for example be a turbojet.
  • the rotor can for example be a turbine rotor.
  • the turbine can for example be a low pressure turbine.
  • the outlet orifice opens onto a downstream surface of the downstream radial wall.
  • each downstream radial wall comprises an outlet orifice.
  • the ventilation channel connects at least two inlet ports and an outlet port.
  • the ventilation channel is present in the downstream radial wall and also in parts of the disc delimiting the cells, for example disc teeth which delimit the cell, in the circumferential direction.
  • the ventilation channel connects all the inlet ports.
  • the ventilation channel can be a circumferential channel connecting all the inlet ports with each other.
  • the circumferential direction is a direction along a circle which is in a radial plane and whose center is the axis of rotation.
  • the ventilation channel may have another shape than a circumferential shape.
  • the inlet ports have an inlet diameter and the outlet ports have an outlet diameter, the number of inlet ports being greater than or equal to the number of outlet ports and the inlet diameter being greater than or equal to the outlet diameter.
  • the inlet orifices have a frustoconical shape widening from downstream to upstream.
  • the flaring of the frustoconical shape makes it possible to limit the pressure drop in the ventilation channel.
  • the inlet ports have an inlet diameter and the outlet ports have an outlet diameter, the number of inlet ports being greater than or equal to the number of outlet ports and the inlet diameter being less than or equal to the outlet diameter.
  • At least one of the inlet ports is axially aligned with at least one of the outlet ports.
  • the orifices being of generally circular shape, it is understood that the center of the circle forming the inlet orifice and the center of the circle forming the outlet orifice are aligned in a direction parallel to the axis of rotation when a straight line connecting the center of the inlet orifice to the center of the outlet orifice is parallel to the axis of rotation.
  • At least one of the inlet orifices is offset circumferentially and / or radially with respect to at least one of the outlet orifices.
  • the center of the circle forming the inlet orifice and the center of the circle forming the outlet orifice can be offset from one another in a circumferential and / or radial direction.
  • the downstream radial wall has a thickness greater than or equal to 0.5 mm (millimeter) and less than or equal to 10 mm.
  • the thickness of the walls makes it possible to limit the mass of the disc.
  • the inlet orifices have a diameter greater than or equal to 0.5 mm and less than or equal to 10 mm.
  • the inlet orifice having a diameter greater than or equal to 0.5 mm makes it possible to limit the risk of fouling of the ventilation duct.
  • the outlet tubes have a diameter greater than or equal to 0.5 mm and less than or equal to 10 mm.
  • the outlet orifice having a diameter greater than or equal to 0.5 mm makes it possible to limit the risk of fouling of the ventilation duct.
  • the present disclosure also relates to an assembly for a turbomachine comprising a disc as defined above and an upstream retaining ring.
  • the assembly may include vanes assembled on the disc.
  • the present description also relates to a turbomachine comprising an assembly as defined above.
  • the turbomachine may include one or more stages comprising an assembly as defined above.
  • the turbomachine can be a turbojet.
  • the assembly as defined above can be arranged in the low pressure turbine of the turbojet engine.
  • FIG. 1 is a schematic view in longitudinal section of a turbojet
  • FIG. 1 is an enlarged view of part of Figure 1;
  • FIG. 3 is a partial perspective view of a turbine disk according to a first embodiment
  • FIG. 4 is a partial perspective view of the disc of Figure 3;
  • FIG. 5 is a partial perspective view of a turbine disk according to a second embodiment
  • FIG. 6 is a sectional view along the plane VI-VI of Figure 5;
  • FIG. 7 is a view similar to the view of Figure 5 with a partial section showing a ventilation channel.
  • FIG. 1 shows in section along a vertical plane passing through its main axis A, a turbofan engine 10 which is an example of a turbomachine.
  • the turbofan 10 has, from upstream to downstream according to the circulation of the air flow F, a blower 12, a low pressure compressor 14, a high pressure compressor 16, a combustion chamber 18, a high pressure turbine 20 , and a low pressure turbine 22.
  • upstream and downstream are defined with respect to the direction of air circulation in the turbomachine, in this case, according to the circulation of the air flow F in the turbojet engine 10.
  • the turbojet engine 10 includes a fan casing 24 extended rearward, that is to say downstream, by an intermediate casing 26, comprising an external ferrule 28 and an internal ferrule 30 parallel and arranged in a radial direction R, internally with respect to the outer shell 28.
  • the radial direction R is perpendicular to the main axis A.
  • the intermediate casing 26 further comprises structural arms 32 distributed circumferentially and extending radially between the internal ferrule 30 to the external ferrule 28.
  • the structural arms 32 are bolted to the external ferrule 28 and on the internal ferrule 30.
  • the structural arms 32 make it possible to stiffen the structure of the intermediate casing 26.
  • the main axis A is the axis of rotation of the turbojet engine 10 and the low pressure turbine 22. This main axis A is therefore parallel to the axial direction.
  • the low pressure turbine 22 comprises a plurality of impellers which form the rotor of the low pressure turbine 22.
  • FIG. 2 represents a first and a second stage of the low pressure turbine 22.
  • the first stage comprises a first impeller 34 formed of a first disc 36 on the periphery of which the blades 38 are assembled.
  • the second stage comprises a second impeller 40 formed of a second disc 42 on the periphery of which are assembled vanes 38.
  • the first and second impeller 34, 40 are separated from each other by a distributor 44 .
  • the first and second discs 36, 42 of the rotor each comprise at least one connecting ferrule 46.
  • the first disc 36 has a connecting ring 46, in this case a connecting ring 46 downstream and the second disc 42 has two connecting ferrules 46, a connecting ferrule 46 upstream and a connecting ferrule 46 downstream.
  • the first and second discs 36, 42 are assembled with each other by means of a plurality of bolts 48 arranged in a circumferential direction C in orifices carried by the connecting ferrule 46 downstream of the first disc 36 and by the connecting ferrule 46 upstream of the second disc 42.
  • the bolts 48 also make it possible to assemble a movable ring 50 to the first impeller 34 and to the second impeller 40.
  • the movable ring 50 comprises an assembly web 52 extending in the radial direction R.
  • the movable ring 50 carries sealing wipers 54 which cooperate in sealing with a ring of abradable material 56 carried by the dispenser 44.
  • the blade 38 is assembled on the first disc 36 by insertion of a blade root 58 in a cell 60 for receiving the blade root.
  • the cell 60 is delimited in the circumferential direction C by teeth 62 forming parts of the first disc 36 delimiting the cells 60 in the circumferential direction C.
  • Each cell 60 has a wall downstream radial 64.
  • the downstream radial wall 64 is integrally formed with the teeth 62 of the disc 36 and therefore the disc 36 and makes it possible to axially block the blade root 58 in the cavity 60.
  • the axial blocking is achieved by abutment of a downstream face 58A of the blade root 58 against an upstream face 64A of the downstream radial wall 64.
  • each downstream radial wall 64 comprising a ventilation channel 66 of the cell.
  • the ventilation channel 66 of the cell 60 comprises an inlet orifice 68 and an outlet orifice 70.
  • the ventilation channel 66 opens, via the inlet orifice 68, onto the upstream face 64A of the downstream radial wall 64 and, through the outlet orifice 70, on a downstream face 34A of the disc 34.
  • the outlet orifice 70 opens onto the downstream face of the radial wall 64, c ' that is to say that each downstream radial wall 64 has an inlet port 68 and an outlet port 70.
  • the outlet orifice 70 could lead to a part of the downstream face 34A of the disc 34 which is not the downstream face of the downstream radial wall 64.
  • the inlet port 68 of each ventilation channel 66 is aligned with the outlet port 70 in a direction parallel to the main axis A, it is ie a direction parallel to the axis of rotation of the first disc 36.
  • the inlet port 68 and the outlet port 70 are circular, the inlet port 68 has a diameter inlet D68 and the outlet orifice 70 has an outlet diameter D70, the inlet diameter D68 of the inlet orifice 68 being equal to the outlet diameter D70 of the outlet orifice 70.
  • the channel of ventilation 66 therefore has the form of a right cylinder with a circular base, the axis of which is parallel to the main axis A of the turbojet engine 10.
  • the vanes 38 of the first impeller 34 have a retaining hook 72 of an upstream retaining ring 74 for the axial locking of the vanes 38 in the cells 60.
  • the first disc 36 comprises cells each having a downstream radial wall.
  • the blade 38 of the second impeller 40 has hooks 72 for holding an upstream and downstream retaining ring.
  • the second disc 42 could also include cells each having a downstream radial wall to allow the axial locking of the blade roots. The same applies to the other stages of the low pressure turbine 22.
  • the blades 38 of these discs could then have only one groove 72 for receiving an upstream retaining ring.
  • the movable ring 50 includes a portion playing the role of upstream retaining ring 74 for the blades 38 of the second impeller 40.
  • the first disc 36 can be produced by additive manufacturing, in particular by an additive manufacturing process on a powder bed.
  • Figures 5 to 7 show a second embodiment.
  • the channel of ventilation 66 of the first disc 36 extends in the circumferential direction C and goes around the first disc 36.
  • the ventilation channel 66 connects all the inlet ports 68 to one another and connects at least two inlet ports 68 to an outlet port 70.
  • each downstream radial wall 64 does not have an outlet port 70, each downstream radial wall 64 having an inlet port 68, that is to say say that an inlet port 68 opens onto the upstream face 64A of each downstream radial wall 64.
  • the downstream radial wall 64 of a cell 60 in two has an outlet port 70.
  • the downstream radial wall 64 of a cell 60 out of three, or even more, may include an outlet orifice 70.
  • the inlet port 68 is aligned with the outlet of the ventilation channel 66 of the first cell 60.
  • the downstream radial wall 64 has an inlet port 68 communicating with the outlet port 70 of the first cell 60 through the ventilation channel 66 and the orifice inlet 68 of the second cell 60 is not aligned with the outlet orifice 70, the inlet orifice 68 is offset in the circumferential direction C relative to the outlet orifice 70 of the ventilation channel 66 of the second cell 60. It is understood that the ventilation channel 66 of the second cell 60 connects the inlet port 68 of the downstream radial wall 64 of the second cell 60 to the outlet port 70 of the downstream radial wall 64 of the first cell 60.
  • the inlet diameter D68 of the inlet orifices 68 is less than the outlet diameter D70 of the outlet orifices 70.
  • the inlet may not be aligned in a direction parallel to the main axis A with the outlet.
  • individual characteristics of the various embodiments mentioned can be combined in additional embodiments. Therefore, the description and the drawings should be considered in an illustrative rather than restrictive sense.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Disque (36) de rotor pour une turbomachine (10), le disque (36) s'étendant circonférentiellement autour d'un axe (A) et comportant une pluralité d'alvéoles (60) configurées pour recevoir des pieds d'aubes (58), chaque alvéole (60) comportant une paroi radiale aval (64) configurée pour bloquer axialement le pied d'aube (58) dans l'alvéole (60), chaque paroi radiale aval (64) comprenant un canal de ventilation (66) de l'alvéole (60) comportant un orifice d'entrée (68) qui débouche dans l'alvéole (60) et un orifice de sortie (70) qui débouche sur une surface aval du disque (36). Ensemble pour turbomachine comprenant un tel disque (36) et d'un anneau de retenue amont et turbomachine comprenant un tel ensemble.

Description

DISQUE DE ROTOR AVEC ARRET AXIAL DES AUBES. ENSEMBLE DON DISQUE ET D'UN ANNEAU ET TURBOMACHINE
Domaine technologique
[0001] Le présent exposé concerne un disque de rotor pour turbomachine, par exemple un disque de rotor de turbine basse pression d'un turboréacteur.
Arrière-plan technologique
[0002] De manière connue, une turbomachine comprend une veine aérodynamique dans laquelle se succèdent des roues mobiles (partie de rotor) qui récupèrent l'énergie des gaz issus de la chambre de combustion et des distributeurs (partie de stator) qui redressent l'écoulement des gaz dans la veine aérodynamique. Les roues mobiles comprennent généralement un disque mobile en rotation autour d'un axe de rotation, le disque étant muni d'aubes. Les aubes peuvent être fabriquées séparément et assemblées sur le disque par emboîtement des pieds d'aubes dans des alvéoles du disque. La forme des alvéoles est généralement obtenue par brochage de chaque alvéole. Les alvéoles sont donc traversantes. De ce fait, les aubes sont généralement bloquées axialement sur leurs faces amont et aval par des anneaux de retenue.
[0003] Notamment dans une turbine basse pression d'une turbomachine, les anneaux de retenue axiale des aubes situés généralement en amont et en aval des pieds d'aubes subissent des contraintes pouvant provoquer des fuites de gaz, en particulier l'anneau de retenue aval qui subit plus de contraintes que l'anneau de retenue amont, car soumis à des contraintes mécaniques et thermiques qui sont plus importantes, notamment à cause de l'effort axial aérodynamique qui tend à pousser l'aube vers l'aval. De plus, l'aube est également bloquée axialement par un anneau mobile prenant appui contre l'anneau de retenue aval. Cet anneau mobile tourne autour de l'axe de rotation avec le rotor et prend généralement appui contre deux étages successifs du rotor de la turbine, l'anneau mobile étant serré axialement entre les deux étages afin de garantir le blocage axial des aubes dans le disque. Aussi, la durée de vie des anneaux de retenue, en particulier de l'anneau de retenue aval, et de l'anneau mobile est dépendante des contraintes mécaniques et thermiques que ces pièces subissent en fonctionnement. Le remplacement de ces pièces peut s'avérer être une opération très complexe et coûteuse notamment en temps.
[0004] On notera que les termes « amont » et « aval » sont définis par rapport au sens de circulation de l’air dans la turbomachine.
Présentation
[0005] Le présent exposé vise à remédier au moins en partie à ces inconvénients.
[0006] A cet effet, le présent exposé concerne un disque de rotor pour une turbomachine, le disque s'étendant circonférentiellement autour d'un axe et comportant une pluralité d'alvéoles configurées pour recevoir des pieds d'aubes, chaque alvéole comportant une paroi radiale aval configurée pour bloquer axialement le pied d'aube dans l'alvéole, chaque paroi radiale aval comprenant un canal de ventilation de l'alvéole, comportant un orifice d'entrée qui débouche dans l'alvéole et un orifice de sortie qui débouche sur une surface aval du disque.
[0007] L'axe de rotation du disque définit une direction axiale qui correspond à la direction de l'axe de symétrie (ou quasi-symétrie) du disque. La direction radiale est une direction perpendiculaire à l'axe autour duquel le disque s'étend circonférentiellement et coupant cet axe. De même, un plan axial est un plan contenant l’axe du disque et un plan radial est un plan perpendiculaire à cet axe.
[0008] Sauf précision contraire, les adjectifs intérieur/interne et extérieur/externe sont utilisés en référence à une direction radiale de sorte que la partie intérieure d’un élément est, suivant une direction radiale, plus proche de l’axe de rotation du disque que la partie extérieure du même élément.
[0009] Chaque alvéole comportant une paroi radiale aval, il est possible de bloquer axialement l'aube dans l'alvéole et de s'affranchir de l'utilisation d'un anneau de retenue aval. On comprend que la paroi radiale aval peut être venue de matière avec le disque. [0010] De plus, du fait de l'absence de l'anneau de retenue aval, il est également possible de supprimer le crochet de maintien de l'anneau de retenue aval de l'aube. Ainsi, l'aube, notamment le pied d'aube et la plateforme interne, peut présenter une forme géométrique plus simple. La fabrication de l'aube est donc moins complexe.
[0011] En outre, du fait de l'absence de l'anneau de retenue aval, il est également possible de s'affranchir de la partie amont de l'anneau mobile, c'est-à-dire la partie de l'anneau mobile en amont des léchettes d'étanchéité. En effet, le disque mobile peut ne plus être en compression entre deux étages de rotor pour maintenir l'anneau de retenue aval.
[0012] L'assemblage des étages du rotor, et en particulier des aubes sur les disques des différents étages du rotor est moins complexe et implique l'utilisation d'un nombre réduit d'éléments. On obtient ainsi une réduction de poids du rotor.
[0013] Grâce à la présence d'un canal de ventilation dont l'orifice d'entrée est présent dans chaque paroi radiale aval, il est possible de ventiler chaque alvéole et ainsi d'assurer un refroidissement efficace et homogène de toutes les alvéoles du disque.
[0014] De plus, le refroidissement du disque est contrôlé par la dimension de l'orifice de sortie du canal de ventilation.
[0015] Grâce à cet agencement, il est possible de réduire les fuites du flux d'air dans le flux de refroidissement. Le débit du flux de refroidissement peut donc être mieux contrôlé et donc réduit ce qui permet d'augmenter le débit de purge en amont de la première roue mobile à débit total constant (flux de purge et flux de refroidissement). Ainsi, cet agencement permet d'améliorer le rendement de la turbomachine.
[0016] La turbomachine peut par exemple être un turboréacteur.
[0017] Le rotor peut par exemple être un rotor de turbine.
[0018] La turbine peut par exemple être une turbine basse pression.
[0019] Dans certains modes de réalisation, l'orifice de sortie débouche sur une surface aval de la paroi radiale aval.
[0020] Dans certains modes de réalisation, chaque paroi radiale aval comprend un orifice de sortie.
[0021] Dans certains modes de réalisation, le canal de ventilation relie au moins deux orifices d'entrée et un orifice de sortie. [0022] Le canal de ventilation est présent dans la paroi radiale aval et également dans des parties du disque délimitant les alvéoles, par exemple des dents du disque qui délimitent l'alvéole, selon la direction circonférentielle.
[0023] Dans certains modes de réalisation, le canal de ventilation relie tous les orifices d'entrée.
[0024] Le canal de ventilation peut être un canal circonférentiel reliant tous les orifices d'entrée les uns avec les autres.
[0025] La direction circonférentielle est une direction selon un cercle qui se trouve dans un plan radial et dont le centre est l'axe de rotation.
[0026] On comprend que le canal de ventilation peut avoir une autre forme qu'une forme circonférentielle.
[0027] Dans certains modes de réalisation, les orifices d'entrée présentent un diamètre d'entrée et les orifices de sortie présentent un diamètre de sortie, le nombre d'orifices d'entrée étant supérieur ou égal au nombre d'orifices de sortie et le diamètre d'entrée étant supérieur ou égal au diamètre de sortie.
[0028] Dans certains modes de réalisation, les orifices d'entrée présentent une forme tronconique s'évasant de l'aval vers l'amont.
[0029] L'évasement de la forme tronconique permet de limiter la perte de charge dans le canal de ventilation.
[0030] Dans certains modes de réalisation, les orifices d'entrée présentent un diamètre d'entrée et les orifices de sortie présentent un diamètre de sortie, le nombre d'orifices d'entrée étant supérieur ou égal au nombre d'orifices de sortie et le diamètre d'entrée étant inférieur ou égal au diamètre de sortie.
[0031] Lorsque le nombre d'orifice d'entrée est supérieur au nombre d'orifices de sortie, la fabrication du disque est facilitée car le nombre d'orifices de sortie est limité.
[0032] Par ailleurs, lorsque le diamètre de sortie est supérieur au diamètre d'entrée, l'évacuation de poussière pouvant être présente dans le flux d'air est facilité.
[0033] Dans certains modes de réalisation, au moins un parmi les orifices d'entrée est aligné axialement avec au moins un parmi les orifices de sortie. [0034] Les orifices étant de forme générale circulaire, on comprend que le centre du cercle formant l'orifice d'entrée et le centre du cercle formant l'orifice de sortie sont alignés selon une direction parallèle à l'axe de rotation lorsqu'un segment de droite reliant le centre de l'orifice d'entrée au centre de l'orifice de sortie est parallèle à l'axe de rotation.
[0035] Dans certains modes de réalisation, au moins un parmi les orifices d'entrée est décalé circonférentiellement et/ou radialement par rapport à au moins un parmi les orifices de sortie.
[0036] Ainsi, le centre du cercle formant l'orifice d'entrée et le centre du cercle formant l'orifice de sortie peuvent être décalé l'un par rapport à l'autre selon une direction circonférentielle et/ou radiale.
[0037] Dans certains modes de réalisation, la paroi radiale aval a une épaisseur supérieure ou égale à 0,5 mm (millimètre) et inférieure ou égale à 10 mm.
[0038] L'épaisseur des parois permet de limiter la masse du disque.
[0039] Dans certains modes de réalisation, les orifices d'entrée ont un diamètre supérieur ou égale à 0,5 mm et inférieur ou égale à 10 mm.
[0040] L'orifice d'entrée présentant un diamètre supérieur ou égale à 0,5 mm permet de limiter le risque d'encrassement du conduit de ventilation.
[0041] Dans certains modes de réalisation, les de sortie ont un diamètre supérieur ou égale à 0,5 mm et inférieur ou égale à 10 mm.
[0042] L'orifice de sortie présentant un diamètre supérieur ou égale à 0,5 mm permet de limiter le risque d'encrassement du conduit de ventilation.
[0043] Le présent exposé concerne également un ensemble pour turbomachine comprenant un disque tel que défini précédemment et d'un anneau de retenue amont.
[0044] L'ensemble peut comporter des aubes assemblées sur le disque.
[0045] Le présent exposé concerne également une turbomachine comprenant un ensemble tel que défini précédemment.
[0046] On comprend que la turbomachine peut comporter un ou plusieurs étages comportant un ensemble tel que défini précédemment. Par exemple, la turbomachine peut être un turboréacteur. Par exemple, l'ensemble tel que défini précédemment peut être disposé dans la turbine basse pression du turboréacteur.
Brève description des dessins
[0047] D’autres caractéristiques et avantages de l’objet du présent exposé ressortiront de la description suivante de modes de réalisation, donnés à titre d’exemples non limitatifs, en référence aux figures annexées, sur lesquelles :
- la figure 1 est une vue schématique en coupe longitudinale d'un turboréacteur ;
- la figure 2 est une vue agrandie d'une partie de la figure 1 ;
- la figure 3 est une vue partielle en perspective d'un disque de turbine selon un premier mode de réalisation ;
- la figure 4 est une vue partielle en perspective du disque de la figure 3 ;
- la figure 5 est une vue partielle en perspective d'un disque de turbine selon un deuxième mode de réalisation ;
- la figure 6 est une vue en coupe selon le plan VI-VI de la figure 5 ;
- la figure 7 est une vue similaire à la vue de la figure 5 avec une coupe partielle montrant un canal de ventilation.
[0048] Sur l'ensemble des figures, les éléments en commun sont repérés par des références numériques identiques.
Description détaillée
[0049] La figure 1 représente en coupe selon un plan vertical passant par son axe principal A, un turboréacteur à double flux 10 qui est un exemple de turbomachine. Le turboréacteur à double flux 10 comporte, d'amont en aval selon la circulation du flux d'air F, une soufflante 12, un compresseur basse pression 14, un compresseur haute pression 16, une chambre de combustion 18, une turbine haute pression 20, et une turbine basse pression 22. [0050] Les termes « amont » et « aval » sont définis par rapport au sens de circulation de l'air dans la turbomachine, dans le cas d'espèce, selon la circulation du flux d'air F dans le turboréacteur 10.
[0051] Le turboréacteur 10 comporte un carter de soufflante 24 prolongé vers l’arrière, c'est-à-dire vers l'aval, par un carter intermédiaire 26, comprenant une virole externe 28 ainsi qu’une virole interne 30 parallèle et disposée, selon une direction radiale R, intérieurement par rapport à la virole externe 28. La direction radiale R est perpendiculaire à l'axe principal A.
[0052] Les termes « externe » et « interne » sont définis par rapport à la direction radiale R de sorte que la partie interne d’un élément est, suivant la direction radiale, plus proche de l’axe principal A que la partie externe du même élément.
[0053] Le carter intermédiaire 26 comprend en outre des bras structuraux 32 répartis circonférentiellement et s'étendant radialement entre la virole interne 30 jusqu'à la virole externe 28. Par exemple, les bras structuraux 32 sont boulonnés sur la virole externe 28 et sur la virole interne 30. Les bras structuraux 32 permettent de rigidifier la structure du carter intermédiaire 26.
[0054] L'axe principal A est l'axe de rotation du turboréacteur 10 et de la turbine basse pression 22. Cet axe principal A est donc parallèle à la direction axiale.
[0055] La turbine basse pression 22 comprend une pluralité de roues à aubes qui forment le rotor de la turbine basse pression 22.
[0056] La figure 2 représente un premier et un deuxième étage de la turbine basse pression 22. Le premier étage comprend une première roue à aubes 34 formée d'un premier disque 36 sur la périphérie duquel sont assemblées des aubes 38. De même, le deuxième étage comprend une deuxième roue à aubes 40 formée d'un deuxième disque 42 sur la périphérie duquel sont assemblées des aubes 38. Les première et deuxième roues à aubes 34, 40 sont séparées l'une de l'autre par un distributeur 44.
[0057] Les premier et deuxième disques 36, 42 du rotor comportent chacun au moins une virole de liaison 46.
[0058] Dans le mode de réalisation de la figure 2, le premier disque 36 comporte une virole de liaison 46, en l'occurrence une virole de liaison 46 aval et le deuxième disque 42 comporte deux viroles de liaison 46, une virole de liaison 46 amont et une virole de liaison 46 aval. Les premier et deuxième disques 36, 42 sont assemblés l'un avec l'autre au moyen d'une pluralité de boulons 48 disposés selon une direction circonférentielle C dans des orifices portés par la virole de liaison 46 aval du premier disque 36 et par la virole de liaison 46 amont du deuxième disque 42. Les boulons 48 permettent également d'assembler un anneau mobile 50 à la première roue à aubes 34 et à la deuxième roue à aubes 40.
[0059] Sur la figure 2, l'anneau mobile 50 comprend un voile d'assemblage 52 s'étendant selon la direction radiale R.
[0060] L'anneau mobile 50 porte des léchettes d'étanchéité 54 qui coopère à étanchéité avec un anneau de matériau abradable 56 porté par le distributeur 44.
[0061] Comme représenté sur la figure 2, l'aube 38 est assemblée sur le premier disque 36 par insertion d'un pied d'aube 58 dans une alvéole 60 de réception de pied d'aube.
[0062] Comme cela est visible sur la figure 3, l'alvéole 60 est délimitée selon la direction circonférentielle C par des dents 62 formant des parties du premier disque 36 délimitant les alvéoles 60 selon la direction circonférentielle C. Chaque alvéole 60 comporte une paroi radiale aval 64. La paroi radiale aval 64 est venue de matière avec les dents 62 du disque 36 et donc le disque 36 et permet de bloquer axialement le pied d'aube 58 dans l'alvéole 60. En particulier, le blocage axiale est réalisé par mise en butée d'une face avale 58A du pied d'aube 58 contre une face amont 64A de la paroi radiale aval 64.
[0063] Dans le mode de réalisation des figures 2 à 4, chaque paroi radiale aval 64 comprenant un canal de ventilation 66 de l'alvéole. Le canal de ventilation 66 de l'alvéole 60 comprend un orifice d'entrée 68 et un orifice de sortie 70. Le canal de ventilation 66 débouche, par l'orifice d'entrée 68, sur la face amont 64A de la paroi radiale aval 64 et, par l'orifice de sortie 70, sur une face aval 34A du disque 34. Dans le mode de réalisation des figures 2 à 4, l'orifice de sortie 70 débouche sur la face aval de la paroi radiale 64, c'est-à-dire que chaque paroi radiale aval 64 comporte un orifice d'entrée 68 et un orifice de sortie 70. [0064] Dans un mode de réalisation non représenté, l'orifice de sortie 70 pourrait déboucher sur une partie de la face aval 34A du disque 34 qui n'est pas la face aval de la paroi radiale aval 64.
[0065] Dans le mode de réalisation des figures 2 à 4, l'orifice d'entrée 68 de chaque canal de ventilation 66 est aligné avec l'orifice de sortie 70 selon une direction parallèle à l'axe principal A, c'est-à-dire une direction parallèle à l'axe de rotation du premier disque 36. De plus, l'orifice d'entrée 68 et l'orifice de sortie 70 sont de forme circulaire, l'orifice d'entrée 68 présente un diamètre d'entrée D68 et l'orifice de sortie 70 présente un diamètre de sortie D70, le diamètre d'entrée D68 de l'orifice d'entrée 68 étant égal au diamètre de sortie D70 de l'orifice de sortie 70. Le canal de ventilation 66 a donc la forme d'un cylindre droit de base circulaire dont l'axe est parallèle à l'axe principal A du turboréacteur 10.
[0066] Les aubes 38 de la première roue à aubes 34 comportent crochet de maintien 72 d'un anneau de retenue amont 74 pour le blocage axial des aubes 38 dans les alvéoles 60.
[0067] Dans le mode de réalisation de la figure 2, seul le premier disque 36 comprend des alvéoles comportant chacune une paroi radiale aval. On notera que l'aube 38 de la deuxième roue à aubes 40 comporte des crochets de maintien 72 d'un anneau de retenue amont et aval. On comprend que le deuxième disque 42 pourrait également comprendre des alvéoles comportant chacune une paroi radiale aval pour permettre le blocage axial des pieds d'aube. Il en va de même des autres étages de la turbine basse pression 22. Les aubes 38 de ces disques pourraient alors ne comporter qu'une seule rainure 72 de réception d'un anneau de retenue amont. On notera que dans le mode de réalisation de la figure 2, l'anneau mobile 50 comporte une portion jouant le rôle d'anneau de retenue amont 74 pour les aubes 38 de la deuxième roue à aubes 40.
[0068] Par exemple, le premier disque 36 peut être réalisé par fabrication additive, en particulier par un procédé de fabrication additive sur un lit de poudre.
[0069] Dans ce qui suit, les éléments communs aux différents modes de réalisation sont identifiés par les mêmes références numériques.
[0070] Les figures 5 à 7 représentent un deuxième mode de réalisation. Dans le mode de réalisation des figures 5 à 7, le canal de ventilation 66 du premier disque 36 s'étend selon la direction circonférentielle C et fait le tour du premier disque 36.
[0071] Dans le mode de réalisation des figures 5 à 7, le canal de ventilation 66 relie tous les orifices d'entrée 68 entre eux et relie au moins deux orifices d'entrée 68 à un orifice de sortie 70.
[0072] Par exemple, dans le mode de réalisation des figures 5 à 7, chaque paroi radiale aval 64 ne comporte pas un orifice de sortie 70, chaque paroi radiale aval 64 comportant un orifice d'entrée 68, c'est-à-dire qu'un orifice d'entrée 68 débouche sur la face amont 64A de chaque paroi radiale aval 64. Par exemple, la paroi radiale aval 64 d'une alvéole 60 sur deux comporte un orifice de sortie 70. Cet exemple n'est pas limitatif. Ainsi, la paroi radiale aval 64 d'une alvéole 60 sur trois, voire plus, peut comporter un orifice de sortie 70.
[0073] Dans le mode de réalisation des figures 5 à 7, dans une première alvéole 60 dont la paroi radiale aval 64 comporte un orifice d'entrée 68 et un orifice de sortie 70, l'orifice d'entrée 68 est aligné avec l'orifice de sortie du canal de ventilation 66 de la première alvéole 60.
Dans une deuxième alvéole 60, adjacente à la première alvéole 60, la paroi radiale aval 64 comporte un orifice d'entrée 68 communiquant avec l'orifice de sortie 70 de la première alvéole 60 grâce au canal de ventilation 66 et l'orifice d'entrée 68 de la deuxième alvéole 60 n'est pas aligné avec l'orifice de sortie 70, l'orifice d'entrée 68 est décalé selon la direction circonférentielle C par rapport à l'orifice de sortie 70 du canal de ventilation 66 de la deuxième alvéole 60. On comprend que le canal de ventilation 66 de la deuxième alvéole 60 relie l'orifice d'entrée 68 de la paroi radiale aval 64 de la deuxième alvéole 60 à l'orifice de sortie 70 de la paroi radiale aval 64 de la première alvéole 60.
[0074] Dans le mode de réalisation des figures 5 à 7, le diamètre d'entrée D68 des orifices d'entrée 68 est inférieur au diamètre de sortie D70 des orifices de sortie 70.
[0075] Quoique le présent exposé ait été décrit en se référant à un exemple de réalisation spécifique, il est évident que des différentes modifications et changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l’invention telle que définie par les revendications. Par exemple, l'orifice d'entrée pourrait ne pas être aligné selon une direction parallèle à l'axe principal A avec l'orifice de sortie. [0076] En outre, des caractéristiques individuelles des différents modes de réalisation évoqués peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif.

Claims

REVENDICATIONS
1. Disque (36, 42) de rotor pour une turbomachine (10), le disque (36, 42) s'étendant circonférentiellement autour d'un axe (A) et comportant une pluralité d'alvéoles (60) configurées pour recevoir des pieds d'aubes (58), chaque alvéole (60) comportant une paroi radiale aval (64) configurée pour bloquer axialement le pied d'aube (58) dans l'alvéole (60), chaque paroi radiale aval (64) comprenant un canal de ventilation (66) de l'alvéole (60) comportant un orifice d'entrée (68) qui débouche dans l'alvéole (60) et un orifice de sortie (70) qui débouche sur une surface aval du disque (36, 42).
2. Disque (36, 42) selon la revendication 1, dans lequel l'orifice de sortie (70) débouche sur une surface aval de la paroi radiale aval (64).
3. Disque (36, 42) selon la revendication 1 ou 2, dans lequel le canal de ventilation (66) relie au moins deux orifices d'entrée (68) et un orifice de sortie (70).
4. Disque (36, 42) selon l'une quelconque des revendications 1 à
3, dans lequel le canal de ventilation (66) relie tous les orifices d'entrée
(68).
5. Disque (36, 42) selon l'une quelconque des revendications 1 à
4, dans lequel les orifices d'entrée (68) présentent un diamètre d'entrée (D68) et les orifices de sortie (70) présentent un diamètre de sortie (D70), le nombre d'orifices d'entrée étant supérieur ou égal au nombre d'orifices de sortie et le diamètre d'entrée (D68) étant inférieur ou égal au diamètre de sortie (D70).
6. Disque (36, 42) selon l'une quelconque des revendications 1 à
5, dans lequel au moins un parmi les orifices d'entrée (68) est axialement aligné avec au moins un parmi les orifices de sortie (70).
7. Disque (36, 42) selon l'une quelconque des revendications 1 à 6, dans lequel au moins un parmi les orifices d'entrée (68) est circonférentiellement et/ou radialement décalé par rapport à au moins un parmi les orifices de sortie (70).
8. Disque (36, 42) selon l'une quelconque des revendications 1 à 7, dans lequel la paroi radiale aval (64) a une épaisseur supérieure ou égale à 0,5 mm et inférieure ou égale à 10 mm.
9. Disque (36, 42) selon l'une quelconque des revendications 1 à 8, dans lequel les orifices d'entrée (68) et/ou les orifices de sortie (70) ont un diamètre supérieur ou égale à 0,5 mm et inférieur ou égale à 10 mm.
10. Ensemble pour turbomachine comprenant un disque (36, 42) selon l'une quelconque des revendications 1 à 9 et d'un anneau de retenue amont (74).
11. Tubomachine (10) comprenant un ensemble selon la revendication 10.
PCT/FR2019/051963 2018-09-04 2019-08-26 Disque de rotor avec arret axial des aubes, ensemble d'un disque et d'un anneau et turbomachine WO2020049238A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19774140.8A EP3847339B1 (fr) 2018-09-04 2019-08-26 Disque de rotor avec arret axial des aubes, ensemble d'un disque et d'un anneau et turbomachine
CN201980053668.3A CN112585334B (zh) 2018-09-04 2019-08-26 轴向固定叶片的转子盘,盘和环的组件,以及涡轮机
US17/266,653 US11486252B2 (en) 2018-09-04 2019-08-26 Rotor disc with axial retention of the blades, assembly of a disc and a ring, and turbomachine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857926A FR3085420B1 (fr) 2018-09-04 2018-09-04 Disque de rotor avec arret axial des aubes, ensemble d'un disque et d'un anneau et turbomachine
FR1857926 2018-09-04

Publications (1)

Publication Number Publication Date
WO2020049238A1 true WO2020049238A1 (fr) 2020-03-12

Family

ID=65201267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/051963 WO2020049238A1 (fr) 2018-09-04 2019-08-26 Disque de rotor avec arret axial des aubes, ensemble d'un disque et d'un anneau et turbomachine

Country Status (5)

Country Link
US (1) US11486252B2 (fr)
EP (1) EP3847339B1 (fr)
CN (1) CN112585334B (fr)
FR (1) FR3085420B1 (fr)
WO (1) WO2020049238A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB631152A (en) * 1947-11-28 1949-10-27 Power Jets Res & Dev Ltd Improvements in or relating to turbine and like rotors
US20060120855A1 (en) * 2004-12-03 2006-06-08 Pratt & Whitney Canada Corp. Rotor assembly with cooling air deflectors and method
EP2518271A2 (fr) * 2011-04-26 2012-10-31 General Electric Company Ensemble adaptateur permettant de coupler des aubes de turbine à disques de rotor
EP2557272A1 (fr) * 2011-08-12 2013-02-13 Rolls-Royce plc Etage rotorique de moteur à turbine à gaz et procédé associé de séparation d'huile d'un flux interne

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748060A (en) * 1971-09-14 1973-07-24 Westinghouse Electric Corp Sideplate for turbine blade
US4505640A (en) * 1983-12-13 1985-03-19 United Technologies Corporation Seal means for a blade attachment slot of a rotor assembly
US4904160A (en) 1989-04-03 1990-02-27 Westinghouse Electric Corp. Mounting of integral platform turbine blades with skewed side entry roots
US5402636A (en) * 1993-12-06 1995-04-04 United Technologies Corporation Anti-contamination thrust balancing system for gas turbine engines
DE19705441A1 (de) * 1997-02-13 1998-08-20 Bmw Rolls Royce Gmbh Turbinen-Laufradscheibe
DE19854908A1 (de) * 1998-11-27 2000-05-31 Rolls Royce Deutschland Schaufel und Laufscheibe einer Strömungsmaschine
GB2409240B (en) * 2003-12-18 2007-04-11 Rolls Royce Plc A gas turbine rotor
GB0405679D0 (en) * 2004-03-13 2004-04-21 Rolls Royce Plc A mounting arrangement for turbine blades
US9353643B2 (en) 2007-04-10 2016-05-31 United Technologies Corporation Variable stator vane assembly for a turbine engine
JP2010535968A (ja) 2007-08-08 2010-11-25 アルストム テクノロジー リミテッド タービンのロータ機構
FR2937371B1 (fr) * 2008-10-20 2010-12-10 Snecma Ventilation d'une turbine haute-pression dans une turbomachine
US8066479B2 (en) 2010-04-05 2011-11-29 Pratt & Whitney Rocketdyne, Inc. Non-integral platform and damper for an airfoil
GB201016597D0 (en) * 2010-10-04 2010-11-17 Rolls Royce Plc Turbine disc cooling arrangement
EP2679770A1 (fr) 2012-06-26 2014-01-01 Siemens Aktiengesellschaft Bande d'étanchéité pour plate-forme de turbine à gaz
FR3011031B1 (fr) 2013-09-25 2017-12-29 Herakles Ensemble rotatif pour turbomachine
US20160186593A1 (en) 2014-12-31 2016-06-30 General Electric Company Flowpath boundary and rotor assemblies in gas turbines
US20160230579A1 (en) * 2015-02-06 2016-08-11 United Technologies Corporation Rotor disk sealing and blade attachments system
GB201504725D0 (en) * 2015-03-20 2015-05-06 Rolls Royce Plc A bladed rotor arrangement and a lock plate for a bladed rotor arrangement
DE102015111843A1 (de) * 2015-07-21 2017-01-26 Rolls-Royce Deutschland Ltd & Co Kg Turbine mit gekühlten Turbinenleitschaufeln
US10018065B2 (en) 2015-09-04 2018-07-10 Ansaldo Energia Ip Uk Limited Flow control device for rotating flow supply system
GB201516657D0 (en) 2015-09-21 2015-11-04 Rolls Royce Plc Seal-plate anti-rotation in a stage of a gas turbine engine
FR3070183B1 (fr) * 2017-08-18 2019-09-13 Safran Aircraft Engines Turbine pour turbomachine
GB202005789D0 (en) * 2020-03-03 2020-06-03 Itp Next Generation Turbines S L U Blade assembly for gas turbine engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB631152A (en) * 1947-11-28 1949-10-27 Power Jets Res & Dev Ltd Improvements in or relating to turbine and like rotors
US20060120855A1 (en) * 2004-12-03 2006-06-08 Pratt & Whitney Canada Corp. Rotor assembly with cooling air deflectors and method
EP2518271A2 (fr) * 2011-04-26 2012-10-31 General Electric Company Ensemble adaptateur permettant de coupler des aubes de turbine à disques de rotor
EP2557272A1 (fr) * 2011-08-12 2013-02-13 Rolls-Royce plc Etage rotorique de moteur à turbine à gaz et procédé associé de séparation d'huile d'un flux interne

Also Published As

Publication number Publication date
US11486252B2 (en) 2022-11-01
CN112585334B (zh) 2023-09-15
US20210355830A1 (en) 2021-11-18
FR3085420B1 (fr) 2020-11-13
EP3847339B1 (fr) 2022-12-28
FR3085420A1 (fr) 2020-03-06
CN112585334A (zh) 2021-03-30
EP3847339A1 (fr) 2021-07-14

Similar Documents

Publication Publication Date Title
CA2442952C (fr) Tambour formant en particulier un rotor de turbo machine, compresseur et turbo moteur comprenant un tel tambour
EP2694781B1 (fr) Flasque d'etancheite pour etage de turbine de turbomachine d'aeronef, comprenant des tenons anti-rotation fendus
FR2875535A1 (fr) Module de turbine pour moteur a turbine a gaz
EP1452691B1 (fr) Plate-forme annulaire de distributeur d'une turbine basse-pression de turbomachine
CA2456700C (fr) Dispositif de refroidissement de disques de turbines
EP4121635A1 (fr) Ensemble de turbine et moteur à turbine à gaz muni d'un tel ensemble
EP3847339B1 (fr) Disque de rotor avec arret axial des aubes, ensemble d'un disque et d'un anneau et turbomachine
FR3092865A1 (fr) Disque de rotor avec arret axial des aubes, ensemble d’un disque et d’un anneau et turbomachine
FR2961249A1 (fr) Dispositif de refroidissement des alveoles d'un disque de rotor de turbomachine
FR2972482A1 (fr) Etage de turbine pour turbomachine d'aeronef, presentant une etancheite amelioree entre le flasque aval et les aubes de la turbine, par maintien mecanique
WO2021205094A1 (fr) Rotor de turbine pour turbomachine et procede de montage dudit rotor
EP3420198A1 (fr) Redresseur pour compresseur de turbomachine d'aeronef, comprenant des orifices de prelevement d'air de forme etiree selon la direction circonferentielle
WO2021219949A1 (fr) Carter intermediaire de redressement avec bras structural monobloc
FR3100836A1 (fr) Aubes mobiles pour turbine
FR3111942A1 (fr) Ensemble rotor d’une turbine basse pression d’une turbomachine
FR3101374A1 (fr) Structure de refroidissement d’une turbine avec coopération radiale entre anneau d’étanchéité et disque de roue mobile
FR3049307B1 (fr) Ensemble rotatif pour turbomachine
WO2023242490A1 (fr) Dispositif de retenue axiale des aubes mobiles d'une turbine bp dans les alvéoles d'un disque de rotor de la turbine bp et procédé de montage de ces aubes mobiles
EP3870826B1 (fr) Dispositif de dégivrage d'un bec de turbomachine
FR3137411A1 (fr) Rotor equipe d’aubes avec arret axial et turbomachine d’aéronef
WO2023047033A1 (fr) Turbine à gaz haute-pression pour une turbomachine et turbomachine
FR3085405A1 (fr) Pressurisation de la cavite inter-lechettes par derivation du flux de bypass
FR3093532A1 (fr) Dispositif de ventilation d’une roue de turbine de turbomachine et/ou de retenue axiale d’aubes d’une telle roue
WO2014132001A1 (fr) Réduction des échanges convectifs entre l'air et le rotor dans une turbine
EP3942158A1 (fr) Aube de turbomachine equipee d'un circuit de refroidissement optimise

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019774140

Country of ref document: EP

Effective date: 20210406