WO2020047984A1 - Procédé de modulation par multiples déplacements de phase et déplacements de code répétés et procédé de démodulation associé - Google Patents

Procédé de modulation par multiples déplacements de phase et déplacements de code répétés et procédé de démodulation associé Download PDF

Info

Publication number
WO2020047984A1
WO2020047984A1 PCT/CN2018/113492 CN2018113492W WO2020047984A1 WO 2020047984 A1 WO2020047984 A1 WO 2020047984A1 CN 2018113492 W CN2018113492 W CN 2018113492W WO 2020047984 A1 WO2020047984 A1 WO 2020047984A1
Authority
WO
WIPO (PCT)
Prior art keywords
pseudo
random sequence
data
signal
shift keying
Prior art date
Application number
PCT/CN2018/113492
Other languages
English (en)
Chinese (zh)
Inventor
王盾
陈耀辉
李东俊
董启甲
Original Assignee
航天恒星科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 航天恒星科技有限公司 filed Critical 航天恒星科技有限公司
Publication of WO2020047984A1 publication Critical patent/WO2020047984A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/12Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits

Definitions

  • the invention belongs to the technical field of communication and navigation signal design, and in particular relates to a code-shift keying modulation method and a demodulation method for repeated phase shifts.
  • the code-shift keying modulation method (referred to as CSK modulation method) can transmit more information bits while maintaining the relevant characteristics of the spread-spectrum pseudo-random sequence, which is widely used in spread-spectrum communication.
  • the symbol time length T S of the modulation message is generally equal to the cycle time T C of the spread-spectrum pseudo-random sequence.
  • a method for improving the information transmission rate of the CSK modulation method is to increase the number of transmission information bits K in one symbol, increase the time length of the modulation message symbol, increase the energy of the signal symbol received by the receiving end, and improve the error rate of the information transmission.
  • this method also simultaneously increases the cycle time T C and chip length L of the spread-spectrum pseudo-random sequence, which results in an increase in the amount of CSK modulation and demodulation signal processing, which greatly increases the software and hardware costs of the demodulation CSK message at the receiving end. And power consumption.
  • Another method to increase the information transmission rate of the CSK modulation method is to increase the number of transmitted information bits K in one symbol, increase the length of the modulation message symbol, reduce the chip rate of the spreading pseudo-random sequence, and increase the spreading frequency in synchronization. While the pseudo-random sequence period T C is maintained, the chip length L of the spread-spectrum pseudo-random sequence is kept constant, thereby avoiding an increase in the amount of CSK modulation and demodulation signal processing, and maintaining the software and hardware costs and power of demodulating CSK messages at the receiving end. Consuming.
  • the code-shift keying modulation method (referred to as R-CSK modulation method) and its demodulation method proposed by the present invention for multiple repeated phase shifts can improve the transmission rate of CSK modulation information while keeping the signal power density at the receiving end unchanged. Avoid greatly increasing the software and hardware costs and power consumption of the demodulation CSK message at the receiving end.
  • the technical problem to be solved by the present invention is to provide a technical method capable of effectively improving the information transmission efficiency of the code shift keying modulation and demodulation method, which can be applied to the design of a message transmission signal and a signal receiver in a communication and navigation system.
  • the present invention provides the following technical solutions:
  • a code shift keying modulation method with multiple repeated phase shifts which is characterized in that:
  • code shift keying modulation is performed on a given set of transmission messages to obtain a pseudo-random sequence, wherein the phase of the pseudo-random sequence is controlled by the transmission message;
  • the above code shift keying modulation process is repeated multiple times, and multiple pseudo-random sequences with the same initial phase are sequentially connected to form a modulated transmission symbol, that is, a baseband signal.
  • a baseband signal is constructed as follows:
  • channel coding is performed on the message to obtain an encoded bit stream D (t);
  • the phase selection module generates a pseudo-random sequence phase offset corresponding to the parallel data stream
  • pseudo-random sequence cycle clock pseudo-random sequence chip clock provided by the timing generator, and the phase offset corresponding to the parallel data stream
  • a preset keying modulation method is used to The pseudo-random sequence is repeatedly code-shift-keyed to obtain a modulated pseudo-random sequence.
  • This is the baseband signal S (t).
  • the symbol clock is an integer multiple of the periodic clock of the pseudo-random sequence and synchronized with the periodic clock of the pseudo-random sequence.
  • a radio frequency transmission signal is constructed as follows:
  • the modulation uses BPSK, QPSK, FSK or other equivalent carrier modulation methods;
  • the generated RF carrier signal is power amplified and sent to the transmitting antenna.
  • the present invention also provides a demodulation method for the above-mentioned code shift keying modulation method with multiple repeated phase shifts.
  • the following method is used to implement message demodulation:
  • the RF carrier signal received by the receiver antenna is processed by the RF front-end to output a digital intermediate frequency signal
  • the digital intermediate frequency signal is passed to the digital down conversion module.
  • the digital down conversion module converts the digital intermediate frequency signal into IQ two under the action of the external input receiver's local intermediate frequency signal and the carrier Doppler frequency offset signal in the received signal. Orthogonal baseband signals;
  • IQ quadrature baseband signal is transmitted to the two comb filter, the comb filter control symbol clock external input pseudo-random sequence and the cycle of the clock, the same symbol period length N of the time T C
  • the data block is superimposed and transformed into a data block with a time length T C , and the result is output to the matched filtering module;
  • the matching filtering module performs correlation matching calculation on the received data block with a length of time T C and the pseudo-random sequence generated by the local pseudo-random sequence generator.
  • the correlation result is output to the correlation peak search module, which searches for the phase of the local pseudorandom sequence corresponding to the correlation peak, and converts the phase into bit data for output;
  • bit data output by the correlation peak search module is used to obtain the transmitted message data through the channel decoding module.
  • the comb filter is implemented as follows:
  • the comb filter delays the input data sequentially by N-1 times under the control of a cycle clock of a pseudo-random sequence input externally, each time the pseudo-random sequence cycle time is T C seconds, and then the N-1 times The delayed data and input data are superimposed and sent to the data interception module;
  • the data interception module intercepts the input data stream under the control of an externally input symbol clock and a pseudo-random sequence cycle clock, and outputs data superimposed N times in the same symbol.
  • the data time length is the pseudo-random sequence cycle time T C seconds.
  • the code shift keying modulation and demodulation method of the multiple repeated phase shifts of the present invention has the following technical effects:
  • the code-shift keying modulation and demodulation method provided by the present invention for multiple repeated phase shifts As the message transmitting end adopts the code-shift keying modulation method for multiple repeated phase shifts, compared with the conventional CSK, it can ensure the effective information rate.
  • the demodulation part uses a comb filter to superimpose the received N sets of pseudo-random sequence data in the same symbol into 1 set of pseudo-random sequence data, and the same rate of pseudo-random sequence is used, and the period of the pseudo-random sequence is equal to the present invention
  • the method of the invention is applicable to the fields of communication, navigation system design and the like.
  • Figure 1 is a timing diagram of R-CSK modulation
  • Figure 2 is a conventional CSK modulation timing diagram
  • FIG. 3 is a schematic block diagram of a message transmitter according to the present invention.
  • FIG. 4 is a schematic block diagram of a conventional CSK modulation message receiver
  • FIG. 5 is a schematic block diagram of a message receiver designed according to the present invention.
  • FIG. 6 is a block diagram of a comb filter in a message receiver designed according to the present invention.
  • FIG. 7 is a comparison chart of the effect of the bit error rate of the R-CSK information transmission of the present invention and the bit error rate of the conventional CSK information.
  • Figure 1 shows the timing diagram of the R-CSK modulation.
  • the symbol time length T S, R of the broadcast message is equal to N times the cycle time of the pseudo-random sequence T C.
  • the correspondence between the K R -bit message (m) and the PRN (m) in FIG. 1 is only one embodiment of the present invention, and may also be other correspondences.
  • FIG. 2 shows the timing diagram of conventional CSK modulation.
  • the symbol length T S of the broadcast message is equal to the period length T C of the pseudo-random sequence.
  • K-bit corresponds
  • the initial phase expressed in K-bit symbols modulates a pseudo-random sequence to complete CSK modulation.
  • the correspondence between the K-bit message (m) and the PRN (m) in FIG. 2 is only one embodiment of the present invention, and may also be other correspondences.
  • a code shift keying modulation method designed by the present invention for multiple repeated phase shifts is shown in FIG. 3, the following method is used to implement message broadcast.
  • code shift keying modulation is performed for a given set of transmission messages to obtain a pseudo-random sequence, wherein the phase of the pseudo-random sequence is controlled by the transmission message;
  • the above code shift keying modulation process is repeated multiple times, and multiple pseudo-random sequences with the same initial phase are sequentially connected to form a modulated transmission symbol.
  • channel coding is performed on the message to obtain an encoded bit stream D (t);
  • the phase selection module generates a parallel data stream corresponding to The phase shift of the pseudo-random sequence of the N, because the symbol clock and the sequence cycle clock are synchronized, N identical phase shifts can be generated in the same symbol duration;
  • sequence cycle clock sequence chip clock provided by the timing generator, and N identical phase offsets corresponding to the parallel data stream
  • a preset keying modulation method is adopted to repeatedly generate the pseudo-random sequence generator.
  • N pseudo-random sequences with the same initial phase are set to form N consecutive pseudo-random signals with the same initial phase This is the baseband signal S (t).
  • carrier modulation is performed on the generated baseband signal to obtain an intermediate frequency carrier signal
  • an up-conversion process is performed on the intermediate frequency carrier signal to obtain a radio frequency carrier signal, which is finally subjected to power amplification processing and transmitted to a transmitting antenna for broadcasting.
  • the RF transmission signal is expressed as follows:
  • P s represents the radio signal transmission power
  • f c represents the frequency of the transmitted signal.
  • BPSK carrier modulation is only one application example of the present invention, and other carrier modulation methods such as QPSK and FSK can also be used.
  • Figure 4 first shows a schematic block diagram of a conventional CSK modulated message receiver
  • the RF carrier signal received by the receiver antenna is processed by the RF front-end to output a digital intermediate frequency signal
  • the digital intermediate frequency signal is mixed with the external input local intermediate frequency signal and the carrier Doppler frequency offset signal of the received signal to complete the digital down conversion, and output the orthogonal IQ two-way baseband data.
  • Two IQ data outputs to the matched filtering module;
  • the matched filtering module combines the received IQ data block with a time length of T C with the pseudo-random sequence generator.
  • Correlation matching calculation is performed on the pseudo-random sequence generated under the control of the sequence periodic clock and the pseudo-random sequence chip clock (simplified as the sequence chip clock in the figure), and the correlation result is output to the correlation peak search module to search the local pseudo-random sequence corresponding to the correlation peak Phase, and convert the phase to bit data output;
  • bit data output by the correlation peak search module is used to obtain the transmitted message data through the channel decoding module.
  • FIG. 5 shows a schematic block diagram of a message receiver designed according to the present invention.
  • the RF carrier signal received by the receiver antenna is processed by the RF front-end to output a digital intermediate frequency signal
  • the digital intermediate frequency signal is mixed with the external input local intermediate frequency signal and the carrier Doppler frequency offset signal of the received signal to complete the digital down conversion, and output the orthogonal IQ two-way baseband data.
  • Two IQ data outputs to the comb filter;
  • the two data of the baseband IQ are passed to a comb filter, and the comb filter superimposes N sets of pseudo-random sequence data in the same symbol into 1 set of pseudo-random sequence data;
  • the block diagram of the comb filter is shown in Figure 6: under the control of an external input pseudo-random sequence cycle clock (simplified as the sequence cycle clock in the figure), the comb filter delays the input data sequence by N-1 times. Each delay pseudo random sequence cycle time T C seconds, and then superimpose the N-1 delay data with the input data and send it to the data interception module. Second, the external control of the symbol clock and sequence cycle clock input by the data interception module. Next, the input data stream is intercepted, and the data with N times superimposed in the same symbol is output, and the data time length is the pseudo-random sequence cycle time T C seconds. The intercepted data is sent to the matched filtering module.
  • the matched filtering module compares the received data block of length T C with the pseudo-random sequence generator in the sequence cycle clock and pseudo-random sequence chip clock (in the figure). Correspond to the pseudo-random sequence generated under the control of sequence chip clock) for correlation matching calculation, and the correlation result is output to the correlation peak search module, which searches for the phase of the local pseudo-random sequence corresponding to the correlation peak, and converts the phase to bit data output;
  • bit data output by the correlation peak search module is used to obtain the transmitted message data through the channel decoding module.
  • FIG. 7 shows the R-CSK information transmission error rate of the present invention and the conventional CSK information error rate.
  • the effect comparison chart of the rate, the theoretical calculation of the bit error rate performance of the conventional CSK and R-CSK under the condition of the same transmission information rate, the related symbols and corresponding relationships are as follows:
  • the cycle time of the pseudo-random sequence is T C
  • the chip length is L
  • the symbol time length is T S
  • T S T C
  • a symbol is represented by K-bit
  • the base M 2 K
  • Information rate R K / T S ;
  • the cycle time of the pseudo-random sequence is T C
  • the chip length is L
  • the symbol time length is T S
  • K R -bit is used to represent a symbol
  • the number of repetitions is N.
  • the R-CSK modulation method proposed by the present invention requires less bit energy to transmit information. In other words, when the information bit error rate and the information bit energy are the same, the R-CSK modulation method proposed by the present invention can obtain a higher information transmission rate.
  • the message broadcast end can ensure that the When the effective information rate is the same, better information transmission bit error rate performance can be obtained; while the CSK modulation information transmission rate can be improved, the signal power density of the receiving end is kept unchanged, and the softness of the demodulated CSK message at the receiving end is greatly increased.
  • Hardware cost and power consumption; the demodulation part uses a comb filter to superimpose the N sets of pseudo-random sequence data in the same symbol into a group of pseudo-random sequence data, which is the same as the rate of pseudo-random sequence and the period of the pseudo-random sequence.
  • the demodulation cost of the receiver can be effectively reduced while ensuring the same demodulation performance.
  • the method of the invention is applicable to the fields of communication, navigation system design and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

La présente invention concerne un procédé de modulation par multiples déplacements de phase et déplacements de code répétés et un procédé de démodulation associé. Un ensemble de messages constitué de plusieurs bits binaires modulet de manière répétée, avec la même phase et au moyen d'une modulation par déplacement de code, N séquences pseudoaléatoires identiques, puis connectent séquentiellement lesdites N séquences pseudoaléatoires identiques ayant la même phase initiale de façon à former un nouveau symbole de modulation, et réalisent une modulation complète par multiples déplacements de phase et déplacements de code répétés ; une extrémité de réception utilise un filtre en peigne pour superposer les N ensembles reçus de données de séquence pseudoaléatoire dans le même symbole en un ensemble de données de séquence pseudoaléatoire, puis effectue un filtrage de mise en correspondance avec des séquences pseudoaléatoires produites localement par l'extrémité de réception, recherche des phases de séquence pseudoaléatoire correspondant à des pics de corrélation, et effectue la démodulation de message R-CSK. En prenant entièrement en compte des facteurs tels que le gain d'étalement, le débit de transmission d'informations, le taux d'erreur binaire et la complexité de traitement de signal de modulation et de démodulation, ledit procédé de la présente invention présente une meilleure performance que le procédé de modulation CSK classique.
PCT/CN2018/113492 2018-09-07 2018-11-01 Procédé de modulation par multiples déplacements de phase et déplacements de code répétés et procédé de démodulation associé WO2020047984A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811042847.0A CN109039975B (zh) 2018-09-07 2018-09-07 一种多次重复移相的码移键控调制方法及其解调方法
CN201811042847.0 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020047984A1 true WO2020047984A1 (fr) 2020-03-12

Family

ID=64624419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113492 WO2020047984A1 (fr) 2018-09-07 2018-11-01 Procédé de modulation par multiples déplacements de phase et déplacements de code répétés et procédé de démodulation associé

Country Status (2)

Country Link
CN (1) CN109039975B (fr)
WO (1) WO2020047984A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868545B (zh) * 2019-02-19 2021-07-27 中国人民解放军海军航空大学 一种卫星通信导航信号生成方法、装置及接收方法、装置
CN112020830B (zh) * 2019-12-18 2022-03-04 航天恒星科技有限公司 基于相位非连续r-csk调制的电文信号播发方法及装置
CN111917435B (zh) * 2020-01-07 2021-10-22 大连理工大学 基于峰值延迟差的多峰码移键控信号同步方法
WO2022000442A1 (fr) * 2020-07-03 2022-01-06 航天恒星科技有限公司 Procédé et appareil de diffusion de signal de message composite à base de modulation de csk bipolaire
CN112001460B (zh) * 2020-07-16 2022-04-01 中国科学院微电子研究所 信号处理方法以及装置、rfid系统
CN113315540B (zh) * 2021-03-16 2023-03-17 上海磐启微电子有限公司 一种基于伪随机相位序列扩频信号的调制及解调方法
CN114624746B (zh) * 2022-03-07 2023-01-17 北京凯芯微科技有限公司 一种csk调制符号解码方法、装置、芯片和卫星接收机
CN117590437B (zh) * 2024-01-15 2024-04-09 广州导远电子科技有限公司 一种卫星导航信号解调方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104574A (zh) * 2009-12-18 2011-06-22 华为技术有限公司 一种ofdm-tcds信号收发方法、装置及系统
CN103152074A (zh) * 2013-02-17 2013-06-12 哈尔滨工程大学 一种直接序列扩频通信系统发射与接收方法
US20150003499A1 (en) * 2012-02-13 2015-01-01 Universite De Bretagne Sud Method for transmitting non binary error correcting code words with ccsk modulation, and corresponding signal and device
CN104468451A (zh) * 2014-12-10 2015-03-25 北京理工大学 一种基于变换域通信的多级循环移位键控调制解调方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1009126A1 (fr) * 1998-12-08 2000-06-14 Mindport B.V. Dispositif de génération d'un signal de débrouillage
TW532016B (en) * 2000-12-18 2003-05-11 Asulab Sa Correlation and demodulation circuit for a receiver for signals modulated by a specific code
DK2273683T3 (da) * 2002-07-03 2013-09-16 Dtvg Licensing Inc Kodning af LDPC-koder
CN101296210A (zh) * 2007-04-28 2008-10-29 北京三星通信技术研究有限公司 增强正交频分多址系统中小区边界用户性能的传输系统
CN104298897B (zh) * 2014-09-04 2017-04-12 广西师范大学 基于混沌技术的嵌入式版权认证方法及专用处理器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104574A (zh) * 2009-12-18 2011-06-22 华为技术有限公司 一种ofdm-tcds信号收发方法、装置及系统
US20150003499A1 (en) * 2012-02-13 2015-01-01 Universite De Bretagne Sud Method for transmitting non binary error correcting code words with ccsk modulation, and corresponding signal and device
CN103152074A (zh) * 2013-02-17 2013-06-12 哈尔滨工程大学 一种直接序列扩频通信系统发射与接收方法
CN104468451A (zh) * 2014-12-10 2015-03-25 北京理工大学 一种基于变换域通信的多级循环移位键控调制解调方法

Also Published As

Publication number Publication date
CN109039975B (zh) 2020-07-31
CN109039975A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
WO2020047984A1 (fr) Procédé de modulation par multiples déplacements de phase et déplacements de code répétés et procédé de démodulation associé
CN1065700C (zh) 分叉同相和90°相差扩展频谱信道信号传输方法和装置
EP2106032B1 (fr) Annulation sélective de bruit d'un signal à spectre étalé
US7778146B2 (en) M-ary orthogonal keying system
WO2020056871A1 (fr) Procédé de commande pour la diffusion d'un signal de message composite à double débit r-csk
US20030138031A1 (en) Spread spectrum transmitter and spread spectrum receiver
JPH07170210A (ja) スペクトラム拡散変復調方法及びそれを用いた変調器・ 復調器
JP2003505005A (ja) 二重直交符号及び周波数分割マルチプルアクセス通信システム
CN109547059A (zh) 一种Chirp-GFSK联合扩频调制解调系统
CN102215047B (zh) 一种高速数据传输的软扩频多路复用方法
CN112105958B (zh) 一种双极性csk调制复合电文信号播发方法及装置
JP2006254443A (ja) 広帯域−dcsk変調方法、それを適用した送信装置、広帯域−dcsk復調方法、およびそれを適用した受信装置
CN112020830B (zh) 基于相位非连续r-csk调制的电文信号播发方法及装置
US20210328840A1 (en) All digital non-conventional chaotic communication systems for resilient communications and signaling
US6674790B1 (en) System and method employing concatenated spreading sequences to provide data modulated spread signals having increased data rates with extended multi-path delay spread
Chen et al. Reference-modulated PI-DCSK: A new efficient chaotic permutation index modulation scheme
JPH07183829A (ja) 無線データ通信装置
JPH09223983A (ja) スペクトラム拡散通信用送信機及び受信機
Yang et al. Chaotic impulse radio: A novel chaotic secure communication system
CN114465856A (zh) 一种基于cdma体制的信号多进制调制方法、解调方法及设备
CN110808752A (zh) 一种物联网的通信方法及系统
JP3388212B2 (ja) スペクトル拡散通信装置
CN113676215B (zh) 一种高动态环境下双m元编码扩频方法及系统
US11483027B2 (en) Sub-thermal spread spectrum data-link
JPH05122193A (ja) 拡散スペクトル通信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18932381

Country of ref document: EP

Kind code of ref document: A1