WO2020047869A1 - 一种确定触控感应距离的方法、电子装置及终端设备 - Google Patents

一种确定触控感应距离的方法、电子装置及终端设备 Download PDF

Info

Publication number
WO2020047869A1
WO2020047869A1 PCT/CN2018/104698 CN2018104698W WO2020047869A1 WO 2020047869 A1 WO2020047869 A1 WO 2020047869A1 CN 2018104698 W CN2018104698 W CN 2018104698W WO 2020047869 A1 WO2020047869 A1 WO 2020047869A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
sensing channel
touch
distance
channel
Prior art date
Application number
PCT/CN2018/104698
Other languages
English (en)
French (fr)
Inventor
潘显洪
Original Assignee
深圳柔显系统技术有限公司
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳柔显系统技术有限公司, 深圳市柔宇科技有限公司 filed Critical 深圳柔显系统技术有限公司
Priority to PCT/CN2018/104698 priority Critical patent/WO2020047869A1/zh
Priority to CN201880003048.4A priority patent/CN109643195A/zh
Priority to TW107138881A priority patent/TW202011160A/zh
Publication of WO2020047869A1 publication Critical patent/WO2020047869A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment

Definitions

  • the present application relates to the field of touch technology, and in particular, to a method, an electronic device, and a terminal device for determining a touch sensing distance.
  • the smart writing pad is a new type of electronic equipment in the field of human-computer interaction.
  • users can padded traditional paper in the writing area of the smart writing pad, and then write on the traditional paper with ordinary refills, and then write the user
  • the text is synchronized to the mobile phone or tablet to realize the real-time digitization of the handwritten content, so that the real handwriting can be permanently and clearly saved, and the real handwriting sense can be retained.
  • the current smart tablet is the default vertical distance between the user's touch point and the smart tablet.
  • the coordinates are compensated with a fixed compensation value, regardless of the coordinates.
  • the coordinate error of the touch point is large.
  • the embodiments of the present application provide a method, an electronic device, and a terminal device for determining a touch sensing distance, which can determine a touch sensing distance between a user's touch point and a touch screen of the terminal during the process of using the terminal by the user.
  • an embodiment of the present application provides a method for determining a touch sensing distance.
  • the method includes:
  • the first sensing value of the first sensing channel and the second sensing value of the second sensing channel are obtained, and the first sensing channel is Any one of a plurality of sensing channels of the touch screen, the second sensing channel is adjacent to the first sensing channel;
  • a touch sensing distance is the first A vertical distance between the touch point and a center point of the first sensing channel.
  • the terminal can re-determine the touch sensing distance between the user's touch point and the touch screen of the terminal each time the user performs a touch or writing operation on the touch screen of the terminal, and can further Select different coordinate compensation values for different touch sensing distances, or calculate touch point coordinates based on different touch sensing distances to reduce the final touch point coordinates and actual touches that are determined by the terminal due to changes in touch sensing distance.
  • the error between point coordinates improves touch accuracy.
  • the method further includes:
  • the coordinate compensation value including an x-axis coordinate compensation value and a y-axis coordinate compensation value, wherein the x-axis and the y-axis form a rectangular coordinate system An origin of the rectangular coordinate system coincides with a vertex of the touch screen, and an x-axis of the rectangular coordinate system coincides with an edge of the touch screen;
  • the second touch point is any one of the touch points on the touch screen, and if the touch point is located at the second touch point, the third The third sensing value of the sensing channel is greater than the sensing values of other sensing channels.
  • the terminal can select different coordinate compensation values according to different touch sensing distances determined each time, and then compensate the coordinates, which can overcome that each terminal device only sets one coordinate compensation value, and the coordinate compensation value Cannot change with the change of the touch sensing distance between the touch point and the touch screen, resulting in the problem that the coordinate error of the touch point determined by the terminal increases when the touch sensing distance changes, which improves the output touch point The precision of the coordinates.
  • the method further includes:
  • an offset of the second touch point according to the touch sensing distance, the offset including an x-axis offset and a y-axis offset, and the x-axis offset is the second touch
  • Coordinates of the second touch point are determined according to an offset of the second touch point.
  • the terminal can determine the offset between the point where the touch point is vertically projected on the touch screen and the center point of the sensing channel closest to the touch point according to the different touch sensing distance determined each time, Then, the coordinates of the touch points can be determined according to the offset, the distance between the sensing channels, and the number of pixels between the sensing channels. It can overcome that only one coordinate compensation value can be set for each terminal device. The coordinate compensation value cannot follow the touch. The change of the touch sensing distance between the point and the touch screen changes, which causes a problem that the coordinate error of the touch point determined by the terminal increases when the touch sensing distance changes, which improves the accuracy of the output touch point coordinates.
  • an embodiment of the present application provides a terminal device including a processor, an input-output device memory, and a computer program stored on the memory and executable on the processor.
  • the processor, input-output device And the memory are connected to each other, the memory is used to store a computer program, the input-output device is used to communicate with other devices, and when the computer program is executed by the processor, the first aspect or any of the first aspects is implemented Method described in possible implementations.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and the computer program, when executed by a computing device, implements any one of the first aspect or the first aspect. Method described in possible implementations.
  • an embodiment of the present application provides an electronic device for determining a touch sensing distance.
  • the electronic device includes:
  • An acquiring unit configured to acquire a first sensing value of the first sensing channel and a second sensing value of a second sensing channel when the first touch point is located above a center point of the first sensing channel of the touch screen;
  • the first sensing channel is any one of a plurality of sensing channels of the touch screen, and the second sensing channel is adjacent to the first sensing channel;
  • a processing unit configured to determine a touch sensing distance according to the first sensing value, the second sensing value, and a distance between the first sensing channel and the second sensing channel, and the touch sensing distance Is the vertical distance between the first touch point and the center point of the first sensing channel.
  • processing unit is further configured to:
  • the coordinate compensation value including an x-axis coordinate compensation value and a y-axis coordinate compensation value, wherein the x-axis and the y-axis form a rectangular coordinate system An origin of the rectangular coordinate system coincides with a vertex of the touch screen, and an x-axis of the rectangular coordinate system coincides with an edge of the touch screen;
  • the second touch point is any one of the touch points on the touch screen, and if the touch point is located at the second touch point, the third The third sensing value of the sensing channel is greater than the sensing values of other sensing channels.
  • processing unit is further configured to:
  • an offset of the second touch point according to the touch sensing distance, the offset including an x-axis offset and a y-axis offset, and the x-axis offset is the second touch
  • Coordinates of the second touch point are determined according to an offset of the second touch point.
  • the terminal can re-determine the touch sensing distance between the user's touch point and the touch screen of the terminal each time the user performs a touch or writing operation on the touch screen of the terminal, and can further Select different coordinate compensation values for different touch sensing distances, or calculate touch point coordinates based on different touch sensing distances to reduce the final touch point coordinates and actual touches that are determined by the terminal due to changes in touch sensing distance.
  • the error between point coordinates improves touch accuracy.
  • FIG. 1 is a schematic diagram of a touch screen sensing channel distribution
  • FIG. 2 is a front view of a touch screen
  • FIG. 4 is a schematic flowchart of a method for determining a touch sensing distance according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a position relationship between a touch point and a sensing channel when determining a touch sensing distance according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a rectangular region according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for determining touch point coordinates according to a touch sensing distance according to an embodiment of the present application
  • FIG. 8 is a schematic flowchart of another method for determining coordinates of a touch point according to a touch sensing distance according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of a position relationship between a touch point and a sensing channel when determining a touch point offset according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a position relationship between a touch point and a sensing channel when determining touch point coordinates according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal involved in the embodiments of the present application may be a smart tablet, or a terminal having the same functions as a smart tablet, such as a smart phone, a tablet computer, and a Personal Digital Assistant (PDA).
  • PDA Personal Digital Assistant
  • Mobile Internet Devices Mobile Internet Devices, MID
  • smart wearable devices such as smart watches, smart bracelets
  • the embodiments of the present invention are not limited.
  • FIG. 1 is a schematic diagram of a touch screen sensing channel distribution.
  • a total of 12 sensing channels are distributed in the touch screen, which are sensing channel 1 to sensing channel 12 respectively, and the top left corner of the touch screen is used as coordinates.
  • Origin using the two sides of the touch screen intersecting at the coordinate origin as the x-axis and y-axis to establish a rectangular coordinate system, where the first distance between any two adjacent sensing channels in the x-axis direction is the same, at The second distance between any two adjacent sensing channels in the y-axis direction is the same.
  • the first distance and the second distance may be the same or different.
  • the distance between the two adjacent sensing channels is the same.
  • FIG. 2 is a front view of the touch screen shown in FIG. 1, that is, the line connecting the center points of the three sensing channels in FIG. 2 is parallel to the x-axis. , Such as paper laid on a smart tablet, so there is a certain touch sensing distance h between the touch point and the touch screen.
  • the terminal When determining the coordinates of the touch point, if the terminal determines that the sensing value A 1 of the sensing channel 8 is the maximum sensing value, the terminal can obtain the sensing value A 2 and the sensing value of the sensing channel 7 adjacent to the sensing channel 8 in the x-axis direction.
  • the sensing value A 3 of the channel 9 determines the coordinates of the touch point according to the sensing value A 2 and the sensing value A 3. Specifically, the abscissa x P of the touch point P and the sensing value A 2 and the sensing value A 3 satisfy the following formula. :
  • a 3 is greater than or equal to A 2
  • M 1 is the number of pixels between the center points of two sensing channels separated by one sensing channel in the x-axis direction, that is, the center point O 7 of the sensing channel 7 and the sensing channel.
  • the number of pixels between the center point O 9 of 9 and ⁇ x 0 is the x-axis coordinate compensation value, which is used to compensate the error caused by the touch sensing distance in the x-axis direction.
  • FIG. 3 is a left side view of the touch screen shown in FIG. 1, that is, the center line of the three sensing channels in FIG. 3 is parallel to the y-axis.
  • P satisfies the following formula:
  • a 5 is greater than or equal to A 4
  • a 4 is a sensing value of the sensing channel 5 adjacent to the sensing channel 8 in the y-axis direction
  • a 5 is a sensing channel 11 adjacent to the sensing channel 8 in the y-axis direction.
  • M 2 is the number of pixels between the center points of two sensing channels separated by one sensing channel in the y-axis direction, that is, the central point O 5 of the sensing channel 5 and the central point O 11 of the sensing channel 11
  • the number of pixels between them, ⁇ y 0 is the y-axis coordinate compensation value, which is used to compensate the error caused by the touch sensing distance in the y-axis direction.
  • the touch point coordinates output by a terminal are determined at a fixed thickness and according to a fixed coordinate compensation value.
  • a terminal such as a smart tablet
  • the touch sensing distance from the obtained touch point to the sensor screen does not change, and the coordinate compensation values (x-axis coordinate compensation value and y-axis coordinate compensation value) are fixed values.
  • the type of the padding paper or the number of the padding paper is different during the two writing processes, which will cause the touch sensing distance from the touch point to the sensing screen to change, such as
  • the sensing value of the sensing channel decreases as the touch sensing distance increases, and the sensing value of the sensing channel near the touch point decreases at a faster rate than that of the sensing channel far from the touch point.
  • the decrease of the sensing value is fast, which will lead to an increase in the coordinate error of the touch point.
  • the terminal cannot detect the touch sensing distance from the touch point to the sensing screen each time the user uses it, it cannot be based on different touches. Selecting different coordinate compensation values for the sensing distance results in an increase in the error of the touch point coordinates finally obtained under different touch sensing distances and a decrease in touch accuracy.
  • FIG. 4 is a flowchart of a method for determining a touch sensing distance according to an embodiment of the present application. As shown in FIG. Methods include:
  • step 101 when the first touch point is located above the center point of the first sensing channel of the touch screen, a first sensing value of the first sensing channel and a second sensing value of the second sensing channel are obtained.
  • the first sensing channel is any one of a plurality of sensing channels of the touch screen, and the second sensing channel is adjacent to the first sensing channel.
  • the second sensing channel may be in the x-axis direction and the first sensing channel.
  • a sensing channel adjacent to a sensing channel may also be a sensing channel adjacent to the first sensing channel in the y-axis direction, which is not specifically limited in the embodiment of the present application.
  • FIG. 5 an example is illustrated in FIG. 5 in which the second sensing channel is adjacent to the first sensing channel in the x-axis direction, and shows the first sensing channel and the second sensing channel.
  • the point O 1 is the center point of the first sensing channel
  • the point O 2 is the center point of the second sensing channel.
  • the sensing values of two adjacent sensing channels of the first sensing channel in the x-axis direction are the same, or when two sensing channels of the first sensing channel in the y-axis direction are detected.
  • the sensing values of adjacent sensing channels are the same, it is determined that the first touch point is located above the center point of the first sensing channel.
  • a sensing value of the first sensing channel and a second sensing value of the second sensing channel are acquired.
  • Step 102 Determine the touch sensing distance according to the first sensing value, the second sensing value, and a distance between the first sensing channel and the second sensing channel.
  • the distance between the first sensing channel and the second sensing channel is the distance between the center point of the first sensing channel and the center point of the second sensing channel, that is, in the x-axis direction.
  • the distance between the center points of two adjacent sensing channels, which has been determined when the touch screen is designed, is represented by a constant a in the embodiment of the present application.
  • the touch sensing distance is a vertical distance between a first touch point and a center point of the first sensing channel, that is, a vertical distance between the first touch point and a terminal touch screen.
  • the sensing value of the channel determines the vertical distance between the first touch point and the center point of the first sensing channel.
  • the sensing value of the sensing channel is inversely proportional to the distance from the touch point to the center point of the sensing channel.
  • the first touch point P 1 and the center of the first sensing channel The touch sensing distance between the points O 1 , the first sensing value, and the second sensing value satisfy the following formula:
  • h is the touch sensing distance between the first touch point P 1 and the center point O 1 of the first sensing channel, A is the first sensing value, and B is the second sensing value.
  • the touch sensing distance h is determined as:
  • the touch sensing distance between the user's touch point and the touch screen of the terminal can be re-determined.
  • the touch sensing distance h determined according to the foregoing steps may be used as the touch sensing distance between all touch points and the touch screen during the user's current use of the terminal.
  • a touch sensing distance h 1 is determined according to the above method, and the touch sensing distance h 1 is used as the touch sensing during the entire operation. distance.
  • a touch sensing distance h 2 is determined according to the above method, and the touch sensing distance h 2 is used as the touch sensing distance during the entire operation.
  • a touch sensing distance h 1 is determined according to the above method. If the terminal is in a period of time, If a touch operation can be detected for a preset period of time, the user's operation during this time period is regarded as an operation process, and the touch sensing distance h 1 is used as the touch sensing distance for the current operation. After the user ’s touch operation, if no touch operation is detected again within a preset period of time, the terminal uses the next detected touch operation as another operation process, and determines a touch sensing distance h again according to the above method. 2.
  • the process of writing the two Chinese characters is considered as an operation process, and only Determine the touch-sensing distance once when writing the first Chinese character. If the time between when the user starts writing the second Chinese character and when the first Chinese character is written Length greater than the preset interval, then these two characters of the writing process is a process that two operations, the terminal needs to determine a touch sensing distance again when the user begins to write the second character.
  • the terminal detects that the interaction force between the two magnetic poles of the magnetic adsorption device exceeds a preset threshold.
  • the touch sensing distance may change. For example, if the user opens the magnetic adsorption device to add or withdraw the paper, the terminal's interaction force between the two poles of the magnetic adsorption device changes. After it becomes stable, if a touch operation is detected, the touch sensing distance needs to be determined again.
  • the terminal may determine multiple initial touch sensing distances by using the above method, and calculate an average value of the multiple initial touch sensing distances as the final touch sensing. Distance, and use the final touch sensing distance as the touch sensing distance for this operation.
  • the touch sensing distance is determined by a single touch point, the single touch point is randomly touched by the user.
  • the method of calculating the average value of the touch sensing distance determines the final touch sensing distance to reduce the random error of the touch sensing distance determined by a single touch point and improve the accuracy of the final touch sensing distance.
  • the terminal may determine the touch sensing distance once according to the above method when the touch point is located above the center point of each sensing channel, and the terminal determines when the touch point is located above one sensing channel.
  • the touch sensing distance is used as a touch sensing distance in a preset area centered on the center point of the sensing channel. For example, in FIG. 2, when the terminal detects that the sensing value of the sensing channel 7 and the sensing value of the sensing channel 9 are the same, it is determined that the touch point is located above the center point of the sensing channel 8, and the sensing channel 8 is determined at this time.
  • the corresponding touch sensing distance h 8 , and the touch sensing distance h 8 is taken as the touch sensing distance of a rectangular area centered on the center point O 8 of the sensing channel 8.
  • the terminal determines that the touch point is located at the center of the sensing channel 9 above the point where the terminal 9 is determined corresponding to the channel sensing touch sensing distance H 9 again, and the touch sensor 9 as touch sensing distance H from the rectangular zone to the sensing channels of the central point 9 O 9 as the center, wherein
  • the rectangular area is shown in FIG. 6.
  • the side length of the side of the rectangular area parallel to the x-axis is equal to the distance a between the center points of two adjacent sensing channels in the x-axis direction.
  • the rectangular area is parallel.
  • the length of a side on the y-axis is equal to the distance between the center points of two adjacent sensing channels in the y-axis direction, and the diagonal of the rectangular region intersects the center point of the sensing channels.
  • the touch sensing distance can be determined once every time the user passes over the center point of the sensing channel, which increases the frequency of the terminal determining the touch sensing distance, so that each time The area of the touch area corresponding to the touch sensing distance is smaller. Since each touch sensing distance can correspond to a set of coordinate compensation values, the touch area corresponding to each set of coordinate compensation values is also smaller, which can improve the terminal. The precision of the coordinates of the touch points that are finally output.
  • FIG. 7 is a schematic flowchart of a method for determining touch point coordinates according to a touch sensing distance according to an embodiment of the present application. As shown in FIG. 7, the method includes:
  • step 201 when the first touch point is located above the center point of the first sensing channel of the touch screen, the first sensing value of the first sensing channel and the second sensing value of the second sensing channel are obtained.
  • Step 202 Determine the touch sensing distance according to the first sensing value, the second sensing value, and a distance between the first sensing channel and the second sensing channel.
  • step 101 for the method for executing step 201, please refer to step 101 in the above embodiment, and for the method for executing step 202, please refer to step 102 in the above embodiment, which will not be repeated here.
  • Step 203 Determine a coordinate compensation value corresponding to the touch sensing distance according to the touch sensing distance.
  • the coordinate compensation value includes an x-axis coordinate compensation value and a y-axis coordinate compensation value.
  • the terminal may store an association table in which the touch sensing distance and the coordinate compensation value are associated, for example, one corresponding to the touch sensing distance h 1
  • the group coordinate compensation value is ( ⁇ x 1 , ⁇ y 1 )
  • the group of coordinate compensation values corresponding to the touch sensing distance h 2 is ( ⁇ x 2 , ⁇ y 2 ), etc.
  • the An association table is looked up for a set of coordinate compensation values corresponding to the touch sensing distance to determine the coordinates of a touch point.
  • Step 204 Determine the coordinates of the second touch point according to the coordinate compensation value.
  • the second touch point is any one of the touch points when the user operates on the touch screen.
  • the sensing value of the third sensing channel Greater than the sensing value of other sensing channels.
  • the determined value can be determined according to the above formula 1.
  • the absc issa of the second touch point, wherein the fourth sensing channel is adjacent to the third sensing channel, the fifth sensing channel is adjacent to the third sensing channel, and the third sensing channel
  • the line connecting the center points of the fourth sensing channel and the fifth sensing channel is parallel to the x-axis of the rectangular coordinate system.
  • the vertical coordinate of the second touch point can be determined according to the above formula 2, and the sixth sensing channel and the third sensing point
  • the sensing channel is adjacent, the seventh sensing channel is adjacent to the third sensing channel, and the connection line between the center points of the third sensing channel, the sixth sensing channel, and the seventh sensing channel is connected to the The y-axis of the rectangular coordinate system is parallel.
  • a set of coordinate compensation values determined according to the touch sensing distance is ( ⁇ x 1 , ⁇ y 1 )
  • the coordinates of the second touch point P 2 satisfy the following formula:
  • x is the x-axis coordinate of the second touch point
  • y is the y-axis coordinate of the second touch point
  • B is the fourth sensing value
  • C is the fifth sensing value
  • D is The sixth sensing value
  • E is the seventh sensing value
  • C is greater than or equal to B
  • E is greater than or equal to D
  • M 1 is the number of pixels between the fourth sensing channel and the fifth sensing channel
  • M 2 is the number of pixels between the sixth sensing channel and the seventh sensing channel
  • ⁇ x 1 is the x-axis coordinate compensation value
  • ⁇ y 1 is the y-axis coordinate compensation value.
  • the terminal can select different coordinate compensation values according to different touch sensing distances determined each time, and then compensate the coordinates, which can overcome that each terminal device only sets one coordinate compensation value, and the coordinate compensation value Cannot change with the change of the touch sensing distance between the touch point and the touch screen, resulting in the problem that the coordinate error of the touch point determined by the terminal increases when the touch sensing distance changes, which improves the output touch point The precision of the coordinates.
  • FIG. 8 is a schematic flowchart of another method for determining coordinates of a touch point according to a touch sensing distance according to an embodiment of the present application. As shown in FIG. 8, the method includes:
  • step 301 when the first touch point is located above the center point of the first sensing channel of the touch screen, the first sensing value of the first sensing channel and the second sensing value of the second sensing channel are obtained.
  • Step 302 Determine the touch sensing distance according to the first sensing value, the second sensing value, and a distance between the first sensing channel and the second sensing channel.
  • step 301 For the execution method of step 301, please refer to step 101 in the above-mentioned embodiment, and the execution method of step 302, please refer to step 102 in the above-mentioned embodiment, which will not be repeated here.
  • Step 303 Determine an offset of the second touch point according to the touch sensing distance.
  • the second touch point is any one of the touch points when the user operates on the touch screen.
  • the third of the third sensing channel is The sensing value is greater than that of other sensing channels.
  • the positional relationship between the third sensing channel to the seventh sensing channel is as described in step 204 of the foregoing embodiment.
  • the point where the second touch point P 2 is vertically projected on the touch screen is Q 2
  • the offset of the second touch point includes an x-axis offset ⁇ l x and a y-axis offset.
  • FIG. 10 is a front view relative to FIG. 9, and FIG. 10 shows a positional relationship diagram between the second touch point P 2 and the third, fourth, and fifth sensing channels.
  • the positional relationship may be determined that the second touch point having x axis offset ⁇ l x, specifically, x-axis shift amount [Delta] l of the second touch point x satisfies the following formula:
  • B is the fourth sensing value
  • C is the fifth sensing value
  • C is greater than or equal to B
  • h is the touch sensing distance
  • a is the distance between two sensing channels adjacent in the x-axis direction. The distance between the center points is the distance between the center point of the third sensing channel and the center point of the fourth sensing channel in FIG. 10.
  • [Delta] l y y axis offset of the second touch point may be determined, in particular, the y axis offset [Delta] l of the second touch point y satisfies the following formula:
  • D is the sixth sensing value
  • E is the seventh sensing value
  • E is greater than or equal to D
  • b is the distance between the center points of two sensing channels adjacent in the y-axis direction, that is, the figure The distance between the center point of the third sensing channel and the center point of the sixth sensing channel in 9.
  • Step 304 Determine the coordinates of the second touch point according to the offset of the second touch point.
  • the x-axis offset of the second touch point, the third sensing channel and the fourth sensing channel may be The distance between the second sensing point and the number of pixels between the fourth sensing channel and the fifth sensing channel determine the x-axis coordinate of the second touch point; according to the y-axis offset of the second touch point, The distance between the third sensing channel and the sixth sensing channel and the number of pixels between the sixth sensing channel and the seventh sensing channel determine the y-axis coordinates of the second touch point.
  • the coordinates of the second touch point P 2 satisfy the following formula:
  • x is the x-axis coordinate of the second touch point
  • y is the y-axis coordinate of the second touch point
  • M 1 is the center point of two sensing channels spaced one sensing channel in the x-axis direction.
  • the number of pixels between pixels is the number of pixels between the center point of the fourth sensing channel and the center point of the fifth sensing channel in FIG. 9.
  • M 2 is two pixels separated by one sensing channel in the y-axis direction.
  • the number of pixels between the center points of each sensing channel is the number of pixels between the center point of the sixth sensing channel and the center point of the seventh sensing channel.
  • the terminal can determine the offset between the point where the touch point is vertically projected on the touch screen and the center point of the sensing channel closest to the touch point according to the different touch sensing distance determined each time, Then, the coordinates of the touch points can be determined according to the offset, the distance between the sensing channels, and the number of pixels between the sensing channels. It can overcome that only one coordinate compensation value can be set for each terminal device. The coordinate compensation value cannot follow the touch. The change of the touch sensing distance between the point and the touch screen changes, which causes a problem that the coordinate error of the touch point determined by the terminal increases when the touch sensing distance changes, which improves the accuracy of the output touch point coordinates.
  • FIG. 11 is a schematic diagram of an electronic device for determining a touch sensing distance according to an embodiment of the present application.
  • the electronic device 100 includes at least an obtaining unit 110 and a processing unit 120, wherein:
  • the acquiring unit 110 is configured to acquire a first sensing value of the first sensing channel and a second sensing value of a second sensing channel when the first touch point is located above a center point of the first sensing channel of the touch screen.
  • the first sensing channel is any one of a plurality of sensing channels of the touch screen, and the second sensing channel is adjacent to the first sensing channel;
  • the processing unit 120 is configured to determine a touch sensing distance according to the first sensing value, the second sensing value, and a distance between the first sensing channel and the second sensing channel.
  • the sensing distance is a vertical distance between the first touch point and a center point of the first sensing channel.
  • the processing unit 120 is further configured to determine a coordinate compensation value corresponding to the touch sensing distance according to the touch sensing distance, and the coordinate compensation value includes an x-axis coordinate compensation value. And a y-axis coordinate compensation value, wherein the x-axis and the y-axis form a rectangular coordinate system, the origin of the rectangular coordinate system coincides with a vertex of the touch screen, and the x-axis of the rectangular coordinate system and an edge of the touch screen coincide;
  • the second touch point is any one of the touch points on the touch screen, and if the touch point is located at the second touch point, the third The third sensing value of the sensing channel is greater than the sensing values of other sensing channels.
  • the processing unit 120 is configured to: according to a fourth sensing value of a fourth sensing channel, a fifth sensing value of a fifth sensing channel, and a pixel point between the fourth sensing channel and the fifth sensing channel The number and the x-axis coordinate compensation value, determine the x-axis coordinates of the second touch point, wherein the fourth sensing channel is adjacent to the third sensing channel, and the fifth sensing channel is adjacent to the The third sensing channel is adjacent, and the straight line where the third sensing channel, the fourth sensing channel, and the fifth sensing channel are located is parallel to the x-axis of the rectangular coordinate system;
  • the processing unit 120 is further configured to determine an offset of the second touch point according to the touch sensing distance, where the offset includes an x-axis offset and a y Axis offset, the x-axis offset is the distance in the x-axis direction between the second touch point and the center point of the third sensing channel, and the y-axis offset is the second The distance between the touch point and the center point of the third sensing channel in the y-axis direction;
  • Coordinates of the second touch point are determined according to an offset of the second touch point.
  • the processing unit 120 is configured to: according to the x-axis offset of the second touch point, the distance between the third sensing channel and the fourth sensing channel, and the fourth sensing channel and the fifth sensing channel. The number of pixels between the channels, determining the x-axis coordinate of the second touch point;
  • an embodiment of the present invention provides a terminal device.
  • the terminal device is configured to implement the method for determining a touch sensing distance described in the method embodiments of FIG. 4, FIG. 7, or FIG. 8.
  • the terminal device 200 may include a processor 210, a memory 220, and an input-output device 230. These components can communicate on one or more communication buses 240.
  • the so-called processor 210 may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application-specific integrated circuits (Application Specific Integrated Circuits, (ASIC), ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 220 may include a read-only memory and a random access memory, and stores program code and data to the processor 210. A part of the memory 220 may further include a non-volatile random access memory. In addition, the memory 220 may also store information of a device type.
  • the input / output device 230 is mainly used to receive a user's touch operation. It should be noted that the input / output device 230 may further include other I / O peripherals.
  • the processor 210 is configured to call an instruction stored in the memory 220 and execute the following steps:
  • the first sensing value of the first sensing channel and the second sensing value of the second sensing channel are obtained, and the first sensing channel is Any one of a plurality of sensing channels of the touch screen, the second sensing channel is adjacent to the first sensing channel;
  • a touch sensing distance is the first A vertical distance between the touch point and a center point of the first sensing channel.
  • the processor 210 is further configured to determine a coordinate compensation value corresponding to the touch sensing distance according to the touch sensing distance, where the coordinate compensation value includes an x-axis coordinate compensation value and y Axis coordinate compensation value, wherein the x-axis and y-axis form a rectangular coordinate system, the origin of the rectangular coordinate system coincides with a vertex of the touch screen, and the x-axis of the rectangular coordinate system coincides with an edge of the touch screen;
  • the second touch point is any one of the touch points on the touch screen, and if the touch point is located at the second touch point, the third The third sensing value of the sensing channel is greater than the sensing values of other sensing channels.
  • the processor 210 is further configured to determine an offset of the second touch point according to the touch sensing distance, and the offset includes an x-axis offset and a y-axis offset.
  • the x-axis offset is the distance in the x-axis direction between the second touch point and the center point of the third sensing channel
  • the y-axis offset is the second touch The distance between the point and the center point of the third sensing channel in the y-axis direction; and determining the coordinates of the second touch point according to the offset of the second touch point.
  • a computer-readable storage medium stores a computer program, where the computer program includes program instructions, and the program instructions are processed by a processor. When executed, implement the method described in any of the foregoing method embodiments.
  • the computer-readable storage medium may be an internal storage unit of the terminal according to any of the foregoing embodiments, such as a hard disk or a memory of the terminal.
  • the computer-readable storage medium may also be an external storage device of the terminal, such as a plug-in hard disk, a Smart Media Card (SMC), and a Secure Digital (SD) card provided on the terminal. , Flash card (Flash card) and so on.
  • the computer-readable storage medium may include both an internal storage unit of the terminal and an external storage device.
  • the computer-readable storage medium is used to store the computer program and other programs and data required by the terminal.
  • the computer-readable storage medium may also be used to temporarily store data that has been or will be output.
  • the disclosed units, terminal devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system.
  • Each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present invention is essentially a part that contributes to the existing technology, or all or part of the technical solution may be embodied in the form of a software product, which is stored in a storage medium
  • Included are several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present invention.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本申请实施例公开了一种确定触控感应距离的方法、装置及设备,其中方法包括:在第一触控点位于触摸屏第一感应通道的中心点上方的情况下,获取所述第一感应通道的第一感应值以及第二感应通道的第二感应值;根据所述第一感应值、所述第二感应值以及所述第一感应通道与所述第二感应通道之间的距离,确定触控感应距离,所述触控感应距离为所述第一触控点与所述第一感应通道的中心点之间的垂直距离。通过实施上述方法,终端能够在用户每次在触摸屏上进行触控时,重新确定用户的触控点与触摸屏之间的触控感应距离,进而能够根据不同的触控感应距离确定触控点坐标,以减少由于触控感应距离的变化而导致终端输出的触控点坐标的误差,提高触控精度。

Description

一种确定触控感应距离的方法、电子装置及终端设备 技术领域
本申请涉及触控技术领域,尤其涉及一种确定触控感应距离的方法、电子装置及终端设备。
背景技术
智能写字板是一种新型的人机交互领域的电子设备,通过智能写字板,用户可以在智能写字板的书写区域铺垫传统纸张,然后用普通笔芯在传统纸张上书写,就可以将用户书写的文字同步到手机或者平板中,实现手写内容的实时数字化,使得真实笔迹能够永久清晰保存,还能留存真实手写感。
但是,当前智能写字板都是默认用户的触控点到智能写字板之间的垂直距离不变,在确定用户的触控坐标时,都是采用固定的补偿值对坐标进行补偿,而不考虑用户在智能写字板上铺设的纸张的厚度,从而在用户更换不同类型的纸张或者铺垫不同类型的纸张进行书写时,由于触控点到智能写字板之间的距离变化,导致智能写字板输出的触控点的坐标误差较大。
发明内容
本申请实施例提供一种确定触控感应距离的方法、电子装置及终端设备,能够在用户使用终端的过程中,确定用户的触控点与终端触摸屏之间的触控感应距离。
第一方面,本申请实施例提供一种确定触控感应距离的方法,方法包括:
在第一触控点位于触摸屏第一感应通道的中心点上方的情况下,获取所述第一感应通道的第一感应值以及第二感应通道的第二感应值,所述第一感应通道为所述触摸屏多个感应通道中的任意一个感应通道,所述第二感应通道与所述第一感应通道相邻;
根据所述第一感应值、所述第二感应值以及所述第一感应通道与所述第二感应通道之间的距离,确定触控感应距离,所述触控感应距离为所述第一触控点与所述第一感应通道的中心点之间的垂直距离。
通过实施本申请实施例,终端能够在用户每次在终端的触摸屏上进行触控或者书写操作时,重新确定用户的触控点与所述终端的触摸屏之间的触控感应距离,进而能够根据不同的触控感应距离选择不同的坐标补偿值,或者根据不同的触控感应距离计算触控点坐标,以减少由于触控感应距离的变化而导致终端最终确定的触控点坐标与实际触控点坐标之间的误差,提高触控精度。
在一种可能的实施例中,所述确定触控感应距离之后,还包括:
根据所述触控感应距离确定与所述触控感应距离对应的坐标补偿值,所述坐标补偿值包括x轴坐标补偿值以及y轴坐标补偿值,其中,x轴与y轴组成直角坐标系,所述直角坐标系的原点与所述触摸屏的一顶点重合,所述直角坐标系的x轴与所述触摸屏的一边缘重合;
根据所述坐标补偿值确定第二触控点的坐标,所述第二触控点为触摸屏上的任意一个触控点,在触控点位于所述第二触控点的情况下,第三感应通道的第三感应值大于其他感应通道的感应值。
通过实施上述实施例,终端可以根据每次确定的不同的触控感应距离选取对应的不同的 坐标补偿值,进而对坐标进行补偿,能够克服每个终端设备只设置一个坐标补偿值,坐标补偿值不能随着触控点与触摸屏之间的触控感应距离的变化而变化,导致在触控感应距离变化时,终端确定的触控点的坐标误差增大的问题,提高了输出的触控点坐标的精度。
在一种可能的实施例中,所述方法还包括:
根据所述触控感应距离,确定第二触控点的偏移量,所述偏移量包括x轴偏移量以及y轴偏移量,所述x轴偏移量为所述第二触控点与所述第三感应通道的中心点在x轴方向上的距离,所述y轴偏移量为所述第二触控点与所述第三感应通的中心点在y轴方向上的距离;
根据所述第二触控点的偏移量,确定所述第二触控点的坐标。
通过实施上述实施例,终端可以根据每次确定的不同的触控感应距离,确定触控点垂直投射到触摸屏上的点与距触控点最近的感应通道的中心点之间的偏移量,然后根据偏移量、感应通道之间的距离以及感应通道之间的像素点数量,确定触控点的坐标,能够克服每个终端设备只设置一个坐标补偿值,坐标补偿值不能随着触控点与触摸屏之间的触控感应距离的变化而变化,导致在触控感应距离变化时,终端确定的触控点的坐标误差增大的问题,提高了输出的触控点坐标的精度。
第二方面,本申请实施例提供一种终端设备,包括处理器、输入输出设备存储器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器、输入输出设备和存储器相互连接,所述存储器用于存储计算机程序,所述输入输出设备用于与其他设备进行通信,所述计算机程序被所述处理器执行时实现如上述第一方面或第一方面的任意可能的实施方式中所描述的方法。
第三方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被计算设备执行时实现如上述第一方面或第一方面的任意可能的实施方式中所描述的方法。
第四方面,本申请实施例提供一种确定触控感应距离的电子装置,所述电子装置包括:
获取单元,用于在第一触控点位于触摸屏第一感应通道的中心点上方的情况下,获取所述第一感应通道的第一感应值以及第二感应通道的第二感应值,所述第一感应通道为所述触摸屏多个感应通道中的任意一个感应通道,所述第二感应通道与所述第一感应通道相邻;
处理单元,用于根据所述第一感应值、所述第二感应值以及所述第一感应通道与所述第二感应通道之间的距离,确定触控感应距离,所述触控感应距离为所述第一触控点与所述第一感应通道的中心点之间的垂直距离。
在一种可能的实施例中,处理单元还用于:
根据所述触控感应距离确定与所述触控感应距离对应的坐标补偿值,所述坐标补偿值包括x轴坐标补偿值以及y轴坐标补偿值,其中,x轴与y轴组成直角坐标系,所述直角坐标系的原点与所述触摸屏的一顶点重合,所述直角坐标系的x轴与所述触摸屏的一边缘重合;
根据所述坐标补偿值确定第二触控点的坐标,所述第二触控点为触摸屏上的任意一个触控点,在触控点位于所述第二触控点的情况下,第三感应通道的第三感应值大于其他感应通道的感应值。
在一种可能的实施例中,所述处理单元还用于:
根据所述触控感应距离,确定第二触控点的偏移量,所述偏移量包括x轴偏移量以及y 轴偏移量,所述x轴偏移量为所述第二触控点与所述第三感应通道的中心点在x轴方向上的距离,所述y轴偏移量为所述第二触控点与所述第三感应通的中心点在y轴方向上的距离;
根据所述第二触控点的偏移量,确定所述第二触控点的坐标。
通过实施本申请实施例,终端能够在用户每次在终端的触摸屏上进行触控或者书写操作时,重新确定用户的触控点与所述终端的触摸屏之间的触控感应距离,进而能够根据不同的触控感应距离选择不同的坐标补偿值,或者根据不同的触控感应距离计算触控点坐标,以减少由于触控感应距离的变化而导致终端最终确定的触控点坐标与实际触控点坐标之间的误差,提高触控精度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1是一种触摸屏感应通道分布示意图;
图2是触摸屏的正视图;
图3是触摸屏的左视图;
图4是本申请实施例提供的一种确定触控感应距离的方法流程图示意图;
图5是本申请实施例提供的一种确定触控感应距离时触控点与感应通道位置关系示意图;
图6是本申请实施例提供的一种矩形区域的示意图;
图7是本申请实施例提供的一种根据触控感应距离确定触控点坐标的方法的流程示意图;
图8是本申请实施例提供的另一种根据触控感应距离确定触控点坐标的方法的流程示意图;
图9是本申请实施例提供的一种确定触控点偏移量时触控点与感应通道位置关系示意图;
图10是本申请实施例提供的一种确定触控点坐标时触控点与感应通道位置关系示意图;
图11是本申请实施例提供的一种电子装置的示意图;
图12是本申请实施例提供的一种终端设备的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
需要说明的是,本申请实施例中所涉及到的终端可以是智能写字板,也可以是具有与智能写字板相同功能终端,例如智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、移动互联网设备(Mobile Internet Device,MID)、智能穿戴设备(如智能手表、智能 手环)等,还可以是具有触摸屏,且在使用过程中触控点到触摸屏的垂直距离会发生改变的终端,本发明实施例不作限定。
下面结合图1至图3,对终端确定触控点坐标的方法进行介绍。如图1所示,图1是一种触摸屏感应通道分布示意图,在图1中,触摸屏中共分布有12个感应通道,分别为感应通道1至感应通道12,以触摸屏的左上角的顶点为坐标原点,以相交于所述坐标原点的触摸屏的两条边作为x轴和y轴建立直角坐标系,其中,在x轴方向上的任意两个相邻感应通道之间的第一距离相同,在y轴方向上的任意两个相邻感应通道之间的第二距离相同,所述第一距离与所述第二距离可以相同,也可以不同,上述两个相邻感应通道之间的距离均是指两个感应通道的中心点之间的距离。如图2所示,图2是图1所示触摸屏的正视图,即图2中三个感应通道中心点的连线平行于x轴,由于触控点P与感应通道之间存在有介质材料,例如智能写字板上铺设的纸张,因此触控点与触摸屏之间存在一定的触控感应距离h。在确定触控点坐标时,若终端确定感应通道8的感应值A 1为最大感应值,则终端可以获取与感应通道8在x轴方向上相邻的感应通道7的感应值A 2以及感应通道9的感应值A 3,根据感应值A 2和感应值A 3确定触控点的坐标,具体的,触控点P的横坐标x P与感应值A 2以及感应值A 3满足如下公式:
Figure PCTCN2018104698-appb-000001
Figure PCTCN2018104698-appb-000002
其中,A 3大于或者等于A 2,M 1为在x轴方向上相隔一个感应通道的两个感应通道的中心点之间的像素点个数,即感应通道7的中心点O 7和感应通道9的中心点O 9之间的像素点数量,Δx 0为x轴坐标补偿值,用于补偿x轴方向上因为触控感应距离导致的误差。
如图3所示,图3是图1所示触摸屏的左视图,即图3中三个感应通道的中心点连线平行于y轴,根据上述原理,可以得到触控点P的纵坐标y P满足如下公式:
Figure PCTCN2018104698-appb-000003
其中,A 5大于或者等于A 4,A 4为与感应通道8在y轴方向上相邻的感应通道5的感应值,A 5为与感应通道8在y轴方向上相邻的感应通道11的感应值,M 2为在y轴方向上相隔一个感应通道的两个感应通道的中心点之间的像素点个数,即感应通道5的中心点O 5和感应通道11的中心点O 11之间的像素点数量,Δy 0为y轴坐标补偿值,用于补偿y轴方向上因为触控感应距离导致的误差。
但是,上述确定触控点坐标的方法中,终端(例如智能写字板)输出的触控点坐标是在固定厚度下,按照固定的坐标补偿值确定的,即对于一智能写字板,在确定触控点坐标的过程中,获取到的触控点到感应屏的触控感应距离不变,坐标补偿值(x轴坐标补偿值与y轴坐标补偿值)为固定值。在用户在智能写字板上铺垫不同厚度的纸张的情况下,例如两次书写过程中铺垫的纸张类型不同或者铺垫的纸张数量不同,会导致触控点到感应屏的触控感应距离变化,例如当触控感应距离增大时,感应通道的感应值会随着触控感应距离的增大而减 小,而靠近触控点的感应通道的感应值下降速率比远离触控点的感应通道的感应值的下降速率快,这样会导致得到的触控点坐标误差增大,而由于终端不能在用户每次使用时检测触控点到感应屏的触控感应距离,从而不能根据不同的触控感应距离选择不同的坐标补偿值,导致在不同触控感应距离下最终得到的触控点坐标的误差增大,触控精度降低。
针对上述问题,本申请提供一种确定触控感应距离的方法,请参见图4,图4是本申请实施例提供的一种确定触控感应距离的方法流程图,如图4所示,该方法包括:
步骤101,在第一触控点位于触摸屏第一感应通道的中心点上方的情况下,获取所述第一感应通道的第一感应值以及第二感应通道的第二感应值。
其中,第一感应通道为触摸屏多个感应通道中的任意一个感应通道,第二感应通道与第一感应通道相邻,其中,所述第二感应通道可以是在x轴方向上与所述第一感应通道相邻的感应通道,也可以是在y轴方向上与所述第一感应通道相邻的感应通道,本申请实施例不做具体限制。具体的,如图5所示,图5中以第二感应通道是在x轴方向上与所述第一感应通道相邻为例进行说明,示出了第一感应通道与第二感应通道之间的位置关系图以及第一触控点P 1与第一感应通道以及所述第二感应通道之间的位置关系。其中,点O 1为所述第一感应通道的中心点,点O 2为所述第二感应通道的中心点。
本申请实施例中,在检测到所述第一感应通道在x轴方向上两个相邻的感应通道的感应值相同的情况下,或者在检测到所述感应通道在y轴方向上两个相邻的感应通道的感应值相同的情况下,确定所述第一触控点位于所述第一感应通道中心点上方。在确定所述第一触控点位于所述第一感应通道中心点上方的情况下,获取所述第一感应通道的感应值以及所述第二感应通道的第二感应值。
步骤102,根据所述第一感应值、所述第二感应值以及所述第一感应通道与所述第二感应通道之间的距离,确定所述触控感应距离。
其中,所述第一感应通道与所述第二感应通道之间的距离为所述第一感应通道的中心点与所述第二感应通道的中心点之间的距离,即在x轴方向上相邻的两个感应通道的中心点之间的距离,该距离在设计触摸屏时已经确定,在本申请实施例中以常数a表示。所述触控感应距离为第一触控点与所述第一感应通道的中心点之间的垂直距离,即所述第一触控点与终端触摸屏之间的垂直距离。
本申请实施例中,在获取所述第一感应值,所述第二感应值以及所述第一感应通道的中心点与所述第二感应通道的中心点之间的距离a之后,根据感应通道的感应值以及触控点到感应通道中心点之间的距离关系,确定所述第一触控点与所述第一感应通道的中心点之间的垂直距离。具体的,感应通道的感应值与触控点到感应通道中心点的距离成反比关系,如图5所示,在图5中,所述第一触控点P 1与第一感应通道的中心点O 1之间的触控感应距离、所述第一感应值以及所述第二感应值满足如下公式:
Figure PCTCN2018104698-appb-000004
其中,h为所述第一触控点P 1与第一感应通道的中心点O 1之间的触控感应距离,A为所述第一感应值,B为所述第二感应值。
根据上述公式3确定所述触控感应距离h为:
Figure PCTCN2018104698-appb-000005
通过实施本申请实施例,能够在用户每次在终端的触摸屏上进行触控或者书写操作时,重新确定用户的触控点与所述终端的触摸屏之间的触控感应距离,进而能够根据不同的触控感应距离选择不同的坐标补偿值,或者根据不同的触控感应距离计算触控点坐标,以减少由于触控感应距离的变化而导致终端最终确定的触控点坐标与实际触控点坐标之间的误差,提高触控精度。
在一种可能的实施例中,根据上述步骤确定的所述触控感应距离h可以作为用户本次使用终端的过程中,所有触控点与触摸屏之间的触控感应距离,即在本次操作过程的开始,用户开始在终端的触摸屏上进行触控操作时,即根据上述方法确定一个触控感应距离h 1,将该触控感应距离h 1作为本次整个操作过程中的触控感应距离。在下一次用户开始在终端触摸屏上进行操作时,再根据上述方法确定一个触控感应距离h 2,将该触控感应距离h 2作为本次整个操作过程中的触控感应距离。例如,若所述终端为智能写字板,当用户在所述智能写字板上铺垫好纸张开始进行书写时,根据上述方法确定一个触控感应距离h 1,若终端在一段时间段内,每隔预设时长都能够检测到触控操作,则将该时间段内用户的操作作为一次操作过程,将所述触控感应距离h 1作为本次操作的触控感应距离;若终端在本次检测到用户的触控操作后,在预设时间段内没有再次检测到触控操作,则终端将下一次检测到的触控操作作为另一次操作过程,再次根据上述方法确定一个触控感应距离h 2,比如用户在智能写字板上书写两个汉字,若用户在书写两个汉字之间的间隔时间小于或者等于预设时长,则将书写这两个汉字的过程认为是一次操作过程,只需在开始书写第一个汉字时确定一次触控感应距离,若用户在开始书写第二个汉字与书写完第一个汉字之间的时间间隔大于所述预设时长,则将书写这两个汉字的过程认为是两次操作过程,终端需要在用户开始书写第二个汉字时再次确定一次触控感应距离。又例如,若所述智能写字板上具有固定纸张的装置,比如采用磁力吸附装置,利用相互吸引的磁极固定纸张,则终端在检测到磁力吸附装置两磁极间的相互作用力变化超过预设阈值的情况下,即认为变化前后是两次不同的操作过程,触控感应距离可能发生改变,比如用户打开磁力吸附装置增加或者撤出纸张,则终端在磁力吸附装置的两极间相互作用力由变化变为稳定之后,若检测到触控操作,则需要再次确定一次触控感应距离。
在一种可能的实施例中,终端可以在检测到触控操作后,采用上述方法确定多个初始触控感应距离,计算所述多个初始触控感应距离的平均值作为最终的触控感应距离,并将最终的触控感应距离作为本次操作的触控感应距离,由于通过单个触控点确定触控感应距离时,所述单个触控点是用户随机触控的,通过多个初始触控感应距离计算平均值的方法确定最终触控感应距离,以减少通过单个触控点确定触控感应距离的随机误差,提高最终确定的触控感应距离的准确性。
在一种可能的实施例中,终端可以在触控点位于每个感应通道的中心点上方时,都根据上述方法确定一次触控感应距离,终端将触控点位于一个感应通道上方时确定的触控感应距离,作为以该感应通道中心点为中心的预设区域内的触控感应距离。举例来讲,在图2中,在终端检测到感应通道7的感应值以及感应通道9的感应值相同的情况下,确定触控点位于感应通道8的中心点上方,此时确定感应通道8对应的触控感应距离h 8,并将触控感应距离h 8作为以感应通道8的中心点O 8为中心的矩形区域的触控感应距离,当终端确定触控点位于感应通道9的中心点上方,此时终端再次确定感应通道9对应的触控感应距离h 9,并将触控感应距离h 9作为以感应通道9的中心点O 9为中心的矩形区域的触控感应距离,其中,所述矩形区域如图6所示,所述矩形区域平行于x轴的边的边长等于x轴方向上相邻的两个感应通道的中心点之间的距离a,所述矩形区域平行于y轴的边的边长等于y轴方向上相邻的两个感应通道中心点之间的距离,所述矩形区域的对角线相交于感应通道的中心点。
通过实施上述实施例中的方法,可以在用户进行触控操作时,每次经过感应通道中心点上方时均确定一次触控感应距离,提高了终端确定触控感应距离的频率,使每次确定的触控感应距离所对应的触控区域的面积更小,由于每个触控感应距离可以对应一组坐标补偿值,因此每组坐标补偿值对应的触控面积也更小,进而能够提高终端最终输出的触控点的坐标的精度。
本申请实施例中,请参见图7,图7是本申请实施例提供的一种根据触控感应距离确定触控点坐标的方法的流程示意图,如图7所示,该方法包括:
步骤201,在第一触控点位于触摸屏第一感应通道的中心点上方的情况下,获取所述第一感应通道的第一感应值以及第二感应通道的第二感应值。
步骤202,根据所述第一感应值、所述第二感应值以及所述第一感应通道与所述第二感应通道之间的距离,确定所述触控感应距离。
其中,步骤201的执行方法请参照上述实施例中的步骤101,步骤202的执行方法请参照上述实施例中的步骤102,在此不再赘述。
步骤203,根据所述触控感应距离确定与所述触控感应距离对应的坐标补偿值。
本申请实施例中,坐标补偿值包括x轴坐标补偿值以及y轴坐标补偿值,终端可以存储有触控感应距离与坐标补偿值关联的关联表,例如,触控感应距离h 1对应的一组坐标补偿值为(Δx 1,Δy 1),触控感应距离h 2对应的一组坐标补偿值为(Δx 2,Δy 2)等,在终端确定一个触控感应距离之后,则从所述关联表中查找与所述触控感应距离对应的组坐标补偿值,以用于确定触控点的坐标。
步骤204,根据所述坐标补偿值确定第二触控点的坐标。
本申请实施例中,所述第二触控点为用户在触摸屏上操作时的任意一个触控点,在触控点位于所述第二触控点的情况下,第三感应通道的感应值大于其他感应通道的感应值。
在根据步骤202中确定的触控感应距离选取对应的一组坐标补偿值后,结合第四感应通道的第四感应值以及第五感应通道的第五感应值,根据上述公式1即可确定所述第二触控点的横坐标,其中,所述第四感应通道与所述第三感应通道相邻,所述第五感应通道与所述第三感应通道相邻,所述第三感应通道、所述第四感应通道以及所述第五感应通道的中心点的 连线与所述直角坐标系的x轴平行。结合第六感应通道的第六感应值以及第七感应通道的第七感应值,根据上述公式2即可确定所述第二触控点的纵坐标,所述第六感应通道与所述第三感应通道相邻,所述第七感应通道与所述第三感应通道相邻,所述第三感应通道、所述第六感应通道以及所述第七感应通道的中心点的连线与所述直角坐标系的y轴平行。具体的,若根据触控感应距离确定的一组坐标补偿值为(Δx 1,Δy 1),则根据上述公式1以及公式2,所述第二触控点P 2的坐标满足如下公式:
Figure PCTCN2018104698-appb-000006
其中,x为所述第二触控点的x轴坐标,y为所述第二触控点的y轴坐标,B为所述第四感应值,C为所述第五感应值,D为所述第六感应值,E为所述第七感应值,C大于等于B,E大于等于D,M 1为所述第四感应通道与所述第五感应通道之间的像素点个数,M 2为所述第六感应通道与所述第七感应通道之间的像素点个数,△x 1为所述x轴坐标补偿值,△y 1为所述y轴坐标补偿值。
通过实施上述实施例,终端可以根据每次确定的不同的触控感应距离选取对应的不同的坐标补偿值,进而对坐标进行补偿,能够克服每个终端设备只设置一个坐标补偿值,坐标补偿值不能随着触控点与触摸屏之间的触控感应距离的变化而变化,导致在触控感应距离变化时,终端确定的触控点的坐标误差增大的问题,提高了输出的触控点坐标的精度。
本申请实施例中,请参见图8,图8是本申请实施例提供的另一种根据触控感应距离确定触控点坐标的方法的流程示意图,如图8所示,该方法包括:
步骤301,在第一触控点位于触摸屏第一感应通道的中心点上方的情况下,获取所述第一感应通道的第一感应值以及第二感应通道的第二感应值。
步骤302,根据所述第一感应值、所述第二感应值以及所述第一感应通道与所述第二感应通道之间的距离,确定所述触控感应距离。
其中,步骤301的执行方法请参照上述实施例中的步骤101,步骤302的执行方法请参照上述实施例中的步骤102,在此不再赘述。
步骤303,根据所述触控感应距离,确定第二触控点的偏移量。
本申请实施例中,所述第二触控点为用户在触摸屏上操作时的任意一个触控点,在触控点位于所述第二触控点的情况下,第三感应通道的第三感应值大于其他感应通道的感应值。第三感应通道至第七感应通道的位置关系如上述实施例步骤204中所述。如图9所示,所述第二触控点P 2垂直投射到触摸屏上的点为Q 2,所述第二触控点的偏移量包括x轴偏移量Δl x以及y轴偏移量Δl y,所述x轴偏移量为所述第二触控点P 2垂直投射到触摸屏上的点Q 2与所述第三感应通道的中心点O 3在x轴方向上的距离,所述y轴偏移量为所述第二触控点P 2垂直投射到触摸屏上的点Q 2与所述第三感应通的中心点O 3在y轴方向上的距离。如图10所示,图10是相对于图9的正视图,图10示出了第二触控点P 2与第三感应通道、第四感应通道以及第五感应通道之间的位置关系图,由于感应通道的感应值与触控点到感应通道中心点的距离成反比关系,根据触控感应距离、第四感应通道的第四感应值以及第五感应通道的第五感 应值,结合图10中的位置关系可以确定所述第二触控点的x轴偏移量Δl x,具体的,所述第二触控点的x轴偏移量Δl x满足如下公式:
Figure PCTCN2018104698-appb-000007
其中,B为所述第四感应值,C为所述第五感应值,C大于或者等于B,h为所述触控感应距离,a为在x轴方向上相邻的两个感应通道的中心点之间的距离,即图10中第三感应通道的中心点与第四感应通道的中心点之间的距离。
根据上述相同的原理,可以确定所述第二触控点的y轴偏移量Δl y,具体的,所述第二触控点的y轴偏移量Δl y满足如下公式:
Figure PCTCN2018104698-appb-000008
其中,D为所述第六感应值,E为所述第七感应值,E大于或者等于D,b为在y轴方向上相邻的两个感应通道的中心点之间的距离,即图9中第三感应通道的中心点与第六感应通道的中心点之间的距离。
步骤304,根据所述第二触控点的偏移量,确定所述第二触控点的坐标。
确定所述第二触控点的x轴偏移量以及y轴偏移量之后,可以根据所述第二触控点的x轴偏移量、第三感应通道与所述第四感应通道之间的距离以及第四感应通道与所述第五感应通道之间的像素点数量,确定所述第二触控点的x轴坐标;根据所述第二触控点的y轴偏移量、第三感应通道与所述第六感应通道之间的距离以及第六感应通道与所述第七感应通道之间的像素点数量,确定所述第二触控点的y轴坐标。具体的,所述第二触控点P 2的坐标满足如下公式:
Figure PCTCN2018104698-appb-000009
其中,x为所述第二触控点的x轴坐标,y为所述第二触控点的y轴坐标,M 1为x轴方向上间隔一个感应通道的两个感应通道的中心点之间的像素点数量,即图9中所述第四感应通道的中心点与所述第五感应通道的中心点之间的像素点个数,M 2为y轴方向上间隔一个感应通道的两个感应通道的中心点之间的像素点数量,即所述第六感应通道的中心点与所述第七感应通道的中心点之间的像素点个数。
通过实施上述实施例,终端可以根据每次确定的不同的触控感应距离,确定触控点垂直投射到触摸屏上的点与距触控点最近的感应通道的中心点之间的偏移量,然后根据偏移量、感应通道之间的距离以及感应通道之间的像素点数量,确定触控点的坐标,能够克服每个终端设备只设置一个坐标补偿值,坐标补偿值不能随着触控点与触摸屏之间的触控感应距离的变化而变化,导致在触控感应距离变化时,终端确定的触控点的坐标误差增大的问题,提高了输出的触控点坐标的精度。
基于同一发明构思,本申请实施例提供一种确定触控感应距离的电子装置,请参见图11, 图11是本申请实施例提供的一种确定触控感应距离的电子装置的示意图,如图11所示,所述电子装置100至少包括获取单元110以及处理单元120,其中,
所述获取单元110用于在第一触控点位于触摸屏第一感应通道的中心点上方的情况下,获取所述第一感应通道的第一感应值以及第二感应通道的第二感应值,所述第一感应通道为所述触摸屏多个感应通道中的任意一个感应通道,所述第二感应通道与所述第一感应通道相邻;
所述处理单元120用于根据所述第一感应值、所述第二感应值以及所述第一感应通道与所述第二感应通道之间的距离,确定触控感应距离,所述触控感应距离为所述第一触控点与所述第一感应通道的中心点之间的垂直距离。
在一种可能的实施例中,所述处理单元120还用于:根据所述触控感应距离确定与所述触控感应距离对应的坐标补偿值,所述坐标补偿值包括x轴坐标补偿值以及y轴坐标补偿值,其中,x轴与y轴组成直角坐标系,所述直角坐标系的原点与所述触摸屏的一顶点重合,所述直角坐标系的x轴与所述触摸屏的一边缘重合;
根据所述坐标补偿值确定第二触控点的坐标,所述第二触控点为触摸屏上的任意一个触控点,在触控点位于所述第二触控点的情况下,第三感应通道的第三感应值大于其他感应通道的感应值。
具体的,所述处理单元120用于:根据第四感应通道的第四感应值、第五感应通道的第五感应值、所述第四感应通道与所述第五感应通道之间的像素点数量以及所述x轴坐标补偿值,确定所述第二触控点的x轴坐标,其中,所述第四感应通道与所述第三感应通道相邻,所述第五感应通道与所述第三感应通道相邻,所述第三感应通道、第四感应通道以及所述第五感应通道所在的直线与所述直角坐标系的x轴平行;
根据第六感应通道的第六感应值、第七感应通道的第七感应值、所述第六感应通道与所述第七感应通道之间的像素点数量以及所述y轴坐标补偿值,确定所述触控点的y轴坐标,其中,所述第六感应通道与所述第三感应通道相邻,所述第七感应通道与所述第三感应通道相邻,所述第三感应通道、所述第六感应通道以及所述第七感应通道所在的直线与所述直角坐标系的y轴平行。
在一种可能的实施例中,所述处理单元120还用于:根据所述触控感应距离,确定第二触控点的偏移量,所述偏移量包括x轴偏移量以及y轴偏移量,所述x轴偏移量为所述第二触控点与所述第三感应通道的中心点在x轴方向上的距离,所述y轴偏移量为所述第二触控点与所述第三感应通的中心点在y轴方向上的距离;
根据所述第二触控点的偏移量,确定所述第二触控点的坐标。
具体的,处理单元120用于:根据所述第二触控点的x轴偏移量、第三感应通道与所述第四感应通道之间的距离以及第四感应通道与所述第五感应通道之间的像素点数量,确定所述第二触控点的x轴坐标;
根据所述第二触控点的y轴偏移量、第三感应通道与所述第六感应通道之间的距离以及第六感应通道与所述第七感应通道之间的像素点数量,确定所述第二触控点的y轴坐标。
需要说明的是,通过前述图4、图7或图8方法实施例的详细描述,本领域技术人员可以清楚地知道该电子装置100所包含的各个单元的实现方法,所以为了说明书的简洁,在此不再赘述。
基于同一发明构思,本发明实施例提供了一种终端设备,参见图12,所述终端设备用于实现图4、图7或图8方法实施例所描述的确定触控感应距离的方法。如图12所示,所述终端设备200可包括:处理器210、存储器220以及输入输出设备230。这些部件可在一个或多个通信总线240上通信。
所称处理器210可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器220可以包括只读存储器和随机存取存储器,并向处理器210存储有程序代码和数据。存储器220的一部分还可以包括非易失性随机存取存储器。另外,存储器220还可以存储设备类型的信息。
所述输入输出设备230主要用于接收用户的触控操作,需要说明的是,输入输出设备230还可以包括其他I/O外设。
本申请实施例中,所述处理器210用于调用所述存储器220存储的指令,并执行以下步骤:
在第一触控点位于触摸屏第一感应通道的中心点上方的情况下,获取所述第一感应通道的第一感应值以及第二感应通道的第二感应值,所述第一感应通道为所述触摸屏多个感应通道中的任意一个感应通道,所述第二感应通道与所述第一感应通道相邻;
根据所述第一感应值、所述第二感应值以及所述第一感应通道与所述第二感应通道之间的距离,确定触控感应距离,所述触控感应距离为所述第一触控点与所述第一感应通道的中心点之间的垂直距离。
在一可能的实施例中,所述处理器210还用于根据所述触控感应距离确定与所述触控感应距离对应的坐标补偿值,所述坐标补偿值包括x轴坐标补偿值以及y轴坐标补偿值,其中,x轴与y轴组成直角坐标系,所述直角坐标系的原点与所述触摸屏的一顶点重合,所述直角坐标系的x轴与所述触摸屏的一边缘重合;
根据所述坐标补偿值确定第二触控点的坐标,所述第二触控点为触摸屏上的任意一个触控点,在触控点位于所述第二触控点的情况下,第三感应通道的第三感应值大于其他感应通道的感应值。
在一可能的实施例中,所述处理器210还用于根据所述触控感应距离,确定第二触控点的偏移量,所述偏移量包括x轴偏移量以及y轴偏移量,所述x轴偏移量为所述第二触控点与所述第三感应通道的中心点在x轴方向上的距离,所述y轴偏移量为所述第二触控点与所述第三感应通的中心点在y轴方向上的距离;根据所述第二触控点的偏移量,确定所述第二触控点的坐标。
需要说明的是,通过前述图4、图7或图8方法实施例的详细描述,本领域技术人员可以清楚地知道终端设备所包含的各个功能器件的实现方法,所以为了说明书的简洁,在此不再赘述。
基于同一发明构思,在本发明的另一实施例中提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被处理器执行时实现前述任一方法实施例所描述的方法。所述计算机可读存储介质可以是前述任一实施例所述的终端的内部存储单元,例如终端的硬盘或内存。所述计算机可读存储介质也可以是所述终端的外部存储设备,例如所述终端上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述计算机可读存储介质还可以既包括所述终端的内部存储单元也包括外部存储设备。所述计算机可读存储介质用于存储所述计算机程序以及所述终端所需的其他程序和数据。所述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及方法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的单元、设备的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的单元、终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统。
在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种确定触控坐标的方法,其特征在于,包括步骤:
    在第一触控点位于触摸屏第一感应通道的中心点上方的情况下,获取所述第一感应通道的第一感应值以及第二感应通道的第二感应值,所述第一感应通道为所述触摸屏多个感应通道中的任意一个感应通道,所述第二感应通道与所述第一感应通道相邻;
    根据所述第一感应值、所述第二感应值以及所述第一感应通道与所述第二感应通道之间的距离,确定触控感应距离,所述触控感应距离为所述第一触控点与所述第一感应通道的中心点之间的垂直距离。
  2. 根据权利要求1所述的方法,其特征在于,所述确定触控感应距离之后,还包括:
    根据所述触控感应距离确定与所述触控感应距离对应的坐标补偿值,所述坐标补偿值包括x轴坐标补偿值以及y轴坐标补偿值,其中,x轴与y轴组成直角坐标系,所述直角坐标系的原点与所述触摸屏的一顶点重合,所述直角坐标系的x轴与所述触摸屏的一边缘重合;
    根据所述坐标补偿值确定第二触控点的坐标,所述第二触控点为触摸屏上的任意一个触控点,在触控点位于所述第二触控点的情况下,第三感应通道的感应值大于其他感应通道的感应值。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述坐标补偿值确定第二触控点的坐标,包括:
    根据第四感应通道的第四感应值、第五感应通道的第五感应值、所述第四感应通道与所述第五感应通道之间的像素点数量以及所述x轴坐标补偿值,确定所述第二触控点的x轴坐标;
    其中,所述第四感应通道与所述第三感应通道相邻,所述第五感应通道与所述第三感应通道相邻,所述第三感应通道、第四感应通道以及所述第五感应通道所在的直线与所述直角坐标系的x轴平行,所述x轴方向上相邻的两个感应通道之间的距离相等;
    根据第六感应通道的第六感应值、第七感应通道的第七感应值、所述第六感应通道与所述第七感应通道之间的像素点数量以及所述y轴坐标补偿值,确定所述触控点的y轴坐标;
    其中,所述第六感应通道与所述第三感应通道相邻,所述第七感应通道与所述第三感应通道相邻,所述第三感应通道、所述第六感应通道以及所述第七感应通道所在的直线与所述直角坐标系的y轴平行,所述y轴方向上相邻的两个感应通道之间的距离相等。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述第一感应值、所述第二感应值以及所述第一感应通道与所述第二感应通道之间的距离,确定触控感应距离,包括:
    所述触控感应距离满足如下公式:
    Figure PCTCN2018104698-appb-100001
    其中,h为所述触控感应距离,a为所述第一感应通道与所述第二感应通道之间的距离, A为所述第一感应值,B为所述第二感应值。
  5. 根据权利要求3所述的方法,其特征在于,所述根据所述坐标补偿值确定第二触控点的坐标,包括:
    所述第二触控点的坐标满足如下公式:
    Figure PCTCN2018104698-appb-100002
    其中,x为所述第二触控点的横坐标,y为所述第二触控点的纵坐标,B为所述第二感应值,C为所述第三感应值,D为所述第四感应值,E为所述第五感应值,C大于或者等于B,E大于或者等于D,M 1为所述第二感应通道与所述第三感应通道之间的像素点个数,M 2为所述第四感应通道与所述第五感应通道之间的像素点个数,Δx为所述x轴坐标补偿值,Δy为所述y轴坐标补偿值。
  6. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    根据所述触控感应距离,确定第二触控点的偏移量,所述偏移量包括x轴偏移量以及y轴偏移量,所述x轴偏移量为所述第二触控点与所述第三感应通道的中心点在x轴方向上的距离,所述y轴偏移量为所述第二触控点与所述第三感应通的中心点在y轴方向上的距离。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    根据所述第二触控点的偏移量,确定所述第二触控点的坐标。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述第二触控点的偏移量,确定所述第二触控点的坐标,包括:
    根据所述第二触控点的x轴偏移量、第三感应通道与所述第四感应通道之间的距离以及第四感应通道与所述第五感应通道之间的像素点数量,确定所述第二触控点的x轴坐标;
    根据所述第二触控点的y轴偏移量、第三感应通道与所述第六感应通道之间的距离以及第六感应通道与所述第七感应通道之间的像素点数量,确定所述第二触控点的y轴坐标。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第二触控点的坐标满足如下公式:
    Figure PCTCN2018104698-appb-100003
    其中,x为所述第二触控点的x轴坐标,y为所述第二触控点的y轴坐标,a为第三感应通道与所述第四感应通道之间的距离,b为第三感应通道与所述第六感应通道之间的距离,Δl x为所述x轴偏移量,Δl y为所述y轴偏移量,M 1为所述第四感应通道与所述第五感应通道之间的像素点个数,M 2为所述第六感应通道与所述第七感应通道之间的像素点个数。
  10. 根据权利要求9所述的方法,其特征在于,所述第二触控点的偏移量满足如下公式:
    Figure PCTCN2018104698-appb-100004
    其中,B为所述第四感应值,C为所述第五感应值,D为所述第六感应值,E为所述第七感应值,C大于或者等于B,E大于或者等于D,h为所述触控感应距离。
  11. 一种终端设备,其特征在于,包括处理器、输入输出设备、存储器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器、输入输出设备和存储器相互连接,所述存储器用于存储计算机程序,所述输入输出设备用于与其他设备进行通信,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述的方法。
  12. 一种电子装置,其特征在于,所述电子装置包括:
    获取单元,用于在第一触控点位于触摸屏第一感应通道的中心点上方的情况下,获取所述第一感应通道的第一感应值以及第二感应通道的第二感应值,所述第一感应通道为所述触摸屏多个感应通道中的任意一个感应通道,所述第二感应通道与所述第一感应通道相邻;
    处理单元,用于根据所述第一感应值、所述第二感应值以及所述第一感应通道与所述第二感应通道之间的距离,确定触控感应距离,所述触控感应距离为所述第一触控点与所述第一感应通道的中心点之间的垂直距离。
  13. 根据权利要求12所述的电子装置,其特征在于,所述处理单元还用于:
    根据所述触控感应距离确定与所述触控感应距离对应的坐标补偿值,所述坐标补偿值包括x轴坐标补偿值以及y轴坐标补偿值,其中,x轴与y轴组成直角坐标系,所述直角坐标系的原点与所述触摸屏的一顶点重合,所述直角坐标系的x轴与所述触摸屏的一边缘重合;
    根据所述坐标补偿值确定第二触控点的坐标,所述第二触控点为触摸屏上的任意一个触控点,在触控点位于所述第二触控点的情况下,第三感应通道的第三感应值大于其他感应通道的感应值。
  14. 根据权利要求13所述的电子装置,其特征在于,所述处理单元具体用于:
    根据第四感应通道的第四感应值、第五感应通道的第五感应值、所述第四感应通道与所述第五感应通道之间的像素点数量以及所述x轴坐标补偿值,确定所述第二触控点的x轴坐标;
    其中,所述第四感应通道与所述第三感应通道相邻,所述第五感应通道与所述第三感应通道相邻,所述第三感应通道、第四感应通道以及所述第五感应通道所在的直线与所述直角坐标系的x轴平行;
    根据第六感应通道的第六感应值、第七感应通道的第七感应值、所述第六感应通道与所述第七感应通道之间的像素点数量以及所述y轴坐标补偿值,确定所述触控点的y轴坐标,其中,所述第六感应通道与所述第三感应通道相邻,所述第七感应通道与所述第三感应通道相邻,所述第三感应通道、所述第六感应通道以及所述第七感应通道所在的直线与所述直角坐标系的y轴平行。
  15. 根据权利要求12所述的电子装置,其特征在于,
    所述触控感应距离满足如下公式:
    Figure PCTCN2018104698-appb-100005
    其中,h为所述触控感应距离,a为所述第一感应通道与所述第二感应通道之间的距离,A为所述第一感应值,B为所述第二感应值。
  16. 根据权利要求14所述的电子装置,其特征在于,
    所述第二触控点的坐标满足如下公式:
    Figure PCTCN2018104698-appb-100006
    其中,x为所述第二触控点的横坐标,y为所述第二触控点的纵坐标,B为所述第二感应值,C为所述第三感应值,D为所述第四感应值,E为所述第五感应值,C大于或者等于B,E大于或者等于D,M 1为所述第二感应通道与所述第三感应通道之间的像素点个数,M 2为所述第四感应通道与所述第五感应通道之间的像素点个数,Δx为所述x轴坐标补偿值,Δy为所述y轴坐标补偿值。
  17. 根据权利要求15所述的电子装置,其特征在于,所述处理单元还用于:
    根据所述触控感应距离,确定第二触控点的偏移量,所述偏移量包括x轴偏移量以及y轴偏移量,所述x轴偏移量为所述第二触控点与所述第三感应通道的中心点在x轴方向上的距离,所述y轴偏移量为所述第二触控点与所述第三感应通的中心点在y轴方向上的距离。
  18. 根据权利要求17所述的电子装置,其特征在于,所述处理单元还用于:
    根据所述第二触控点的偏移量,确定所述第二触控点的坐标。
  19. 根据权利要求18所述的电子装置,其特征在于,所述处理单元具体用于:
    根据所述第二触控点的x轴偏移量、第三感应通道与所述第四感应通道之间的距离以及第四感应通道与所述第五感应通道之间的像素点数量,确定所述第二触控点的x轴坐标;
    根据所述第二触控点的y轴偏移量、第三感应通道与所述第六感应通道之间的距离以及第六感应通道与所述第七感应通道之间的像素点数量,确定所述第二触控点的y轴坐标。
  20. 根据权利要求19所述的电子装置,其特征在于,
    所述第二触控点的坐标满足如下公式:
    Figure PCTCN2018104698-appb-100007
    其中,x为所述第二触控点的x轴坐标,y为所述第二触控点的y轴坐标,a为第三感应通道与所述第四感应通道之间的距离,b为第三感应通道与所述第六感应通道之间的距离,Δl x为所述x轴偏移量,Δl y为所述y轴偏移量,M 1为所述第四感应通道与所述第五感应通道之间的像素点个数,M 2为所述第六感应通道与所述第七感应通道之间的像素点个数;
    所述第二触控点的偏移量满足如下公式:
    Figure PCTCN2018104698-appb-100008
    其中,B为所述第四感应值,C为所述第五感应值,D为所述第六感应值,E为所述第七感应值,C大于或者等于B,E大于或者等于D,h为所述触控感应距离。
PCT/CN2018/104698 2018-09-07 2018-09-07 一种确定触控感应距离的方法、电子装置及终端设备 WO2020047869A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/104698 WO2020047869A1 (zh) 2018-09-07 2018-09-07 一种确定触控感应距离的方法、电子装置及终端设备
CN201880003048.4A CN109643195A (zh) 2018-09-07 2018-09-07 一种确定触控感应距离的方法、电子装置及终端设备
TW107138881A TW202011160A (zh) 2018-09-07 2018-11-02 一種確定觸控感應距離的方法、電子裝置及終端設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/104698 WO2020047869A1 (zh) 2018-09-07 2018-09-07 一种确定触控感应距离的方法、电子装置及终端设备

Publications (1)

Publication Number Publication Date
WO2020047869A1 true WO2020047869A1 (zh) 2020-03-12

Family

ID=66060263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104698 WO2020047869A1 (zh) 2018-09-07 2018-09-07 一种确定触控感应距离的方法、电子装置及终端设备

Country Status (3)

Country Link
CN (1) CN109643195A (zh)
TW (1) TW202011160A (zh)
WO (1) WO2020047869A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102365610A (zh) * 2009-03-31 2012-02-29 三菱电机株式会社 显示输入装置
CN104298438A (zh) * 2013-07-17 2015-01-21 宏碁股份有限公司 电子装置及其触控操作方法
CN104375698A (zh) * 2014-07-17 2015-02-25 深圳市钛客科技有限公司 一种触控设备
US8988394B2 (en) * 2011-10-25 2015-03-24 Semiconductor Components Industries, Llc Electronic devices with camera-based user interfaces
CN104583920A (zh) * 2012-08-29 2015-04-29 三星电子株式会社 用于处理触摸屏上的输入的设备和方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1959611A (zh) * 2005-11-02 2007-05-09 亿燿企业股份有限公司 具有传真功能的笔式输入装置
CN101349955B (zh) * 2008-09-03 2010-09-01 嘉兴闻泰通讯科技有限公司 基于5点校准的触摸屏映射方法
CN102053777A (zh) * 2009-11-04 2011-05-11 鸿富锦精密工业(深圳)有限公司 手写输入装置
CN107015717B (zh) * 2010-08-18 2020-02-28 株式会社和冠 手写输入装置及其角度校正方法
CN103186329B (zh) * 2011-12-27 2017-08-18 富泰华工业(深圳)有限公司 电子设备及其触摸输入控制方法
CN104054046A (zh) * 2013-01-08 2014-09-17 冯林 一种基于触控板的写字板和教学系统
CN103257727B (zh) * 2013-05-14 2016-03-23 京东方科技集团股份有限公司 一种手写输入方法及装置
CN205405472U (zh) * 2016-03-01 2016-07-27 田畅 电子手写板
CN105843447A (zh) * 2016-03-21 2016-08-10 深圳市金立通信设备有限公司 一种触控方法及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102365610A (zh) * 2009-03-31 2012-02-29 三菱电机株式会社 显示输入装置
US8988394B2 (en) * 2011-10-25 2015-03-24 Semiconductor Components Industries, Llc Electronic devices with camera-based user interfaces
CN104583920A (zh) * 2012-08-29 2015-04-29 三星电子株式会社 用于处理触摸屏上的输入的设备和方法
CN104298438A (zh) * 2013-07-17 2015-01-21 宏碁股份有限公司 电子装置及其触控操作方法
CN104375698A (zh) * 2014-07-17 2015-02-25 深圳市钛客科技有限公司 一种触控设备

Also Published As

Publication number Publication date
CN109643195A (zh) 2019-04-16
TW202011160A (zh) 2020-03-16

Similar Documents

Publication Publication Date Title
WO2020238435A1 (zh) 触摸位置的识别方法、检测装置、触控装置及存储介质
EP2631766B1 (en) Method and apparatus for moving contents in terminal
US10373359B2 (en) Method and device for erasing a writing path on an infrared electronic white board, and a system for writing on an infrared electronic white board
US9612675B2 (en) Emulating pressure sensitivity on multi-touch devices
US9910541B2 (en) Mis-touch recognition method and device
WO2018107902A1 (zh) 移动终端的触摸屏控制方法、装置、移动终端及存储介质
EP3336677A1 (en) Method and apparatus for controlling touch screen of terminal, and terminal
US10126873B2 (en) Stroke continuation for dropped touches on electronic handwriting devices
CN109753179B (zh) 用户操作指令的处理方法及手写阅读设备
WO2019014858A1 (zh) 触摸检测方法和触摸检测装置
US10963159B2 (en) Virtual interface offset
CN108491152B (zh) 基于虚拟光标的触屏终端操控方法、终端及介质
WO2019137287A1 (zh) 触摸热区的调节方法、装置、设备和触摸屏终端设备
CN113934312B (zh) 一种基于红外触摸屏的触摸物识别方法和终端设备
US20180373381A1 (en) Palm touch detection in a touch screen device having a floating ground or a thin touch panel
WO2020047869A1 (zh) 一种确定触控感应距离的方法、电子装置及终端设备
WO2018032426A1 (zh) 检测输入设备的方法和检测设备
US10691257B2 (en) Method of changing identified type of touching object
WO2019071571A1 (zh) 信息处理方法、相关设备及计算机存储之介质
US9799103B2 (en) Image processing method, non-transitory computer-readable storage medium and electrical device
WO2022199540A1 (zh) 未读消息标识清除方法、装置及电子设备
CN110874729A (zh) 电子红包识别策略的切换方法、切换装置及移动终端
JP6773977B2 (ja) 端末装置及び操作制御プログラム
WO2015064316A1 (ja) 情報処理装置およびプログラム
US9013440B2 (en) Ink control on tablet devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932547

Country of ref document: EP

Kind code of ref document: A1