WO2020047805A1 - 一种剪切波弹性成像方法和装置、及计算机存储介质 - Google Patents

一种剪切波弹性成像方法和装置、及计算机存储介质 Download PDF

Info

Publication number
WO2020047805A1
WO2020047805A1 PCT/CN2018/104428 CN2018104428W WO2020047805A1 WO 2020047805 A1 WO2020047805 A1 WO 2020047805A1 CN 2018104428 W CN2018104428 W CN 2018104428W WO 2020047805 A1 WO2020047805 A1 WO 2020047805A1
Authority
WO
WIPO (PCT)
Prior art keywords
shear wave
image quality
parameter
signal
imaging device
Prior art date
Application number
PCT/CN2018/104428
Other languages
English (en)
French (fr)
Inventor
许梦玲
杜宜刚
李双双
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201880097002.3A priority Critical patent/CN112702953A/zh
Priority to PCT/CN2018/104428 priority patent/WO2020047805A1/zh
Publication of WO2020047805A1 publication Critical patent/WO2020047805A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • Embodiments of the present invention relate to the technical field of image quality evaluation, and in particular, to a method and device for shear wave elastic imaging, and a computer storage medium.
  • the elasticity of the tissue is mainly reflected by ultrasonic elastography.
  • ultrasonic elastography method that is, the press-type elastography method
  • shear wave elastography Is to identify and detect the shear wave and its propagation parameters generated inside the tissue, and then image these propagation parameters to quantitatively and visually obtain the hardness difference between the tissues.
  • shear wave elasticity imaging is the ultrasound emitted by the probe The result is no longer dependent on the operator's specific pressure on the tissue, so it can effectively make up for the shortcomings of compression elastography.
  • the quantitative measurement results of shear wave elastography also make the doctor's diagnosis more objective, so Shear wave elastography has gradually become an elastography method used by doctors.
  • shear wave elastography the signal strength factor of the shear wave, the noise factor of the shear wave, the movement of the probe, the patient's breathing, the heartbeat, and the pulsation of the blood will all affect the position of the shear wave.
  • embodiments of the present invention are expected to provide a method and device for shear wave elastography, and a computer storage medium, which can perform image quality evaluation on the obtained shear wave elastography, and effectively improve the accuracy of diagnosis results degree.
  • An embodiment of the present invention provides a shear wave elastic imaging method, and the method includes:
  • a displacement parameter corresponding to motion interference is determined according to the first echo signal, and an intensity parameter and a signal-to-noise ratio corresponding to the shear wave are determined according to the second echo signal.
  • the method further includes displaying the intensity parameter, the signal-to-noise ratio, and / or the displacement parameter.
  • the method further includes determining an image quality evaluation result according to the intensity parameter, the signal-to-noise ratio, and the displacement parameter; wherein the image quality evaluation result is used to characterize a clip corresponding to the detection target.
  • Image quality for shear wave elastography is determining an image quality evaluation result according to the intensity parameter, the signal-to-noise ratio, and the displacement parameter; wherein the image quality evaluation result is used to characterize a clip corresponding to the detection target.
  • the method further includes:
  • the image quality evaluation result is displayed.
  • determining the image quality evaluation result according to the intensity parameter, the signal-to-noise ratio, and the displacement parameter includes:
  • the determining a preliminary image quality result according to the intensity parameter and the signal-to-noise ratio includes:
  • the first weight coefficient includes a weight value corresponding to the intensity parameter and a weight value corresponding to the signal-to-noise ratio;
  • determining the image quality evaluation result according to the preliminary image quality result and the displacement parameter includes:
  • the second weight coefficient includes a displacement weight coefficient corresponding to the displacement parameter, and the second weight coefficient, the preliminary image quality result, and the displacement parameter are input to a preset recognition.
  • the method before the image quality evaluation result is obtained, the method further includes:
  • the displacement weight coefficient is set to zero.
  • the obtaining a second weighting coefficient includes:
  • the method further includes:
  • the exercise level is displayed.
  • the method further includes:
  • the quality impact ratios include respective proportions of the intensity parameter, the signal-to-noise ratio, and the displacement parameter in the image quality evaluation result;
  • the ultrasound beam is used to detect motion interference, and the ultrasound beam is used to form a B-mode ultrasound image.
  • An embodiment of the present invention provides a shear wave elastic imaging method, and the method includes:
  • a signal quality parameter corresponding to the shear wave is determined according to the echo signal.
  • the method further includes: displaying the signal quality parameter.
  • the method further includes:
  • the image quality evaluation result is displayed.
  • An embodiment of the present invention provides a shear wave elastic imaging method, and the method includes:
  • a motion parameter corresponding to motion interference is determined according to the echo signal.
  • the method further includes displaying the motion parameter.
  • an image quality evaluation result is determined according to the motion parameter; wherein the image quality evaluation result is used to characterize the image quality of the shear wave elastic imaging corresponding to the detection target;
  • the image quality evaluation result is displayed.
  • An embodiment of the present invention provides a shear wave imaging device.
  • the shear wave imaging device includes a probe, a transmitting circuit, a receiving circuit, and a processor.
  • the transmitting circuit excites the probe to transmit an ultrasonic beam to the detection target; wherein the ultrasonic beam is used for detecting motion interference; and transmitting a detection beam to the detection target; wherein the detection beam is used for detection Shear wave
  • the processor determines a displacement parameter corresponding to motion interference according to the first echo signal, and determines an intensity parameter and a signal-to-noise ratio corresponding to the shear wave according to the second echo signal.
  • the shear wave imaging device further includes: a display,
  • the display displays the intensity parameter, the signal-to-noise ratio, and / or the displacement parameter.
  • the processor determines an image quality evaluation result according to the intensity parameter, the signal-to-noise ratio, and the displacement parameter; wherein the image quality evaluation result is used to characterize the corresponding detection target.
  • Image quality for shear wave elastography is used to characterize the corresponding detection target.
  • the display displays the image quality evaluation result.
  • the processor determines a preliminary quality result according to the intensity parameter and the signal-to-noise ratio; and determines the image quality evaluation result according to the preliminary image quality result and the displacement parameter.
  • the processor obtains a first weight coefficient; wherein the first weight coefficient includes a weight value corresponding to the strength parameter and a weight value corresponding to the signal-to-noise ratio; and according to the first The weight coefficient, the intensity parameter, and the signal-to-noise obtain the preliminary result of the image quality.
  • the processor obtains a second weight coefficient; and inputs the second weight coefficient, the preliminary image quality result, and the displacement parameter into a preset recognition model to obtain the image quality Evaluation result; wherein the preset recognition model is used for quantizing the image quality.
  • the second weight coefficient includes a displacement weight coefficient corresponding to the displacement parameter
  • the processor obtains a preset displacement threshold; and when the displacement parameter is less than the preset displacement threshold, sets the displacement weight coefficient to zero.
  • the processor determines a detection mode corresponding to the detection target; and determines the second weight coefficient according to a correspondence between a pre-stored mode and a weight and the detection mode.
  • the processor obtains a preset level threshold after determining a displacement parameter corresponding to motion interference according to the first echo signal; and determines the preset level threshold according to the preset level threshold and the displacement parameter. Detect the level of movement corresponding to the target;
  • the display displays the exercise level.
  • the processor analyzes the image quality evaluation result to obtain a quality impact ratio;
  • the quality impact ratio includes respective proportions of the intensity parameter, the signal-to-noise ratio, and the displacement parameter in the image quality evaluation result; and generating a quality impact analysis result according to the quality impact ratio.
  • the transmitting circuit further excites the probe to transmit a focused beam to the detection target; wherein the focused beam is used to generate the shear wave.
  • the above-mentioned shear waves can also be generated in other ways, such as: external mechanical vibration generation, periodic movement of tissues or organs, and the like.
  • An embodiment of the present invention provides a shear wave imaging device.
  • the shear wave imaging device includes a probe, a transmitting circuit, a receiving circuit, and a processor.
  • the transmitting circuit excites the probe to transmit a detection beam to the detection target; wherein the detection beam is used to detect a shear wave;
  • the processor determines a signal quality parameter corresponding to the shear wave according to the echo signal.
  • the shear wave imaging device includes: a display,
  • the display displays the signal quality parameters.
  • the processor determines an image quality evaluation result according to the signal quality parameter; wherein the image quality evaluation result is used to characterize the image quality of the shear wave elastic imaging corresponding to the detection target;
  • the display displays the image quality evaluation result.
  • An embodiment of the present invention provides a shear wave imaging device.
  • the shear wave imaging device includes a probe, a transmitting circuit, a receiving circuit, and a processor.
  • the transmitting circuit excites the probe to transmit an ultrasonic beam to a detection target; wherein the ultrasonic beam is used to detect motion interference;
  • the receiving circuit receives an echo signal corresponding to the ultrasonic beam through the probe
  • the processor determines a motion parameter corresponding to motion interference according to the echo signal.
  • the shear wave imaging device includes: a display,
  • the display displays the motion parameters.
  • the processor determines an image quality evaluation result according to the motion parameter; wherein the image quality evaluation result is used to characterize the image quality of the shear wave elastic imaging corresponding to the detection target;
  • the display displays the image quality evaluation result.
  • An embodiment of the present invention provides a computer-readable storage medium having a program stored thereon, which is applied to a shear wave imaging device, and when the program is executed by a processor, the shear wave elastic imaging method described above is implemented.
  • Embodiments of the present invention provide a shear wave elastic imaging method and device, and a computer storage medium.
  • the shear wave elastic imaging device transmits an ultrasonic beam to a detection target; wherein the ultrasonic beam is used to detect motion interference; the detection target is A shear wave is generated and a detection beam is transmitted to the detection target; wherein the detection beam is used to detect the shear wave; a first echo signal corresponding to the ultrasonic beam and a second echo signal corresponding to the detection beam are received;
  • the wave signal determines the displacement parameter corresponding to the motion interference, and the intensity parameter and the signal-to-noise ratio corresponding to the shear wave are determined according to the second echo signal.
  • the shear wave elastography method can determine the signal quality parameters of the shear wave, such as the intensity parameter and the signal, according to the second echo signal corresponding to the detection beam.
  • Noise ratio and at the same time determine the displacement parameters corresponding to motion interference according to the first echo signal corresponding to the ultrasonic beam, the displacement parameters and the signal quality parameters of the shear wave can be combined to comprehensively identify the image quality of the shear wave elastic imaging,
  • the image quality evaluation results are obtained, thereby satisfying the needs of shear wave elastography for image quality evaluation based on a variety of interference factors, thereby effectively improving the accuracy of the diagnosis results.
  • FIG. 1 is a first schematic flowchart of an implementation method of a shear wave elastic imaging method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of shear wave propagation in water
  • FIG. 3 is a schematic diagram of shear wave propagation in blood
  • Figure 4 is a first schematic diagram of the propagation of shear waves in the tissue
  • FIG. 5 is a second schematic diagram of propagation of a shear wave in a tissue
  • Figure 6 is a schematic diagram III of the propagation of shear waves in the tissue
  • FIG. 7 is a schematic diagram of an echo signal of a previous frame of a B image in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an echo signal of the next frame of the B image in the embodiment of the present invention.
  • FIG. 9 is a second schematic flowchart of a shear wave elastography method according to an embodiment of the present invention.
  • FIG. 10 is a third schematic flowchart of an implementation method of a shear wave elastic imaging method according to an embodiment of the present invention.
  • FIG. 11 is a fourth schematic flowchart of an implementation method of a shear wave elastography method according to an embodiment of the present invention.
  • FIG. 12 is a fifth schematic flowchart of an implementation method of a shear wave elastography method according to an embodiment of the present invention.
  • FIG. 13 is a first schematic diagram of an exercise level according to an embodiment of the present invention.
  • FIG. 14 is a second schematic diagram of an exercise level according to an embodiment of the present invention.
  • FIG. 15 is a schematic flowchart of an implementation method of a shear wave elastography method according to an embodiment of the present invention.
  • FIG. 16 is a first schematic structural diagram of a composition of a shear wave elastic imaging device according to an embodiment of the present invention.
  • FIG. 17 is a second schematic diagram of a composition structure of a shear wave elastic imaging device according to an embodiment of the present invention.
  • Shear wave is a wave whose propagation direction is perpendicular to the vibration direction of the medium particle.
  • the probe emits a specific focused ultrasonic beam into the detection target to form an acoustic radiation force. It acts as a bipolar shear wave source and further propagates in the transverse direction. Shear wave.
  • the probe then again sends a sound beam to the tissue to detect shear wave propagation, and receives the echo for signal processing. By calculating the time-varying displacement field at each position of the tissue, the propagation velocity of the shear wave at these positions can be reconstructed, and a shear wave elastic image can be formed.
  • the echo signal analysis can be used to determine the quality of the shear wave signal to obtain a quantified credibility level value to identify the current elastic image quality. Further, it is also possible to judge the detection target movement and probe movement caused by factors such as breathing, to classify the strength of the movement, and to give an image quality evaluation result in combination with the signal quality judgment.
  • the image quality evaluation result and the motion strength ranking indicator are displayed.
  • FIG. 1 is a schematic diagram of an implementation process of a shear wave elastography method according to an embodiment of the present invention. As shown in FIG. 1, in the embodiment of the present invention, the shear wave elastography method may include the following steps:
  • Step 101 An ultrasonic beam is transmitted to a detection target.
  • the ultrasonic beam is used to detect motion interference.
  • a shear wave is generated in the detection target and a detection beam is transmitted to the detection target.
  • the detection beam is used to detect the shear wave.
  • the above-mentioned shear wave elastic imaging device may transmit an ultrasonic beam to a detection target; wherein the ultrasonic beam is used to detect motion interference; the device may further generate a shear wave in the detection target, and then Transmitting a detection beam to the detection target; wherein the detection beam is used to detect the shear wave.
  • the shear wave elastic imaging device may be a device that performs shear wave elastic imaging on the detection target.
  • the detection target may be a human tissue, an organ, or the like to be detected.
  • the detection target may be a human tissue such as a thyroid gland, a breast, a liver, a musculature, or a blood vessel.
  • the ultrasonic beam is used to detect motion interference.
  • the ultrasonic beam may be a B-type beam and may be used for acquiring a B-type ultrasonic image.
  • the shear wave may be generated by a focused beam.
  • the detection Beams can be used to detect the aforementioned shear waves.
  • the shear wave may be used to perform elasticity detection on the detection target.
  • the shear wave elastic imaging device may be configured with a probe and a transmitting circuit, and the transmitting circuit may stimulate the probe to emit a specific focused beam to the detection target to form an acoustic radiation force, and the acoustic radiation force is used as A bipolar shear wave source generates a shear wave that propagates in the lateral direction, thereby achieving the above-mentioned generation of a shear wave in the detection target.
  • Step 102 Receive a first echo signal corresponding to the ultrasonic beam and a second echo signal corresponding to the detection beam.
  • the shear wave elastic imaging device may receive a first echo signal corresponding to the ultrasonic beam; After a shear wave is generated in the method and a detection beam is transmitted to the detection target, a second echo signal corresponding to the detection beam can be received.
  • the shear wave elastic imaging device transmits an ultrasonic beam to the detection target, generates a shear wave in the detection target, and transmits a detection beam to the detection target, and then may receive a first beam corresponding to the ultrasonic beam. An echo signal and a second echo signal corresponding to the detection beam.
  • a receiving circuit configured by the shear wave elastic imaging device may receive the first corresponding to the ultrasonic beam through the probe. An echo signal.
  • the shear wave elastic imaging device generates a shear wave in the detection target, and sends a detection beam to the detection target.
  • the shear wave elastic imaging device can cut the shear through the detection beam. The wave is detected, so that the second echo signal corresponding to the probe beam is received by the probe.
  • Step 103 Determine a displacement parameter corresponding to the motion interference according to the first echo signal, and determine an intensity parameter and a signal-to-noise ratio corresponding to the shear wave according to the second echo signal.
  • the shear wave elastic imaging device may be based on the first echo signal.
  • the displacement parameter corresponding to the motion disturbance is determined, and the intensity parameter and the signal-to-noise ratio corresponding to the shear wave can be determined according to the second echo signal.
  • the shear wave elastic imaging device may perform signal processing on the second echo signal, thereby obtaining the intensity parameter corresponding to the shear wave and the foregoing The noise parameter, and then further determine the signal-to-noise ratio corresponding to the shear wave according to the intensity parameter and the noise parameter.
  • the shear wave elastic imaging device may first determine an intensity parameter corresponding to the shear wave according to the second echo signal, where the intensity parameter is used to characterize a signal corresponding to the shear wave Intensity, the shear wave elastic imaging device may extract the noise parameter corresponding to the shear wave from the second echo signal, and determine the signal noise corresponding to the shear wave according to the second echo signal and the noise parameter
  • the ratio is the ratio of the amplitude of the shear wave signal to the noise level.
  • the shear wave propagation velocity or the Young's modulus is imaged and relied on the shear wave signal. Therefore, it is necessary to judge the quality of the shear wave signal. Specifically, The judgment of the quality of the shear wave signal is mainly to identify the parameters such as the strength of the shear wave signal and the signal-to-noise ratio and make a quantitative judgment.
  • Figure 2 is a schematic diagram of shear wave propagation in water. As shown in Figure 2, because the shear wave cannot propagate in liquid, the signal amplitude of the shear wave in water is 0, and the noise level is (-2, 2). .
  • Figure 3 is a schematic diagram of the shear wave propagation in blood. As shown in Figure 3, due to the presence of red blood cells, plasma and other substances in the blood, compared with water, there will be some shear wave signals with very low intensity in the blood, but Because the signal strength is very small, it is usually mixed with noise. The amplitude of the shear wave signal in the figure is 4 and the noise level is (-2, 2). Therefore, it is difficult to calculate the accurate shear wave propagation speed based on the signal. .
  • Figure 4 is the first schematic diagram of the propagation of shear waves in tissues. As shown in Figure 4, the shear wave signal is significantly stronger than the surrounding noise. The amplitude of the shear wave signal is 30 and the noise level is (-2, 2).
  • Figure 5 is the second schematic diagram of the propagation of shear waves in tissues. As shown in Figure 5, compared with Figure 4, the system noise becomes much larger, so it will affect the calculation of shear wave propagation speed. Among them, the shear wave signal Amplitude 30, noise level (-5, 5).
  • Figure 6 is the third schematic diagram of the propagation of shear waves in tissues. As shown in Figure 6, compared to Figure 4, the system noise level is still (-2, 2), but due to the attenuation of the shear wave during the propagation, the shear The signal strength of the shear wave decreases, and the amplitude of the shear wave signal is 8.
  • the shear wave elastic imaging device may further determine a displacement parameter corresponding to motion interference according to the first echo signal.
  • the shear wave elastic imaging can generate the shear wave by transmitting a focused beam to the detection target, and detecting the shear wave propagation velocity at each position corresponding to the detection target, thereby obtaining the detection.
  • Target hardness information image image.
  • the shear wave elastic imaging device when the shear wave elastic imaging device performs wave velocity detection of the shear wave, it may continuously transmit multiple detection ultrasonic beams to the imaging area corresponding to the detection target, and obtain multiple frames. Echo data. For a specific position in the imaging area, these high frame rate data record the change of displacement of the position with time during the shear wave propagation process, and then determine the shear wave propagation velocity at that position.
  • measuring the propagation velocity of the shear wave at each position is a key step in the shear wave elastography, however, the above-mentioned movement of the detection target caused by breathing, heartbeat, etc., and motion disturbances such as probe motion may be Introduce serious correlation errors, cause the imaging plane to change, or change the spot pattern at the same position in the imaging area corresponding to the detection target, which will result in the inability to accurately measure the propagation velocity of the shear wave and further reduce the shear
  • the motion interference factor can be combined with multiple interference factors such as the above-mentioned signal-to-noise ratio and the above-mentioned intensity parameter, thereby more accurately comparing The image quality of the above-mentioned shear wave imaging was evaluated for image quality.
  • the shear wave elastic imaging device when it determines the intensity of motion interference according to the first echo signal, it may specifically determine based on the images obtained through the first echo signal. Absolute displacements at multiple preset positions in the entire area of a frame of image, and then calculate and obtain the average value corresponding to the absolute displacements at the multiple preset positions, thereby averaging the absolute displacements at the multiple preset positions corresponding to the average The value is determined as the displacement parameter of the frame image, which is used to evaluate the degree of motion interference
  • the displacement parameter when the shear wave elastic imaging device determines the displacement parameter according to the first echo signal, the displacement parameter may be determined not only based on the B image, but also obtained through the first echo signal.
  • the absolute displacements at a plurality of preset positions in the entire area of the one-frame image are determined, and then an average value corresponding to the absolute displacements at the plurality of preset positions is calculated to obtain the foregoing multiple preset positions. Let the average value corresponding to the absolute displacement at the position be determined as the displacement parameter of the frame image.
  • the B-type imaging can be obtained after enveloping and logarithmic compression of the RF data obtained through the first echo signal, that is, obtaining a B image.
  • FIG. 7 is a schematic diagram of the echo signal of the previous frame of the B image in the embodiment of the present invention.
  • any circle represents any data point in the detection target, and each data Each point has a data block corresponding to it.
  • the black dot represents the preset position where absolute displacement needs to be calculated.
  • the data block corresponding to the preset position A is data block 1.
  • the preset position A For a specific position, such as the preset position A, you can The absolute displacement of the preset position A is determined by combining the next frame of the frame image.
  • FIG. 8 is a schematic diagram of the echo signal of the next frame of the B image in the embodiment of the present invention. As shown in FIG. 8, with FIG.
  • the above-mentioned shear wave elastic imaging device may use correlation-based Method, first search the search area in the subsequent frame of the image for the data block 2 that most closely matches and is most relevant to the data block 2, thereby further obtaining the absolute displacement d of the preset position A.
  • the above-mentioned correlation measurement may be determined by using indexes such as a sum of absolute values of differences of data blocks in a previous frame image and a data of a next frame, a sum of squares of differences, or a normalized correlation coefficient.
  • the shear wave elastic imaging device may then calculate and obtain an average value corresponding to all the absolute positions, so as to convert the absolute values of all the preset positions.
  • the average value corresponding to the displacement is determined as the displacement parameter. For example, based on the above-mentioned FIG. 7 and FIG. 8, after the above-mentioned shear wave elastic imaging device calculates the absolute displacements corresponding to all preset positions in the B image, an average operation is performed on all the absolute displacements, and then the previous one can be calculated and obtained.
  • a frame image is a displacement parameter of a subsequent frame image of a reference frame.
  • the absolute displacements of some preset positions may be eliminated first. For example, when the amplitude of a data block corresponding to a preset position among all the preset positions is lower than a preset amplitude threshold, the absolute displacement calculation of the preset position may be considered to be inaccurate, so the preset position may be The absolute displacement is removed and not considered.
  • the shear wave elastic imaging device may display the intensity parameter and the signal-to-noise ratio. And / or the aforementioned displacement parameters.
  • the shear wave elastic imaging device determines a displacement parameter corresponding to motion interference according to the first echo signal, and determines an intensity parameter and signal noise corresponding to the shear wave according to the second echo signal.
  • the method for performing shear wave elastic imaging by the above-mentioned shear wave elastic imaging device may further include the following steps:
  • Step 104 Determine an image quality evaluation result according to the intensity parameter, the signal-to-noise ratio, and the displacement parameter.
  • the image quality evaluation result is used to characterize the image quality of the shear wave elastic imaging corresponding to the detection target.
  • the shear wave elastic imaging device determines the displacement parameter corresponding to the motion disturbance according to the first echo signal, and determines the intensity parameter corresponding to the shear wave according to the second echo signal. After the signal-to-noise ratio is obtained, an image quality evaluation result may be determined according to the intensity parameter, the signal-to-noise ratio, and the displacement parameter.
  • the image quality evaluation result is used to evaluate the image quality of the shear wave elastic imaging corresponding to the detection target, that is, the image quality evaluation result may be representative of the shear wave elastic imaging image.
  • the level of quality may be a quantized value or a specific level parameter.
  • the preliminary quality result corresponding to the shear wave may be determined according to the intensity parameter and the signal-to-noise ratio. Then, the above-mentioned image quality evaluation result is determined according to the above-mentioned preliminary image quality result and the above-mentioned displacement parameter. Therefore, the displacement parameters caused by motion interference can be combined with a plurality of interference factors such as the above-mentioned signal-to-noise ratio and the above-mentioned intensity parameter, so as to more accurately perform image quality evaluation on the image quality of the shear wave imaging.
  • the shear wave elastic imaging device determines the image quality evaluation result according to the intensity parameter, the signal-to-noise ratio, and the displacement parameter, that is, after step 104, the shear wave elastic imaging device
  • the method for evaluating image quality may further include the following steps:
  • Step 105 Display the image quality evaluation result.
  • the shear wave elastic imaging device may display the image quality evaluation result after determining the image quality evaluation result according to the intensity parameter, the signal-to-noise ratio, and the displacement parameter.
  • the shear wave elastic imaging device may perform the image quality evaluation result together while displaying the shear wave elastic imaging. display.
  • a shear wave elastic imaging device emits an ultrasonic beam to a detection target; wherein the ultrasonic beam is used to detect motion interference; a shear wave is generated in the detection target, and Transmitting a detection beam to a detection target; wherein the detection beam is used to detect a shear wave; receiving a first echo signal corresponding to an ultrasonic beam and a second echo signal corresponding to a detection beam; and determining a corresponding one of motion interference according to the first echo signal For the displacement parameter, an intensity parameter and a signal-to-noise ratio corresponding to the shear wave are determined according to the second echo signal.
  • the shear wave elastography method can determine the signal quality parameters of the shear wave, such as the intensity parameter and the signal, according to the second echo signal corresponding to the detection beam.
  • Noise ratio and at the same time determine the displacement parameters corresponding to motion interference according to the first echo signal corresponding to the ultrasonic beam, the displacement parameters and the signal quality parameters of the shear wave can be combined to comprehensively identify the image quality of the shear wave elastic imaging,
  • the image quality evaluation results are obtained, thereby satisfying the needs of shear wave elastography for image quality evaluation based on a variety of interference factors, thereby effectively improving the accuracy of the diagnosis results.
  • FIG. 9 is a second schematic diagram of an implementation process of a shear wave elastic imaging method according to an embodiment of the present invention.
  • the shear wave elastic imaging device according to the intensity parameter, The signal-to-noise ratio and the above-mentioned displacement parameters, and a method for determining an image quality evaluation result may include the following steps:
  • Step 104a Determine a preliminary image quality result according to the intensity parameter and the signal-to-noise ratio.
  • the shear wave elastic imaging device may firstly The parameters and the aforementioned signal-to-noise ratio determine the preliminary quality results corresponding to the aforementioned shear wave elastography.
  • the preliminary image quality results are used to characterize the preliminary determination of the image quality of the influence of the shear wave signal on the shear wave elastic imaging.
  • the shear wave elastic imaging device may first The intensity parameter and the signal-to-noise ratio determine the preliminary image quality result corresponding to the shear wave. Specifically, the shear wave elastic imaging device may assign different weight parameters to the intensity parameter and the signal-to-noise ratio to comprehensively judge the preliminary image quality result.
  • the shear wave elastic imaging device may set a first weight coefficient in advance, and then further determine the preliminary image quality result according to the first weight coefficient, the intensity parameter, and the signal-to-noise ratio.
  • the first weighting factor may include a weighting value corresponding to the intensity parameter and a weighting value corresponding to the signal-to-noise ratio.
  • the preliminary result of the image quality may be obtained by comprehensively quantifying and obtaining the cropping.
  • Preliminary image quality of wave elastography For example, the above-mentioned shear-wave elastography device can obtain the above-mentioned preliminary quality result according to formula (1):
  • Q is the preliminary quality result
  • A is the intensity parameter
  • SNR is the signal-to-noise ratio
  • x and y are the weight values of the intensity parameter and the signal-to-noise ratio, respectively.
  • the above-mentioned shear wave elastic imaging device may identify the influence of the system noise of the device, the internal change of the detection target, and other interference on the preliminary image quality of the shear wave elastic imaging through the preliminary image quality result.
  • Step 104b Determine an image quality evaluation result according to the preliminary quality result and the displacement parameter.
  • the shear wave elastic imaging device may according to the preliminary image quality result and the foregoing The displacement parameter determines the above-mentioned image quality evaluation result.
  • the shear wave elastic imaging device may assign a corresponding weight coefficient to the preliminary image quality result and the displacement parameter according to a detection mode corresponding to the detection target, and then according to the preliminary image quality result, the The displacement parameter and the weight coefficient determine the image quality evaluation result.
  • the weights corresponding to different detection modes are also different. Therefore, the above-mentioned shear wave elastic imaging device may first determine the detection mode.
  • FIG. 10 is a third schematic flowchart of a shear wave elastic imaging method according to an embodiment of the present invention. As shown in FIG. 10, the shear wave elastic imaging device according to the preliminary image quality results And the displacement parameter, the method for determining the image quality evaluation result may include the following steps:
  • Step 201 Obtain a second weighting coefficient.
  • the aforementioned shear wave imaging device may first obtain a second weight coefficient.
  • the second weight coefficient may include a weight value corresponding to the displacement parameter and a weight value corresponding to the preliminary image quality result.
  • the shear wave imaging device obtains the second weight coefficient
  • the following steps may be specifically performed:
  • Step 201a Determine a detection mode corresponding to the detection target.
  • the shear wave elastic imaging device may first determine the detection mode corresponding to the detection target according to the detection target.
  • the detection target may have the detection mode corresponding to the detection target.
  • the above-mentioned shear wave elastic imaging device can distinguish the above detection targets according to different clinical application situations. For example, if the detection target is tissues such as the breast and thyroid gland, when shear wave elastography is performed, the influence of respiratory motion interference on the elastic image is small, so the detection mode is the mode with smaller weight of respiratory motion; On the other hand, if the detection target is a tissue such as a liver, when the shear wave elastic imaging is performed, the respiratory motion interference has a greater impact on the elastic image. Therefore, the corresponding detection mode is a mode with a large respiratory motion weight.
  • Step 201b Determine a second weighting coefficient according to the correspondence between the pre-stored mode and the weight and the detection mode.
  • the shear wave elastic imaging device may determine the first Two weighting factors.
  • the shear wave elastic imaging device may store the correspondence relationship between the pre-stored modes and weights in advance, that is, different second weight coefficients may be assigned to different detection modes in advance.
  • the aforementioned shear wave elastic imaging device can reduce the weight of motion interference when assigning a second weight coefficient; for the liver When the detection target of the respiratory motion interference has a greater influence on the elastic image, the aforementioned shear wave elastic imaging device can increase the weight of the motion interference when assigning the second weight coefficient.
  • Step 202 Input a second weighting coefficient, a preliminary quality result, and a displacement parameter into a preset recognition model to obtain an image quality evaluation result.
  • the shear wave elastic imaging device may input the second weight coefficient, the preliminary image quality result, and the displacement parameter into a preset recognition model, whereby, the above-mentioned image quality evaluation results can be obtained.
  • the displacement parameter and the preliminary image quality result can be combined, that is, the displacement parameter, the intensity parameter, and the information.
  • the overall credibility of the image quality of the above-mentioned shear wave elastography is identified and calculated, so that the current image quality of the shear wave elastography and the accuracy of the measurement result can be identified.
  • the shear wave elastic imaging device may set the preset recognition model in advance, wherein the preset recognition model is used for quantizing the image quality of the shear wave elastic imaging, and the preset recognition
  • the model may include a variety of different calculation models.
  • the preset recognition model may be a linear model related to the displacement parameter and the preliminary image quality result, or may be a linear model related to the displacement parameter and the preliminary image quality result.
  • Non-linear model the preset recognition model may be a linear weighted summation calculation model for the displacement parameter and the preliminary image quality result in formula (2),
  • Q total is the image quality evaluation result
  • D is the displacement parameter
  • Q is the preliminary quality result
  • a and b are the second weight coefficients corresponding to the preliminary quality result and the displacement parameter, respectively.
  • the displacement weight coefficient b may be a negative value.
  • the preset recognition model may also be a non-linear model.
  • the displacement parameter D may be thresholded, that is, when D When it is lower than the preset displacement threshold, the displacement weight coefficient b is set to 0.
  • the above formula (1) and the above formula (2) only represent a manner of linearly combining the three factors of the signal-to-noise ratio, the intensity parameter, and the displacement parameter, in the embodiments of the present invention, other non-linear combinations may also exist.
  • the shear wave elastic imaging device may perform threshold processing, secondary processing, or logarithmic processing on factors such as the signal-to-noise ratio, the intensity parameter, and the displacement parameter, for example, the preliminary image quality result and the displacement parameter.
  • the integration method can also adopt a calculation model such as formula (3):
  • Q total is an image quality evaluation result
  • D is a displacement parameter
  • Q is a preliminary quality result
  • D max is a preset maximum displacement threshold
  • c is a second weighting coefficient
  • a shear wave elastic imaging device emits an ultrasonic beam to a detection target; wherein the ultrasonic beam is used to detect motion interference; a shear wave is generated in the detection target, and Transmitting a detection beam to a detection target; wherein the detection beam is used to detect a shear wave; receiving a first echo signal corresponding to an ultrasonic beam and a second echo signal corresponding to a detection beam; and determining a corresponding one of motion interference according to the first echo signal For the displacement parameter, an intensity parameter and a signal-to-noise ratio corresponding to the shear wave are determined according to the second echo signal.
  • the shear wave elastography device can be based on the intensity parameter and the signal-to-noise ratio of the shear wave of the second echo signal corresponding to the detection beam, and at the same time according to the ultrasound
  • the first echo signal corresponding to the beam determines the displacement parameter corresponding to the motion interference
  • the displacement parameter, the intensity parameter, and the signal-to-noise ratio can be combined to comprehensively identify the image quality of the shear wave elastic imaging to obtain the image quality evaluation result, thereby It satisfies the need for image quality evaluation of shear wave elastography based on a variety of interference factors, and thus effectively improves the accuracy of diagnostic results.
  • FIG. 11 is a schematic flowchart of an implementation method of a shear wave elastic imaging method according to an embodiment of the present invention.
  • the second weight coefficient includes a displacement weight corresponding to the displacement parameter.
  • the shear wave elastic imaging device inputs the second weighting coefficient, the preliminary image quality result, and the displacement parameter into a preset recognition model, and before obtaining the image quality evaluation result, that is, before step 202, the shearing
  • the method for evaluating the image quality of the wave elastic imaging device may further include the following steps:
  • Step 203 Obtain a preset displacement threshold.
  • the preset displacement threshold may be obtained first.
  • the second weight coefficient may include a displacement weight coefficient corresponding to the displacement parameter.
  • the preset displacement threshold may be used to remove the displacement parameter.
  • the displacement parameter before the shear wave elastic imaging device calculates the image quality evaluation result according to the preset recognition model, the displacement parameter may be thresholded, that is, when the displacement is When the parameter is lower than the preset displacement threshold, the displacement parameter may be considered to be inaccurate, so the influence of the displacement parameter on the image quality of the shear wave imaging may be ignored.
  • Step 204 When the displacement parameter is less than a preset displacement threshold, the displacement weight coefficient is set to zero.
  • the displacement weight coefficient may be set to zero.
  • the shear wave elastic imaging device may compare the preset displacement threshold with the displacement parameter.
  • the displacement parameter is smaller than the preset displacement threshold.
  • the above-mentioned shear wave elastic imaging device can consider that the displacement parameter has little effect on the image quality of the shear wave imaging, that is, the influence of the displacement parameter can be ignored, and then the image quality evaluation parameter can set the displacement weight coefficient. Is zero.
  • a shear wave elastic imaging device emits an ultrasonic beam to a detection target; wherein the ultrasonic beam is used to detect motion interference; a shear wave is generated in the detection target, and Transmitting a detection beam to a detection target; wherein the detection beam is used to detect a shear wave; receiving a first echo signal corresponding to an ultrasonic beam and a second echo signal corresponding to a detection beam; and determining a corresponding one of motion interference according to the first echo signal For the displacement parameter, an intensity parameter and a signal-to-noise ratio corresponding to the shear wave are determined according to the second echo signal.
  • the shear wave elastography device can be based on the intensity parameter and the signal-to-noise ratio of the shear wave of the second echo signal corresponding to the detection beam, and at the same time according to the ultrasound
  • the first echo signal corresponding to the beam determines the displacement parameter corresponding to the motion interference
  • the displacement parameter, the intensity parameter, and the signal-to-noise ratio can be combined to comprehensively identify the image quality of the shear wave elastic imaging to obtain the image quality evaluation result, thereby It satisfies the need for image quality evaluation of shear wave elastography based on a variety of interference factors, and thus effectively improves the accuracy of diagnostic results.
  • FIG. 12 is a schematic flowchart of an implementation method of a shear wave elastic imaging method according to an embodiment of the present invention.
  • the above-mentioned shear wave elastic imaging device is based on a first echo signal.
  • the image quality evaluation method of the aforementioned shear wave elastic imaging device may further include the following steps:
  • Step 301 Obtain a preset level threshold.
  • the preset level threshold may be obtained first, where the preset level threshold is used for The shear wave elastic imaging device divides the movement parameters of the displacement parameters.
  • the shear wave elastic imaging device may set the preset level threshold value in advance.
  • the preset level threshold value may be at least one displacement threshold range, so that Set the level threshold to classify the above displacement parameters.
  • the shear wave elastic imaging device can determine the strength of motion interference according to the displacement parameter, that is, the larger the displacement parameter, the stronger the degree of movement of the detection target or the probe, and accordingly, The smaller the displacement parameter is, the weaker the degree of movement of the detection target or the probe is. Therefore, the shear wave elastic imaging device may set the preset level threshold to classify the motion strength of the detection target according to the displacement parameter.
  • Step 302 Determine a motion level corresponding to the detection target according to a preset level threshold and a displacement parameter.
  • the shear wave elastic imaging device may determine a motion level corresponding to the detection target according to the preset level threshold and the displacement parameter.
  • the displacement parameter may be compared with the preset level threshold to determine that the displacement parameter belongs to the preset level threshold.
  • the level of the above-mentioned displacement parameter is determined, that is, the above-mentioned exercise level characterizing the degree of movement of the detection target is determined.
  • Step 303 Display the exercise level.
  • the shear wave elastic imaging device may display the motion level after determining the motion level corresponding to the detection target according to the preset level threshold and the displacement parameter.
  • the shear wave elastic imaging device may display the motion level on a display screen of the shear wave elastic imaging device. This can help doctors determine the breathing state of the patient, and then collect elastic images when determining that the patient is holding his breath.
  • the shear wave elastic imaging device displays the motion level in various ways. Specifically, in the embodiment of the present invention, the shear wave elastic imaging device displays the motion level.
  • the content includes, but is not limited to, the number of classifications, the shape, color, size, arrangement manner of the hierarchical display blocks, and the position of the display area on the display screen.
  • FIG. 13 is the first schematic diagram of the exercise level in the embodiment of the present invention
  • FIG. 14 is the second schematic diagram of the exercise level in the embodiment of the present invention.
  • Weakness is divided into five levels, and the intensity of exercise is expressed in different shades of color. Doctors can acquire images during a continuous light dynamic display process, but not in dark colors.
  • the movement of the detection target caused by breathing, heartbeat, and the like and the movement caused by the probe technique can be judged and measured by the above-mentioned movement level.
  • a shear wave elastic imaging device emits an ultrasonic beam to a detection target; wherein the ultrasonic beam is used to detect motion interference; a shear wave is generated in the detection target, and Transmitting a detection beam to a detection target; wherein the detection beam is used to detect a shear wave; receiving a first echo signal corresponding to an ultrasonic beam and a second echo signal corresponding to a detection beam; and determining a corresponding one of motion interference according to the first echo signal For the displacement parameter, an intensity parameter and a signal-to-noise ratio corresponding to the shear wave are determined according to the second echo signal.
  • the shear wave elastography device can determine the intensity parameter and the signal-to-noise ratio of the shear wave according to the second echo signal corresponding to the detection beam.
  • the first echo signal corresponding to the ultrasonic beam determines the displacement parameter corresponding to the motion interference, and then the displacement parameter, the intensity parameter, and the signal-to-noise ratio can be combined to comprehensively identify the image quality of the shear wave elastic imaging to obtain the image quality evaluation result.
  • FIG. 15 is a schematic flowchart of an implementation method of a shear wave elastic imaging method according to an embodiment of the present invention.
  • the shear wave elastic imaging device according to the intensity parameter, The signal-to-noise ratio and the above-mentioned displacement parameters, after determining the image quality evaluation result, that is, after step 104, the method for performing image quality evaluation by the shear wave elastic imaging device may further include the following steps:
  • Step 106 Analyze the image quality evaluation results to obtain a quality impact ratio.
  • the shear wave elastic imaging device may analyze the image quality evaluation. As a result, a quality influence ratio can be obtained.
  • the quality impact ratio may include a proportion of the intensity parameter in the image quality evaluation result, a proportion of the signal-to-noise ratio in the image quality evaluation result, and the displacement.
  • the proportion of parameters in the above-mentioned image quality evaluation results may include a proportion of the intensity parameter in the image quality evaluation result, a proportion of the signal-to-noise ratio in the image quality evaluation result, and the displacement.
  • the shear wave elastic imaging device may analyze and calculate the quality impact ratio according to the preliminary image quality result, the displacement parameter, and the image quality evaluation result.
  • Step 107 Generate a quality impact analysis result according to the quality impact ratio.
  • the shear wave elastic imaging device analyzes the image quality evaluation result, and after obtaining the quality influence ratio, the quality influence analysis result may be generated according to the quality influence ratio.
  • the shear wave elastic imaging device may specifically generate a quality impact analysis result according to the quality impact ratio and the detection mode.
  • the above-mentioned shear wave elastic imaging device can provide the above-mentioned quality impact analysis result to a doctor, so that the doctor can obtain the main factors and the secondary factors that affect the image quality, and thus can make the doctor more
  • the problem of reducing the reliability that is, the quality of the shear wave imaging image
  • the above-mentioned shear wave elastography device can automatically derive the quality impact analysis result as 60% motion interference, 30% signal-to-noise ratio, and 10% signal strength.
  • the above-mentioned shear wave elastography device can automatically derive the above-mentioned quality impact analysis results as motion interference is 10%, signal-to-noise ratio is 40%, and signal intensity is 50%.
  • a shear wave elastic imaging device emits an ultrasonic beam to a detection target; wherein the ultrasonic beam is used to detect motion interference; a shear wave is generated in the detection target, and Transmitting a detection beam to a detection target; wherein the detection beam is used to detect a shear wave; receiving a first echo signal corresponding to an ultrasonic beam and a second echo signal corresponding to a detection beam; and determining a corresponding one of motion interference according to the first echo signal For the displacement parameter, an intensity parameter and a signal-to-noise ratio corresponding to the shear wave are determined according to the second echo signal.
  • the shear wave elastography device can determine the intensity parameter and the signal-to-noise ratio of the shear wave according to the second echo signal corresponding to the detection beam.
  • the first echo signal corresponding to the ultrasonic beam determines the displacement parameter corresponding to the motion interference, and then the displacement parameter, the intensity parameter and the signal-to-noise ratio can be combined to comprehensively identify the image quality of the shear wave elastic imaging to obtain the image quality evaluation result.
  • Step 401 Generate a shear wave in the detection target.
  • Step 402 Transmit a detection beam to the detection target; wherein the detection beam is used to detect the shear wave.
  • the shear wave elastic imaging device generates a shear wave in the detection target, and the shear wave elastic imaging device may further transmit a detection beam to the detection target; wherein the detection beam is used to detect the shear Chebo.
  • the shear wave elastic imaging device may be a device that performs shear wave elastic imaging on the detection target.
  • the detection target may be a human tissue, an organ, or the like to be detected.
  • the detection target may be a human tissue such as a thyroid gland, a breast, a liver, a musculature, or a blood vessel.
  • the shear wave is used to perform elasticity detection on the detection target.
  • Step 403 Receive an echo signal corresponding to the probe beam.
  • Step 404 Determine a signal quality parameter corresponding to the shear wave according to the echo signal.
  • the shear wave elastic imaging device generates a shear wave in the detection target, and after sending a detection beam to the detection target, the shear wave elastic imaging device can cut the shear through the detection beam. The wave is detected to receive the echo signal corresponding to the probe beam.
  • the shear wave elastic imaging device may perform signal processing on the echo signal to further obtain a signal quality parameter corresponding to the shear wave. among them.
  • the signal quality parameter corresponding to the shear wave may include an intensity parameter and a noise parameter, and then the signal-to-noise ratio corresponding to the shear wave may be further determined according to the intensity parameter and the noise parameter.
  • the signal quality parameter may be displayed.
  • the shear wave elastic imaging method provided by the present invention may further include the following steps:
  • Step 405 Determine an image quality evaluation result according to the signal quality parameter.
  • the image quality evaluation result is used to characterize the image quality of the shear wave elastic imaging corresponding to the detection target.
  • Step 406 Display the image quality evaluation result.
  • the image quality evaluation result may be determined according to the signal quality parameter.
  • the image quality evaluation result is used to evaluate the image quality of the shear wave elastic imaging corresponding to the detection target, that is, the image quality evaluation result may be representative of the shear wave elastic imaging image.
  • the level of quality may be a quantized value or a specific level parameter.
  • the shear wave elastic imaging device may display the image quality evaluation result after determining the image quality evaluation result.
  • the shear wave elastic imaging device may perform the image quality evaluation result together while displaying the shear wave elastic imaging. display.
  • Step 501 Transmit an ultrasonic beam to a detection target; wherein the ultrasonic beam is used to detect motion interference.
  • the shear wave elastic imaging device emits an ultrasonic beam to the detection target; wherein the ultrasonic beam is used to detect motion interference; the shear wave elastic imaging device may cut the detection target.
  • Device for shear wave elastography The detection target may be a human tissue, an organ, or the like to be detected.
  • the detection target may be a human tissue such as a thyroid gland, a breast, a liver, a musculature, or a blood vessel.
  • Step 502 Receive an echo signal corresponding to the ultrasonic beam.
  • the shear wave elastic imaging device may receive an echo signal corresponding to the ultrasonic beam.
  • a receiving circuit configured by the shear wave elastic imaging device may receive the echo corresponding to the ultrasonic beam through a probe. signal.
  • Step 503 Determine a motion parameter corresponding to motion interference according to the echo signal.
  • the shear wave elastic imaging device may determine a motion parameter corresponding to motion interference according to the echo signal, where the motion parameter may be motion Disturb the corresponding displacement parameters.
  • the shear wave elastic imaging device may display the motion parameters after determining the motion parameters corresponding to motion interference.
  • the shear wave elastic imaging device determines the motion parameter corresponding to the motion interference according to the echo signal, that is, after step 503, the shear wave elastic imaging method provided by the present invention may further include the following steps: :
  • Step 504 Determine an image quality evaluation result according to the motion parameter.
  • the image quality evaluation result is used to characterize the image quality of the shear wave elastic imaging corresponding to the detection target.
  • Step 505 Display the image quality evaluation result.
  • the shear wave elastic imaging device may determine an image quality evaluation result according to the motion parameter.
  • the shear wave elastic imaging device may further determine and display an image quality evaluation result according to the motion parameter.
  • the image quality evaluation result is used to evaluate the image quality of the shear wave elastic imaging corresponding to the detection target, that is, the image quality evaluation result can characterize the image quality of the shear wave elastic imaging.
  • the above-mentioned image quality evaluation result may be a quantized value or a specific level parameter.
  • the shear wave elastic imaging device may perform the image quality evaluation result together while displaying the shear wave elastic imaging. display.
  • FIG. 16 is a first schematic structural diagram of the composition of a shear wave elastic imaging device according to an embodiment of the present invention.
  • a shear wave elastic imaging device 1 may include a probe 11, a transmitting circuit 12, and a receiving Circuit 13, processor 14, and display 15.
  • the transmitting circuit 12 excites the probe to transmit an ultrasonic beam to the detection target; wherein the ultrasonic beam is used to detect motion interference; and transmits a detection beam to the detection target; wherein the detection beam is used to detect all The shear wave.
  • the receiving circuit 13 receives a first echo signal corresponding to the ultrasonic beam and a second echo signal corresponding to the detection beam through the probe.
  • the processor 14 determines a displacement parameter corresponding to motion interference according to the first echo signal, and determines an intensity parameter and a signal-to-noise ratio corresponding to the shear wave according to the second echo signal.
  • the display 15 displays the intensity parameter, the signal-to-noise ratio, and / or the displacement parameter.
  • the processor 14 determines an image quality evaluation result according to the intensity parameter, the signal-to-noise ratio, and the displacement parameter; wherein the image quality evaluation result is used to characterize a shear wave elastic imaging image corresponding to the detection target quality.
  • the display 15 displays the image quality evaluation result.
  • the processor 14 determines a preliminary image quality result according to the intensity parameter and the signal-to-noise ratio; and determines the image quality evaluation result according to the preliminary image quality result and the displacement parameter. .
  • the processor 14 obtains a first weight coefficient; wherein the first weight coefficient includes a weight value corresponding to the strength parameter and a weight value corresponding to the signal-to-noise ratio; and according to the first A weight coefficient, the intensity parameter and the signal-to-noise ratio are used to obtain the preliminary image quality result.
  • the processor 14 obtains a second weight coefficient; and inputs the second weight coefficient, the preliminary image quality result, and the displacement parameter into a preset recognition model to obtain the image Quality evaluation result; wherein the preset recognition model is used for quantizing the image quality.
  • the second weight coefficient includes a displacement weight coefficient corresponding to the displacement parameter
  • the processor 14 obtains a preset displacement threshold; and when the displacement parameter is smaller than the preset displacement threshold, The displacement weighting coefficient is set to zero.
  • the processor 14 determines a detection mode corresponding to the detection target; and determines the second weight coefficient according to a correspondence relationship between a pre-stored mode and a weight and the detection mode.
  • the processor 14 determines the displacement parameter corresponding to the motion interference according to the first echo signal, the processor 14 obtains a preset level threshold; The exercise level corresponding to the detection target;
  • the display 15 displays the exercise level.
  • the processor 14 analyzes the image quality evaluation result to obtain a quality impact ratio; wherein, The quality impact ratio includes respective proportions of the intensity parameter, the signal-to-noise ratio, and the displacement parameter in the image quality evaluation result; and generating a quality impact analysis result according to the quality impact ratio.
  • the transmitting circuit 12 further excites the probe 11 to transmit a focused beam to the detection target; wherein the focused beam is used to generate the shear wave.
  • FIG. 17 is a second schematic diagram of the composition structure of a shear wave elastic imaging device according to an embodiment of the present invention.
  • the shear wave elastic imaging device 1 according to the embodiment of the present invention may further include a processor 14 for execution Instruction memory 16, communication interface 17.
  • the transmitting circuit 12 excites the probe 11 to transmit a detection beam to the detection target, wherein the detection beam is used to detect the shear wave.
  • the receiving circuit 13 receives an echo signal corresponding to the probe beam through the probe 11.
  • the processor 14 determines a signal quality parameter corresponding to the shear wave according to the echo signal.
  • the display 15 displays the signal quality parameters.
  • the processor 14 determines an image quality evaluation result according to the signal quality parameter, wherein the image quality evaluation result is used to characterize the image quality of the shear wave elastic imaging corresponding to the detection target.
  • the display 15 displays the image quality evaluation result.
  • the transmitting circuit 12 excites the probe 11 to transmit an ultrasonic beam to a detection target, wherein the ultrasonic beam is used to detect motion interference.
  • the receiving circuit 13 receives an echo signal corresponding to the ultrasonic beam through the probe 11.
  • the processor 14 determines a motion parameter corresponding to motion interference according to the echo signal.
  • the display 15 displays the motion parameters.
  • the processor 14 determines an image quality evaluation result according to the motion parameter, where the image quality evaluation result is used to characterize the image quality of the shear wave elastic imaging corresponding to the detection target.
  • the display 15 displays the image quality evaluation result.
  • the processor 14 may be an Application Specific Integrated Circuit (ASIC), a Digital Signal Processor (DSP), or a Digital Signal Processing Device (DSPD). ), Programmable Logic Device (ProgRAMmable, Logic Device, PLD), Field Programmable Gate Array (Field, ProgRAMmable, Array, FPGA), Central Processing Unit (CPU), Controller, Microcontroller, Microprocessor At least one. It can be understood that, for different devices, the electronic device used to implement the processor function may be other, and the embodiment of the present invention does not specifically limit it.
  • the shear wave elastography apparatus 1 may further include a memory 16 that may be connected to the processor 14.
  • the memory 16 is configured to store executable program code, the program code includes computer operation instructions, and the memory 16 may include a high-speed RAM memory. It may also include non-volatile memory, for example, at least two disk memories.
  • the memory 16 is configured to store instructions and data.
  • the foregoing memory 16 may be a volatile first memory (volatile memory), such as a random access first memory (Random-Access Memory, RAM); or a non-volatile first memory (non-volatile memory) ), Such as read-only memory (Read-Only Memory, ROM), flash first memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid state drive (Solid-State Drive, SSD); or the above types
  • the first memory combination provides instructions and data to the processor 14.
  • the functional modules in this embodiment may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional modules.
  • the integrated unit is implemented in the form of a software functional module and is not sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of this embodiment is essentially Part of the prior art contribution or all or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions to make a computer device (which can be a personal A computer, a server, or a network device) or a processor executes all or part of the steps of the method in this embodiment.
  • the foregoing storage media include: U disks, mobile hard disks, read-only memory (ROM), random access memory (RAM), magnetic disks, or optical disks, which can store program codes.
  • a shear wave elastography device provided by an embodiment of the present invention, the shear wave elastography device emits an ultrasonic beam to a detection target; wherein the ultrasonic beam is used to detect motion interference; and a shear wave is generated in the detection target. And transmitting a detection beam to the detection target; wherein the detection beam is used to detect a shear wave; a first echo signal corresponding to the ultrasonic beam and a second echo signal corresponding to the detection beam are received; and a motion interference correspondence is determined according to the first echo signal According to the displacement parameter, the intensity parameter and the signal-to-noise ratio corresponding to the shear wave are determined according to the second echo signal.
  • the shear wave elastography device can be based on the intensity parameter and the signal-to-noise ratio of the shear wave of the second echo signal corresponding to the detection beam, and at the same time according to the ultrasound
  • the first echo signal corresponding to the beam determines the displacement parameter corresponding to the motion interference
  • the displacement parameter, the intensity parameter, and the signal-to-noise ratio can be combined to comprehensively identify the image quality of the shear wave elastic imaging to obtain the image quality evaluation result, thereby It satisfies the need for image quality evaluation of shear wave elastography based on a variety of interference factors, and thus effectively improves the accuracy of diagnostic results.
  • An embodiment of the present invention provides a first computer-readable storage medium on which a program is stored, and when the program is executed by a processor, the shear wave elastic imaging method described above is implemented.
  • the program instructions corresponding to a shear wave elastic imaging method in this embodiment may be stored on a storage medium such as an optical disk, a hard disk, a U disk, and the like.
  • a storage medium such as an optical disk, a hard disk, a U disk, and the like.
  • a displacement parameter corresponding to motion interference is determined according to the first echo signal, and an intensity parameter and a signal-to-noise ratio corresponding to the shear wave are determined according to the second echo signal.
  • it may further include determining an image quality evaluation result according to the intensity parameter, the signal-to-noise ratio, and the displacement parameter; wherein the image quality evaluation result is used to characterize the detection target corresponding to the detection target.
  • Image quality for shear wave elastography may be determining an image quality evaluation result according to the intensity parameter, the signal-to-noise ratio, and the displacement parameter; wherein the image quality evaluation result is used to characterize the detection target corresponding to the detection target.
  • the embodiments of the present invention may be provided as a method, a system, or a computer program product. Therefore, the present invention may take the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, magnetic disk memory, optical memory, etc.) containing computer-usable program code.
  • a computer-usable storage media including, but not limited to, magnetic disk memory, optical memory, etc.
  • These computer program instructions may be provided to a processor of a general-purpose computer, special-purpose computer, embedded processor, or other programmable data processing device to produce a machine, so that the instructions generated by the processor of the computer or other programmable data processing device are used to generate instructions Means for realizing the functions specified in a process flow diagram or a plurality of flow diagrams and / or a block diagram or a block or flow diagrams of the block diagram.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in the implementation flow diagram, one flow or multiple flows, and / or the block diagram, one block or multiple blocks.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, and the The instructions provide steps for implementing the functions specified in implementing one or more of the flowcharts and / or one or more of the block diagrams of the block diagrams.
  • Embodiments of the present invention provide a shear wave elastic imaging method and device, and a computer storage medium.
  • the shear wave elastic imaging device transmits an ultrasonic beam to a detection target; wherein the ultrasonic beam is used to detect motion interference; A shear wave is generated and a detection beam is transmitted to a detection target; the detection beam is used to detect the shear wave; a first echo signal corresponding to the ultrasonic beam and a second echo signal corresponding to the detection beam are received; The wave signal determines the displacement parameter corresponding to the motion interference, and the intensity parameter and the signal-to-noise ratio corresponding to the shear wave are determined according to the second echo signal.
  • the shear wave elastography device can determine the intensity parameter and the signal-to-noise ratio of the shear wave according to the second echo signal corresponding to the detection beam.
  • the first echo signal corresponding to the ultrasonic beam determines the displacement parameter corresponding to the motion interference, and then the displacement parameter, the intensity parameter, and the signal-to-noise ratio can be combined to comprehensively identify the image quality of the shear wave elastic imaging to obtain the image quality evaluation result.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种剪切波弹性成像方法、成像装置及计算机程序,其中剪切波弹性成像方法包括:向检测目标发射用于对运动干扰进行检测的超声波束;在检测目标中产生剪切波并向检测目标发射用于探测剪切波的探测波束;接收超声波束对应的第一回波信号和探测波束对应的第二回波信号;根据第一回波信号确定运动干扰对应的位移参数,根据第二回波信号确定剪切波对应的强度参数和信噪比。

Description

一种剪切波弹性成像方法和装置、及计算机存储介质 技术领域
本发明实施例涉及图像质量评价技术领域,尤其涉及一种剪切波弹性成像方法和装置、及计算机存储介质。
背景技术
组织的弹性,即组织的软硬程度,主要通过超声波弹性成像进行反映。现有技术中,在常规超声弹性成像方法,即按压式弹性成像方法中,按压力度和频率不同会造成成像的可重复性和稳定性无法保证的缺陷,相比之下,剪切波弹性成像,是通过识别和检测组织内部产生的剪切波及其传播参数,然后对这些传播参数进行成像,从而定量且可视化的得到组织间的硬度差异的,由于剪切波弹性成像是由探头发射的超声波产生的,不再依赖操作者对组织的特定施压,因此可以有效的弥补按压式弹性成像所存在的缺陷,同时,剪切波弹性成像定量的测量结果也使得医生的诊断更加客观,从而使剪切波弹性成像逐渐成为当前医生使用较多的弹性成像方法。
然而,对于剪切波弹性成像技术,剪切波的信号强度因素,剪切波的噪声因素,探头的移动、病人的呼吸、心跳、血管搏动等运动干扰的因素,均会对剪切波位置及其传播的识别和检测造成干扰,使得剪切波弹性成像的图像质量差异较大,影响诊断结果。
发明内容
为解决上述技术问题,本发明实施例期望提供一种剪切波弹性成像方法和装置、及计算机存储介质,可以对获得的剪切波弹性成像进行图像质量评价,有效地提高了诊断结果的精确程度。
本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种剪切波弹性成像方法,所述方法包括:
向所述检测目标发射超声波束;其中,所述超声波束用于对运动干扰进行检测;
在检测目标中产生剪切波,并向所述检测目标发射探测波束;其中,所述探测波束用于探测所述剪切波;
接收所述超声波束对应的第一回波信号和所述探测波束对应的第二回波信号;
根据所述第一回波信号确定运动干扰对应的位移参数,根据所述第二回波信号确定所述剪切波对应的强度参数和信噪比。
在一个实施例中,还包括,显示所述强度参数、所述信噪比和/或所述位移参数。
在一个实施例中,还包括,根据所述强度参数、所述信噪比以及所述位移参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量。
在一个实施例中,所述根据所述强度参数,所述信噪比以及所述位移参数,确定图像质量评价结果之后,所述方法还包括:
显示所述图像质量评价结果。
在一个实施例中,所述根据所述强度参数,所述信噪比以及所述位移参数,确定图像质量评价结果,包括:
根据所述强度参数和所述信噪比,确定图像质量初步结果;
根据所述图像质量初步结果和所述位移参数,确定所述图像质量评价结果。
在一个实施例中,所述根据所述强度参数和所述信噪比,确定图像质量初步结果,包括:
获取第一权重系数;其中,所述第一权重系数包括所述强度参数对应的权重值和所述信噪比对应的权重值;
根据所述第一权重系数、所述强度参数以及所述信噪比,获得所述图像质量初步结果。
在一个实施例中,所述根据所述图像质量初步结果和所述位移参数,确定所述图像质量评价结果,包括:
获取第二权重系数;
将所述第二权重系数,所述图像质量初步结果以及所述位移参数,输入至预设识别模型中,获得所述图像质量评价结果;其中,所述预设识别模型用于对所述图像质量进行量化处理。
在一个实施例中,所述第二权重系数包括所述位移参数对应的位移权重系数,所述将所述第二权重系数,所述图像质量初步结果以及所述位移参数,输入至预设识别模型中,获得所述图像质量评价结果之前,所述方法还包括:
获取预设位移阈值;
当所述位移参数小于所述预设位移阈值时,将所述位移权重系数设置为零。
在一个实施例中,所述获取第二权重系数,包括:
确定所述检测目标对应的检测模式;
根据预存模式与权重的对应关系和所述检测模式,确定所述第二权重系数。
在一个实施例中,所述根据所述第一回波信号确定运动干扰对应的位移参数之后,所述方法还包括:
获取预设等级阈值;
根据所述预设等级阈值和所述位移参数,确定所述检测目标对应的运动等级;
显示所述运动等级。
在一个实施例中,所述根据所述强度参数,所述信噪比以及所述位移 参数,确定图像质量评价结果之后,所述方法还包括:
分析所述图像质量评价结果,获得质量影响比例;其中,所述质量影响比例包括所述强度参数、所述信噪比以及所述位移参数在所述图像质量评价结果中的各自占比;
根据所述质量影响比例,生成质量影响分析结果。
在一个实施例中,所述超声波束用于对运动干扰进行检测,该超声波束用于形成B型超声图像。
本发明实施例提供了一种剪切波弹性成像方法,所述方法包括:
在检测目标中产生剪切波;
向所述检测目标发射探测波束;其中,所述探测波束用于探测所述剪切波;
接收所述探测波束对应的回波信号;
根据所述回波信号确定所述剪切波对应的信号质量参数。
在一个实施例中,还包括:显示所述信号质量参数。
在一个实施例中,还包括:
根据所述信号质量参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量;
显示所述图像质量评价结果。
本发明实施例提供了一种剪切波弹性成像方法,所述方法包括:
向检测目标发射超声波束;其中,所述超声波束用于对运动干扰进行检测;
接收所述超声波束对应的回波信号;
根据所述回波信号确定运动干扰对应的运动参数。
在一个实施例中,还包括,显示所述运动参数。
在一个实施例中,根据所述运动参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图 像质量;
显示所述图像质量评价结果。
本发明实施例提供了一种剪切波成像装置,所述剪切波成像装置包括:探头,发射电路,接收电路以及处理器,
所述发射电路激励所述探头向所述检测目标发射超声波束;其中,所述超声波束用于对运动干扰进行检测;以及向所述检测目标发射探测波束;其中,所述探测波束用于探测剪切波;
所述接收电路通过所述探头接收所述超声波束对应的第一回波信号和所述探测波束对应的第二回波信号;
所述处理器根据所述第一回波信号确定运动干扰对应的位移参数,根据所述第二回波信号确定所述剪切波对应的强度参数和信噪比。
在一个实施例中,所述剪切波成像装置还包括:显示器,
所述显示器显示所述强度参数、所述信噪比和/或所述位移参数。
在一个实施例中,所述处理器根据所述强度参数、所述信噪比以及所述位移参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量。
在一个实施例中,所述显示器显示所述图像质量评价结果。
在一个实施例中,所述处理器根据所述强度参数和所述信噪比,确定质量初步结果;以及根据所述图像质量初步结果和所述位移参数,确定所述图像质量评价结果。
在一个实施例中,所述处理器获取第一权重系数;其中,所述第一权重系数包括所述强度参数对应的权重值和所述信噪比对应的权重值;以及根据所述第一权重系数、所述强度参数以及所述信噪,获得所述图像质量初步结果。
在一个实施例中,所述处理器获取第二权重系数;以及将所述第二权重系数,所述图像质量初步结果以及所述位移参数,输入至预设识别模型 中,获得所述图像质量评价结果;其中,所述预设识别模型用于对所述图像质量进行量化处理。
在一个实施例中,所述第二权重系数包括所述位移参数对应的位移权重系数,
所述处理器获取预设位移阈值;以及当所述位移参数小于所述预设位移阈值时,将所述位移权重系数设置为零。
在一个实施例中,所述处理器确定所述检测目标对应的检测模式;以及根据预存模式与权重的对应关系和所述检测模式,确定所述第二权重系数。
在一个实施例中,所述处理器根据所述第一回波信号确定运动干扰对应的位移参数之后,获取预设等级阈值;以及根据所述预设等级阈值和所述位移参数,确定所述检测目标对应的运动等级;
所述显示器显示所述运动等级。
在一个实施例中,所述处理器根据所述强度参数,所述信噪比以及所述位移参数,确定图像质量评价结果之后,分析所述图像质量评价结果,获得质量影响比例;其中,所述质量影响比例包括所述强度参数、所述信噪比以及所述位移参数在所述图像质量评价结果中的各自占比;以及根据所述质量影响比例,生成质量影响分析结果。
在一个实施例中,所述发射电路还激励所述探头向所述检测目标发射聚焦波束;其中,所述聚焦波束用于产生所述剪切波。上述剪切波还可采用其他方式产生如:外部机械振动产生、组织或器官的周期性运动产生等。
本发明实施例提供了一种剪切波成像装置,所述剪切波成像装置包括:探头,发射电路,接收电路以及处理器,
所述发射电路激励所述探头向所述检测目标发射探测波束;其中,所述探测波束用于探测剪切波;
所述接收电路通过所述探头接收所述探测波束对应的回波信号;
所述处理器根据所述回波信号确定所述剪切波对应的信号质量参数。
在一个实施例中,所述剪切波成像装置包括:显示器,
所述显示器显示所述信号质量参数。
在一个实施例中,所述处理器根据所述信号质量参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量;
所述显示器显示所述图像质量评价结果。
本发明实施例提供了一种剪切波成像装置,所述剪切波成像装置包括:探头,发射电路,接收电路以及处理器,
所述发射电路激励所述探头向检测目标发射超声波束;其中,所述超声波束用于对运动干扰进行检测;
所述接收电路通过所述探头接收所述超声波束对应的回波信号;
所述处理器根据所述回波信号确定运动干扰对应的运动参数。
在一个实施例中,所述剪切波成像装置包括:显示器,
所述显示器显示所述运动参数。
在一个实施例中,所述处理器根据所述运动参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量;
所述显示器显示所述图像质量评价结果。
本发明实施例提供了一种计算机可读存储介质,其上存储有程序,应用于剪切波成像装置中,所述程序被处理器执行时实现如上所述的剪切波弹性成像方法。
本发明实施例提供了一种剪切波弹性成像方法和装置、及计算机存储介质,剪切波弹性成像装置向检测目标发射超声波束;其中,超声波束用于对运动干扰进行检测;在检测目标中产生剪切波,并向检测目标发射探测波束;其中,探测波束用于探测剪切波;接收超声波束对应的第一回波 信号和探测波束对应的第二回波信号;根据第一回波信号确定运动干扰对应的位移参数,根据第二回波信号确定剪切波对应的强度参数和信噪比。由此可见,本发明实施例提出的一种剪切波弹性成像方法,剪切波弹性成像装置可以根据探测波束对应的第二回波信号确定剪切波的信号质量参数如:强度参数和信噪比,同时根据超声波束对应的第一回波信号确定运动干扰对应的位移参数,便可以结合位移参数和剪切波的信号质量参数,综合地对剪切波弹性成像的图像质量进行识别,获得图像质量评价结果,从而满足了基于多种干扰因素对剪切波弹性成像进行图像质量评价的需求,进而有效地提高了诊断结果的精确程度。
附图说明
图1为本发明实施例提出的一种剪切波弹性成像方法的实现流程示意图一;
图2为剪切波在水中传播的示意图;
图3为剪切波在血液中传播的示意图;
图4为剪切波在组织中传播的示意图一;
图5为剪切波在组织中传播的示意图二;
图6为剪切波在组织中传播的示意图三;
图7为本发明实施例中B图像的前一帧回波信号的示意图;
图8为本发明实施例中B图像的后一帧回波信号的示意图;
图9为本发明实施例提出的一种剪切波弹性成像方法的实现流程示意图二;
图10为本发明实施例提出的一种剪切波弹性成像方法的实现流程示意图三;
图11为本发明实施例提出的一种剪切波弹性成像方法的实现流程示意图四;
图12为本发明实施例提出的一种剪切波弹性成像方法的实现流程示意图五;
图13为本发明实施例中运动等级示意图一;
图14为本发明实施例中运动等级示意图二;
图15为本发明实施例提出的一种剪切波弹性成像方法的实现流程示意图六;
图16为本发明实施例提出的剪切波弹性成像装置的组成结构示意图一;
图17为本发明实施例提出的剪切波弹性成像装置的组成结构示意图二。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
剪切波是传播方向与介质质点的振动方向垂直的波,探头向检测目标内发射特定的聚焦超声束,形成声辐射力,其作为一个双极性的剪切波源,进一步产生横向方向传播的剪切波。然后探头再次向该组织发射用于探测剪切波传播的声束,并接收回波进行信号处理。通过计算在该组织各位置处随时间变化的位移场,便可以重建出在这些位置的剪切波的传播速度,进而形成剪切波弹性图像。在形成剪切波弹性图像的同时,可以利用回波信号分析判断剪切波信号质量,获得量化的可信度水平值,以识别当前弹性图像的质量。进一步地,还可以判断呼吸等因素引起的检测目标运动和探头运动,对运动强弱进行分级,并结合信号质量判断给出图像质量评价结果,最终同时将得到的剪切波弹性图像、量化的图像质量评价结果以及运动强弱分级指示进行显示。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。可以理解的是,此处所描述的具体实施例仅仅用于 解释相关申请,而非对该申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关申请相关的部分。
本发明实施例提供了一种剪切波弹性成像方法,图1为本发明实施例提出的一种剪切波弹性成像方法的实现流程示意图一,如图1所示,在本发明的实施例中,剪切波弹性成像装置进行剪切波弹性成像方法可以包括以下步骤:
步骤101、向检测目标发射超声波束;其中,超声波束用于对运动干扰进行检测;在检测目标中产生剪切波,并向检测目标发射探测波束;其中,探测波束用于探测剪切波。
在本发明的实施例中,上述剪切波弹性成像装置可以向检测目标发射超声波束;其中,超声波束用于对运动干扰进行检测;所述装置还可在检测目标中产生剪切波,然后向上述检测目标发射探测波束;其中,所述探测波束用于探测上述剪切波。其中,上述剪切波弹性成像装置可以为对上述检测目标进行剪切波弹性成像的装置。上述检测目标可以为待检测的人体组织、器官等,例如,上述检测目标可以为甲状腺、乳腺、肝脏、肌骨或者血管等人体组织。
在本发明的实施例中,上述超声波束用于对运动干扰进行检测,该超声波束可以为B型波束,可以用于B型超声图像的获取;上述剪切波可以由聚焦波束产生;上述探测波束可以用于探测上述剪切波。
在本发明的实施例中,上述剪切波可以用于对上述检测目标进行弹性检测。
在本发明的实施例中,上述剪切波弹性成像装置可以配置有探头和发射电路,上述发射电路可激励上述探头向上述检测目标发射特定的聚焦波束,形成声辐射力,该声辐射力作为一个双极性的剪切波源,产生横向方向传播的剪切波,进而实现向上述在检测目标中产生剪切波。
步骤102、接收超声波束对应的第一回波信号和探测波束对应的第二回 波信号。
在本发明的实施例中,上述剪切波弹性成像装置在向上述检测目标发射上述超声波束之后,可以接收上述超声波束对应的第一回波信号;上述剪切波弹性成像装置在上述检测目标中产生剪切波,并向上述检测目标发射探测波束之后,可以接收上述探测波束对应的第二回波信号。
在本申请的实施例中,上述剪切波弹性成像装置向上述检测目标发射超声波束,在检测目标中产生剪切波,并向上述检测目标发射探测波束,然后可接收上述超声波束对应的第一回波信号和上述探测波束对应的第二回波信号。
在本发明的实施例中,上述剪切波弹性成像装置在向上述检测目标发送上述超声波束之后,上述剪切波弹性成像装置所配置的接收电路可以通过上述探头接收上述超声波束对应的上述第一回波信号。
在本发明的实施例中,上述剪切波弹性成像装置在上述检测目标中产生剪切波,并向上述检测目标发送探测波束,上述剪切波弹性成像装置可以通过上述探测波束对上述剪切波进行检测,从而通过上述探头接收上述探测波束对应的上述第二回波信号。
步骤103、根据第一回波信号确定运动干扰对应的位移参数,根据第二回波信号确定剪切波对应的强度参数和信噪比。
在本发明的实施例中,上述剪切波弹性成像装置在接收上述超声波束对应的上述第一回波信号和上述探测波束对应的上述第二回波信号之后,可以根据上述第一回波信号确定运动干扰对应的位移参数,同时可以根据上述第二回波信号确定上述剪切波对应的强度参数和信噪比。
在本申请的实施例中,上述剪切波弹性成像装置在接收到上述第二回波信号之后,可以对上述第二回波信号进行信号处理,进而获得上述剪切波对应的强度参数和上述噪声参数,然后根据上述强度参数和噪声参数进一步确定上述剪切波对应的信噪比。
在本发明的实施例中,上述剪切波弹性成像装置先可以根据上述第二回波信号确定出上述剪切波对应的强度参数,其中,上述强度参数用于表征上述剪切波对应的信号强度,上述剪切波弹性成像装置可以从上述第二回波信号中提取出上述剪切波对应的噪声参数,并根据上述第二回波信号和上述噪声参数确定上述剪切波对应的信噪比,即上述剪切波信号幅值与噪声水平的比值。
在本发明的实施例中,剪切波传播速度或杨氏模量的成像出图,依靠的是剪切波信号,因此,对剪切波信号的好坏进行判断是有必要的,具体地,对剪切波信号的好坏进行判断主要是对剪切波信号的强弱、信噪比等参数进行识别并做出量化的判断。
图2为剪切波在水中传播的示意图,如图2所示,由于剪切波在液体中无法传播,因此剪切波在水中的信号幅值为0,噪声水平为(-2,2)。
图3为剪切波在血液中传播的示意图,如图3所示,由于血液中存在红细胞、血浆等物质,与水相比,在血液中会存在一些强度极小的剪切波信号,但由于该信号强度极小,通常和噪声混在一起,图中剪切波信号幅值为4,噪声水平为(-2,2),因此基于该信号也很难计算出精确的剪切波传播速度。
图4为剪切波在组织中传播的示意图一,如图4所示,剪切波信号明显强于周围噪声,其中,剪切波信号幅值为30,噪声水平(-2,2)。
图5为剪切波在组织中传播的示意图二,如图5所示,相较于图4,系统噪声变大了很多,因此会影响剪切波传播速度的计算,其中,剪切波信号幅值30,噪声水平(-5,5)。
图6为剪切波在组织中传播的示意图三,如图6所示,相较于图4,系统噪声水平仍然为(-2,2),但是由于剪切波传播过程中有衰减,剪切波的信号强度下降,剪切波信号幅值8。
在本发明的实施例中,上述剪切波弹性成像装置同时还可以根据上述 第一回波信号进一步确定运动干扰对应的位移参数。
在本发明的实施例中,剪切波弹性成像可通过向上述检测目标发射聚焦波束以产生上述剪切波,并检测上述检测目标对应的各位置处的剪切波传播速度,从而得到上述检测目标的硬度信息图像。具体地,在本发明的实施例中,上述剪切波弹性成像装置在进行上述剪切波的波速检测时,可以向上述检测目标对应的成像区域连续发射多次探测超声束,并获得多帧回波数据。对于成像区域中的某个特定位置,这些高帧率的数据记录了该位置在剪切波传播过程中位移随时间的变化,进而确定该位置处的剪切波的传播速度。
在本发明的实施例中,测量每个位置的剪切波的传播速度在剪切波弹性成像中是一个关键步骤,然而,呼吸、心跳等造成的上述检测目标运动以及探头运动等运动干扰可能引入严重的相关误差,造成成像平面改变,或者,使上述检测目标对应的成像区域中的同一位置的斑点模式发生变化,从而会导致无法准确测量上述剪切波的传播速度,进一步降低了上述剪切波弹性成像的图像质量,因此,在本发明提出的剪切波弹性成像方法中,可以将运动干扰因素与上述信噪比和上述强度参数等多个干扰因素相结合,从而更加精准的对上述剪切波成像的图像质量进行图像质量评价。
在本发明的实施例中,上述剪切波弹性成像装置根据上述第一回波信号确定运动干扰的强弱程度时,具体可以在通过上述第一回波信号获取的图像的基础上,分别确定一帧图像整个区域中的多个预设位置处的绝对位移,然后计算获得上述多个预设位置处的绝对位移对应的平均值,从而将上述多个预设位置处的绝对位移对应的平均值确定为该帧图像的位移参数,从而用于评估运动干扰程度
在本申请的实施例中,上述剪切波弹性成像装置根据上述第一回波信号确定上述位移参数时,不仅可以根据B图像对位移参数进行确定,还可以在通过上述第一回波信号获取的根据RF数据的基础上确定该一帧图像 整个区域中的多个预设位置处的绝对位移,然后计算获得上述多个预设位置处的绝对位移对应的平均值,从而将上述多个预设位置处的绝对位移对应的平均值确定为该帧图像的位移参数。其中,对通过上述第一回波信号获取的RF数据进行取包络和对数压缩后便可以获得B型成像,即获得B图像。
在本发明的实施例中,图7为本发明实施例中B图像的前一帧回波信号的示意图,如图7所示,任一个圆圈代表检测目标中的任一个数据点,每个数据点都有与其相对应的数据块,黑色点代表需要计算绝对位移的预设位置,其中,预设位置A对应的数据块为数据块1,对于某个特定位置,例如预设位置A,可以结合该帧图像的后一帧图像,确定出预设位置A的绝对位移。基于上述图7,图8为本发明实施例中B图像的后一帧回波信号的示意图,如图8所示,将图7作为参考帧,上述剪切波弹性成像装置可以采用基于相关性的方法,先在后一帧图像中的搜索区域中搜索与数据块1最匹配、最相关的数据块2,从而进一步获得预设位置A的绝对位移d。具体地,上述相关性的衡量可以采用前一帧图像和后一帧图像中数据块的差的绝对值之和、差的平方和或者归一化相关系数等指标进行确定。
在本发明的实施例中,上述剪切波弹性成像装置在确定出全部上述预设位置的绝对位移之后,然后可以计算获得全部上述绝对位移对应的平均值,从而将全部上述预设位置的绝对位移对应的平均值确定为上述位移参数。例如,基于上述图7和图8,上述剪切波弹性成像装置计算获得B图像中的全部预设位置对应的绝对位移之后,对全部绝对位移进行平均值运算,进而可以计算获得以上述前一帧图像为参考帧的后一帧图像的位移参数。
在本发明的实施例中,上述剪切波弹性成像装置在计算上述全部预设位置的绝对位移对应的平均值的过程中,可以先剔除掉一些预设位置的绝对位移。例如,当上述全部预设位置中的某个预设位置所对应的数据块的 幅度低于预设幅度阈值时,可以认为该预设位置的绝对位移计算不准确,因此可以将该预设位置的绝对位移进行剔除,不予以考虑。
在本申请的实施例中,上述剪切波弹性成像装置在确定运动干扰对应的位移参数,同时确定上述剪切波对应的强度参数和信噪比之后,可以显示上述强度参数、上述信噪比和/或上述位移参数。
在本申请的实施例中,上述剪切波弹性成像装置在根据上述第一回波信号确定运动干扰对应的位移参数,根据上述第二回波信号确定上述剪切波对应的强度参数和信噪比之后,即步骤103之后,上述剪切波弹性成像装置进行剪切波弹性成像的方法还可以包括以下步骤:
步骤104、根据强度参数,信噪比以及位移参数,确定图像质量评价结果;其中,图像质量评价结果用于表征检测目标对应的剪切波弹性成像的图像质量。
在本发明的实施例中,上述剪切波弹性成像装置在根据上述第一回波信号确定运动干扰对应的上述位移参数,同时根据上述第二回波信号确定上述剪切波对应的上述强度参数和上述信噪比之后,可以根据上述强度参数,上述信噪比以及上述位移参数,确定图像质量评价结果。
具体地,在发明的实施例中,上述图像质量评价结果用于对上述检测目标对应的剪切波弹性成像的图像质量进行评价,即上述图像质量评价结果可以表征上述剪切波弹性成像的图像质量的高低。其中,上述图像质量评价结果可以为一个量化后的数值,也可以为具体的等级参数。
在本发明的实施例中,上述剪切波弹性成像装置在确定上述强度参数和上述信噪比之后,可以先根据上述强度参数和上述信噪比确定出上述剪切波对应的质量初步结果,然后再根据上述图像质量初步结果和上述位移参数确定出上述图像质量评价结果。从而可以将运动干扰造成的位移参数与上述信噪比和上述强度参数等多个干扰因素相结合,进而更加精准的对上述剪切波成像的图像质量进行图像质量评价。
在本申请的实施例中,上述剪切波弹性成像装置在根据上述强度参数,上述信噪比以及上述位移参数,确定上述图像质量评价结果之后,即步骤104之后,上述剪切波弹性成像装置进行图像质量评价的方法还可以包括以下步骤:
步骤105、显示图像质量评价结果。
在本发明的实施例中,上述剪切波弹性成像装置在根据上述强度参数,上述信噪比以及上述位移参数,确定上述图像质量评价结果之后,可以显示上述图像质量评价结果。
在本发明的实施例中,上述剪切波弹性成像装置在获得上述剪切波弹性成像的图像质量评价结果之后,可以在显示上述剪切波弹性成像的同时,将上述图像质量评价结果一起进行显示。
本发明实施例提出的一种剪切波弹性成像方法,剪切波弹性成像装置向检测目标发射超声波束;其中,超声波束用于对运动干扰进行检测;在检测目标中产生剪切波,并向检测目标发射探测波束;其中,探测波束用于探测剪切波;接收超声波束对应的第一回波信号和探测波束对应的第二回波信号;根据第一回波信号确定运动干扰对应的位移参数,根据第二回波信号确定剪切波对应的强度参数和信噪比。由此可见,本发明实施例提出的一种剪切波弹性成像方法,剪切波弹性成像装置可以根据探测波束对应的第二回波信号确定剪切波的信号质量参数如:强度参数和信噪比,同时根据超声波束对应的第一回波信号确定运动干扰对应的位移参数,便可以结合位移参数和剪切波的信号质量参数,综合地对剪切波弹性成像的图像质量进行识别,获得图像质量评价结果,从而满足了基于多种干扰因素对剪切波弹性成像进行图像质量评价的需求,进而有效地提高了诊断结果的精确程度。
在本发明的实施例中,图9为本发明实施例提出的一种剪切波弹性成像方法的实现流程示意图二,如图9所示,上述剪切波弹性成像装置根据 上述强度参数,上述信噪比以及上述位移参数,确定图像质量评价结果的方法可以包括以下步骤:
步骤104a、根据强度参数和信噪比,确定图像质量初步结果。
在本发明的实施例中,上述剪切波弹性成像装置在根据上述第二回波信号和上述噪声参数,确定上述剪切波对应的上述强度参数和上述信噪比之后,可以先根据上述强度参数和上述信噪比,确定上述剪切波弹性成像对应的质量初步结果。其中,上述图像质量初步结果用于表征在上述剪切波信号对上述剪切波弹性成像影响的图像质量的初步判定。
在本发明的实施例中,由于上述剪切波信号的强弱和对应的信噪比是衡量上述剪切波弹性成像的图像质量的重要因素,因此上述剪切波弹性成像装置可以先根据上述强度参数和上述信噪比对上述剪切波对应的上述图像质量初步结果进行确定。具体地,上述剪切波弹性成像装置可以对上述强度参数和上述信噪比分配不同的权重参数,以综合判断上述图像质量初步结果。
在本发明的实施例中,上述剪切波弹性成像装置可以预先设置第一权重系数,然后根据上述第一权重系数、上述强度参数以及上述信噪比,进一步确定上述图像质量初步结果。
在本发明的实施例中,上述第一权重系数可以包括上述强度参数对应的权重值和上述信噪比对应的权重值,其中,上述图像质量初步结果可以为综合判断后的量化得到上述剪切波弹性成像的初步图像质量。例如,上述剪切波弹性成像装置可以根据公式(1)获得上述初步质量结果:
Q=x*A+y*SNR    (1)
其中:Q为质量初步结果,A为强度参数,SNR为信噪比,x和y分别为强度参数和信噪比的权重值。
在本发明的实施例中,上述剪切波弹性成像装置可以通过上述图像质量初步结果识别装置系统噪声、检测目标内部变化等干扰对剪切波弹性成 像的初步图像质量造成的影响。
步骤104b、根据质量初步结果和位移参数,确定图像质量评价结果。
在本发明的实施例中,上述剪切波弹性成像装置在获得上述图像质量初步结果,且根据上述第一回波信号确定运动干扰对应的上述位移参数之后,可以根据上述图像质量初步结果和上述位移参数,确定上述图像质量评价结果。
在本发明的实施例中,上述剪切波弹性成像装置可以根据上述检测目标对应的检测模式对上述图像质量初步结果和上述位移参数分配相应地权重系数,然后再根据上述图像质量初步结果、上述位移参数以及上述权重系数,确定出上述图像质量评价结果。
在本发明的实施例中,不同的检测模式对应的权重也不相同,因此,上述剪切波弹性成像装置可以先对上述检测模式进行确定。
在本发明的实施例中,图10为本发明实施例提出的一种剪切波弹性成像方法的实现流程示意图三;如图10所示,上述剪切波弹性成像装置根据上述图像质量初步结果和上述位移参数,确定上述图像质量评价结果的方法可以包括以下步骤:
步骤201、获取第二权重系数。
在本发明的实施例中,上述剪切波成像装置可以先获取第二权重系数。
在本发明的实施例中,上述第二权重系数可以包括上述位移参数对应的权重值和上述图像质量初步结果对应的权重值。
在本发明的实施例中,上述剪切波成像装置在获取上述第二权重系数时,具体可以通过以下步骤:
步骤201a、确定检测目标对应的检测模式。
在本发明的实施例中,上述剪切波弹性成像装置可以先根据上述检测目标确定出与上述检测目标所对应的上述检测模式。
在本发明的实施例中,上述检测目标可以有与其对应的上述检测模式。 具体地,上述剪切波弹性成像装置可以按照不同的临床应用情况对上述检测目标进行区分。例如,如果检测目标为乳腺、甲状腺等组织器官,在进行剪切波弹性成像时,呼吸运动干扰对弹性图像的影响较小,因此相应地检测模式即为呼吸运动权重较小的模式;另一方面,如果检测目标为肝脏等组织器官,在进行剪切波弹性成像时,呼吸运动干扰对弹性图像的影响较大,因此相应地检测模式即为呼吸运动权重较大的模式。
步骤201b、根据预存模式与权重的对应关系和检测模式,确定第二权重系数。
在本发明的实施例中,上述剪切波弹性成像装置在根据上述检测目标确定出与上述检测目标所对应的上述检测模式之后,可以根据预存模式与权重的对应关系和上述检测模式,确定第二权重系数。
在本发明的实施例中,上述剪切波弹性成像装置可以预先存储上述预存模式与权重的对应关系,即可以预先对不同的检测模式分配不同的第二权重系数。
在本发明的实施例中,对于乳腺、甲状腺等呼吸运动干扰对弹性图像的影响较小的检测目标,上述剪切波弹性成像装置在分配第二权重系数时可以减少运动干扰的权重;对于肝脏等呼吸运动干扰对弹性图像的影响较大的检测目标,上述剪切波弹性成像装置在分配第二权重系数时可以增大运动干扰的权重。
步骤202、将第二权重系数,质量初步结果以及位移参数,输入至预设识别模型中,获得图像质量评价结果。
在本发明的实施例中,上述剪切波弹性成像装置在获取上述第二权重系数之后,可以将上述第二权重系数,上述图像质量初步结果以及上述位移参数,输入至预设识别模型中,从而便可以获得上述图像质量评价结果。
在本发明的实施例中,上述剪切波弹性成像装置在确定上述第二权重系数之后,便可以将上述位移参数和上述图像质量初步结果结合起来,即 将上述位移参数、上述强度参数以及上述信噪比结合起来,对上述剪切波弹性成像的图像质量进行总体的可信度识别和计算,从而可以识别当前的剪切波弹性成像的图像质量和测量结果的准确性。
在本发明的实施例中,上述剪切波弹性成像装置可以预先设置上述预设识别模型,其中,上述预设识别模型用于对剪切波弹性成像的图像质量进行量化处理,上述预设识别模型可以包括多种不同的计算模型。
需要说明的是,在本发明的实施例中,上述预设识别模型可以为与上述位移参数和上述图像质量初步结果相关的线性模型,也可以为与上述位移参数和上述图像质量初步结果相关的非线性模型。例如,上述预设识别模型可以为公式(2)中的对上述位移参数和上述图像质量初步结果进行线性加权求和计算模型,
Q total=a*Q+b*D    (2)
其中,Q total为图像质量评价结果,D为位移参数,Q为质量初步结果,a和b分别为质量初步结果和位移参数对应的第二权重系数,其中,由于位移参数越大,则相应的图像质量将越差,因此,在本发明的实施例中,位移权重系数b可以为一个负值。
在本发明的实施例中,上述预设识别模型除了如上述公式(2)一类的线性模型之外,也可为非线性模型,例如,可以对位移参数D进行阈值化处理,即当D低于预设位移阈值时,将位移权重系数b设为0。
需要说明的是,在本发明的实施例中,上述公式(1)和上述公式(2)仅表示将上述信噪比、上述强度参数以及上述位移参数三个因素进行线性组合的方式,在本发明的实施例中,还可以存在其他非线性组合方式。具体地,上述剪切波弹性成像装置可以对上述信噪比、上述强度参数以及上述位移参数等因素进行阈值处理、二次处理或者对数形式处理,例如,上述图像质量初步结果和上述位移参数的整合方式也可以采取如公式(3)的计算模型:
Q total=(1-c*D/D max)*Q     (3)
其中,Q total为图像质量评价结果,D为位移参数,Q为质量初步结果,D max表示预先设置的位移最大阈值,c为第二权重系数。通过上述公式(3)可知,位移参数D越大,图像质量评价结果Q total越低。
本发明实施例提出的一种剪切波弹性成像方法,剪切波弹性成像装置向检测目标发射超声波束;其中,超声波束用于对运动干扰进行检测;在检测目标中产生剪切波,并向检测目标发射探测波束;其中,探测波束用于探测剪切波;接收超声波束对应的第一回波信号和探测波束对应的第二回波信号;根据第一回波信号确定运动干扰对应的位移参数,根据第二回波信号确定剪切波对应的强度参数和信噪比。由此可见,本发明实施例提出的一种剪切波弹性成像方法,剪切波弹性成像装置可以根据探测波束对应的第二回波信号剪切波的强度参数和信噪比,同时根据超声波束对应的第一回波信号确定运动干扰对应的位移参数,便可以结合位移参数、强度参数以及信噪比,综合地对剪切波弹性成像的图像质量进行识别,获得图像质量评价结果,从而满足了基于多种干扰因素对剪切波弹性成像进行图像质量评价的需求,进而有效地提高了诊断结果的精确程度。
在本发明的实施例中,图11为本发明实施例提出的一种剪切波弹性成像方法的实现流程示意图四,如图11所示,上述第二权重系数包括上述位移参数对应的位移权重系数,上述剪切波弹性成像装置将上述第二权重系数,上述图像质量初步结果以及上述位移参数,输入至预设识别模型中,获得上述图像质量评价结果之前,即步骤202之前,上述剪切波弹性成像装置进行图像质量评价的方法还可以包括以下步骤:
步骤203、获取预设位移阈值。
在本发明的实施例中,上述剪切波弹性成像装置在将上述第二权重系数,上述图像质量初步结果以及上述位移参数,输入至上述预设识别模型中,获得上述图像质量评价结果之前,可以先获取上述预设位移阈值。
需要说明的是,在本发明的实施例中,上述第二权重系数可以包括上述位移参数对应的位移权重系数。
在本发明的实施例中,上述预设位移阈值可以用于对上述位移参数进行剔除。具体地,在本发明的实施例中,上述剪切波弹性成像装置在根据上述预设识别模型进行上述图像质量评价结果的计算之前,可以先对上述位移参数进行阈值化处理,即当上述位移参数低于上述预设位移阈值时,可以认为上述位移参数并不准确,因此可以忽略上述位移参数对上述剪切波成像的图像质量的影响。
步骤204、当位移参数小于预设位移阈值时,将位移权重系数设置为零。
在本发明的实施例中,上述剪切波弹性成像装置在获取上述预设位移阈值之后,如果上述位移参数小于上述预设位移阈值时,可以将上述位移权重系数设置为零。
在本发明的实施例中,上述剪切波弹性成像装置在获取上述预设位移阈值之后,可以将上述预设位移阈值和上述位移参数进行比较,当上述位移参数小于上述预设位移阈值时,上述剪切波弹性成像装置便可以认为上述位移参数对上述剪切波成像的图像质量的影响很小,即可以忽略上述位移参数的影响,那么上述图像质量评价参数便可以将上述位移权重系数设置为零。
本发明实施例提出的一种剪切波弹性成像方法,剪切波弹性成像装置向检测目标发射超声波束;其中,超声波束用于对运动干扰进行检测;在检测目标中产生剪切波,并向检测目标发射探测波束;其中,探测波束用于探测剪切波;接收超声波束对应的第一回波信号和探测波束对应的第二回波信号;根据第一回波信号确定运动干扰对应的位移参数,根据第二回波信号确定剪切波对应的强度参数和信噪比。由此可见,本发明实施例提出的一种剪切波弹性成像方法,剪切波弹性成像装置可以根据探测波束对应的第二回波信号剪切波的强度参数和信噪比,同时根据超声波束对应的 第一回波信号确定运动干扰对应的位移参数,便可以结合位移参数、强度参数以及信噪比,综合地对剪切波弹性成像的图像质量进行识别,获得图像质量评价结果,从而满足了基于多种干扰因素对剪切波弹性成像进行图像质量评价的需求,进而有效地提高了诊断结果的精确程度。
在本发明的实施例中,图12为本发明实施例提出的一种剪切波弹性成像方法的实现流程示意图五,如图12所示,上述剪切波弹性成像装置根据第一回波信号确定运动干扰对应的位移参数之后,上述剪切波弹性成像装置进行图像质量评价的方法还可以包括以下步骤:
步骤301、获取预设等级阈值。
在本发明的实施例中,上述剪切波弹性成像装置在根据上述第一回波信号确定上述运动干扰对应的位移参数之后,可以先获取预设等级阈值,其中,上述预设等级阈值用于上述剪切波弹性成像装置对上述位移参数进行运动等级的划分。
需要说明的是,在本发明的实施例中,上述剪切波弹性成像装置可以预先设置上述预设等级阈值,具体地,上述预设等级阈值可以为至少一个位移阈值范围,从而可以根据上述预设等级阈值对上述位移参数进行等级划分。
在本发明的实施例中,上述剪切波弹性成像装置可以根据上述位移参数判定运动干扰的强弱,即上述位移参数越大,表征上述检测目标或者上述探头的运动程度越强,相应地,上述位移参数越小,表征上述检测目标或者上述探头的运动程度越弱。因此,上述剪切波弹性成像装置可以设定上述预设等级阈值,用以根据上述位移参数对上述检测目标的运动强弱进行分级。
步骤302、根据预设等级阈值和位移参数,确定检测目标对应的运动等级。
在本发明的实施例中,上述剪切波弹性成像装置在获取预设等级阈值 之后,可以根据上述预设等级阈值和上述位移参数,确定上述检测目标对应的运动等级。
在本发明的实施例中,上述剪切波弹性成像装置在获取预设等级阈值之后,便可以将上述位移参数与上述预设等级阈值进行比较,从而确定出上述位移参数属于上述预设等级阈值中的哪一个等级范围之内,进而确定出上述位移参数的等级,即确定出表征上述检测目标运动程度的上述运动等级。
步骤303、显示运动等级。
在本发明的实施例中,上述剪切波弹性成像装置在根据上述预设等级阈值和上述位移参数,确定上述检测目标对应的上述运动等级之后,可以对上述运动等级进行显示。
需要说明的是,在本发明的实施例中,上述剪切波弹性成像装置在获得上述检测目标对应的运动等级之后,可以将上述运动等级显示在上述剪切波弹性成像装置的显示屏幕上,从而可以帮助医生判断患者的呼吸状态,进而可以在确定患者屏气时进行弹性图像的采集。
在本发明的实施例中,上述剪切波弹性成像装置对上述运动等级的显示方式有很多种,具体地,在本发明的实施例中,上述剪切波弹性成像装置对上述运动等级的显示的内容包括但不限于分级的数目,分级显示块的形状、颜色、大小、排列方式以及显示区域位于显示屏幕中的位置等。
在本发明的实施例中,图13为本发明实施例中运动等级示意图一,图14为本发明实施例中运动等级示意图二,如图13和图14所示,可以将运动等级按照运动强弱分为五级,并以深浅程度不同的颜色表示运动程度强弱,医生可在一段持续浅色的动态显示过程中采图,而在深色时不进行采图。
需要说明的是,在本发明的实施例中,呼吸、心跳等造成的检测目标运动以及探头手法造成的运动都可以通过上述运动等级来判断、衡量。
本发明实施例提出的一种剪切波弹性成像方法,剪切波弹性成像装置向检测目标发射超声波束;其中,超声波束用于对运动干扰进行检测;在检测目标中产生剪切波,并向检测目标发射探测波束;其中,探测波束用于探测剪切波;接收超声波束对应的第一回波信号和探测波束对应的第二回波信号;根据第一回波信号确定运动干扰对应的位移参数,根据第二回波信号确定剪切波对应的强度参数和信噪比。由此可见,本发明实施例提出的一种剪切波弹性成像方法,剪切波弹性成像装置可以根据探测波束对应的第二回波信号确定剪切波的强度参数和信噪比,同时根据超声波束对应的第一回波信号确定运动干扰对应的位移参数,便可以结合位移参数、强度参数以及信噪比,综合地对剪切波弹性成像的图像质量进行识别,获得图像质量评价结果,从而满足了基于多种干扰因素对剪切波弹性成像进行图像质量评价的需求,进而有效地提高了诊断结果的精确程度。
在本发明的实施例中,图15为本发明实施例提出的一种剪切波弹性成像方法的实现流程示意图六,如图15所示,上述剪切波弹性成像装置根据上述强度参数,上述信噪比以及上述位移参数,确定图像质量评价结果之后,即步骤104之后,上述剪切波弹性成像装置进行图像质量评价的方法还可以包括以下步骤:
步骤106、分析图像质量评价结果,获得质量影响比例。
在本发明的实施例中,上述剪切波弹性成像装置根据上述强度参数,上述信噪比以及上述位移参数,确定上述图像质量评价结果之后,上述剪切波弹性成像装置可以分析上述图像质量评价结果,从而可以获得质量影响比例。
需要说明的是,在本发明的实施例中,上述质量影响比例可以包括上述强度参数在上述图像质量评价结果中的占比,上述信噪比在上述图像质量评价结果中的占比以及上述位移参数在上述图像质量评价结果中的占比。
在本发明的实施例中,上述剪切波弹性成像装置可以根据上述图像质 量初步结果、上述位移参数以及上述图像质量评价结果对上述质量影响比例进行分析计算。
步骤107、根据质量影响比例,生成质量影响分析结果。
在本发明的实施例中,上述剪切波弹性成像装置分析上述图像质量评价结果,获得上述质量影响比例之后,可以根据上述质量影响比例,生成质量影响分析结果。
需要说明的是,在本发明的实施例中,上述剪切波弹性成像装置具体可以根据上述质量影响比例和上述检测模式,生成质量影响分析结果。
在本发明的实施例中,上述剪切波弹性成像装置可以将上述质量影响分析结果提供给医生,从可以使医生获得影响图像质量的主要因素和次要因素,进而可以使医生在检查时更加注意,先解决导致可信度下降,即剪切波成像图像质量下降的问题。例如,在检查肝脏时,呼吸干扰较大,上述剪切波弹性成像装置可以自动导出上述质量影响分析结果为运动干扰为60%,信噪比影响为30%,信号强度影响为10%。在检查颈部时,上述剪切波弹性成像装置可以自动导出上述质量影响分析结果为运动干扰为10%,信噪比影响为40%,信号强度影响为50%。
本发明实施例提出的一种剪切波弹性成像方法,剪切波弹性成像装置向检测目标发射超声波束;其中,超声波束用于对运动干扰进行检测;在检测目标中产生剪切波,并向检测目标发射探测波束;其中,探测波束用于探测剪切波;接收超声波束对应的第一回波信号和探测波束对应的第二回波信号;根据第一回波信号确定运动干扰对应的位移参数,根据第二回波信号确定剪切波对应的强度参数和信噪比。由此可见,本发明实施例提出的一种剪切波弹性成像方法,剪切波弹性成像装置可以根据探测波束对应的第二回波信号确定剪切波的强度参数和信噪比,同时根据超声波束对应的第一回波信号确定运动干扰对应的位移参数,便可以结合位移参数、强度参数以及信噪比,综合地对剪切波弹性成像的图像质量进行识别,获 得图像质量评价结果,从而满足了基于多种干扰因素对剪切波弹性成像进行图像质量评价的需求,进而有效地提高了诊断结果的精确程度。
本发明实施例提出的剪切波弹性成像方法,还可以包括以下步骤:
步骤401、在检测目标中产生剪切波。
步骤402、向所述检测目标发射探测波束;其中,所述探测波束用于探测所述剪切波。
在本发明的实施例中,剪切波弹性成像装置在检测目标中产生剪切波,上述剪切波弹性成像装置还可以向上述检测目标发射探测波束;其中,上述探测波束用于探测上述剪切波。其中,上述剪切波弹性成像装置可以为对上述检测目标进行剪切波弹性成像的装置。上述检测目标可以为待检测的人体组织、器官等,例如,上述检测目标可以为甲状腺、乳腺、肝脏、肌骨或者血管等人体组织。
在本发明的实施例中,上述剪切波用于对上述检测目标进行弹性检测。
步骤403、接收所述探测波束对应的回波信号。
步骤404、根据所述回波信号确定所述剪切波对应的信号质量参数。
在本发明的实施例中,上述剪切波弹性成像装置在上述检测目标中产生剪切波,向上述检测目标发送探测波束之后,上述剪切波弹性成像装置可以通过上述探测波束对上述剪切波进行检测,从而接收上述探测波束对应的上述回波信号。
在本申请的实施例中,上述剪切波弹性成像装置在接收到上述回波信号之后,可以对上述回波信号进行信号处理,进而获得上述剪切波对应的信号质量参数。其中。上述剪切波对应的上述信号质量参数可以包括强度参数和噪声参数,然后可以根据上述强度参数和噪声参数进一步确定上述剪切波对应的信噪比。
在本发明的实施例中,上述剪切波弹性成像装置在确定上述剪切波对应的上述信号质量参数之后,可以显示上述信号质量参数。
在本发明的实施例中,上述剪切波弹性成像装置在确定上述剪切波对应的上述信号质量参数之后,即步骤404之后,本发明提出的剪切波弹性成像方法还可以包括以下步骤:
步骤405、根据所述信号质量参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量。
步骤406、显示所述图像质量评价结果。
在本发明的实施例中,上述剪切波弹性成像装置在确定上述剪切波对应的上述信号质量参数之后,可以根据上述信号质量参数,确定图像质量评价结果。
具体地,在发明的实施例中,上述图像质量评价结果用于对上述检测目标对应的剪切波弹性成像的图像质量进行评价,即上述图像质量评价结果可以表征上述剪切波弹性成像的图像质量的高低。其中,上述图像质量评价结果可以为一个量化后的数值,也可以为具体的等级参数。
在本发明的实施例中,上述剪切波弹性成像装置在确定上述图像质量评价结果之后,可以显示上述图像质量评价结果。
在本发明的实施例中,上述剪切波弹性成像装置在获得上述剪切波弹性成像的图像质量评价结果之后,可以在显示上述剪切波弹性成像的同时,将上述图像质量评价结果一起进行显示。
本发明实施例提出的剪切波弹性成像方法,还可以包括以下步骤:
步骤501、向检测目标发射超声波束;其中,所述超声波束用于对运动干扰进行检测。
在本发明的实施例中,上述剪切波弹性成像装置向上述检测目标发射超声波束;其中,超声波束用于对运动干扰进行检测;上述剪切波弹性成像装置可以为对上述检测目标进行剪切波弹性成像的装置。上述检测目标可以为待检测的人体组织、器官等,例如,上述检测目标可以为甲状腺、 乳腺、肝脏、肌骨或者血管等人体组织。
步骤502、接收所述超声波束对应的回波信号。
在本发明的实施例中,上述剪切波弹性成像装置在向上述检测目标发射超声波束之后,可以接收上述超声波束对应的回波信号。
在本发明的实施例中,上述剪切波弹性成像装置在向上述检测目标发送上述超声波束之后,上述剪切波弹性成像装置所配置的接收电路可以通过探头接收上述超声波束对应的上述回波信号。
步骤503、根据所述回波信号确定运动干扰对应的运动参数。
在本发明的实施例中,上述剪切波弹性成像装置在接收上述超声波束对应的上述回波信号之后,可以根据上述回波信号确定运动干扰对应的运动参数,其中,上述运动参数可以为运动干扰对应的位移参数。
在本发明的实施例中,上述剪切波弹性成像装置在确定运动干扰对应的运动参数之后,可以显示上述运动参数。
在本发明的实施例中,上述剪切波弹性成像装置在根据上述回波信号确定运动干扰对应的运动参数之后,即步骤503之后,本发明提出的剪切波弹性成像方法还可以包括以下步骤:
步骤504、根据所述运动参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量。
步骤505、显示所述图像质量评价结果。
在本发明的实施例中,上述剪切波弹性成像装置在根据上述回波信号确定运动干扰对应的运动参数之后,可以根据上述运动参数,确定图像质量评价结果。
在发明的实施例中,上述剪切波弹性成像装置在确定运动干扰对应的运动参数之后,可以根据上述运动参数,进一步确定并显示图像质量评价结果。
在发明的实施例中,上述图像质量评价结果用于对上述检测目标对应 的剪切波弹性成像的图像质量进行评价,即上述图像质量评价结果可以表征上述剪切波弹性成像的图像质量的高低。其中,上述图像质量评价结果可以为一个量化后的数值,也可以为具体的等级参数。
在本发明的实施例中,上述剪切波弹性成像装置在获得上述剪切波弹性成像的图像质量评价结果之后,可以在显示上述剪切波弹性成像的同时,将上述图像质量评价结果一起进行显示。
图16为本发明实施例提出的剪切波弹性成像装置的组成结构示意图一,如图16所示,本发明实施例提出的剪切波弹性成像装置1可以包括探头11、发射电路12、接收电路13、处理器14以及显示器15。
发射电路12激励所述探头向所述检测目标发射超声波束;其中,所述超声波束用于对运动干扰进行检测;以及向所述检测目标发射探测波束;其中,所述探测波束用于探测所述剪切波。
接收电路13通过所述探头接收所述超声波束对应的第一回波信号和所述探测波束对应的第二回波信号。
处理器14根据所述第一回波信号确定运动干扰对应的位移参数,根据所述第二回波信号确定所述剪切波对应的强度参数和信噪比。
显示器15显示所述强度参数、所述信噪比和/或所述位移参数。
处理器14根据所述强度参数,所述信噪比以及所述位移参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量。
在本发明的实施例中,显示器15显示所述图像质量评价结果。
在本发明的实施例中,处理器14根据所述强度参数和所述信噪比,确定图像质量初步结果;以及根据所述图像质量初步结果和所述位移参数,确定所述图像质量评价结果。
在本发明的实施例中,处理器14获取第一权重系数;其中,所述第一权重系数包括所述强度参数对应的权重值和所述信噪比对应的权重值;以 及根据所述第一权重系数、所述强度参数以及所述信噪比,获得所述图像质量初步结果。
在本发明的实施例中,处理器14获取第二权重系数;以及将所述第二权重系数,所述图像质量初步结果以及所述位移参数,输入至预设识别模型中,获得所述图像质量评价结果;其中,所述预设识别模型用于对所述图像质量进行量化处理。
在本发明的实施例中,所述第二权重系数包括所述位移参数对应的位移权重系数,处理器14获取预设位移阈值;以及当所述位移参数小于所述预设位移阈值时,将所述位移权重系数设置为零。
在本发明的实施例中,处理器14确定所述检测目标对应的检测模式;以及根据预存模式与权重的对应关系和所述检测模式,确定所述第二权重系数。
在本发明的实施例中,处理器14根据所述第一回波信号确定运动干扰对应的位移参数之后,获取预设等级阈值;以及根据所述预设等级阈值和所述位移参数,确定所述检测目标对应的运动等级;
显示器15显示所述运动等级。
在本发明的实施例中,处理器14根据所述强度参数,所述信噪比以及所述位移参数,确定图像质量评价结果之后,分析所述图像质量评价结果,获得质量影响比例;其中,所述质量影响比例包括所述强度参数、所述信噪比以及所述位移参数在所述图像质量评价结果中的各自占比;以及根据所述质量影响比例,生成质量影响分析结果。
在本发明的实施例中,发射电路12还激励所述探头11向所述检测目标发射聚焦波束;其中,所述聚焦波束用于产生所述剪切波。
图17为本发明实施例提出的剪切波弹性成像装置的组成结构示意图二,如图17所示,本发明实施例提出的剪切波弹性成像装置1还可以包括存储有处理器14可执行指令的存储器16、通信接口17。
发射电路12激励所述探头11向所述检测目标发射探测波束;其中,所述探测波束用于探测所述剪切波。
接收电路13通过所述探头11接收所述探测波束对应的回波信号。
处理器14根据所述回波信号确定所述剪切波对应的信号质量参数。
显示器15显示所述信号质量参数。
处理器14根据所述信号质量参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量。
显示器15显示所述图像质量评价结果。
发射电路12激励所述探头11向检测目标发射超声波束;其中,所述超声波束用于对运动干扰进行检测。
接收电路13通过所述探头11接收所述超声波束对应的回波信号。
处理器14根据所述回波信号确定运动干扰对应的运动参数。
显示器15显示所述运动参数。
处理器14根据所述运动参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量。
所述显示器15显示所述图像质量评价结果。
在本发明的实施例中,上述处理器14可以为特定用途集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal Processing Device,DSPD)、可编程逻辑装置(ProgRAMmable Logic Device,PLD)、现场可编程门阵列(Field ProgRAMmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器中的至少一种。可以理解地,对于不同的设备,用于实现上述处理器功能的电子器件还可以为其它,本发明实施例不作具体限定。剪切波弹性成像装置1还可以包括存储器16,该存储器16可以与处理器14连接,其中,存储器16用于存储可 执行程序代码,该程序代码包括计算机操作指令,存储器16可能包含高速RAM存储器,也可能还包括非易失性存储器,例如,至少两个磁盘存储器。
在本发明的实施例中,存储器16,用于存储指令和数据。
在实际应用中,上述存储器16可以是易失性第一存储器(volatile memory),例如随机存取第一存储器(Random-Access Memory,RAM);或者非易失性第一存储器(non-volatile memory),例如只读第一存储器(Read-Only Memory,ROM),快闪第一存储器(flash memory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);或者上述种类的第一存储器的组合,并向处理器14提供指令和数据。
另外,在本实施例中的各功能模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
集成的单元如果以软件功能模块的形式实现并非作为独立的产品进行销售或使用时,可以存储在一个计算机可读取存储介质中,基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或processor(处理器)执行本实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本发明实施例提出的一种剪切波弹性成像装置,该剪切波弹性成像装置向检测目标发射超声波束;其中,超声波束用于对运动干扰进行检测;在检测目标中产生剪切波,并向检测目标发射探测波束;其中,探测波束用于探测剪切波;接收超声波束对应的第一回波信号和探测波束对应的第 二回波信号;根据第一回波信号确定运动干扰对应的位移参数,根据第二回波信号确定剪切波对应的强度参数和信噪比。由此可见,本发明实施例提出的一种剪切波弹性成像方法,剪切波弹性成像装置可以根据探测波束对应的第二回波信号剪切波的强度参数和信噪比,同时根据超声波束对应的第一回波信号确定运动干扰对应的位移参数,便可以结合位移参数、强度参数以及信噪比,综合地对剪切波弹性成像的图像质量进行识别,获得图像质量评价结果,从而满足了基于多种干扰因素对剪切波弹性成像进行图像质量评价的需求,进而有效地提高了诊断结果的精确程度。
本发明实施例提供第一计算机可读存储介质,其上存储有程序,该程序被处理器执行时实现如上所述的剪切波弹性成像方法。
具体来讲,本实施例中的一种剪切波弹性成像方法对应的程序指令可以被存储在光盘,硬盘,U盘等存储介质上,当存储介质中的与一种剪切波弹性成像方法对应的程序指令被一电子设备读取或被执行时,包括如下步骤:
向所述检测目标发射超声波束;其中,所述超声波束用于对运动干扰进行检测;在检测目标中产生剪切波,并向所述检测目标发射探测波束;其中,所述探测波束用于探测所述剪切波;
接收所述超声波束对应的第一回波信号和所述探测波束对应的第二回波信号;
根据所述第一回波信号确定运动干扰对应的位移参数,根据所述第二回波信号确定所述剪切波对应的强度参数和信噪比。
在上述步骤的基础上,还可包括根据所述强度参数、所述信噪比以及所述位移参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结 合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的实现流程示意图和/或方框图来描述的。应理解可由计算机程序指令实现流程示意图和/或方框图中的每一流程和/或方框、以及实现流程示意图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在实现流程示意图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在实现流程示意图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在实现流程示意图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例提供了一种剪切波弹性成像方法和装置、及计算机存储介质,剪切波弹性成像装置向检测目标发射超声波束;其中,超声波束用 于对运动干扰进行检测;在检测目标中产生剪切波,并向检测目标发射探测波束;其中,探测波束用于探测剪切波;接收超声波束对应的第一回波信号和探测波束对应的第二回波信号;根据第一回波信号确定运动干扰对应的位移参数,根据第二回波信号确定剪切波对应的强度参数和信噪比。由此可见,本发明实施例提出的一种剪切波弹性成像方法,剪切波弹性成像装置可以根据探测波束对应的第二回波信号确定剪切波的强度参数和信噪比,同时根据超声波束对应的第一回波信号确定运动干扰对应的位移参数,便可以结合位移参数、强度参数以及信噪比,综合地对剪切波弹性成像的图像质量进行识别,获得图像质量评价结果,从而满足了基于多种干扰因素对剪切波弹性成像进行图像质量评价的需求,进而有效地提高了诊断结果的精确程度。

Claims (37)

  1. 一种剪切波弹性成像方法,所述方法包括:
    向所述检测目标发射超声波束;其中,所述超声波束用于对运动干扰进行检测;
    在检测目标中产生剪切波,并向所述检测目标发射探测波束;其中,所述探测波束用于探测所述剪切波;
    接收所述超声波束对应的第一回波信号和所述探测波束对应的第二回波信号;
    根据所述第一回波信号确定运动干扰对应的位移参数,根据所述第二回波信号确定所述剪切波对应的强度参数和信噪比。
  2. 根据权利要求1所述的方法,还包括,显示所述强度参数、所述信噪比和/或所述位移参数。
  3. 根据权利要求1所述的方法,还包括,根据所述强度参数、所述信噪比以及所述位移参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量。
  4. 根据权利要求3所述的方法,其中,所述根据所述强度参数,所述信噪比以及所述位移参数,确定图像质量评价结果之后,所述方法还包括:
    显示所述图像质量评价结果。
  5. 根据权利要求3所述的方法,其中,所述根据所述强度参数,所述信噪比以及所述位移参数,确定图像质量评价结果,包括:
    根据所述强度参数和所述信噪比,确定图像质量初步结果;
    根据所述图像质量初步结果和所述位移参数,确定所述图像质量评价结果。
  6. 根据权利要求5所述的方法,其中,所述根据所述强度参数和所述信噪比,确定图像质量初步结果,包括:
    获取第一权重系数;其中,所述第一权重系数包括所述强度参数对应的权重值和所述信噪比对应的权重值;
    根据所述第一权重系数、所述强度参数以及所述信噪比,获得所述图像质量初步结果。
  7. 根据权利要求5所述的方法,其中,所述根据所述图像质量初步结果和所述位移参数,确定所述图像质量评价结果,包括:
    获取第二权重系数;
    将所述第二权重系数,所述图像质量初步结果以及所述位移参数,输入至预设识别模型中,获得所述图像质量评价结果;其中,所述预设识别模型用于对所述图像质量进行量化处理。
  8. 根据权利要求7所述的方法,其中,所述第二权重系数包括所述位移参数对应的位移权重系数,所述将所述第二权重系数,所述图像质量初步结果以及所述位移参数,输入至预设识别模型中,获得所述图像质量评价结果之前,所述方法还包括:
    获取预设位移阈值;
    当所述位移参数小于所述预设位移阈值时,将所述位移权重系数设置为零。
  9. 根据权利要求7所述的方法,其中,所述获取第二权重系数,包括:
    确定所述检测目标对应的检测模式;
    根据预存模式与权重的对应关系和所述检测模式,确定所述第二权重系数。
  10. 根据权利要求1所述的方法,其中,所述根据所述第一回波信号确定运动干扰对应的位移参数之后,所述方法还包括:
    获取预设等级阈值;
    根据所述预设等级阈值和所述位移参数,确定所述检测目标对应的运动等级;
    显示所述运动等级。
  11. 根据权利要求3所述的方法,其中,所述根据所述强度参数,所述信噪比以及所述位移参数,确定图像质量评价结果之后,所述方法还包括:
    分析所述图像质量评价结果,获得质量影响比例;其中,所述质量影响比例包括所述强度参数、所述信噪比以及所述位移参数在所述图像质量评价结果中的各自占比;
    根据所述质量影响比例,生成质量影响分析结果。
  12. 根据权利要求1-11中任一项所述的方法,其中,所述超声波束用于对运动干扰进行检测,该超声波束用于形成B型超声图像。
  13. 一种剪切波弹性成像方法,所述方法包括:
    在检测目标中产生剪切波;
    向所述检测目标发射探测波束;其中,所述探测波束用于探测所述剪切波;
    接收所述探测波束对应的回波信号;
    根据所述回波信号确定所述剪切波对应的信号质量参数。
  14. 根据权利要求13所述的方法,其中,还包括:显示所述信号质量参数。
  15. 根据权利要求13所述的方法,其中,还包括:
    根据所述信号质量参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量;
    显示所述图像质量评价结果。
  16. 一种剪切波弹性成像方法,所述方法包括:
    向检测目标发射超声波束;其中,所述超声波束用于对运动干扰进行检测;
    接收所述超声波束对应的回波信号;
    根据所述回波信号确定运动干扰对应的运动参数。
  17. 根据权利要求16所述的方法,还包括,显示所述运动参数。
  18. 根据权利要求16所述的方法,还包括,
    根据所述运动参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量;
    显示所述图像质量评价结果。
  19. 一种剪切波成像装置,其中,所述剪切波成像装置包括:探头,发射电路,接收电路以及处理器,
    所述发射电路激励所述探头向所述检测目标发射超声波束;其中,所述超声波束用于对运动干扰进行检测;以及向所述检测目标发射探测波束;其中,所述探测波束用于探测剪切波;
    所述接收电路通过所述探头接收所述超声波束对应的第一回波信号和所述探测波束对应的第二回波信号;
    所述处理器根据所述第一回波信号确定运动干扰对应的位移参数,根据所述第二回波信号确定所述剪切波对应的强度参数和信噪比。
  20. 根据权利要求19所述的剪切波成像装置,其中,所述剪切波成像装置还包括:显示器,
    所述显示器显示所述强度参数、所述信噪比和/或所述位移参数。
  21. 根据权利要求19所述的剪切波成像装置,其中,
    所述处理器根据所述强度参数、所述信噪比以及所述位移参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量。
  22. 根据权利要求21所述的剪切波成像装置,其中,
    所述显示器显示所述图像质量评价结果。
  23. 根据权利要求21所述的剪切波成像装置,其中,
    所述处理器根据所述强度参数和所述信噪比,确定质量初步结果;以 及根据所述图像质量初步结果和所述位移参数,确定所述图像质量评价结果。
  24. 根据权利要求23所述的剪切波成像装置,其中,
    所述处理器获取第一权重系数;其中,所述第一权重系数包括所述强度参数对应的权重值和所述信噪比对应的权重值;以及根据所述第一权重系数、所述强度参数以及所述信噪,获得所述图像质量初步结果。
  25. 根据权利要求23所述的剪切波成像装置,其中,
    所述处理器获取第二权重系数;以及将所述第二权重系数,所述图像质量初步结果以及所述位移参数,输入至预设识别模型中,获得所述图像质量评价结果;其中,所述预设识别模型用于对所述图像质量进行量化处理。
  26. 根据权利要求25所述的剪切波成像装置,其中,所述第二权重系数包括所述位移参数对应的位移权重系数,
    所述处理器获取预设位移阈值;以及当所述位移参数小于所述预设位移阈值时,将所述位移权重系数设置为零。
  27. 根据权利要求25所述的剪切波成像装置,其中,
    所述处理器确定所述检测目标对应的检测模式;以及根据预存模式与权重的对应关系和所述检测模式,确定所述第二权重系数。
  28. 根据权利要求19所述的剪切波成像装置,其中,
    所述处理器根据所述第一回波信号确定运动干扰对应的位移参数之后,获取预设等级阈值;以及根据所述预设等级阈值和所述位移参数,确定所述检测目标对应的运动等级;
    所述显示器显示所述运动等级。
  29. 根据权利要求21所述的剪切波成像装置,其中,
    所述处理器根据所述强度参数,所述信噪比以及所述位移参数,确定图像质量评价结果之后,分析所述图像质量评价结果,获得质量影响比例; 其中,所述质量影响比例包括所述强度参数、所述信噪比以及所述位移参数在所述图像质量评价结果中的各自占比;以及根据所述质量影响比例,生成质量影响分析结果。
  30. 根据权利要求19-29任一项所述的剪切波成像装置,其中,所述发射电路还激励所述探头向所述检测目标发射聚焦波束;其中,所述聚焦波束用于产生所述剪切波。
  31. 一种剪切波成像装置,其中,所述剪切波成像装置包括:探头,发射电路,接收电路以及处理器,
    所述发射电路激励所述探头向所述检测目标发射探测波束;其中,所述探测波束用于探测剪切波;
    所述接收电路通过所述探头接收所述探测波束对应的回波信号;
    所述处理器根据所述回波信号确定所述剪切波对应的信号质量参数。
  32. 根据权利要求31所述的剪切波成像装置,其中,所述剪切波成像装置包括:显示器,
    所述显示器显示所述信号质量参数。
  33. 根据权利要求32所述的剪切波成像装置,其中,
    所述处理器根据所述信号质量参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量;
    所述显示器显示所述图像质量评价结果。
  34. 一种剪切波成像装置,其中,所述剪切波成像装置包括:探头,发射电路,接收电路以及处理器,
    所述发射电路激励所述探头向检测目标发射超声波束;其中,所述超声波束用于对运动干扰进行检测;
    所述接收电路通过所述探头接收所述超声波束对应的回波信号;
    所述处理器根据所述回波信号确定运动干扰对应的运动参数。
  35. 根据权利要求34所述的剪切波成像装置,其中,所述剪切波成像装置包括:显示器,
    所述显示器显示所述运动参数。
  36. 根据权利要求34所述的剪切波成像装置,其中,
    所述处理器根据所述运动参数,确定图像质量评价结果;其中,所述图像质量评价结果用于表征所述检测目标对应的剪切波弹性成像的图像质量;
    所述显示器显示所述图像质量评价结果。
  37. 一种计算机可读存储介质,其上存储有程序,应用于剪切波成像装置中,其中,所述程序被处理器执行时实现如权利要求1-18任一项所述的方法。
PCT/CN2018/104428 2018-09-06 2018-09-06 一种剪切波弹性成像方法和装置、及计算机存储介质 WO2020047805A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880097002.3A CN112702953A (zh) 2018-09-06 2018-09-06 一种剪切波弹性成像方法和装置、及计算机存储介质
PCT/CN2018/104428 WO2020047805A1 (zh) 2018-09-06 2018-09-06 一种剪切波弹性成像方法和装置、及计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/104428 WO2020047805A1 (zh) 2018-09-06 2018-09-06 一种剪切波弹性成像方法和装置、及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2020047805A1 true WO2020047805A1 (zh) 2020-03-12

Family

ID=69722093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104428 WO2020047805A1 (zh) 2018-09-06 2018-09-06 一种剪切波弹性成像方法和装置、及计算机存储介质

Country Status (2)

Country Link
CN (1) CN112702953A (zh)
WO (1) WO2020047805A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114376602A (zh) * 2021-11-17 2022-04-22 深圳迈瑞生物医疗电子股份有限公司 超声设备获取生理参数的方法和超声设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101912278A (zh) * 2010-08-12 2010-12-15 陈庆武 超声动态弹性成像探头及方法
US20130028536A1 (en) * 2011-07-28 2013-01-31 General Electric Company Methods for reducing motion artifacts in shear wave images
US20150119710A1 (en) * 2013-10-24 2015-04-30 Ge Medical Systems Global Technology Company, Llc Ultrasonic diagnosis apparatus
CN104688266A (zh) * 2013-12-04 2015-06-10 美国西门子医疗解决公司 三维弹性超声成像中的运动修正
CN104939869A (zh) * 2014-03-31 2015-09-30 美国西门子医疗解决公司 用于弹性超声成像的获取控制的系统和方法
CN105997138A (zh) * 2015-03-31 2016-10-12 三星电子株式会社 超声成像装置及其处理超声图像的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101912278A (zh) * 2010-08-12 2010-12-15 陈庆武 超声动态弹性成像探头及方法
US20130028536A1 (en) * 2011-07-28 2013-01-31 General Electric Company Methods for reducing motion artifacts in shear wave images
US20150119710A1 (en) * 2013-10-24 2015-04-30 Ge Medical Systems Global Technology Company, Llc Ultrasonic diagnosis apparatus
CN104688266A (zh) * 2013-12-04 2015-06-10 美国西门子医疗解决公司 三维弹性超声成像中的运动修正
CN104939869A (zh) * 2014-03-31 2015-09-30 美国西门子医疗解决公司 用于弹性超声成像的获取控制的系统和方法
CN105997138A (zh) * 2015-03-31 2016-10-12 三星电子株式会社 超声成像装置及其处理超声图像的方法

Also Published As

Publication number Publication date
CN112702953A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
US11635514B2 (en) Imaging methods and apparatuses for performing shear wave elastography imaging
US9072493B1 (en) Ultrasonic diagnostic apparatus and elastic evaluation method
JP5485508B2 (ja) 改良された軟部組織の超音波歪測定のための方法及び装置
JP6216736B2 (ja) 超音波診断装置、及び超音波診断方法
RU2723753C1 (ru) Способ и устройство для ультразвукового измерения и визуализации упругости биологических тканей в реальном времени
US11850098B2 (en) Method and device for measuring an ultrasound parameter of a viscoelastic medium
TW201519872A (zh) 非侵入式肝纖維化程度評估裝置與方法
JP2011177461A (ja) 超音波診断装置
Ostras et al. Diagnostic ultrasound imaging of the lung: A simulation approach based on propagation and reverberation in the human body
WO2019218669A1 (zh) 一种剪切波传播速度的确定方法及装置
JP6382633B2 (ja) 超音波診断装置
US11540809B2 (en) Ultrasonic diagnostic apparatus and method for propagation speed analysis of shear wave and elastic modulus measurement of a tissue
WO2020047805A1 (zh) 一种剪切波弹性成像方法和装置、及计算机存储介质
JP2009039277A (ja) 超音波診断装置
JP2020103883A (ja) 超音波撮像システムおよび対象物体品質レベルを表示するための方法
WO2023034702A1 (en) Methods, systems and computer program products for tissue analysis using ultrasonic backscatter coherence
TWI619475B (zh) Ultrasonic data analysis system and method for liver fibrosis
WO2021232192A1 (zh) 超声造影成像方法、装置和存储介质
US20220211342A1 (en) Method Of Performing Automated Measurements Over Multiple Cardiac Cycles
Tresansky Statistical analysis of ultrasound signals for tissue characterization: the Homodyned K Distribution
US20210045709A1 (en) Shear wave elasticity imaging method and ultrasonic imaging device
US20230342919A1 (en) Ultrasonic image processing device, ultrasonic image processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18932724

Country of ref document: EP

Kind code of ref document: A1