WO2020046083A2 - 인공지능 세탁물 처리기기 및 세탁물 처리기기의 제어방법 - Google Patents

인공지능 세탁물 처리기기 및 세탁물 처리기기의 제어방법 Download PDF

Info

Publication number
WO2020046083A2
WO2020046083A2 PCT/KR2019/011227 KR2019011227W WO2020046083A2 WO 2020046083 A2 WO2020046083 A2 WO 2020046083A2 KR 2019011227 W KR2019011227 W KR 2019011227W WO 2020046083 A2 WO2020046083 A2 WO 2020046083A2
Authority
WO
WIPO (PCT)
Prior art keywords
current
motor
washing tank
speed
laundry treatment
Prior art date
Application number
PCT/KR2019/011227
Other languages
English (en)
French (fr)
Other versions
WO2020046083A3 (ko
Inventor
임명훈
정환진
김성균
김재현
유선화
우경철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020046083A2 publication Critical patent/WO2020046083A2/ko
Publication of WO2020046083A3 publication Critical patent/WO2020046083A3/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/32Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/304Arrangements or adaptations of electric motors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/04Quantity, e.g. weight or variation of weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/06Type or material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/24Spin speed; Drum movements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/44Current or voltage
    • D06F2103/46Current or voltage of the motor driving the drum
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/46Drum speed; Actuation of motors, e.g. starting or interrupting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/46Drum speed; Actuation of motors, e.g. starting or interrupting
    • D06F2105/48Drum speed
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/18Condition of the laundry, e.g. nature or weight
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Definitions

  • the present invention relates to a laundry treatment apparatus for sensing a quantity and a quality based on machine learning and a control method thereof.
  • Laundry treatment equipment is a device that processes the laundry through a variety of actions, such as washing, rinsing, dehydration and / or drying.
  • This laundry treatment machine has a washing tank rotated by a motor.
  • the laundry treatment machine is usually equipped with an algorithm for detecting the amount (or quantity) of laundry put into the washing tank.
  • an algorithm for detecting the amount (or quantity) of laundry put into the washing tank For example, the prior art 1 (Publication Patent Publication No. 10-2006-0061319) accelerates the motor speed to a certain number of revolutions, and then, using the following equation, eccentric value, DC voltage, and motor torque value information obtained while performing constant velocity control.
  • Disclosed is a method for detecting a quantity by calculating.
  • Amount value Average of constant speed current amount + DC voltage compensation value-Eccentric compensation value + a
  • DC voltage compensation value (DC voltage detection value-b) x t
  • Eccentricity compensation value Eccentricity value at constant speed section x d
  • the set values (experimental constants) must be accurately found in order to improve the amount of detection accuracy, which may take a long time.
  • Prior art 2 (Patent Publication No. 1999-0065538) relates to a method for sensing a quantity of air by measuring the amount of change in the motor rotational speed while rotating the motor at the set speed and the time required for acceleration while accelerating the motor at a predetermined speed. It is starting.
  • the prior art 2 detects a large amount and a small amount of a quantity by comparing the measured time and the change value of the motor rotation speed with a preset quantity detection comparison value, and compares the quantity by simply comparing the large and small values. Therefore, the prior art 2 is limited to precisely detect various kinds of doses because only a large amount and a small amount of doses can be distinguished. In addition, even in the prior art 2, it may be cumbersome for a person to find all of the preset values for comparison.
  • Machine learning such as artificial intelligence and deep learning has increased greatly.
  • Conventional machine learning centered around statistically based classification, regression, and cluster models.
  • supervised learning of classification and regression models a person has previously defined a learning model that distinguishes the characteristics of the training data and the new data based on these characteristics.
  • Deep learning is for computers to find and identify features on their own.
  • deep learning frameworks include Theano at the University of Montreal in Canada, Torch at the University of New York, USA, Caffe at the University of California, Berkeley, and TensorFlow from Google.
  • the problem to be solved by the present invention is, firstly, to provide a laundry treatment apparatus and a control method capable of quickly and accurately detecting the amount and / or the quality of the foam based on the machine learning.
  • a laundry treatment apparatus and a control method thereof in which the amount of data required for determination is reduced by efficiently processing data used for the quantity / form quality determination.
  • Laundry processing apparatus of the present invention includes a washing tank for receiving and rotating the cloth, a motor for rotating the washing tank, a control unit for controlling the motor, and a current sensing unit for sensing the current of the motor.
  • the controller controls the motor such that the washing tank is accelerated to a predetermined target speed.
  • the controller controls the washing tank to be accelerated to 1.5 to 2.5 rpm / s.
  • a current sensing unit for sensing a current of the motor is further provided, wherein the control unit is an artificial neural network learned by machine learning the current value detected by the current sensing unit while the washing tank is accelerated rotation (Artificial Neural At least one of a quantity and a quality is obtained as an output of the output layer of the artificial neural network as an input of an input layer of the network.
  • Artificial Neural At least one of a quantity and a quality is obtained as an output of the output layer of the artificial neural network as an input of an input layer of the network.
  • the acceleration slope may be 2.0 rpm / s.
  • the acceleration slope may be a minimum value controllable by the controller.
  • the acceleration slope may maintain a constant value until the motor is accelerated to the target speed.
  • the controller may determine the catch constraint based on the output of the output layer.
  • the cloth positioned at the lowermost side in the washing tank reaches a predetermined height by the rotation of the washing tank. It may rise and fall from the washing tank and fall.
  • a speed detecting unit may further include a speed detecting unit configured to detect a rotational speed of the motor, and the controller may be configured to rotate the speed of the motor among current values obtained by the current sensing unit based on the speed value detected by the speed detecting unit. Selects a current value corresponding to a section accelerated from the first rotational speed to the target speed, and uses the selected current value as the input data.
  • the target speed may be 60 to 80 rpm.
  • the first rotational speed may be 10 to 20 rpm.
  • the control method of the laundry treatment machine of the present invention comprises the steps of: (a) accelerating the washing tank into which the cloth is introduced, at a target speed set at 1.5 to 2.5 rm / s within a range in which the cloth flows in the washing tank, and (b) the Obtaining a current value of a motor for rotating the washing tank in a section in which the washing tank is accelerated and rotated, and (c) inputting an input layer of an artificial neural network previously learned by machine learning And calculating at least one of a quantity and a quality as an output from the output layer of the neural network.
  • the acceleration slope may be 2.0 rpm / s.
  • the acceleration slope may be a minimum value controllable by the controller.
  • the acceleration slope may maintain a constant value until the motor is accelerated to the target speed.
  • the control method of the laundry treatment machine may further include determining the binding of the cloth based on the output of the output layer.
  • the laundry treatment apparatus of the present invention and the control method thereof by rotating the washing tank for the detection of the amount / quality of the laundry, by setting the acceleration slope of the washing tank at a relatively low value of 1.5 to 2.5rpm / s,
  • the flow characteristics of the foam by volume or by foam can be clearly highlighted. Therefore, the flow characteristics of each cloth or each foam may be reflected in the current pattern of the motor during the speeding up of the washing tank, and by inputting the current pattern data into an artificial neural network based on machine learning, There is an effect that can accurately grasp the information, for example, the amount or the quality.
  • the classification by characteristics of the fabric can be not only based on the quantity of the fabric, but also various criteria such as the material of the fabric, the moisture content, the volume difference between the dry and the wet fabric, and as the training data (motor current data) of the machine lining accumulates, Accuracy can be further improved.
  • FIG. 1 is a side cross-sectional view of a laundry treatment machine according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a control relationship between main components of the laundry treatment machine of FIG.
  • FIG 3 illustrates a current pattern applied to a motor according to a material quality and a load amount (amount of load).
  • FIG. 5 illustrates a load-specific current pattern while controlling the speed of the motor in a predetermined method.
  • FIG. 6 illustrates a process of processing current current values obtained by the current sensing unit as input data of an artificial neural network.
  • FIG. 7 is a schematic diagram showing an example of an artificial neural network.
  • FIG. 8 is a schematic diagram showing the process of determining the quality of each foam by using the current current value of the motor divided into a learning process and a recognition process.
  • FIG. 9 is a graph (a) showing the current value detected by the current sensor, and a graph (b) showing the average values obtained by processing the moving average filter.
  • FIG. 10 is a graph illustrating current values by the current sensing unit.
  • FIG. 11 is a graph showing values processed for using current values of the graph shown in FIG. 9 as input data of an artificial neural network.
  • FIG. 12 is a flowchart illustrating a control method of a laundry treatment machine according to an embodiment of the present invention.
  • 13 is a graph superimposing load-specific current patterns.
  • FIG. 14 is a graph illustrating current patterns corresponding to loads of 0 to 6 kg in FIG. 13.
  • FIG. 15 is a graph illustrating current patterns corresponding to loads of 7 to 9 kg in FIG. 13.
  • module and “unit” for the components used in the following description are merely given in consideration of ease of preparation of the present specification, and do not give particular meaning or role in themselves. Therefore, the “module” and “unit” may be used interchangeably.
  • 1 is a cross-sectional view showing a laundry treatment machine according to an embodiment of the present invention.
  • 2 is a block diagram showing a control relationship between the major components of the laundry treatment machine according to an embodiment of the present invention.
  • a laundry treatment machine includes a casing 1 forming an external appearance, a reservoir 3 disposed in the casing 1 and storing wash water, and a storage tank 3. It is installed to be rotatable and includes a washing tank 4 into which laundry is put, and a motor 9 for rotating the washing tank 4.
  • the washing tank 4 has a front cover 41 having an opening for entering and exiting laundry, a cylindrical drum 42 disposed substantially horizontally so that the front end is coupled to the front cover 41, and a rear end of the drum 42. It includes a rear cover 43 is coupled.
  • the rotating shaft of the motor 9 may be connected to the rear cover 43 by passing through the rear wall of the reservoir 3.
  • a plurality of through holes may be formed in the drum 42 so that water may be exchanged between the washing tank 4 and the water storage tank 3.
  • a lifter 20 may be provided on the inner circumferential surface of the drum 42.
  • the lifter 20 protrudes on the inner circumferential surface of the drum 42 and extends in the longitudinal direction (front and rear direction) of the drum 42, and a plurality of lifters 20 may be spaced apart in the circumferential direction. When the washing tub 4 is rotated, it can be carried up by the lifter 20.
  • the height at which the lifter 20 protrudes from the drum 42 may preferably be 30 mm (or 6.0% of the drum diameter) or less, more preferably 10 to 20 mm.
  • the height of the lifter 20 is 20 mm or less, even if the washing tub 4 is continuously rotated in one direction at approximately 80 rpm, the fabric can flow without sticking to the washing tub 4. That is, when the washing tank 4 is rotated in one direction or more in one direction, it is raised to a predetermined height by the rotation of the carriage laundry tank 4 located at the lowermost side in the washing tank 4 and separated from the washing tank 4 and dropped. Can be.
  • the washing tub 4 is rotated about a horizontal axis.
  • horizontal does not mean a geometric horizontal in the exact sense, and even when inclined at a predetermined angle with respect to the horizontal as shown in FIG. 1, the washing tank 4 is closer to horizontal than vertical. It is assumed that it is rotated about a horizontal axis.
  • a laundry inlet is formed on the front surface of the casing 1, and a door 2 for opening and closing the laundry inlet is rotatably provided in the casing 1.
  • a water supply valve 5 Inside the casing 1, a water supply valve 5, a water supply pipe 5, and a water supply hose 8 may be installed. When the water supply valve 5 is opened to supply water, the washing water passing through the water supply pipe 5 may be mixed with the detergent in the dispenser 14, and then supplied to the water storage tank 3 through the water supply hose 8.
  • the input port of the pump 11 is connected to the reservoir 3 by the discharge hose 10, the discharge port of the pump 11 is connected to the drain pipe (12). Water discharged from the reservoir 3 through the discharge hose 10 is pumped by the pump 11 and flows along the drain pipe 12, and then discharged to the outside of the laundry treatment machine.
  • the laundry treatment machine according to an embodiment of the present invention, the control unit 60 for controlling the overall operation of the laundry treatment machine, the motor drive unit 71, the output unit (controlled by the control unit 60) 72, a communication unit 73, a speed detector 74, a current detector 75, and a memory 76 may be included.
  • the controller 60 may control a series of washing processes of washing, rinsing, dehydration and drying.
  • the controller 60 may proceed with washing, rinsing, and stroke according to a preset algorithm, and the controller 60 may control the motor driver 71 according to the algorithm.
  • the motor driver 71 may control the driving of the motor 9 in response to a control signal applied from the controller 60.
  • the control signal may be a signal for controlling a target speed, acceleration slope (or acceleration), driving time, and the like of the motor 9.
  • the motor driver 71 drives the motor 9 and may include an inverter (not shown) and an inverter controller (not shown).
  • the motor driving unit 71 may be a concept that further includes a converter, for supplying a DC power input to the inverter.
  • the inverter controller (not shown) outputs a pulse width modulation (PWM) switching control signal to the inverter (not shown)
  • PWM pulse width modulation
  • the inverter (not shown) performs a high speed switching operation to supply AC power of a predetermined frequency. It can supply to the motor 9.
  • the speed detector 74 detects the rotational speed of the washing tub 4.
  • the speed detector 74 may detect the rotational speed of the rotor of the motor 9.
  • the rotation speed of the washing tub 4 is equal to the rotational speed of the rotor detected by the speed detecting unit 74. It may be a value converted in consideration of the deceleration or gear ratio of the planetary gear train.
  • the controller 60 may control the motor driver 71 so that the motor 9 follows the preset target speed by using the current speed transmitted from the speed detector 74 as a feedback.
  • the current detector 75 detects a current (hereinafter, referred to as a current current) applied to the motor 9 and transmits it to the controller 60, and the controller 60 uses the received current as input data. Can detect the quantity and quality.
  • the current values as the input data include values obtained in the process of accelerating the motor 9 toward a preset target speed.
  • the current current is the torque axis (q-axis) component of the current flowing in the motor circuit, that is, the torque current Iq. Can be.
  • the output unit 72 outputs the operating state of the laundry treatment machine.
  • the output unit 72 may be an image output device such as an LCD or an LED that outputs a visual display, or a sound output device such as a speaker buzzer that outputs a sound.
  • the output unit 72 may output the information on the amount or the quality of the foam.
  • the memory 76 includes a programmed artificial neural network, current patterns for each dose and / or quality, and a database (DB), a machine learning algorithm, and a current sensing unit constructed through machine learning based on the current patterns.
  • 75 may store a current current value sensed by 75), an average value of the current current values, a value obtained by processing the averaged values according to a parsing rule, data transmitted and received through the communication unit 73, and the like. have.
  • the memory 76 includes various control data for controlling the overall operation of the laundry treatment machine, laundry setting data input by the user, washing time calculated according to the laundry setting, data on the washing course, and errors in the laundry treatment machine. Data for determining whether or not occurrence may be stored.
  • the communicator 73 may communicate with a server connected to a network.
  • the communication unit 73 may include one or more communication modules, such as an internet module and a mobile communication module.
  • the communication unit 73 may receive various data such as learning data, algorithm update, and the like from the server.
  • the controller 60 may update the memory 76 by processing various data received through the communicator 73. For example, when the data input through the communication unit 73 is the update data for the driving program pre-stored in the memory 76, the data is updated in the memory 76 using the updated data, and the input data is a new driving program. In this case, it may be further stored in the memory 76.
  • Machine learning means that a computer can learn from data and let the computer take care of a problem without having to instruct the computer directly to the logic.
  • ANN Deep Learning Based on artificial neural network
  • ANN artificial intelligence technology
  • the artificial neural network (ANN) may be implemented in software or in the form of hardware such as a chip.
  • the laundry treatment machine processes the current values sensed by the current sensing unit 75 on the basis of machine learning to determine characteristics of the laundry (foam) introduced into the washing tub 4 (hereinafter, referred to as “foam characteristics”).
  • foam characteristics may include, for example, a quantity of foam and a quality of the foam, and the controller 60 may determine the quality of each foam based on machine learning. For example, the controller 60 may obtain a quantity of water and determine which of the categories previously classified according to the quality.
  • Such fabrics may include the material of the fabric, the degree of softness (e.g. soft fabric / hard fabric), the ability of the fabric to hold water (i.e. moisture content), and the volume difference between the dry and wet fabrics. Can be defined based on several factors.
  • the controller 60 inputs input data of an artificial neural network that has been learned by machine learning from the current current value detected by the current sensor 75 until the target speed is reached. Can be used to detect the quantity.
  • FIG. 3 illustrates a current pattern applied to a motor according to a material quality and a load amount (amount of load). 4 shows a current pattern for each material.
  • FIG. 5 illustrates a load-specific current pattern while controlling the speed of the motor in a predetermined method.
  • Each graph shown in FIG. 3 represents the current measured by accelerating the washing tank 4 to a predetermined target speed (eg 80 rpm), and these graphs represent the fabric of the fabric (ie, soft cloth). ) And loads were measured. In other words, it is possible to grasp the trend of the pattern change according to the load through the graphs arranged horizontally. For example, in the same fabric configuration, it can be seen that the greater the load, the greater the maximum value of the current current at the initial stage of acceleration of the washing tub 4. Thus, it can be said that the data at the beginning of the graph is used to determine the load (capacity).
  • C0.0 is 100% soft cloth
  • C0.25 is 100% soft cloth
  • 1: 1, 3: 1 indicates the case of 100% of the stiff cloth, and in each case, the total amount (loading amount) of the soft cloth and the stiff cloth is constant.
  • the graphs show that different gun configurations have different current patterns, even if the loads are the same. Therefore, classification based on the structure (or quality) is possible based on the machine learning of the current pattern.
  • Such a quantity / foam detection may be repeated a plurality of times, but the number of times is repeated three times in the embodiment, but the number is not limited thereto.
  • the control unit 60 may set or change the washing algorithm according to the amount of foam / foam detection, and may control the operation of the laundry treatment machine according to the setting.
  • the graphs P1, P3, P5, P7, P9, and P15 shown in FIG. 5 indicate when the quantities are 1, 3, 5, 7, 9 and 15 kg, respectively.
  • the graphs form a form in which the current value suddenly rises to a certain level in the early stage of acceleration of the washing tub 4, and then converges to a certain value as the latter stage goes on.
  • the deviation of the current value according to the amount of gas is noticeable at the beginning of the acceleration of the washing tank 4.
  • the controller 60 may include a quantity / foam learning module 61 and a quantity / foam recognition module 62.
  • the quantity / foam learning module 61 may perform machine learning by using a current current value detected by the current sensing unit 75 or a value of the current current value. Through this machine learning, the quantity / foam learning module 61 may update a database stored in the memory 76.
  • any one of unsupervised learning and supervised learning may be used.
  • the quantity / foam recognition module 62 may determine the level according to the quantity of quantity based on the data learned by the quantity / form learning module 61.
  • the determination of the amount of the quantity may be a task of classifying the cloth put into the washing tank 4 into a plurality of predetermined dose levels according to the weight (load).
  • the dose is classified into five levels (levels), and the load amount (kg) corresponding to each level is shown in Table 1 below.
  • Table 1 also shows statistically the number of households constituting the household when the quantity of the household is put into the laundry treatment machine.
  • the determination of the quality of the fabric is to classify the fabrics put into the washing tank 4 according to a predetermined standard, which is the material of the fabric, the degree of softness or stiffness, the moisture content, the volume between the dry cloth and the wet cloth. Tea and the like.
  • the quantity / foam recognition module 62 corresponds to which of a plurality of quantity levels of fabrics introduced into the washing tub 4 based on the current value obtained from the current sensing unit 75, and which classification corresponds to the quality of the fabrics. (I.e., the quality of each volume) can be determined.
  • the quantity / foam recognition module 62 may be equipped with Artificial Neural Networks (ANN) that have been previously learned by machine learning. This artificial neural network can be updated by the quantity / quality learning module 61.
  • ANN Artificial Neural Networks
  • the quantity / foam recognition module 62 may determine the quantity and the quality based on the artificial neural network. According to the embodiment, when the level of the quantity is classified into five stages, the quantity / foam recognition module 62 uses the current value detected by the current sensing unit 75 as input data of the artificial neural network ANN. The level to which the quantity belongs can be determined, and further, the level to which the material belongs can be determined.
  • the quantity / foam recognition module 62 may include an artificial neural network (ANN) trained to classify the quantity and the quality into levels according to predetermined criteria, respectively.
  • the dose recognition module 62 may include a deep neural network (DNN) such as a convolutional neural network (CNN), a recurrent neural network (RNN), a deep belief network (DBN), and the like, which are learned by deep learning. ) May be included.
  • DNN deep neural network
  • CNN convolutional neural network
  • RNN recurrent neural network
  • DBN deep belief network
  • RNN Recurrent Neural Network
  • Deep Belief Network is a deep learning structure that consists of a multi-layered Restricted Boltzmann Machine (RBM), a deep learning technique.
  • RBM Restricted Boltzmann Machine
  • DBN deep belief network
  • CNN Convolutional Neural Network
  • the learning of the neural network can be accomplished by adjusting the weight of the node-to-node connection line (also adjusting the bias value if necessary) so as to obtain a desired output for a given input.
  • the neural network can continuously update the weight value by learning. Back propagation or the like may be used to learn artificial neural networks.
  • the quantity / form recognition module 62 uses the current value as input data, and based on the weights between the nodes included in the deep neural network DNN, outputs to the washing tank 4 as an output at the output layer. At least one of the injected quantity and the foam can be determined.
  • FIGS. 7 to 8 Deep learning technology, a type of machine learning, is a multi-level deep learning based on data.
  • Deep learning may represent a set of machine learning algorithms that extract key data from a plurality of data while passing through hidden layers.
  • the deep learning structure may include an artificial neural network (ANN), for example, the deep learning structure includes a deep neural network (DNN) such as a convolutional neural network (CNN), a recurrent neural network (RNN), and a deep belief network (DBN).
  • ANN artificial neural network
  • DNN deep neural network
  • CNN convolutional neural network
  • RNN recurrent neural network
  • DBN deep belief network
  • an artificial neural network may include an input layer, a hidden layer, and an output layer. Having multiple hidden layers is called a deep neural network (DNN).
  • DNN deep neural network
  • Each layer includes a plurality of nodes, each layer associated with a next layer. Nodes may be connected to each other with a weight.
  • the output from any node belonging to the first hidden layer 1 is an input to at least one node belonging to the second hidden layer 2.
  • the input of each node may be a value to which a weight is applied to the output of the node of the previous layer.
  • the weight may refer to a connection strength between nodes. Deep learning can also be seen as finding the right weight.
  • the computer distinguishes between light and dark pixels based on the brightness of the pixels, separates simple shapes such as borders and edges from the input image, Can distinguish between complex forms and objects.
  • the computer can figure out the form that defines the human face.
  • the specification of the feature is finally obtained in the output layer via the hidden layers of the middle layer.
  • the memory 76 may store input data for detecting a dose and data for learning a deep neural network DNN.
  • motor speed data and / or speed data acquired by the sensing unit 150 may be added or calculated for each predetermined section.
  • the memory 76 may store weights and biases forming a deep neural network (DNN).
  • weights and biases constituting the deep neural network structure may be stored in an embedded memory of the quantity / foam recognition module 62.
  • the quantity / quality learning module 61 may perform the learning (learning) using the current current value detected by the current sensor 150 as training (training) data. That is, the quantity / form learning module 61 updates the deep neural network (DNN) structure such as weight or bias by adding the determination result to the database every time the quantity and / or quality is recognized or determined. Alternatively, after a predetermined number of training data is secured, a learning process may be performed using the acquired training data to update a deep neural network (DNN) structure such as a weight.
  • DNN deep neural network
  • the laundry processing apparatus may transmit current current data acquired by the current sensing unit 75 through the communication unit 73 to a server (not shown) connected to the communication network, and receive data related to machine learning from the server.
  • the laundry treatment device may update the artificial neural network based on data related to machine learning received from the server.
  • FIG. 9 is a graph (a) showing the current value detected by the current sensor, and a graph (b) showing the average values obtained by processing the moving average filter.
  • 10 is a graph illustrating current values by the current sensing unit.
  • FIG. 11 is a graph illustrating values processed for using current values of the graph illustrated in FIG. 10 as input data of an artificial neural network.
  • 12 is a flowchart illustrating a control method of a laundry treatment machine according to an embodiment of the present invention.
  • a control method of a laundry treatment machine according to an embodiment of the present invention will be described with reference to FIGS. 9 to 12.
  • the controller 60 controls the motor 9 to rotate at a predetermined target speed. (S1, S2, S4, S5) While the motor 9 is rotated, the washing tank 4 ( Alternatively, the rotation speed of the motor 9 is sensed. (S2)
  • the target speed is determined by the rotational speed of the washing tub 4 which can maintain the state attached to the carriage drum 42 when the washing tub 4 is continuously rotated in one direction at least one rotation while maintaining the target speed. Can be done.
  • the target speed may be 60 to 80rpm, preferably 80rpm.
  • it flows in the carriage drum 42. i.e., it rises to a predetermined height by the rotation of the carriage drum 42. Dropped.
  • the target speed may be determined based on a state in which water is supplied into the water storage tank 3 and the washing tank 4 is partially submerged in water. That is, the cloth can flow when the washing tank 4 is rotated at the target speed in the state partially immersed in water. In other words, instead of being stuck to the carriage drum 42 at all times during the rotation of the washing tub 4, it can rise to a predetermined height and fall.
  • Current current values used to determine the volume and quality include those taken in the section in which the flow of the fabric occurs during the rotation of the washing tub 4. That is, the controller 60 may take necessary current current values based on the rotational speed of the washing tub 4 (or the rotational speed of the motor 9) detected by the speed sensing unit 74.
  • the controller 60 instructs the motor driver 71 to accelerate the motor 9, and then when the rotation speed detected by the speed detector 74 reaches the preset first rotation speed V1.
  • the current current value from that time can be stored in the memory 76 (S3 to S4).
  • the amount of fabric is large, there may be a fabric that does not receive force directly from the lifter 20. Such a cloth may not flow in spite of the rotation of the washing tub 4 when the rotational speed of the washing tub 4 is below a certain speed. Alternatively, even if the washing tank 4 containing the same amount and material of cloth is rotated at the same speed, the flow of the cloth may be different due to factors such as the position of the laundry tank 4.
  • the first rotational speed V1 described above means the constant speed.
  • the initial current value of the acceleration section is not used as input data, and the current value is detected from the time when the first rotational speed V1 is reached. Can be used as input data.
  • the first rotational speed V1 is slower than the second rotational speed V2, and may be a rotational speed at which the cloth flows in the washing tank 4.
  • the first rotational speed V1 may be 10 to 20 rpm.
  • the cloth in the washing tank 4 starts to flow when the rotation speed of the washing tank 4 is about 10 rpm, and flows in the washing tank 4 up to 20 rpm regardless of the amount of cloth.
  • the first rotational speed is set to 20 rpm.
  • the controller 60 may process the current current value without storing the current current value any more ( S5 to S6).
  • the second rotational speed V2 is the target speed described above.
  • the acceleration slope from the first rotational speed V1 to the second rotational speed V2 may be constant.
  • the acceleration slope is preferably kept constant to increase the reliability of detecting the current pattern change.
  • the acceleration slope should not be too high so that the trend of change of the cloth flow in the washing tank 4 can be clearly seen.
  • the acceleration slope is preferably 1.5 to 2.5 rpm / s, more preferably 2.0 rpm / s, but is not necessarily limited thereto.
  • the acceleration slope may have a value as small as possible within the range that can be controlled by the controller 60.
  • This process may include obtaining an average of current current values Iq, and processing the obtained average values according to a preset parsing rule to generate input data of an artificial neural network.
  • the number of input data processed by the parsing rule is less than the number of average values.
  • the controller 60 may acquire current values at regular time intervals through the current detector 75.
  • a total of 545 current values were obtained at regular time intervals in a section in which the rotation speed of the washing tub 4 is accelerated from the first rotation speed V1 to the second rotation speed V2.
  • the controller 60 may average the current values thus obtained at regular time intervals.
  • the controller 60 may use a moving average filter. Moving averages are averaged by moving the intervals so that the trend changes. For example, if the current values are Iq1, Iq2, Iq3 ... Iqn in time series order, M1 is obtained by averaging Iq1 to Iql (l ⁇ n), and Iqm (m> 1) to Iqm M2 is obtained by averaging up to + s-1 (s is the number of Iqs used to calculate each moving average). In this way, moving averages can be obtained by continuously moving the interval.
  • the controller 60 obtains 50 moving averages from the 545 current current values Iq using the moving average filter.
  • the controller 60 may process the current current value and the moving averages according to a preset parsing rule to generate input data In1, In2, In3, In4...
  • the parsing rule may be configured to select a section in which the final input data is obtained so that the characteristic (capacity / form) to be obtained is well revealed.
  • a total of 14 input data are generated, and the input data includes nine current current values (16 to 24th current current values: DATA1 to DATA9) obtained at the beginning of acceleration of the motor 9, and the subsequent data.
  • the input data In1, In2, In3, In4 ... In14 thus obtained are input values of the nodes of the input layer.
  • the weights and biases given to nodes constituting the neural network are determined through machine learning, which is repeated based on the current pattern or the current values.
  • the current pattern or current current value
  • an accurate result i.e., the exact quantity and quality currently put into the washing tank 4
  • Improved or accurate weights and deflections can be established by performing machine learning on data previously stored or added by the operation of the laundry treatment machine.
  • the output of the output layer will reflect the quantity-form information, and based on the node that outputs the largest value among the nodes of the output layer, the controller 60 The amount and / or quality can be determined.
  • the controller 60 may input the input data generated in the step S6 to the artificial neural network, and obtain a quantity and / or a quality as an output from the output layer.
  • the controller 60 may set a washing algorithm based on the quantity and / or the quality determined in operation S7, and may control the operation of the laundry treatment machine according to the set operation (S8).
  • the washing algorithm may include a running time of water supply level, washing, rinsing, dehydration, drying, driving patterns of the motor in each stroke (eg, rotational speed, rotational time, acceleration, braking), and the like.
  • FIG. 13 is a graph superimposing load-specific current patterns.
  • FIG. 14 is a graph illustrating current patterns corresponding to loads of 0 to 6 kg in FIG. 13.
  • FIG. 15 is a graph illustrating current patterns corresponding to loads of 7 to 9 kg in FIG. 13.
  • P0 to P9 shown in these figures represent 0 to 9 kg of load (capacity), respectively.
  • the problem of being bound by the carriage door 2 can occur. This phenomenon occurs when a large amount of cloth is put into the washing tub 4, and thus is in close contact or interference with the door 2.
  • the restraint of the gun affects the load on the motor 9. Therefore, it is preferable to exclude the present current value obtained by rotating (or accelerating) the washing tub 4 in a state in which the cloth is constrained in the process of determining the amount and / or the quality of the cloth.
  • the current patterns P0 to P6 at loads of 0 to 6 kg and the current patterns P7 to P9 at 7 to 9 kg show distinct differences. That is, in the case of a large amount of cloth (7 to 9 kg in the embodiment), it can be seen that the current value is periodically increased or decreased (or vibrated) at the beginning of the acceleration of the washing tub 4. This is because the movement of some fabrics is constrained by the door 2, and the load of the motor 9 increases when the washing tub 4 interferes with the restrained fabric, and when the interference weakens or disappears, the load of the motor 9 again occurs. Because it decreases. In other words, the load variation of the motor 9 due to the restraint of the cloth is generated corresponding to the rotation period of the washing tub 4.
  • This load variation pattern may be learned through machine learning, and the learning results may be databased and stored in the memory 76.
  • the artificial neural network can be constructed using the learning results.
  • the controller 60 may determine the containment constraint (or the inclusion) based on the output of the output layer.
  • the above description is an example of a front load method in which the washing tub 3 is rotated about a substantially horizontal axis.
  • the laundry treatment apparatus and its control method of the present invention are dedicated to the top load method. It is possible.
  • the control method of the laundry treatment machine it is possible to implement as a processor readable code on a processor-readable recording medium.
  • the processor-readable recording medium includes all kinds of recording devices that store data that can be read by the processor. Examples of the processor-readable recording medium include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like, and may also be implemented in the form of a carrier wave such as transmission over the Internet. .
  • the processor-readable recording medium can also be distributed over network coupled computer systems so that the processor-readable code is stored and executed in a distributed fashion.

Abstract

본 발명은 인공지능 세탁물 처리기기에 관한 것으로, 상기 세탁물 처리기기는 포를 수용하고 회전 가능하게 구비되는 세탁조와, 상기 세탁조를 회전시키는 모터와, 포가 상기 세탁조 내에서 유동되는 범위 내에서 설정된 목표속도까지 상기 세탁조가 1.5 내지 2.5 rpm/s로 가속되도록 상기 모터를 제어하는 제어부와, 상기 모터의 전류를 감지하는 전류 감지부를 포함하고, 상기 제어부는 상기 세탁조가 가속 회전되는 중에 상기 전류 감지부에 의해 감지된 전류 값을 머신 러닝(machine learning)으로 기학습된 인공신경망(Artificial Neural Network)의 입력 레이어의 입력으로하여 상기 인공신경망의 출력 레이어에서의 출력으로 포량과 포질을 구한다.

Description

인공지능 세탁물 처리기기 및 세탁물 처리기기의 제어방법
본 발명은 머신 러닝(machine learning) 기반으로 포량과 포질을 감지하는 세탁물 처리기기 및 그 제어방법에 관한 것이다.
세탁물 처리기기는 세탁, 헹굼, 탈수 및/또는 건조 등의 여러 작용을 통해 세탁물을 처리하는 장치이다. 이러한 세탁물 처리기기는 모터에 의해 회전되는 세탁조를 갖는다.
세탁물 처리기기는 통상 상기 세탁조 내에 투입된 세탁물의 양(또는, 포량)을 감지하는 알고리즘을 탑재하고 있다. 예를 들어, 종래기술 1(공개특허공보 10-2006-0061319호)은 모터 속도를 일정 회전수까지 가속 후, 등속 제어를 하면서 얻어지는 편심값, DC전압, 모터토크값 정보들을 아래 수식을 이용하여 계산하여 포량을 감지하는 방법에 대해서 개시하고 있다.
포량값 = 정속구간 전류량의 평균 + DC전압보상값 - 편심보상값 + a
(a=실험을 통해 획득한 상수)
DC전압보상값 = (DC 전압검지값-b) x t
(b=실험상수, t는 정속구간동안의 시간)
편심보상값 = 정속구간에서의 편심값 x d
(d=실험상수)
종래기술 1은, 포량값을 추정하는데 사용되는 상수가 많고, 대부분 실험값들이기 때문에 전문가의 설정이 필요로 하며 설정값이 정확하지 않아 포량 감지의 정확도를 높이는데 한계가 있다.
또한, 종래기술 1은, 포량 감지 정확도를 향상시키기 위해서는 설정값들(실험상수)을 정확히 찾아야 하며, 이를 찾는데 많은 시간이 소요될 수 있다.
종래기술 2(공개특허공보 특1999-0065538호)는 기설정된 속도로 모터를 가속하면서 가속에 소요된 시간과 상기 설정된 속도로 모터를 회전하면서 모터 회전속도 변화량을 측정하여 포량을 감지하는 방법에 대해서 개시하고 있다.
종래기술 2는, 측정한 시간과 모터 회전 속도 변화값을 기설정된 포량감지 비교값과 비교하여 포량의 많고 적음을 감지하는데, 단순히 값의 크고 작음을 비교하여 포량을 비교한다. 따라서, 종래기술 2는 단순히 포량의 많고 적음의 정도만 구별 가능하기 때문에 다양한 종류의 포량을 정밀 감지하는데 한계가 있다. 또한, 종래 기술 2도, 비교를 위해 사람이 설정 값을 미리 모두 찾는 번거로움이 발생할 수 있다.
세탁물의 양을 정확하게 측정하지 못하는 경우, 고속으로 동작하는 탈수동작을 수행하는데 많은 시간이 소요되므로, 전체 세탁시간이 증가하고, 그에 따른 에너지 소비량이 증가하는 문제점이 있다. 따라서, 세탁물의 양을 정확하게 감지하는 방법에 대한 다양한 연구가 진행되고 있다.
한편, 최근에는 인공지능과 딥러닝 등 머신 러닝에 관한 관심이 크게 증가하고 있다. 종래의 머신 러닝은 통계학 기반의 분류, 회귀, 군집 모델이 중심이었다. 특히, 분류, 회귀 모델의 지도 학습에서는 학습 데이터의 특성과 이러한 특성을 기반으로 새로운 데이터를 구별하는 학습 모델을 사람이 사전에 정의했다. 이와 달리, 딥러닝은 컴퓨터가 스스로 특성을 찾아내고 판별하는 것이다.
딥러닝의 발전을 가속화한 요인 중 하나로 오픈소스로 제공되는 딥러닝 프레임워크를 들 수 있다. 예를 들어, 딥러닝 프레임워크로는 캐나다 몬트리올 대학교의 시아노(Theano), 미국 뉴욕 대학교의 토치(Torch), 캘리포니아 버클리 대학교의 카페(Caffe), 구글의 텐서플로우(TensorFlow) 등이 있다.
딥러닝 프레임워크들의 공개에 따라, 효과적인 학습 및 인식을 위해, 딥러닝 알고리즘 외에 학습 과정, 학습 방법, 학습에 시용하는 데이터의 추출 및 선정이 더욱 중요해지고 있다. 또한, 인공지능과 머신 러닝을 다양한 제품, 서비스에 이용하기 위한 연구가 증가하고 있다.
[선행기술문헌]
[특허문헌]
1. 공개특허공보 10-2006-0061319호 (공개일자 2006. 6. 7.)
2. 공개특허공보 특1999-0065538호 (공개일자 1999. 8. 5.)
본 발명이 해결하고자 하는 과제는, 첫째, 머신 러닝에 기반하여 포량 및/또는 포질을 빠르고 정확하게 감지할 수 있는 세탁물 처리기기 및 그 제어방법을 제공하는 것이다.
둘째, 포량/포질 감지를 위해 세탁조를 가속 회전시키는 중에, 포의 유동이 포량별 또는 포질별로 확연하게 구분될 수 있도록 상기 세탁조의 가속 기울기를 최적화한 세탁물 처리기기 및 그 제어방법을 제공하는 것이다.
셋째, 포량/포질 판정에 사용되는 데이터를 효율적으로 처리함으로써, 판정에 필요한 데이터의 양을 줄인 세탁물 처리기기 및 그 제어방법을 제공하는 것이다.
넷째, 포의 부드럽기/뻣뻣함, 함습율, 습포와 건포 간의 부피 차 등의 다양한 기준에 의해 포를 분류할 수 있는 세물 처리기기 및 그 제어방법을 제공하는 것이다.
다섯째, 머신 리닝의 트레이닝 데이터(모터 전류 데이터)가 누적될수록 포 분류의 정확도가 향상되는 세탁물 처리기기 및 그의 제어방법을 제공하는 것이다.
본 발명의 세탁물 처리기기는 포를 수용하고 회전 가능하게 구비되는 세탁조와, 상기 세탁조를 회전시키는 모터와, 상기 모터를 제어하는 제어부와, 상기 모터의 전류를 감지하는 전류 감지부를 포함한다.
상기 제어부는, 상기 세탁조가 기 설정된 목표속도까지 가속되도록 상기 모터를 제어한다. 특히, 상기 제어부는 상기 세탁조가 1.5 내지 2.5 rpm/s로 가속되도록 제어한다.
상기 모터의 전류를 감지하는 전류 감지부가 더 구비되고, 상기 제어부는 상기 세탁조가 가속 회전되는 중에 상기 전류 감지부에 의해 감지된 전류 값을 머신 러닝(machine learning)으로 기학습된 인공신경망(Artificial Neural Network)의 입력 레이어의 입력으로하여 상기 인공신경망의 출력 레이어에서의 출력으로 포량 및 포질 중 적어도 하나를 구한다.
상기 가속 기울기는 2.0rpm/s일 수 있다.
상기 가속 기울기는 상기 제어부에 의해 제어 가능한 최소 값일 수 있다.
상기 모터가 상기 목표속도까지 가속될때까지 상기 가속 기울기는 일정한 값을 유지할 수 있다.
상기 제어부는, 상기 출력 레이어의 출력을 바탕으로 포 구속을 판정할 수 있다.
상기 입력 데이터로써의 전류 값이 구해지는 상기 세탁조의 회전속도 구간에서, 상기 세탁조가 1회전 이상을 일방향으로 회전될 시, 상기 세탁조 내에서 최하측에 위치한 포는 상기 세탁조의 회전에 의해 소정 높이까지 상승하였다가 상기 세탁조로부터 분리되며 낙하될 수 있다.
상기 모터의 회전속도를 감지하는 속도 감지부가 더 구비될 수 있고, 상기 제어부는, 상기 속도 감지부에 의해 감지된 속도 값을 바탕으로, 상기 전류 감지부에 의해 구해진 전류 값 중 상기 모터의 회전속도가 제 1 회전속도로부터 상기 목표속도로 가속되는 구간에 해당하는 전류 값을 선택하고, 선택된 전류 값을 상기 입력 데이터로 사용할 수 있다. 상기 목표속도는 60 내지 80rpm일 수 있다. 상기 제 1 회전속도는 10 내지 20rpm일 수 있다.
본 발명의 세탁물 처리기기의 제어방법은, (a) 포가 투입된 세탁조를, 상기 포가 상기 세탁조 내에서 유동되는 범위 내에서 설정된 목표속도까지 1.5 내지 2.5rm/s로 가속하는 단계와, (b) 상기 세탁조가 가속 회전되는 구간에서 상기 세탁조를 회전시키는 모터의 전류 값을 구하는 단계와, (c) 상기 전류 값을 머신 러닝(machine learning)으로 기학습된 인공신경망(Artificial Neural Network)의 입력 레이어의 입력으로 하여 상기 인공신경망의 출력 레이어(output layer)에서의 출력으로 포량 및 포질 중 적어도 하나를 구하는 단계를 포함한다.
상기 가속 기울기는 2.0rpm/s일 수 있다.
상기 가속 기울기는 상기 제어부에 의해 제어 가능한 최소 값일 수 있다.
상기 모터가 상기 목표속도까지 가속될때까지 상기 가속 기울기는 일정한 값을 유지할 수 있다.
상기 세탁물 처리기기의 제어방법은, 상기 출력 레이어의 출력을 바탕으로 포 구속을 판정하는 단계를 더 포함할 수 있다.
본 발명의 세탁물 처리기기 및 그 제어방법은, 포량/포질 감지를 위해 세탁조를 가속 회전시키되, 이때의 상기 세탁조의 가속 기울기를 1.5 내지 2.5rpm/s의 비교적 낮은 값으로 정함으로써, 이 과정에서 포량별 또는 포질별 포의 유동 특성이 선명하게 부각될 수 있다. 따라서, 상기 세탁조의 과속 과정에서의 모터의 전류 패턴에는 상기 포의 포량별 또는 포질별 유동 특성이 상세하게 반영될 수고 있고, 상기 전류 패턴 데이터를 머신 러닝 기반의 인공 신경망에 입력함으로써, 포에 대한 정보, 예를 들어, 포량이나 포질을 정확하게 파악할 수 있는 효과가 있다.
특히, 이러한 포의 특성별 분류는 포량 뿐만 아니라, 포의 재질, 함습율, 건포와 습포 간의 부피 차 등의 다양한 기준에 의해 가능할 뿐만 아니라, 머신 리닝의 트레이닝 데이터(모터 전류 데이터)가 누적될수록 그 정확도가 더 향상될 수 있다.
도 1은 본 발명의 일 실시예에 따른 세탁물 처리기기의 측단면도이다.
도 2는 도 1의 세탁물 처리기기의 주요 구성들 간의 제어 관계를 나타내는 블록도이다.
도 3은 포질과 부하량(포량)에 따른 모터에 인가되는 전류 패턴을 도시한 것이다.
도 4는 포질별 전류 패턴을 도시한 것이다.
도 5는 모터의 속도를 기 설정된 방법으로 제어하면서, 부하별 전류 패턴을 도시한 것이다.
도 6은 전류 감지부에 의해 구해진 현재전류 값들을 인공신경망의 입력 데이터로 처리하는 과정을 도시한 것이다.
도 7은 인공신경망의 일례를 도시한 개요도이다.
도 8은 모터의 현재 전류값을 이용하여 포량별 포질을 판단하는 과정을 학습과정과 인식과정으로 구분하여 표시한 개요도이다.
도 9는 전류 감지부에 의해 감지된 현재 전류 값을 도시한 그래프(a)와, 이동평균필터를 처리하여 구한 평균 값들을 도시한 그래프(b)이다.
도 10은 전류 감지부에 의해 전류 값들을 도시한 그래프이다.
도 11은 도 9에 도시된 그래프의 전류 값들을, 인공신경망의 입력 데이터로 사용하기 위해 처리한 값들을 도시한 그래프이다.
도 12는 본 발명의 일 실시예에 따른 세탁물 처리기기의 제어방법을 도시한 순서도이다.
도 13은 부하별 전류 패턴들을 중첩한 그래프이다.
도 14는 도 13에서 0 내지 6kg의 부하에 대응하는 전류 패턴들을 분류한 그래프이다.
도 15는 도 13에서 7 내지 9kg의 부하에 대응하는 전류 패턴들을 분류한 그래프이다.
이하에서는 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 그러나 본 발명이 이러한 실시예에 한정되는 것은 아니며 다양한 형태로 변형될 수 있음은 물론이다.
도면에서는 본 발명을 명확하고 간략하게 설명하기 위하여 설명과 관계 없는 부분의 도시를 생략하였으며, 명세서 전체를 통하여 동일 또는 극히 유사한 부분에 대해서는 동일한 도면 참조부호를 사용한다.
한편, 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 단순히 본 명세서 작성의 용이함만이 고려되어 부여되는 것으로서, 그 자체로 특별히 중요한 의미 또는 역할을 부여하는 것은 아니다. 따라서, 상기 "모듈" 및 "부"는 서로 혼용되어 사용될 수도 있다.
도 1은 본 발명의 일 실시예에 따른 세탁물 처리기기를 도시한 단면도이다. 도 2는 본 발명의 일 실시예에 따른 세탁물 처리기기의 주요 구성들 간의 제어관계를 도시한 블록도이다.
도 1을 참조하면, 본 발명의 실시예에 따른 세탁물 처리기기는, 외관을 형성하는 케이싱(1)과, 케이싱(1) 내에 배치되고 세탁수가 저장되는 저수조(3)와, 저수조(3)내에 회전 가능하도록 설치되어 세탁물이 투입되는 세탁조(4)와, 세탁조(4)를 회전시키는 모터(9)를 포함한다.
세탁조(4)는 세탁물의 입출을 위한 개구부가 형성된 전면 커버(41)와, 대략 수평하게 배치되어 전단이 전면 커버(41)와 결합되는 원통형의 드럼(42)과, 드럼(42)의 후단에 결합되는 후면 커버(43)를 포함한다. 모터(9)의 회전축은 저수조(3)의 후벽을 통과하여 후면 커버(43)와 연결될 수 있다. 세탁조(4)와 저수조(3) 사이에 물이 교류될 수 있도록, 드럼(42)에는 다수개의 통공이 형성될 수 있다.
드럼(42)의 내주면에는 리프터(20)가 구비될 수 있다. 리프터(20)는 드럼(42)의 내주면 상에서 돌출된 형태로써, 드럼(42)의 길이방향(전후 방향)으로 길게 연장되고, 복수개가 원주방향으로 이격 배치될 수 있다. 세탁조(4)의 회전시 리프터(20)에 의해 포가 퍼 올려져 질 수 있다.
반드시 이에 한정되어야 하는 것은 아니나, 드럼(42)으로부터 리프터(20)가 돌출된 높이는 바람직하게는 30mm(또는, 드럼 직경의 6.0%) 이하일 수 있고, 더 바람직하게는 10내지 20mm이다. 특히, 리프터(20)의 높이가 20mm 이하인 경우, 세탁조(4)를 대략 80rpm으로 일방향으로 연속하여 회전시키더라도 포가 세탁조(4)에 달라 붙지 않고 유동될 수 있다. 즉, 세탁조(4)가 1회전 이상을 일방향으로 회전될 시, 세탁조(4) 내에서 최하측에 위치한 포가 세탁조(4)의 회전에 의해 소정 높이까지 상승하였다가 세탁조(4)로부터 분리되며 낙하될 수 있다.
세탁조(4)는 수평한 축을 중심으로 회전된다. 여기서의 “수평”은 엄밀한 의미에서의 기하학적인 수평을 의미하는 것은 아니고, 도 1에 도시된 바와 같이 수평에 대해 소정 각도로 기울어진 경우에도 수직보다는 수평에 가까운 경우인 바, 세탁조(4)가 수평한 축을 중심으로 회전된다고 하기로 한다.
케이싱(1)의 전면에는 세탁물 투입구가 형성되고, 상기 세탁물 투입구를 개폐하는 도어(2)가 케이싱(1)에 회전 가능하게 구비된다. 케이싱(1)의 내부에는 급수밸브(5), 급수관(5), 급수호스(8)가 설치될 수 있다. 급수밸브(5)가 개방되어 급수가 이루어질 시, 급수관(5)을 통과한 세탁수가 디스펜서(14)에서 세제와 혼합된 다음, 급수호스(8)를 통하여 저수조(3)로 공급될 수 있다.
펌프(11)의 입력포트는 배출 호스(10)에 의해 저수조(3)와 연결되고, 펌프(11)의 토출포트는 배수관(12)과 연결된다. 저수조(3)로부터 배출 호스(10)를 통해 배출된 물이 펌프(11)에 의해 압송되어 배수관(12)을 따라 유동된 후, 세탁물 처리기기의 외부로 배출된다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 세탁물 처리기기는, 세탁물 처리기기의 전반적인 동작을 제어하는 제어부(60), 제어부(60)에 의해 제어되는 모터 구동부(71), 출력부(72), 통신부(73), 속도 감지부(74), 전류 감지부(75), 메모리(76)를 포함할 수 있다.
제어부(60)는 세탁, 헹굼, 탈수 및 건조의 일련의 세탁과정을 제어할 수 있다. 제어부(60)는 미리 설정되어 있는 알고리즘에 따라, 세탁, 헹굼, 행정을 진행할 수 있고, 또한, 제어부(60)는 상기 알고리즘에 따라 모터 구동부(71)를 제어할 수 있다.
모터 구동부(71)는 제어부(60)로부터 인가되는 제어신호에 대응하여, 모터(9)의 구동을 제어할 수 있다. 제어신호는 모터(9)의 목표속도, 가속 기울기(또는, 가속도), 구동시간 등을 제어하는 신호일 수 있다.
모터 구동부(71)는, 모터(9)를 구동시키기 위한 것으로, 인버터(미도시), 및 인버터 제어부(미도시)를 포함할 수 있다. 또한, 모터 구동부(71)는, 인버터에 입력되는 직류 전원을 공급하는, 컨버터 등을 더 포함하는 개념일 수 있다.
예를 들어, 인버터 제어부(미도시)가 펄스폭 변조(PWM) 방식의 스위칭 제어 신호를 인버터(미도시)로 출력하면, 인버터(미도시)는 고속 스위칭 동작을 하여, 소정 주파수의 교류 전원을 모터(9)에 공급할 수 있다.
속도 감지부(74)는 세탁조(4)의 회전속도를 감지한다. 속도 감지부(74)는 모터(9)의 회전자의 회전속도를 감지할 수 있다. 모터(9)의 회전비를 변환시켜 세탁조(4)를 회전시키는 유성 기어열이 구비된 경우, 세탁조(4)의 회전속도는 속도 감지부(74)에 의해 감지된 상기 회전자의 회전속도를 상기 유성 기어열의 감속 또는 증속비를 고려하여 변환한 값일 수 있다.
제어부(60)는, 속도 감지부(74)로부터 전달된 현재 속도를 피드백(feedback)으로 하여, 모터(9) 가 기 설정된 목표속도를 추종하도록 모터 구동부(71)를 제어할 수 있다.
전류 감지부(75)는, 모터(9)에 인가되는 전류(이하, 현재 전류라고 함.)를 감지하여 제어부(60)로 전달하고, 제어부(60)는 수신된 현재 전류를 입력 데이터로 이용하여 포량과 포질을 감지할 수 있다. 이때, 상기 입력 데이터로써의 현재 전류 값들은 모터(9)가 기 설정된 목표속도를 향해 가속되는 과정에서 구한 값들을 포함한다.
토크 전류와 자속 전류를 바탕으로 한 벡터 제어에 의해 모터(9)의 회전이 제어되는 경우, 상기 현재 전류는 모터 회로에 흐르는 전류의 토크축(q축) 성분, 즉, 토크 전류(Iq)일 수 있다.
출력부(72)는 세탁물 처리기기의 작동 상태를 출력하는 것이다. 출력부(72)는 시각적 표시를 출력하는 LCD, LED 등의 화상 출력장치 또는 음향을 출력하는 스피커 부져(buzzer) 등의 음향 출력장치일 수 있다. 제어부(60)의 제어에 의해 출력부(72)는 포량 또는 포질에 대한 정보를 출력할 수 있다.
메모리(76)에는 프로그램된 인공신경망, 포량 별 및/또는 포질 별 전류 패턴들, 상기 전류 패턴을 바탕으로 머신 러닝 기반의 학습을 통해 구축된 데이터 베이스(DB), 머신 러닝 알고리즘, 전류 감지부(75)에 의해 감지된 현재 전류 값, 상기 현재 전류 값들을 평균한 값, 이들 평균한 값들을 파싱 룰(parsing rule)에 따라 처리한 값, 통신부(73)를 통해 송수신되는 데이터 등이 저장될 수 있다.
뿐만 아니라, 메모리(76)에는 세탁물 처리기기의 동작 전반의 제어를 위한 각종 제어 데이터, 사용자가 입력한 세탁설정 데이터, 세탁설정에 따라 산출되는 세탁시간, 세탁 코스 등에 대한 데이터, 세탁물 처리기기의 에러 발생 여부를 판단하기 위한 데이터 등이 저장될 수 있다.
통신부(73)는 네트워크에 연결된 서버와 통신할 수 있다. 통신부(73)는 인터넷 모듈, 이동 통신 모듈 등 하나 이상의 통신 모듈을 구비할 수 있다. 통신부(73)는 상기 서버로부터 학습 데이터, 알고리즘 업데이트 등의 각종 데이터를 수신할 수 있다.
제어부(60)는 통신부(73)를 통해 수신된 각종 데이터를 처리하여 메모리(76)를 갱신할 수 있다. 예를 들어, 통신부(73)를 통해 입력된 데이터가 메모리(76)에 기저장된 운전 프로그램에 대한 업데이트 데이터인 경우에는 이를 이용하여 메모리(76)에 업데이트시키고, 입력된 데이터가 신규한 운전 프로그램인 경우에는 메모리(76)에 이를 추가로 저장시킬 수 있다.
머신 러닝은 컴퓨터에게 사람이 직접 로직(Logic)을 지시하지 않아도 데이터를 통해 컴퓨터가 학습을 하고 이를 통해 컴퓨터가 알아서 문제를 해결하게 하는 것을 의미한다.
딥러닝(Deep Learning)은. 인공지능을 구성하기 위한 인공신경망(ANN)에 기반으로 해 컴퓨터에게 사람의 사고방식을 가르치는 방법으로 사람이 가르치지 않아도 컴퓨터가 스스로 사람처럼 학습할 수 있는 인공지능 기술이다. 인공신경망(ANN)은 소프트웨어 형태로 구현되거나 칩(chip) 등 하드웨어 형태로 구현될 수 있다.
세탁물 처리기기는, 머신 러닝(machine learning) 기반으로 전류 감지부(75)에 의해 감지된 전류 값들을 처리하여 세탁조(4) 내에 투입된 세탁물(포)의 특성(이하, 포 특성이라고 함.)을 파악할 수 있다. 이러한 포 특성은 포량과 포질을 예로 들수 있으며, 제어부(60)는 머신 러닝 기반으로 포량 별 포질을 판정할 수 있다. 예를 들어, 제어부(60)는 포량을 구하고, 다시 포질에 따라 기 분류된 카테고리들 중 어느 것에 속하는지를 판정할 수 있다. 이러한 포질은 포의 재질, 부드러운 정도(예를 들어, 부드러운(soft) 포/ 뻣뻣한(hard) 포), 포가 물을 머금을 수 있는 능력(즉, 함습율), 건포와 습포 간의 부피 차 등의 여러 요인들을 바탕으로 정의될 수 있다.
제어부(60)는, 상기 목표속도에 도달하는 시점까지 전류 감지부(75)에서 감지된 현재 전류 값을 머신 러닝(machine learning)으로 기학습된 인공신경망(Artificial Neural Network)의 입력 데이터(input data)로 사용하여 포량을 감지할 수 있다.
도 3은 포질과 부하량(포량)에 따른 모터에 인가되는 전류 패턴을 도시한 것이다. 도 4는 포질별 전류 패턴을 도시한 것이다. 도 5는 모터의 속도를 기 설정된 방법으로 제어하면서, 부하별 전류 패턴을 도시한 것이다.
도 3에 도시된 각각의 그래프는, 세탁조(4)를 기 설정된 목표속도(예를 들어, 80rpm)까지 가속하면서 측정한 현재 전류를 나타내고 있으며, 이들 그래프들은 포의 구성(즉, 부드러운 포(Soft)와 뻣뻣한 포(Hard)의 혼합비)와 부하량을 달리하면서 측정되었다. 즉, 가로로 배열된 그래프들을 통해서는 부하량에 따른 패턴의 변화 추이를 파악할 수 있다. 예를 들어, 같은 포 구성일 시, 부하량이 클수록 세탁조(4)의 가속 초기에 현재 전류의 최고치가 큼을 알 수 있다. 따라서, 그래프의 초반부 데이터들이 부하량(포량)을 결정하는데 사용되는 것이 적절하다고 할 수 있다.
세로로 배열된 그래프들을 통해서는 포 구성에 따른 패턴의 형태의 변화 추이를 파악할 수 있다. 예를 들어, 같은 부하량일 시, 거친 포의 비율이 클수록 전류 값이 하향 이동됨을 알 수 있고, 세탁조(4)의 가속 중후반 내지 중/후반부 내지 목표속도 유지 구간에서 특히 그러함을 알 수 있다. 따라서, 앞서 포량을 결정하는데 사용할 데이터가 구해진 구간 이후에서 포질을 구하는데 필요한 데이터를 취하는 것이 적절하다고 할 수 있다.
도 4는 포 구성(포질)별 현재 전류의 패턴을 도시하고 있다. 도 4에서 C0.0은 부드러운 포 100%, C0.25, C0.5, C0.75은 차례로 부드러운 포 100%, 부드러운 포:뻣뻣한 포의 비율이 1: 3, 1:1, 3:1, C1.0은 뻣뻣한 포 100%인 경우를 표시한 것이고, 각 경우에 있어서 부드러운 포와 뻣뻣한 포를 더한 전체 포량(부하량)은 일정하다.
그래프들은 포 구성이 달라지면 부하량이 같다고 하더라도, 현재 전류의 패턴이 다르다는 점을 보여주고 있다. 따라서, 전류 패턴을 머신 러닝한 것을 기반으로 하여 포구성(또는, 포질)에 따른 분류가 가능한 것이다.
이러한 포량/포질 감지는 복수회 반복될 수 있으며, 실시예에서는 3회 반복하였으나 그 횟수가 이에 한정되어야 하는 것은 아니다.
제어부(60)는 매 포량/포질 감지 결과에 따라 세탁 알고리즘을 설정 또는 설정을 변경할 수 있고, 설정된 바에 따라 세탁물 처리기기의 작동을 제어할 수 있다.
도 5에 표시된 그래프 P1, P3, P5, P7, P9, P15는 각각 포량이 1, 3, 5, 7, 9, 15kg 일때를 나타낸다. 그래프들은 전체적으로는 세탁조(4)의 가속 초반에는 현재 전류 값이 어느 수준까지 급하게 상승하였다가 후반으로 가면서 일정한 값을 수렴되는 형태이다. 특히, 포량에 따른 현재 전류 값의 편차는 세탁조(4)의 가속 초반에 두드러짐을 알 수 있다.
제어부(60)는 포량/포질 학습모듈(61)과 포량/포질 인식모듈(62)을 포함할 수 있다. 포량/포질 학습모듈(61)은, 전류 감지부(75)에서 감지된 현재 전류 값 또는 상기 현재 전류 값을 처리한 값을 이용하여 머신 러닝을 할 수 있다. 이러한 머신 러닝을 통해, 포량/포질 학습모듈(61)은 메모리(76)에 저장된 데이터 베이스를 업데이트 할 수 있다.
포량/포질 학습모듈(61)의 학습 방법으로는 자율학습(unsupervised learning)과 지도학습(supervised learning) 중 어느 것이나 사용될 수 있다.
포량/포질 인식모듈(62)은 포량/포질 학습모듈(61)에 의해 학습된 데이터에 기반하여 포량에 따른 레벨을 판정할 수 있다. 포량의 판정은, 세탁조(4) 안에 투입된 포를 무게(부하)에 따라 기설정된 복수의 포량 레벨(Level)로 분류하는 작업일 수 있다.
실시예에서 포량은 5단계(레벨)로 분류되며, 각 레벨에 해당하는 부하량(kg)은 다음의 표 1과 같다. 또한, 표 1은 한 가구에서 해당 포량을 세탁물 처리기기에 투입하는 경우에 있어서의 그 가구를 구성하는 세대수를 통계적으로 보이고 있기도 하다.
표 1
Figure PCTKR2019011227-appb-T000001
아래 표 2를 참조하면, 포질의 판정은, 세탁조(4)에 투입된 포를 기 설정된 기준에 따라 분류하는 것으로써, 이러한 기준은 포의 재질, 부드럽거나 뻣뻣한 정도, 함습율, 건포와 습포 간의 부피 차 등일 수 있다.
포량/포질 인식모듈(62)은 전류 감지부(75)로부터 구해진 현재 전류 값을 바탕으로, 세탁조(4) 내에 투입된 포가 복수의 포량 레벨 중 어느 것에 해당하고, 이때의 포질은 어떤 분류에 해당하는지(즉, 포량별 포질)를 판정할 수 있다.
표 2
Figure PCTKR2019011227-appb-T000002
포량/포질 인식모듈(62)은 머신 러닝(machine learning)으로 기학습된 인공신경망(Artificial Neural Networks: ANN)을 탑재할 수 있다. 이러한 인공신경망은 포량/포질 학습모듈(61)에 의해 업데이트 될 수 있다.
포량/포질 인식모듈(62)은 인공신경망을 기반으로 포량과 포질을 판정할 수 있다. 실시예에 같이, 포량의 레벨이 5단계로 분류된 경우, 포량/포질 인식모듈(62)은 전류 감지부(75)가 감지한 현재 전류 값을 인공신경망(ANN)의 입력 데이터로 사용하여 포량이 속한 레벨을 판정할 수 있고, 더 나아가 포질이 속한 레벨도 판정할 수 있다.
포량/포질 인식모듈(62)은 포량과 포질을 각각 소정 기준에 따라 레벨로 분류하도록 학습된 인공신경망(ANN)을 포함할 수 있다. 예를 들어, 포량 인식모듈(62)은 딥러닝(Deep Learning)으로 학습된 CNN(Convolutional Neural Network), RNN(Recurrent Neural Network), DBN(Deep Belief Network) 등의 심층신경망(Deep Neural Network: DNN)을 포함할 수 있다.
RNN(Recurrent Neural Network)은, 자연어 처리 등에 많이 이용되고 있으며, 시간의 흐름에 따라 변하는 시계열 데이터(Time-series data) 처리에 효과적인 구조로 매 순간마다 레이어를 쌓아올려 인공신경망 구조를 구성할 수 있다.
DBN(Deep Belief Network)은 딥러닝 기법인 RBM(Restricted Boltzmann Machine)을 다층으로 쌓아 구성되는 딥러닝 구조이다. RBM(Restricted Boltzmann Machine) 학습을 반복하여, 일정 수의 레이어가 되면 해당 개수의 레이어를 가지는 DBN(Deep Belief Network)를 구성할 수 있다.
CNN(Convolutional Neural Network)은 사람이 물체를 인식할 때 물체의 기본적인 특징들을 추출한 다음 뇌 속에서 복잡한 계산을 거쳐 그 결과를 기반으로 물체를 인식한다는 가정을 기반으로 만들어진 사람의 뇌 기능을 모사한 모델이다.
한편, 인공신경망의 학습은 주어진 입력에 대하여 원하는 출력이 나오도록 노드간 연결선의 웨이트(weight)를 조정(필요한 경우 바이어스(bias) 값도 조정)함으로써 이루어질 수 있다. 인공신경망은 학습에 의해 웨이트(weight) 값을 지속적으로 업데이트시킬 수 있다. 인공신경망의 학습에는 역전파(Back Propagation) 등의 방법이 사용될 수 있다.
포량/포질 인식모듈(62)은 현재 전류 값을 입력 데이터로 하고, 심층신경망(DNN)에 포함된 노드들 사이의 가중치(weight)들에 기초하여, 출력 레이어에서의 출력으로 세탁조(4)에 투입된 포량과 포질 중 적어도 하나를 판정할 수 있다.
도 7은 인공신경망의 일례를 도시한 개요도이다. 도 8은 모터의 현재 전류값을 이용하여 포량별 포질을 판단하는 과정을 학습과정과 인식과정으로 구분하여 표시한 개요도이다. 이하, 도 7 내지 도 8을 참조한다. 머신 러닝(Machine Learning)의 일종인 딥러닝(Deep Learning) 기술은 데이터를 기반으로 다단계로 깊은 수준까지 내려가 학습하는 것이다.
딥러닝(Deep learning)은 히든 레이어들을 차례로 거치면서 복수의 데이터들로부터 핵심적인 데이터를 추출하는 머신 러닝(Machine Learning) 알고리즘의 집합을 나타낼 수 있다.
딥러닝 구조는 인공신경망(ANN)를 포함할 수 있으며, 예를 들어 딥러닝 구조는 CNN(Convolutional Neural Network), RNN(Recurrent Neural Network), DBN(Deep Belief Network) 등 심층신경망(DNN)으로 구성될 수 있다.
도 6을 참조하면, 인공신경망(ANN)은 입력 레이어(Input Layer), 히든 레이어(Hidden Layer) 및 출력 레이어(Output Layer)를 포함할 수 있다. 다중의 히든 레이어(hidden layer)를 갖는 것을 DNN(Deep Neural Network)이라고 한다. 각 레이어는 복수의 노드들을 포함하고, 각 레이어는 다음 레이어와 연관되어 있다. 노드들은 웨이트(weight)를 가지고 서로 연결될 수 있다.
제 1 히든 레이어(Hidden Layer 1)에 속한 임의의 노드로 부터의 출력은, 제 2 히든 레이어(Hidden Layer 2)에 속하는 적어도 하나의 노드로의 입력이 된다. 이때, 각 노드의 입력은 이전 레이어의 노드의 출력에 웨이트(weight)가 적용된 값일 수 있다. 웨이트(weight)는 노드간의 연결 강도를 의미할 수 있다. 딥러닝 과정은 적절한 웨이트(weight)를 찾아내는 과정으로도 볼 수 있다.
딥러닝을 보다 잘 이해하기 위해, 잘 알려진 얼굴인식 과정을 살펴보면, 컴퓨터는 입력 영상으로부터, 픽셀의 밝기에 따라 밝은 픽셀과 어두운 픽셀을 구분하고, 테두리, 에지 등 단순한 형태를 구분한 후, 조금 더 복잡한 형태와 사물을 구분할 수 있다. 최종적으로 컴퓨터는 인간의 얼굴을 규정하는 형태를 파악할 수 있다. 이와 같이 특징의 구체화(인간 얼굴 형태의 규정)는 중층의 히든 레이어들을 거쳐 최종적으로 출력 레이어에서 구해진다.
메모리(76)에는 포량 감지를 위한 입력 데이터, 심층신경망(DNN)을 학습하기 위한 데이터가 저장될 수 있다. 메모리(76)에는 센싱부(150)가 획득하는 모터 속도 데이터 및/또는 속도 데이터들이 소정 구간별로 합산되거나 연산 처리된 데이터들이 저장될 수 있다. 또한, 메모리(76)에는 심층신경망(DNN) 구조를 이루는 웨이트(weight), 바이어스(bias)들이 저장될 수 있다.
또는, 실시예에 따라, 심층신경망 구조를 이루는 웨이트(weight), 바이어스(bias)들은 포량/포질 인식모듈(62)의 임베디드 메모리(embedded memory )에 저장될 수 있다.
한편, 포량/포질 학습모듈(61)은 전류 감지부(150)를 통해 감지된 현재 전류 값을 트레이닝(training) 데이터로 사용하여 학습(learning)을 수행할 수 있다. 즉, 포량/포질 학습모듈(61)은 포량 및/또는 포질을 인식 또는 판정할 때마다 그 판정 결과를 데이터 베이스에 추가하여 웨이트(weight)나 바이어스 등의 심층신경망(DNN) 구조를 업데이트(update)하거나, 소정 횟수의 트레이닝 데이터가 확보된 후에 확보된 트레이닝 데이터로 학습 과정을 수행하여 웨이트(weight) 등 심층신경망(DNN) 구조를 업데이트할 수 있다.
세탁물 처리기기는 통신부(73)를 통하여 전류 감지부(75)에서 획득한 현재 전류 데이터를 통신망에 연결된 서버(미도시)로 전송하고, 상기 서버로부터 머신 러닝과 관련된 데이터를 수신할 수 있다. 이 경우에, 세탁물 처리기기는, 상기 서버로부터 수신된 머신 러닝과 관련된 데이터에 기초하여 인공신경망을 업데이트(update)할 수 있다.
도 9는 전류 감지부에 의해 감지된 현재 전류 값을 도시한 그래프(a)와, 이동평균필터를 처리하여 구한 평균 값들을 도시한 그래프(b)이다. 도 10은 전류 감지부에 의해 전류 값들을 도시한 그래프이다. 도 11은 도 10에 도시된 그래프의 전류 값들을, 인공신경망의 입력 데이터로 사용하기 위해 처리한 값들을 도시한 그래프이다. 도 12는 본 발명의 일 실시예에 따른 세탁물 처리기기의 제어방법을 도시한 순서도이다. 이하, 도 9 내지 도 12를 참조하여 본 발명의 일 실시예에 따른 세탁물 처리기기의 제어방법을 설명한다.
제어부(60)는 기 설정된 목표속도로 모터(9)가 회전되도록 제어한다.(S1, S2, S4, S5) 모터(9)가 회전되는 중에 속도 감지부(74)에 의해 세탁조(4)(또는, 모터(9))의 회전속도가 감지된다.(S2)
상기 목표속도는, 세탁조(4)가 상기 목표속도를 유지하며 1회전 이상을 일방향으로 연속하여 회전될 시, 포가 드럼(42)에 달라 붙은 상태를 유지할 수 있는 세탁조(4)의 회전속도로 정해질 수 있다. 상기 목표속도는 60 내지 80rpm일 수 있고, 바람직하게는 80rpm이다. 바람직하게는, 세탁조(4)의 회전속도가 상기 목표속도에 도달하기 전의 상태에서는, 포가 드럼(42) 내에서 유동된다.(즉, 포가 드럼(42)의 회전에 의해 소정 높이까지 상승하였다가 낙하됨.)
한편, 상기 목표속도는 저수조(3) 내로 급수가 이루어져 세탁조(4)가 부분적으로 물에 잠긴 상태를 기준으로 정해질 수 있다. 즉, 세탁조(4)가 부분적으로 물에 잠긴 상태에서 상기 목표속도로 회전될 시 포가 유동될 수 있다. 다시 말해, 세탁조(4)의 회전 중에 포가 드럼(42)에 항시 달라 붙어 있는 것이 아니라, 소정 높이까지 상승하였다가 낙하될 수 있다.
포량과 포질을 판정하는데 사용되는 현재 전류 값들은, 세탁조(4)의 회전 과정에서 포의 유동이 발생하는 구간에서 취한 것들을 포함한다. 즉, 제어부(60)는 속도 감지부(74)에 의해 감지된 세탁조(4)의 회전속도(또는, 모터(9)의 회전속도)를 바탕으로 필요한 현재 전류 값들을 취할 수 있다.
구체적으로, 제어부(60)는 모터 구동부(71)에 모터(9)를 가속할 것을 지시한 후, 속도 감지부(74)에 의해 감지된 회전속도가 기 설정된 제 1 회전속도(V1)에 이르면 그 때부터의 현재 전류 값을 메모리(76)에 저장할 수 있다(S3 내지 S4).
세탁조(4)가 정지상태일 때, 포에 작용하는 힘은, 중력과 드럼(42)의 내측면에 의한 수직항력이 있고, 이 두 힘은 서로 평형상태이다. 세탁조(4)가 회전하면, 상기 포는 리프터(20)가 세탁조(4)의 회전방향으로 미는 힘을 받는다.
한편, 포의 양이 많으면, 리프터(20)로부터 직접 힘을 받지 않는 포가 있을 수 있다. 이러한 포는, 세탁조(4)의 회전속도가 일정속도 이하인 경우, 세탁조(4)의 회전에도 불구하고 유동하지 않을 수 있다. 또는, 동일한 양과 재질의 포가 수용된 세탁조(4)를 동일한 속도로 회전시키더라도, 포가 세탁조(4) 내에 자리잡은 위치등의 요인에 의해, 포의 유동이 상이할 수 있다.
즉, 모터(9)를 가속시키는 구간의 초기에는, 포량 및 포질 이외에 포가 세탁조(4) 내에 자리잡은 위치 등의 요인이 모터(9)에 인가되는 전류 값에 과도하게 반영될 수 있다. 전술한 제 1 회전속도(V1)는 상기 일정속도를 의미한다.
따라서, 포량 및 포질을 판별하는 입력 데이터로써, 가속구간의 초기 전류 값을 제외하는 것이 바람직하다. 모터(9)의 회전속도(V)가 제 1 회전속도(V1)에 도달하기 전까지의 전류 값은 입력 데이터로 사용하지 않고, 제 1 회전속도(V1)에 도달한 때부터 전류 값을 감지하여 입력 데이터로 사용할 수 있다.
제 1 회전속도(V1)는 제 2 회전속도(V2)보다 느리고, 세탁조(4) 내에서 포가 유동하는 회전속도일 수 있다. 제 1 회전속도(V1)는 10 내지 20 rpm 일 수 있다. 세탁조(4)가 10rpm보다 느린 속도로 회전하는 경우, 세탁조(4) 내에 포가 유동하지 않을 수 있다. 세탁조(4) 내의 포는 세탁조(4)의 회전속도가 약 10rpm일 때 유동하기 시작하여, 20rpm에 이르러서는 포의 양에 관계없이 세탁조(4) 내에서 유동한다. 본 실시예에서 제 1 회전속도는 20rpm으로 설정되었다.
세탁조(4)의 회전속도(V)가 기 설정된 제 2 회전속도(V2)에 도달하면, 제어부(60)는 현재 전류 값을 더 이상 저장하지 않고, 현재 전류 값의 가공을 실시할 수 있다(S5 내지 S6). 여기서, 제 2 회전속도(V2)가 전술한 목표속도이다.
한편, 제 1 회전속도(V1)로부터 제 2 회전속도(V2)로의 가속 기울기는 일정할 수 있다. 전류 패턴 변화 감지의 신뢰성을 높이기 위해 가속 기울기는 일정하게 유지되는 것이 바람직하다.
세탁조(4) 내에서의 포 유동의 변화 추이가 선명하게 보여질 수 있도록, 가속 기울기는 너무 높지 않아야 한다. 상기 가속 기울기는 바람직하게는 1.5 내지 2.5rpm/ s이고, 더 바람직하게는 2.0rpm/s이나, 반드시 이에 한정되어야 하는 것은 아니다. 상기 가속 기울기는 제어부(60)에 의해 제어가 가능한 범위 내에서 최대한 작은 값을 가질 수도 있다.
상기 현재 전류 값의 가공은, 도 6에 도시된 바와 같이, 기 설정된 시점들에서 구한 현재 전류 값들(Iq)을 정해진 알고리즘에 따라 처리하여, 인공신경망의 입력 레이어(Input Layer)의 입력 데이터(In1, In2, In3, In4 ...)를 생성하는 과정이다(S6).
이러한 과정은, 현재 전류 값(Iq)들의 평균을 구하는 단계와, 구해진 평균 값들을 기 설정된 파싱 룰(Parsing Rule)에 따라 가공하여 인공신경망의 입력 데이터들을 생성하는 단계를 포함할 수 있다. 특히, 상기 파싱 룰에 의해 가공된 입력 데이터들의 개수는 평균 값들의 개수보다 적다.
도 8을 참조하면, 제어부(60)는 전류 감지부(75)를 통해 일정한 시간 간격으로 전류 값을 획득할 수 있다. 실시예에서는 세탁조(4)의 회전속도가 제 1 회전속도(V1)로부터 제 2 회전속도(V2)로 가속되는 구간에서 일정한 시간 간격으로 총 545개의 현재 전류 값이 구해졌다.
이렇게 구해진 현재 전류 값들을 제어부(60)는 일정한 시간 구간마다 평균할 수 있다. 이때, 제어부(60)는 이동평균필터(moving average filter)를 이용할 수 있다. 이동평균은 추세의 변동을 알 수 있도록 구간을 옮겨 가면서 평균을 구하는 것이다. 예를 들어, 현재 전류 값들을 시계열적 순서에 따라 Iq1, Iq2, Iq3 ... Iqn이라고 할 시, Iq1 부터 Iql(l<n)까지를 평균하여 M1을 구하고, Iqm(m>1) 부터 Iqm+s-1(s는 각 이동 평균을 구하는데 사용되는 Iq의 개수)까지를 평균하여 M2를 구한다. 이러한 방식으로 계속하여 구간을 옮겨가면서 이동평균들이 구해질 수 있다.
이동 평균이 구해지는 시간 구간들을 적절하게 설정함으로써, 이동평균 값들(M1, M2...)의 개수를 전체 현재 전류(Iq)의 개수보다 작게 할 수 있다. 다만, 시간구간(윈도우)의 길이가 길수록 현재 전류의 변화 추세에 대한 해상도(resolution)는 낮아지기 때문에 적절하게 시간 구간의 길이를 선정하여야 한다. 실시예에서, 제어부(60)는 이동평균필터를 이용하여 545개의 현재 전류 값(Iq)으로부터 50개의 이동 평균들을 구하였다.
제어부(60)는 현재 전류 값과 이동 평균들을 기 설정된 파싱 룰(parsing rule)에 따라 처리하여 입력 데이터(In1, In2, In3, In4 ...)를 생성할 수 있다. 파싱 룰은 구하고자 하는 특징(포량/포질)이 잘 드러나도록 최종 입력 데이터가 구해지는 구간을 선정하도록 구성될 수 있다.
실시예에서는 총 14개의 입력 데이터를 생성하였으며, 상기 입력 데이터들은, 모터(9)의 가속 초반에 구해지는 9개의 현재 전류 값(16 ~ 24번째 현재 전류 값: DATA1 ~ DATA9)과, 그 이후의 구간을 기 설정한 바에 따라 구분한 각 구간에서의 5개의 평균 값(DATA 10 ~ DATA 14)이다. 특히, 상기 5개의 평균 값을 앞서 구한 이동 평균들을 바탕으로 구함으로써, 각 구간에서의 현재 전류 값들을 합산한 것에 비해 보다 신속하게 연산을 처리할 수 있다. 한편, 이렇게 구한 입력 데이터(In1, In2, In 3, In 4 ... In 14)은 입력 레이어(Input Layer)의 각 노드의 입력값이 된다.
인공신경망을 구성하는 노드들에 부여되는 가중치(weight)와 편향치(bias)는 머신 러닝을 통해 정해진 것이고, 이러한 머신 러닝은 전류 패턴 또는 현재 전류 값들을 바탕으로 반복된 것이다. 또한, 상기 전류 패턴(또는, 현재 전류 값)은 전술한 바와 같이 포량 및/또는 포질에 대한 특성을 반영하고 있으므로, 정확한 결과(즉, 현재 세탁조(4)에 투입된 정확한 포량과 포질)가 도출될 때까지 기 저장된 또는 세탁물 처리기기의 운전에 의해 추가된 데이터들을 머신 러닝을 수행함으로써 개선된, 또는 정확한 가중치와 편향치를 설정할 수 있다.
이러한 방식으로 구축된 인공 지능망에서, 출력 레이어의 출력은 포량-포질 정보를 반영하고 있을 것이며, 출력 레이어(Output Layer)의 노드들 중에서 가장 큰 값을 출력하는 노드를 바탕으로, 제어부(60)는 포량 및/또는 포질을 결정할 수 있다.
제어부(60)는 S6단계에서 생성된 입력 데이터들을 인공신경망에 입력하여, 출력 레이어에서의 출력으로 포량 및/또는 포질을 구할 수 있다. (S7) 그리고, 제어부(60)는 S7단계에서 구해진 포량 및/또는 포질을 바탕으로 세탁 알고리즘을 설정하고, 설정된 바에 따라 세탁물 처리기기의 작동을 제어할 수 있다(S8). 상기 세탁 알고리즘은, 급수 수위, 세탁, 헹굼, 탈수, 건조 등의 실행 시간, 각 행정에서의 모터의 구동 패턴(예를 들어, 회전 속도, 회전 시간, 가속도, 제동) 등을 포함할 수 있다.
도 13은 부하별 전류 패턴들을 중첩한 그래프이다. 도 14는 도 13에서 0 내지 6kg의 부하에 대응하는 전류 패턴들을 분류한 그래프이다. 도 15는 도 13에서 7 내지 9kg의 부하에 대응하는 전류 패턴들을 분류한 그래프이다. 이하, 도 13 내지 도 15를 참조한다. 이들 도면에 표시된 P0 내지 P9는 각각 0 내지 9kg의 부하량(포량)을 나타낸 것이다.
포가 도어(2)에 의해 구속되는 문제가 발생될 수 있다. 이러한 현상은 세탁조(4) 내에 다량의 포가 투입됨으로써, 도어(2)에 밀착 또는 간섭되는 경우에 발생된다. 포의 구속은 모터(9)에 걸리는 부하에 영향을 미친다. 따라서, 포가 구속된 상태로 세탁조(4)를 회전(또는, 가속)시키면서 구한 현재 전류 값은 포량 및/또는 포질을 판정하는 과정에서는 배제하는 것이 바람직하다.
도 14 내지 도 15를 참조하면, 부하량 0 내지 6kg에서의 전류 패턴(P0 내지 P6)과 7 내지 9kg에서의 전류 패턴(P7 내지 P9)는 확연하게 구분되는 차이를 보인다. 즉, 다량의 포의 경우(실시예에서는 7 내지 9kg )에는 세탁조(4)의 가속 초반부에 현재 전류 값이 주기적으로 증감(또는, 진동)하는 것을 알 수 있다. 이는 일부 포들의 운동이 도어(2)에 의해 구속되어, 세탁조(4)가 구속된 포와 간섭될 시에는 모터(9)의 부하가 증가하였다가 간섭이 약해지거나 없어지면 다시 모터(9)의 부하가 감소하기 때문이다. 즉, 포의 구속으로 인한 모터(9)의 부하 변동이 세탁조(4)의 회전 주기에 대응하여 발생된다.
이러한 부하 변동 패턴은 머신 러닝을 통해 학습될 수 있으며, 이러한 학습 결과는 데이터 베이스화 되어 메모리(76)에 저장될 수 있다. 이러한 학습 결과를 활용하여 인공신경망이 구성될 수 있다. 이렇게 구성된 인공신경망(Artificial Neural Network)을 바탕으로 제어부(60)는 출력 레이어의 출력을 바탕으로 포 구속(또는, 포 끼임)을 판정할 수 있다.
이상의 설명은 세탁조(3)가 실질적으로 수평한 축을 중심으로 회전되는 프론트 로드(front load) 방식을 예로 든 것이나, 본 발명의 세탁물 처리기기와 그의 제어방법은 탑 로드(top load) 방식에도 전용이 가능하다.
한편, 본 발명의 실시예에 따른 세탁물 처리기기의 제어방법은, 프로세서가 읽을 수 있는 기록매체에 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 기록매체는 프로세서에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 프로세서가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함한다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.

Claims (14)

  1. 포를 수용하고 회전 가능하게 구비되는 세탁조;
    상기 세탁조를 회전시키는 모터;
    포가 상기 세탁조 내에서 유동되는 범위 내에서 설정된 목표속도까지 상기 세탁조가 1.5 내지 2.5 rpm/s의 가속 기울기로 가속되도록 상기 모터를 제어하는 제어부; 및
    상기 모터의 전류를 감지하는 전류 감지부를 포함하고,
    상기 제어부는,
    상기 세탁조가 가속 회전되는 중에 상기 전류 감지부에 의해 감지된 전류 값을 머신 러닝(machine learning)으로 기학습된 인공신경망(Artificial Neural Network)의 입력 레이어의 입력으로하여 상기 인공신경망의 출력 레이어에서의 출력으로 포량 및 포질 중 적어도 하나를 구하는 세탁물 처리기기.
  2. 제 1 항에 있어서,
    상기 가속 기울기는,
    2.0rpm/s인 세탁물 처리기기.
  3. 제 1 항에 있어서,
    상기 가속 기울기는,
    상기 제어부에 의해 제어 가능한 최소 값인 세탁물 처리기기.
  4. 제 1 항에 있어서,
    상기 모터가 상기 목표속도까지 가속될때까지 상기 가속 기울기는 일정한 값을 유지하는 세탁물 처리기기.
  5. 제 1 항에 있어서,
    상기 제어부는,
    상기 출력 레이어의 출력을 바탕으로 포 구속을 판정하는 세탁물 처리기기.
  6. 제 1 항에 있어서,
    상기 입력 데이터로써의 전류 값이 구해지는 상기 세탁조의 회전속도 구간에서, 상기 세탁조가 1회전 이상을 일방향으로 회전될 시, 상기 세탁조 내에서 최하측에 위치한 포는 상기 세탁조의 회전에 의해 소정 높이까지 상승하였다가 상기 세탁조로부터 분리되며 낙하되는 세탁물 처리기기.
  7. 제 1 항에 있어서,
    상기 모터의 회전속도를 감지하는 속도 감지부를 더 포함하고,
    상기 제어부는,
    상기 속도 감지부에 의해 감지된 속도 값을 바탕으로, 상기 전류 감지부에 의해 구해진 전류 값 중 상기 모터의 회전속도가 제 1 회전속도로부터 상기 목표속도로 가속되는 구간에 해당하는 전류 값을 선택하고, 선택된 전류 값을 상기 입력 데이터로 사용하는 세탁물 처리기기.
  8. 제 7 항에 있어서,
    상기 목표속도는 60 내지 80rpm인 세탁물 처리기기.
  9. 제 7 항에 있어서,
    상기 제 1 회전속도는 10 내지 20rpm인 세탁물 처리기기.
  10. (a) 포가 투입된 세탁조를, 상기 포가 상기 세탁조 내에서 유동되는 범위 내에서 설정된 목표속도까지 1.5 내지 2.5rm/s의 가속 기울기로 가속하는 단계;
    (b) 상기 세탁조가 가속 회전되는 구간에서 상기 세탁조를 회전시키는 모터의 전류 값을 구하는 단계; 및
    (c) 상기 전류 값을 머신 러닝(machine learning)으로 기학습된 인공신경망(Artificial Neural Network)의 입력 레이어의 입력으로 하여 상기 인공신경망의 출력 레이어(output layer)에서의 출력으로 포량 및 포질 중 적어도 하나를 구하는 단계를 포함하는 세탁물 처리기기의 제어방법.
  11. 제 10 항에 있어서,
    상기 가속 기울기는,
    2.0rpm/s인 세탁물 처리기기의 제어방법.
  12. 제 10 항에 있어서,
    상기 가속 기울기는,
    상기 제어부에 의해 제어 가능한 최소 값인 세탁물 처리기기의 제어방법.
  13. 제 10 항에 있어서,
    상기 모터가 상기 목표속도까지 가속될때까지 상기 가속 기울기는 일정한 값을 유지하는 세탁물 처리기기의 제어방법.
  14. 제 10 항에 있어서,
    상기 출력 레이어의 출력을 바탕으로 포 구속을 판정하는 단계를 더 포함하는 세탁물 처리기기의 제어방법.
PCT/KR2019/011227 2018-08-30 2019-08-30 인공지능 세탁물 처리기기 및 세탁물 처리기기의 제어방법 WO2020046083A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180103077A KR102569216B1 (ko) 2018-08-30 2018-08-30 인공지능 세탁물 처리기기 및 세탁물 처리기기의 제어방법
KR10-2018-0103077 2018-08-30

Publications (2)

Publication Number Publication Date
WO2020046083A2 true WO2020046083A2 (ko) 2020-03-05
WO2020046083A3 WO2020046083A3 (ko) 2020-04-23

Family

ID=67810554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011227 WO2020046083A2 (ko) 2018-08-30 2019-08-30 인공지능 세탁물 처리기기 및 세탁물 처리기기의 제어방법

Country Status (5)

Country Link
US (1) US11618986B2 (ko)
EP (2) EP3913126A1 (ko)
KR (1) KR102569216B1 (ko)
ES (1) ES2882804T3 (ko)
WO (1) WO2020046083A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11556097B2 (en) * 2020-05-13 2023-01-17 Infineon Technologies Ag Neural network circuitry for motors with first plurality of neurons and second plurality of neurons

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154793A (ja) * 1988-12-06 1990-06-14 Matsushita Electric Ind Co Ltd 洗濯機の制御装置
JP2635836B2 (ja) * 1991-02-28 1997-07-30 株式会社東芝 全自動洗濯機
KR100290234B1 (ko) 1998-01-14 2001-05-15 구자홍 드럼세탁기의 포량감지방법
KR100789829B1 (ko) 2006-04-19 2008-01-02 엘지전자 주식회사 드럼세탁기의 포량 감지 방법
KR101638539B1 (ko) * 2009-08-28 2016-07-11 엘지전자 주식회사 세탁물 처리기기 및 그 제어방법
EP2473661B1 (en) 2009-08-31 2019-06-26 LG Electronics Inc. Control method of washing machine
BRPI0905317A2 (pt) * 2009-12-09 2011-08-02 Whirlpool Sa método de determinação de carga em máquinas de lavar roupas
KR101092460B1 (ko) * 2011-03-04 2011-12-09 엘지전자 주식회사 세탁장치의 제어방법
KR101504686B1 (ko) 2012-10-09 2015-03-20 엘지전자 주식회사 세탁물 처리기기, 및 그 동작방법
KR101676473B1 (ko) * 2013-08-14 2016-11-14 엘지전자 주식회사 세탁물 처리기기의 제어방법
KR101608659B1 (ko) * 2013-08-14 2016-04-04 엘지전자 주식회사 세탁물 처리기기 및 그 제어방법
US10041202B2 (en) * 2015-11-19 2018-08-07 Whirlpool Corporation Laundry treating appliance and methods of operation
US10422068B2 (en) * 2016-02-12 2019-09-24 Whirlpool Corporation Laundry treating appliance and methods of operation
KR101841248B1 (ko) * 2016-09-29 2018-03-22 엘지전자 주식회사 세탁물 처리기기 및 그 제어방법
KR102517609B1 (ko) * 2016-09-29 2023-04-03 엘지전자 주식회사 세탁기 및 그 제어방법
KR102527576B1 (ko) * 2016-10-07 2023-04-28 엘지전자 주식회사 세탁기 및 그 제어방법

Also Published As

Publication number Publication date
ES2882804T3 (es) 2021-12-02
WO2020046083A3 (ko) 2020-04-23
US11618986B2 (en) 2023-04-04
EP3617365A1 (en) 2020-03-04
KR102569216B1 (ko) 2023-08-21
EP3913126A1 (en) 2021-11-24
US20200109507A1 (en) 2020-04-09
EP3617365B1 (en) 2021-07-14
KR20200025556A (ko) 2020-03-10

Similar Documents

Publication Publication Date Title
US11268227B2 (en) Washing machine based on artificial intelligence and method of controlling the same
EP3690103B1 (en) Washing machine and method for controlling the same
WO2020046082A2 (ko) 인공지능 세탁물 처리기기 및 세탁물 처리기기의 제어방법
KR20200095997A (ko) 세탁기 및 세탁기의 제어방법
WO2020046078A2 (ko) 인공지능 세탁기 및 인공지능 세탁기의 제어방법
CN110924053B (zh) 人工智能洗衣机及其控制方法
WO2020046083A2 (ko) 인공지능 세탁물 처리기기 및 세탁물 처리기기의 제어방법
US11821128B2 (en) Artificial intelligence washing machine and controlling method therefor
US20200248357A1 (en) Washing machine and method for controlling the same
WO2020046081A2 (ko) 인공지능 세탁물 처리기기 및 세탁물 처리기기의 제어방법
WO2019194650A1 (ko) 세탁물처리장치 및 제어방법
WO2020046079A2 (ko) 인공지능 세탁기 및 인공지능 세탁기의 제어방법
WO2023085446A1 (ko) 외부 환경 정보에 기초하여 건조 기능을 수행하는 건조기 및 그 제어 방법
EP3969650A1 (en) Laundry treating appliance and method for controlling the same
KR20200095981A (ko) 인공지능을 적용한 세탁기 및 세탁기의 제어방법
KR20200095984A (ko) 세탁기 및 세탁기의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854358

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854358

Country of ref document: EP

Kind code of ref document: A2