WO2020045681A1 - Organic electroluminescent element using light emitting material composed of polycyclic aromatic compound - Google Patents

Organic electroluminescent element using light emitting material composed of polycyclic aromatic compound Download PDF

Info

Publication number
WO2020045681A1
WO2020045681A1 PCT/JP2019/034473 JP2019034473W WO2020045681A1 WO 2020045681 A1 WO2020045681 A1 WO 2020045681A1 JP 2019034473 W JP2019034473 W JP 2019034473W WO 2020045681 A1 WO2020045681 A1 WO 2020045681A1
Authority
WO
WIPO (PCT)
Prior art keywords
aryl
ring
carbons
heteroaryl
alkyl
Prior art date
Application number
PCT/JP2019/034473
Other languages
French (fr)
Japanese (ja)
Inventor
琢次 畠山
靖宏 近藤
田島 晶夫
亮介 川角
Original Assignee
学校法人関西学院
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西学院, Jnc株式会社 filed Critical 学校法人関西学院
Priority to CN201980072016.4A priority Critical patent/CN112997334A/en
Priority to JP2020539658A priority patent/JPWO2020045681A1/en
Priority to KR1020217009580A priority patent/KR20210053945A/en
Publication of WO2020045681A1 publication Critical patent/WO2020045681A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to an organic electroluminescent device using a light emitting material of a polycyclic aromatic compound and a multimer thereof (hereinafter, both are also simply referred to as a polycyclic aromatic compound), and a display device and a lighting device.
  • an organic electroluminescence element made of an organic material (hereinafter, also referred to as an organic EL element) is Because of the ease of weight reduction and enlargement, it has been actively studied. In particular, the development of organic materials having emission characteristics such as blue, which is one of the three primary colors of light, and the development of organic materials having charge transporting ability for holes and electrons (possibility of becoming semiconductors and superconductors) Development has been actively studied so far, regardless of whether it is a high molecular compound or a low molecular compound.
  • the organic EL element has a structure including a pair of electrodes including an anode and a cathode, and one or more layers including an organic compound disposed between the pair of electrodes.
  • the layer containing an organic compound include a light-emitting layer and a charge transport / injection layer that transports or injects charges such as holes and electrons.
  • Various organic materials suitable for these layers have been developed.
  • a benzofluorene-based compound has been developed (WO 2004/061047).
  • a hole transport material for example, a triphenylamine-based compound has been developed (Japanese Patent Application Laid-Open No. 2001-172232).
  • an anthracene-based compound has been developed (Japanese Patent Application Laid-Open No. 2005-170911).
  • the charge transporting property of a NO-linked compound (compound 1 on page 63) is evaluated, but there is no description of a method for producing a material other than the NO-linked compound, and the linking element is If different, the electronic state of the entire compound is different, and thus characteristics obtained from materials other than the NO-linked compound are not yet known.
  • Other examples of such compounds can be found (WO 2011/107186).
  • a compound having a conjugated structure in which the energy (T1) of triplet excitons is large can emit phosphorescence of a shorter wavelength, and thus is useful as a material for a blue light-emitting layer.
  • the host material of the organic EL device is generally a molecule in which a plurality of existing aromatic rings such as benzene and carbazole are connected by a single bond, a phosphorus atom or a silicon atom. This is because a large number of relatively small conjugated aromatic rings are connected to ensure a large HOMO-LUMO gap (band gap Eg in a thin film) required for the host material. Further, a host material of an organic EL device using a phosphorescent material or a thermally activated delayed fluorescent material also needs a high triplet excitation energy (E T ), but the molecule has a donor or acceptor aromatic ring or substitution.
  • E T triplet excitation energy
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, by using a polycyclic aromatic compound in which a plurality of aromatic rings are linked by a boron atom and an oxygen atom as a material for a light emitting layer, an excellent organic EL has been obtained.
  • the inventors have found that an element can be obtained, and have completed the present invention.
  • the chemical structure and the substituent may be represented by the number of carbon atoms.However, when the chemical structure is substituted with a substituent, or when the substituent is further substituted with a substituent, the number of carbon atoms is represented by the chemical structure And the carbon number of each substituent, and does not mean the total carbon number of the chemical structure and the substituent or the total carbon number of the substituent and the substituent.
  • “substituent B having carbon number Y substituted with substituent A having carbon number X” means that “substituent A having carbon number X” is substituted for “substituent B having carbon number Y”. However, the carbon number Y is not the total carbon number of the substituent A and the substituent B.
  • the substituent B having the number of carbon atoms Y substituted with the substituent A means that the “substituent A (there is no limitation on the number of carbon atoms)” replaces the “substituent B having the number of carbon atoms Y”.
  • the carbon number Y is not the total carbon number of the substituent A and the substituent B.
  • Item 1 A pair of electrodes consisting of an anode and a cathode, and an organic electroluminescent element having a light emitting layer disposed between the pair of electrodes, The light emitting layer in the organic electroluminescent device, As a first component, a polycyclic aromatic compound represented by the following general formula (1) is contained as a host, An organic electroluminescent device comprising, as a second component, a boron-containing polycyclic aromatic compound as a dopant.
  • a polycyclic aromatic compound represented by the following general formula (1) is contained as a host
  • An organic electroluminescent device comprising, as a second component, a boron-containing polycyclic aromatic compound as a dopant.
  • R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, Alkoxy or aryloxy; At least one hydrogen in the aryl, the heteroaryl, the diarylamino, and the diarylboryl may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl; At least one hydrogen in the compound represented by the formula (1) may be substituted with cyano, halogen, or deuterium.
  • R 1 to R 11 each independently represent hydrogen, aryl having 6 to 30 carbons, heteroaryl having 2 to 30 carbons, or diarylamino (wherein aryl has 6 to 12 carbons).
  • Aryl diarylboryl (wherein aryl is aryl having 6 to 12 carbons, and two aryls may be linked via a single bond or a linking group), alkyl having 1 to 24 carbons, A cycloalkyl having 3 to 12 carbons, an alkoxy having 1 to 24 carbons or an aryloxy having 6 to 30 carbons,
  • At least one hydrogen atom in the aryl, the heteroaryl, the diarylamino, and the diarylboryl is an aryl having 6 to 30 carbons, a heteroaryl having 2 to 30 carbons, an alkyl having 1 to 24 carbons or 3 to 12 carbons. May be substituted with cycloalkyl, Item 2.
  • R 1 to R 11 each independently represent hydrogen, aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, or diarylamino (wherein aryl has 6 to 10 carbons).
  • Aryl diarylboryl (wherein aryl is aryl having 6 to 10 carbons, and two aryls may be bonded via a single bond or a linking group), alkyl having 1 to 6 carbons, carbon A cycloalkyl having 6 to 10 carbon atoms, an alkoxy having 1 to 6 carbon atoms or an aryloxy having 6 to 16 carbon atoms,
  • At least one hydrogen atom in the aryl, the heteroaryl, the diarylamino, and the diarylboryl is an aryl having 6 to 16 carbons, a heteroaryl having 2 to 15 carbons, an alkyl having 1 to 6 carbons or 6 to 10 carbons. May be substituted with cycloalkyl, Item 2.
  • R 1 to R 11 is a group represented by any of the following formulas (1-a) to (1-s), The organic electroluminescent device according to claim 1.
  • * indicates a bonding position
  • at least one hydrogen atom is an aryl having 6 to 30 carbon atoms or a heteroatom having 2 to 30 carbon atoms.
  • Aryl, alkyl having 1 to 24 carbons or cycloalkyl having 3 to 12 carbons, R in the formula (1-i), the formula (1-j), the formula (1-k) and the formula (1-r) are each independently hydrogen, aryl having 6 to 30 carbon atoms, and 2 to 2 carbon atoms. It represents 30 heteroaryl, alkyl having 1 to 24 carbons or cycloalkyl having 3 to 12 carbons.
  • Item 5 The organic electroluminescent device according to item 4, wherein in the general formula (1), at least one of R 1 to R 11 is a group represented by the above formula (1-d).
  • R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (even when two aryls are bonded through a single bond or a linking group). Good), alkyl, cycloalkyl or alkoxy, At least one hydrogen in the aryl, the heteroaryl, the diarylamino, and the diarylboryl may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl.
  • Item 6. The organic electroluminescent device according to any one of items 1 to 5.
  • Item 7 In the general formula (1), at least one of R 4 to R 11 is heteroaryl, and at least one hydrogen in the heteroaryl may be substituted with aryl, heteroaryl, alkyl, or cycloalkyl.
  • Item 7. The organic electroluminescent device according to any one of items 1 to 6.
  • At least one of R 1 to R 3 is aryl or dibenzofuranyl, and at least one hydrogen in the aryl and dibenzofuranyl is aryl, heteroaryl, alkyl or cycloalkyl.
  • Item 8. The organic electroluminescent device according to any one of items 1 to 7, which may be substituted.
  • At least one of R 1 to R 3 is heteroaryl (at least one hydrogen in the heteroaryl may be substituted with aryl, heteroaryl, alkyl, or cycloalkyl).
  • at least one of R 4 to R 11 is aryl (at least one hydrogen in the aryl may be substituted with aryl, heteroaryl, alkyl or cycloalkyl),
  • Item 10 The organic electroluminescent device according to Item 1, wherein the host of the first component is a polycyclic aromatic compound represented by any of the following formulas.
  • Item 11 The organic electroluminescent device according to any one of Items 1 to 10, wherein the dopant as the second component is a polycyclic aromatic compound represented by the following general formula (2) or a polymer thereof.
  • R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls are linked via a single bond or a linking group; ), Alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl; Further, adjacent groups among R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, the b ring or the c ring, and at least one hydrogen atom in the formed ring I
  • R 8 is halogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 10 carbons or heteroaryl having 2 to 10 carbons, Item 7.
  • R 7 is hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 10 carbons or heteroaryl having 2 to 10 carbons. element.
  • the dopant as the second component is a dimer compound including two partial structures represented by the general formula (2) and a linking group L1 that connects the two partial structures
  • the linking group L1 is a single bond, arylene having 6 to 12 carbons, heteroarylene having 2 to 15 carbons, alkylene having 1 to 6 carbons, alkenylene having 1 to 6 carbons, alkynylene having 1 to 6 carbons, —O—, —S—,> NR, or a combination thereof, wherein R in> NR is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, 1 to carbons 6 alkyl or cycloalkyl having 3 to 14 carbon atoms, Item 12.
  • Item 14 The organic electroluminescent device according to any one of items 1 to 11, wherein the dopant as the second component is a polycyclic aromatic compound represented by the following general formula (3).
  • R 3 to R 12 , Z 1 and Z 2 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryls are a single bond or a linking group) ), Alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
  • adjacent groups among R 5 to R 7 and R 10 to R 12 may be bonded to each other to form an aryl ring or a heteroaryl ring together with at least one of the b ring and the d ring.
  • At least one hydrogen in the ring is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl , Cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl;
  • Z 1 may be bonded to ring a by a linking group or a single bond, and Z 2 may be bonded to ring c by a linking group or a single bond;
  • Y is B (boron), X 1 , X 2 , X 3 and X 4 are each independently>
  • Item 15. The organic electroluminescent device according to any one of items 1 to 11, wherein the dopant as the second component is a polycyclic aromatic compound represented by the following general formula (4) or a polymer thereof.
  • R 1 to R 3 and R 5 to R 15 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryls are a single bond or a linking group) ), Alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
  • adjacent groups among R 1 to R 3 , R 5 to R 7 , R 8 to R 11 and R 12 to R 15 are bonded to each other to form at least one of a ring, b ring, c ring and d ring.
  • aryl ring or a heteroaryl ring together with at least one hydrogen in the formed ring is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryl May be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these may be aryl, heteroaryl, alkyl or cyclo May be substituted with alkyl, Y 1 is B (boron), X is>O,>NR,>S,> Se or -C (-R) 2- , wherein R of -C (-R) 2- is alkyl having 1 to 6 carbons, A cycloalkyl having 3 to 14 carbons or an aryl having 6 to 12 carbons, wherein R in> NR is an aryl having 6 to 12 carbons, a heteroaryl having 2 to 15 carbons, an alkyl,
  • Item 16 The organic electroluminescent device according to any one of items 1 to 10, wherein the dopant as the second component is a polycyclic aromatic compound represented by the following general formula (5) or a polymer thereof.
  • R 1 to R 9 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls are linked via a single bond or a linking group; ), Alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl; Further, adjacent groups among R 1 to R 9 may be bonded to each other to form an aryl ring or a heteroaryl ring together with at least one of the a ring, the b ring and the c ring.
  • At least one hydrogen is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl, cycloalkyl , May be substituted with alkoxy or aryloxy, and at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, Y 1 is B (boron), X 1 , X 2 and X 3 are each independently>O,>NR,>S,> Se or —C (—R) 2 — (of X 1 , X 2 and X 3 ) At least two are NR), wherein R of -C (-R) 2- is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or aryl having 6 to 12 carbons.
  • N—R is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons.
  • R of —R may be —O—, —S—, —C (—R ′) 2 —, or may be bonded to at least one of the a ring, b ring and c ring by a single bond or a condensate (here, R ′ of the above “—C (—R ′) 2 —” is hydrogen, alkyl having 1 to 5 carbons, or cycloalkyl having 5 to 10 carbons.
  • Loalkyl) and At least one hydrogen in the compound represented by the formula (5) may be substituted with cyano, halogen, or deuterium.
  • Item 17 The organic electroluminescent device according to item 1, wherein the dopant of the second component is a polycyclic aromatic compound represented by any of the following formulas.
  • Item 18 And at least one of an electron transport layer and an electron injection layer disposed between the cathode and the light emitting layer, wherein at least one of the electron transport layer and the electron injection layer is a borane derivative, a pyridine derivative, or a fluoranthene derivative. Containing at least one selected from the group consisting of a BO derivative, an anthracene derivative, a benzofluorene derivative, a phosphine oxide derivative, a pyrimidine derivative, a carbazole derivative, a triazine derivative, a benzimidazole derivative, a phenanthroline derivative and a quinolinol-based metal complex.
  • Item 18 The organic electroluminescent device according to any one of Items 1 to 17.
  • At least one of the electron transport layer and the electron injection layer further comprises an alkali metal, an alkaline earth metal, a rare earth metal, an oxide of an alkali metal, a halide of an alkali metal, an oxide of an alkaline earth metal, and an alkaline earth metal. Containing at least one selected from the group consisting of halides of rare earth metals, oxides of rare earth metals, halides of rare earth metals, organic complexes of alkali metals, organic complexes of alkaline earth metals and organic complexes of rare earth metals. 19. The organic electroluminescent device according to 18.
  • R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, Alkoxy, aryloxy, At least one hydrogen in the aryl, the heteroaryl, the diarylamino, and the diarylboryl may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl; At least one of R 1 to R 11 is a group represented by the following formula (1-d), At least one hydrogen in the compound represented by the formula (1) may be substituted with cyano, halogen, or deuterium. ) (In the above formula, * indicates a bonding position, and at least one hydrogen in the formula (1-d) may be further substituted with aryl, heteroaryl, alkyl or cycloalkyl.)
  • R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, Alkoxy or aryloxy; At least one hydrogen in the aryl, the heteroaryl, the diarylamino, and the diarylboryl may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl; At least one hydrogen in the compound represented by the formula (1) may be substituted with cyano, halogen, or deuterium.
  • Item 22 A polymer compound obtained by polymerizing the reactive compound according to Item 21 as a monomer, or a polymer crosslinked product obtained by further crosslinking the polymer compound.
  • Item 23. 21 A pendant polymer compound obtained by substituting the reactive compound according to item 21 into the main chain polymer, or a pendant polymer crosslinked product obtained by further crosslinking the pendant polymer compound.
  • Item 24 As the first component, the reactive compound according to item 21, the polymer compound or crosslinked polymer according to item 22, or the pendant polymer compound or crosslinked pendant polymer according to item 23 is used as a host. Including As a second component, containing a boron-containing polycyclic aromatic compound as a dopant, Including an organic solvent as a third component, A composition for forming a light emitting layer.
  • a polycyclic aromatic compound represented by the following general formula (1) is contained as a host
  • a second component containing a boron-containing polycyclic aromatic compound as a dopant
  • R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, Alkoxy or aryloxy; At least one hydrogen in the aryl, the heteroaryl, the diarylamino, and the diarylboryl may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl; At least one hydrogen in the compound represented by the formula (1) may be substituted with cyano, halogen, or deuterium.
  • Item 26 The composition for forming a light emitting layer according to Item 24 or 25, wherein the at least one organic solvent of the third component has a boiling point of 130 to 350 ° C.
  • the organic solvent of the third component contains a good solvent (GS) and a poor solvent (PS) for at least one of the host of the first component and the dopant of the second component, and the boiling point (BP GS ) of the good solvent ( GS ) There below the boiling point (BP PS) of the poor solvent (PS), light-emitting layer forming composition according to any one of claims 24-26.
  • GS good solvent
  • PS poor solvent
  • the first component is 0.0999% by mass to 8.0% by mass based on the total mass of the composition for forming a light emitting layer;
  • the second component is 0.0001% by mass to 2.0% by mass relative to the total mass of the light emitting layer forming composition;
  • the third component is 90.0% by mass to 99.9% by mass relative to the total mass of the composition for forming a light emitting layer;
  • Item 28 The composition for forming a light emitting layer according to any one of Items 24 to 27.
  • Item 21. A high-molecular-weight composition comprising: a first structural unit derived from the reactive compound according to Item 21; and a second structural unit derived from a reactive compound obtained by replacing a reactive substituent with a boron-containing polycyclic aromatic compound.
  • a composition for forming a light-emitting layer comprising: an organic solvent.
  • Item 30 A pair of electrodes consisting of an anode and a cathode, disposed between the pair of electrodes, Item 30.
  • An organic electroluminescent device having a light emitting layer formed using the light emitting layer forming composition according to any one of items 24 to 29.
  • Item 31 At least one of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer is a polymer compound obtained by polymerizing a low molecular compound capable of forming each layer as a monomer, or A polymer crosslinked product obtained by further crosslinking the polymer compound, or a pendant polymer compound obtained by reacting a low molecular compound capable of forming each layer with a main chain polymer, or the pendant polymer compound.
  • Item 32 Item 34. A display device or a lighting device provided with the organic electroluminescent element according to any one of Items 1 to 19, 30, and 31.
  • organic EL characteristics such as light emitting characteristics can be further improved.
  • FIG. 1 is a schematic cross-sectional view illustrating an organic EL device according to an embodiment.
  • Organic EL device The organic EL device of the present invention has a pair of electrodes including an anode and a cathode, and a light emitting layer disposed between the pair of electrodes.
  • the light-emitting layer includes a polycyclic aromatic compound represented by the general formula (1) as a first component, and a boron-containing polycyclic aromatic compound as a second component. I do. Note that, in the light emitting layer, the first component functions as a host, and the second component functions as a dopant.
  • the polycyclic aromatic compound represented by the first component formula (1) has a large HOMO-LUMO gap (band gap Eg in a thin film) and a high triplet excitation energy (E T ). This is because the 6-membered ring containing the hetero element has a low aromatic attribute, so that the reduction of the HOMO-LUMO gap due to the expansion of the conjugated system is suppressed, and the triplet excited state (T1) due to electronic perturbation of the hetero element. Of SOMO1 and SOMO2 are localized.
  • the polycyclic aromatic compound represented by the formula (1) has a high triplet energy, and thus is preferably used as a host of a thermally activated delayed fluorescent material.
  • the excited triplet energy level E (1, T, PT) determined from the peak top of the phosphorescence spectrum of the compound of the first component is a viewpoint that promotes the generation of TADF in the light-emitting layer without inhibiting it. Therefore, it is preferable that the energy is higher than the excited triplet energy level E (2, T, PT) determined from the peak top of the phosphorescence spectrum of the compound of the second component.
  • the triplet energy level E (1, T, PT) is preferably 0.01 eV or more, more preferably 0.03 eV or more, and still more preferably 0.1 eV or more, as compared with E (2, T, PT).
  • a TADF-active compound may be used as the host compound.
  • the first component is a compound used as a host, and generally has a higher content in the light-emitting layer than the dopant as the second component. Therefore, the excited triplet energy is generally obtained in a state close to actual use conditions.
  • the excited triplet energy of the first component is obtained from a single-component deposited film, and the excitation triplet energy of the second component is obtained.
  • the triplet energy can be determined from a film in which the inactive component or the first component is the main component and the low-concentration second component is uniformly dispersed.
  • the first component used in the present invention has a relatively large planar structure formed by a boron atom, an oxygen atom and an a to b ring as represented by the formula (1).
  • the values of the excited singlet energy and the excited triplet energy may be estimated to be lower than those obtained from the above-described single-component vapor-deposited film of the first component. Therefore, in this specification, in order to eliminate the influence of aggregation and interaction between the first components, the excited singlet energy and the excited triplet energy of the first component and the second component are mainly composed of the inactive component. And a film obtained by uniformly dispersing a low concentration of the first component or the second component.
  • the inactive component includes, for example, a polymer that is optically transparent in the range of excitation and emission of the first component or the second component, and specifically, poly (methyl methacrylate), polystyrene, polyolefin and cycloolefin. Olefin polymers are mentioned.
  • the first component preferably has a lower cohesiveness.
  • the molecular structure of the first component is preferably an asymmetric structure, It is preferable to have a large dihedral angle in the molecule, or it is preferable to have a steric hindrance in the molecule.
  • orbits related to charge transport can be close to each other.
  • the glass transition temperature (Tg) of the first component is higher, and it is more preferable that the first component interacts between molecules.
  • the first component and the second component may both use a compound having low cohesiveness, or one of them may use a compound having low cohesiveness.
  • the degree of red shift in the low-concentration uniform dispersion state and the spectrum of the single-component deposited film, or the spectrum of the co-deposited film of the first component and the second component and the spectrum of the second component in the low-concentration uniform dispersion state Can be estimated according to the degree of red shift.
  • R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (the two aryls may be bonded via a single bond or a linking group. ), Alkyl, cycloalkyl, alkoxy or aryloxy (the above, the first substituent), wherein at least one hydrogen in the aryl, the heteroaryl, the diarylamino and the diarylboryl is aryl, heteroaryl, alkyl or cyclo It may be substituted with alkyl (the above, the second substituent).
  • the “aryl” as the first substituent includes, for example, aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, and 6 to 20 carbon atoms.
  • Aryl having 16 carbon atoms is more preferred, aryl having 6 to 12 carbon atoms is particularly preferred, and aryl having 6 to 10 carbon atoms is most preferred.
  • aryl examples include, for example, phenyl which is a monocyclic aryl, (2-, 3-, 4-) biphenylyl which is a bicyclic aryl, and (1-, 2-) naphthyl which is a fused bicyclic aryl Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-ter
  • aryl as the first substituent refers to “aryl” in diarylamino as the first substituent, diarylboryl (two aryls may be bonded via a single bond or a linking group) And “aryl” in aryloxy, and “aryl” as the second substituent.
  • Heteroaryl as the first substituent includes, for example, heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, more preferably heteroaryl having 2 to 20 carbon atoms, Heteroaryl having 2 to 15 carbon atoms is more preferable, and heteroaryl having 2 to 10 carbon atoms is particularly preferable.
  • the heteroaryl includes, for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
  • heteroaryl examples include, for example, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanil, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, benzofuranyl, Isobenzofuranyl, dibenzofuranyl, thiophenyl, benzo [b] thienyl, dibenzothiophenyl, indolyl, isoindolyl, 1H-indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, is
  • heteroaryl as the first substituent can be similarly quoted for “heteroaryl” as the second substituent.
  • at least one hydrogen in the heteroaryl is an aryl such as phenyl (the specific examples described above) or an alkyl such as methyl (a specific example described later).
  • Substituted groups are also included in the heteroaryl as the second substituent.
  • the second substituent is a carbazolyl group
  • a carbazolyl group in which at least one hydrogen at the 9-position is substituted with an aryl such as phenyl or an alkyl such as methyl is also substituted with a heteroaryl as the second substituent. included.
  • alkyl as the first substituent may be straight-chain or branched, and includes, for example, alkyl having 1 to 24 carbons (branched-chain alkyl having 3 to 24 carbons). Preferred are alkyls having 18 (branched alkyls having 3 to 18 carbon atoms), more preferred are alkyls having 1 to 12 carbons (branched alkyls having 3 to 12 carbons), and alkyls having 1 to 6 carbons (having 3 carbons are preferable). And more preferably an alkyl having 1 to 5 carbons (a branched alkyl having a carbon number of 3 to 5), and more preferably an alkyl having a carbon number of 1 to 4 (a branched chain having 3 to 4 carbons). Alkyl) is particularly preferred, and methyl is most preferred.
  • alkyl includes, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl (t-amyl), n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl (1,1,3 , 3-tetramethylbutyl), 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethyl Hexyl, n-
  • alkyl as the first substituent can be similarly quoted for “alkyl” as the second substituent.
  • the position at which the alkyl as the second substituent substitutes the first substituent is not particularly limited, but based on the bonding position (1 position) of the first substituent to the a ring, b ring and c ring.
  • the 2- or 3-position is preferred, and the 2-position is more preferred.
  • Cycloalkyl as the first substituent includes cycloalkyl having one ring, cycloalkyl having a plurality of rings, cycloalkyl having a double bond not conjugated in a ring, and cycloalkyl having a branch outside the ring.
  • cycloalkyl having 3 to 24 carbon atoms cycloalkyl having 3 to 20 carbon atoms, cycloalkyl having 3 to 16 carbon atoms, cycloalkyl having 3 to 14 carbon atoms, cycloalkyl having 3 to 12 carbon atoms may be used.
  • Examples thereof include alkyl, cycloalkyl having 5 to 10 carbons, cycloalkyl having 5 to 8 carbons, cycloalkyl having 5 to 6 carbons, cycloalkyl having 5 carbons, and cycloalkyl having 6 to 10 carbons.
  • cycloalkyls include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl and alkyl (especially methyl) -substituted alkyl having 1 to 5 carbon atoms, norbornenyl, bicyclo [1.0.1] butyl, bicyclo [1.1.1] pentyl, bicyclo [2.0.1] pentyl, bicyclo [1.2.1] hexyl, bicyclo [3.0.1] hexyl, bicyclo [2.1.2] heptyl, bicyclo [2,2,1] heptyl, bicyclo [2.2.2] octyl, decahydronaphthyl, adamantyl, diamantyl, decahydronaphthalenyl, decahydroazulenyl and the like.
  • alkoxy (first substituent) includes, for example, alkoxy having 1 to 24 carbons (alkoxy having a branched chain having 3 to 24 carbons), and alkoxy having 1 to 18 carbons (3 to 18 carbons). Is preferably a C1-C12 alkoxy (C3-C12 branched-chain alkoxy), more preferably a C1-C6 alkoxy (C3-C6 branched-chain alkoxy).
  • an alkoxy having 1 to 5 carbon atoms is even more preferable, and an alkoxy having 1 to 4 carbon atoms (an alkoxy having a branched chain having 3 to 4 carbon atoms) is particularly preferable. preferable.
  • alkoxy examples include methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, s-butoxy, t-butoxy, t-amyloxy, n-pentyloxy, isopentyloxy, neopentyloxy, t-pentyl Oxy, n-hexyloxy, 1-methylpentyloxy, 4-methyl-2-pentyloxy, 3,3-dimethylbutoxy, 2-ethylbutoxy, n-heptyloxy, 1-methylhexyloxy, n-octyloxy, t-octyloxy, 1-methylheptyloxy, 2-ethylhexyloxy, 2-propylpentyloxy, n-nonyloxy, 2,2-dimethylheptyloxy, 2,6-dimethyl-4-heptyloxy, 3,5,5 -Trimethylhexyloxy, n-decyloxy
  • aryl in the “diarylboryl” of the first substituent, the above description of aryl can be cited. Further, the two aryls may be linked via a single bond or a linking group (eg,> C (—R) 2 ,>O,> S, or> NR).
  • a linking group eg,> C (—R) 2 ,>O,> S, or> NR.
  • R of> C (—R) 2 and> NR represents aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), Alkyl, cycloalkyl, alkoxy or aryloxy (the first substituent), wherein the first substituent is further substituted with aryl, heteroaryl, alkyl or cycloalkyl (the second substituent).
  • the description of aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy as the first substituent described above can be cited.
  • the emission wavelength can be adjusted by the steric hindrance, electron donating property and electron withdrawing property of the structure of the first substituent, and is preferably a group represented by the following structural formula, more preferably methyl, t- Butyl, t-amyl, t-octyl, phenyl, o-tolyl, p-tolyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 2,4,6-mesityl, diphenylamino, diphenyl -P-tolylamino, bis (p- (t-butyl) phenyl) amino, carbazolyl, 3,6-dimethylcarbazolyl, 3,6-di-t-butylcarbazolyl and phenoxy, more preferably Methyl, t-butyl, t-amyl, t-octyl, phenyl, o-tolyl, 2,6-xylyl
  • steric hindrance is large for selective synthesis.
  • Me represents methyl
  • tBu represents t-butyl
  • tAm represents t-amyl
  • tOct represents t-octyl
  • At least one of R 1 to R 11 is preferably a group represented by any of the following formulas (1-a) to (1-s), and a group represented by the following formula (1-d) Is more preferable.
  • At least one hydrogen atom has 6 to 30 carbon atoms as the above-mentioned “second substituent”. May be substituted with a heteroaryl having 2 to 30 carbons, an alkyl having 1 to 24 carbons or a cycloalkyl having 3 to 12 carbons.
  • R in the formula (1-i), the formula (1-j), the formula (1-k) and the formula (1-r) is each independently hydrogen or the above-mentioned “second substituent” Represents aryl having 6 to 30 carbons, heteroaryl having 2 to 30 carbons, alkyl having 1 to 24 carbons or cycloalkyl having 3 to 12 carbons.
  • adjacent groups among R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring.
  • the polycyclic aromatic compound represented by the general formula (1) can have the following formulas (1-L1) and (1-L2) depending on the mutual bonding form of the substituents on the ring a, ring b and ring c.
  • the ring structure constituting the compound changes.
  • the a ′ ring, b ′ ring and c ′ ring in each formula correspond to the above “formed ring (aryl ring or heteroaryl ring)”.
  • each symbol in the formula (1-L1) and the formula (1-L2) is the same as the definition in the formula (1).
  • the compounds represented by the above formulas (1-L1) and (1-L2) include, for example, a benzene ring, an benzene ring, an indole ring, and a pyrrole with respect to a benzene ring which is a ring (and at least one of a b ring and a c ring).
  • Examples of the formed “aryl ring” include an aryl ring having 9 to 30 carbon atoms, an aryl ring having 9 to 24 carbon atoms is preferable, and an aryl ring having 9 to 20 carbon atoms is more preferable.
  • An aryl ring having 9 to 16 carbon atoms is more preferred, an aryl ring having 9 to 12 carbon atoms is particularly preferred, and an aryl ring having 9 to 10 carbon atoms is most preferred.
  • the ring a (ring b or ring c) is already composed of a benzene ring having 6 carbon atoms. Is the number of carbon atoms.
  • ⁇ aryl ring '' include, for example, a fused bicyclic naphthalene ring, a fused tricyclic ring, an acenaphthylene ring, a fluorene ring, a phenalene ring, a phenanthrene ring, a fused tetracyclic ring system, a triphenylene ring, and pyrene. Ring, naphthacene ring, condensed pentacyclic perylene ring, pentacene ring and the like.
  • heteroaryl ring examples include a heteroaryl ring having 6 to 30 carbon atoms, preferably a heteroaryl ring having 6 to 25 carbon atoms, and a heteroaryl ring having 6 to 20 carbon atoms. Is more preferable, and a heteroaryl ring having 6 to 15 carbon atoms is further preferable, and a heteroaryl ring having 6 to 10 carbon atoms is particularly preferable.
  • a heteroaryl ring for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms and the like can be mentioned.
  • the total carbon number of the condensed ring obtained by condensing the 5-membered ring with the benzene ring is 6 carbon atoms. It is the lower limit of carbon number.
  • heteroaryl rings include, for example, indole ring, isoindole ring, 1H-indazole ring, benzimidazole ring, benzoxazole ring, benzothiazole ring, 1H-benzotriazole ring, quinoline ring, isoquinoline ring, cinnoline Ring, quinazoline ring, quinoxaline ring, phthalazine ring, naphthyridine ring, purine ring, pteridine ring, carbazole ring, acridine ring, phenoxatiin ring, phenoxazine ring, phenothiazine ring, phenazine ring, indolizine ring, benzofuran ring, isobenzofuran Ring, dibenzofuran ring, benzothiophene ring, dibenzothiophene ring, thianthrene ring and the like.
  • a plurality of R 1 to R 11 may have a first substituent.
  • the substitution positions are selected so that steric hindrance to each other is reduced.
  • Substituents may be present at adjacent positions in the same ring, but in this case, a group having small steric hindrance is preferred.
  • the number of substituents in R 1 to R 11 in the general formula (1) is not particularly limited, but the total number of carbon atoms of the substituents in R 1 to R 11 is preferably 36 or less.
  • R 1 to R 11 have a plurality of first substituents, particularly when a synthesis step of introducing boron at the end is used, from the viewpoint of ease of synthesis, a ring-B bond It is preferable to have a substituent so as to be line-symmetric with respect to. On the other hand, from the viewpoint of reducing crystallinity and cohesion, it is preferable to have a substituent so as to have an asymmetric structure.
  • R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (where two aryls are Which may be bonded via a bond or a linking group), alkyl, cycloalkyl or alkoxy (the above is the first substituent), and at least one hydrogen in the aryl, the heteroaryl, and the diarylamino is an aryl. , Heteroaryl, alkyl or cycloalkyl (the second substituent), and a polycyclic aromatic compound. That is, in the polycyclic aromatic compound serving as the host of the first embodiment, a compound having no aryloxy, in which aryloxy such as the group represented by the above formula (1-h) is excluded as the first substituent It is.
  • At least one of R 4 to R 11 is a heteroaryl (the above is a first substituent), and at least one of the heteroaryls is a heteroaryl.
  • One hydrogen includes a polycyclic aromatic compound which may be substituted with an aryl, heteroaryl, alkyl or cycloalkyl (the above is a second substituent).
  • Examples of the polycyclic aromatic compound serving as the host of the second embodiment include a compound (BO2-0431) and a compound (BO2-0520S) described below.
  • R 4 to R 11 is a compound represented by the above formula (1-a), formula (1-b), formula (1-c), or formula (1-c).
  • d a group represented by any one of formulas (1-1), (1-m) and (1-n), and preferably a group represented by the above formulas (1-a) and (1-d) Is more preferable.
  • At least one of R 1 to R 3 is aryl or dibenzofuranyl (the above is a first substituent), and And a polycyclic aromatic compound in which at least one hydrogen in the dibenzofuranyl may be substituted with aryl, heteroaryl, alkyl or cycloalkyl (the above is a second substituent).
  • a polycyclic aromatic compound serving as the host in the third embodiment include a compound (BO2-0264 / 0511S) and a compound (BO2-0231) described below.
  • At least one of R 1 to R 3 is a compound represented by the above formula (1-d), formula (1-f), formula (1-i), or formula (1-i). j) and a group represented by any of formulas (1-k), and more preferably a group represented by any of the above formulas (1-d) and (1-i). preferable.
  • At least one of R 1 to R 3 is a heteroaryl (the above is a first substituent) (at least in the heteroaryl)
  • One hydrogen atom may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl (or more, a second substituent)
  • at least one of R 4 to R 11 is an aryl (or more, a first substituent)
  • a group) at least one hydrogen in the aryl may be substituted with aryl, heteroaryl, alkyl or cycloalkyl (the above is a second substituent)).
  • Examples of the polycyclic aromatic compound serving as the host of the fourth embodiment include a compound (BO2-0220 / 0510S) and a compound (BO2-0220 / 0511S) described below.
  • at least one of R 1 to R 3 is a compound represented by the above formula (1-a), formula (1-b), formula (1-c) or formula (1-c).
  • d) a group represented by any of formulas (1-1), (1-m) and (1-n), wherein at least one of R 4 to R 11 is a group represented by the above formula (1-f) ), A group represented by any one of formulas (1-i), (1-j) and (1-k).
  • At least one hydrogen in the polycyclic aromatic compound represented by the formula (1) may be substituted with cyano, halogen, or deuterium.
  • Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine.
  • the polycyclic aromatic compound represented by the general formula (1) is preferably, for example, a compound represented by any one of the following formulas.
  • any hydrogen may be substituted with alkyl having 1 to 5 carbons (eg, methyl or t-butyl) or cycloalkyl having 5 to 10 carbons (eg, cyclopentyl or cyclohexyl).
  • the polycyclic aromatic compound represented by the general formula (1) will be described more specifically.
  • the compound represented by the general formula (1) is associated with the compound number, the compound is also described as a general formula (BO2-1).
  • the symbols of R 1 to R 11 may be omitted for simplification of the expression. Such abbreviations are not used in formulas that represent specific compound structures rather than general formulas.
  • R 1 to R 11 in the general formula (BO2-1) have a substituent other than hydrogen
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 9 , R 10 and R 11 can have any substituent
  • HOMO and LUMO From the viewpoint of control, when deepening the HOMO, it is preferable to introduce an electron-donating substituent into at least one of R 1 , R 3 , R 4 , R 6 , R 9 and R 11 , and conversely When making the HOMO shallow, it is preferable to introduce an electron-withdrawing substituent into at least one of R 1 , R 3 , R 4 , R 6 , R 9 and R 11 .
  • the substituents of R 1 to R 11 having a larger dihedral angle with respect to the aromatic ring formed by rings a to c, a boron atom and an oxygen atom are more likely to have cohesiveness and inter-host or host- Interaction between dopants can be reduced.
  • the compound of the first component used in the present invention and the compounds described below that are suitable as the second component have many compounds having high planarity. Therefore, it is better to reduce the cohesiveness and interaction to reduce the red shift of the emission spectrum and the like. This is preferable from the viewpoint of preventing the width from becoming wide, and achieving emission of deep blue light and high color purity.
  • the dihedral angle of the compound of the first component used in the present invention may use molecular orbital calculation. The calculation does not need to be exact, and for example, MOPAC can be used.
  • polycyclic aromatic compound represented by the general formula (1) which is a host of the first material, include compounds having the following structural formulas. Note that Me represents methyl and tBu represents butyl.
  • the polycyclic aromatic compound represented by the general formula (1) is a polymer compound obtained by polymerizing a reactive compound in which these are substituted with a reactive substituent as a monomer (the above-described monomer for obtaining the polymer compound).
  • a crosslinked pendant polymer crosslinked product (the pendant polymer compound for obtaining the pendant polymer crosslinked product has a crosslinkable substituent) may also be used.
  • Device for material for example, can be used a material for an organic electroluminescence device, an organic field effect transistor materials or organic thin film solar cell material.
  • reactive substituents including the above-mentioned polymerizable substituents, the above-mentioned crosslinkable substituents, and the reactive substituents for obtaining the pendant-type polymer, hereinafter, also simply referred to as “reactive substituents”.
  • substituents having the following structures are preferred. * In each structural formula shows a bonding position.
  • the reactive substituent other than the above may be chlorine, bromine or iodine, or a boron-containing group represented by the following formula (XLS-19). * In the structural formula indicates a bonding position.
  • R 41 and R 42 are each independently an alkyl, and R 41 and R 42 may combine with each other to form a ring. Further, the total carbon number of R 41 and R 42 is preferably 2 to 10.
  • the compound represented by the formula (1) is prepared as an intermediate by first bonding the rings a to c with a bonding group (—O—). Then, the final product can be produced by bonding the rings a to c with a bonding group (group containing B) (second reaction).
  • first reaction for example, a general etherification reaction such as a nucleophilic substitution reaction or an Ullmann reaction can be used.
  • second reaction a tandem hetero Friedel-Crafts reaction (continuous aromatic electrophilic substitution reaction, the same applies hereinafter) can be used.
  • the details of the first and second reactions can be referred to the description described in WO 2015/102118.
  • the second reaction is a reaction for introducing B (boron) bonding the a ring, the b ring and the c ring as shown in the following scheme (1).
  • a hydrogen atom between two Os is ortho-metallized with n-butyllithium, sec-butyllithium, t-butyllithium, or the like.
  • boron trichloride, boron tribromide, or the like is added, and a metal exchange of lithium-boron is performed.
  • a Brönsted base such as N, N-diisopropylethylamine is added to cause a tandem bola-Friedel-Crafts reaction. You can get things.
  • a Lewis acid such as aluminum trichloride may be added to accelerate the reaction.
  • lithium was introduced to a desired position by orthometalation.
  • a bromine atom or the like was introduced at a position where lithium was to be introduced, and the desired position was also obtained by halogen-metal exchange. Lithium can be introduced.
  • these groups may be introduced into an intermediate in advance, or these groups may be introduced after the second reaction.
  • the compound represented by the formula (1) having a substituent at a desired position and being represented by the formula (1) can be synthesized by appropriately selecting the above synthesis method and appropriately selecting the starting materials to be used.
  • the organic EL device of the present invention contains a boron-containing polycyclic aromatic compound as a dopant in the light emitting layer as a second component.
  • the second component contained in the light emitting layer of the organic EL device of the present invention may be a delayed fluorescent substance or a non-delayed fluorescent substance, a delayed fluorescent substance is preferred, and a thermally activated delayed fluorescent substance is more preferred. preferable.
  • thermally activated delayed phosphor refers to the absorption of thermal energy, which causes an inverse intersystem crossing from an excited triplet state to an excited singlet state, and radiation inactivation from the excited singlet state to cause delayed fluorescence. It means a compound that can emit.
  • thermalally activated delayed fluorescence includes those that undergo higher-order triplets in the process of excitation from the excited triplet state to the excited singlet state. For example, a paper by Monkman et al. Of Durham University (NATURE COMMUNICATIONS, 7: 13680, DOI: 10.1038 / ncomms13680), and a paper by Hosokai et al.
  • the fluorescence lifetime of a sample containing a target compound is measured at 300 K, it is determined that the target compound is a “heat-activated delayed fluorescent substance” when a slow fluorescent component is observed.
  • the slow fluorescent component refers to a component having a fluorescence lifetime of 0.1 ⁇ sec or more.
  • the measurement of the fluorescence lifetime can be performed using, for example, a fluorescence lifetime measuring device (C11367-01, manufactured by Hamamatsu Photonics KK).
  • the compound containing a boron atom which is the second component of the present invention, has an excited triplet energy involved in forward and reverse intersystem crossings from an excited triplet state to an excited singlet state by molecular orbital calculation, It has been pointed out that it may be higher order triplet energy than the excited triplet energy observed by the phosphorescence spectrum (The 98th Annual Meeting of the Chemical Society of Japan, Publication No .: 2I4-15, DABNA Mechanism of high-efficiency light emission in organic EL devices used as light-emitting molecules, presented by Professor Toru Sato of Kyoto University graduate School of Engineering).
  • the inverse intersystem crossing in DABNA2 having a boron atom in the molecule is an FvHT (Fluorescence via Higher Triplet) mechanism using higher triplet orbitals, and the transition from higher triplet orbitals to the ground state is performed. It is suggested that the transition from higher-order triplet orbit to excited singlet orbit occurs because of the suppression.
  • FvHT Fluorescence via Higher Triplet
  • the excitation singlet energy level determined from the short wavelength side peak top of the fluorescence spectrum of the second component is E (2, S, PT), and the excitation triplet energy determined from the short wavelength side peak top of the phosphorescence spectrum of the second component.
  • E (2, T, PT) the energy level
  • ⁇ E (2, ST, PT) the singlet / triplet energy difference ( ⁇ E (2, ST, PT) obtained therefrom has the following relationship.
  • ⁇ E (2, ST, PT) E (2, S, PT) ⁇ E (2, T, PT) ⁇ 0.20 eV That is, in the second component, the magnitude of ⁇ E (ST) is used as an index of TADF activity.
  • ⁇ E (2, ST, PT) is preferably 0.20 eV or less, more preferably 0.15 eV or less, and further preferably 0.10 eV or less.
  • the inverse intersystem crossing speed indicates the speed of the inverse intersystem crossing from the excited triplet to the excited singlet.
  • the inverse intersystem crossing velocity of the second component can be calculated by transient fluorescence spectrometry using the method described in Nat. Commun. 2015, 6, 8476. or Organic Electronics 2013, 14, 2721-2726, Specifically, the inverse intersystem crossing speed of the assisting dopant is preferably 10 5 s ⁇ 1 or more, more preferably 10 6 s ⁇ 1 or more.
  • Luminescence speed indicates the speed of transition from the excited singlet to the ground state via fluorescence emission without going through the TADF process.
  • the emission speed of the second component can be calculated using the method described in Nat. Commun. 2015, 6, 8476. or Organic Electronics 2013, 14, 2721-2726, similarly to the inverse intersystem crossing speed.
  • the inverse intersystem crossing velocity of the second component is preferably 10 7 s ⁇ 1 or more, and more preferably 10 8 s ⁇ 1 or more.
  • any compound other than the compound represented by the formula (1) may be used.
  • suitable polycyclic aromatic compounds will be described in detail.
  • polycyclic aromatic compound represented by the general formula (2) and a multimer thereof as a second component a polycyclic aromatic compound represented by the following general formula (2) or a multimer thereof is used. preferable.
  • R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, Diarylboryl (the two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen (the first substituent), and at least one of these One hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl (the above, the second substituent).
  • adjacent groups among R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, the b ring or the c ring, and at least one hydrogen atom in the formed ring Is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryl It may be substituted by oxy (the first substituent), and at least one hydrogen in these may be substituted by aryl, heteroaryl, alkyl or cycloalkyl (the second substituent).
  • Y 1 is B (boron), and X 1 and X 2 are each independently>O,>NR,>S,> Se or —C (—R) 2 — (provided that X 1 and X 2 are not simultaneously> O), wherein R of —C (—R) 2 — is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or 6 to 12 carbons R of the formula> NR is an aryl having 6 to 12 carbons, a heteroaryl having 2 to 15 carbons, an alkyl having 1 to 6 carbons or a cycloalkyl having 3 to 6 carbons; Wherein R in the> NR is —O—, —S—, —C (—R ′) 2 —, and may be bonded to at least one of the a ring, b ring and c ring by a single bond or condensation.
  • R ′ of the above “—C (—R ′) 2 —” is hydrogen, alkyl having 1 to 5 carbons or 5 to 5 carbons) 10 cycloalkyl). At least one hydrogen in the compound represented by the general formula (2) may be substituted with cyano, halogen, or deuterium.
  • Aryl “heteroaryl”, “diarylamino”, “diarylboryl (two aryls may be bonded via a single bond or a linking group)” as a first substituent such as R 1
  • R 1 “Alkyl”, “cycloalkyl”, “alkoxy” and “aryloxy”, and “aryl”, “heteroaryl”, “alkyl” and “cycloalkyl” as the second substituent such as R 1 are described above. The description of these groups as the first substituent in the formula (1) can be cited.
  • heteroaryl in diheteroarylamino as the first substituent such as R 1 and “heteroaryl” in arylheteroarylamino are the same as those of heteroaryl as the first substituent in the above formula (1).
  • aryl in the arylheteroarylamino the description of aryl as the first substituent in the above formula (1) can be cited.
  • Halogen which is the first substituent such as R 1 is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine.
  • the emission wavelength can be adjusted by the steric hindrance, electron-donating property, and electron-withdrawing property of the structure of R 1 or the like (first substituent), and at least one of R 1 to R 11 is preferably Is a group represented by the following formula, more preferably, methyl, t-butyl, t-amyl, t-octyl, phenyl, o-tolyl, p-tolyl, 2,4-xylyl, 2,5- Xylyl, 2,6-xylyl, 2,4,6-mesityl, diphenylamino, di-p-tolylamino, bis (p- (t-butyl) phenyl) amino, carbazolyl, 3,6-dimethylcarbazolyl, , 6-di-t-butylcarbazolyl and phenoxy, more preferably methyl, t-butyl, t-amyl, t-octyl, phenyl,
  • steric hindrance is large for selective synthesis.
  • Me represents methyl
  • tBu represents t-butyl
  • tAm represents t-amyl
  • tOct represents t-octyl
  • Adjacent groups among R 1 to R 11 in the general formula (2) may be bonded to each other to form an aryl ring or a heteroaryl ring together with at least one of a ring, b ring and c ring.
  • the polycyclic aromatic compound represented by the formula (2) has the following general formulas (2-L1) and (2-L2) depending on the mutual bonding form of the substituents on the ring a, ring b and ring c. As shown, the ring structure of the compound changes. The definition of the symbols in each formula is the same as the definition of general formula (2).
  • the a ′ ring, b ′ ring and c ′ ring represent a substituent R 1 to R 3
  • a substituent R 8 to R 11 and a substituent R 4 to R 7 represent an aryl ring or a heteroaryl ring formed together with the a-ring, b-ring and c-ring by bonding adjacent groups (a ring, b-ring or c-ring is condensed with another ring structure) Can also be called a fused ring).
  • R 3 of the a ring and R 4 of the c ring, R 11 of the b ring and R 1 of the a ring are “adjacent” They do not correspond to "groups", and they do not bond. That is, “adjacent groups” means groups that are adjacent on the same ring.
  • R 8 of ring b and R 7 of ring c do not bond to an adjacent group, and do not constitute a part of the formed aryl ring or heteroaryl ring.
  • aryl ring (a ′ ring, b ′ ring or c ′ ring) or “heteroaryl ring” (a ′ ring, b ′ ring or c ′ ring) is an aryl as the first substituent described above. Or a heteroaryl, non-valent ring.
  • the “aryl ring” is The total number of carbon atoms of the condensed ring obtained by condensing a 5-membered ring with the 5-membered ring is the lower limit of the number of carbon atoms. It becomes a number.
  • the compound represented by the formula (2-L1) or the formula (2-L2) is, for example, a benzene ring, an indole ring, a pyrrole ring, a benzofuran ring with respect to a benzene ring which is a ring (or b ring or c ring).
  • a compound having an a ′ ring (or b ′ ring or c ′ ring) formed by condensing a benzothiophene ring, and the formed condensed ring a ′ (or condensed ring b ′ or condensed ring c ′) is They are a naphthalene ring, a carbazole ring, an indole ring, a dibenzofuran ring or a dibenzothiophene ring, respectively.
  • R 1 and the like (the first substituent) described above and aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, and diarylboryl as the first substituent in the formula (1).
  • Two aryls have a single bond or a linking group ), Alkyl, cycloalkyl, alkoxy or aryloxy.
  • X 1 and X 2 in the general formula (2) are each independently>O,>NR,>S,> Se or —C (—R) 2 —, provided that X 1 and X 2 Is different from the polycyclic aromatic compound represented by the general formula (1) in that it is not simultaneously> O.
  • X 1 and X 2 are preferably both>NR,> O and> NR, or> NR and> O, more preferably both> O or both> NR, and both> NR Is more preferred.
  • the R of —C (—R) 2 — is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or aryl having 6 to 12 carbons, and R of> NR is carbon Aryl having 6 to 12 carbon atoms, heteroaryl having 2 to 15 carbon atoms, alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms, and these substituents are represented by the above-mentioned formula (1). Reference may be made to the description of aryl, heteroaryl, alkyl or cycloalkyl as first substituent.
  • R in the above-mentioned —N—R is —O—, —S—, —C (—R ′) 2 —, and is bonded to at least one of the a ring, b ring and c ring by a single bond or condensation. Is also good.
  • R in the above-mentioned “—C (—R) 2 —” is hydrogen, alkyl having 1 to 5 carbons, or cycloalkyl having 5 to 10 carbons.
  • This rule can be represented by a compound represented by the following formula (2-L3) and having a ring structure in which N is incorporated into a condensed ring b ′ and a condensed ring c ′.
  • a b ′ ring (or c ′ ring) formed by condensing another ring so as to incorporate N into the benzene ring which is the b ring (or c ring) in the general formula (2).
  • the formed condensed ring b ′ (or condensed ring c ′) is, for example, a phenoxazine ring, a phenothiazine ring or an acridine ring.
  • the above definition can also be represented by a compound represented by the following formula (2-L4) or (2-L5) and having a ring structure in which N is incorporated into a condensed ring a ′.
  • the formed condensed ring a ′ is, for example, a phenoxazine ring, a phenothiazine ring or an acridine ring.
  • each symbol in the equations (2-L3) to (2-L5) is the same as the definition in the equation (2).
  • a dimer to a hexamer is preferable, a dimer to a trimer is more preferable, and a dimer is more preferable.
  • the multimer may be a form having a plurality of the above-mentioned unit structures in one compound.
  • the above-mentioned unit structure may be a single bond, an alkylene group having 1 to 3 carbon atoms (eg, a methylene group), a phenylene group, a naphthylene.
  • an arbitrary ring (a ring, b ring or c ring) contained in the above unit structure is shared by a plurality of unit structures. It may be in a bonded form (ring-coupling type multimer), or in a form in which arbitrary rings (ring a, ring b or ring c) contained in the above unit structure are fused to each other (ring fused) A multimer), but a ring-sharing multimer and a ring-fused multimer are preferable, and a ring-sharing multimer is more preferable.
  • R 2 is preferably hydrogen.
  • Examples of such multimers include the following general formulas (2-4), (2-4-1), (2-4-2), (2-5-1) to (2-5-1) 5-4) or a multimer represented by the formula (2-6).
  • the multimer represented by the following formula (2-4), as described in the general formula (2) shares a plurality of (two in the following structural formulas) with the benzene ring which is the a ring in common. It is a multimeric compound (ring-sharing multimer) having the unit structure represented by (2) in one compound.
  • the multimer represented by the following formula (2-4-1) may have a plurality (3 in the following structural formula) by sharing the benzene ring which is the a ring, as described in the general formula (2).
  • the multimer represented by the following formula (2-4-2) may have a plurality (6 in the following structural formula) by sharing the benzene ring which is the a ring, as described in the general formula (2).
  • the multimeric compounds represented by the following formulas (2-5-1) to (2-5-4) may share a benzene ring, which is the c-ring, according to the general formula (2).
  • the multimer represented by the following formula (2-6) may be, for example, a benzene ring which is a ring (or a ring or c ring) having a certain unit structure and a certain unit
  • R 2 in each of the following formulas is hydrogen.
  • the multimer includes a multimerized form represented by the formula (2-4), the formula (2-4-1) or the formula (2-4-2), and the formula (2-5-1) to the formula (2-5-1) 5-4) or a multimer in combination with the multimerized form represented by formula (2-6), and may be represented by formulas (2-5-1) to (2-5-4).
  • ) May be combined with the multimeric form represented by formula (2-6) and the multimeric form represented by formula (2-6).
  • the multimer may be a combination of the multimerized form represented by (2-6).
  • At least one hydrogen in the chemical structure of the polycyclic aromatic compound represented by the general formula (2) and a multimer thereof may be substituted with cyano, halogen, or deuterium.
  • ring a, ring b, ring c, substituents on these rings, and X 1 and X 2 are> NR or —C (—R) 2 —.
  • At least one hydrogen at the time R may be replaced by cyano, halogen or deuterium.
  • Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine.
  • the polycyclic aromatic compound represented by the general formula (2) and a multimer thereof can be produced according to the production method described in International Publication WO 2015/102118. Further, referring to the method for producing the polycyclic aromatic compound represented by the above formula (1), the first reaction is not carried out by an etherification reaction but by a general amination reaction such as a Buchwald-Hartwig reaction. can do.
  • R 8 is halogen, carbon number alkyl of 1-6, cycloalkyl having 3 to 14 carbon atoms, heteroaryl of aryl or C 2 -C 10 6 to 10 carbon atoms
  • R 7 is hydrogen, number alkyl of 1 to 6, carbon atoms carbon atoms
  • Polycyclic aromatic compounds and their multimers which are 3 to 14 cycloalkyl, 6 to 10 carbon aryl or 2 to 10 carbon heteroaryl, are preferred.
  • the halogen of R 8 is fluorine, chlorine, bromine or iodine. From the viewpoint of increasing spin-orbit interaction due to the heavy atom effect, halogen having a large molecular weight is preferable, chlorine, bromine and iodine are preferable, and chlorine and bromine are preferable. Is more preferable, and iodine is still more preferable. From the viewpoint of deepening the HOMO / LUMO orbit by introducing an element having a high electronegativity, an element having a high electronegativity is preferable, fluorine, chlorine and bromine are preferable, fluorine and chlorine are more preferable, and fluorine is further preferable.
  • the alkyl having 1 to 6 carbon atoms for R 8 and R 7 may be linear or branched, and is preferably an alkyl having 1 to 5 carbons (a branched alkyl having 3 to 5 carbons), and preferably 1 to 6 carbons.
  • Alkyl (branched alkyl having 3 to 4 carbon atoms) is more preferable, specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl , Isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, etc., and methyl or t-butyl is more preferable. Is more preferred.
  • the cycloalkyl having 3 to 14 carbon atoms of R 8 and R 7 is preferably a cycloalkyl having 3 to 12 carbon atoms, more preferably a cycloalkyl having 5 to 10 carbon atoms, specifically, cyclopentyl, cyclohexyl, norbornenyl or Adamantyl is preferred, and cyclohexyl is more preferred.
  • the aryl having 6 to 10 carbon atoms for R 8 and R 7 is preferably phenyl or naphthyl, and more preferably phenyl.
  • the heteroaryl having 2 to 10 carbon atoms for R 8 and R 7 is the same as the “heteroaryl” of the first substituent in the general formula (1), and includes a 6-membered ring or a 5-membered ring having a partial structure. Groups are preferred.
  • R 8 the following partial structural formulas (m), (e), (v), (t), (h), (p), (q), (q) r), Equation (s), Equation (y), Equation (u), Equation (w), Equation (j), Equation (k), Equation (f), Equation (c), Equation (b), Equation ( i) or groups of formula (n) are preferred, groups of formula (m), formula (t), formula (p), formula (f) or formula (n) are more preferred, and formula (m) or formula (t) ) Are more preferred.
  • R 8 is halogen, alkyl having 1 to 5 (preferably 1 to 4), cycloalkyl or phenyl having 5 to 10 carbons
  • R 7 is It is preferably hydrogen, alkyl having 1 to 5 carbon atoms (preferably 1 to 4), cycloalkyl having 5 to 10 carbon atoms or phenyl, and the sum of the molecular weights of R 8 and R 7 is preferably small. More preferably, R 8 is methyl, t-butyl or phenyl, and R 7 is hydrogen, methyl, t-butyl or phenyl. More preferably, R 8 is methyl or t-butyl, and R 7 is hydrogen or methyl. It is particularly preferred that R 8 is methyl and R 7 is hydrogen or methyl. Most preferably, R 8 is methyl and R 7 is hydrogen.
  • R 10 in the symmetrical position of R 8 is a group other than hydrogen, more preferably R 8 and R 10 are the same group.
  • R 5 at the symmetric position of R 7 is also preferably a group other than hydrogen, and more preferably, R 7 and R 5 are the same group.
  • the R of> NR is aryl, heteroaryl, alkyl or cycloalkyl.
  • the above partial structural formula (m), formula (e), formula (v), formula (t), formula (h), formula (p), formula (q), formula (r), formula (s), formula It is preferably a group represented by formula (y), formula (u), formula (w), formula (j) or formula (k), and formula (p), formula (q), formula (r), formula (s) , Formula (y), Formula (u) or Formula (w), more preferably Formula (p), Formula (q) or Formula (r), and Formula (p) It is particularly preferred that the group is
  • the polycyclic aromatic compound and the multimer thereof of the present embodiment can be produced according to the production method described in WO 2015/102118. Further, referring to the method for producing the polycyclic aromatic compound represented by the above formula (1), the first reaction is not carried out by an etherification reaction but by a general amination reaction such as a Buchwald-Hartwig reaction. can do.
  • the linking group L1 is a single bond, arylene having 6 to 12 carbons, heteroarylene having 2 to 15 carbons, alkylene having 1 to 6 carbons, alkenylene having 1 to 6 carbons, alkynylene having 1 to 6 carbons, —O—, —S—,> NR, or a combination thereof, wherein R in> NR is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, 1 to carbons 6 alkyl or cycloalkyl having 3 to 14 carbon atoms, and at least one hydrogen in the dimer compound may be substituted with cyano, halogen or deuterium.
  • arylene “heteroarylene” and “alkylene” in the linking group L1
  • the description of the “aryl”, “heteroaryl” and “alkyl” of the first substituent in the above formula (1) is based on these groups. Further, the description can be cited in place of the description as a divalent group represented by excluding any one hydrogen atom.
  • alkynylene is one having two or more —C ⁇ C— groups in alkylene.
  • a group, which can be described by replacing one or more —CH 2 — groups in the above description of “alkylene” with —C C— groups or —C ⁇ C— groups, respectively.
  • the linking group L1 is an arylene having 6 to 12 carbons, a heteroarylene having 2 to 15 carbons, an alkylene having 1 to 6 carbons, an alkenylene having 1 to 6 carbons, an alkynylene having 1 to 6 carbons, —O—, It may be a group formed by combining at least one group selected from the group consisting of -S- and> NR.
  • the connecting point between the connecting group L1 and the partial structure represented by the formula (2) is arbitrary.
  • At least one hydrogen in the dimer compound may be replaced by cyano, halogen or deuterium.
  • at least one hydrogen in R may be substituted, and among these, an embodiment in which all or a part of hydrogen in the aryl or heteroaryl is substituted.
  • the two polycyclic aromatic compounds are bonded by a linking group L1 by a known method.
  • two intermediates for forming a polycyclic aromatic compound are bonded by a linking group L1, and the two intermediate portions linked by the linking group L1 are polyaromaticized. be able to.
  • polycyclic Aromatic Compound Represented by the General Formula (2) is specifically described in Japanese Patent Application No. 2017-199617. And Japanese Patent Application No. 2018-107092, International Application No. PCT / JP2015 / 054426, International Application No. PCT / JP2017 / 001089, and the following compounds are preferred.
  • a polycyclic aromatic compound represented by the following general formula (3) is preferable.
  • the polycyclic aromatic compound represented by the general formula (3) corresponds to a dimer of the polycyclic aromatic compound having two unit structures represented by the general formula (2) described above.
  • R 3 to R 12 , Z 1 and Z 2 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino , Arylheteroarylamino, diarylboryl (the two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen (the first substituent) And at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl (the above is the second substituent).
  • adjacent groups among R 5 to R 7 and R 10 to R 12 may be bonded to each other to form an aryl ring or a heteroaryl ring together with at least one of the b ring and the d ring.
  • At least one hydrogen in the ring is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl , Cycloalkyl, alkoxy or aryloxy (the above, the first substituent), and at least one hydrogen in these is aryl, heteroaryl, alkyl or cycloalkyl (the above, the second substituent) It may be substituted.
  • Z 1 may be linked to ring a by a linking group or a single bond
  • Z 2 may be linked to ring c by a linking group or a single bond
  • Y is B (boron)
  • X 1 , X 2 , X 3 and X 4 are each independently>O,>NR,>S,> Se or -C (-R) 2-
  • the R of —C (—R) 2 — is a carbon atom
  • Alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons, and R of> NR is -O-,
  • R 1 and R 2 are each independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, diarylamino (Where aryl is aryl having 6 to 12 carbon atoms) or diarylboryl (where aryl is aryl having 6 to 12 carbon atoms, and the two aryls may be bonded via a single bond or a linking group).
  • at least one hydrogen in the compound represented by the formula (3) may be substituted with cyano, halogen or deuterium.
  • Aryl “heteroaryl”, “diarylamino”, “diarylboryl (two aryls may be bonded via a single bond or a linking group)” as a first substituent such as R 3
  • a first substituent such as R 3
  • R 3 “Alkyl”, “cycloalkyl”, “alkoxy” and “aryloxy”, and “aryl”, “heteroaryl”, “alkyl” and “cycloalkyl” as the second substituent such as R 1 are described above. The description of these groups as the first substituent in the formula (1) can be cited.
  • heteroaryl in diheteroarylamino as the first substituent such as R 3 and “heteroaryl” in arylheteroarylamino are the same as those in the above formula (1).
  • aryl in the arylheteroarylamino, the description of aryl as the first substituent in the above formula (1) can be cited.
  • Halogen which is the first substituent such as R 3 is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine.
  • Z 1 and Z 2 in the above formula (3) are each independently aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryls are a single bond or a linking group. ), Alkyl, cycloalkyl, alkoxy or aryloxy (the above is the first substituent), wherein at least one hydrogen is aryl, heteroaryl, alkyl or cycloalkyl (Above, the second substituent).
  • the polycyclic aromatic compound represented by the general formula (3) can be converted into a compound as shown in the following general formula (3-L1) depending on the mutual bonding form of the substituents on the b-ring and the d-ring.
  • the constituent ring structure changes.
  • the b ′ ring and d ′ ring in the formula (3-L1) correspond to the b ring and d ring in the general formula (3), respectively.
  • the definition of each code in the formula (3-L1) is the same as that in the general formula (3).
  • the b ′ ring and the d ′ ring in the above formula (3-L1) are formed by bonding adjacent groups among the substituents R 5 to R 7 of the b ring and the substituents R 10 to R 12 of the d ring.
  • an aryl ring or a heteroaryl ring formed together with the b-ring and the d-ring, respectively also referred to as a condensed ring formed by condensing another ring structure on the b-ring or d-ring).
  • R 7 of the b-ring and R 12 of the d-ring in the formula (3) do not correspond to “adjacent groups” and are not bonded to each other. . That is, “adjacent groups” means groups that are adjacent on the same ring.
  • Z 1 may be linked to ring a by a linking group or a single bond
  • Z 2 may be linked to ring c by a linking group or a single bond
  • the linking group for linking Z 1 to ring a and the linking group for linking Z 2 to ring c are each independently —O—, —S— or —C (—R ′) 2 — R ′ of the above “—C (—R ′) 2 —” is hydrogen or alkyl having 1 to 6 carbons.
  • the formed “aryl ring” (b ′ ring or d ′ ring) or “heteroaryl ring” (b ′ ring or d ′ ring) may be an unsubstituted aryl or heteroaryl as the first substituent described above. It is a ring. However, since the b-ring or the c-ring constituting a part of the b′-ring or the c′-ring is already a benzene ring having 6 carbon atoms, the “aryl ring” is a condensed ring in which a 5-membered ring is fused to the benzene ring.
  • the lower limit of the carbon number is 6 in the condensed ring obtained by condensing the 5-membered ring with the benzene ring.
  • the compound represented by the formula (3-L1) is obtained by condensing a benzene ring, which is a b-ring or a c-ring, with a benzene ring, an indole ring, a pyrrole ring, a benzofuran ring or a benzothiophene ring, for example.
  • a condensed ring b 'or condensed ring c' is a naphthalene ring, a carbazole ring, an indole ring, a dibenzofuran ring or a dibenzothiophene ring, respectively.
  • R 3 and the like includes the above-described R 3 and the like (first substituent) and aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl as the first substituent in the formula (1).
  • Two aryls have a single bond or a linking group ), Alkyl, cycloalkyl, alkoxy or aryloxy.
  • X 1 , X 2 , X 3 and X 4 in the general formula (3) are each independently>O,>NR,>S,> Se or —C (—R) 2 —, provided that , X 1 and X 2 are not simultaneously> O, and X 3 and X 4 are not simultaneously> O.
  • R of -C (-R) 2- is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or aryl having 6 to 12 carbons, and R of> NR represents 6 carbons.
  • R in> NR is —O—, —S—, —C (—R ′) 2 —, and is bonded to at least one of the a ring, b ring, c ring, and d ring by a single bond or condensation. It may be.
  • R ′ in the above “—C (—R ′) 2 —” is hydrogen, alkyl having 1 to 5 carbons, or cycloalkyl having 5 to 10 carbons.
  • This rule can be represented by a compound represented by the following formula (3-L2) having a ring structure in which X 1 and X 3 are incorporated into a condensed ring b ′ and a condensed ring d ′.
  • a b ′ ring (or a ring formed by condensing another ring so as to incorporate X 1 (or X 3 ) into a benzene ring which is a ring b (or a ring d) in the general formula (3) d 'ring).
  • the formed condensed ring b ′ (or condensed ring d ′) is, for example, a carbazole ring, a phenoxazine ring, a phenothiazine ring or an acridine ring.
  • the definition of each symbol in the formula (3-L2) is the same as the definition in the general formula (3).
  • R 1 and R 2 in the general formula (3) are each independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 12 carbons, 2 to 15 carbons Heteroaryl, diarylamino (wherein aryl is aryl having 6 to 12 carbons) or diarylboryl (where aryl is aryl having 6 to 12 carbons, and the two aryls are linked via a single bond or a linking group.
  • these substituents may be alkyl, cycloalkyl, aryl, heteroaryl, diarylamino, or diarylboryl as the first substituent in the above formula (1) (two aryls are bonded through a single bond or a linking group. May be quoted).
  • At least one hydrogen in the polycyclic aromatic compound represented by the general formula (3) may be substituted with cyano, halogen, or deuterium.
  • ring a, ring b, ring c, ring d, a substituent on these rings, and X 1 to X 4 are> NR or —C (—R) 2 —.
  • At least one hydrogen at the time R may be replaced by cyano, halogen or deuterium.
  • Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably chlorine.
  • polycyclic aromatic compound represented by the general formula (3) examples include compounds described in the specification of International Application No. PCT / JP2018 / 018731, and the following compounds are preferred.
  • the polycyclic aromatic compound represented by the general formula (3) is obtained by applying the production method described in WO 2015/102118, and by applying the polycyclic aromatic compound represented by the above formula (1) and It can be produced by referring to the method for producing the multimer.
  • the polycyclic aromatic compound represented by the general formula (3) basically produces an intermediate by bonding the respective ring structures to each other (first reaction), and thereafter, converts the respective ring structures to each other.
  • a final product can be produced by bonding with a boron atom (second reaction).
  • first reaction for example, a general etherification reaction such as a nucleophilic substitution reaction or an Ullmann reaction, or a general amination reaction such as a Buchwald-Hartwig reaction can be used.
  • a tandem hetero Friedel-Crafts reaction (a continuous aromatic electrophilic substitution reaction) can be used.
  • a polycyclic aromatic compound represented by the following general formula (4) or a multimer thereof is preferable.
  • the polycyclic aromatic compound represented by the general formula (4) is one of the compounds having a ring structure in which N is incorporated into a condensed ring c ′ as represented by the above-mentioned formula (2-L3).
  • R 1 to R 3 and R 5 to R 15 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino , Arylheteroarylamino, diarylboryl (the two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen (the first substituent) And at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl (the above is the second substituent).
  • adjacent groups among R 1 to R 3 , R 5 to R 7 , R 8 to R 11 and R 12 to R 15 are bonded to each other to form at least one of a ring, b ring, c ring and d ring.
  • May form an aryl ring or a heteroaryl ring together with at least one hydrogen in the formed ring is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryl May be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryloxy (the above is a first substituent), wherein at least one hydrogen atom is an aryl , Heteroaryl, alkyl or cycloalkyl (the above, the second substituent).
  • Y 1 is B (boron), X is>O,>NR,>S,> Se or —C (—R) 2 —, and R of the above —C (—R) 2 — Is an alkyl having 1 to 6 carbons, a cycloalkyl having 3 to 14 carbons or an aryl having 6 to 12 carbons, wherein R in the above-mentioned N—R is an aryl having 6 to 12 carbons and an aryl having 2 to 15 carbons Heteroaryl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons, L is a single bond, -C (-R) 2 -,>O,> S or> NR, and R in -C (-R) 2 -and> NR is each independently , Hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (the two aryls may be bonded via a single bond or a linking group), alkyl, cyclo
  • Aryl “heteroaryl”, “diarylamino”, “diarylboryl” as the first substituent such as R 1 in the above formula (4) (the two aryls are bonded via a single bond or a linking group; may also be) ",” alkyl “,” cycloalkyl “,” alkoxy "and” aryloxy ", and” aryl “as a second substituent such as R 1," heteroaryl ",” alkyl “and” cyclo As for “alkyl”, the description of these groups as the first substituent in the formula (1) can be cited.
  • heteroaryl in diheteroarylamino and “heteroaryl” in arylheteroarylamino as the first substituent such as R 1 in the above formula (4) are the same as the first substituent in the above formula (1).
  • aryl in arylheteroarylamino the description of aryl as the first substituent in formula (1) can be cited.
  • Halogen as the first substituent such as R 1 in the above formula (4) is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine.
  • the a ′ ring, b ′ ring, c ′ ring and d ′ ring represent substituents R 1 to R 3 , substituents R 5 to R 7 , An aryl ring or a heteroaryl ring formed by bonding adjacent groups among R 8 to R 11 and substituents R 12 to R 15 together with at least one of a ring, b ring, c ring and d ring (Also referred to as a condensed ring formed by condensing another ring structure on ring a, ring b, ring c or ring d).
  • aryl ring (a ′ ring, b ′ ring, c ′ ring or d ′ ring) or “heteroaryl ring” (a ′ ring, b ′ ring, c ′ ring or d ′ ring) is as described above.
  • An aryl or heteroaryl ring as a first substituent.
  • a ring (b ring, c ring or d ring) constituting a part of the a ′ ring (b ′ ring, c ′ ring or d ′ ring) is already a benzene ring having 6 carbon atoms
  • “aryl” For the “ring”, the total number of carbon atoms of the condensed ring in which the 5-membered ring is fused to the benzene ring is 9 as the lower limit, and for the "heteroaryl ring", the total carbon number of the condensed ring in which the 5-membered ring is fused to the benzene ring is Equation 6 is the lower limit of carbon number.
  • the compounds represented by the formulas (4-L1) to (4-L3) are, for example, a benzene ring, an indole ring, a pyrrole ring, a benzene ring which is an a ring (a b ring, a c ring or a d ring).
  • R 1 and the like (the first substituent) described above and aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, and diarylboryl as the first substituent in the formula (1).
  • Two aryls have a single bond or a linking group ), Alkyl, cycloalkyl, alkoxy or aryloxy.
  • Y 1 in the general formula (4) is B (boron), X is>O,>NR,>S,> Se or —C (—R) 2 —, and> O and> N -R is preferred.
  • the R of —C (—R) 2 — is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or aryl having 6 to 12 carbons. , Aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. ), The description of aryl, heteroaryl, alkyl or cycloalkyl as the first substituent can be cited.
  • L in the general formula (4) is a single bond, —C (—R) 2 —,>O,> S and> NR, preferably a single bond,> O or> NR, and the single bond is More preferred.
  • Aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryl as the first substituent in the formula (1) Oxy's explanation can be quoted.
  • the compound represented by the formula (4) does not include a compound in which X is> NR and L is> O.
  • a dimer to a hexamer is preferable, a dimer to a trimer is more preferable, and a dimer is more preferable.
  • the multimer may be a form having a plurality of the above unit structures in one compound.
  • the above unit structure may be a single bond, an alkylene group having 1 to 3 carbon atoms (eg, a methylene group), a phenylene group, a naphthylene group
  • an arbitrary ring (a ring, b ring, c ring or d ring) contained in the above unit structure may be shared by a plurality of unit structures.
  • Ring-coupling type multimer and any of the rings (a-ring, b-ring, c-ring or d-ring) contained in the above unit structure are bonded together so as to be condensed.
  • the ring-condensed multimer and the ring-condensed multimer are preferable, but the ring-condensed multimer is more preferable.
  • R 2 is hydrogen.
  • Examples of such a multimer include the following general formula (4-4), formula (4-5-1), formula (4-5-2), formula (4-6-1) or formula (4-6-1) And the multimer represented by 6-2).
  • the multimer represented by the following formula (4-4) may have a plurality (two in the following structural formula) of the general formula (4) described in the general formula (4) so as to share the benzene ring which is the a ring. It is a multimeric compound (ring-sharing type multimer) having the unit structure represented by (4) in one compound. Further, the multimers represented by the following formulas (4-5-1) and (4-5-2) can share the benzene ring, which is the b ring, according to the general formula (4).
  • a multimeric compound having a plurality of (two in the following structural formulas) unit structures represented by the general formula (1) in one compound.
  • the multimer represented by the following formula (4-6-1) or (4-6-2) may be, for example, a ring (b ring, c ring) having a certain unit structure as described by the general formula (4).
  • R 2 in each of the following formulas is hydrogen.
  • the multimer is a multimer obtained by combining the multimeric form represented by the formula (4-4) with the multimeric form represented by the formula (4-5-1) or the formula (4-5-2) And a multiplication form represented by the formula (4-4), the formula (4-5-1) or the formula (4-5-2), and the formula (4-6-1) or the formula (4-6-1)
  • the multimer may be a combination of the multimerized form represented by 4-6-2).
  • At least one hydrogen in the chemical structure of the polycyclic aromatic compound represented by the general formula (4) and a multimer thereof may be substituted with cyano, halogen, or deuterium.
  • cyano, halogen, or deuterium when a ring, b ring, c ring, d ring, a substituent to these rings, and X is> NR or —C (—R) 2 —
  • R and L of —C (—R) 2 — or> NR are at least one hydrogen in R may be replaced by cyano, halogen or deuterium.
  • Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine.
  • one of R 7 and R 8 is halogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 10 carbons or 2 to 2 carbons.
  • 10 heteroaryl (hereinafter also referred to as “Z substituent”), and the other is hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 10 carbons or carbon having Preferably, it is 2 to 10 heteroaryls.
  • R 8 of ring b and R 7 of ring c do not bond to an adjacent group, and do not constitute a part of the formed aryl ring or heteroaryl ring.
  • the “one” is R 8 and the “the other” is R 7 .
  • the halogen for R 7 and R 8 is fluorine, chlorine, bromine or iodine.
  • a halogen having a large molecular weight is preferable, chlorine, bromine and iodine are preferable, chlorine and bromine are more preferable, and iodine is further preferable.
  • an element having a high electronegativity is preferable, fluorine, chlorine and bromine are preferable, fluorine and chlorine are more preferable, and fluorine is further preferable.
  • the alkyl having 1 to 6 carbon atoms for R 7 and R 8 may be any of linear or branched, and is preferably an alkyl having 1 to 5 carbons (a branched alkyl having 3 to 5 carbons), and preferably 1 to 6 carbons.
  • Alkyl (branched alkyl having 3 to 4 carbon atoms) is more preferable, specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl , Isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, etc., and methyl or t-butyl is more preferable. Is more preferred.
  • the C 3-14 cycloalkyl for R 7 and R 8 is preferably a C 3-12 cycloalkyl, more preferably a C 5-10 cycloalkyl, specifically, cyclopentyl, cyclohexyl, norbornenyl or Adamantyl is preferred, and cyclohexyl is more preferred.
  • the aryl having 6 to 10 carbon atoms for R 7 and R 8 is preferably phenyl or naphthyl, and more preferably phenyl.
  • heteroaryl having 2 to 10 carbon atoms represented by R 7 and R 8 include the same groups as the “heteroaryl” of the first substituent in the general formula (1), and include a 6-membered ring or a 5-membered ring having a partial structure. Groups are preferred.
  • the Z substituent includes the following partial structural formulas (m), (e), (v), (t), (h), (p), (q), and (r) , Expression (s), Expression (y), Expression (u), Expression (w), Expression (j), Expression (k), Expression (f), Expression (c), Expression (b), Expression (i) Or a group of the formula (n) is preferred, a group of the formula (m), the formula (t), the formula (p), the formula (f) or the formula (n) is more preferred, and the formula (m) or the formula (t) Groups are more preferred.
  • both R 7 and R 8 are Z substituents from the viewpoint of shortening the delayed fluorescence lifetime and expressing the TADF mechanism by imparting strain to the molecule. From the viewpoint of obtaining a high PLQY and the stability of the molecule, it is preferable that only one of R 7 and R 8 is a Z substituent. From the viewpoint of ease of synthesis, R 8 is preferably a Z substituent.
  • R 8 when R 8 is a Z substituent, it is preferable that R 10 has a substituent.
  • R 7 when R 5 is a Z substituent, at least one of R 5 and R 13 It is preferable to have a substituent.
  • R 5 when R 5 is a Z substituent, it is more preferable to have a substituent in at least one of R 7 and R 14 .
  • the substituent is preferably small, and the above formulas (m), (e), (v), (t), (h), and (p) ), (Q), (r), (s), (j), (k), (f), (c), (b), (i) and (n) are preferred, and among these, the groups represented by the formulas (m), (e), (v), (t), (p), (f) and (n) are more preferable. Groups of formula (m) and formula (t) are more preferred, and groups of formula (m) are most preferred.
  • R 7 and R 8 among the R 7 and R 8, one of halogen, alkyl having 1-5 carbon atoms (preferably 1-4), cycloalkyl, or phenyl having 5 to 10 carbon atoms
  • the other is preferably hydrogen, alkyl having 1 to 5 carbon atoms (preferably 1 to 4), cycloalkyl having 5 to 10 carbon atoms or phenyl, and the sum of the molecular weights of R 7 and R 8 is small. Is more preferred. More preferably, one is methyl, t-butyl or phenyl and the other is hydrogen, methyl, t-butyl or phenyl. More preferably, one is methyl or t-butyl and the other is hydrogen or methyl. It is particularly preferred that one is methyl and the other is hydrogen or methyl. Most preferably, one is methyl and the other is hydrogen. Further, it is preferable that the “one” is R 8 and the “the other” is R 7 .
  • R 10 in the symmetrical position of R 8 is a group other than hydrogen, more preferably R 8 and R 10 are the same group.
  • R 5 at the symmetric position of R 7 is also preferably a group other than hydrogen, and more preferably, R 7 and R 5 are the same group.
  • polycyclic aromatic compound represented by the general formula (4) and its multimer include compounds described in the specification of Japanese Patent Application No. 2018-110876, and the following compounds are preferred.
  • the polycyclic aromatic compound represented by the formula (4) and a multimer thereof can be produced by applying the production method described in WO 2015/102118. That is, as shown in the following scheme, an intermediate having a Z 1 group is synthesized and cyclized by a tandem hetero Friedel-Crafts reaction (continuous aromatic electrophilic substitution reaction) to obtain a desired polycyclic aromatic compound. A group compound and its multimer can be synthesized.
  • Z 1 represents halogen or hydrogen, and the definitions of other symbols are the same as those described above.
  • the intermediate before cyclization in the above scheme can also be synthesized by the method shown in WO 2015/102118 and the like. That is, an intermediate having a desired substituent can be synthesized by appropriately combining a Buchwald-Hartwig reaction, a Suzuki coupling reaction, or an etherification reaction such as a nucleophilic substitution reaction or an Ullmann reaction.
  • a polycyclic aromatic compound represented by the following general formula (5) or a multimer thereof is preferable. .
  • R 1 to R 9 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, Diarylboryl (the two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen (the first substituent), and at least one of these One hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl (the above, the second substituent).
  • adjacent groups among R 1 to R 9 may be bonded to each other to form an aryl ring or a heteroaryl ring together with at least one of the a ring, the b ring and the c ring.
  • At least one hydrogen is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl, cycloalkyl , Alkoxy or aryloxy (the first substituent), and at least one hydrogen in these may be substituted with an aryl, heteroaryl, alkyl or cycloalkyl (the second substituent). Is also good.
  • Y 1 is B (boron), and X 1 , X 2 and X 3 are each independently>O,>NR,>S,> Se or —C (—R) 2 —. (At least two of X 1 , X 2 and X 3 are NR), wherein R of —C (—R) 2 — is alkyl having 1 to 6 carbons, cyclo is 3 to 14 carbons.
  • R in the above-mentioned —N—R is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons or 3 to 6 carbons
  • R in> NR is —O—, —S—, —C (—R ′) 2 —, or at least one of the a ring, b ring and c ring by a single bond or by condensation.
  • optionally one bound (Note that the "-C (-R ') 2 -" of R' is hydrogen or aralkyl of 1 to 5 carbon atoms Cycloalkyl Le carbon atoms or 5-10).
  • At least one hydrogen in the compound represented by the general formula (5) may be substituted with cyano, halogen, or deuterium.
  • Aryl “heteroaryl”, “diarylamino”, “diarylboryl” as the first substituent such as R 1 in the above formula (5) (the two aryls are bonded via a single bond or a linking group; may also be) ",” alkyl “,” cycloalkyl “,” alkoxy "and” aryloxy ", and” aryl “as a second substituent such as R 1," heteroaryl ",” alkyl “and” cyclo As for “alkyl”, the description of these groups as the first substituent in the formula (1) can be cited.
  • heteroaryl in diheteroarylamino and “heteroaryl” in arylheteroarylamino as the first substituent such as R 1 in the above formula (5) are the same as the first substituent in the above formula (1).
  • aryl in arylheteroarylamino the description of aryl as the first substituent in formula (1) can be cited.
  • Halogen as the first substituent such as R 1 in the above formula (5) is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine.
  • Adjacent groups among R 1 to R 9 in the general formula (5) may be bonded to each other to form an aryl ring or a heteroaryl ring together with at least one of a ring, b ring and c ring.
  • the polycyclic aromatic compound represented by the formula (5) has the following general formulas (5-L1) and (5-L2) depending on the mutual bonding form of the substituents on the ring a, ring b and ring c. As shown, the ring structure of the compound changes. The definition of the symbols in each formula is the same as the definition of general formula (5).
  • the a ′ ring, b ′ ring and c ′ ring in the formulas (5-L1) and (5-L2) are formed by bonding adjacent groups of the substituents R 1 to R 9 to form a ring a ,
  • An aryl ring or a heteroaryl ring formed together with a ring b and a ring c also referred to as a condensed ring formed by condensing another ring structure on the ring a, ring b or ring c).
  • there are other combinations such as a compound in which all of a ring, b ring and c ring are changed to a ′ ring, b ′ ring and d ′ ring.
  • R 1 of ring a and R 9 of ring b, R 7 of ring b and R 6 of ring c, and ring C of ring c R 4 and R 3 of the a-ring do not correspond to “adjacent groups” and do not bond to each other. That is, “adjacent groups” means groups that are adjacent on the same ring.
  • the formed “aryl ring” (a ′ ring, b ′ ring or c ′ ring) or “heteroaryl ring” (a ′ ring, b ′ ring or c ′ ring) is an aryl as the first substituent described above. Or a heteroaryl, non-valent ring.
  • the a ring (the b ring or the c ring) constituting a part of the a ′ ring (the b ′ ring or the c ′ ring) is already a benzene ring having 6 carbon atoms
  • the “aryl ring” is the benzene ring.
  • the total number of carbon atoms of the condensed ring obtained by condensing a 5-membered ring with the 5-membered ring is the lower limit of the number of carbon atoms.
  • the compound represented by the formula (5-L1) and the formula (5-L2) is, for example, a benzene ring, an indole ring, a pyrrole ring, a benzofuran ring or a benzene ring which is an a ring (a b ring or a c ring).
  • Ring, indole ring, dibenzofuran ring or dibenzothiophene ring is, for example, a benzene ring, an indole ring, a pyrrole ring, a benzofuran ring or
  • R 1 and the like (the first substituent) described above and aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, and diarylboryl as the first substituent in the formula (1).
  • Two aryls have a single bond or a linking group ), Alkyl, cycloalkyl, alkoxy or aryloxy.
  • Y 1 in the general formula (5) is B (boron), and X 1 , X 2 and X 3 are each independently>O,>NR,>S,> Se or -C (- R) 2 - a the proviso that at least two of X 1, X 2 and X 3 is N-R, it is preferable three of X 1, X 2 and X 3 is a N-R.
  • the R of —C (—R) 2 — is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or aryl having 6 to 12 carbons.
  • Aryl having 6 to 12 carbon atoms, heteroaryl having 2 to 15 carbon atoms, alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms, and these substituents are represented by the above-mentioned formula (1).
  • R in the above-mentioned —N—R is —O—, —S—, —C (—R ′) 2 —, and is bonded to at least one of the a ring, b ring and c ring by a single bond or condensation. Is also good.
  • R ′ in the above “—C (—R ′) 2 —” is hydrogen, alkyl having 1 to 5 carbons, or cycloalkyl having 5 to 10 carbons.
  • This rule specifies a compound represented by the following formula (5-L3) having a ring structure in which N at the position of X 2 or X 1 in the formula (5) is incorporated into a condensed ring b ′ and a condensed ring c ′.
  • b is formed by condensing another ring so as to incorporate N at the position of X 1 (or X 2 ) into the benzene ring which is ring b (or ring c) in the general formula (5). It is a compound having a 'ring (or c' ring).
  • the formed condensed ring b ′ (or condensed ring c ′) is, for example, a phenoxazine ring, a phenothiazine ring, an acridine ring or a phenophosphazine ring.
  • the above definition has a ring structure represented by the following formula (5-L4) or (5-L5) in which N at at least one position of X 1 and X 2 is incorporated into a condensed ring a ′. It can also be expressed as a compound. That is, for example, a ′ is formed by condensing another ring such that N at the position of X 1 (and at least one of X 2 ) is incorporated into the benzene ring which is the a ring in the general formula (5). It is a compound having a ring.
  • the condensed ring A ′ formed is, for example, a phenoxazine ring, a phenothiazine ring, an acridine ring or a phenophosphazine ring. Note that each symbol in the equations (5-L3) to (5-L5) is the same as the definition in the equation (5).
  • N-R a R a X 3 is also included at least one bound forms of b rings and c ring linking group or a single bond.
  • the formed condensed ring b ′ (or condensed ring c ′) is, for example, a phenoxazine ring, a phenothiazine ring, an acridine ring or a phenophosphazine ring.
  • the above definition also includes a form in which X 1 , X 2 or X 3 is incorporated into any one of the condensed rings in a complex form.
  • the polymer of the polycyclic aromatic compound having a plurality of unit structures represented by the general formula (5) is preferably a dimer to a hexamer, more preferably a dimer to a trimer, and further preferably a dimer.
  • the multimer may be a form having a plurality of the above-mentioned unit structures in one compound.
  • the above-mentioned unit structure may be a single bond, an alkylene group having 1 to 3 carbon atoms (eg, a methylene group), a phenylene group, a naphthylene.
  • an arbitrary ring (a ring, b ring or c ring) contained in the above unit structure is shared by a plurality of unit structures. It may be in a bonded form (ring-coupling type multimer), or in a form in which arbitrary rings (ring a, ring b or ring c) contained in the above unit structure are fused to each other (ring fused) A multimer), but a ring-sharing multimer and a ring-fused multimer are preferable, and a ring-sharing multimer is more preferable.
  • R 2 is preferably hydrogen.
  • Such a multimer includes, for example, a multimer represented by the following formula (5-4), formula (5-5) or formula (5-6).
  • the multimer represented by the following formula (5-4) is, as described in the general formula (5), a unit represented by two general formulas (5) so as to share a benzene ring which is a ring. It is a dimer compound having a structure in one compound (ring-sharing multimer).
  • the multimer represented by the following formula (5-5) can be expressed by three general formulas (5) by sharing X 2 with a benzene ring which is an a ring as described in the general formula (5). Is a trimer compound (ring-sharing multimer) having the unit structure represented by the formula in one compound.
  • the multimer represented by the following formula (5-6) is, for example, a benzene ring that is a ring (or a b-ring or a c-ring) of a certain unit structure and a certain unit structure, as described in the general formula (5).
  • a benzene ring which is a ring (or a b ring or a c ring) of a dimer compound having two unit structures represented by the general formula (5) in one compound (ring condensation) Type multimer).
  • each symbol in the following equation is the same as the definition in equation (5).
  • At least one hydrogen in the chemical structure of the polycyclic aromatic compound represented by the general formula (5) and a multimer thereof may be cyano, halogen, or deuterium.
  • a ring, b ring, c ring, substituents on these rings, and X 1 , X 2 and X 3 are> NR or —C (—R) 2
  • Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably chlorine.
  • polycyclic aromatic compound represented by the general formula (5) and its multimer include the compounds described in the specification of Japanese Patent Application No. 2017-171324, and the following compounds are preferred.
  • the polycyclic aromatic compound represented by the formula (5) and a multimer thereof can be produced by applying the production method described in WO 2015/102118. Also, referring to the method for producing the polycyclic aromatic compound represented by the above formula (1) and a multimer thereof, a general amination reaction such as a Buchwald-Hartwig reaction may be used instead of an etherification reaction in the first reaction. Can be manufactured.
  • a general amination reaction such as a Buchwald-Hartwig reaction may be used instead of an etherification reaction in the first reaction. Can be manufactured.
  • the boron-containing polycyclic aromatic compound as the second component is preferably a compound containing any of the following partial structures.
  • at least one hydrogen in the partial structure of the following formula may be substituted with aryl, heteroaryl, alkyl, cycloalkyl, cyano, halogen, or deuterium.
  • a polymer compound obtained by polymerizing the polycyclic aromatic compound of the second component The polycyclic aromatic compound represented by any of the general formulas (2) to (5) is substituted with a reactive substituent.
  • a polymer compound obtained by polymerizing a reactive compound as a monomer, or a crosslinked polymer thereof, or a pendant polymer compound obtained by reacting a main chain polymer with the reactive compound, or a pendant polymer compound thereof It can be used as a light emitting layer material also as a molecular crosslinked product.
  • the reactive substituent in this case the description of the polycyclic aromatic compound represented by the formula (1) can be cited. The details of the use of such a polymer compound and a polymer crosslinked product will be described later.
  • It may be a polymer compound (HD) which is a copolymer having the same.
  • a cross-linked polymer (HD) obtained by further cross-linking the polymer (HD) may be used.
  • the polymer compound (HD) and the crosslinked polymer (HD) have a structure having a first structural unit corresponding to the host and a second structural unit corresponding to the dopant in the same main chain.
  • a pendant polymer compound (HD) in which the reactive compound (H) and the reactive compound (D) are substituted for the main chain polymer may be used, and the pendant polymer compound (HD) is further crosslinked. It may be a pendant type crosslinked polymer (HD).
  • the pendant polymer compound (HD) and the pendant polymer crosslinked product (HD) have a pendant structure in which a side chain corresponding to a host and a dopant is substituted for a main chain.
  • FIG. 1 is a schematic sectional view showing the organic EL device according to the present embodiment.
  • the organic EL element 100 shown in FIG. 1 includes a substrate 101, an anode 102 provided on the substrate 101, a hole injection layer 103 provided on the anode 102, A hole transport layer 104 provided on the injection layer 103; a light emitting layer 105 provided on the hole transport layer 104; an electron transport layer 106 provided on the light emitting layer 105; It has an electron injection layer 107 provided on 106 and a cathode 108 provided on the electron injection layer 107.
  • the organic EL element 100 is manufactured by reversing the manufacturing order, for example, the substrate 101, the cathode 108 provided on the substrate 101, the electron injection layer 107 provided on the cathode 108, and the electron injection layer 107.
  • An electron transport layer 106 provided on the electron transport layer 106, a light emitting layer 105 provided on the electron transport layer 106, a hole transport layer 104 provided on the light emitting layer 105, And the anode 102 provided on the hole injection layer 103 may be provided.
  • the minimum constitutional unit is composed of the anode 102, the light emitting layer 105, and the cathode 108, and the hole injection layer 103, the hole transport layer 104, the electron transport layer 106, the electron injection layer
  • the layer 107 is an optional layer. Further, each of the above layers may be composed of a single layer or a plurality of layers.
  • the layer constituting the organic EL element in addition to the above-described embodiment of “substrate / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode”, “Substrate / anode / hole transport layer / emission layer / electron transport layer / electron injection layer / cathode”, “substrate / anode / hole injection layer / emission layer / electron transport layer / electron injection layer / cathode”, “substrate / Anode / hole injection layer / hole transport layer / emission layer / electron injection layer / cathode "," substrate / anode / hole injection layer / hole transport layer / emission layer / electron transport layer / cathode "," substrate / Anode / light-emitting layer / electron transport layer / electron injection layer / cathode "," substrate / anode / hole transport layer / emission layer / electron
  • Board substrate 101 in the organic electroluminescent element is a support of the organic EL element 100, typically, quartz, glass, metal, plastic, or the like is used.
  • the substrate 101 is formed in a plate shape, a film shape, or a sheet shape depending on the purpose.
  • a glass plate, a metal plate, a metal foil, a plastic film, a plastic sheet, or the like is used.
  • a glass plate and a plate made of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate, and polysulfone are preferable.
  • the thickness only needs to be 0.2 mm or more, as long as it has a thickness sufficient to maintain mechanical strength.
  • the upper limit of the thickness is, for example, 2 mm or less, preferably 1 mm or less.
  • alkali-free glass is preferable because it is preferable that the amount of ions eluted from the glass is small, but soda lime glass with a barrier coat such as SiO 2 is also commercially available. it can.
  • the substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one side in order to enhance gas barrier properties.
  • a plate, film, or sheet made of a synthetic resin having low gas barrier properties is used as the substrate 101. When used, it is preferable to provide a gas barrier film.
  • the anode 102 in the organic electroluminescent device plays a role of injecting holes into the light emitting layer 105. Note that when at least one of the hole injection layer 103 and the hole transport layer 104 is provided between the anode 102 and the light-emitting layer 105, holes are injected into the light-emitting layer 105 through these layers. Become.
  • an inorganic compound and an organic compound can be given.
  • the inorganic compound include metals (aluminum, gold, silver, nickel, palladium, chromium, etc.), metal oxides (indium oxide, tin oxide, indium-tin oxide (ITO), indium-zinc oxide) (IZO), metal halides (eg, copper iodide), copper sulfide, carbon black, ITO glass, Nesa glass, and the like.
  • the organic compound include conductive polymers such as polythiophene such as poly (3-methylthiophene), polypyrrole, and polyaniline. In addition, it can be appropriately selected from the substances used as the anode of the organic EL element.
  • the resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the light emitting element can be supplied, but is preferably low from the viewpoint of power consumption of the light emitting element.
  • an ITO substrate having a resistance of 300 ⁇ / ⁇ or less functions as an element electrode.
  • a substrate of about 10 ⁇ / ⁇ can be supplied at present, for example, 100 to 5 ⁇ / ⁇ , preferably 50 to 5 ⁇ . It is particularly desirable to use a low-resistance product of /.
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 50 to 300 nm.
  • the hole injection layer and the hole transport layer 103 in the organic electroluminescent element serve to inject holes moving from the anode 102 into the light emitting layer 105 or the hole transport layer 104 efficiently. Fulfill.
  • the hole transport layer 104 plays a role in efficiently transporting holes injected from the anode 102 or holes injected from the anode 102 through the hole injection layer 103 to the light-emitting layer 105.
  • the hole injection layer 103 and the hole transport layer 104 are each formed by laminating and mixing one or more of hole injection / transport materials, or by using a mixture of a hole injection / transport material and a polymer binder. It is formed. Further, a layer may be formed by adding an inorganic salt such as iron (III) chloride to the hole injecting / transporting material.
  • a hole injection / transport substance As a hole injection / transport substance, it is necessary to efficiently inject and transport holes from the positive electrode between the electrodes to which an electric field is applied, and the hole injection efficiency is high, and the injected holes are efficiently transported. It is desirable to do. For that purpose, it is preferable that the ionization potential is small, the hole mobility is large, the stability is further improved, and impurities serving as traps are less likely to be generated during production and use.
  • Examples of the material for forming the hole injection layer 103 and the hole transport layer 104 include a compound conventionally used as a hole charge transport material in a photoconductive material, a p-type semiconductor, and a hole injection layer of an organic EL element. Any known compound used in the hole transport layer can be used. Specific examples thereof include a carbazole derivative (N-phenylcarbazole, polyvinylcarbazole, etc.), a biscarbazole derivative such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), and a triarylamine derivative (aromatic tertiary).
  • polycarbonates having the above monomers in the side chain polycarbonates having the above monomers in the side chain, styrene derivatives, polyvinyl carbazole, polysilane, etc. are preferable, but light emission is preferred.
  • the compound is not particularly limited as long as it is a compound capable of forming a thin film necessary for manufacturing an element, injecting holes from the anode, and transporting holes.
  • an organic semiconductor matrix material is composed of a compound having a good electron donating property or a compound having a good electron accepting property.
  • Strong electron acceptors such as tetracyanoquinonedimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinonedimethane (F4TCNQ) are known for doping of electron donors.
  • TCNQ tetracyanoquinonedimethane
  • F4TCNQ 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinonedimethane
  • a matrix material having a hole transporting property for example, a benzidine derivative (such as TPD) or a starburst amine derivative (such as TDATA), or a specific metal phthalocyanine (particularly, zinc phthalocyanine ZnPc or the like) is known (Japanese Unexamined Patent Application, First Publication No. H11-163686). 2005-167175).
  • the above-described material for the hole injection layer and the material for the hole transport layer are a polymer compound obtained by polymerizing a reactive compound in which a reactive substituent is substituted as a monomer, or a cross-linked polymer thereof, or A pendant polymer compound obtained by reacting the main chain polymer with the reactive compound, or a pendant polymer crosslinked product thereof can also be used as a material for the hole layer.
  • a reactive substituent in this case, the description of the polycyclic aromatic compound represented by the formula (1) can be cited. Details of uses of such a polymer compound and a polymer crosslinked product will be described later.
  • the light emitting layer 105 in the organic electroluminescent element is a layer that emits light by recombining holes injected from the anode 102 and electrons injected from the cathode 108 between electrodes to which an electric field is applied.
  • the material for forming the light-emitting layer 105 may be any compound that emits light when excited by recombination of holes and electrons (light-emitting compound), and can form a stable thin film, and It is preferred that the compound exhibits a strong luminescence (fluorescence) efficiency.
  • the light emitting layer may be a single layer or a plurality of layers, each of which is formed of a light emitting layer material (host material, dopant material).
  • the host material and the dopant material may each be one kind or a combination of a plurality of kinds.
  • the dopant material may be included in the entire host material, may be partially included, or may be included therein.
  • the light emitting layer included in the organic electroluminescent device of the present invention includes, as a first component, a polycyclic aromatic compound represented by the formula (1) as a host material, and as a second component, a polycyclic aromatic compound containing boron. An aromatic compound is included as a dopant material.
  • the amount of host material used depends on the type of host material, and may be determined according to the characteristics of the host material.
  • the standard of the usage amount of the host material is preferably 50 to 99.999% by weight, more preferably 70 to 99.9% by weight, and still more preferably 80 to 99.9% by weight of the whole light emitting layer material. And particularly preferably 90 to 99.9% by weight.
  • the amount of the dopant material used depends on the type of the dopant material, and may be determined according to the characteristics of the dopant material.
  • the standard of the amount of the dopant to be used is preferably 0.001 to 50% by weight, more preferably 0.1 to 30% by weight, even more preferably 0.1 to 20% by weight of the whole light emitting layer material. And particularly preferably 0.1 to 10% by weight.
  • the above range is preferable, for example, in that the density quenching phenomenon can be prevented.
  • the amount of the dopant is large.
  • the concentration of the dopant is determined not only by the host and the dopant of the light-emitting layer but also by the element configuration because the layer is affected by layers other than the light-emitting layer.
  • Examples of the host material that can be used in combination with the compound represented by the formula (1) include condensed ring derivatives such as anthracene and pyrene, and bisstyryl such as bisstyrylanthracene derivatives and distyrylbenzene derivatives, which have been known as luminescent materials. Derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives, fluorene derivatives, benzofluorene derivatives and the like.
  • the dopant material that can be used in combination with the boron-containing polycyclic aromatic compound is not particularly limited, a known compound can be used, and is selected from various materials according to a desired emission color. can do.
  • condensed ring derivatives such as phenanthrene, anthracene, pyrene, tetracene, pentacene, perylene, naphthopyrene, dibenzopyrene, rubrene and chrysene
  • benzoxazole derivatives benzothiazole derivatives, benzimidazole derivatives, benzotriazole derivatives, oxazole Derivatives, oxadiazole derivatives, thiazole derivatives, imidazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazoline derivatives, stilbene derivatives, thiophene derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives,
  • blue-blue-green dopant materials include aromatic hydrocarbon compounds such as naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perylene, fluorene, indene, chrysene and derivatives thereof, furan, pyrrole, thiophene, Aromatic complex such as silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, thioxanthene Ring compounds and derivatives, distyrylbenzene derivatives, tetraphenylbutadiene derivatives, stilbene derivatives, aldazine derivatives, coumarin derivatives, imi
  • Aromatic complex such as silo
  • green to yellow dopant materials examples include coumarin derivatives, phthalimide derivatives, naphthalimide derivatives, perinone derivatives, pyrrolopyrrole derivatives, cyclopentadiene derivatives, acridone derivatives, quinacridone derivatives, and naphthacene derivatives such as rubrene.
  • Preferable examples include compounds obtained by introducing a substituent capable of increasing the wavelength, such as aryl, heteroaryl, arylvinyl, amino, and cyano, to the compounds exemplified as the blue-green dopant material.
  • naphthalimide derivatives such as bis (diisopropylphenyl) perylenetetracarboxylic imide, perinone derivatives, rare earth complexes such as Eu complexes having acetylacetone, benzoylacetone and phenanthroline as ligands, and the like.
  • metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, quinacridone Derivatives, phenoxazine derivatives, oxazine derivatives, quinazoline derivatives, pyrrolopyridine derivatives, squarylium derivatives, biolanthrone derivatives, phenazine derivatives, phenoxazo Derivatives and thiadiazolopyrene derivatives.
  • metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, quinacridone Derivatives, phenoxazine derivatives, oxazine derivatives, quinazoline derivatives, pyrrolopyridine derivatives, squarylium derivatives, biolanthrone derivatives, phenazine derivatives,
  • the compounds exemplified as the blue-cyan-green and green-yellow dopant materials described above may be further substituted with a substituent capable of increasing the wavelength, such as aryl, heteroaryl, arylvinyl, amino, and cyano.
  • a substituent capable of increasing the wavelength such as aryl, heteroaryl, arylvinyl, amino, and cyano.
  • the introduced compound is also a preferred example.
  • the dopant can be appropriately selected and used from the compounds described in Chemical Industry, June 2004, p. 13 and the references cited therein.
  • the amine having a stilbene structure is represented, for example, by the following formula.
  • Ar 1 is an m-valent group represented by removing any m-1 hydrogen atoms from aryl having 6 to 30 carbon atoms, and Ar 2 and Ar 3 are each independently a carbon atom.
  • Ar 1 ⁇ Ar 3 has a stilbene structure may Ar 1 ⁇ Ar 3 is substituted, and, m is an integer of from 1 to 4 .
  • the amine having a stilbene structure is more preferably diaminostilbene represented by the following formula.
  • Ar 2 and Ar 3 are each independently an aryl having 6 to 30 carbon atoms, and Ar 2 and Ar 3 may be substituted.
  • aryl having 6 to 30 carbon atoms include benzene, naphthalene, acenaphthylene, fluorene, phenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, chrysene, naphthacene, perylene, stilbene, distyrylbenzene, distyrylbiphenyl, and distyryl. Fluorene and the like.
  • amine having a stilbene structure examples include N, N, N ′, N′-tetra (4-biphenylyl) -4,4′-diaminostilbene, N, N, N ′, N′-tetra (1-naphthyl) ) -4,4'-Diaminostilbene, N, N, N ', N'-tetra (2-naphthyl) -4,4'-diaminostilbene, N, N'-di (2-naphthyl) -N, N '-Diphenyl-4,4'-diaminostilbene, N, N'-di (9-phenanthryl) -N, N'-diphenyl-4,4'-diaminostilbene, 4,4'-bis [4 "-bis (Diphenylamino) styryl] -biphenyl, 1,4-bis [4′-bis (diphenylamino) sty
  • perylene derivatives examples include 3,10-bis (2,6-dimethylphenyl) perylene, 3,10-bis (2,4,6-trimethylphenyl) perylene, 3,10-diphenylperylene, 3,4- Diphenylperylene, 2,5,8,11-tetra-t-butylperylene, 3,4,9,10-tetraphenylperylene, 3- (1′-pyrenyl) -8,11-di (t-butyl) perylene , 3- (9'-anthryl) -8,11-di (t-butyl) perylene, 3,3'-bis (8,11-di (t-butyl) perylenyl) and the like.
  • JP-A-11-97178, JP-A-2000-133457, JP-A-2000-26324, JP-A-2001-267079, JP-A-2001-267078, JP-A-2001-267076, Perylene derivatives described in JP-A-2000-34234, JP-A-2001-267075, JP-A-2001-217077 and the like may be used.
  • borane derivative examples include 1,8-diphenyl-10- (dimesitylboryl) anthracene, 9-phenyl-10- (dimesitylboryl) anthracene, 4- (9′-anthryl) dimesitylborylnaphthalene, and 4- (10 ′) -Phenyl-9'-anthryl) dimesitylborylnaphthalene, 9- (dimesitylboryl) anthracene, 9- (4'-biphenylyl) -10- (dimesitylboryl) anthracene, 9- (4 '-(N-carbazolyl) phenyl) And -10- (dimesitylboryl) anthracene.
  • a borane derivative described in WO 2000/40586 pamphlet or the like may be used.
  • the aromatic amine derivative is represented, for example, by the following formula.
  • Ar 4 is an n-valent group represented by removing any n-1 hydrogen atoms from aryl having 6 to 30 carbon atoms
  • Ar 5 and Ar 6 are each independently a carbon atom having 6 to 30 carbon atoms. 6 to 30 aryl, Ar 4 to Ar 6 may be substituted, and n is an integer of 1 to 4.
  • Ar 4 is a divalent group represented by removing any two hydrogen atoms from anthracene, chrysene, fluorene, benzofluorene or pyrene, and Ar 5 and Ar 6 each independently have 6 to 30 carbon atoms.
  • aryl having 6 to 30 carbon atoms include benzene, naphthalene, acenaphthylene, fluorenephenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, chrysene, naphthacene, perylene, pentacene, and the like.
  • aromatic amine derivative examples include, for example, N, N, N ′, N′-tetraphenylchrysene-6,12-diamine, N, N, N ′, N′-tetra (p-tolyl) Chrysene-6,12-diamine, N, N, N ', N'-tetra (m-tolyl) chrysene-6,12-diamine, N, N, N', N'-tetrakis (4-isopropylphenyl) chrysene -6,12-diamine, N, N, N ', N'-tetra (naphthalen-2-yl) chrysene-6,12-diamine, N, N'-diphenyl-N, N'-di (p-tolyl ) Chrysene-6,12-diamine, N, N'-diphenyl-N, N'-di (p-tolyl ) Chrys
  • pyrene-based compounds include, for example, N, N, N ', N'-tetraphenylpyrene-1,6-diamine, N, N, N', N'-tetra (p-tolyl) pyrene-1,6.
  • anthracene-based compounds include N, N, N, N-tetraphenylanthracene-9,10-diamine, N, N, N ′, N′-tetra (p-tolyl) anthracene-9,10-diamine N, N, N ′, N′-tetra (m-tolyl) anthracene-9,10-diamine, N, N, N ′, N′-tetrakis (4-isopropylphenyl) anthracene-9,10-diamine, N, N'-diphenyl-N, N'-di (p-tolyl) anthracene-9,10-diamine, N, N'-diphenyl-N, N'-di (m-tolyl) anthracene-9,10- Diamine, N, N'-diphenyl-N, N'-bis (4-ethylphenyl) anthracene-9,10-diamine
  • Coumarin derivatives include coumarin-6 and coumarin-334. Further, coumarin derivatives described in JP-A-2004-43646, JP-A-2001-76876, and JP-A-6-298758 may be used.
  • Examples of the pyran derivative include DCM and DCJTB described below. Also, JP 2005-126399, JP 2005-097283, JP 2002-234892, JP 2001-220577, JP 2001-081090, and JP 2001-052869 And the like.
  • the above-mentioned materials for the light emitting layer are a polymer compound obtained by polymerizing a reactive compound in which these are substituted with a reactive substituent as a monomer, or a polymer crosslinked product thereof, or a main chain.
  • Pendant polymer compound obtained by reacting a reactive polymer with the reactive polymer, or a pendant polymer crosslinked product thereof can also be used as a material for the light emitting layer.
  • the reactive substituent in this case, the description of the polycyclic aromatic compound represented by the formula (1) can be cited. Details of uses of such a polymer compound and a polymer crosslinked product will be described later.
  • the electron injection layer and the electron transport layer 107 in the organic electroluminescent element play a role to efficiently inject electrons moving from the cathode 108 into the light emitting layer 105 or the electron transport layer 106.
  • the electron transport layer 106 plays a role in efficiently transporting electrons injected from the cathode 108 or electrons injected from the cathode 108 through the electron injection layer 107 to the light emitting layer 105.
  • the electron transporting layer 106 and the electron injecting layer 107 are each formed by laminating and mixing one or more of the electron transporting / injecting materials or a mixture of the electron transporting / injecting material and the polymer binder.
  • the electron injection / transport layer is a layer that controls the injection of electrons from the cathode and the transport of electrons. It is desirable that the electron injection efficiency is high and the injected electrons are transported efficiently.
  • the substance be a substance having a high electron affinity, a high electron mobility, excellent stability, and hardly generating impurities serving as traps during production and use.
  • the electron transport capability is not so high. Even if it is not high, the effect of improving the luminous efficiency is equivalent to a material having a high electron transporting ability. Therefore, the electron injecting / transporting layer in the present embodiment may include a function of a layer that can efficiently block the movement of holes.
  • a material (electron transporting material) for forming the electron transporting layer 106 or the electron injecting layer 107 a compound conventionally used as an electron transporting compound in a photoconductive material, and used for an electron injecting layer and an electron transporting layer of an organic EL device. Any of the known compounds can be used.
  • the material used for the electron transporting layer or the electron injecting layer carbon, hydrogen, oxygen, sulfur, a compound comprising an aromatic ring or a heteroaromatic ring composed of one or more atoms selected from silicon and phosphorus, It is preferable to contain at least one selected from a pyrrole derivative, a fused ring derivative thereof, and a metal complex having an electron-accepting nitrogen.
  • condensed ring aromatic ring derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4'-bis (diphenylethenyl) biphenyl, perinone derivatives, coumarin derivatives, and naphthalimide derivatives
  • quinone derivatives such as anthraquinone and diphenoquinone, phosphorus oxide derivatives, carbazole derivatives and indole derivatives.
  • the metal complex having an electron accepting nitrogen include a hydroxyazole complex such as a hydroxyphenyloxazole complex, an azomethine complex, a tropolone metal complex, a flavonol metal complex, and a benzoquinoline metal complex. These materials may be used alone or in combination with different materials.
  • electron transfer compounds include pyridine derivatives, naphthalene derivatives, anthracene derivatives, phenanthroline derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinone derivatives, diphenoquinone derivatives, diphenylquinone derivatives, perylene derivatives, and oxadiazole.
  • Derivatives such as 1,3-bis [(4-t-butylphenyl) 1,3,4-oxadiazolyl] phenylene), thiophene derivatives, and triazole derivatives (N-naphthyl-2,5-diphenyl-1,3,4- Triazole), metal complexes of thiadiazole derivatives, oxine derivatives, quinolinol-based metal complexes, quinoxaline derivatives, polymers of quinoxaline derivatives, benzazoles, gallium complexes, pyrazole derivatives, perfluorinated Nylene derivatives, triazine derivatives, pyrazine derivatives, benzoquinoline derivatives (such as 2,2'-bis (benzo [h] quinolin-2-yl) -9,9'-spirobifluorene), imidazopyridine derivatives, borane derivatives, benzones Imidazole derivatives (such as tris (N-phenylbenzimidazol
  • a metal complex having an electron-accepting nitrogen can also be used.
  • a metal complex having an electron-accepting nitrogen examples thereof include a hydroxyazole complex such as a quinolinol-based metal complex and a hydroxyphenyloxazole complex, an azomethine complex, a tropolone metal complex, a flavonol metal complex, and a benzoquinoline metal complex.
  • the above-mentioned materials may be used alone, but may be used in combination with different materials.
  • borane derivatives pyridine derivatives, fluoranthene derivatives, BO derivatives, anthracene derivatives, benzofluorene derivatives, phosphine oxide derivatives, pyrimidine derivatives, carbazole derivatives, triazine derivatives, benzimidazole derivatives, phenanthroline derivatives, and quinolinol-based metals Complexes are preferred.
  • the borane derivative is, for example, a compound represented by the following general formula (ETM-1), and is disclosed in detail in JP-A-2007-27587.
  • R 11 and R 12 are each independently hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, Or at least one of cyano
  • R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
  • X is an optionally substituted arylene
  • Y is an optionally substituted aryl having 16 or less carbon atoms, a substituted boryl, or an optionally substituted carbazolyl
  • n is each independently an integer of 0-3. is there.
  • substituent when “optionally substituted” or “substituted” include aryl, heteroaryl, alkyl and cycloalkyl.
  • R 11 and R 12 are each independently hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle.
  • R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
  • R 21 and R 22 are each independently And is at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
  • X 1 is optionally substituted
  • n is each independently an integer of 0 to 3
  • m is each independently an integer of 0 to 4.
  • substituent when “optionally substituted” or “substituted” include aryl, heteroaryl, alkyl and cycloalkyl.
  • R 11 and R 12 are each independently hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle. Or at least one of cyano, and R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl, and X 1 is optionally substituted It is a good arylene having 20 or less carbon atoms, and n is each independently an integer of 0 to 3.
  • substituent when “optionally substituted” or “substituted” include aryl, heteroaryl, alkyl and cycloalkyl.
  • X 1 include divalent groups represented by any of the following formulas (X-1) to (X-9).
  • Ra is each independently an alkyl group or an optionally substituted phenyl group.
  • borane derivative examples include the following.
  • This borane derivative can be produced using a known raw material and a known synthesis method.
  • the pyridine derivative is, for example, a compound represented by the following formula (ETM-2), preferably a compound represented by formula (ETM-2-1) or (ETM-2-2).
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4. is there.
  • R 11 to R 18 are each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) Alkyl) or aryl (preferably aryl having 6 to 30 carbon atoms).
  • R 11 and R 12 are each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) Alkyl) or aryl (preferably aryl having 6 to 30 carbon atoms), and R 11 and R 12 may combine to form a ring.
  • the “pyridine-based substituent” is any of the following formulas (Py-1) to (Py-15), and the pyridine-based substituents are each independently substituted with alkyl having 1 to 4 carbon atoms. It may be. Further, the pyridine-based substituent may be bonded to ⁇ , an anthracene ring or a fluorene ring in each formula via a phenylene group or a naphthylene group.
  • the pyridine-based substituent is any of the above formulas (Py-1) to (Py-15), and among them, any of the following formulas (Py-21) to (Py-44) Is preferred.
  • At least one hydrogen in each pyridine derivative may be substituted with deuterium, and among the two “pyridine-based substituents” in the above formula (ETM-2-1) and formula (ETM-2-2) May be replaced by an aryl.
  • the “alkyl” for R 11 to R 18 may be linear or branched, and includes, for example, linear alkyl having 1 to 24 carbons or branched alkyl having 3 to 24 carbons.
  • Preferred “alkyl” is alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons). More preferred “alkyl” is alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons). More preferred “alkyl” is alkyl having 1 to 6 carbons (branched alkyl having 3 to 6 carbons). Particularly preferred “alkyl” is alkyl having 1 to 4 carbons (branched alkyl having 3 to 4 carbons).
  • alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, -Propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyl,
  • alkyl having 1 to 4 carbon atoms to be substituted with the pyridine-based substituent the description of the above alkyl can be cited.
  • Cycloalkyl for R 11 to R 18 includes, for example, cycloalkyl having 3 to 12 carbon atoms.
  • Preferred “cycloalkyl” is cycloalkyl having 3 to 10 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 8 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 6 carbon atoms.
  • cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, dimethylcyclohexyl and the like.
  • preferred aryl is aryl having 6 to 30 carbon atoms, more preferred aryl is aryl having 6 to 18 carbon atoms, and still more preferred is aryl having 6 to 14 carbon atoms. And particularly preferably an aryl having 6 to 12 carbon atoms.
  • aryl having 6 to 30 carbon atoms include phenyl which is a monocyclic aryl, (1-, 2-) naphthyl which is a fused bicyclic aryl, and acenaphthylene- (which is a fused tricyclic aryl.
  • Preferred “aryl having 6 to 30 carbon atoms” include phenyl, naphthyl, phenanthryl, chrysenyl or triphenylenyl, more preferably phenyl, 1-naphthyl, 2-naphthyl or phenanthryl, and particularly preferably phenyl, -Naphthyl or 2-naphthyl.
  • R 11 and R 12 in the above formula (ETM-2-2) may combine to form a ring, and as a result, the 5-membered ring of the fluorene skeleton has cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, Cyclohexane, fluorene or indene may be spiro-bonded.
  • pyridine derivative examples include, for example, the following.
  • This pyridine derivative can be produced using a known raw material and a known synthesis method.
  • the fluoranthene derivative is, for example, a compound represented by the following general formula (ETM-3), and is disclosed in detail in WO 2010/134352.
  • X 12 to X 21 represent hydrogen, halogen, linear, branched or cyclic alkyl, linear, branched or cyclic alkoxy, substituted or unsubstituted aryl, or substituted or unsubstituted Represents heteroaryl.
  • the substituent when substituted, includes aryl, heteroaryl, alkyl, cycloalkyl and the like.
  • fluoranthene derivative examples include the following.
  • the BO derivative is, for example, a polycyclic aromatic compound represented by the following formula (ETM-4) or a polymer of a polycyclic aromatic compound having a plurality of structures represented by the following formula (ETM-4).
  • R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, wherein at least one hydrogen is May be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
  • adjacent groups among R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, the b ring or the c ring, and at least one hydrogen atom in the formed ring May be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, wherein at least one hydrogen is aryl, heteroaryl, alkyl or It may be substituted with cycloalkyl.
  • At least one hydrogen in the compound or structure represented by the formula (ETM-4) may be substituted with halogen or deuterium.
  • BO derivative include the following.
  • This BO derivative can be produced using a known raw material and a known synthesis method.
  • One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-1).
  • Ar is each independently divalent benzene or naphthalene;
  • R 1 to R 4 are each independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons or carbon 6-20 aryls.
  • Ar can be independently selected from divalent benzene or naphthalene as appropriate, and the two Ars may be different or the same, but are the same from the viewpoint of ease of synthesis of the anthracene derivative. It is preferred that Ar is bonded to pyridine to form a “site consisting of Ar and pyridine”, and this site is an anthracene as a group represented by any of the following formulas (Py-1) to (Py-12). Is bound to.
  • a group represented by any of the above formulas (Py-1) to (Py-9) is preferable, and a group represented by any of the above formulas (Py-1) to (Py-6) is preferable.
  • the two “sites composed of Ar and pyridine” bonded to anthracene may have the same or different structures, but preferably have the same structure from the viewpoint of easy synthesis of an anthracene derivative. However, from the viewpoint of device characteristics, it is preferable that the two “sites composed of Ar and pyridine” have the same or different structures.
  • the alkyl having 1 to 6 carbon atoms in R 1 to R 4 may be linear or branched. That is, it is a straight-chain alkyl having 1 to 6 carbons or a branched alkyl having 3 to 6 carbons. More preferably, it is an alkyl having 1 to 4 carbons (a branched alkyl having 3 to 4 carbons).
  • Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, or 2-ethylbutyl; and the like, preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, or t-butyl , Methyl, ethyl, or t-butyl are more preferred.
  • cycloalkyl having 3 to 6 carbon atoms for R 1 to R 4 include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, dimethylcyclohexyl and the like.
  • the aryl having 6 to 20 carbon atoms in R 1 to R 4 is preferably an aryl having 6 to 16 carbon atoms, more preferably an aryl having 6 to 12 carbon atoms, and particularly preferably an aryl having 6 to 10 carbon atoms.
  • aryl having 6 to 20 carbon atoms include phenyl which is a monocyclic aryl, (o-, m-, p-) tolyl, (2,3-, 2,4-, 2,5- , 2,6-, 3,4-, 3,5-) xylyl, mesityl (2,4,6-trimethylphenyl), (o-, m-, p-) cumenyl and bicyclic aryl (2 -, 3-, 4-) biphenylyl, condensed bicyclic aryl (1-, 2-) naphthyl, tricyclic aryl terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4 '-Yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o-terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2 -Yl,
  • Preferred "aryl having 6 to 20 carbon atoms" is phenyl, biphenylyl, terphenylyl or naphthyl, more preferably phenyl, biphenylyl, 1-naphthyl, 2-naphthyl or m-terphenyl-5'-yl, More preferably, it is phenyl, biphenylyl, 1-naphthyl or 2-naphthyl, most preferably phenyl.
  • One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-2).
  • Ar 1 is each independently a single bond, divalent benzene, naphthalene, anthracene, fluorene, or phenalene.
  • Ar 2 is independently aryl having 6 to 20 carbon atoms, and the same description as “aryl having 6 to 20 carbon atoms” in the above formula (ETM-5-1) can be referred to.
  • An aryl having 6 to 16 carbon atoms is preferable, an aryl having 6 to 12 carbon atoms is more preferable, and an aryl having 6 to 10 carbon atoms is particularly preferable.
  • phenyl examples include phenyl, biphenylyl, naphthyl, terphenylyl, anthracenyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, tetracenyl, perylenyl and the like.
  • R 1 to R 4 are each independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons or aryl having 6 to 20 carbons, and the above formula (ETM-5-1) Can be cited.
  • anthracene derivatives include, for example, the following.
  • anthracene derivatives can be produced using known raw materials and known synthesis methods.
  • the benzofluorene derivative is, for example, a compound represented by the following formula (ETM-6).
  • Ar 1 is independently aryl having 6 to 20 carbon atoms, and the same description as “aryl having 6 to 20 carbon atoms” in the above formula (ETM-5-1) can be cited.
  • An aryl having 6 to 16 carbon atoms is preferable, an aryl having 6 to 12 carbon atoms is more preferable, and an aryl having 6 to 10 carbon atoms is particularly preferable.
  • phenyl examples include phenyl, biphenylyl, naphthyl, terphenylyl, anthracenyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, tetracenyl, perylenyl and the like.
  • Ar 2 is each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbons), cycloalkyl (preferably cycloalkyl having 3 to 12 carbons) or aryl (preferably aryl having 6 to 30 carbons) ), And the two Ar 2 may combine to form a ring.
  • the “alkyl” in Ar 2 may be either linear or branched, and includes, for example, linear alkyl having 1 to 24 carbons or branched alkyl having 3 to 24 carbons.
  • Preferred “alkyl” is alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons). More preferred “alkyl” is alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons). More preferred “alkyl” is alkyl having 1 to 6 carbons (branched alkyl having 3 to 6 carbons). Particularly preferred “alkyl” is alkyl having 1 to 4 carbons (branched alkyl having 3 to 4 carbons).
  • alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl and the like.
  • the “cycloalkyl” in Ar 2 includes, for example, cycloalkyl having 3 to 12 carbon atoms.
  • Preferred “cycloalkyl” is cycloalkyl having 3 to 10 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 8 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 6 carbon atoms.
  • Specific “cycloalkyl” includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, dimethylcyclohexyl and the like.
  • a preferred aryl is an aryl having 6 to 30 carbon atoms, a more preferred aryl is an aryl having 6 to 18 carbon atoms, and further preferably an aryl having 6 to 14 carbon atoms. Preferably, it is an aryl having 6 to 12 carbon atoms.
  • aryl having 6 to 30 carbon atoms includes phenyl, naphthyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, naphthacenyl, perylenyl, pentacenyl and the like.
  • Two Ar 2 may form a ring, as a result, the 5-membered ring of the fluorene skeleton, cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, fluorene or indene are spiro-linked You may.
  • benzofluorene derivative examples include, for example, the following.
  • This benzofluorene derivative can be produced using a known raw material and a known synthesis method.
  • the phosphine oxide derivative is, for example, a compound represented by the following formula (ETM-7-1). The details are also described in WO2013 / 079217.
  • R 5 is a substituted or unsubstituted alkyl having 1 to 20 carbons, an aryl having 6 to 20 carbons or a heteroaryl having 5 to 20 carbons
  • R 6 is CN, substituted or unsubstituted alkyl having 1 to 20 carbons, heteroalkyl having 1 to 20 carbons, aryl having 6 to 20 carbons, heteroaryl having 5 to 20 carbons, 1 to carbons 20 alkoxy or aryloxy having 6 to 20 carbon atoms
  • R 7 and R 8 are each independently a substituted or unsubstituted aryl having 6 to 20 carbons or a heteroaryl having 5 to 20 carbons
  • R 9 is oxygen or sulfur
  • j is 0 or 1
  • k is 0 or 1
  • r is an integer of 0 to 4
  • q is
  • the phosphine oxide derivative may be, for example, a compound represented by the following formula (ETM-7-2).
  • R 1 to R 3 may be the same or different, and include hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an arylether group, and an arylthioether group.
  • Ar 1 may be the same or different and is an arylene group or a heteroarylene group.
  • Ar 2 may be the same or different and is an aryl group or a heteroaryl group. However, at least one of Ar 1 and Ar 2 has a substituent or forms a condensed ring with an adjacent substituent.
  • n is an integer of 0 to 3. When n is 0, there is no unsaturated structure part, and when n is 3, R 1 does not exist.
  • the alkyl group means a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group, and a butyl group, which may be unsubstituted or substituted.
  • the substituent is not particularly limited, and examples thereof include an alkyl group, an aryl group, and a heterocyclic group. This point is also common to the following description.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is usually in the range of 1 to 20 from the viewpoint of availability and cost.
  • cycloalkyl group refers to, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, and adamantyl, which may be unsubstituted or substituted.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is usually in the range of 3 to 20.
  • the aralkyl group refers to, for example, an aromatic hydrocarbon group via an aliphatic hydrocarbon such as a benzyl group and a phenylethyl group, and both the aliphatic hydrocarbon and the aromatic hydrocarbon are unsubstituted or substituted. It doesn't matter.
  • the carbon number of the aliphatic moiety is not particularly limited, but is usually in the range of 1 to 20.
  • Alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group and a butadienyl group, which may be unsubstituted or substituted.
  • the number of carbon atoms in the alkenyl group is not particularly limited, but is usually in the range of 2 to 20.
  • the cycloalkenyl group refers to, for example, an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, and a cyclohexene group, which may be unsubstituted or substituted. I don't care.
  • Alkynyl group means, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an acetylenyl group, which may be unsubstituted or substituted.
  • the number of carbon atoms in the alkynyl group is not particularly limited, but is usually in the range of 2 to 20.
  • Alkoxy group means, for example, an aliphatic hydrocarbon group via an ether bond such as a methoxy group, and the aliphatic hydrocarbon group may be unsubstituted or substituted.
  • the carbon number of the alkoxy group is not particularly limited, it is usually in the range of 1 to 20.
  • Alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted by a sulfur atom.
  • the aryl ether group refers to, for example, an aromatic hydrocarbon group via an ether bond such as a phenoxy group, and the aromatic hydrocarbon group may be unsubstituted or substituted.
  • the number of carbon atoms in the aryl ether group is not particularly limited, but is usually in the range of 6 to 40.
  • the arylthioether group is a group in which an oxygen atom of an ether bond of the arylether group is substituted with a sulfur atom.
  • the aryl group means, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, and a pyrenyl group.
  • the aryl group may be unsubstituted or substituted.
  • the carbon number of the aryl group is not particularly limited, but is usually in the range of 6 to 40.
  • heterocyclic group refers to, for example, a cyclic structure group having an atom other than carbon, such as a furanyl group, a thiophenyl group, an oxazolyl group, a pyridyl group, a quinolinyl group, and a carbazolyl group. It doesn't matter.
  • the carbon number of the heterocyclic group is not particularly limited, but is usually in the range of 2 to 30.
  • Halogen refers to fluorine, chlorine, bromine and iodine.
  • the aldehyde group, carbonyl group, and amino group may also include groups substituted with an aliphatic hydrocarbon, an alicyclic hydrocarbon, an aromatic hydrocarbon, a heterocyclic ring, and the like.
  • aliphatic hydrocarbons aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, and heterocycles may be unsubstituted or substituted.
  • silyl group means a silicon compound group such as a trimethylsilyl group, which may be unsubstituted or substituted.
  • carbon number of the silyl group is not particularly limited, it is usually in the range of 3 to 20. Further, the number of silicon is usually 1 to 6.
  • the condensed ring formed between adjacent substituents is, for example, Ar 1 and R 2 , Ar 1 and R 3 , Ar 2 and R 2 , Ar 2 and R 3 , R 2 and R 3 , Ar 1 and It is a conjugated or non-conjugated fused ring formed between Ar 2 and the like.
  • n when n is 1, may be formed conjugated or non-conjugated fused ring with two of R 1 each other.
  • These condensed rings may contain nitrogen, oxygen and sulfur atoms in the ring structure, or may be condensed with another ring.
  • phosphine oxide derivative examples include the following.
  • This phosphine oxide derivative can be produced using a known raw material and a known synthesis method.
  • the pyrimidine derivative is, for example, a compound represented by the following formula (ETM-8), and preferably a compound represented by the following formula (ETM-8-1). The details are also described in WO 2011/021689.
  • Ar is each independently an optionally substituted aryl or an optionally substituted heteroaryl.
  • n is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 2 or 3.
  • aryl of the “optionally substituted aryl” includes, for example, aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferably, it is an aryl having 6 to 12 carbon atoms.
  • aryl include phenyl which is a monocyclic aryl, (2-, 3-, 4-) biphenylyl which is a bicyclic aryl, and (1-, 2-) naphthyl which is a fused bicyclic aryl Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-2-
  • heteroaryl of the “optionally substituted heteroaryl” includes, for example, a heteroaryl having 2 to 30 carbon atoms, preferably a heteroaryl having 2 to 25 carbon atoms, and a heteroaryl having 2 to 20 carbon atoms.
  • Aryl is more preferred, heteroaryl having 2 to 15 carbon atoms is still more preferred, and heteroaryl having 2 to 10 carbon atoms is particularly preferred.
  • the heteroaryl includes, for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
  • heteroaryl examples include, for example, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, isoindolyl, 1H-indazolyl, Benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, naphthyridinyl, prinyl, pteridinyl, carbazolyl, acridinyl, phen
  • At least one hydrogen in the above aryl and heteroaryl may be substituted, for example, each may be substituted with the above aryl and heteroaryl.
  • pyrimidine derivative examples include, for example, the following.
  • This pyrimidine derivative can be produced using a known raw material and a known synthesis method.
  • the carbazole derivative is, for example, a compound represented by the following formula (ETM-9) or a multimer in which a plurality of the carbazole derivatives are bonded by a single bond or the like. The details are described in U.S. Publication No. 2014/0197386.
  • Ar is each independently an optionally substituted aryl or an optionally substituted heteroaryl.
  • n is independently an integer of 0 to 4, preferably an integer of 0 to 3, and more preferably 0 or 1.
  • aryl of the “optionally substituted aryl” includes, for example, aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferably, it is an aryl having 6 to 12 carbon atoms.
  • aryl include phenyl which is a monocyclic aryl, (2-, 3-, 4-) biphenylyl which is a bicyclic aryl, and (1-, 2-) naphthyl which is a fused bicyclic aryl Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-2-
  • heteroaryl of the “optionally substituted heteroaryl” includes, for example, a heteroaryl having 2 to 30 carbon atoms, preferably a heteroaryl having 2 to 25 carbon atoms, and a heteroaryl having 2 to 20 carbon atoms.
  • Aryl is more preferred, heteroaryl having 2 to 15 carbon atoms is still more preferred, and heteroaryl having 2 to 10 carbon atoms is particularly preferred.
  • the heteroaryl includes, for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
  • heteroaryl examples include, for example, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, isoindolyl, 1H-indazolyl, Benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, naphthyridinyl, prinyl, pteridinyl, carbazolyl, acridinyl, phen
  • At least one hydrogen in the above aryl and heteroaryl may be substituted, for example, each may be substituted with the above aryl and heteroaryl.
  • the carbazole derivative may be a multimer in which a plurality of compounds represented by the above formula (ETM-9) are bonded by a single bond or the like.
  • ETM-9 a plurality of compounds represented by the above formula
  • they may be bonded by an aryl ring (preferably a polyvalent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring).
  • carbazole derivative examples include, for example, the following.
  • This carbazole derivative can be produced using a known raw material and a known synthesis method.
  • the triazine derivative is, for example, a compound represented by the following formula (ETM-10), and preferably a compound represented by the following formula (ETM-10-1). Details are described in U.S. Publication No. 2011/0156013.
  • Ar is each independently an optionally substituted aryl or an optionally substituted heteroaryl.
  • n is an integer of 1 to 3, and is preferably 2 or 3.
  • aryl of the “optionally substituted aryl” includes, for example, aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferably, it is an aryl having 6 to 12 carbon atoms.
  • aryl include phenyl which is a monocyclic aryl, (2-, 3-, 4-) biphenylyl which is a bicyclic aryl, and (1-, 2-) naphthyl which is a fused bicyclic aryl Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-2-
  • heteroaryl of the “optionally substituted heteroaryl” includes, for example, a heteroaryl having 2 to 30 carbon atoms, preferably a heteroaryl having 2 to 25 carbon atoms, and a heteroaryl having 2 to 20 carbon atoms.
  • Aryl is more preferred, heteroaryl having 2 to 15 carbon atoms is still more preferred, and heteroaryl having 2 to 10 carbon atoms is particularly preferred.
  • the heteroaryl includes, for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
  • heteroaryl examples include, for example, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, isoindolyl, 1H-indazolyl, Benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, naphthyridinyl, prinyl, pteridinyl, carbazolyl, acridinyl, phen
  • At least one hydrogen in the above aryl and heteroaryl may be substituted, for example, each may be substituted with the above aryl and heteroaryl.
  • triazine derivative examples include, for example, the following.
  • This triazine derivative can be produced using a known raw material and a known synthesis method.
  • the benzimidazole derivative is, for example, a compound represented by the following formula (ETM-11).
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4.
  • the “benzimidazole-based substituent” means that the pyridyl group in the “pyridine-based substituent” in the above formulas (ETM-2), (ETM-2-1) and (ETM-2-2) is benzo. It is a group replaced by an imidazole group, and at least one hydrogen in the benzimidazole derivative may be substituted with deuterium.
  • R 11 in the benzimidazole group is hydrogen, alkyl having 1 to 24 carbons, cycloalkyl having 3 to 12 carbons or aryl having 6 to 30 carbons, and is represented by the above formula (ETM-2-1) or ( It may be cited to the description of R 11 in ETM-2-2).
  • is more preferably an anthracene ring or a fluorene ring, and in this case, the structure of the above formula (ETM-2-1) or the formula (ETM-2-2) can be referred to.
  • R 11 to R 18 therein the description of the above formula (ETM-2-1) or (ETM-2-2) can be cited.
  • two pyridine-based substituents are described as being bonded. However, when these are replaced with benzimidazole-based substituents, both are substituted.
  • benzimidazole derivative examples include, for example, 1-phenyl-2- (4- (10-phenylanthracen-9-yl) phenyl) -1H-benzo [d] imidazole, 2- (4- (10- ( Naphthalen-2-yl) anthracen-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 2- (3- (10- (naphthalen-2-yl) anthracen-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 5- (10- (naphthalen-2-yl) anthracen-9-yl) -1,2-diphenyl-1H-benzo [d] imidazole, 1- (4 -(10- (naphthalen-2-yl) anthracen-9-yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 2- (4- (9,10 Di (naphthalen-2
  • This benzimidazole derivative can be produced using a known raw material and a known synthesis method.
  • the phenanthroline derivative is, for example, a compound represented by the following formula (ETM-12) or (ETM-12-1). Details are described in WO 2006/021982.
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4. is there.
  • R 11 to R 18 in each formula are each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbons), cycloalkyl (preferably cycloalkyl having 3 to 12 carbons) or aryl (preferably carbon Aryl of formulas 6 to 30).
  • alkyl preferably alkyl having 1 to 24 carbons
  • cycloalkyl preferably cycloalkyl having 3 to 12 carbons
  • aryl preferably carbon Aryl of formulas 6 to 30.
  • each phenanthroline derivative may be replaced with deuterium.
  • Alkyl in R 11 ⁇ R 18, cycloalkyl and aryl may be cited to the description of R 11 ⁇ R 18 in the formula (ETM-2).
  • is, for example, the following structural formula in addition to the above-mentioned structure.
  • R in the following structural formulas is each independently hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl or terphenylyl.
  • phenanthroline derivative examples include, for example, 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di (1,10- Phenanthroline-2-yl) anthracene, 2,6-di (1,10-phenanthroline-5-yl) pyridine, 1,3,5-tri (1,10-phenanthroline-5-yl) benzene, 9,9 ′ -Difluoro-bi (1,10-phenanthroline-5-yl), bathocuproine, 1,3-bis (2-phenyl-1,10-phenanthroline-9-yl) benzene and the like.
  • This phenanthroline derivative can be produced using a known raw material and a known synthesis method.
  • the quinolinol-based metal complex is, for example, a compound represented by the following general formula (ETM-13).
  • R 1 to R 6 are each independently hydrogen, fluorine, alkyl, aralkyl, alkenyl, cyano, alkoxy or aryl
  • M is Li, Al, Ga, Be or Zn
  • n is 1 It is an integer of 33.
  • quinolinol-based metal complexes include 8-quinolinol lithium, tris (8-quinolinolate) aluminum, tris (4-methyl-8-quinolinolate) aluminum, tris (5-methyl-8-quinolinolate) aluminum, tris (3 , 4-Dimethyl-8-quinolinolate) aluminum, tris (4,5-dimethyl-8-quinolinolate) aluminum, tris (4,6-dimethyl-8-quinolinolate) aluminum, bis (2-methyl-8-quinolinolate) ( Phenolate) aluminum, bis (2-methyl-8-quinolinolate) (2-methylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (3-methylphenolate) aluminum, bis (2-methyl-8- Quinolinolate) (4- Butylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (2-phenylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (3-phenylphenolate) aluminum, bis (2-methyl- 8-quinol lithium
  • This quinolinol-based metal complex can be produced using a known raw material and a known synthesis method.
  • the thiazole derivative is, for example, a compound represented by the following formula (ETM-14-1).
  • the benzothiazole derivative is, for example, a compound represented by the following formula (ETM-14-2).
  • ⁇ in each formula is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is 1 to 4
  • the “thiazole-based substituent” and “benzothiazole-based substituent” The pyridyl group in the “substituent” is a group in which a thiazole group or a benzothiazole group is substituted, and at least one hydrogen in the thiazole derivative and the benzothiazole derivative may be substituted with deuterium.
  • is more preferably an anthracene ring or a fluorene ring, and in this case, the structure of the above formula (ETM-2-1) or the formula (ETM-2-2) can be referred to.
  • R 11 to R 18 therein the description of the above formula (ETM-2-1) or (ETM-2-2) can be cited.
  • two pyridine-based substituents are described as being bonded, but these are replaced with thiazole-based substituents (or benzothiazole-based substituents).
  • thiazole derivatives or benzothiazole derivatives can be produced using known raw materials and known synthesis methods.
  • the electron transport layer or the electron injection layer may further contain a substance capable of reducing a material forming the electron transport layer or the electron injection layer.
  • a substance capable of reducing a material forming the electron transport layer or the electron injection layer various substances are used as long as the substance has a certain reducing property, for example, an alkali metal, an alkaline earth metal, a rare earth metal, an oxide of an alkali metal, a halide of an alkali metal, and an alkali metal.
  • earth metal oxides, alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, and rare earth metal organic complexes At least one selected can be suitably used.
  • Preferred reducing substances include alkali metals such as Na (2.36 eV), K (2.28 eV), Rb (2.16 eV) or Cs (1.95 eV), and Ca (2. eV).
  • Alkaline earth metals such as 9 eV), Sr (2.0 to 2.5 eV) and Ba (2.52 eV), and a substance having a work function of 2.9 eV or less is particularly preferable.
  • a more preferable reducing substance is an alkali metal of K, Rb or Cs, further preferably Rb or Cs, and most preferably Cs.
  • alkali metals have particularly high reducing ability, and by adding a relatively small amount to the material forming the electron transporting layer or the electron injecting layer, the emission luminance and the life of the organic EL device can be improved.
  • a reducing substance having a work function of 2.9 eV or less a combination of these two or more kinds of alkali metals is also preferable.
  • a combination containing Cs for example, Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
  • Cs for example, Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
  • the material for the electron injecting layer and the material for the electron transporting layer described above may be a polymer compound obtained by polymerizing a reactive compound substituted with a reactive substituent as a monomer, or a polymer crosslinked body thereof, or A pendant polymer compound obtained by reacting a chain polymer with the reactive compound, or a pendant polymer crosslinked product thereof can also be used as a material for an electronic layer.
  • a reactive substituent in this case, the description of the polycyclic aromatic compound represented by the formula (1) can be cited. Details of uses of such a polymer compound and a polymer crosslinked product will be described later.
  • the cathode in the organic electroluminescent device plays a role of injecting electrons into the light emitting layer 105 via the electron injection layer 107 and the electron transport layer.
  • the material for forming the cathode 108 is not particularly limited as long as it is a substance capable of efficiently injecting electrons into the organic layer, but the same material as the material for forming the anode 102 can be used.
  • metals such as tin, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium and magnesium or alloys thereof (magnesium-silver alloy, magnesium) -An indium alloy, an aluminum-lithium alloy such as lithium fluoride / aluminum, etc.).
  • lithium, sodium, potassium, cesium, calcium, magnesium or an alloy containing these low work function metals is effective.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, and inorganic substances such as silica, titania and silicon nitride, polyvinyl alcohol, and vinyl chloride It is preferable to laminate a hydrocarbon polymer compound and the like.
  • the method for producing these electrodes is not particularly limited as long as conduction can be achieved by resistance heating, electron beam, sputtering, ion plating and coating.
  • the materials used for the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer that are higher than the binder that may be used in each layer can be used alone to form each layer.
  • the thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm.
  • the film thickness can usually be measured with a quartz oscillation type film thickness measuring device or the like.
  • the evaporation conditions vary depending on the type of material, the target crystal structure, association structure, and the like of the film.
  • the deposition conditions are as follows: boat heating temperature +50 to + 400 ° C., degree of vacuum 10 ⁇ 6 to 10 ⁇ 3 Pa, deposition rate 0.01 to 50 nm / sec, substrate temperature ⁇ 150 to + 300 ° C., film thickness 2 nm to 5 ⁇ m. It is preferable to set appropriately within the range.
  • the anode When a DC voltage is applied to the organic EL device thus obtained, the anode may be applied with a positive polarity and the cathode may be applied with a negative polarity. When a voltage of about 2 to 40 V is applied, a transparent or translucent electrode is applied. Light emission can be observed from the side (anode or cathode, and both).
  • the organic EL element also emits light when a pulse current or an alternating current is applied.
  • the waveform of the applied alternating current may be arbitrary.
  • an organic EL element including an anode / a hole injection layer / a hole transport layer / a light emitting layer composed of a host material and a dopant material / an electron transport layer / an electron injection layer / a cathode The method of manufacturing will be described.
  • a thin film of an anode material is formed on a suitable substrate by an evaporation method or the like to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode.
  • a host material and a dopant material are co-evaporated thereon to form a thin film to form a light emitting layer, an electron transport layer and an electron injection layer are formed on the light emitting layer, and a thin film made of a cathode material is formed by a vapor deposition method or the like.
  • a target organic EL device is obtained by forming the cathode.
  • the production order can be reversed, and the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be produced in this order. It is.
  • the wet film formation method is carried out by preparing a low molecular weight compound capable of forming each organic layer of an organic EL device as a liquid composition for forming an organic layer, and using this.
  • the low-molecular compound is highly reactive with another monomer or a main-chain type polymer having a solubility function as a reactive compound in which a reactive substituent is substituted.
  • the composition for forming an organic layer may be prepared from a polymerized polymer compound or the like.
  • a coating film is formed through a coating step of applying a composition for forming an organic layer to a substrate and a drying step of removing a solvent from the applied composition for forming an organic layer.
  • the polymer compound has a crosslinkable substituent (this is also referred to as a crosslinkable polymer compound)
  • the polymer is further crosslinked by this drying step to form a crosslinked polymer.
  • the method using a spin coater is a spin coating method
  • the method using a slit coater is a slit coating method
  • the method using a plate is a gravure, offset, reverse offset, flexographic printing method
  • a method using an inkjet printer is an inkjet method.
  • the method of spraying in a mist state is called a spray method.
  • the drying step includes methods such as air drying, heating, and vacuum drying. The drying step may be performed only once, or may be performed a plurality of times using different methods and conditions. Further, for example, different methods such as firing under reduced pressure may be used in combination.
  • the wet film forming method is a film forming method using a solution, and for example, a partial printing method (ink jet method), a spin coating method or a casting method, a coating method, and the like.
  • the wet film formation method does not require an expensive vacuum deposition apparatus unlike the vacuum deposition method, and can form a film under atmospheric pressure.
  • the wet film forming method enables a large area and continuous production, which leads to a reduction in manufacturing cost.
  • the wet film formation method may be difficult to laminate.
  • a multilayer film is formed by a wet film formation method, it is necessary to prevent the dissolution of the lower layer by the composition of the upper layer, a composition having controlled solubility, crosslinking of the lower layer, and an orthogonal solvent (orthogonal solvent, which dissolve each other). No solvent).
  • a method is adopted in which only some of the layers are formed by a wet film forming method, and the remaining layers are formed by a vacuum evaporation method to form an organic EL device.
  • LITI laser heating drawing method
  • an appropriate treatment step, washing step and drying step may be appropriately inserted.
  • the treatment process include an exposure treatment, a plasma surface treatment, an ultrasonic treatment, an ozone treatment, a cleaning treatment using an appropriate solvent, a heat treatment, and the like.
  • a series of steps for manufacturing a bank is also included.
  • Photolithography technology can be used for manufacturing the bank.
  • a bank material that can be used for photolithography any of an inorganic material and an organic material can be used.
  • the inorganic material include SiN x , SiO x and a mixture thereof.
  • examples of the organic material include a positive resist material and a negative resist material.
  • a patternable printing method such as an inkjet method, gravure offset printing, reverse offset printing, and screen printing can also be used. In that case, a permanent resist material can be used.
  • Materials used for the bank include polysaccharides and derivatives thereof, homopolymers and copolymers of ethylenic monomers having hydroxyls, biopolymer compounds, polyacryloyl compounds, polyesters, polystyrene, polyimide, polyamideimide, and polyetherimide.
  • a material exhibiting liquid repellency to the composition for forming an organic layer is applied to the element substrate on which the electrodes are formed, and dried to form an organic layer.
  • a bank can be formed on the element substrate on which the electrodes are formed.
  • a process such as a washing / drying process with a solvent or an ultraviolet treatment may be performed to remove impurities on the surface of the bank.
  • an organic EL element can be manufactured on a substrate having a bank by an ink-jet method.
  • a bank is provided on an element substrate on which electrodes are formed, and an organic head is provided between the banks by an ink-jet head.
  • a film can be formed by dropping a droplet of the layer-forming composition and drying the composition. Then, by repeating this process and sequentially stacking the films and forming the electron transport layer, the electron injection layer, and the electrode by using a vacuum evaporation method, an organic EL element in which light emitting portions are separated by a bank material can be manufactured. it can.
  • the organic EL element manufactured in this manner is preferably covered with a sealing layer in order to protect the element from moisture and oxygen.
  • the sealing layer for example, an inorganic insulating material such as silicon oxynitride (SiON) having low permeability to moisture or oxygen can be used.
  • the organic EL element may be sealed by attaching a sealing substrate such as a transparent glass or an opaque ceramic to an element substrate on which the organic EL element is formed via an adhesive.
  • the organic layer forming composition is a low molecular compound capable of forming each organic layer of an organic EL device, or a polymer obtained by polymerizing the low molecular compound. It is obtained by dissolving a compound in an organic solvent.
  • the composition for forming a light emitting layer includes, as a first component, a polycyclic aromatic compound (or a polymer compound thereof) represented by the above general formula (1), which is a host material, and a dopant as a second component. It is preferable to contain the above-mentioned boron-containing polycyclic aromatic compound (or a polymer compound thereof), which is a material, and at least one organic solvent as the third component.
  • the third component functions as a solvent for dissolving the first component and the second component in the composition, and gives a smooth and uniform surface shape due to the controlled evaporation rate of the third component itself during coating.
  • the polymer compound includes a first structural unit derived from a reactive compound (H) in which a reactive substituent is substituted on the polycyclic aromatic compound represented by the general formula (1),
  • Polymer compound (HD) which is a copolymer having a second structural unit derived therefrom, and a polymer crosslinked body (HD) obtained by further crosslinking the polymer compound (HD); and a main chain polymer.
  • a pendant polymer compound (HD) in which the reactive compound (H) and the reactive compound (D) are substituted, and a pendant polymer crosslinked product (HD) in which the pendant polymer compound (HD) is further crosslinked Is also included. That is, formation of an organic layer containing at least one selected from a polymer compound (HD), a crosslinked polymer (HD), a pendant polymer compound (HD) and a pendant polymer crosslinked product (HD), and an organic solvent. Composition.
  • the polymer compound (HD), the crosslinked polymer (HD), the pendant polymer compound (HD) and the crosslinked pendant polymer (HD) are a host as the first component and a second component. It has a structure in which a dopant is incorporated in the same molecule.
  • the composition for forming an organic layer contains at least one organic solvent.
  • the evaporation rate of the organic solvent at the time of film formation it is possible to control and improve the film formability and the presence / absence of defects in the coating film, surface roughness, and smoothness.
  • the meniscus stability at the pinhole of the inkjet head can be controlled, and the ejection property can be controlled and improved.
  • the drying rate of the film and the orientation of the derivative molecules the electric characteristics, light-emitting characteristics, efficiency, and lifetime of an organic EL device having an organic layer obtained from the composition for forming an organic layer are improved. Can be.
  • the boiling point of at least one organic solvent is from 130 to 350 ° C., preferably from 140 to 300 ° C., more preferably from 150 to 250 ° C.
  • the organic solvent is more preferably configured to include two or more organic solvents from the viewpoints of good ink jet ejection properties, film formability, smoothness, and low residual solvent.
  • the composition may be in a solid state by removing a solvent from the composition for forming an organic layer in consideration of transportability and the like.
  • the organic solvent contains a good solvent (GS) and a poor solvent (PS) for at least one of the host of the first component and the dopant of the second component, and the boiling point (BP GS ) of the good solvent ( GS ) is poor. It is preferably lower than the boiling point (BP PS ) of ( PS ).
  • the difference in solubility is preferably at least 1%, more preferably at least 3%, even more preferably at least 5%.
  • the difference in boiling points is preferably at least 10 ° C., more preferably at least 30 ° C., even more preferably at least 50 ° C.
  • the organic solvent is removed from the coating film by a drying process such as vacuum, reduced pressure, and heating.
  • a drying process such as vacuum, reduced pressure, and heating.
  • Tg glass transition temperature
  • From the viewpoint of reducing the residual solvent it is preferable to heat the solute at least at least one kind of glass transition point (Tg) of ⁇ 30 ° C. or higher. Even when the heating temperature is lower than the boiling point of the organic solvent, the organic solvent is sufficiently removed because the film is thin. Further, drying may be performed a plurality of times at different temperatures, or a plurality of drying methods may be used in combination.
  • organic solvents used in the composition for forming an organic layer include alkylbenzene solvents, phenyl ether solvents, alkyl ether solvents, cyclic ketone solvents, aliphatic ketone solvents, and monocyclic solvents. Examples thereof include ketone solvents, solvents having a diester skeleton, and fluorinated solvents.
  • Specific examples include pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tetradecanol, hexane-2-ol, Heptane-2-ol, octane-2-ol, decane-2-ol, dodecane-2-ol, cyclohexanol, ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol, terpineol (mixture), ethylene glycol Monomethyle Teracetate, propylene glycol monomethyl ether acetate, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol isopropyl methyl ether, dipropylene glycol monomethyl ether,
  • organic solvent one or more selected from an alkylbenzene-based solvent and a phenylether-based solvent is preferable, and a mixed solvent of 3-phenoxytoluene and cyclohexylbenzene is more preferable.
  • composition for forming an organic layer may contain an optional component as long as its properties are not impaired.
  • Optional components include a binder and a surfactant.
  • Binder The composition for forming an organic layer may contain a binder.
  • the binder forms a film during film formation and bonds the obtained film to the substrate. Further, it plays a role of dissolving, dispersing and binding other components in the composition for forming an organic layer.
  • binder used in the composition for forming an organic layer examples include acrylic resin, polyethylene terephthalate, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, acrylonitrile-ethylene-styrene copolymer (AES) resin, Ionomer, chlorinated polyether, diallyl phthalate resin, unsaturated polyester resin, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, Teflon, acrylonitrile-butadiene-styrene copolymer (ABS) resin, acrylonitrile Styrene copolymer (AS) resins, phenolic resins, epoxy resins, melamine resins, urea resins, alkyd resins, polyurethanes, and copolymers of the above resins and polymers, Re not limited to.
  • AES acrylonitrile-ethylene-s
  • the binder used in the composition for forming an organic layer may be used alone or in combination of two or more.
  • the composition for forming an organic layer contains, for example, a surfactant for controlling the film surface uniformity, the solvent affinity and the liquid repellency of the film surface of the composition for forming an organic layer. Is also good.
  • Surfactants are classified into ionic and nonionic according to the structure of the hydrophilic group, and further classified into alkyl, silicon and fluorine based on the structure of the hydrophobic group. Further, according to the molecular structure, they are classified into a monomolecular system having a relatively small molecular weight and a simple structure and a high molecular system having a large molecular weight and having side chains or branches.
  • the composition is classified into a single system and a mixed system in which two or more surfactants and a base material are mixed from the composition.
  • surfactants that can be used in the composition for forming an organic layer all kinds of surfactants can be used.
  • surfactant for example, Polyflow No. 45, Polyflow KL-245, Polyflow No. 75, polyflow no. 90, polyflow no. 95 (trade name, manufactured by Kyoeisha Chemical Industry Co., Ltd.), Disperbyk 161, Disperbake 162, Disperbake 163, Disperbake 164, Disperbake 166, Disperbake 170, Disperbake 180, Disperbake 181, Disperbake Bake 182, BYK300, BYK306, BYK310, BYK320, BYK330, BYK342, BYK344, BYK346 (trade name, manufactured by BYK Japan KK), KP-341, KP-358, KP-368, KF-96-50CS, KF -50-100CS (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), Surflon SC-101, Surflon KH-40 (trade name, manufactured by Seimi Chemical Co., Ltd.), Futergent 222
  • the surfactant may be used alone or in combination of two or more.
  • composition and physical properties of the composition for forming an organic layer The content of each component in the composition for forming an organic layer is good solubility of each component in the composition for forming an organic layer, storage stability and film formability, and is obtained from the composition for forming an organic layer. Good film quality of the coating film, good ejection property when using the inkjet method, good electric characteristics, luminous characteristics, efficiency, and life of the organic EL device having the organic layer manufactured using the composition. Is determined in consideration of the viewpoint. For example, in the case of the composition for forming a light emitting layer, the host material of the first component is 0.0999 to 8.0% by mass based on the total mass of the composition for forming the light emitting layer, and the dopant material is the second component.
  • the organic solvent as the third component is 90.0 to 99% by mass with respect to the total mass of the light emitting layer forming composition. It is preferably 0.9% by mass.
  • the host material as the first component is 0.095 to 4.0% by mass based on the total mass of the composition for forming a light emitting layer
  • the second component is based on the total mass of the composition for forming a light emitting layer
  • the organic solvent as the third component is 95.0 to 99.9% by mass based on the total mass of the composition for forming a light emitting layer.
  • the host material as the first component is 0.25 to 2.5% by mass with respect to the total mass of the composition for forming a light emitting layer
  • the dopant material as the second component is a compound of the composition for forming a light emitting layer.
  • the organic solvent as the third component is 0.05 to 0.5% by mass with respect to the total mass, and 97.0 to 99.7% by mass with respect to the total mass of the composition for forming a light emitting layer.
  • the composition for forming an organic layer can be produced by appropriately selecting the above-mentioned components by stirring, mixing, heating, cooling, dissolving, dispersing and the like by a known method. After the preparation, filtration, degassing (also referred to as degassing), ion exchange treatment, inert gas replacement / sealing treatment, and the like may be appropriately selected and performed.
  • the viscosity of the composition for forming an organic layer As for the viscosity of the composition for forming an organic layer, the higher the viscosity, the better the film formability and the good ejection property when the ink jet method is used. On the other hand, the lower the viscosity, the easier it is to form a thin film. For this reason, the viscosity of the composition for forming an organic layer at 25 ° C. is preferably 0.3 to 3 mPa ⁇ s, more preferably 1 to 3 mPa ⁇ s. In the present invention, the viscosity is a value measured using a conical plate type rotary viscometer (cone plate type).
  • the viscosity of the composition for forming an organic layer preferably has a surface tension at 25 ° C. of 20 to 40 mN / m, more preferably 20 to 30 mN / m.
  • the surface tension is a value measured using the hanging drop method.
  • Crosslinkable polymer compound Compound represented by formula (XLP-1) Next, the case where the above-mentioned polymer compound has a crosslinkable substituent will be described.
  • a crosslinkable polymer compound is, for example, a compound represented by the following general formula (XLP-1).
  • MUx, ECx and k have the same definition as MU, EC and k in the above formula (SPH-1), provided that the compound represented by the formula (XLP-1) has at least one crosslinkable substituent (XLS) And preferably the content of the monovalent or divalent aromatic compound having a crosslinkable substituent is 0.1 to 80% by mass in the molecule.
  • the content of the monovalent or divalent aromatic compound having a crosslinkable substituent is preferably from 0.5 to 50% by mass, more preferably from 1 to 20% by mass.
  • crosslinkable substituent is not particularly limited as long as it is a group that can further crosslink the above-described polymer compound, but a substituent having the following structure is preferable. * In each structural formula shows a bonding position.
  • substituents it is represented by the formula (XLS-1), (XLS-2), (XLS-3), (XLS-9), (XLS-10) or (XLS-17).
  • the group represented by the formula (XLS-1), (XLS-3) or (XLS-17) is more preferable.
  • crosslinking substituent other than those described above may be chlorine, bromine or iodine, or a boron-containing group represented by the following formula (XLS-19). * In the structural formula indicates a bonding position.
  • R 41 and R 42 are each independently an alkyl, and R 41 and R 42 may combine with each other to form a ring. Further, the total carbon number of R 41 and R 42 is preferably 2 to 10.
  • Examples of the divalent aromatic compound having a crosslinkable substituent include a compound having the following partial structure. * In each structural formula shows a bonding position.
  • Examples of the solvent used in the reaction include an aromatic solvent, a saturated / unsaturated hydrocarbon solvent, an alcohol solvent, and an ether solvent, and examples thereof include dimethoxyethane, 2- (2-methoxyethoxy) ethane, and 2- (2 -Ethoxyethoxy) ethane and the like.
  • the reaction may be performed in a two-phase system.
  • a phase transfer catalyst such as a quaternary ammonium salt may be added as necessary.
  • the compound When producing the compound of formula (SPH-1) and the compound of (XLP-1), the compound may be produced in one step or may be produced through multiple steps. Further, the reaction may be carried out by a batch polymerization method in which the reaction is started after all the raw materials are put into the reaction vessel, or may be carried out by a drop polymerization method in which the raw materials are added dropwise to the reaction vessel, or the product may be used in the course of the reaction. It may be carried out by a precipitation polymerization method in which precipitation occurs, and these can be synthesized by appropriately combining them.
  • the desired product is obtained by performing a reaction in a state where a monomer unit (MU) and an end cap unit (EC) are added to a reaction vessel.
  • the monomer unit (MU) is polymerized to a target molecular weight, and then the reaction is performed by adding an end cap unit (EC). Get things.
  • a polymer having a concentration gradient in the structure of the monomer units can be produced.
  • the target polymer can be obtained by post-reaction.
  • the primary structure of the polymer can be controlled by selecting the polymerizable group of the monomer unit (MU). For example, as shown in synthesis schemes 1 to 3, polymers having a random primary structure (synthesis scheme 1), polymers having a regular primary structure (synthesis schemes 2 and 3), and the like can be synthesized. And can be used in an appropriate combination depending on the object. Furthermore, if a monomer unit having three or more polymerizable groups is used, a hyperbranched polymer or dendrimer can be synthesized.
  • a monomer unit having three or more polymerizable groups is used, a hyperbranched polymer or dendrimer can be synthesized.
  • JP 2010-189630 A As the monomer unit that can be used in the present invention, JP 2010-189630 A, International Publication No. 2012/086671, WO 2013/191088, WO 2002/045184, WO 2011/049241 No., WO2013 / 146806, WO2005 / 049546, WO2015 / 145871, JP2010-215886, JP2008-106241, JP2010-215886, International Publication No. 2016/031639, JP 2011-174062, WO 2016/031639, WO 2016/031639, can be synthesized according to the method described in WO 2002/045184. .
  • the present invention can also be applied to a display device including an organic EL element, a lighting device including an organic EL element, and the like.
  • a display device or a lighting device including the organic EL element can be manufactured by a known method such as connecting the organic EL element according to the present embodiment to a known driving device, and includes DC driving, pulse driving, AC driving, and the like. Driving can be performed using a known driving method as appropriate.
  • Examples of the display device include a panel display such as a color flat panel display and a flexible display such as a flexible color organic electroluminescence (EL) display (for example, JP-A-10-335066, JP-A-2003-321546). Gazette, JP-A-2004-281086).
  • Examples of the display method of the display include at least one of a matrix method and a segment method. Note that the matrix display and the segment display may coexist in the same panel.
  • pixels for display are two-dimensionally arranged such as in a grid or mosaic, and a set of pixels displays a character or an image.
  • the shape and size of the pixel depend on the application. For example, a square pixel having a side of 300 ⁇ m or less is normally used for displaying images and characters on a personal computer, a monitor, and a television. In the case of a large display such as a display panel, a pixel having a side of mm order is used. become.
  • pixels of the same color may be arranged, but in the case of color display, red, green and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
  • the matrix may be driven by either a line-sequential driving method or an active matrix.
  • the line-sequential driving has an advantage that the structure is simpler.
  • the active matrix may be more excellent. Therefore, it is necessary to use the active matrix properly depending on the application.
  • a pattern is formed so as to display predetermined information, and a predetermined area emits light.
  • a time display and a temperature display on a digital clock or a thermometer an operation state display of an audio device or an electromagnetic cooker, and a panel display of a car.
  • Illumination devices include, for example, illumination devices such as interior lighting, backlights of liquid crystal display devices (for example, JP-A-2003-257621, JP-A-2003-277741, and JP-A-2004-119211). Etc.).
  • a backlight is mainly used for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like.
  • the backlight using the light emitting element according to the above is characterized by being thin and lightweight.
  • the color conversion is to convert light emitted from a light emitter to light having a longer wavelength (wavelength conversion), for example, to convert blue light to green or red light.
  • wavelength conversion wavelength conversion
  • a full-color display can be manufactured by combining such a blue light source and a film having a wavelength conversion function with a white light source as a light source unit and combining it with a liquid crystal driving portion and a color filter.
  • a liquid crystal driving portion it can be used as it is as a white light source, and can be applied as a white light source such as LED lighting.
  • a blue organic EL element as a light source in combination with a film for converting into green and red
  • a full-color organic EL display without using a metal mask can be manufactured.
  • a blue micro LED as a light source in combination with a film for converting into green and red, a low-cost full-color micro LED display can be manufactured.
  • the polycyclic aromatic compound represented by the general formula (1) is useful as a fluorescent material that emits blue light or green light with high color purity by excitation light, and is also used as a material having such a wavelength conversion function. be able to.
  • the polycyclic aromatic compound of the formula (1) converts light having a wavelength of, for example, 300 nm to 449 nm into blue light emission having a narrow half width (25 nm or less, further 20 nm or less) having a maximum value at 450 nm to 500 nm. It can be used as a wavelength conversion material.
  • the composition having a wavelength conversion function may contain, in addition to the polycyclic aromatic compound of the formula (1), a binder resin, other additives, and a solvent.
  • a binder resin for example, the resins described in paragraphs [0173] to [0176] of WO 2016/190283 can be used.
  • the compounds described in paragraphs [0177] to [0181] of WO 2016/190283 can be used.
  • the wavelength conversion film includes a wavelength conversion layer formed by curing a composition having a wavelength conversion function.
  • a method for producing the wavelength conversion layer from the composition a known film forming method can be referred to.
  • the wavelength conversion film may be composed of only a wavelength conversion layer formed from a composition containing the polycyclic aromatic compound of the formula (1), and may include other wavelength conversion layers (for example, converting blue light into green light or red light). A wavelength conversion layer for converting blue light or green light to red light). Further, the wavelength conversion film may include a base layer and a barrier layer for preventing the color conversion layer from being deteriorated by oxygen, moisture or heat.
  • the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. That is, the configuration of the organic EL device of the present invention is not limited to the configuration shown in the following examples, and the thickness and constituent material of each layer can be appropriately changed according to the basic physical properties of the present invention.
  • the absorption spectrum of the sample was measured using an ultraviolet-visible-near-infrared spectrophotometer (UV-2600, Shimadzu Corporation).
  • the fluorescence spectrum of the sample was measured using a spectrofluorometer (F-7000, manufactured by Hitachi High-Tech Co., Ltd.).
  • photoluminescence was measured by exciting at an appropriate excitation wavelength at room temperature.
  • the sample was immersed in liquid nitrogen (temperature 77 K) using an attached cooling unit. The sample was excited at the appropriate excitation wavelength and photoluminescence was measured.
  • the fluorescence quantum yield (PLQY) is measured using an absolute PL quantum yield measuring device (C9920-02G, manufactured by Hamamatsu Photonics KK).
  • Evaluation items and evaluation methods include driving voltage (V), emission wavelength (nm), CIE chromaticity (x, y), external quantum efficiency (%), maximum wavelength of emission spectrum (nm), and half width ( nm) and roll-off. For these evaluation items, values at appropriate emission luminance can be used.
  • the quantum efficiency of a light-emitting device includes an internal quantum efficiency and an external quantum efficiency.
  • the internal quantum efficiency is such that external energy injected as electrons (or holes) into the light-emitting layer of the light-emitting device is purely converted into photons. Shows the ratio of
  • the external quantum efficiency is calculated based on the amount of this photon emitted to the outside of the light emitting element, and a part of the photon generated in the light emitting layer is continuously absorbed or reflected inside the light emitting element. As a result, the external quantum efficiency is lower than the internal quantum efficiency because the external quantum efficiency is not emitted to the outside of the light emitting element.
  • the method of measuring the spectral radiance (emission spectrum) and external quantum efficiency is as follows.
  • the element was made to emit light by applying a voltage using a voltage / current generator R6144 manufactured by Advantest Corporation.
  • a spectral radiance meter SR-3AR manufactured by TOPCON the spectral radiance in the visible light region was measured from the direction perpendicular to the light emitting surface. Assuming that the light emitting surface is a perfect diffusion surface, the value obtained by dividing the measured value of the spectral radiance of each wavelength component by the wavelength energy and multiplying by ⁇ is the number of photons at each wavelength.
  • the external quantum efficiency is a value obtained by dividing a value obtained by dividing an applied current value by an elementary charge as the number of carriers injected into the device and dividing the total number of photons emitted from the device by the number of carriers injected into the device.
  • the half width of the emission spectrum is determined as the width between the upper and lower wavelengths at which the intensity becomes 50% with the maximum emission wavelength as the center.
  • Roll-off is a phenomenon in which, when a voltage is applied to an element, the efficiency decreases as the voltage is applied.
  • the TADF element when tau (delay) of the dopant or assist dopant is large, the roll-off is large, and when tau (delay) is small, the roll-off is small.
  • evaluation can be performed by comparing the efficiency at any two points of luminance or current density. Preferably, the efficiency is high and the roll-off is small.
  • the roll-off indicates a degree of reduction in efficiency between any two luminances.
  • a roll-off (RO) between 100 cd / m 2 and 1000 cd / m 2 is obtained by the following equation (XXXX).
  • EQE (100cd / m 2) and EQE (1000cd / m 2) each represent an external quantum efficiency at 100 cd / m 2 and 1000 cd / m 2.
  • RO 1 ⁇ (EQE (100 cd / m 2 ) / EQE (1000 cd / m 2 ))
  • Vapor-deposited organic EL device An organic EL device having a device configuration that can be expected to have high efficiency, which is shown in the literature (Adv. Mater. 2016, 28, 2777-2781) and is suitable for thermally activated delayed fluorescent material Produced.
  • the materials used for forming the layers other than the light emitting layer used are as follows. The forming materials of each layer of the manufactured organic EL device in Table 1 are shown. “HI” as the hole injection layer material is N, N′-diphenyl-N, N′-dinaphthyl-4,4′-diaminobiphenyl, and “HT” as the hole transport layer material is 4,4 ′.
  • the structures of the compounds used as the host and the dopant of the light emitting layer are as follows.
  • a glass substrate (manufactured by OptoScience Corp.) of 26 mm ⁇ 28 mm ⁇ 0.7 mm, which is obtained by polishing ITO formed to a thickness of 200 nm by sputtering to 50 nm, is used as a transparent support substrate.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition device (manufactured by Choshu Sangyo Co., Ltd.), and tantalum made of HI, HT, EB, compound (BO2-0220), compound (DABNA2), and ET, respectively.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the pressure in the vacuum chamber was reduced to 5 ⁇ 10 ⁇ 4 Pa.
  • HI was heated to deposit a film to a thickness of 40 nm
  • HT was heated to deposit a film to a thickness of 15 nm to form holes.
  • An injection layer and a hole transport layer were formed, respectively.
  • EB was heated to be deposited to a thickness of 15 nm to form an electron blocking layer.
  • the compound (BO2-0220) and the compound (DABNA2) were simultaneously heated and evaporated to a thickness of 20 nm to form a light emitting layer.
  • the deposition rate was adjusted such that the weight ratio of the compound (BO2-0220) to the compound (DABNA2) was 99: 1.
  • ET was heated and vapor-deposited to a thickness of 40 nm to form an electron transport layer.
  • the deposition rate for each layer was 0.01-1 nm / sec.
  • LiF is heated to deposit a film at a deposition rate of 0.01 to 0.1 nm / sec to a thickness of 1 nm
  • aluminum is heated to deposit a film to a thickness of 100 nm to form a cathode.
  • the deposition rate of aluminum was adjusted to be 1 to 10 nm / sec.
  • the light emission spectrum had a peak wavelength of 467 nm, and deep blue light emission was observed.
  • the external quantum efficiency at the time of light emission of 100 cd / m 2 was 23.7%, and high quantum efficiency was obtained.
  • Example 2 An organic EL device was obtained by the same procedure and configuration as in Example 1 except that the host was changed to the compound (BO2-0511S).
  • the host was changed to the compound (BO2-0511S).
  • the emission spectrum was at a peak wavelength of 465 nm, and deep blue emission was observed.
  • the external quantum efficiency at the time of light emission of 100 cd / m 2 was 15.4%, and high quantum efficiency was obtained.
  • Example 3 An organic EL device was obtained by the same procedure and configuration as in Example 1 except that the host was changed to the compound (BO2-0264 / 0511S).
  • the host was changed to the compound (BO2-0264 / 0511S).
  • the emission spectrum was at a peak wavelength of 465 nm, and deep blue emission was observed.
  • the external quantum efficiency at the time of light emission of 100 cd / m 2 was 14.2%, and high quantum efficiency was obtained.
  • Example 4 An organic EL device was obtained in the same procedure and configuration as in Example 1 except that the dopant was changed to the compound (BD1).
  • BD1 the dopant was changed to the compound (BD1).
  • the light emission spectrum had a peak wavelength of 462 nm, and deep blue light emission was observed.
  • the external quantum efficiency at the time of light emission of 100 cd / m 2 was 28.6%, and high quantum efficiency was obtained.
  • Example 5 An organic EL device was obtained in the same procedure and configuration as in Example 1, except that the host was changed to the compound (BO2-0220 / 0511S) and the dopant was changed to the compound (BD1).
  • the host was changed to the compound (BO2-0220 / 0511S) and the dopant was changed to the compound (BD1).
  • the light emission spectrum had a peak wavelength of 461 nm, and deep blue light emission was observed.
  • the external quantum efficiency at the time of light emission of 100 cd / m 2 was 22.4%, and high quantum efficiency was obtained.
  • Example 6 An organic EL device was obtained in the same procedure and configuration as in Example 1, except that the host was changed to the compound (BO2-0220) and the dopant was changed to the compound (BD2).
  • the host was changed to the compound (BO2-0220) and the dopant was changed to the compound (BD2).
  • BD2 the dopant was changed to the compound (BD2).
  • the emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed.
  • the external quantum efficiency at the time of light emission of 100 cd / m 2 was 34.0%, and high quantum efficiency was obtained.
  • Example 7 An organic EL device was obtained in the same procedure and configuration as in Example 1, except that the host was changed to the compound (BO2-0511S) and the dopant was changed to the compound (BD2).
  • the host was changed to the compound (BO2-0511S) and the dopant was changed to the compound (BD2).
  • BD2 the compound
  • the emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed.
  • the external quantum efficiency at the time of light emission of 100 cd / m 2 was 28.0%, and high quantum efficiency was obtained.
  • Example 8 An organic EL device was obtained in the same procedure and configuration as in Example 1, except that the host was changed to the compound (BO2-0520S) and the dopant was changed to the compound (BD2).
  • the host was changed to the compound (BO2-0520S) and the dopant was changed to the compound (BD2).
  • BD2 the dopant was changed to the compound (BD2).
  • Example 9 An organic EL device was obtained by the same procedure and configuration as in Example 1 except that the host was changed to the compound (BO2-0264 / 0511S) and the dopant was changed to the compound (BD2).
  • the host was changed to the compound (BO2-0264 / 0511S) and the dopant was changed to the compound (BD2).
  • the structures of the compounds used as the host and the dopant of the light emitting layer are as follows.
  • a glass substrate (manufactured by OptoScience Corp.) of 26 mm ⁇ 28 mm ⁇ 0.7 mm, which is obtained by polishing ITO formed to a thickness of 200 nm by sputtering to 50 nm, is used as a transparent support substrate.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Choshu Sangyo Co., Ltd.), and tantalum made of HI, HT, EB, compound (BO2-0511S), compound (BD3), and ET, respectively.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the pressure in the vacuum chamber was reduced to 5 ⁇ 10 ⁇ 4 Pa.
  • HI was heated to deposit a film to a thickness of 40 nm
  • HT was heated to deposit a film to a thickness of 15 nm to form holes.
  • An injection layer and a hole transport layer were formed, respectively.
  • EB was heated to be deposited to a thickness of 15 nm to form an electron blocking layer.
  • the compound (BO2-0511S) and BD3 were simultaneously heated and evaporated to a thickness of 20 nm to form a light emitting layer. The deposition rate was adjusted such that the weight ratio of the compound (BO2-0511S) to the compound (BD3) became 99: 1.
  • the ET was heated and vapor-deposited so as to have a thickness of 30 nm to form an electron transport layer.
  • the deposition rate for each layer was 0.01-1 nm / sec.
  • LiF is heated to deposit a film at a deposition rate of 0.01 to 0.1 nm / sec to a thickness of 1 nm, and then aluminum is heated to deposit a film to a thickness of 100 nm to form a cathode.
  • an organic EL device was obtained.
  • the deposition rate of aluminum was adjusted to be 1 to 10 nm / sec.
  • the light emission spectrum had a peak wavelength of 451 nm, and deep blue light emission was observed.
  • the external quantum efficiency at the time of light emission of 100 cd / m 2 was 14.8%, and high quantum efficiency was obtained.
  • Example 11 An organic EL device was obtained in the same procedure and configuration as in Example 10, except that the dopant was changed to the compound (BD4).
  • BD4 the dopant was changed to the compound (BD4).
  • Example 12 An organic EL device was obtained in the same procedure and configuration as in Example 10, except that the dopant was changed to the compound (BD5).
  • BD5 the dopant was changed to the compound (BD5).
  • the light emission spectrum had a peak wavelength of 468 nm, and deep blue light emission was observed.
  • the external quantum efficiency at the time of light emission of 100 cd / m 2 was 17.5%, and high quantum efficiency was obtained.
  • Example 13 An organic EL device was obtained in the same procedure and configuration as in Example 10, except that the dopant was changed to the compound (BD5).
  • BD5 the dopant was changed to the compound (BD5).
  • Example 14 An organic EL device was obtained in the same procedure and configuration as in Example 10, except that the dopant was changed to the compound (BD7).
  • BD7 the dopant was changed to the compound (BD7).
  • the light emission spectrum had a peak wavelength of 468 nm, and deep blue light emission was observed.
  • the external quantum efficiency at the time of light emission of 100 cd / m 2 was 11.6%, and high quantum efficiency was obtained.
  • Example 8 An organic EL device was obtained in the same procedure and configuration as in Example 12, except that the host was changed to the compound (EMH1). A direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode. The emission spectrum was at a peak wavelength of 468 nm, and deep blue emission was observed. However, no emission was observed at 100 cd / m 2 due to deterioration.
  • the structures of the compounds used as the host and the dopant of the light emitting layer are as follows.
  • a glass substrate (manufactured by OptoScience Corp.) of 26 mm ⁇ 28 mm ⁇ 0.7 mm, which is obtained by polishing ITO formed to a thickness of 200 nm by sputtering to 50 nm, is used as a transparent support substrate.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition device (manufactured by Choshu Sangyo Co., Ltd.), and tantalum made of HI, HT, EB, compound (BO2-0231), compound (BD2), and ET, respectively.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the pressure in the vacuum chamber was reduced to 5 ⁇ 10 ⁇ 4 Pa.
  • HI was heated to deposit a film to a thickness of 40 nm
  • HT was heated to deposit a film to a thickness of 15 nm to form holes.
  • An injection layer and a hole transport layer were formed, respectively.
  • EB was heated to be deposited to a thickness of 15 nm to form an electron blocking layer.
  • the compound (BO2-0231) and the compound (BD2) were simultaneously heated and evaporated to a thickness of 20 nm to form a light-emitting layer.
  • the deposition rate was adjusted such that the weight ratio of the compound (BO2-0231) to the compound (BD2) became 99: 1.
  • the ET was heated and vapor-deposited so as to have a thickness of 30 nm to form an electron transport layer.
  • the deposition rate for each layer was 0.01-1 nm / sec.
  • LiF is heated to deposit a film at a deposition rate of 0.01 to 0.1 nm / sec to a thickness of 1 nm, and then aluminum is heated to deposit a film to a thickness of 100 nm to form a cathode.
  • an organic EL device was obtained.
  • the deposition rate of aluminum was adjusted to be 1 to 10 nm / sec.
  • the light emission spectrum had a peak wavelength of 476 nm, and deep blue light emission was observed.
  • the external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 27.7% and 24.5%, and high quantum efficiency was obtained.
  • the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -11.6%.
  • Example 16 An organic EL device was obtained by the same procedure and configuration as in Example 15 except that the host was changed to the compound (BO2-0431).
  • a DC voltage was applied using the ITO electrode as an anode and the aluminum electrode as a cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 474 nm, and deep blue light emission was observed.
  • the external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 29.4% and 25.3%, and high quantum efficiency was obtained.
  • the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -14%.
  • the structures of the host and the dopant of the light emitting layer and the compound used as the material for forming the electron transport layer are as follows.
  • the structure of the compound used as a material for forming each layer other than the light emitting layer and the electron transporting layer is as described above.
  • Example 17 A glass substrate (manufactured by OptoScience Corp.) of 26 mm ⁇ 28 mm ⁇ 0.7 mm, which is obtained by polishing ITO formed to a thickness of 200 nm by sputtering to 50 nm, is used as a transparent support substrate.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition device (manufactured by Choshu Sangyo Co., Ltd.), and HI, HT, EB, compound (BO2-0431), compound (BD2), 2CzBN and BPy-TP2 were respectively placed therein.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the pressure in the vacuum chamber was reduced to 5 ⁇ 10 ⁇ 4 Pa.
  • HI was heated to deposit a film to a thickness of 40 nm
  • HT was heated to deposit a film to a thickness of 15 nm to form holes.
  • An injection layer and a hole transport layer were formed, respectively.
  • EB was heated to be deposited to a thickness of 15 nm to form an electron blocking layer.
  • the compound (BO2-0231) and the compound (BD2) were simultaneously heated and evaporated to a thickness of 20 nm to form a light-emitting layer.
  • the deposition rate was adjusted such that the weight ratio of the compound (BO2-0231) to the compound (BD2) became 99: 1.
  • the light emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed.
  • the external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 28.0% and 25.1%, and high quantum efficiency was obtained.
  • the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -10.4%.
  • the time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 83 hours.
  • Example 18 An organic EL device was obtained in the same procedure and configuration as in Example 17, except that the host was changed to the compound (BO2-0520).
  • a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed. Further, the external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 28.6% and 25.7%, and high quantum efficiency was obtained.
  • the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -9.2%.
  • the time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 90 hours.
  • Example 19 An organic EL device was obtained in the same procedure and configuration as in Example 17, except that the host was changed to the compound (BO2-0220).
  • a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed.
  • the external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 29.3% and 26.6%, and high quantum efficiency was obtained.
  • the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -10.1%.
  • the time until the luminance cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 30 hours.
  • Example 20 An organic EL device was obtained in the same procedure and configuration as in Example 17, except that the host was changed to the compound (BO2-0220-4).
  • a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed.
  • the external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 24.3% and 20.9%, and high quantum efficiency was obtained.
  • the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -14.0%.
  • the time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 100 hours.
  • Example 21 An organic EL device was obtained in the same procedure and configuration as in Example 17, except that the host was changed to the compound (BO2-0431-1).
  • a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed.
  • the external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 26.1% and 23.5%, and high quantum efficiency was obtained.
  • the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -10.0%.
  • the time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 90 hours.
  • Example 22 An organic EL device was obtained in the same procedure and configuration as in Example 17, except that the host was changed to the compound (BO2-0431-2).
  • a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed.
  • the external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 26.3% and 23.5%, and high quantum efficiency was obtained.
  • the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -10.6%.
  • the time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 98 hours.
  • Example 23 An organic EL device was obtained in the same procedure and configuration as in Example 17, except that the host was changed to the compound (BO2-0220 / 0511S-1).
  • the host was changed to the compound (BO2-0220 / 0511S-1).
  • the ITO electrode As the anode and the aluminum electrode as the cathode
  • the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed.
  • the external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 24.7% and 21.1%, and high quantum efficiency was obtained.
  • the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -14.6%.
  • the time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 67 hours.
  • Example 24 An organic EL device was obtained in the same procedure and configuration as in Example 18, except that the dopant was changed to the compound (BD8).
  • BD8 the dopant was changed to the compound (BD8).
  • the light emission spectrum had a peak wavelength of 470 nm, and deep blue light emission was observed.
  • the external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 24.6% and 22.5%, and high quantum efficiency was obtained.
  • the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -8.5%.
  • the time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 80 hours.
  • Example 25 An organic EL device was obtained in the same procedure and configuration as in Example 18, except that the dopant was changed to the compound (BD9).
  • BD9 the dopant was changed to the compound (BD9).
  • the light emission spectrum had a peak wavelength of 462 nm, and deep blue light emission was observed.
  • the external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 23.9% and 21.0%, and high quantum efficiency was obtained.
  • the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -12.1%.
  • the time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 61 hours.
  • Example S-1 to Example S-10 and Comparative Example S-1> Composition for forming light emitting layer ⁇ Example S-1 to Example S-10 and Comparative Example S-1>
  • Table 6 0.99% by mass of the host of the first component, 0.01% by mass of the dopant of the second component, and 99% by mass of the solvent of the third component were mixed to emit light at a solid concentration of 1% by mass.
  • Each layer-forming composition was prepared.
  • the viscosity and surface tension of the composition for forming a light emitting layer of Example S-9 among these prepared compositions were measured, the viscosity was 3.5 mPa ⁇ s, and the surface tension was 36.3 mN / m. Met.
  • the solubility was evaluated by confirming the presence or absence of turbidity and precipitation of the prepared composition for forming a light emitting layer.
  • the composition without turbidity or precipitation was designated as "A”
  • the composition with turbidity or precipitation was designated as "F”
  • the solubility was evaluated.
  • the film formability was evaluated as "." (Film formation method by spin coating) A UV-O 3 treatment was performed by irradiating a clean glass substrate having a thickness of 0.5 mm and a size of 28 ⁇ 26 mm with irradiation energy of 1000 mJ / cm 2 (low-pressure mercury lamp (254 nanometers)). Next, 0.3 to 0.6 mL of the composition for forming a light emitting layer is dropped on glass, and spin-coated (slope (increase to a predetermined number of revolutions in 5 seconds)) ⁇ applied at 500 to 5000 rpm (at a predetermined number of revolutions). 10 seconds) ⁇ slope (rotation speed is reduced in 5 seconds and rotation speed is set to 0 rpm).
  • the film was dried on a hot plate at 120 ° C. for 10 minutes to form a film.
  • the composition for forming a light emitting layer was discharged into a pixel of 100 ppi using an inkjet, and dried at 100 ° C. to form a film.
  • XLP-101 ⁇ Synthesis of Polymeric Hole Transport Compound: XLP-101> According to the method described in JP-A-2018-61028, XLP-101 was synthesized as follows. A copolymer having M5 or M6 bonded thereto is obtained next to M4, and it is estimated from the charging ratio that each unit is 40:10:50 (molar ratio). In the following formula, Bpin is pinacolate boryl.
  • Table 7 shows the material constitution of each layer in the organic EL device.
  • PEDOT: PSS which is a material for forming the hole injection layer is a commercially available PEDOT: PSS solution (Clevios (TM) P VP AI4083, an aqueous dispersion of PEDOT: PSS represented by the following formula, Heraeus (Holdings) was used.
  • OTPD which is a material for forming the hole transport layer includes OTPD (LT-N159, manufactured by Luminescence Technology Corp.) and IK-2 (photo cationic polymerization initiator, manufactured by San Apro was dissolved in toluene to obtain an OTPD solution having an OTPD concentration of 0.7% by mass and an IK-2 concentration of 0.007% by mass.
  • XLP-101 as the material for forming the hole transport layer was obtained by dissolving XLP-101, which is the above-described polymer hole transport compound, in xylene at a concentration of 0.6% by mass. An XLP-101 solution was obtained.
  • PCz polyvinyl carbazole represented by the following formula was dissolved in dichlorobenzene to obtain a 0.7% by mass PCz solution.
  • Example SD-1> A PEDOT: PSS solution was spin-coated on a glass substrate on which ITO was deposited to a thickness of 50 nm, and baked on a hot plate at 200 ° C. for 1 hour to form a PEDOT: PSS film having a thickness of 40 nm. (Hole injection layer). Next, the OTPD solution is spin-coated, dried on a hot plate at 80 ° C. for 10 minutes, exposed to light at an exposure intensity of 100 mJ / cm 2 with an exposure machine, and baked on a hot plate at 100 ° C. for 1 hour to obtain a solution. A OTPD film having a thickness of 30 nm, which was insoluble in the above, was formed (hole transport layer). Next, the composition for forming a light-emitting layer prepared in Example S-9 was spin-coated and baked on a hot plate at 120 ° C. for 1 hour to form a light-emitting layer having a thickness of 20 nm.
  • the produced multilayer film was fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), and a molybdenum vapor deposition boat containing 2CzBN and BPy-TP2, a molybdenum vapor deposition boat containing LiF, and aluminum
  • the inserted tungsten deposition boat was mounted.
  • 2CzBN was heated and vapor-deposited to a thickness of 10 nm to form the electron transport layer 1.
  • BPy-TP2 was heated and vapor-deposited to a thickness of 20 nm to form an electron transport layer 2.
  • the deposition rate at the time of forming the electron transport layer was 1 nm / sec. Thereafter, LiF was heated to be deposited at a deposition rate of 0.01 to 0.1 nm / sec so as to have a film thickness of 1 nm. Next, aluminum was heated and vapor-deposited to a thickness of 100 nm to form a cathode. Thus, an organic EL device was obtained.
  • the light emitting surface was uniform, and the light emission spectrum was 472 nm at peak wavelength, 21 nm at half maximum width, and deep. Blue light emission was observed.
  • the external quantum efficiency at the time of light emission of 100 cd / m 2 was 10.1%.
  • Example SD-2> The same procedures and procedures as in Example SD-1 were performed, except that the hole transport layer was spin-coated with an XLP-101 solution and baked on a hot plate at 200 ° C. for 1 hour to form a 30 nm-thick film.
  • An organic EL device was obtained with the above configuration.
  • a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of emission of 100 cd / m 2 were measured, the emission surface was uniform, and the emission spectrum was 472 nm at the peak wavelength, 20 nm at half width at half maximum, and deep. Blue light emission was observed.
  • the external quantum efficiency at the time of light emission of 100 cd / m 2 was 12.1%.
  • Example SD-3 The hole transport layer was spin-coated with a PCz solution and baked on a hot plate at 120 ° C. for 1 hour to form a 30 nm-thick film, with the same procedure and configuration as in Example SD-1. Thus, an organic EL device was obtained.
  • a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emitting surface was uniform, and the light emission spectrum was 472 nm at the peak wavelength, 20 nm at half width at half maximum, and deep. Blue light emission was observed.
  • the external quantum efficiency at the time of light emission of 100 cd / m 2 was 11.5%.
  • the coating-type organic EL devices prepared in Examples SD-1 to SD-3 had an external quantum efficiency of 10% or more, emitted deep blue light and a narrow half-value width, and were excellent in color.
  • the organic EL device of the present invention may be configured to have a light-emitting layer containing a polymer compound or a crosslinked polymer.
  • Examples of the high molecular compound contained in such a light emitting layer include the high molecular compound described in Example PS-1.
  • Example PS-1 According to the method described in International Patent Publication No. WO2019 / 004248, a polymer compound having the following structure of the host as the first component, the dopant as the second component, and the emitting dopant can be synthesized.
  • the following polymer compound polymerizes the first component and the second component, and has a structural unit derived from each.
  • a polycyclic aromatic compound represented by the formula (1) as a host of the first component and boron as a dopant of the second component which have not been specifically known before
  • the organic EL characteristics such as light emission characteristics can be further enhanced by forming a light emitting layer containing a combination of a polycyclic aromatic compound containing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

This organic electroluminescent element, which comprises a light emitting layer that contains a polycyclic aromatic compound represented by general formula (1) as a host material (a first component) and a polycyclic aromatic compound containing boron as a dopant material (a second component), has excellent organic EL characteristics such has emission characteristics. (In formula (1), each of R1-R11 independently represents a hydrogen atom, an aryl group, a heteroaryl group, a diarylamino group, a diarylboryl group (wherein two aryl moieties may be bonded to each other via a single bond or a linking group), an alkyl group, a cycloalkyl group, an alkoxy group or an aryloxy group; at least one hydrogen atom in the aryl group, the heteroaryl group and the diarylamino group may be substituted by an aryl group , a heteroaryl group, an alkyl group or a cycloalkyl group; and at least one hydrogen atom in the compound represented by formula (1) may be substituted by a cyano group, a halogen atom or a deuterium atom.)

Description

多環芳香族化合物の発光材料を用いた有機電界発光素子Organic electroluminescent device using light emitting material of polycyclic aromatic compound
 本発明は、多環芳香族化合物およびその多量体(以下、両方を併せて単に多環芳香族化合物ともいう)の発光材料を用いた有機電界発光素子、ならびに、表示装置および照明装置に関する。 {Circle over (2)} The present invention relates to an organic electroluminescent device using a light emitting material of a polycyclic aromatic compound and a multimer thereof (hereinafter, both are also simply referred to as a polycyclic aromatic compound), and a display device and a lighting device.
 従来、電界発光する発光素子を用いた表示装置は、省電力化や薄型化が可能なことから、種々研究され、さらに、有機材料からなる有機電界発光素子(以下、有機EL素子ともいう)は、軽量化や大型化が容易なことから活発に検討されてきた。特に、光の三原色の一つである青色などの発光特性を有する有機材料の開発、および正孔、電子などの電荷輸送能(半導体や超電導体となる可能性を有する)を備えた有機材料の開発については、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。 2. Description of the Related Art Conventionally, a display device using a light-emitting element that emits electroluminescence has been studied variously because power saving and thinning are possible. Further, an organic electroluminescence element made of an organic material (hereinafter, also referred to as an organic EL element) is Because of the ease of weight reduction and enlargement, it has been actively studied. In particular, the development of organic materials having emission characteristics such as blue, which is one of the three primary colors of light, and the development of organic materials having charge transporting ability for holes and electrons (possibility of becoming semiconductors and superconductors) Development has been actively studied so far, regardless of whether it is a high molecular compound or a low molecular compound.
 有機EL素子は、陽極および陰極からなる一対の電極と、当該一対の電極間に配置され、有機化合物を含む一層または複数の層とからなる構造を有する。有機化合物を含む層には、発光層や、正孔、電子などの電荷を輸送または注入する電荷輸送/注入層などがあるが、これらの層に適当な種々の有機材料が開発されている。 (4) The organic EL element has a structure including a pair of electrodes including an anode and a cathode, and one or more layers including an organic compound disposed between the pair of electrodes. Examples of the layer containing an organic compound include a light-emitting layer and a charge transport / injection layer that transports or injects charges such as holes and electrons. Various organic materials suitable for these layers have been developed.
 発光層用材料としては、例えばベンゾフルオレン系化合物などが開発されている(国際公開第2004/061047号公報)。また、正孔輸送材料としては、例えばトリフェニルアミン系化合物などが開発されている(特開2001-172232号公報)。また、電子輸送材料としては、例えばアントラセン系化合物などが開発されている(特開2005-170911号公報)。 ベ ン ゾ As a material for the light emitting layer, for example, a benzofluorene-based compound has been developed (WO 2004/061047). As a hole transport material, for example, a triphenylamine-based compound has been developed (Japanese Patent Application Laid-Open No. 2001-172232). Further, as an electron transporting material, for example, an anthracene-based compound has been developed (Japanese Patent Application Laid-Open No. 2005-170911).
 また、近年では有機EL素子や有機薄膜太陽電池に使用する材料としてトリフェニルアミン誘導体を改良した材料も報告されている(国際公開第2012/118164号公報)。この材料は既に実用化されていたN,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン(TPD)を参考にして、トリフェニルアミンを構成する芳香族環同士を連結することでその平面性を高めたことを特徴とする材料である。この文献では例えばNO連結系化合物(63頁の化合物1)の電荷輸送特性が評価されているが、NO連結系化合物以外の材料の製造方法については記載されておらず、また、連結する元素が異なれば化合物全体の電子状態が異なるため、NO連結系化合物以外の材料から得られる特性も未だ知られていない。このような化合物の例は他にも見られる(国際公開第2011/107186号公報)。例えば、三重項励起子のエネルギー(T1)が大きい共役構造を有する化合物は、より短い波長の燐光を発することができるため、青色の発光層用材料として有益である。 In recent years, a material obtained by improving a triphenylamine derivative has been reported as a material used for an organic EL device or an organic thin-film solar cell (WO 2012/118164). This material is based on N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine (TPD) which has already been put to practical use. It is a material characterized in that its planarity is enhanced by connecting aromatic rings constituting triphenylamine. In this document, for example, the charge transporting property of a NO-linked compound (compound 1 on page 63) is evaluated, but there is no description of a method for producing a material other than the NO-linked compound, and the linking element is If different, the electronic state of the entire compound is different, and thus characteristics obtained from materials other than the NO-linked compound are not yet known. Other examples of such compounds can be found (WO 2011/107186). For example, a compound having a conjugated structure in which the energy (T1) of triplet excitons is large can emit phosphorescence of a shorter wavelength, and thus is useful as a material for a blue light-emitting layer.
 有機EL素子のホスト材料は、一般に、ベンゼンやカルバゾールなどの既存の芳香族環を単結合やリン原子やケイ素原子で複数連結した分子である。これは、比較的共役系の小さな芳香族環を多数連結することで、ホスト材料に必要とされる大きなHOMO-LUMOギャップ(薄膜におけるバンドギャップEg)が担保されるからである。さらに、燐光材料や熱活性型遅延蛍光材料を用いた有機EL素子のホスト材料には、高い三重項励起エネルギー(E)も必要となるが、分子にドナーあるいはアクセプター性の芳香族環や置換基を連結することで、三重項励起状態(T1)のSOMO1およびSOMO2を局在化させ、両軌道間の交換相互作用を小さくすることで、三重項励起エネルギー(E)を向上させることが可能となる。しかし、共役系の小さな芳香族環はレドックス安定性が十分ではなく、既存の芳香族環を連結していった分子をホスト材料として用いた素子は寿命が十分ではない。一方、拡張π共役系を有する多環芳香族化合物は、一般に、レドックス安定性は優れているが、HOMO-LUMOギャップ(薄膜におけるバンドギャップEg)や三重項励起エネルギー(E)が低いため、ホスト材料に不向きと考えられてきた。 The host material of the organic EL device is generally a molecule in which a plurality of existing aromatic rings such as benzene and carbazole are connected by a single bond, a phosphorus atom or a silicon atom. This is because a large number of relatively small conjugated aromatic rings are connected to ensure a large HOMO-LUMO gap (band gap Eg in a thin film) required for the host material. Further, a host material of an organic EL device using a phosphorescent material or a thermally activated delayed fluorescent material also needs a high triplet excitation energy (E T ), but the molecule has a donor or acceptor aromatic ring or substitution. By linking the groups, SOMO1 and SOMO2 in the triplet excited state (T1) are localized, and the exchange interaction between the two orbitals is reduced, thereby improving the triplet excitation energy (E T ). It becomes possible. However, a small conjugated aromatic ring does not have sufficient redox stability, and a device using a molecule obtained by linking existing aromatic rings as a host material has an insufficient life. On the other hand, polycyclic aromatic compounds having an extended π-conjugated system generally have excellent redox stability, but have a low HOMO-LUMO gap (band gap Eg in a thin film) and a low triplet excitation energy (E T ). It has been considered unsuitable for host materials.
 また、近年ではホウ素などを中心原子として複数の芳香族環を縮合した化合物も報告されている(国際公開第2015/102118号公報)。この文献では発光層のドーパント材料として当該複数の芳香族環を縮合した化合物を用いた有機EL素子評価が実施されているが、当該文献には極めて多数の化合物が開示されており、これらの中でも特に発光特性などの有機EL特性に優れた化合物を検討することは有益である。 近年 In recent years, compounds in which a plurality of aromatic rings are condensed with boron or the like as a central atom have been reported (WO 2015/102118). In this document, an organic EL device evaluation using a compound obtained by condensing a plurality of aromatic rings as a dopant material of a light-emitting layer is performed, but the document discloses an extremely large number of compounds, and among these, In particular, it is beneficial to consider a compound having excellent organic EL characteristics such as light-emitting characteristics.
国際公開第2004/061047号公報WO 2004/061047 特開2001-172232号公報JP 2001-172232 A 特開2005-170911号公報JP 2005-170911 A 国際公開第2012/118164号公報WO 2012/118164 国際公開第2011/107186号公報WO 2011/107186 国際公開第2015/102118号公報International Publication No.2015 / 102118
 上述するように、有機EL素子に用いられる材料としては種々の材料が開発されているが、発光特性などの有機EL特性を更に高めたり、発光層用材料などの有機EL材料の選択肢を増やすために、従来具体的には知られていなかった化合物の開発が望まれている。 As described above, various materials have been developed as materials used for the organic EL device. However, in order to further enhance the organic EL characteristics such as the light emitting characteristics, or to increase the options of the organic EL materials such as the light emitting layer material. In addition, there has been a demand for the development of a compound that has not been specifically known.
 本発明者らは、上記課題を解決するため鋭意検討した結果、ホウ素原子と酸素原子で複数の芳香族環を連結した多環芳香族化合物を発光層用材料として用いることにより、優れた有機EL素子が得られることを見出し、本発明を完成させた。 The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, by using a polycyclic aromatic compound in which a plurality of aromatic rings are linked by a boron atom and an oxygen atom as a material for a light emitting layer, an excellent organic EL has been obtained. The inventors have found that an element can be obtained, and have completed the present invention.
 なお、本明細書において化学構造や置換基を炭素数で表すことがあるが、化学構造に置換基が置換した場合や、置換基にさらに置換基が置換した場合などにおける炭素数は、化学構造や置換基それぞれの炭素数を意味し、化学構造と置換基の合計の炭素数や、置換基と置換基の合計の炭素数を意味するものではない。例えば、「炭素数Xの置換基Aで置換された炭素数Yの置換基B」とは、「炭素数Yの置換基B」に「炭素数Xの置換基A」が置換することを意味し、炭素数Yは置換基Aおよび置換基Bの合計の炭素数ではない。また例えば、「置換基Aで置換された炭素数Yの置換基B」とは、「炭素数Yの置換基B」に「(炭素数限定がない)置換基A」が置換することを意味し、炭素数Yは置換基Aおよび置換基Bの合計の炭素数ではない。 In this specification, the chemical structure and the substituent may be represented by the number of carbon atoms.However, when the chemical structure is substituted with a substituent, or when the substituent is further substituted with a substituent, the number of carbon atoms is represented by the chemical structure And the carbon number of each substituent, and does not mean the total carbon number of the chemical structure and the substituent or the total carbon number of the substituent and the substituent. For example, “substituent B having carbon number Y substituted with substituent A having carbon number X” means that “substituent A having carbon number X” is substituted for “substituent B having carbon number Y”. However, the carbon number Y is not the total carbon number of the substituent A and the substituent B. Further, for example, “the substituent B having the number of carbon atoms Y substituted with the substituent A” means that the “substituent A (there is no limitation on the number of carbon atoms)” replaces the “substituent B having the number of carbon atoms Y”. However, the carbon number Y is not the total carbon number of the substituent A and the substituent B.
項1.
 陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層を有する有機電界発光素子であって、
 該有機電界発光素子における発光層が、
 第1成分として、下記一般式(1)で表される多環芳香族化合物をホストとして含み、
 第2成分として、ホウ素を含有する多環芳香族化合物をドーパントとして含む、有機電界発光素子。
 
Figure JPOXMLDOC01-appb-C000013
(上記式(1)中、
 R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、
 前記アリール、前記ヘテロアリール、前記ジアリールアミノおよび前記ジアリールボリルにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 式(1)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
Item 1.
A pair of electrodes consisting of an anode and a cathode, and an organic electroluminescent element having a light emitting layer disposed between the pair of electrodes,
The light emitting layer in the organic electroluminescent device,
As a first component, a polycyclic aromatic compound represented by the following general formula (1) is contained as a host,
An organic electroluminescent device comprising, as a second component, a boron-containing polycyclic aromatic compound as a dopant.

Figure JPOXMLDOC01-appb-C000013
(In the above formula (1),
R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, Alkoxy or aryloxy;
At least one hydrogen in the aryl, the heteroaryl, the diarylamino, and the diarylboryl may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl;
At least one hydrogen in the compound represented by the formula (1) may be substituted with cyano, halogen, or deuterium. )
項2.
 上記一般式(1)において、R~R11は、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジアリールボリル(ただしアリールは炭素数6~12のアリールであり、2つのアリールは単結合または連結基を介して結合していてもよい)、炭素数1~24のアルキル、炭素数3~12のシクロアルキル、炭素数1~24のアルコキシまたは炭素数6~30のアリールオキシであり、
 前記アリール、前記ヘテロアリール、前記ジアリールアミノおよび前記ジアリールボリルにおける少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~24のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよい、
項1に記載の有機電界発光素子。
Item 2.
In the above general formula (1), R 1 to R 11 each independently represent hydrogen, aryl having 6 to 30 carbons, heteroaryl having 2 to 30 carbons, or diarylamino (wherein aryl has 6 to 12 carbons). Aryl), diarylboryl (wherein aryl is aryl having 6 to 12 carbons, and two aryls may be linked via a single bond or a linking group), alkyl having 1 to 24 carbons, A cycloalkyl having 3 to 12 carbons, an alkoxy having 1 to 24 carbons or an aryloxy having 6 to 30 carbons,
At least one hydrogen atom in the aryl, the heteroaryl, the diarylamino, and the diarylboryl is an aryl having 6 to 30 carbons, a heteroaryl having 2 to 30 carbons, an alkyl having 1 to 24 carbons or 3 to 12 carbons. May be substituted with cycloalkyl,
Item 2. The organic electroluminescent device according to Item 1.
項3.
 上記一般式(1)において、R~R11は、それぞれ独立して、水素、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~10のアリール)、ジアリールボリル(ただしアリールは炭素数6~10のアリールであり、2つのアリールは単結合または連結基を介して結合していてもよい)、炭素数1~6のアルキル、炭素数6~10のシクロアルキル、炭素数1~6のアルコキシまたは炭素数6~16のアリールオキシであり、
 前記アリール、前記ヘテロアリール、前記ジアリールアミノおよび前記ジアリールボリルにおける少なくとも1つの水素は炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数6~10のシクロアルキルで置換されていてもよい、
項1に記載の有機電界発光素子。
Item 3.
In the general formula (1), R 1 to R 11 each independently represent hydrogen, aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, or diarylamino (wherein aryl has 6 to 10 carbons). Aryl), diarylboryl (wherein aryl is aryl having 6 to 10 carbons, and two aryls may be bonded via a single bond or a linking group), alkyl having 1 to 6 carbons, carbon A cycloalkyl having 6 to 10 carbon atoms, an alkoxy having 1 to 6 carbon atoms or an aryloxy having 6 to 16 carbon atoms,
At least one hydrogen atom in the aryl, the heteroaryl, the diarylamino, and the diarylboryl is an aryl having 6 to 16 carbons, a heteroaryl having 2 to 15 carbons, an alkyl having 1 to 6 carbons or 6 to 10 carbons. May be substituted with cycloalkyl,
Item 2. The organic electroluminescent device according to Item 1.
項4.
 上記一般式(1)において、R~R11の少なくとも1つは、下記式(1-a)~(1-s)のいずれかで表される基である、項1~3のいずれか一項に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000014
(上記式中、*は結合位置を示し、
 式(1-a)~式(1-h)および式(1-p))~式(1-q)における少なくとも1つの水素は、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~24のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、
 式(1-i)、式(1-j)、式(1-k)および式(1-r)におけるRは、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~24のアルキルまたは炭素数3~12のシクロアルキルを示す。)
Item 4.
In the above general formula (1), at least one of R 1 to R 11 is a group represented by any of the following formulas (1-a) to (1-s), The organic electroluminescent device according to claim 1.
Figure JPOXMLDOC01-appb-C000014
(In the above formula, * indicates a bonding position,
In the formulas (1-a) to (1-h) and (1-p)) to (1-q), at least one hydrogen atom is an aryl having 6 to 30 carbon atoms or a heteroatom having 2 to 30 carbon atoms. Aryl, alkyl having 1 to 24 carbons or cycloalkyl having 3 to 12 carbons,
R in the formula (1-i), the formula (1-j), the formula (1-k) and the formula (1-r) are each independently hydrogen, aryl having 6 to 30 carbon atoms, and 2 to 2 carbon atoms. It represents 30 heteroaryl, alkyl having 1 to 24 carbons or cycloalkyl having 3 to 12 carbons. )
項5.
 上記一般式(1)において、R~R11の少なくとも1つは、上記式(1-d)で表される基である、項4に記載の有機電界発光素子。
Item 5.
Item 5. The organic electroluminescent device according to item 4, wherein in the general formula (1), at least one of R 1 to R 11 is a group represented by the above formula (1-d).
項6.
 上記一般式(1)において、R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキルまたはアルコキシであり、
 前記アリール、前記ヘテロアリール、前記ジアリールアミノおよび前記ジアリールボリルにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい、
項1~5のいずれか一項に記載の有機電界発光素子。
Item 6.
In the general formula (1), R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (even when two aryls are bonded through a single bond or a linking group). Good), alkyl, cycloalkyl or alkoxy,
At least one hydrogen in the aryl, the heteroaryl, the diarylamino, and the diarylboryl may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl.
Item 6. The organic electroluminescent device according to any one of items 1 to 5.
項7.
 上記一般式(1)において、R~R11の少なくとも1つは、ヘテロアリールであり、当該ヘテロアリールにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい、項1~6のいずれか一項に記載の有機電界発光素子。
Item 7.
In the general formula (1), at least one of R 4 to R 11 is heteroaryl, and at least one hydrogen in the heteroaryl may be substituted with aryl, heteroaryl, alkyl, or cycloalkyl. Item 7. The organic electroluminescent device according to any one of items 1 to 6.
項8.
 上記一般式(1)において、R~Rの少なくとも1つは、アリールまたはジベンゾフラニルであり、前記アリールおよび前記ジベンゾフラニルにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい、項1~7のいずれか一項に記載の有機電界発光素子。
Item 8.
In the general formula (1), at least one of R 1 to R 3 is aryl or dibenzofuranyl, and at least one hydrogen in the aryl and dibenzofuranyl is aryl, heteroaryl, alkyl or cycloalkyl. Item 8. The organic electroluminescent device according to any one of items 1 to 7, which may be substituted.
項9.
 上記一般式(1)において、R~Rの少なくとも1つは、ヘテロアリールであり(当該ヘテロアリールにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい)、且つ、R~R11の少なくとも1つは、アリールである(当該アリールにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい)、項1~6のいずれか一項に記載の有機電界発光素子。
Item 9.
In the general formula (1), at least one of R 1 to R 3 is heteroaryl (at least one hydrogen in the heteroaryl may be substituted with aryl, heteroaryl, alkyl, or cycloalkyl). And at least one of R 4 to R 11 is aryl (at least one hydrogen in the aryl may be substituted with aryl, heteroaryl, alkyl or cycloalkyl), The organic electroluminescent device according to claim 1.
項10.
 第1成分のホストが、下記式のいずれかで表される多環芳香族化合物である、項1に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000015
Item 10.
Item 2. The organic electroluminescent device according to Item 1, wherein the host of the first component is a polycyclic aromatic compound represented by any of the following formulas.
Figure JPOXMLDOC01-appb-C000015
項11.
 第2成分であるドーパントが、下記一般式(2)で表される多環芳香族化合物またはその多量体である、項1~10のいずれか一項に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000016
(上記式(2)中、
 R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 Yは、B(ホウ素)であり、
 XおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは-C(-R)-であり(ただし、XおよびXは同時に>Oであることはない)、前記-C(-R)-のRは炭素数1~6のアルキル、炭素数3~14のシクロアルキルまたは炭素数6~12のアリールであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり、また、当該>N-RのRは-O-、-S-、-C(-R’)-、単結合または縮合により前記a環、b環およびc環の少なくとも1つと結合していてもよく(なお、前記「-C(-R’)-」のR’は水素または炭素数1~5のアルキルまたは炭素数5~10のシクロアルキルである)、そして、
 式(2)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
Item 11.
Item 11. The organic electroluminescent device according to any one of Items 1 to 10, wherein the dopant as the second component is a polycyclic aromatic compound represented by the following general formula (2) or a polymer thereof.
Figure JPOXMLDOC01-appb-C000016
(In the above formula (2),
R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls are linked via a single bond or a linking group; ), Alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl;
Further, adjacent groups among R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, the b ring or the c ring, and at least one hydrogen atom in the formed ring Is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryl Optionally substituted with oxy, wherein at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl;
Y 1 is B (boron),
X 1 and X 2 are each independently>O,>NR,>S,> Se or —C (—R) 2 — (provided that X 1 and X 2 are simultaneously> O The R of —C (—R) 2 — is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or aryl having 6 to 12 carbons, and R is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons, and R of> NR is —O —, —S—, —C (—R ′) 2 —, which may be bonded to at least one of the a ring, b ring and c ring by a single bond or a condensate (the above-mentioned “—C (—R ') 2 - "of R' cycloalkyl der alkyl or C 5-10 hydrogen or a C 1-5 ), And,
At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen, or deuterium. )
項12.
 上記一般式(2)において、Rは、ハロゲン、炭素数1~6のアルキル、炭素数3~14のシクロアルキル、炭素数6~10のアリールまたは炭素数2~10のヘテロアリールであり、
 Rは、水素、炭素数1~6のアルキル、炭素数3~14のシクロアルキル、炭素数6~10のアリールまたは炭素数2~10のヘテロアリールである、項11に記載の有機電界発光素子。
Item 12.
In the general formula (2), R 8 is halogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 10 carbons or heteroaryl having 2 to 10 carbons,
Item 7. The organic electroluminescence according to item 11, wherein R 7 is hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 10 carbons or heteroaryl having 2 to 10 carbons. element.
項13.
 第2成分であるドーパントが、2つの上記一般式(2)で表される部分構造と、当該2つの部分構造を連結する連結基L1とからなる二量体化合物であり、
 前記連結基L1は、単結合、炭素数6~12のアリーレン、炭素数2~15のヘテロアリーレン、炭素数1~6のアルキレン、炭素数1~6のアルケニレン、炭素数1~6のアルキニレン、-O-、-S-、>N-R、または、これらの組み合わせであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~14のシクロアルキルであり、
 前記二量体化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、項11に記載の有機電界発光素子。
Item 13.
The dopant as the second component is a dimer compound including two partial structures represented by the general formula (2) and a linking group L1 that connects the two partial structures,
The linking group L1 is a single bond, arylene having 6 to 12 carbons, heteroarylene having 2 to 15 carbons, alkylene having 1 to 6 carbons, alkenylene having 1 to 6 carbons, alkynylene having 1 to 6 carbons, —O—, —S—,> NR, or a combination thereof, wherein R in> NR is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, 1 to carbons 6 alkyl or cycloalkyl having 3 to 14 carbon atoms,
Item 12. The organic electroluminescent device according to item 11, wherein at least one hydrogen in the dimer compound may be substituted with cyano, halogen, or deuterium.
項14.
 第2成分であるドーパントが、下記一般式(3)で表される多環芳香族化合物である、項1~11のいずれか一項に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000017
(上記式(3)中、
 R~R12、ZおよびZは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 また、R~RおよびR10~R12のうちの隣接する基同士が結合してb環およびd環の少なくとも1つと共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、さらにこれらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 Zは連結基または単結合でa環と結合してもよく、また、Zは連結基または単結合でc環と結合してもよく、
 YはB(ホウ素)であり、
 X、X、XおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは-C(-R)-であり(ただし、XおよびXが同時に>Oであることはなく、また、XおよびXが同時に>Oであることもない)、前記-C(-R)-のRは炭素数1~6のアルキル、炭素数3~14のシクロアルキル、または炭素数6~12のアリールであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり、また、当該>N-RのRは-O-、-S-、-C(-R’)-、単結合または縮合により前記a環、b環、c環およびd環の少なくとも1つと結合していてもよく(なお、前記「-C(-R’)-」のR’は水素または炭素数1~5のアルキルまたは炭素数5~10のシクロアルキルである)、
 RおよびRは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3~14のシクロアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリールまたはジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジアリールボリル(ただしアリールは炭素数6~12のアリールであり、2つのアリールは単結合または連結基を介して結合していてもよい)であり、
 式(3)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
Item 14.
Item 12. The organic electroluminescent device according to any one of items 1 to 11, wherein the dopant as the second component is a polycyclic aromatic compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000017
(In the above formula (3),
R 3 to R 12 , Z 1 and Z 2 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryls are a single bond or a linking group) ), Alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl. ,
Further, adjacent groups among R 5 to R 7 and R 10 to R 12 may be bonded to each other to form an aryl ring or a heteroaryl ring together with at least one of the b ring and the d ring. At least one hydrogen in the ring is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl , Cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl;
Z 1 may be bonded to ring a by a linking group or a single bond, and Z 2 may be bonded to ring c by a linking group or a single bond;
Y is B (boron),
X 1 , X 2 , X 3 and X 4 are each independently>O,>NR,>S,> Se or —C (—R) 2 — (provided that X 1 and X 2 Are not simultaneously> O, and X 3 and X 4 are not simultaneously> O), R of —C (—R) 2 — is an alkyl having 1 to 6 carbons, A cycloalkyl having 3 to 14 carbons or an aryl having 6 to 12 carbons, wherein R in the above-mentioned —N—R is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons Or a cycloalkyl having 3 to 6 carbon atoms, and R of> NR represents —O—, —S—, —C (—R ′) 2 —, a single bond or a condensed ring, may also be at least one bond c ring and d ring (Note that the "-C (-R ') 2 -" of R' Cycloalkyl alkyl or C 5-10 hydrogen or C 1 -C 5),
R 1 and R 2 are each independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 12 carbons, heteroaryl or diarylamino having 2 to 15 carbons (Wherein, aryl is aryl having 6 to 12 carbons) and diarylboryl (provided that aryl is aryl having 6 to 12 carbons, and two aryls may be bonded via a single bond or a linking group). ,
At least one hydrogen in the compound represented by the formula (3) may be substituted with cyano, halogen, or deuterium. )
項15.
 第2成分であるドーパントが、下記一般式(4)で表される多環芳香族化合物またはその多量体である、項1~11のいずれか一項に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000018
(上記式(4)中、
 R~RおよびR~R15は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 また、R~R、R~R、R~R11およびR12~R15のうちの隣接する基同士が結合してa環、b環、c環およびd環の少なくとも1つと共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、さらにこれらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 Yは、B(ホウ素)であり、
 Xは、>O、>N-R、>S、>Seまたは-C(-R)-であり、前記-C(-R)-のRは炭素数1~6のアルキル、炭素数3~14のシクロアルキルまたは炭素数6~12のアリールであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり、
 Lは、単結合、-C(-R)-、>O、>Sまたは>N-Rであり、前記-C(-R)-および>N-RにおけるRは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はさらにアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 ただし、Xが>N-Rであるとき、Lが>Oであることはなく、
 多量体の場合の式(4)中のRは水素であり、そして、
 一般式(4)で表される化合物および構造における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
Item 15.
Item 12. The organic electroluminescent device according to any one of items 1 to 11, wherein the dopant as the second component is a polycyclic aromatic compound represented by the following general formula (4) or a polymer thereof.
Figure JPOXMLDOC01-appb-C000018
(In the above formula (4),
R 1 to R 3 and R 5 to R 15 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryls are a single bond or a linking group) ), Alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl. ,
Further, adjacent groups among R 1 to R 3 , R 5 to R 7 , R 8 to R 11 and R 12 to R 15 are bonded to each other to form at least one of a ring, b ring, c ring and d ring. May form an aryl ring or a heteroaryl ring together with at least one hydrogen in the formed ring is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryl May be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these may be aryl, heteroaryl, alkyl or cyclo May be substituted with alkyl,
Y 1 is B (boron),
X is>O,>NR,>S,> Se or -C (-R) 2- , wherein R of -C (-R) 2- is alkyl having 1 to 6 carbons, A cycloalkyl having 3 to 14 carbons or an aryl having 6 to 12 carbons, wherein R in> NR is an aryl having 6 to 12 carbons, a heteroaryl having 2 to 15 carbons, an alkyl having 1 to 6 carbons or Cycloalkyl having 3 to 6 carbon atoms,
L is a single bond, -C (-R) 2 -,>O,> S or> NR, and R in -C (-R) 2 -and> NR is each independently , Hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryloxy, at least one of which One hydrogen may be further substituted with an aryl, heteroaryl, alkyl or cycloalkyl;
However, when X is> NR, L cannot be> O,
R 2 in formula (4) for a multimer is hydrogen, and
At least one hydrogen in the compound and the structure represented by the general formula (4) may be substituted with cyano, halogen, or deuterium. )
項16.
 第2成分であるドーパントが、下記一般式(5)で表される多環芳香族化合物またはその多量体である、項1~10のいずれか一項に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000019
(上記式(5)中、
 R~Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 また、R~Rのうちの隣接する基同士が結合してa環、b環およびc環の少なくとも1つと共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、さらにこれらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 Yは、B(ホウ素)であり、
 X、XおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは-C(-R)-であり(X、XおよびXのうちの少なくとも2つはN-Rである)、前記-C(-R)-のRは炭素数1~6のアルキル、炭素数3~14のシクロアルキルまたは炭素数6~12のアリールであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり、また、当該>N-RのRは-O-、-S-、-C(-R’)-、単結合または縮合により前記a環、b環およびc環の少なくとも1つと結合していてもよく(なお、前記「-C(-R’)-」のR’は水素または炭素数1~5のアルキルまたは炭素数5~10のシクロアルキルである)、そして、
 式(5)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
Item 16.
Item 11. The organic electroluminescent device according to any one of items 1 to 10, wherein the dopant as the second component is a polycyclic aromatic compound represented by the following general formula (5) or a polymer thereof.
Figure JPOXMLDOC01-appb-C000019
(In the above formula (5),
R 1 to R 9 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls are linked via a single bond or a linking group; ), Alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl;
Further, adjacent groups among R 1 to R 9 may be bonded to each other to form an aryl ring or a heteroaryl ring together with at least one of the a ring, the b ring and the c ring. At least one hydrogen is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl, cycloalkyl , May be substituted with alkoxy or aryloxy, and at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl,
Y 1 is B (boron),
X 1 , X 2 and X 3 are each independently>O,>NR,>S,> Se or —C (—R) 2 — (of X 1 , X 2 and X 3 ) At least two are NR), wherein R of -C (-R) 2- is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or aryl having 6 to 12 carbons. Wherein R in the formula> N—R is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. R of —R may be —O—, —S—, —C (—R ′) 2 —, or may be bonded to at least one of the a ring, b ring and c ring by a single bond or a condensate (here, R ′ of the above “—C (—R ′) 2 —” is hydrogen, alkyl having 1 to 5 carbons, or cycloalkyl having 5 to 10 carbons. Loalkyl) and
At least one hydrogen in the compound represented by the formula (5) may be substituted with cyano, halogen, or deuterium. )
項17.
 第2成分のドーパントが、下記式のいずれかで表される多環芳香族化合物である、項1に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000020
Item 17.
Item 2. The organic electroluminescent device according to item 1, wherein the dopant of the second component is a polycyclic aromatic compound represented by any of the following formulas.
Figure JPOXMLDOC01-appb-C000020
項18.
 前記陰極と前記発光層との間に配置される電子輸送層および電子注入層の少なくとも1つを有し、該電子輸送層および電子注入層の少なくとも1つは、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、カルバゾール誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体およびキノリノール系金属錯体からなる群から選択される少なくとも1つを含有する、項1~17のいずれかに一項に記載の有機電界発光素子。
Item 18.
And at least one of an electron transport layer and an electron injection layer disposed between the cathode and the light emitting layer, wherein at least one of the electron transport layer and the electron injection layer is a borane derivative, a pyridine derivative, or a fluoranthene derivative. Containing at least one selected from the group consisting of a BO derivative, an anthracene derivative, a benzofluorene derivative, a phosphine oxide derivative, a pyrimidine derivative, a carbazole derivative, a triazine derivative, a benzimidazole derivative, a phenanthroline derivative and a quinolinol-based metal complex. Item 18. The organic electroluminescent device according to any one of Items 1 to 17.
項19.
 前記電子輸送層および電子注入層の少なくとも1つが、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、項18に記載の有機電界発光素子。
Item 19.
At least one of the electron transport layer and the electron injection layer further comprises an alkali metal, an alkaline earth metal, a rare earth metal, an oxide of an alkali metal, a halide of an alkali metal, an oxide of an alkaline earth metal, and an alkaline earth metal. Containing at least one selected from the group consisting of halides of rare earth metals, oxides of rare earth metals, halides of rare earth metals, organic complexes of alkali metals, organic complexes of alkaline earth metals and organic complexes of rare earth metals. 19. The organic electroluminescent device according to 18.
項20.
 下記一般式(1)で表される、多環芳香族化合物。
Figure JPOXMLDOC01-appb-C000021
(上記式(1)中、
 R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシであり、
 前記アリール、前記ヘテロアリール、前記ジアリールアミノおよび前記ジアリールボリルにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 R~R11の少なくとも1つは、下記式(1-d)で表される基であり、
 式(1)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000022
(上記式中、*は結合位置を示し、式(1-d)における少なくとも1つの水素はさらにアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。)
Item 20.
A polycyclic aromatic compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000021
(In the above formula (1),
R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, Alkoxy, aryloxy,
At least one hydrogen in the aryl, the heteroaryl, the diarylamino, and the diarylboryl may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl;
At least one of R 1 to R 11 is a group represented by the following formula (1-d),
At least one hydrogen in the compound represented by the formula (1) may be substituted with cyano, halogen, or deuterium. )
Figure JPOXMLDOC01-appb-C000022
(In the above formula, * indicates a bonding position, and at least one hydrogen in the formula (1-d) may be further substituted with aryl, heteroaryl, alkyl or cycloalkyl.)
項21.
 下記一般式(1)で表される多環芳香族化合物に反応性置換基が置換した、反応性化合物。
Figure JPOXMLDOC01-appb-C000023
(上記式(1)中、
 R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、
 前記アリール、前記ヘテロアリール、前記ジアリールアミノおよび前記ジアリールボリルにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 式(1)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
Item 21.
A reactive compound in which a polycyclic aromatic compound represented by the following general formula (1) is substituted with a reactive substituent.
Figure JPOXMLDOC01-appb-C000023
(In the above formula (1),
R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, Alkoxy or aryloxy;
At least one hydrogen in the aryl, the heteroaryl, the diarylamino, and the diarylboryl may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl;
At least one hydrogen in the compound represented by the formula (1) may be substituted with cyano, halogen, or deuterium. )
項22.
 項21に記載の反応性化合物をモノマーとして高分子化させた高分子化合物、または、当該高分子化合物をさらに架橋させた高分子架橋体。
Item 22.
Item 22. A polymer compound obtained by polymerizing the reactive compound according to Item 21 as a monomer, or a polymer crosslinked product obtained by further crosslinking the polymer compound.
項23.
 主鎖型高分子に項21に記載する反応性化合物を置換させたペンダント型高分子化合物、または、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体。
Item 23.
21. A pendant polymer compound obtained by substituting the reactive compound according to item 21 into the main chain polymer, or a pendant polymer crosslinked product obtained by further crosslinking the pendant polymer compound.
項24.
 第1成分として、項21に記載の反応性化合物、項22に記載の高分子化合物もしくは高分子架橋体、または、項23に記載のペンダント型高分子化合物もしくはペンダント型高分子架橋体をホストとして含み、
 第2成分として、ホウ素を含有する多環芳香族化合物をドーパントとして含み、
 第3成分として、有機溶媒を含む、
発光層形成用組成物。
Item 24.
As the first component, the reactive compound according to item 21, the polymer compound or crosslinked polymer according to item 22, or the pendant polymer compound or crosslinked pendant polymer according to item 23 is used as a host. Including
As a second component, containing a boron-containing polycyclic aromatic compound as a dopant,
Including an organic solvent as a third component,
A composition for forming a light emitting layer.
項25.
 第1成分として、下記一般式(1)で表される多環芳香族化合物をホストとして含み、
 第2成分として、ホウ素を含有する多環芳香族化合物をドーパントとして含み、
 第3成分として、有機溶媒を含む、発光層形成用組成物。
Figure JPOXMLDOC01-appb-C000024
(上記式(1)中、
 R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、
 前記アリール、前記ヘテロアリール、前記ジアリールアミノおよび前記ジアリールボリルにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 式(1)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
Item 25.
As a first component, a polycyclic aromatic compound represented by the following general formula (1) is contained as a host,
As a second component, containing a boron-containing polycyclic aromatic compound as a dopant,
A composition for forming a light-emitting layer, which comprises an organic solvent as a third component.
Figure JPOXMLDOC01-appb-C000024
(In the above formula (1),
R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, Alkoxy or aryloxy;
At least one hydrogen in the aryl, the heteroaryl, the diarylamino, and the diarylboryl may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl;
At least one hydrogen in the compound represented by the formula (1) may be substituted with cyano, halogen, or deuterium. )
項26.
 第3成分の少なくとも1種の有機溶媒の沸点が130~350℃である、項24または25に記載の発光層形成用組成物。
Item 26.
Item 27. The composition for forming a light emitting layer according to Item 24 or 25, wherein the at least one organic solvent of the third component has a boiling point of 130 to 350 ° C.
項27.
 第3成分の有機溶媒が、第1成分のホストおよび第2成分のドーパントの少なくとも1種に対する良溶媒(GS)と貧溶媒(PS)とを含み、良溶媒(GS)の沸点(BPGS)が貧溶媒(PS)の沸点(BPPS)よりも低い、項24~26のいずれか一項に記載の発光層形成用組成物。
Item 27.
The organic solvent of the third component contains a good solvent (GS) and a poor solvent (PS) for at least one of the host of the first component and the dopant of the second component, and the boiling point (BP GS ) of the good solvent ( GS ) There below the boiling point (BP PS) of the poor solvent (PS), light-emitting layer forming composition according to any one of claims 24-26.
項28.
 第1成分が発光層形成用組成物の全質量に対して0.0999質量%~8.0質量%であり、
 第2成分が発光層形成用組成物の全質量に対して0.0001質量%~2.0質量%であり、
 第3成分が発光層形成用組成物の全質量に対して90.0質量%~99.9質量%である、
 項24~27のいずれか一項に記載の発光層形成用組成物。
Item 28.
The first component is 0.0999% by mass to 8.0% by mass based on the total mass of the composition for forming a light emitting layer;
The second component is 0.0001% by mass to 2.0% by mass relative to the total mass of the light emitting layer forming composition;
The third component is 90.0% by mass to 99.9% by mass relative to the total mass of the composition for forming a light emitting layer;
Item 28. The composition for forming a light emitting layer according to any one of Items 24 to 27.
項29.
 項21に記載の反応性化合物に由来する第1の構成単位と、ホウ素を含有する多環芳香族化合物に反応性置換基が置換した反応性化合物に由来する第2の構成単位とを有する高分子化合物、
 当該高分子化合物をさらに架橋させた高分子架橋体、
 主鎖型高分子に項21に記載する反応性化合物およびホウ素を含有する多環芳香族化合物に反応性置換基が置換した反応性化合物を置換させたペンダント型高分子化合物、ならびに、
 当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体
から選ばれる少なくとも1種と、
 有機溶媒とを含む、発光層形成用組成物。
Item 29.
Item 21. A high-molecular-weight composition comprising: a first structural unit derived from the reactive compound according to Item 21; and a second structural unit derived from a reactive compound obtained by replacing a reactive substituent with a boron-containing polycyclic aromatic compound. Molecular compounds,
A polymer crosslinked body obtained by further crosslinking the polymer compound,
A pendant polymer compound obtained by substituting a reactive compound according to item 21 and a boron-containing polycyclic aromatic compound with a reactive compound substituted in the main chain polymer, and
At least one selected from a pendant polymer crosslinked body obtained by further crosslinking the pendant polymer compound;
A composition for forming a light-emitting layer, comprising: an organic solvent.
項30.
 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、
 項24~29のいずれか一項に記載の発光層形成用組成物を用いて形成された発光層を有する、有機電界発光素子。
Item 30.
A pair of electrodes consisting of an anode and a cathode, disposed between the pair of electrodes,
Item 30. An organic electroluminescent device having a light emitting layer formed using the light emitting layer forming composition according to any one of items 24 to 29.
項31.
 正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層のうちの少なくとも1つの層が、各層を形成し得る低分子化合物をモノマーとして高分子化させた高分子化合物、もしくは、当該高分子化合物をさらに架橋させた高分子架橋体、または、各層を形成し得る低分子化合物を主鎖型高分子と反応させたペンダント型高分子化合物、もしくは、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体を含む、項1~19および30のいずれかに記載する有機電界発光素子。
Item 31.
At least one of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer is a polymer compound obtained by polymerizing a low molecular compound capable of forming each layer as a monomer, or A polymer crosslinked product obtained by further crosslinking the polymer compound, or a pendant polymer compound obtained by reacting a low molecular compound capable of forming each layer with a main chain polymer, or the pendant polymer compound. Item 31. The organic electroluminescent device according to any one of Items 1 to 19 and 30, further comprising a crosslinked pendant polymer crosslinked product.
項32.
 項1~19、30および31のいずれか一項に記載する有機電界発光素子を備えた表示装置または照明装置。
Item 32.
Item 34. A display device or a lighting device provided with the organic electroluminescent element according to any one of Items 1 to 19, 30, and 31.
 本発明の好ましい態様によれば、特定の多環芳香族化合物を発光層用材料として用いることで、発光特性などの有機EL特性を更に高めることができる。 According to a preferred embodiment of the present invention, by using a specific polycyclic aromatic compound as a material for a light emitting layer, organic EL characteristics such as light emitting characteristics can be further improved.
本実施形態に係る有機EL素子を示す概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating an organic EL device according to an embodiment.
1.有機電界発光素子
 本発明の有機EL素子は、陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層を有する。そして、発光層には、第1成分として、上記一般式(1)で表される多環芳香族化合物を含み、第2成分として、ホウ素を含有する多環芳香族化合物を含むことを特徴とする。なお、発光層において、第1成分はホストとして機能し、第2成分はドーパントとして機能する。
1. Organic EL device The organic EL device of the present invention has a pair of electrodes including an anode and a cathode, and a light emitting layer disposed between the pair of electrodes. The light-emitting layer includes a polycyclic aromatic compound represented by the general formula (1) as a first component, and a boron-containing polycyclic aromatic compound as a second component. I do. Note that, in the light emitting layer, the first component functions as a host, and the second component functions as a dopant.
1-1.第1成分
 式(1)で表される多環芳香族化合物は、大きなHOMO-LUMOギャップ(薄膜におけるバンドギャップEg)と高い三重項励起エネルギー(E)を有する。これは、ヘテロ元素を含む6員環は芳香属性が低いため、共役系の拡張に伴うHOMO-LUMOギャップの減少が抑制されること、ヘテロ元素の電子的な摂動により三重項励起状態(T1)のSOMO1およびSOMO2が局在化することが原因となっている。式(1)で表される多環芳香族化合物は、高い三重項エネルギーを有しているために、熱活性型遅延蛍光材料のホストとして好ましい。
Figure JPOXMLDOC01-appb-C000025
1-1. The polycyclic aromatic compound represented by the first component formula (1) has a large HOMO-LUMO gap (band gap Eg in a thin film) and a high triplet excitation energy (E T ). This is because the 6-membered ring containing the hetero element has a low aromatic attribute, so that the reduction of the HOMO-LUMO gap due to the expansion of the conjugated system is suppressed, and the triplet excited state (T1) due to electronic perturbation of the hetero element. Of SOMO1 and SOMO2 are localized. The polycyclic aromatic compound represented by the formula (1) has a high triplet energy, and thus is preferably used as a host of a thermally activated delayed fluorescent material.
Figure JPOXMLDOC01-appb-C000025
 具体的には、第1成分の化合物の燐光スペクトルのピークトップより求められる励起三重項エネルギー準位E(1,T,PT)は、発光層内でのTADFの発生を阻害せず促進させる観点から、第2成分の化合物の燐光スペクトルのピークトップより求められる励起三重項エネルギー準位E(2,T,PT)に比べて高い方が好ましく、具体的には、第1成分の化合物の励起三重項エネルギー準位E(1,T,PT)はE(2,T,PT)に比べて、0.01eV以上が好ましく、0.03eV以上がより好ましく、0.1eV以上がさらに好ましい。また、ホスト化合物にTADF活性な化合物を用いてもよい。 Specifically, the excited triplet energy level E (1, T, PT) determined from the peak top of the phosphorescence spectrum of the compound of the first component is a viewpoint that promotes the generation of TADF in the light-emitting layer without inhibiting it. Therefore, it is preferable that the energy is higher than the excited triplet energy level E (2, T, PT) determined from the peak top of the phosphorescence spectrum of the compound of the second component. The triplet energy level E (1, T, PT) is preferably 0.01 eV or more, more preferably 0.03 eV or more, and still more preferably 0.1 eV or more, as compared with E (2, T, PT). Further, a TADF-active compound may be used as the host compound.
 第1成分はホストとして用いられる化合物であり、一般的には、発光層中における含有量は、第2成分であるドーパントより多く用いられる。したがって、励起三重項エネルギーは、一般的には、実際の使用条件に近い状態で求められ、例えば、第1成分の励起三重項エネルギーは、単成分の蒸着膜から求められ、第2成分の励起三重項エネルギーは、不活性成分または第1成分を主成分とし、低濃度の第2成分を均一に分散した膜より求めることができる。
 一方で、本発明で用いる第1成分は、式(1)で表されるように、ホウ素原子および酸素原子およびa~b環により形成される比較的大きな平面性の高い構造を有するために、励起一重項エネルギーおよび励起三重項エネルギーの値は、上述した第1成分の単成分の蒸着膜より求めた場合に比べて、低く見積もられることがある。そこで、本明細書中では、第1成分間の凝集および相互作用による影響を排するために、第1成分および第2成分の励起一重項エネルギーおよび励起三重項エネルギーは、不活性成分を主成分とし、低濃度の第1成分または第2成分を均一に分散してなる膜により求められる。ここで不活性成分とは、例えば、第1成分または第2成分の励起および発光の範囲で光学的に透明なポリマーが挙げられ、具体的には、ポリ(メチルメタクリレート)、ポリスチレン、ポリオレフィンおよびシクロオレフィンポリマーが挙げられる。
The first component is a compound used as a host, and generally has a higher content in the light-emitting layer than the dopant as the second component. Therefore, the excited triplet energy is generally obtained in a state close to actual use conditions. For example, the excited triplet energy of the first component is obtained from a single-component deposited film, and the excitation triplet energy of the second component is obtained. The triplet energy can be determined from a film in which the inactive component or the first component is the main component and the low-concentration second component is uniformly dispersed.
On the other hand, the first component used in the present invention has a relatively large planar structure formed by a boron atom, an oxygen atom and an a to b ring as represented by the formula (1). The values of the excited singlet energy and the excited triplet energy may be estimated to be lower than those obtained from the above-described single-component vapor-deposited film of the first component. Therefore, in this specification, in order to eliminate the influence of aggregation and interaction between the first components, the excited singlet energy and the excited triplet energy of the first component and the second component are mainly composed of the inactive component. And a film obtained by uniformly dispersing a low concentration of the first component or the second component. Here, the inactive component includes, for example, a polymer that is optically transparent in the range of excitation and emission of the first component or the second component, and specifically, poly (methyl methacrylate), polystyrene, polyolefin and cycloolefin. Olefin polymers are mentioned.
 さらに、第1成分は、相互作用を低下させ高い励起三重項エネルギーを得る観点から、凝集性が低いほうが好ましく、具体的には、第1成分の分子構造は、非対称の構造であるほうが好ましく、分子内に大きな二面角を有するほうが好ましく、または、分子内に立体障害を有する方が好ましい。また、電荷の輸送性およびエネルギーの移動の観点からは、電荷輸送に関わる軌道が近接できる方が好ましい。また、素子駆動時の素子特性の安定性の観点からは、第1成分のガラス転移温度(Tg)が高いほうが好ましく、分子間で相互作用するほうが好ましい。 Furthermore, from the viewpoint of reducing the interaction and obtaining high excited triplet energy, the first component preferably has a lower cohesiveness. Specifically, the molecular structure of the first component is preferably an asymmetric structure, It is preferable to have a large dihedral angle in the molecule, or it is preferable to have a steric hindrance in the molecule. Further, from the viewpoint of charge transportability and energy transfer, it is preferable that orbits related to charge transport can be close to each other. Further, from the viewpoint of the stability of element characteristics during element driving, it is preferable that the glass transition temperature (Tg) of the first component is higher, and it is more preferable that the first component interacts between molecules.
 各成分間の凝集性については、第1成分および第2成分がともに凝集性の低い化合物を用いてもよく、どちらか一方が凝集性の低い化合物を用いてもよい。凝集性については、低濃度均一分散状態と単成分蒸着膜のスペクトルのレッドシフトの程度、または、第1成分および第2成分の共蒸着膜のスペクトルと低濃度均一分散状態の第2成分のスペクトルのレッドシフトの程度により見積もることができる。 凝集 Regarding the cohesiveness between the components, the first component and the second component may both use a compound having low cohesiveness, or one of them may use a compound having low cohesiveness. Regarding the cohesiveness, the degree of red shift in the low-concentration uniform dispersion state and the spectrum of the single-component deposited film, or the spectrum of the co-deposited film of the first component and the second component and the spectrum of the second component in the low-concentration uniform dispersion state Can be estimated according to the degree of red shift.
 上記式(1)において、R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)であり、前記アリール、前記ヘテロアリール、前記ジアリールアミノおよび前記ジアリールボリルにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい。 In the above formula (1), R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (the two aryls may be bonded via a single bond or a linking group. ), Alkyl, cycloalkyl, alkoxy or aryloxy (the above, the first substituent), wherein at least one hydrogen in the aryl, the heteroaryl, the diarylamino and the diarylboryl is aryl, heteroaryl, alkyl or cyclo It may be substituted with alkyl (the above, the second substituent).
 第1置換基としての「アリール」としては、例えば、炭素数6~30のアリールが挙げられ、炭素数6~24のアリールが好ましく、炭素数6~20のアリールがより好ましく、炭素数6~16のアリールがさらに好ましく、炭素数6~12のアリールが特に好ましく、炭素数6~10のアリールが最も好ましい。 The “aryl” as the first substituent includes, for example, aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, and 6 to 20 carbon atoms. Aryl having 16 carbon atoms is more preferred, aryl having 6 to 12 carbon atoms is particularly preferred, and aryl having 6 to 10 carbon atoms is most preferred.
 具体的なアリールとしては、例えば、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどが挙げられる。 Specific examples of the aryl include, for example, phenyl which is a monocyclic aryl, (2-, 3-, 4-) biphenylyl which is a bicyclic aryl, and (1-, 2-) naphthyl which is a fused bicyclic aryl Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) Is a fused tricyclic aryl, Naphthylene- (1-, 3-, 4-, 5-) yl, fluoren- (1-, 2-, 3-, 4-, 9-) yl, phenalene- (1-, 2-) yl, (1 -, 2-, 3-, 4-, 9-) phenanthryl, quaterphenylyl (5'-phenyl-m-terphenyl-2-yl, 5'-phenyl-m-terphenyl which is a tetracyclic aryl) -3-yl, 5'-phenyl-m-terphenyl-4-yl, m-quaterphenylyl), triphenylene- (1-, 2-) yl which is a fused tetracyclic aryl, pyrene- (1- , 2-, 4-) yl, naphthacene- (1-, 2-, 5-) yl, perylene- (1-, 2-, 3-) yl which is a fused pentacyclic aryl, pentacene- (1-, 2-, 5-, 6-) yl and the like.
 第1置換基としての「アリール」の上記説明は、第1置換基としての、ジアリールアミノにおける「アリール」、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)における「アリール」、アリールオキシにおける「アリール」、第2置換基としての、「アリール」に対しても同じく引用することができる。 The above description of “aryl” as the first substituent refers to “aryl” in diarylamino as the first substituent, diarylboryl (two aryls may be bonded via a single bond or a linking group) And "aryl" in aryloxy, and "aryl" as the second substituent.
 第1置換基としての「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールが挙げられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。 “Heteroaryl” as the first substituent includes, for example, heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, more preferably heteroaryl having 2 to 20 carbon atoms, Heteroaryl having 2 to 15 carbon atoms is more preferable, and heteroaryl having 2 to 10 carbon atoms is particularly preferable. The heteroaryl includes, for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
 具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ジベンゾフラニル、チオフェニル、ベンゾ[b]チエニル、ジベンゾチオフェニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリニル、キナゾリニル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェナザシリニル、フェノキサチイニル、チアントレニル、インドリジニル、インドロカルバゾリル、ベンゾインドロカルバゾリル、ベンゾベンゾインドロカルバゾリル、ナフトベンゾフラニルなどが挙げられる。 Specific examples of the heteroaryl include, for example, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanil, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, benzofuranyl, Isobenzofuranyl, dibenzofuranyl, thiophenyl, benzo [b] thienyl, dibenzothiophenyl, indolyl, isoindolyl, 1H-indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolinyl , Quinazolinyl, quinoxalinyl, phthalazinyl, naphthyridinyl, purinyl, pteridinyl, carb Lil, acridinyl, phenoxazinyl, phenothiazinyl, phenazinyl, Fenazashiriniru, phenoxathiinyl, thianthrenyl, indolizinyl, India and Russia carbazolyl, benzoin mud carbazolyl, benzo benzoin mud carbazolyl, etc. naphthaldehyde benzofuranyl and the like.
 第1置換基としての「ヘテロアリール」の上記説明は、第2置換基としての「ヘテロアリール」に対しても同じく引用することができる。また、第2置換基としての「ヘテロアリール」には、当該ヘテロアリールにおける少なくとも1つの水素がフェニルなどのアリール(具体例は上述した基)やメチルなどのアルキル(具体例は後述する基)で置換された基も第2置換基としてのヘテロアリールに含まれる。その一例としては、第2置換基がカルバゾリル基の場合には、9位における少なくとも1つの水素がフェニルなどのアリールやメチルなどのアルキルで置換されたカルバゾリル基も第2置換基としてのヘテロアリールに含まれる。 The above description of “heteroaryl” as the first substituent can be similarly quoted for “heteroaryl” as the second substituent. In the “heteroaryl” as the second substituent, at least one hydrogen in the heteroaryl is an aryl such as phenyl (the specific examples described above) or an alkyl such as methyl (a specific example described later). Substituted groups are also included in the heteroaryl as the second substituent. For example, when the second substituent is a carbazolyl group, a carbazolyl group in which at least one hydrogen at the 9-position is substituted with an aryl such as phenyl or an alkyl such as methyl is also substituted with a heteroaryl as the second substituent. included.
 第1置換基としての「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24のアルキル(炭素数3~24の分岐鎖アルキル)が挙げられ、炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)が好ましく、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)がより好ましく、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)がさらに好ましく、炭素数1~5のアルキル(炭素数3~5の分岐鎖アルキル)がよりさらに好ましく、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)が特に好ましく、メチルが最も好ましい。 The “alkyl” as the first substituent may be straight-chain or branched, and includes, for example, alkyl having 1 to 24 carbons (branched-chain alkyl having 3 to 24 carbons). Preferred are alkyls having 18 (branched alkyls having 3 to 18 carbon atoms), more preferred are alkyls having 1 to 12 carbons (branched alkyls having 3 to 12 carbons), and alkyls having 1 to 6 carbons (having 3 carbons are preferable). And more preferably an alkyl having 1 to 5 carbons (a branched alkyl having a carbon number of 3 to 5), and more preferably an alkyl having a carbon number of 1 to 4 (a branched chain having 3 to 4 carbons). Alkyl) is particularly preferred, and methyl is most preferred.
 具体的なアルキルとしては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル(t-アミル)、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル(1,1,3,3-テトラメチルブチル)、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどが挙げられる。
 また、例えば、1-エチル-1-メチルプロピル、1,1-ジエチルプロピル、1,1-ジメチルブチル、1-エチル-1-メチルブチル、1,1,4-トリメチルペンチル、1,1,2-トリメチルプロピル、1,1-ジメチルオクチル、1,1-ジメチルペンチル、1,1-ジメチルヘプチル、1,1,5-トリメチルヘキシル、1-エチル-1-メチルヘキシル、1-エチル-1,3-ジメチルブチル、1,1,2,2-テトラメチルプロピル、1-ブチル-1-メチルペンチル、1,1-ジエチルブチル、1-エチル-1-メチルペンチル、1,1,3-トリメチルブチル、1-プロピル-1-メチルペンチル、1,1,2-トリメチルプロピル、1-エチル-1,2,2-トリメチルプロピル、1-プロピル-1-メチルブチル、1,1-ジメチルヘキシルなども挙げられる。
Specific alkyl includes, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl (t-amyl), n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl (1,1,3 , 3-tetramethylbutyl), 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethyl Hexyl, n-decyl, n-undecyl, 1-methyldecyl, n-dodecyl, n-tridecyl, 1-hexylheptyl, n-te Radeshiru, n- pentadecyl, n- hexadecyl, n- heptadecyl, n- octadecyl, etc. n- eicosyl and the like.
Also, for example, 1-ethyl-1-methylpropyl, 1,1-diethylpropyl, 1,1-dimethylbutyl, 1-ethyl-1-methylbutyl, 1,1,4-trimethylpentyl, 1,1,2- Trimethylpropyl, 1,1-dimethyloctyl, 1,1-dimethylpentyl, 1,1-dimethylheptyl, 1,1,5-trimethylhexyl, 1-ethyl-1-methylhexyl, 1-ethyl-1,3- Dimethylbutyl, 1,1,2,2-tetramethylpropyl, 1-butyl-1-methylpentyl, 1,1-diethylbutyl, 1-ethyl-1-methylpentyl, 1,1,3-trimethylbutyl, -Propyl-1-methylpentyl, 1,1,2-trimethylpropyl, 1-ethyl-1,2,2-trimethylpropyl, 1-propyl-1-methylbutyl, Also include such 1-dimethyl hexyl.
 第1置換基としての「アルキル」の上記説明は、第2置換基としての「アルキル」に対しても同じく引用することができる。第1置換基に対して第2置換基であるアルキルが置換する位置は特に限定されないが、第1置換基のa環、b環およびc環への結合位置(1位)を基準にして、2位または3位が好ましく、2位がより好ましい。 The above description of “alkyl” as the first substituent can be similarly quoted for “alkyl” as the second substituent. The position at which the alkyl as the second substituent substitutes the first substituent is not particularly limited, but based on the bonding position (1 position) of the first substituent to the a ring, b ring and c ring. The 2- or 3-position is preferred, and the 2-position is more preferred.
 第1置換基としての「シクロアルキル」としては、1つの環からなるシクロアルキル、複数の環からなるシクロアルキル、環内で共役しない二重結合を含むシクロアルキルおよび環外に分岐を含むシクロアルキルのいずれでもよく、例えば、炭素数3~24のシクロアルキル、炭素数3~20のシクロアルキル、炭素数3~16のシクロアルキル、炭素数3~14のシクロアルキル、炭素数3~12のシクロアルキル、炭素数5~10のシクロアルキル、炭素数5~8のシクロアルキル、炭素数5~6のシクロアルキル、炭素数5のシクロアルキル、炭素数6~10のシクロアルキルなどが挙げられる。 “Cycloalkyl” as the first substituent includes cycloalkyl having one ring, cycloalkyl having a plurality of rings, cycloalkyl having a double bond not conjugated in a ring, and cycloalkyl having a branch outside the ring. For example, cycloalkyl having 3 to 24 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, cycloalkyl having 3 to 16 carbon atoms, cycloalkyl having 3 to 14 carbon atoms, cycloalkyl having 3 to 12 carbon atoms may be used. Examples thereof include alkyl, cycloalkyl having 5 to 10 carbons, cycloalkyl having 5 to 8 carbons, cycloalkyl having 5 to 6 carbons, cycloalkyl having 5 carbons, and cycloalkyl having 6 to 10 carbons.
 具体的なシクロアルキルとしては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、およびこれらの炭素数1~5のアルキル(特にメチル)置換体や、ノルボルネニル、ビシクロ[1.0.1]ブチル、ビシクロ[1.1.1]ペンチル、ビシクロ[2.0.1]ペンチル、ビシクロ[1.2.1]ヘキシル、ビシクロ[3.0.1]ヘキシル、ビシクロ[2.1.2]ヘプチル、ビシクロ[2,2,1]ヘプチル、ビシクロ[2.2.2]オクチル、デカヒドロナフチル、アダマンチル、ジアマンチル、デカヒドロナフタレニル、デカヒドロアズレニルなどが挙げられる。 Specific cycloalkyls include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl and alkyl (especially methyl) -substituted alkyl having 1 to 5 carbon atoms, norbornenyl, bicyclo [1.0.1] butyl, bicyclo [1.1.1] pentyl, bicyclo [2.0.1] pentyl, bicyclo [1.2.1] hexyl, bicyclo [3.0.1] hexyl, bicyclo [2.1.2] heptyl, bicyclo [2,2,1] heptyl, bicyclo [2.2.2] octyl, decahydronaphthyl, adamantyl, diamantyl, decahydronaphthalenyl, decahydroazulenyl and the like. Can be
 第1置換基としての「シクロアルキル」の上記説明は、第2置換基としての「シクロアルキル」に対しても同じく引用することができる。 The above description of “cycloalkyl” as the first substituent can be similarly quoted for “cycloalkyl” as the second substituent.
 「アルコキシ」(第1置換基)としては、例えば、炭素数1~24のアルコキシ(炭素数3~24の分岐鎖のアルコキシ)が挙げられ、炭素数1~18のアルコキシ(炭素数3~18の分岐鎖のアルコキシ)が好ましく、炭素数1~12のアルコキシ(炭素数3~12の分岐鎖のアルコキシ)がより好ましく、炭素数1~6のアルコキシ(炭素数3~6の分岐鎖のアルコキシ)がさらに好ましく、炭素数1~5のアルコキシ(炭素数3~5の分岐鎖のアルコキシ)がよりさらに好ましく、炭素数1~4のアルコキシ(炭素数3~4の分岐鎖のアルコキシ)が特に好ましい。 The “alkoxy” (first substituent) includes, for example, alkoxy having 1 to 24 carbons (alkoxy having a branched chain having 3 to 24 carbons), and alkoxy having 1 to 18 carbons (3 to 18 carbons). Is preferably a C1-C12 alkoxy (C3-C12 branched-chain alkoxy), more preferably a C1-C6 alkoxy (C3-C6 branched-chain alkoxy). Is more preferable, and an alkoxy having 1 to 5 carbon atoms (an alkoxy having a branched chain having 3 to 5 carbon atoms) is even more preferable, and an alkoxy having 1 to 4 carbon atoms (an alkoxy having a branched chain having 3 to 4 carbon atoms) is particularly preferable. preferable.
 具体的なアルコキシとしては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、t-アミルオキシ、n-ペンチルオキシ、イソペンチルオキシ、ネオペンチルオキシ、t-ペンチルオキシ、n-ヘキシルオキシ、1-メチルペンチルオキシ、4-メチル-2-ペンチルオキシ、3,3-ジメチルブトキシ、2-エチルブトキシ、n-ヘプチルオキシ、1-メチルヘキシルオキシ、n-オクチルオキシ、t-オクチルオキシ、1-メチルヘプチルオキシ、2-エチルヘキシルオキシ、2-プロピルペンチルオキシ、n-ノニルオキシ、2,2-ジメチルヘプチルオキシ、2,6-ジメチル-4-ヘプチルオキシ、3,5,5-トリメチルヘキシルオキシ、n-デシルオキシ、n-ウンデシルオキシ、1-メチルデシルオキシ、n-ドデシルオキシ、n-トリデシルオキシ、1-ヘキシルヘプチルオキシ、n-テトラデシルオキシ、n-ペンタデシルオキシ、n-ヘキサデシルオキシ、n-ヘプタデシルオキシ、n-オクタデシルオキシ、n-エイコシルオキシなどが挙げられる。 Specific examples of alkoxy include methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, s-butoxy, t-butoxy, t-amyloxy, n-pentyloxy, isopentyloxy, neopentyloxy, t-pentyl Oxy, n-hexyloxy, 1-methylpentyloxy, 4-methyl-2-pentyloxy, 3,3-dimethylbutoxy, 2-ethylbutoxy, n-heptyloxy, 1-methylhexyloxy, n-octyloxy, t-octyloxy, 1-methylheptyloxy, 2-ethylhexyloxy, 2-propylpentyloxy, n-nonyloxy, 2,2-dimethylheptyloxy, 2,6-dimethyl-4-heptyloxy, 3,5,5 -Trimethylhexyloxy, n-decyloxy, -Undecyloxy, 1-methyldecyloxy, n-dodecyloxy, n-tridecyloxy, 1-hexylheptyloxy, n-tetradecyloxy, n-pentadecyloxy, n-hexadecyloxy, n-heptadecyl Oxy, n-octadecyloxy, n-eicosyloxy and the like.
 また第1の置換基の「ジアリールボリル」中の「アリール」としては、上述したアリールの説明を引用できる。また、この2つのアリールは単結合または連結基(例えば>C(-R)、>O、>Sまたは>N-R)を介して結合していてもよい。ここで、>C(-R)および>N-RのRは、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)であり、当該第1置換基にはさらにアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)が置換していてもよく、これらの基の具体例としては、上述した第1置換基としてのアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシの説明を引用できる。 As the “aryl” in the “diarylboryl” of the first substituent, the above description of aryl can be cited. Further, the two aryls may be linked via a single bond or a linking group (eg,> C (—R) 2 ,>O,> S, or> NR). Here, R of> C (—R) 2 and> NR represents aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), Alkyl, cycloalkyl, alkoxy or aryloxy (the first substituent), wherein the first substituent is further substituted with aryl, heteroaryl, alkyl or cycloalkyl (the second substituent). Also, as specific examples of these groups, the description of aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy as the first substituent described above can be cited.
 第1置換基の構造の立体障害性、電子供与性および電子吸引性により発光波長を調整することができ、好ましくは以下の構造式で表される基であり、より好ましくは、メチル、t-ブチル、t-アミル、t-オクチル、フェニル、o-トリル、p-トリル、2,4-キシリル、2,5-キシリル、2,6-キシリル、2,4,6-メシチル、ジフェニルアミノ、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、カルバゾリル、3,6-ジメチルカルバゾリル、3,6-ジ-t-ブチルカルバゾリルおよびフェノキシであり、さらに好ましくは、メチル、t-ブチル、t-アミル、t-オクチル、フェニル、o-トリル、2,6-キシリル、2,4,6-メシチル、ジフェニルアミノ、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、カルバゾリル、3,6-ジメチルカルバゾリルおよび3,6-ジ-t-ブチルカルバゾリルである。合成の容易さの観点からは、立体障害が大きい方が選択的な合成のために好ましく、具体的には、t-ブチル、t-アミル、t-オクチル、o-トリル、p-トリル、2,4-キシリル、2,5-キシリル、2,6-キシリル、2,4,6-メシチル、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、3,6-ジメチルカルバゾリルおよび3,6-ジ-t-ブチルカルバゾリルが好ましい。 The emission wavelength can be adjusted by the steric hindrance, electron donating property and electron withdrawing property of the structure of the first substituent, and is preferably a group represented by the following structural formula, more preferably methyl, t- Butyl, t-amyl, t-octyl, phenyl, o-tolyl, p-tolyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 2,4,6-mesityl, diphenylamino, diphenyl -P-tolylamino, bis (p- (t-butyl) phenyl) amino, carbazolyl, 3,6-dimethylcarbazolyl, 3,6-di-t-butylcarbazolyl and phenoxy, more preferably Methyl, t-butyl, t-amyl, t-octyl, phenyl, o-tolyl, 2,6-xylyl, 2,4,6-mesityl, diphenylamino, di-p-tolylamino, bis (p Is (t-butyl) phenyl) amino, carbazolyl, 3,6-dimethyl-carbazolyl and 3,6-di -t- butyl-carbazolyl. From the viewpoint of ease of synthesis, it is preferable that steric hindrance is large for selective synthesis. Specifically, t-butyl, t-amyl, t-octyl, o-tolyl, p-tolyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 2,4,6-mesityl, di-p-tolylamino, bis (p- (t-butyl) phenyl) amino, 3,6-dimethylcarba Zolyl and 3,6-di-t-butylcarbazolyl are preferred.
 下記構造式において、「Me」はメチル、「tBu」はt-ブチル、「tAm」はt-アミル、「tOct」はt-オクチルを表す。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
In the following structural formula, “Me” represents methyl, “tBu” represents t-butyl, “tAm” represents t-amyl, and “tOct” represents t-octyl.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 R~R11の少なくとも1つは、下記式(1-a)~(1-s)のいずれかで表される基であることが好ましく、下記式(1-d)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000031
At least one of R 1 to R 11 is preferably a group represented by any of the following formulas (1-a) to (1-s), and a group represented by the following formula (1-d) Is more preferable.
Figure JPOXMLDOC01-appb-C000031
 上記式中、*は結合位置を示す。
 式(1-a)~式(1-h)および式(1-p)~式(1-q)における少なくとも1つの水素は、上述の「第2置換基」としての、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~24のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよい。
 また、式(1-i)、式(1-j)、式(1-k)および式(1-r)におけるRは、それぞれ独立して、水素、もしくは、上述の「第2置換基」としての、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~24のアルキルまたは炭素数3~12のシクロアルキルを示す。
In the above formula, * indicates a bonding position.
In the formulas (1-a) to (1-h) and the formulas (1-p) to (1-q), at least one hydrogen atom has 6 to 30 carbon atoms as the above-mentioned “second substituent”. May be substituted with a heteroaryl having 2 to 30 carbons, an alkyl having 1 to 24 carbons or a cycloalkyl having 3 to 12 carbons.
R in the formula (1-i), the formula (1-j), the formula (1-k) and the formula (1-r) is each independently hydrogen or the above-mentioned “second substituent” Represents aryl having 6 to 30 carbons, heteroaryl having 2 to 30 carbons, alkyl having 1 to 24 carbons or cycloalkyl having 3 to 12 carbons.
 式(1-a)~式(1-s)で表される基のより具体的な態様としては、例えば以下に示す基があげられる。なお、式中の*は結合位置を示し、Meはメチル、tBuはt-ブチルを示す。 よ り More specific embodiments of the groups represented by formulas (1-a) to (1-s) include, for example, the following groups. In the formula, * indicates a bonding position, Me indicates methyl, and tBu indicates t-butyl.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 上記式(1)において、R~R11のうちの隣接する基同士は結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)で置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい。
 したがって、一般式(1)で表される多環芳香族化合物は、a環、b環およびc環における置換基の相互の結合形態によって、下記式(1-L1)および式(1-L2)に示すように、化合物を構成する環構造が変化する。各式中のa’環、b’環およびc’環は上記「形成された環(アリール環またはヘテロアリール環)」に相当する。なお、式(1-L1)および式(1-L2)における各符号は式(1)における定義と同じである。
In the above formula (1), adjacent groups among R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring. Is hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (the two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryloxy (the above, A first substituent), and at least one hydrogen in these may be substituted with an aryl, heteroaryl, alkyl or cycloalkyl (the second substituent).
Therefore, the polycyclic aromatic compound represented by the general formula (1) can have the following formulas (1-L1) and (1-L2) depending on the mutual bonding form of the substituents on the ring a, ring b and ring c. As shown in the above, the ring structure constituting the compound changes. The a ′ ring, b ′ ring and c ′ ring in each formula correspond to the above “formed ring (aryl ring or heteroaryl ring)”. In addition, each symbol in the formula (1-L1) and the formula (1-L2) is the same as the definition in the formula (1).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 なお、上記式では示してはいないが、a環、b環およびc環の全てがa’環、b’環およびc’環に変化した化合物もある。また、上記式(1-L1)および式(1-L2)から分かるように、例えば、a環のRとc環のR、c環のRとb環のR、b環のR11とa環のRなどは「隣接する基同士」には該当せず、これらが結合することはない。すなわち、「隣接する基」とは同一環上で隣接する基を意味する。 Although not shown in the above formula, there is also a compound in which all of a ring, b ring and c ring are changed to a ′ ring, b ′ ring and c ′ ring. Further, as can be seen from the above formulas (1-L1) and (1-L2), for example, R 3 of a ring and R 4 of c ring, R 7 of c ring and R 8 of b ring, and R 11 and R 1 of the a-ring do not correspond to “adjacent groups” and do not bond to each other. That is, “adjacent groups” means groups that are adjacent on the same ring.
 上記式(1-L1)や式(1-L2)で表される化合物は、例えばa環(およびb環およびc環の少なくとも1つ)であるベンゼン環に対してベンゼン環、インドール環、ピロール環、ベンゾフラン環またはベンゾチオフェン環などが縮合して形成されるa’環(およびb’環およびc’環の少なくとも1つ)を有する化合物であり、形成された縮合環a’(縮合環b’または縮合環c’)はそれぞれナフタレン環、カルバゾール環、インドール環、ジベンゾフラン環またはジベンゾチオフェン環などである。 The compounds represented by the above formulas (1-L1) and (1-L2) include, for example, a benzene ring, an benzene ring, an indole ring, and a pyrrole with respect to a benzene ring which is a ring (and at least one of a b ring and a c ring). Is a compound having an a ′ ring (and at least one of a b ′ ring and a c ′ ring) formed by condensing a ring, a benzofuran ring or a benzothiophene ring, and the formed condensed ring a ′ (condensed ring b 'Or condensed ring c') is a naphthalene ring, a carbazole ring, an indole ring, a dibenzofuran ring or a dibenzothiophene ring, respectively.
 形成された環である「アリール環」としては、例えば、炭素数9~30のアリール環が挙げられ、炭素数9~24のアリール環が好ましく、炭素数9~20のアリール環がより好ましく、炭素数9~16のアリール環がさらに好ましく、炭素数9~12のアリール環が特に好ましく、炭素数9~10環のアリールが最も好ましい。なお、この「アリール環」は、a環(b環またはc環)がすでに炭素数6のベンゼン環で構成されているため、これに5員環が縮合した縮合環の合計炭素数9が下限の炭素数となる。 Examples of the formed “aryl ring” include an aryl ring having 9 to 30 carbon atoms, an aryl ring having 9 to 24 carbon atoms is preferable, and an aryl ring having 9 to 20 carbon atoms is more preferable. An aryl ring having 9 to 16 carbon atoms is more preferred, an aryl ring having 9 to 12 carbon atoms is particularly preferred, and an aryl ring having 9 to 10 carbon atoms is most preferred. In this “aryl ring”, the ring a (ring b or ring c) is already composed of a benzene ring having 6 carbon atoms. Is the number of carbon atoms.
 具体的な「アリール環」としては、例えば、縮合二環系であるナフタレン環、縮合三環系である、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、縮合四環系であるトリフェニレン環、ピレン環、ナフタセン環、縮合五環系であるペリレン環、ペンタセン環などが挙げられる。 Specific examples of the `` aryl ring '' include, for example, a fused bicyclic naphthalene ring, a fused tricyclic ring, an acenaphthylene ring, a fluorene ring, a phenalene ring, a phenanthrene ring, a fused tetracyclic ring system, a triphenylene ring, and pyrene. Ring, naphthacene ring, condensed pentacyclic perylene ring, pentacene ring and the like.
 形成された環である「ヘテロアリール環」としては、例えば、炭素数6~30のヘテロアリール環が挙げられ、炭素数6~25のヘテロアリール環が好ましく、炭素数6~20のヘテロアリール環がより好ましく、炭素数6~15のヘテロアリール環がさらに好ましく、炭素数6~10のヘテロアリール環が特に好ましい。「ヘテロアリール環」としては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。なお、この「ヘテロアリール環」は、a環(b環またはc環)がすでに炭素数6のベンゼン環で構成されているため、これに5員環が縮合した縮合環の合計炭素数6が下限の炭素数となる。 Examples of the formed “heteroaryl ring” include a heteroaryl ring having 6 to 30 carbon atoms, preferably a heteroaryl ring having 6 to 25 carbon atoms, and a heteroaryl ring having 6 to 20 carbon atoms. Is more preferable, and a heteroaryl ring having 6 to 15 carbon atoms is further preferable, and a heteroaryl ring having 6 to 10 carbon atoms is particularly preferable. As the “heteroaryl ring”, for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms and the like can be mentioned. In this “heteroaryl ring”, since the a-ring (the b-ring or the c-ring) is already composed of a benzene ring having 6 carbon atoms, the total carbon number of the condensed ring obtained by condensing the 5-membered ring with the benzene ring is 6 carbon atoms. It is the lower limit of carbon number.
 具体的な「ヘテロアリール環」としては、例えば、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、インドリジン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、ベンゾチオフェン環、ジベンゾチオフェン環、チアントレン環などが挙げられる。 Specific "heteroaryl rings" include, for example, indole ring, isoindole ring, 1H-indazole ring, benzimidazole ring, benzoxazole ring, benzothiazole ring, 1H-benzotriazole ring, quinoline ring, isoquinoline ring, cinnoline Ring, quinazoline ring, quinoxaline ring, phthalazine ring, naphthyridine ring, purine ring, pteridine ring, carbazole ring, acridine ring, phenoxatiin ring, phenoxazine ring, phenothiazine ring, phenazine ring, indolizine ring, benzofuran ring, isobenzofuran Ring, dibenzofuran ring, benzothiophene ring, dibenzothiophene ring, thianthrene ring and the like.
 形成された環への第1置換基および第2置換基については、R~R11の欄で説明した第1置換基および第2置換基の説明を同じく引用することができる。 Regarding the first substituent and the second substituent on the formed ring, the description of the first substituent and the second substituent described in the column of R 1 to R 11 can be similarly cited.
 一般式(1)において、R~R11の複数が第1置換基を有してもよい。合成の難易度の観点から、互いに立体障害が小さくなるように置換位置が選ばれる。同じ環において隣り合う位置に置換基を有してもよいが、この場合には立体障害の小さな基が好ましい。
 また、一般式(1)のR~R11における置換基の個数としては、特に制限はないが、R~R11の置換基の合計の炭素数は36以下であることが好ましい。
In the general formula (1), a plurality of R 1 to R 11 may have a first substituent. From the viewpoint of the degree of difficulty of synthesis, the substitution positions are selected so that steric hindrance to each other is reduced. Substituents may be present at adjacent positions in the same ring, but in this case, a group having small steric hindrance is preferred.
The number of substituents in R 1 to R 11 in the general formula (1) is not particularly limited, but the total number of carbon atoms of the substituents in R 1 to R 11 is preferably 36 or less.
 一般式(1)において、R~R11において、複数の第1置換基を有する場合は、特に最後にホウ素を導入する合成工程を用いる場合、合成の容易さの観点からa環-B結合に対して線対称になるように置換基を有することが好ましい。一方で、結晶性および凝集性を低下させる観点から、非対称な構造になるように置換基を有することが好ましい。 In the general formula (1), when R 1 to R 11 have a plurality of first substituents, particularly when a synthesis step of introducing boron at the end is used, from the viewpoint of ease of synthesis, a ring-B bond It is preferable to have a substituent so as to be line-symmetric with respect to. On the other hand, from the viewpoint of reducing crystallinity and cohesion, it is preferable to have a substituent so as to have an asymmetric structure.
 第1成分における好適な第1態様のホストとして、一般式(1)において、R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキルまたはアルコキシ(以上、第1置換基)であり、前記アリール、前記ヘテロアリール、および前記ジアリールアミノにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい、多環芳香族化合物が挙げられる。
 つまり、第1態様のホストである多環芳香族化合物は、第1置換基として、上記式(1-h)で表される基のようなアリールオキシが除外され、アリールオキシを有さない化合物である。
As a preferred host of the first embodiment of the first component, in the general formula (1), R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (where two aryls are Which may be bonded via a bond or a linking group), alkyl, cycloalkyl or alkoxy (the above is the first substituent), and at least one hydrogen in the aryl, the heteroaryl, and the diarylamino is an aryl. , Heteroaryl, alkyl or cycloalkyl (the second substituent), and a polycyclic aromatic compound.
That is, in the polycyclic aromatic compound serving as the host of the first embodiment, a compound having no aryloxy, in which aryloxy such as the group represented by the above formula (1-h) is excluded as the first substituent It is.
 第1成分における好適な第2態様のホストとして、一般式(1)において、R~R11の少なくとも1つは、ヘテロアリール(以上、第1置換基)であり、当該ヘテロアリールにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい、多環芳香族化合物が挙げられる。
 第2態様のホストである多環芳香族化合物としては、例えば、後述の化合物(BO2-0431)や化合物(BO2-0520S)などが挙げられる。
 第2態様のホストである多環芳香族化合物は、R~R11の少なくとも1つが、上記式(1-a)、式(1-b)、式(1-c)、式(1-d)、式(1-l)、式(1-m)および式(1-n)のいずれかで表される基であることが好ましく、上記式(1-a)および式(1-d)のいずれかで表される基であることがより好ましい。
As a preferred host of the second aspect of the first component, in the general formula (1), at least one of R 4 to R 11 is a heteroaryl (the above is a first substituent), and at least one of the heteroaryls is a heteroaryl. One hydrogen includes a polycyclic aromatic compound which may be substituted with an aryl, heteroaryl, alkyl or cycloalkyl (the above is a second substituent).
Examples of the polycyclic aromatic compound serving as the host of the second embodiment include a compound (BO2-0431) and a compound (BO2-0520S) described below.
In the polycyclic aromatic compound serving as the host of the second embodiment, at least one of R 4 to R 11 is a compound represented by the above formula (1-a), formula (1-b), formula (1-c), or formula (1-c). d), a group represented by any one of formulas (1-1), (1-m) and (1-n), and preferably a group represented by the above formulas (1-a) and (1-d) Is more preferable.
 第1成分における好適な第3態様のホストとして、上記一般式(1)において、R~Rの少なくとも1つは、アリールまたはジベンゾフラニル(以上、第1置換基)であり、前記アリールおよび前記ジベンゾフラニルにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい、多環芳香族化合物が挙げられる。
 第3態様のホストである多環芳香族化合物としては、例えば、後述の化合物(BO2-0264/0511S)や化合物(BO2-0231)などが挙げられる。
 第3態様のホストである多環芳香族化合物は、R~Rの少なくとも1つが、上記式(1-d)、式(1-f)、式(1-i)、式(1-j)および式(1-k)のいずれかで表される基であることが好ましく、上記式(1-d)および式(1-i)のいずれかで表される基であることがより好ましい。
As a preferred host of the third aspect of the first component, in the above general formula (1), at least one of R 1 to R 3 is aryl or dibenzofuranyl (the above is a first substituent), and And a polycyclic aromatic compound in which at least one hydrogen in the dibenzofuranyl may be substituted with aryl, heteroaryl, alkyl or cycloalkyl (the above is a second substituent).
Examples of the polycyclic aromatic compound serving as the host in the third embodiment include a compound (BO2-0264 / 0511S) and a compound (BO2-0231) described below.
In the polycyclic aromatic compound serving as the host of the third embodiment, at least one of R 1 to R 3 is a compound represented by the above formula (1-d), formula (1-f), formula (1-i), or formula (1-i). j) and a group represented by any of formulas (1-k), and more preferably a group represented by any of the above formulas (1-d) and (1-i). preferable.
 第1成分における好適な第4態様のホストとして、上記一般式(1)において、R~Rの少なくとも1つは、ヘテロアリール(以上、第1置換基)であり(当該ヘテロアリールにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい)、且つ、R~R11の少なくとも1つは、アリール(以上、第1置換基)である(当該アリールにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい)、多環芳香族化合物が挙げられる。
 第4態様のホストである多環芳香族化合物としては、例えば、後述の化合物(BO2-0220/0510S)や化合物(BO2-0220/0511S)などが挙げられる。
 第4態様のホストである多環芳香族化合物は、R~Rの少なくとも1つが、上記式(1-a)、式(1-b)、式(1-c)、式(1-d)、式(1-l)、式(1-m)および式(1-n)のいずれかで表される基であり、R~R11の少なくとも1つが、上記式(1-f)、式(1-i)、式(1-j)および式(1-k)のいずれかで表される基であることが好ましい。
As a preferred host according to the fourth aspect of the first component, in the above general formula (1), at least one of R 1 to R 3 is a heteroaryl (the above is a first substituent) (at least in the heteroaryl) One hydrogen atom may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl (or more, a second substituent), and at least one of R 4 to R 11 is an aryl (or more, a first substituent); A group) (at least one hydrogen in the aryl may be substituted with aryl, heteroaryl, alkyl or cycloalkyl (the above is a second substituent)).
Examples of the polycyclic aromatic compound serving as the host of the fourth embodiment include a compound (BO2-0220 / 0510S) and a compound (BO2-0220 / 0511S) described below.
In the polycyclic aromatic compound which is the host of the fourth embodiment, at least one of R 1 to R 3 is a compound represented by the above formula (1-a), formula (1-b), formula (1-c) or formula (1-c). d), a group represented by any of formulas (1-1), (1-m) and (1-n), wherein at least one of R 4 to R 11 is a group represented by the above formula (1-f) ), A group represented by any one of formulas (1-i), (1-j) and (1-k).
 なお、式(1)で表される多環芳香族化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されてもよい。ハロゲンは、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくはフッ素である。 Note that at least one hydrogen in the polycyclic aromatic compound represented by the formula (1) may be substituted with cyano, halogen, or deuterium. Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine.
 第1成分のホストとして、上記一般式(1)で表される多環芳香族化合物が、例えば、下記式のいずれかいずれかで表される化合物であることが好ましい。なお、各式中、任意の水素は炭素数1~5のアルキル(例えば、メチルまたはt-ブチル)または炭素数5~10のシクロアルキル(例えば、シクロペンチルまたはシクロヘキシルで置換されていてもよい。
Figure JPOXMLDOC01-appb-C000037
As the host of the first component, the polycyclic aromatic compound represented by the general formula (1) is preferably, for example, a compound represented by any one of the following formulas. In each formula, any hydrogen may be substituted with alkyl having 1 to 5 carbons (eg, methyl or t-butyl) or cycloalkyl having 5 to 10 carbons (eg, cyclopentyl or cyclohexyl).
Figure JPOXMLDOC01-appb-C000037
 以下、一般式(1)で表される多環芳香族化合物について、さらに具体的に説明する。
 一般式(1)で表される化合物を、その化合物番号と関連付けた場合、一般式(BO2-1)とも記載される。なお、以降、化合物の一般構造を表す一般式では表現の簡略化のため、R~R11の符号を省略する場合がある。一般式ではなく、具体的な化合物の構造を表す式ではそのような省略はしない。
Hereinafter, the polycyclic aromatic compound represented by the general formula (1) will be described more specifically.
When the compound represented by the general formula (1) is associated with the compound number, the compound is also described as a general formula (BO2-1). Hereinafter, in the general formulas representing the general structures of the compounds, the symbols of R 1 to R 11 may be omitted for simplification of the expression. Such abbreviations are not used in formulas that represent specific compound structures rather than general formulas.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 例えば、一般式(BO2-1)において、R~R11が水素である場合、一般式(BO2-0001)で表される。
Figure JPOXMLDOC01-appb-C000039
For example, in the general formula (BO2-1), when R 1 to R 11 are hydrogen, it is represented by the general formula (BO2-0001).
Figure JPOXMLDOC01-appb-C000039
 また、一般式(BO2-1)におけるR~R11が水素ではない置換基を有する場合、例えば、次の構造が挙げられる。立体的な混み具合の観点から、R、R、R、R、R、R、R、R10およびR11にはいかなる置換基も持つことができ、HOMOおよびLUMOの調節の観点から、HOMOを深くする際には、R、R、R、R、RおよびR11の少なくとも1つに電子供与性の置換基を導入することが好ましく、逆にHOMOを浅くする際には、R、R、R、R、RおよびR11の少なくとも1つに電子吸引性の置換基を導入することが好ましい。また、LUMOを深くする際には、R、RおよびR10の少なくとも1つに電子供与性の置換基を導入することが好ましく、逆にLUMOを浅くする際には、R、RおよびR10の少なくとも1つに電子吸引性の置換基を導入することが好ましい。 Further, when R 1 to R 11 in the general formula (BO2-1) have a substituent other than hydrogen, for example, the following structures are given. From the viewpoint of steric crowding, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 9 , R 10 and R 11 can have any substituent, and HOMO and LUMO From the viewpoint of control, when deepening the HOMO, it is preferable to introduce an electron-donating substituent into at least one of R 1 , R 3 , R 4 , R 6 , R 9 and R 11 , and conversely When making the HOMO shallow, it is preferable to introduce an electron-withdrawing substituent into at least one of R 1 , R 3 , R 4 , R 6 , R 9 and R 11 . When the LUMO is deepened, it is preferable to introduce an electron-donating substituent into at least one of R 2 , R 5 and R 10. Conversely, when the LUMO is shallowed, R 2 , R 5 5 and it is preferred to introduce an electron-withdrawing group in at least one of R 10.
 また、環a~cとホウ素原子および酸素原子により形成される芳香環に対して、R~R11の置換基がより大きな二面角を持っている方が凝集性およびホスト間またはホスト-ドーパント間の相互作用を減らすことができる。特に、本発明で用いている第1成分の化合物や、第2成分として好適な後述する化合物は平面性の高い化合物が多いために、凝集性および相互作用を減らすほうが、発光スペクトルのレッドシフトや太幅化を防ぎ、深い青色での発光と高い色純度とする観点では好ましい。なお、第1成分と第2成分とが混合された混合膜である発光層中において、本発明で用いている第1成分の化合物の二面角は測定が困難であるために、構造と二面角に関する議論は分子軌道計算を用いてよい。厳密な計算である必要はなく、例えば、MOPACなどを用いることができる。 In addition, the substituents of R 1 to R 11 having a larger dihedral angle with respect to the aromatic ring formed by rings a to c, a boron atom and an oxygen atom are more likely to have cohesiveness and inter-host or host- Interaction between dopants can be reduced. In particular, the compound of the first component used in the present invention and the compounds described below that are suitable as the second component have many compounds having high planarity. Therefore, it is better to reduce the cohesiveness and interaction to reduce the red shift of the emission spectrum and the like. This is preferable from the viewpoint of preventing the width from becoming wide, and achieving emission of deep blue light and high color purity. In the light emitting layer which is a mixed film in which the first component and the second component are mixed, it is difficult to measure the dihedral angle of the compound of the first component used in the present invention. Discussion about the plane angle may use molecular orbital calculation. The calculation does not need to be exact, and for example, MOPAC can be used.
 第1材料のホストである一般式(1)で表される多環芳香族化合物としては、具体的には次の構造式の化合物が挙げられる。なお、Meはメチル、tBuはブチルを示す。 多 Specific examples of the polycyclic aromatic compound represented by the general formula (1), which is a host of the first material, include compounds having the following structural formulas. Note that Me represents methyl and tBu represents butyl.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
 一般式(1)で表される多環芳香族化合物は、これらに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物(この高分子化合物を得るための前記モノマーは重合性置換基を有する)、もしくは当該高分子化合物をさらに架橋させた高分子架橋体(この高分子架橋体を得るための前記高分子化合物は架橋性置換基を有する)、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物(このペンダント型高分子化合物を得るための前記反応性化合物は反応性置換基を有する)、もしくは当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体(このペンダント型高分子架橋体を得るための前記ペンダント型高分子化合物は架橋性置換基を有する)としても、有機デバイス用材料、例えば、有機電界発光素子用材料、有機電界効果トランジスタ用材料または有機薄膜太陽電池用材料に用いることができる。 The polycyclic aromatic compound represented by the general formula (1) is a polymer compound obtained by polymerizing a reactive compound in which these are substituted with a reactive substituent as a monomer (the above-described monomer for obtaining the polymer compound). Has a polymerizable substituent), or a polymer crosslinked product obtained by further crosslinking the polymer compound (the polymer compound for obtaining the polymer crosslinked product has a crosslinkable substituent), or a main chain Pendant polymer compound obtained by reacting a reactive polymer with the reactive polymer (the reactive compound for obtaining the pendant polymeric compound has a reactive substituent), or the pendant polymeric compound Further, a crosslinked pendant polymer crosslinked product (the pendant polymer compound for obtaining the pendant polymer crosslinked product has a crosslinkable substituent) may also be used. Device for material, for example, can be used a material for an organic electroluminescence device, an organic field effect transistor materials or organic thin film solar cell material.
 上述した反応性置換基(前記重合性置換基、前記架橋性置換基、および、ペンダント型高分子を得るための反応性置換基を含み、以下、単に「反応性置換基」とも言う)としては、上記多環芳香族化合物を高分子量化できる置換基、そのようにして得られた高分子化合物をさらに架橋化できる置換基、また、主鎖型高分子にペンダント反応し得る置換基であれば特に限定されないが、以下の構造の置換基が好ましい。各構造式中の*は結合位置を示す。
Figure JPOXMLDOC01-appb-C000114
The above-mentioned reactive substituents (including the above-mentioned polymerizable substituents, the above-mentioned crosslinkable substituents, and the reactive substituents for obtaining the pendant-type polymer, hereinafter, also simply referred to as “reactive substituents”) are mentioned. A substituent capable of increasing the molecular weight of the polycyclic aromatic compound, a substituent capable of further crosslinking the polymer compound thus obtained, or a substituent capable of undergoing a pendant reaction with the main chain polymer. Although not particularly limited, substituents having the following structures are preferred. * In each structural formula shows a bonding position.
Figure JPOXMLDOC01-appb-C000114
 Lは、それぞれ独立して、単結合、>O、>S、>C=O、-O-C(=O)-、炭素数1~12のアルキレン、炭素数1~12のオキシアルキレンおよび炭素数1~12のポリオキシアルキレンである。上記置換基の中でも、式(XLS-1)、式(XLS-2)、式(XLS-3)、式(XLS-9)、式(XLS-10)または式(XLS-17)で表される基が好ましく、式(XLS-1)、式(XLS-3)または式(XLS-17)で表される基がより好ましい。 L is each independently a single bond,> O,> S,> C = O, -OC (= O)-, alkylene having 1 to 12 carbons, oxyalkylene having 1 to 12 carbons and carbon These are polyoxyalkylenes of formulas 1 to 12. Among the above substituents, it is represented by the formula (XLS-1), (XLS-2), (XLS-3), (XLS-9), (XLS-10) or (XLS-17). The group represented by the formula (XLS-1), (XLS-3) or (XLS-17) is more preferable.
 また、上記以外の反応性置換基としては、塩素、臭素またはヨウ素や、下記式(XLS-19)で表されるホウ素含有基であってもよい。構造式中の*は結合位置を示す。
Figure JPOXMLDOC01-appb-C000115
 上記式(XLS-19)中、R41およびR42は、それぞれ独立して、アルキルであり、R41およびR42は互いに結合して環を形成してもよい。また、R41およびR42の合計炭素数は2~10であることが好ましい。
Further, the reactive substituent other than the above may be chlorine, bromine or iodine, or a boron-containing group represented by the following formula (XLS-19). * In the structural formula indicates a bonding position.
Figure JPOXMLDOC01-appb-C000115
In the above formula (XLS-19), R 41 and R 42 are each independently an alkyl, and R 41 and R 42 may combine with each other to form a ring. Further, the total carbon number of R 41 and R 42 is preferably 2 to 10.
 このような高分子化合物、高分子架橋体、ペンダント型高分子化合物およびペンダント型高分子架橋体(以下、単に「高分子化合物および高分子架橋体」とも言う)の用途の詳細については後述する。 用途 The details of the use of such a polymer compound, a crosslinked polymer, a pendant polymer compound, and a crosslinked pendant polymer (hereinafter, also simply referred to as “polymer compound and crosslinked polymer”) will be described later.
1-2.一般式(1)で表される多環芳香族化合物の製造方法
 式(1)で表される化合物は、まずa~c環を結合基(-O-)で結合させることで中間体を製造し(第1反応)、その後に、a~c環を結合基(Bを含む基)で結合させることで最終生成物を製造することができる(第2反応)。第1反応では、例えば求核置換反応やウルマン反応といった一般的エーテル化反応が利用できる。また、第2反応では、タンデムヘテロフリーデルクラフツ反応(連続的な芳香族求電子置換反応、以下同様)が利用できる。第1および第2反応の詳細は、国際公開第2015/102118号公報に記載された説明を参考にすることができる。
1-2. Method for Producing Polycyclic Aromatic Compound Represented by General Formula (1) The compound represented by the formula (1) is prepared as an intermediate by first bonding the rings a to c with a bonding group (—O—). Then, the final product can be produced by bonding the rings a to c with a bonding group (group containing B) (second reaction). In the first reaction, for example, a general etherification reaction such as a nucleophilic substitution reaction or an Ullmann reaction can be used. In the second reaction, a tandem hetero Friedel-Crafts reaction (continuous aromatic electrophilic substitution reaction, the same applies hereinafter) can be used. The details of the first and second reactions can be referred to the description described in WO 2015/102118.
 第2反応は、下記スキーム(1)に示すように、a環、b環およびc環を結合するB(ホウ素)を導入する反応である。まず、2つのOの間の水素原子をn-ブチルリチウム、sec-ブチルリチウムまたはt-ブチルリチウム等でオルトメタル化する。次いで、三塩化ホウ素や三臭化ホウ素等を加え、リチウム-ホウ素の金属交換を行った後、N,N-ジイソプロピルエチルアミン等のブレンステッド塩基を加えることで、タンデムボラフリーデルクラフツ反応させ、目的物を得ることができる。第2反応においては反応を促進させるために三塩化アルミニウム等のルイス酸を加えてもよい。
Figure JPOXMLDOC01-appb-C000116
The second reaction is a reaction for introducing B (boron) bonding the a ring, the b ring and the c ring as shown in the following scheme (1). First, a hydrogen atom between two Os is ortho-metallized with n-butyllithium, sec-butyllithium, t-butyllithium, or the like. Then, boron trichloride, boron tribromide, or the like is added, and a metal exchange of lithium-boron is performed. Then, a Brönsted base such as N, N-diisopropylethylamine is added to cause a tandem bola-Friedel-Crafts reaction. You can get things. In the second reaction, a Lewis acid such as aluminum trichloride may be added to accelerate the reaction.
Figure JPOXMLDOC01-appb-C000116
 上記スキームにおいては、オルトメタル化により所望の位置へリチウムを導入したが、下記スキーム(2)のようにリチウムを導入したい位置に臭素原子等を導入し、ハロゲン-メタル交換によっても所望の位置へリチウムを導入することができる。
Figure JPOXMLDOC01-appb-C000117
In the above scheme, lithium was introduced to a desired position by orthometalation. However, as shown in the following scheme (2), a bromine atom or the like was introduced at a position where lithium was to be introduced, and the desired position was also obtained by halogen-metal exchange. Lithium can be introduced.
Figure JPOXMLDOC01-appb-C000117
 ハロゲンまたは重水素で置換された化合物を得るためには、これらの基をあらかじめ中間体に導入しておいてもよいし、第2反応の後にこれらの基を導入してもよい。
 上述の合成法を適宜選択し、使用する原料も適宜選択することで、所望の位置に置換基を有し、式(1)で表される化合物を合成することができる。
In order to obtain a compound substituted with halogen or deuterium, these groups may be introduced into an intermediate in advance, or these groups may be introduced after the second reaction.
The compound represented by the formula (1) having a substituent at a desired position and being represented by the formula (1) can be synthesized by appropriately selecting the above synthesis method and appropriately selecting the starting materials to be used.
1-3.第2成分
 本発明の有機EL素子は、発光層に第2成分として、ホウ素を含有する多環芳香族化合物をドーパントとして含む。
 本発明の有機EL素子の発光層に含まれる第2成分としては、遅延蛍光体であっても非遅延蛍光体であってもよく、遅延蛍光体が好ましく、熱活性化型遅延蛍光体がより好ましい。
1-3. Second Component The organic EL device of the present invention contains a boron-containing polycyclic aromatic compound as a dopant in the light emitting layer as a second component.
The second component contained in the light emitting layer of the organic EL device of the present invention may be a delayed fluorescent substance or a non-delayed fluorescent substance, a delayed fluorescent substance is preferred, and a thermally activated delayed fluorescent substance is more preferred. preferable.
 「熱活性化型遅延蛍光体」とは、熱エネルギーを吸収して励起三重項状態から励起一重項状態への逆項間交差を起こし、その励起一重項状態から放射失活して遅延蛍光を放射しうる化合物のことを意味する。ただし、「熱活性化型遅延蛍光」とは、励起三重項状態から励起一重項状態への励起過程で高次三重項を経るものも含む。
 例えば、Durham大学のMonkmanらによる論文(NATURE COMMUNICATIONS,7:13680,DOI: 10.1038/ncomms13680)、産業技術総合研究所の細貝らによる論文(Hosokai et al., Sci. Adv. 2017;3: e1603282)、京都大学の佐藤らによる論文(Scientific Reports,7:4820, DOI:10.1038/s41598-017-05007-7)および、同じく京都大学の佐藤らによる学会発表(日本化学会第98春季年会、発表番号:2I4-15、DABNAを発光分子として用いた有機ELにおける高効率発光の機構、京都大学大学院工学研究科)などが挙げられる。本発明では、対象化合物を含むサンプルについて、300Kで蛍光寿命を測定したとき、遅い蛍光成分が観測されたことをもって該対象化合物が「熱活性化型遅延蛍光体」であると判定することとする。ここで、遅い蛍光成分とは、蛍光寿命が0.1μsec以上であるもののことを言う。蛍光寿命の測定は、例えば蛍光寿命測定装置(浜松ホトニクス社製、C11367-01)を用いて行うことができる。
The term "thermally activated delayed phosphor" refers to the absorption of thermal energy, which causes an inverse intersystem crossing from an excited triplet state to an excited singlet state, and radiation inactivation from the excited singlet state to cause delayed fluorescence. It means a compound that can emit. However, the term “thermally activated delayed fluorescence” includes those that undergo higher-order triplets in the process of excitation from the excited triplet state to the excited singlet state.
For example, a paper by Monkman et al. Of Durham University (NATURE COMMUNICATIONS, 7: 13680, DOI: 10.1038 / ncomms13680), and a paper by Hosokai et al. Of the National Institute of Advanced Industrial Science and Technology (Hosokai et al., Sci. Adv. 2017; 3: e1603282) , Sato et al. Of Kyoto University (Scientific Reports, 7: 4820, DOI: 10.1038 / s41598-017-05007-7), and Sato et al. Of Kyoto University also made a presentation at the 98th Annual Meeting of the Chemical Society of Japan. No .: 2I4-15, mechanism of highly efficient luminescence in organic EL using DABNA as a luminescent molecule, Graduate School of Engineering, Kyoto University). In the present invention, when the fluorescence lifetime of a sample containing a target compound is measured at 300 K, it is determined that the target compound is a “heat-activated delayed fluorescent substance” when a slow fluorescent component is observed. . Here, the slow fluorescent component refers to a component having a fluorescence lifetime of 0.1 μsec or more. The measurement of the fluorescence lifetime can be performed using, for example, a fluorescence lifetime measuring device (C11367-01, manufactured by Hamamatsu Photonics KK).
 本発明の第2成分であるホウ素原子を含有する化合物は、分子軌道計算より、励起三重項状態から励起一重項状態への順方向および逆方向の項間交差に関与する励起三重項エネルギーが、リン光スペクトルにより観測される励起三重項エネルギーではなく、より高次の励起三重項エネルギーである可能性が指摘されている(日本化学会第98春季年会、発表番号:2I4-15、DABNAを発光分子として用いた有機ELにおける高効率発光の機構、京都大学大学院工学研究科の佐藤徹教授による発表)。発表によれば、ホウ素原子を分子中に有するDABNA2での逆項間交差は高次三重項軌道を用いるFvHT(Fluorescence via Higher Triplet)機構であり、高次三重項軌道から基底状態への遷移が抑えられているために高次三重項軌道より励起一重項軌道への遷移が起きることが示唆されている。 The compound containing a boron atom, which is the second component of the present invention, has an excited triplet energy involved in forward and reverse intersystem crossings from an excited triplet state to an excited singlet state by molecular orbital calculation, It has been pointed out that it may be higher order triplet energy than the excited triplet energy observed by the phosphorescence spectrum (The 98th Annual Meeting of the Chemical Society of Japan, Publication No .: 2I4-15, DABNA Mechanism of high-efficiency light emission in organic EL devices used as light-emitting molecules, presented by Professor Toru Sato of Kyoto University Graduate School of Engineering). According to the presentation, the inverse intersystem crossing in DABNA2 having a boron atom in the molecule is an FvHT (Fluorescence via Higher Triplet) mechanism using higher triplet orbitals, and the transition from higher triplet orbitals to the ground state is performed. It is suggested that the transition from higher-order triplet orbit to excited singlet orbit occurs because of the suppression.
 第2成分の蛍光スペクトルの短波長側のピークトップより求められる励起一重項エネルギー準位をE(2,S,PT)、第2成分の燐光スペクトルの短波長側のピークトップより求められる励起三重項エネルギー準位をE(2,T,PT)としたとき、これらから求められる一重項三重項エネルギー差(ΔE(2,ST,PT))が以下の関係にあることが好ましい。
ΔE(2,ST,PT)=E(2,S,PT)-E(2,T,PT)≦0.20eV
 つまり、第2成分においては、TADF活性の指標としてΔE(ST)の大きさを用いる。ΔE(ST)が小さければ小さいほどTADF活性を示すには有利になる。
 ここで、ΔE(2,ST,PT)は、好ましくは0.20eV以下であり、より好ましくは0.15eV以下であり、さらに好ましくは0.10eV以下である。
The excitation singlet energy level determined from the short wavelength side peak top of the fluorescence spectrum of the second component is E (2, S, PT), and the excitation triplet energy determined from the short wavelength side peak top of the phosphorescence spectrum of the second component. When the term energy level is E (2, T, PT), it is preferable that the singlet / triplet energy difference (ΔE (2, ST, PT)) obtained therefrom has the following relationship.
ΔE (2, ST, PT) = E (2, S, PT) −E (2, T, PT) ≦ 0.20 eV
That is, in the second component, the magnitude of ΔE (ST) is used as an index of TADF activity. The smaller the ΔE (ST), the more advantageous it is for showing TADF activity.
Here, ΔE (2, ST, PT) is preferably 0.20 eV or less, more preferably 0.15 eV or less, and further preferably 0.10 eV or less.
逆項間交差速度
 逆項間交差速度は、励起三重項から励起一重項への逆項間交差の速度を示す。第2成分の逆項間交差速度は、過渡蛍光分光測定により、Nat. Commun. 2015, 6, 8476.またはOrganic Electronics 2013, 14, 2721-2726に記載の方法を用いて算出することができ、具体的には、アシスティングドーパントの逆項間交差速度は、好ましくは10-1以上であり、より好ましくは10-1以上である。
Inverse intersystem crossing speed The inverse intersystem crossing speed indicates the speed of the inverse intersystem crossing from the excited triplet to the excited singlet. The inverse intersystem crossing velocity of the second component can be calculated by transient fluorescence spectrometry using the method described in Nat. Commun. 2015, 6, 8476. or Organic Electronics 2013, 14, 2721-2726, Specifically, the inverse intersystem crossing speed of the assisting dopant is preferably 10 5 s −1 or more, more preferably 10 6 s −1 or more.
発光速度
 発光速度は、TADF過程を経ないで励起一重項から基底状態へ蛍光発光を経て遷移する速度を示す。第2成分の発光速度は、逆項間交差速度と同様にNat. Commun. 2015, 6, 8476.またはOrganic Electronics 2013, 14, 2721-2726に記載の方法を用いて算出することができ、具体的には、第2成分の逆項間交差速度は、好ましくは10-1以上であり、より好ましくは、10-1以上である。
Luminescence speed Luminescence speed indicates the speed of transition from the excited singlet to the ground state via fluorescence emission without going through the TADF process. The emission speed of the second component can be calculated using the method described in Nat. Commun. 2015, 6, 8476. or Organic Electronics 2013, 14, 2721-2726, similarly to the inverse intersystem crossing speed. Specifically, the inverse intersystem crossing velocity of the second component is preferably 10 7 s −1 or more, and more preferably 10 8 s −1 or more.
 ドーパントである多環芳香族化合物としては、式(1)で表される以外の化合物であればよいが、以下、好適な多環芳香族化合物について詳述する。 多 As the polycyclic aromatic compound serving as the dopant, any compound other than the compound represented by the formula (1) may be used. Hereinafter, suitable polycyclic aromatic compounds will be described in detail.
1-3-1.一般式(2)で表される多環芳香族化合物およびその多量体
 第2成分であるドーパントの一態様としては、下記一般式(2)で表される多環芳香族化合物またはその多量体が好ましい。
Figure JPOXMLDOC01-appb-C000118
1-3-1. As one mode of the polycyclic aromatic compound represented by the general formula (2) and a multimer thereof as a second component, a polycyclic aromatic compound represented by the following general formula (2) or a multimer thereof is used. preferable.
Figure JPOXMLDOC01-appb-C000118
 上記式(3)において、R~R11(以下、「R等」ともいう)は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、シアノまたはハロゲン(以上、第1置換基)であり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい。
 また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)で置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい。
 Yは、B(ホウ素)であり、XおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは-C(-R)-であり(ただし、XおよびXは同時に>Oであることはない)、前記-C(-R)-のRは炭素数1~6のアルキル、炭素数3~14のシクロアルキルまたは炭素数6~12のアリールであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり、また、当該>N-RのRは-O-、-S-、-C(-R’)-、単結合または縮合により前記a環、b環およびc環の少なくとも1つと結合していてもよい(なお、前記「-C(-R’)-」のR’は水素、炭素数1~5のアルキルまたは炭素数5~10のシクロアルキルである)。
 一般式(2)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。
In the above formula (3), R 1 to R 11 (hereinafter also referred to as “R 1 etc.”) each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, Diarylboryl (the two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen (the first substituent), and at least one of these One hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl (the above, the second substituent).
Further, adjacent groups among R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, the b ring or the c ring, and at least one hydrogen atom in the formed ring Is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryl It may be substituted by oxy (the first substituent), and at least one hydrogen in these may be substituted by aryl, heteroaryl, alkyl or cycloalkyl (the second substituent).
Y 1 is B (boron), and X 1 and X 2 are each independently>O,>NR,>S,> Se or —C (—R) 2 — (provided that X 1 and X 2 are not simultaneously> O), wherein R of —C (—R) 2 — is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or 6 to 12 carbons R of the formula> NR is an aryl having 6 to 12 carbons, a heteroaryl having 2 to 15 carbons, an alkyl having 1 to 6 carbons or a cycloalkyl having 3 to 6 carbons; Wherein R in the> NR is —O—, —S—, —C (—R ′) 2 —, and may be bonded to at least one of the a ring, b ring and c ring by a single bond or condensation. Good (R ′ of the above “—C (—R ′) 2 —” is hydrogen, alkyl having 1 to 5 carbons or 5 to 5 carbons) 10 cycloalkyl).
At least one hydrogen in the compound represented by the general formula (2) may be substituted with cyano, halogen, or deuterium.
 R等の第1置換基としての「アリール」、「ヘテロアリール」、「ジアリールアミノ」、「ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)」、「アルキル」、「シクロアルキル」、「アルコキシ」および「アリールオキシ」、ならびに、R等の第2置換基としての「アリール」、「ヘテロアリール」、「アルキル」および「シクロアルキル」は、上述した式(1)における第1置換基としてのこれらの基の説明を引用することができる。
 また、R等の第1置換基としてのジヘテロアリールアミノにおける「ヘテロアリール」、アリールヘテロアリールアミノにおける「ヘテロアリール」は、上述した式(1)における第1置換基としてのヘテロアリールの説明を引用することができ、アリールヘテロアリールアミノにおける「アリール」は、上述した式(1)における第1置換基としてのアリールの説明を引用することができる。
 R等の第1置換基である「ハロゲン」は、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくはフッ素である。
“Aryl”, “heteroaryl”, “diarylamino”, “diarylboryl (two aryls may be bonded via a single bond or a linking group)” as a first substituent such as R 1 , “ “Alkyl”, “cycloalkyl”, “alkoxy” and “aryloxy”, and “aryl”, “heteroaryl”, “alkyl” and “cycloalkyl” as the second substituent such as R 1 are described above. The description of these groups as the first substituent in the formula (1) can be cited.
Further, “heteroaryl” in diheteroarylamino as the first substituent such as R 1 and “heteroaryl” in arylheteroarylamino are the same as those of heteroaryl as the first substituent in the above formula (1). For the “aryl” in the arylheteroarylamino, the description of aryl as the first substituent in the above formula (1) can be cited.
“Halogen” which is the first substituent such as R 1 is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine.
 具体的には、R等(第1置換基)の構造の立体障害性、電子供与性および電子吸引性により発光波長を調整することができ、R~R11の少なくとも1つは、好ましくは以下の式で表される基であり、より好ましくは、メチル、t-ブチル、t-アミル、t-オクチル、フェニル、o-トリル、p-トリル、2,4-キシリル、2,5-キシリル、2,6-キシリル、2,4,6-メシチル、ジフェニルアミノ、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、カルバゾリル、3,6-ジメチルカルバゾリル、3,6-ジ-t-ブチルカルバゾリルおよびフェノキシであり、さらに好ましくは、メチル、t-ブチル、t-アミル、t-オクチル、フェニル、o-トリル、2,6-キシリル、2,4,6-メシチル、ジフェニルアミノ、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、カルバゾリル、3,6-ジメチルカルバゾリルおよび3,6-ジ-t-ブチルカルバゾリルである。また、合成の容易さの観点からは、立体障害が大きい方が選択的な合成のために好ましく、具体的には、t-ブチル、t-アミル、t-オクチル、o-トリル、p-トリル、2,4-キシリル、2,5-キシリル、2,6-キシリル、2,4,6-メシチル、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、3,6-ジメチルカルバゾリルおよび3,6-ジ-t-ブチルカルバゾリルが好ましい。 Specifically, the emission wavelength can be adjusted by the steric hindrance, electron-donating property, and electron-withdrawing property of the structure of R 1 or the like (first substituent), and at least one of R 1 to R 11 is preferably Is a group represented by the following formula, more preferably, methyl, t-butyl, t-amyl, t-octyl, phenyl, o-tolyl, p-tolyl, 2,4-xylyl, 2,5- Xylyl, 2,6-xylyl, 2,4,6-mesityl, diphenylamino, di-p-tolylamino, bis (p- (t-butyl) phenyl) amino, carbazolyl, 3,6-dimethylcarbazolyl, , 6-di-t-butylcarbazolyl and phenoxy, more preferably methyl, t-butyl, t-amyl, t-octyl, phenyl, o-tolyl, 2,6-xylyl, 2,4,4 6-mesityl , Diphenylamino, di-p-tolylamino, bis (p- (t-butyl) phenyl) amino, carbazolyl, 3,6-dimethylcarbazolyl and 3,6-di-t-butylcarbazolyl. In addition, from the viewpoint of ease of synthesis, it is preferable that steric hindrance is large for selective synthesis. Specifically, t-butyl, t-amyl, t-octyl, o-tolyl, p-tolyl 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 2,4,6-mesityl, di-p-tolylamino, bis (p- (t-butyl) phenyl) amino, 3,6- Dimethylcarbazolyl and 3,6-di-t-butylcarbazolyl are preferred.
 下記構造式において、「Me」はメチル、「tBu」はt-ブチル、「tAm」はt-アミル、「tOct」はt-オクチルを表す。
 
In the following structural formula, “Me” represents methyl, “tBu” represents t-butyl, “tAm” represents t-amyl, and “tOct” represents t-octyl.
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
 一般式(2)におけるR~R11のうちの隣接する基同士は結合してa環、b環およびc環の少なくとも1つと共にアリール環またはヘテロアリール環を形成していてもよく、一般式(2)で表される多環芳香族化合物は、a環、b環およびc環における置換基の相互の結合形態によって、下記一般式(2-L1)および一般式(2-L2)に示すように、化合物を構成する環構造が変化する。各式中の符号の定義は一般式(2)の定義と同じである。
Figure JPOXMLDOC01-appb-C000124
Adjacent groups among R 1 to R 11 in the general formula (2) may be bonded to each other to form an aryl ring or a heteroaryl ring together with at least one of a ring, b ring and c ring. The polycyclic aromatic compound represented by the formula (2) has the following general formulas (2-L1) and (2-L2) depending on the mutual bonding form of the substituents on the ring a, ring b and ring c. As shown, the ring structure of the compound changes. The definition of the symbols in each formula is the same as the definition of general formula (2).
Figure JPOXMLDOC01-appb-C000124
 式(2-L1)および式(2-L2)中のa’環、b’環およびc’環は、置換基R~R、置換基R~R11および置換基R~Rのうちの隣接する基同士が結合して、それぞれa環、b環およびc環と共に形成したアリール環またはヘテロアリール環を示す(a環、b環またはc環に他の環構造が縮合してできた縮合環ともいえる)。なお、式では示してはいないが、a環、b環およびc環の全てがa’環、b’環およびc’環に変化した化合物もある。また、式(2-L1)および式(2-L2)から分かるように、例えば、a環のRとc環のR、b環のR11とa環のRなどは「隣接する基同士」には該当せず、これらが結合することはない。すなわち、「隣接する基」とは同一環上で隣接する基を意味する。また、b環のRおよびc環のRは隣接する基と結合することはなく、形成された上記アリール環またはヘテロアリール環の一部を構成することはない。 In formulas (2-L1) and (2-L2), the a ′ ring, b ′ ring and c ′ ring represent a substituent R 1 to R 3 , a substituent R 8 to R 11 and a substituent R 4 to R 7 represent an aryl ring or a heteroaryl ring formed together with the a-ring, b-ring and c-ring by bonding adjacent groups (a ring, b-ring or c-ring is condensed with another ring structure) Can also be called a fused ring). Although not shown in the formula, there are compounds in which all of the a ring, b ring and c ring are changed to a ′ ring, b ′ ring and c ′ ring. Further, as can be seen from the formulas (2-L1) and (2-L2), for example, R 3 of the a ring and R 4 of the c ring, R 11 of the b ring and R 1 of the a ring are “adjacent” They do not correspond to "groups", and they do not bond. That is, “adjacent groups” means groups that are adjacent on the same ring. In addition, R 8 of ring b and R 7 of ring c do not bond to an adjacent group, and do not constitute a part of the formed aryl ring or heteroaryl ring.
 形成された「アリール環」(a’環、b’環またはc’環)または「ヘテロアリール環」(a’環、b’環またはc’環)は、上述した第1置換基としてのアリールまたはヘテロアリールの、無価の環である。ただし、a’環(b’環またはc’環)の一部を構成するa環(またはb環、c環)がすでに炭素数6のベンゼン環であるため、「アリール環」については当該ベンゼン環に5員環が縮合した縮合環の合計炭素数9が下限の炭素数となり、「ヘテロアリール環」については当該ベンゼン環に5員環が縮合した縮合環の合計炭素数6が下限の炭素数となる。 The formed “aryl ring” (a ′ ring, b ′ ring or c ′ ring) or “heteroaryl ring” (a ′ ring, b ′ ring or c ′ ring) is an aryl as the first substituent described above. Or a heteroaryl, non-valent ring. However, since the a ring (or b ring or c ring) constituting a part of the a ′ ring (b ′ ring or c ′ ring) is already a benzene ring having 6 carbon atoms, the “aryl ring” is The total number of carbon atoms of the condensed ring obtained by condensing a 5-membered ring with the 5-membered ring is the lower limit of the number of carbon atoms. It becomes a number.
 式(2-L1)や式(2-L2)で表される化合物は、例えばa環(またはb環またはc環)であるベンゼン環に対して例えばベンゼン環、インドール環、ピロール環、ベンゾフラン環またはベンゾチオフェン環が縮合して形成されるa’環(またはb’環またはc’環)を有する化合物であり、形成された縮合環a’(または縮合環b’または縮合環c’)はそれぞれナフタレン環、カルバゾール環、インドール環、ジベンゾフラン環またはジベンゾチオフェン環である。 The compound represented by the formula (2-L1) or the formula (2-L2) is, for example, a benzene ring, an indole ring, a pyrrole ring, a benzofuran ring with respect to a benzene ring which is a ring (or b ring or c ring). Or a compound having an a ′ ring (or b ′ ring or c ′ ring) formed by condensing a benzothiophene ring, and the formed condensed ring a ′ (or condensed ring b ′ or condensed ring c ′) is They are a naphthalene ring, a carbazole ring, an indole ring, a dibenzofuran ring or a dibenzothiophene ring, respectively.
 形成されたアリール環またはヘテロアリール環に置換する、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)、ならびに、当該第1置換基にさらに置換し得るアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)としては、上述したR等(第1置換基)および上述した式(1)における第1置換基としてのアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシの説明を引用できる。 Aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl, which is substituted on the formed aryl or heteroaryl ring (the two aryls are linked via a single bond or a linking group; ), Alkyl, cycloalkyl, alkoxy or aryloxy (the first substituent), and aryl, heteroaryl, alkyl or cycloalkyl (the second substituent) which can be further substituted on the first substituent. ) Includes R 1 and the like (the first substituent) described above and aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, and diarylboryl as the first substituent in the formula (1). Two aryls have a single bond or a linking group ), Alkyl, cycloalkyl, alkoxy or aryloxy.
 一般式(2)におけるXおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは-C(-R)-であり、ただし、XおよびXは同時に>Oであることはないという点で、一般式(1)で表される多環芳香族化合物とは区別される。
 XおよびXは、共に>N-R、>Oおよび>N-R、または>N-Rおよび>Oが好ましく、共に>Oまたは共に>N-Rがより好ましく、共に>N-Rがさらに好ましい。
X 1 and X 2 in the general formula (2) are each independently>O,>NR,>S,> Se or —C (—R) 2 —, provided that X 1 and X 2 Is different from the polycyclic aromatic compound represented by the general formula (1) in that it is not simultaneously> O.
X 1 and X 2 are preferably both>NR,> O and> NR, or> NR and> O, more preferably both> O or both> NR, and both> NR Is more preferred.
 なお、前記-C(-R)-のRは炭素数1~6のアルキル、炭素数3~14のシクロアルキルまたは炭素数6~12のアリールであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであるが、これらの置換基としては、上述した式(1)における第1置換基としてのアリール、ヘテロアリール、アルキルまたはシクロアルキルの説明を引用できる。 The R of —C (—R) 2 — is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or aryl having 6 to 12 carbons, and R of> NR is carbon Aryl having 6 to 12 carbon atoms, heteroaryl having 2 to 15 carbon atoms, alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms, and these substituents are represented by the above-mentioned formula (1). Reference may be made to the description of aryl, heteroaryl, alkyl or cycloalkyl as first substituent.
 また、前記>N-RのRは-O-、-S-、-C(-R’)-、単結合または縮合により前記a環、b環およびc環の少なくとも1つと結合していてもよい。なお、前記「-C(-R)-」のRは水素、炭素数1~5のアルキルまたは炭素数5~10のシクロアルキルである。
 この規定は、下記式(2-L3)で表される、Nが縮合環b’および縮合環c’に取り込まれた環構造を有する化合物で表現できる。すなわち、例えば一般式(2)におけるb環(またはc環)であるベンゼン環に対してNを取り込むようにして他の環が縮合して形成されるb’環(またはc’環)を有する化合物である。形成された縮合環b’(または縮合環c’)は例えばフェノキサジン環、フェノチアジン環またはアクリジン環である。
 また、上記規定は、下記式(2-L4)や式(2-L5)で表される、Nが縮合環a’に取り込まれた環構造を有する化合物でも表現できる。すなわち、例えば一般式(2)におけるa環であるベンゼン環に対してNを取り込むようにして他の環が縮合して形成されるa’環を有する化合物である。形成された縮合環a’は例えばフェノキサジン環、フェノチアジン環またはアクリジン環である。なお、式(2-L3)~式(2-L5)における各符号は式(2)における定義と同じである。
R in the above-mentioned —N—R is —O—, —S—, —C (—R ′) 2 —, and is bonded to at least one of the a ring, b ring and c ring by a single bond or condensation. Is also good. Note that R in the above-mentioned “—C (—R) 2 —” is hydrogen, alkyl having 1 to 5 carbons, or cycloalkyl having 5 to 10 carbons.
This rule can be represented by a compound represented by the following formula (2-L3) and having a ring structure in which N is incorporated into a condensed ring b ′ and a condensed ring c ′. That is, for example, it has a b ′ ring (or c ′ ring) formed by condensing another ring so as to incorporate N into the benzene ring which is the b ring (or c ring) in the general formula (2). Compound. The formed condensed ring b ′ (or condensed ring c ′) is, for example, a phenoxazine ring, a phenothiazine ring or an acridine ring.
Further, the above definition can also be represented by a compound represented by the following formula (2-L4) or (2-L5) and having a ring structure in which N is incorporated into a condensed ring a ′. That is, for example, it is a compound having an a ′ ring formed by condensing another ring such that N is incorporated into the benzene ring which is the a ring in the general formula (2). The formed condensed ring a ′ is, for example, a phenoxazine ring, a phenothiazine ring or an acridine ring. Note that each symbol in the equations (2-L3) to (2-L5) is the same as the definition in the equation (2).
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125
 一般式(2)で表される単位構造を複数有する多環芳香族化合物の多量体としては、2~6量体が好ましく、2~3量体がより好ましく、2量体がさらに好ましい。多量体は、1つの化合物の中に、上記単位構造を複数有する形態であればよく、例えば、上記単位構造が単結合、炭素数1~3のアルキレン基(例えばメチレン基)、フェニレン基、ナフチレン基などの連結基で複数結合した形態(連結型多量体)に加えて、上記単位構造に含まれる任意の環(a環、b環またはc環)を複数の単位構造で共有するようにして結合した形態(環共有型多量体)であってもよく、また、上記単位構造に含まれる任意の環(a環、b環またはc環)同士が縮合するようにして結合した形態(環縮合型多量体)であってもよいが、環共有型多量体および環縮合型多量体が好ましく、環共有型多量体がより好ましい。
 なお、多量体が複数有する一般式(1)で表される単位構造において、Rは水素であることが好ましい。
As a multimer of the polycyclic aromatic compound having a plurality of unit structures represented by the general formula (2), a dimer to a hexamer is preferable, a dimer to a trimer is more preferable, and a dimer is more preferable. The multimer may be a form having a plurality of the above-mentioned unit structures in one compound. For example, the above-mentioned unit structure may be a single bond, an alkylene group having 1 to 3 carbon atoms (eg, a methylene group), a phenylene group, a naphthylene. In addition to the form in which a plurality of groups are linked by a linking group such as a group (linked type multimer), an arbitrary ring (a ring, b ring or c ring) contained in the above unit structure is shared by a plurality of unit structures. It may be in a bonded form (ring-coupling type multimer), or in a form in which arbitrary rings (ring a, ring b or ring c) contained in the above unit structure are fused to each other (ring fused) A multimer), but a ring-sharing multimer and a ring-fused multimer are preferable, and a ring-sharing multimer is more preferable.
In addition, in the unit structure represented by the general formula (1) that a plurality of multimers have, R 2 is preferably hydrogen.
 このような多量体としては、例えば、下記一般式(2-4)、式(2-4-1)、式(2-4-2)、式(2-5-1)~式(2-5-4)または式(2-6)で表される多量体が挙げられる。
 下記式(2-4)で表される多量体は、一般式(2)で説明すれば、a環であるベンゼン環を共有するようにして、複数(下記構造式では2つ)の一般式(2)で表される単位構造を1つの化合物中に有する多量体化合物(環共有型多量体)である。
 また、下記式(2-4-1)で表される多量体は、一般式(2)で説明すれば、a環であるベンゼン環を共有するようにして、複数(下記構造式では3つ)の一般式(2)で表される単位構造を1つの化合物中に有する多量体化合物(環共有型多量体)である。
 また、下記式(2-4-2)で表される多量体は、一般式(2)で説明すれば、a環であるベンゼン環を共有するようにして、複数(下記構造式では6つ)の一般式(2)で表される単位構造を1つの化合物中に有する多量体化合物(環共有型多量体)である。
 また、下記式(2-5-1)~式(2-5-4)で表される多量体化合物は、一般式(2)で説明すれば、c環であるベンゼン環を共有するようにして、複数の一般式(2)で表される単位構造を1つの化合物中に有する多量体化合物(環共有型多量体)である。
 また、下記式(2-6)で表される多量体は、一般式(2)で説明すれば、例えばある単位構造のb環(またはa環、c環)であるベンゼン環と、ある単位構造のb環(またはa環、c環)であるベンゼン環とが縮合するようにして、複数の一般式(2)で表される単位構造を1つの化合物中に有する多量体化合物(環縮合型多量体)である。
 なお、下記各式におけるRは水素であることが好ましい。
Examples of such multimers include the following general formulas (2-4), (2-4-1), (2-4-2), (2-5-1) to (2-5-1) 5-4) or a multimer represented by the formula (2-6).
The multimer represented by the following formula (2-4), as described in the general formula (2), shares a plurality of (two in the following structural formulas) with the benzene ring which is the a ring in common. It is a multimeric compound (ring-sharing multimer) having the unit structure represented by (2) in one compound.
In addition, the multimer represented by the following formula (2-4-1) may have a plurality (3 in the following structural formula) by sharing the benzene ring which is the a ring, as described in the general formula (2). ) Is a multimeric compound (ring-sharing type multimer) having the unit structure represented by the general formula (2) in one compound.
In addition, the multimer represented by the following formula (2-4-2) may have a plurality (6 in the following structural formula) by sharing the benzene ring which is the a ring, as described in the general formula (2). ) Is a multimeric compound (ring-sharing type multimer) having the unit structure represented by the general formula (2) in one compound.
In addition, the multimeric compounds represented by the following formulas (2-5-1) to (2-5-4) may share a benzene ring, which is the c-ring, according to the general formula (2). Thus, it is a multimeric compound (ring-sharing multimer) having a plurality of unit structures represented by the general formula (2) in one compound.
In addition, the multimer represented by the following formula (2-6) may be, for example, a benzene ring which is a ring (or a ring or c ring) having a certain unit structure and a certain unit A multimeric compound (ring-fused) having a plurality of unit structures represented by the general formula (2) in one compound by condensing with a benzene ring which is a ring b (or a ring or c ring) of the structure Type multimer).
Preferably, R 2 in each of the following formulas is hydrogen.
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128
 多量体は、式(2-4)、式(2-4-1)または式(2-4-2)で表現される多量化形態と、式(2-5-1)~式(2-5-4)のいずれかまたは式(2-6)で表現される多量化形態とが組み合わさった多量体であってもよく、式(2-5-1)~式(2-5-4)のいずれかで表現される多量化形態と、式(2-6)で表現される多量化形態とが組み合わさった多量体であってもよく、式(2-4)、式(2-4-1)または式(2-4-2)で表現される多量化形態と式(2-5-1)~式(2-5-4)のいずれかで表現される多量化形態と式(2-6)で表現される多量化形態とが組み合わさった多量体であってもよい。 The multimer includes a multimerized form represented by the formula (2-4), the formula (2-4-1) or the formula (2-4-2), and the formula (2-5-1) to the formula (2-5-1) 5-4) or a multimer in combination with the multimerized form represented by formula (2-6), and may be represented by formulas (2-5-1) to (2-5-4). ) May be combined with the multimeric form represented by formula (2-6) and the multimeric form represented by formula (2-6). 4-1) or the multimeric form represented by the formula (2-4-2) and the multimeric form represented by any of the formulas (2-5-1) to (2-5-4) and the formula The multimer may be a combination of the multimerized form represented by (2-6).
 また、一般式(2)で表される多環芳香族化合物およびその多量体の化学構造中の少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。例えば、一般式(2)においては、a環、b環、c環、これらの環への置換基、ならびに、XおよびXが>N-Rまたは-C(-R)-であるときのRにおける少なくとも1つの水素がシアノ、ハロゲンまたは重水素で置換されうる。ハロゲンは、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくはフッ素である。 Further, at least one hydrogen in the chemical structure of the polycyclic aromatic compound represented by the general formula (2) and a multimer thereof may be substituted with cyano, halogen, or deuterium. For example, in the general formula (2), ring a, ring b, ring c, substituents on these rings, and X 1 and X 2 are> NR or —C (—R) 2 —. At least one hydrogen at the time R may be replaced by cyano, halogen or deuterium. Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine.
 一般式(2)で表される多環芳香族化合物およびその多量体は、国際公開第2015/102118号公報に記載された製造方法に従って製造することができる。また、上記式(1)で表される多環芳香族化合物の製造方法を参考にして、第1反応においてエーテル化反応ではなく、ブッフバルト-ハートウィッグ反応などの一般的アミノ化反応を用いて製造することができる。 多 The polycyclic aromatic compound represented by the general formula (2) and a multimer thereof can be produced according to the production method described in International Publication WO 2015/102118. Further, referring to the method for producing the polycyclic aromatic compound represented by the above formula (1), the first reaction is not carried out by an etherification reaction but by a general amination reaction such as a Buchwald-Hartwig reaction. can do.
1-3-2.一般式(2)で表される多環芳香族化合物およびその多量体の好適な態様例
 第2成分であるドーパントの一態様として、上記一般式(2)において、Rは、ハロゲン、炭素数1~6のアルキル、炭素数3~14のシクロアルキル、炭素数6~10のアリールまたは炭素数2~10のヘテロアリールであり、Rは、水素、炭素数1~6のアルキル、炭素数3~14のシクロアルキル、炭素数6~10のアリールまたは炭素数2~10のヘテロアリールである、多環芳香族化合物およびその多量体が好ましい。
1-3-2. Preferred Embodiments of Polycyclic Aromatic Compounds Represented by Formula (2) and Multimers Thereof As one embodiment of the dopant which is the second component, in the above formula (2), R 8 is halogen, carbon number alkyl of 1-6, cycloalkyl having 3 to 14 carbon atoms, heteroaryl of aryl or C 2 -C 10 6 to 10 carbon atoms, R 7 is hydrogen, number alkyl of 1 to 6, carbon atoms carbon atoms Polycyclic aromatic compounds and their multimers, which are 3 to 14 cycloalkyl, 6 to 10 carbon aryl or 2 to 10 carbon heteroaryl, are preferred.
 Rのハロゲンとしては、フッ素、塩素、臭素またはヨウ素であり、重原子効果によるスピン軌道相互作用の増大の観点からは、分子量の大きなハロゲンが好ましく、塩素、臭素およびヨウ素が好ましく、塩素および臭素がより好ましく、ヨウ素がさらに好ましい。電気陰性度の高い元素の導入によりHOMO/LUMO軌道を深くする観点からは、電気陰性度の大きな元素が好ましく、フッ素、塩素および臭素が好ましく、フッ素および塩素がより好ましく、フッ素がさらに好ましい。 The halogen of R 8 is fluorine, chlorine, bromine or iodine. From the viewpoint of increasing spin-orbit interaction due to the heavy atom effect, halogen having a large molecular weight is preferable, chlorine, bromine and iodine are preferable, and chlorine and bromine are preferable. Is more preferable, and iodine is still more preferable. From the viewpoint of deepening the HOMO / LUMO orbit by introducing an element having a high electronegativity, an element having a high electronegativity is preferable, fluorine, chlorine and bromine are preferable, fluorine and chlorine are more preferable, and fluorine is further preferable.
 RおよびRの炭素数1~6のアルキルは、直鎖および分岐鎖のいずれでもよく、炭素数1~5のアルキル(炭素数3~5の分岐鎖アルキル)が好ましく、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)がより好ましく、具体的には、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチルなどであり、メチルまたはt-ブチルがより好ましく、メチルがさらに好ましい。
 RおよびRの炭素数3~14のシクロアルキルは、炭素数3~12のシクロアルキルが好ましく、炭素数5~10のシクロアルキルがより好ましく、具体的には、シクロペンチル、シクロヘキシル、ノルボルネニルまたはアダマンチルが好ましく、シクロヘキシルがより好ましい。
 RおよびRの炭素数6~10のアリールは、フェニルまたはナフチルが好ましく、フェニルがより好ましい。
 RおよびRの炭素数2~10のヘテロアリールは、一般式(1)の第1置換基の「ヘテロアリール」と同様のものが挙げられ、6員環または5員環の一環構造の基が好ましい。
The alkyl having 1 to 6 carbon atoms for R 8 and R 7 may be linear or branched, and is preferably an alkyl having 1 to 5 carbons (a branched alkyl having 3 to 5 carbons), and preferably 1 to 6 carbons. Alkyl (branched alkyl having 3 to 4 carbon atoms) is more preferable, specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl , Isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, etc., and methyl or t-butyl is more preferable. Is more preferred.
The cycloalkyl having 3 to 14 carbon atoms of R 8 and R 7 is preferably a cycloalkyl having 3 to 12 carbon atoms, more preferably a cycloalkyl having 5 to 10 carbon atoms, specifically, cyclopentyl, cyclohexyl, norbornenyl or Adamantyl is preferred, and cyclohexyl is more preferred.
The aryl having 6 to 10 carbon atoms for R 8 and R 7 is preferably phenyl or naphthyl, and more preferably phenyl.
The heteroaryl having 2 to 10 carbon atoms for R 8 and R 7 is the same as the “heteroaryl” of the first substituent in the general formula (1), and includes a 6-membered ring or a 5-membered ring having a partial structure. Groups are preferred.
 Rとして、より具体的には、下記部分構造式(m)、式(e)、式(v)、式(t)、式(h)、式(p)、式(q)、式(r)、式(s)、式(y)、式(u)、式(w)、式(j)、式(k)、式(f)、式(c)、式(b)、式(i)または式(n)の基が好ましく、式(m)、式(t)、式(p)、式(f)または式(n)の基がより好ましく、式(m)または式(t)の基がさらに好ましい。 More specifically, as R 8 , the following partial structural formulas (m), (e), (v), (t), (h), (p), (q), (q) r), Equation (s), Equation (y), Equation (u), Equation (w), Equation (j), Equation (k), Equation (f), Equation (c), Equation (b), Equation ( i) or groups of formula (n) are preferred, groups of formula (m), formula (t), formula (p), formula (f) or formula (n) are more preferred, and formula (m) or formula (t) ) Are more preferred.
Figure JPOXMLDOC01-appb-C000129
(上記式中、Meはメチル、Etはエチル、iPrはイソプロピル、tBuはブチルを示す。)
Figure JPOXMLDOC01-appb-C000129
(In the above formula, Me represents methyl, Et represents ethyl, iPr represents isopropyl, and tBu represents butyl.)
 RおよびRの組み合わせについては、Rが、ハロゲン、炭素数1~5(好ましくは1~4)のアルキル、炭素数5~10のシクロアルキルまたはフェニルであり、かつ、Rが、水素、炭素数1~5(好ましくは1~4)のアルキル、炭素数5~10のシクロアルキルまたはフェニルであることが好ましく、RおよびRの分子量の和が小さい方が好ましい。Rが、メチル、t-ブチルまたはフェニルであり、かつ、Rが、水素、メチル、t-ブチルまたはフェニルであることがより好ましい。Rが、メチルまたはt-ブチルであり、かつ、Rが水素またはメチルであることがさらに好ましい。Rがメチルであり、かつ、Rが水素またはメチルであることが特に好ましい。Rがメチルであり、かつ、Rが水素であることが最も好ましい。 As for the combination of R 8 and R 7 , R 8 is halogen, alkyl having 1 to 5 (preferably 1 to 4), cycloalkyl or phenyl having 5 to 10 carbons, and R 7 is It is preferably hydrogen, alkyl having 1 to 5 carbon atoms (preferably 1 to 4), cycloalkyl having 5 to 10 carbon atoms or phenyl, and the sum of the molecular weights of R 8 and R 7 is preferably small. More preferably, R 8 is methyl, t-butyl or phenyl, and R 7 is hydrogen, methyl, t-butyl or phenyl. More preferably, R 8 is methyl or t-butyl, and R 7 is hydrogen or methyl. It is particularly preferred that R 8 is methyl and R 7 is hydrogen or methyl. Most preferably, R 8 is methyl and R 7 is hydrogen.
 一般式(2)の化合物の合成の観点からは、Rの対称位置にあるR10が水素以外の基であることが好ましく、RおよびR10が同じ基であることがより好ましい。また同様に、Rが水素以外の基である場合、Rの対称位置にあるRも水素以外の基であることが好ましく、RおよびRが同じ基であることがより好ましい。 From the viewpoint of synthesis of compounds of the general formula (2), it is preferable that R 10 in the symmetrical position of R 8 is a group other than hydrogen, more preferably R 8 and R 10 are the same group. Similarly, when R 7 is a group other than hydrogen, R 5 at the symmetric position of R 7 is also preferably a group other than hydrogen, and more preferably, R 7 and R 5 are the same group.
 また、当該態様において、一般式(2)中のXおよびXの少なくとも1つが>N-Rである場合、前記>N-RのRはアリール、ヘテロアリール、アルキルまたはシクロアルキルであるが、上記部分構造式(m)、式(e)、式(v)、式(t)、式(h)、式(p)、式(q)、式(r)、式(s)、式(y)、式(u)、式(w)、式(j)または式(k)の基であることが好ましく、式(p)、式(q)、式(r)、式(s)、式(y)、式(u)または式(w)の基であることがより好ましく、式(p)、式(q)または式(r)の基であることがさらに好ましく、式(p)の基であることが特に好ましい。 In addition, in this embodiment, when at least one of X 1 and X 2 in the general formula (2) is> NR, the R of> NR is aryl, heteroaryl, alkyl or cycloalkyl. , The above partial structural formula (m), formula (e), formula (v), formula (t), formula (h), formula (p), formula (q), formula (r), formula (s), formula It is preferably a group represented by formula (y), formula (u), formula (w), formula (j) or formula (k), and formula (p), formula (q), formula (r), formula (s) , Formula (y), Formula (u) or Formula (w), more preferably Formula (p), Formula (q) or Formula (r), and Formula (p) It is particularly preferred that the group is
 本態様の多環芳香族化合物およびその多量体は、国際公開第2015/102118号公報に記載された製造方法に従って製造することができる。また、上記式(1)で表される多環芳香族化合物の製造方法を参考にして、第1反応においてエーテル化反応ではなく、ブッフバルト-ハートウィッグ反応などの一般的アミノ化反応を用いて製造することができる。 多 The polycyclic aromatic compound and the multimer thereof of the present embodiment can be produced according to the production method described in WO 2015/102118. Further, referring to the method for producing the polycyclic aromatic compound represented by the above formula (1), the first reaction is not carried out by an etherification reaction but by a general amination reaction such as a Buchwald-Hartwig reaction. can do.
1-3-3.一般式(2)で表される多環芳香族化合物の多量体の好適な態様例
 第2成分であるドーパントの一態様として、2つの上記一般式(2)で表される部分構造と、当該2つの部分構造を連結する連結基L1とからなる二量体化合物が好ましい。
 前記連結基L1は、単結合、炭素数6~12のアリーレン、炭素数2~15のヘテロアリーレン、炭素数1~6のアルキレン、炭素数1~6のアルケニレン、炭素数1~6のアルキニレン、-O-、-S-、>N-R、または、これらの組み合わせであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~14のシクロアルキルであり、前記二量体化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい。
1-3-3. Preferable Embodiment of Multimer of Polycyclic Aromatic Compound Represented by General Formula (2) As one embodiment of the dopant which is the second component, two partial structures represented by the above general formula (2) A dimer compound comprising a linking group L1 connecting two partial structures is preferable.
The linking group L1 is a single bond, arylene having 6 to 12 carbons, heteroarylene having 2 to 15 carbons, alkylene having 1 to 6 carbons, alkenylene having 1 to 6 carbons, alkynylene having 1 to 6 carbons, —O—, —S—,> NR, or a combination thereof, wherein R in> NR is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, 1 to carbons 6 alkyl or cycloalkyl having 3 to 14 carbon atoms, and at least one hydrogen in the dimer compound may be substituted with cyano, halogen or deuterium.
 連結基L1における「アリーレン」、「ヘテロアリーレン」および「アルキレン」については、上述した式(1)における第1置換基の「アリール」、「ヘテロアリール」および「アルキル」の説明をこれらの基からさらに任意の1つの水素原子を除いて表される二価の基としての説明に替えて引用することができる。
 また、「アルケニレン」はアルキレン中に1つまたは2つ以上の-C=C-基を有する基であり、「アルキニレン」はアルキレン中に1つまたは2つ以上の-C≡C-基を有する基であって、上記「アルキレン」の説明において1つまたは2つ以上の-CH-基をそれぞれ-C=C-基や-C≡C-基に替えて説明することができる。
Regarding “arylene”, “heteroarylene” and “alkylene” in the linking group L1, the description of the “aryl”, “heteroaryl” and “alkyl” of the first substituent in the above formula (1) is based on these groups. Further, the description can be cited in place of the description as a divalent group represented by excluding any one hydrogen atom.
“Alkenylene” is a group having one or more —C = C— groups in alkylene, and “alkynylene” is one having two or more —C≡C— groups in alkylene. A group, which can be described by replacing one or more —CH 2 — groups in the above description of “alkylene” with —C = C— groups or —C≡C— groups, respectively.
 連結基L1における>N-RのRとしての「アリール」、「ヘテロアリール」、「アルキル」および「シクロアルキル」ならびに連結基L1における少なくとも1つの水素と置換される「アリール」、「ヘテロアリール」、「アルキル」および「シクロアルキル」については、上述した式(1)における第1置換基の「アリール」、「ヘテロアリール」、「アルキル」および「シクロアルキル」の説明を引用することができる。 “Aryl”, “heteroaryl”, “alkyl” and “cycloalkyl” as R of> NR in linking group L1 and “aryl”, “heteroaryl” substituted with at least one hydrogen in linking group L1 , “Alkyl” and “cycloalkyl”, the description of “aryl”, “heteroaryl”, “alkyl” and “cycloalkyl” of the first substituent in the above formula (1) can be cited.
 連結基L1は、炭素数6~12のアリーレン、炭素数2~15のヘテロアリーレン、炭素数1~6のアルキレン、炭素数1~6のアルケニレン、炭素数1~6のアルキニレン、-O-、-S-、および、>N-Rからなる群から選択される少なくとも1つの基を組み合わせて形成される基でもよい。
 連結基L1と、式(2)で表される部分構造との結合箇所は任意である。
The linking group L1 is an arylene having 6 to 12 carbons, a heteroarylene having 2 to 15 carbons, an alkylene having 1 to 6 carbons, an alkenylene having 1 to 6 carbons, an alkynylene having 1 to 6 carbons, —O—, It may be a group formed by combining at least one group selected from the group consisting of -S- and> NR.
The connecting point between the connecting group L1 and the partial structure represented by the formula (2) is arbitrary.
 また、二量体化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい。例えば、式(2)においては、a環、b環、c環、これらの環への置換基、ならびに、XおよびXが>N-Rまたは-C(-R)-であるときのRにおける少なくとも1つの水素が置換されうるが、これらの中でもアリールやヘテロアリールにおける全てまたは一部の水素が置換された態様が挙げられる。 Also, at least one hydrogen in the dimer compound may be replaced by cyano, halogen or deuterium. For example, in formula (2), ring a, ring b, ring c, substituents on these rings, and when X 1 and X 2 are> NR or —C (—R) 2 — And at least one hydrogen in R may be substituted, and among these, an embodiment in which all or a part of hydrogen in the aryl or heteroaryl is substituted.
 本態様の二量体化合物は、一般式(2)で表される部分構造に相当する多環芳香族化合物を製造した後に2つの多環芳香族化合物を公知の方法により連結基L1で結合するか、多環芳香族化合物を形成するための中間体を2つ、連結基L1で結合しておき、この連結基L1で結合した2つの中間体部分を多環芳香族化することで製造することができる。 In the dimeric compound of this embodiment, after producing a polycyclic aromatic compound corresponding to the partial structure represented by the general formula (2), the two polycyclic aromatic compounds are bonded by a linking group L1 by a known method. Alternatively, two intermediates for forming a polycyclic aromatic compound are bonded by a linking group L1, and the two intermediate portions linked by the linking group L1 are polyaromaticized. be able to.
1-3-4.一般式(2)で表される多環芳香族化合物およびその多量体の好適な具体例
 一般式(2)で表される多環芳香族化合物としては、具体的には、特願2017-199617、特願2018-107092、国際出願番号PCT/JP2015/054426、国際出願番号PCT/JP2017/001089、の明細書に記載の化合物が挙げられ、以下に示す化合物が好ましい。
1-3-4. Preferable Specific Examples of the Polycyclic Aromatic Compound Represented by the General Formula (2) and Its Multimer The polycyclic aromatic compound represented by the general formula (2) is specifically described in Japanese Patent Application No. 2017-199617. And Japanese Patent Application No. 2018-107092, International Application No. PCT / JP2015 / 054426, International Application No. PCT / JP2017 / 001089, and the following compounds are preferred.
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000188
1-3-5.一般式(3)で表される多環芳香族化合物
 第2成分であるドーパントの一態様として、下記一般式(3)で表される多環芳香族化合物が好ましい。なお、一般式(3)で表される多環芳香族化合物は、上述した一般式(2)で表される単位構造を2つ有する多環芳香族化合物の2量体に該当する。
Figure JPOXMLDOC01-appb-C000189
1-3-5. As one embodiment of the dopant which is the second component of the polycyclic aromatic compound represented by the general formula (3), a polycyclic aromatic compound represented by the following general formula (3) is preferable. The polycyclic aromatic compound represented by the general formula (3) corresponds to a dimer of the polycyclic aromatic compound having two unit structures represented by the general formula (2) described above.
Figure JPOXMLDOC01-appb-C000189
 上記式(3)中、R~R12、ZおよびZ(以下、「R等」ともいう)は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、シアノまたはハロゲン(以上、第1置換基)であり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい。
 また、R~RおよびR10~R12のうちの隣接する基同士が結合してb環およびd環の少なくとも1つと共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)で置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい。
 Zは連結基または単結合でa環と結合してもよく、また、Zは連結基または単結合でc環と結合してもよい。
 YはB(ホウ素)であり、X、X、XおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは-C(-R)-であり(ただし、XおよびXが同時に>Oであることはなく、また、XおよびXが同時に>Oであることもない)、前記-C(-R)-のRは炭素数1~6のアルキル、炭素数3~14のシクロアルキルまたは炭素数6~12のアリールであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり、また、当該>N-RのRは-O-、-S-、-C(-R’)-、単結合または縮合により前記a環、b環、c環およびd環の少なくとも1つと結合していてもよい(なお、前記「-C(-R’)-」のR’は水素または炭素数1~5のアルキルまたは炭素数5~10のシクロアルキルである)。
 RおよびRは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3~14のシクロアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)またはジアリールボリル(ただしアリールは炭素数6~12のアリールであり、2つのアリールは単結合または連結基を介して結合していてもよい)であり、式(3)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。
In the above formula (3), R 3 to R 12 , Z 1 and Z 2 (hereinafter also referred to as “R 3 etc.”) each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino , Arylheteroarylamino, diarylboryl (the two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen (the first substituent) And at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl (the above is the second substituent).
Further, adjacent groups among R 5 to R 7 and R 10 to R 12 may be bonded to each other to form an aryl ring or a heteroaryl ring together with at least one of the b ring and the d ring. At least one hydrogen in the ring is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl , Cycloalkyl, alkoxy or aryloxy (the above, the first substituent), and at least one hydrogen in these is aryl, heteroaryl, alkyl or cycloalkyl (the above, the second substituent) It may be substituted.
Z 1 may be linked to ring a by a linking group or a single bond, and Z 2 may be linked to ring c by a linking group or a single bond.
Y is B (boron), and X 1 , X 2 , X 3 and X 4 are each independently>O,>NR,>S,> Se or -C (-R) 2- (Provided that X 1 and X 2 are not simultaneously> O, and that X 3 and X 4 are not simultaneously> O), the R of —C (—R) 2 — is a carbon atom An alkyl having 1 to 6 carbons, a cycloalkyl having 3 to 14 carbons or an aryl having 6 to 12 carbons, wherein R in the above-mentioned NR is an aryl having 6 to 12 carbons or a heteroaryl having 2 to 15 carbons , Alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons, and R of> NR is -O-, -S-, -C (-R ') 2- , a single bond Alternatively, it may be bonded to at least one of the a-ring, b-ring, c-ring and d-ring by condensation (the “- (-R ') 2 - R of "' is cycloalkyl alkyl or C 5-10 hydrogen or C 1 -C 5).
R 1 and R 2 are each independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, diarylamino (Where aryl is aryl having 6 to 12 carbon atoms) or diarylboryl (where aryl is aryl having 6 to 12 carbon atoms, and the two aryls may be bonded via a single bond or a linking group). And at least one hydrogen in the compound represented by the formula (3) may be substituted with cyano, halogen or deuterium.
 R等の第1置換基としての「アリール」、「ヘテロアリール」、「ジアリールアミノ」、「ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)」、「アルキル」、「シクロアルキル」、「アルコキシ」および「アリールオキシ」、ならびに、R等の第2置換基としての「アリール」、「ヘテロアリール」、「アルキル」および「シクロアルキル」は、上述した式(1)における第1置換基としてのこれらの基の説明を引用することができる。
 また、R等の第1置換基としてのジヘテロアリールアミノにおける「ヘテロアリール」、アリールヘテロアリールアミノにおける「ヘテロアリール」は、上述した式(1)における第1置換基としてのヘテロアリールの説明を引用することができ、アリールヘテロアリールアミノにおける「アリール」は、上述した式(1)における第1置換基としてのアリールの説明を引用することができる。
 R等の第1置換基である「ハロゲン」は、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくはフッ素である。
“Aryl”, “heteroaryl”, “diarylamino”, “diarylboryl (two aryls may be bonded via a single bond or a linking group)” as a first substituent such as R 3 , “ “Alkyl”, “cycloalkyl”, “alkoxy” and “aryloxy”, and “aryl”, “heteroaryl”, “alkyl” and “cycloalkyl” as the second substituent such as R 1 are described above. The description of these groups as the first substituent in the formula (1) can be cited.
Further, “heteroaryl” in diheteroarylamino as the first substituent such as R 3 and “heteroaryl” in arylheteroarylamino are the same as those in the above formula (1). For the “aryl” in the arylheteroarylamino, the description of aryl as the first substituent in the above formula (1) can be cited.
“Halogen” which is the first substituent such as R 3 is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine.
 なお、上記式(3)中のZおよびZは、それぞれ独立に、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)であることが好ましく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい。 Note that Z 1 and Z 2 in the above formula (3) are each independently aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryls are a single bond or a linking group. ), Alkyl, cycloalkyl, alkoxy or aryloxy (the above is the first substituent), wherein at least one hydrogen is aryl, heteroaryl, alkyl or cycloalkyl (Above, the second substituent).
 一般式(3)におけるb環の置換基R~Rおよびd環の少なくとも1つの置換基R10~R12のうちの隣接する基同士が結合してb環およびd環の少なくとも1つと共にアリール環またはヘテロアリール環を形成していてもよい。
 したがって、したがって、一般式(3)で表される多環芳香族化合物は、b環およびd環における置換基の相互の結合形態によって、下記一般式(3-L1)に示すように、化合物を構成する環構造が変化する。式(3-L1)中のb’環およびd’環は、一般式(3)におけるそれぞれb環およびd環に対応する。また、式(3-L1)中の各符号の定義は一般式(3)における符号と同じである。
Figure JPOXMLDOC01-appb-C000190
In the general formula (3), adjacent groups among the substituents R 5 to R 7 of the ring b and at least one substituent R 10 to R 12 of the ring d are bonded to each other to form at least one of the rings b and d. Together with an aryl ring or a heteroaryl ring.
Therefore, the polycyclic aromatic compound represented by the general formula (3) can be converted into a compound as shown in the following general formula (3-L1) depending on the mutual bonding form of the substituents on the b-ring and the d-ring. The constituent ring structure changes. The b ′ ring and d ′ ring in the formula (3-L1) correspond to the b ring and d ring in the general formula (3), respectively. The definition of each code in the formula (3-L1) is the same as that in the general formula (3).
Figure JPOXMLDOC01-appb-C000190
 上記式(3-L1)中のb’環およびd’環は、b環の置換基R~Rおよびd環の置換基R10~R12のうちの隣接する基同士が結合して、それぞれb環およびd環と共に形成したアリール環またはヘテロアリール環を示す(b環またはd環に他の環構造が縮合してできた縮合環ともいえる)。
 また、上記式(3-L1)から分かるように、式(3)におけるb環のRとd環のR12は「隣接する基同士」には該当せず、これらが結合することはない。すなわち、「隣接する基」とは同一環上で隣接する基を意味する。
The b ′ ring and the d ′ ring in the above formula (3-L1) are formed by bonding adjacent groups among the substituents R 5 to R 7 of the b ring and the substituents R 10 to R 12 of the d ring. And an aryl ring or a heteroaryl ring formed together with the b-ring and the d-ring, respectively (also referred to as a condensed ring formed by condensing another ring structure on the b-ring or d-ring).
Further, as can be seen from the above formula (3-L1), R 7 of the b-ring and R 12 of the d-ring in the formula (3) do not correspond to “adjacent groups” and are not bonded to each other. . That is, “adjacent groups” means groups that are adjacent on the same ring.
 なお、Zは連結基または単結合でa環と結合してもよく、また、Zは連結基または単結合でc環と結合してもよく、結合した場合には上記b’環およびd’環と同様に環構造が変化することになる。
 Zとa環とを結合する連結基、および、Zとc環とを結合する連結基としては、それぞれ独立して、-O-、-S-または-C(-R’)-が挙げられ、前記「-C(-R’)-」のR’は水素または炭素数1~6のアルキルである。
Z 1 may be linked to ring a by a linking group or a single bond, and Z 2 may be linked to ring c by a linking group or a single bond. As in the case of the d 'ring, the ring structure changes.
The linking group for linking Z 1 to ring a and the linking group for linking Z 2 to ring c are each independently —O—, —S— or —C (—R ′) 2 — R ′ of the above “—C (—R ′) 2 —” is hydrogen or alkyl having 1 to 6 carbons.
 形成された「アリール環」(b’環またはd’環)または「ヘテロアリール環」(b’環またはd’環)は、上述した第1置換基としてのアリールまたはヘテロアリールの、無価の環である。ただし、b’環またはc’環の一部を構成するb環またはc環がすでに炭素数6のベンゼン環であるため、「アリール環」については当該ベンゼン環に5員環が縮合した縮合環の合計炭素数9が下限の炭素数となり、「ヘテロアリール環」については当該ベンゼン環に5員環が縮合した縮合環の合計炭素数6が下限の炭素数となる。 The formed “aryl ring” (b ′ ring or d ′ ring) or “heteroaryl ring” (b ′ ring or d ′ ring) may be an unsubstituted aryl or heteroaryl as the first substituent described above. It is a ring. However, since the b-ring or the c-ring constituting a part of the b′-ring or the c′-ring is already a benzene ring having 6 carbon atoms, the “aryl ring” is a condensed ring in which a 5-membered ring is fused to the benzene ring. Is the lower limit of the number of carbon atoms, and for the "heteroaryl ring", the lower limit of the carbon number is 6 in the condensed ring obtained by condensing the 5-membered ring with the benzene ring.
 式(3-L1)で表される化合物は、b環またはc環であるベンゼン環に対して例えばベンゼン環、インドール環、ピロール環、ベンゾフラン環またはベンゾチオフェン環が縮合して形成されるb’環またはc’環を有する化合物であり、形成された縮合環b’または縮合環c’はそれぞれナフタレン環、カルバゾール環、インドール環、ジベンゾフラン環またはジベンゾチオフェン環である。 The compound represented by the formula (3-L1) is obtained by condensing a benzene ring, which is a b-ring or a c-ring, with a benzene ring, an indole ring, a pyrrole ring, a benzofuran ring or a benzothiophene ring, for example. A condensed ring b 'or condensed ring c' is a naphthalene ring, a carbazole ring, an indole ring, a dibenzofuran ring or a dibenzothiophene ring, respectively.
 形成されたアリール環またはヘテロアリール環に置換する、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)、ならびに、当該第1置換基にさらに置換し得るアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)としては、上述したR等(第1置換基)および上述した式(1)における第1置換基としてのアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシの説明を引用できる。 Aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl, which is substituted on the formed aryl or heteroaryl ring (the two aryls are linked via a single bond or a linking group; ), Alkyl, cycloalkyl, alkoxy or aryloxy (the first substituent), and aryl, heteroaryl, alkyl or cycloalkyl (the second substituent) which can be further substituted on the first substituent. ) Includes the above-described R 3 and the like (first substituent) and aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl as the first substituent in the formula (1). Two aryls have a single bond or a linking group ), Alkyl, cycloalkyl, alkoxy or aryloxy.
 一般式(3)におけるX、X、XおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは-C(-R)-であり、ただし、XおよびXが同時に>Oであることはなく、また、XおよびXが同時に>Oであることもない。
 前記-C(-R)-のRは炭素数1~6のアルキル、炭素数3~14のシクロアルキルまたは炭素数6~12のアリールであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであるが、これらの置換基としては、上述した式(1)における第1置換基としてのアリール、ヘテロアリール、アルキルまたはシクロアルキルの説明を引用できる。
X 1 , X 2 , X 3 and X 4 in the general formula (3) are each independently>O,>NR,>S,> Se or —C (—R) 2 —, provided that , X 1 and X 2 are not simultaneously> O, and X 3 and X 4 are not simultaneously> O.
R of -C (-R) 2- is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or aryl having 6 to 12 carbons, and R of> NR represents 6 carbons. And aryl having 2 to 15 carbon atoms, heteroaryl having 2 to 15 carbon atoms, alkyl having 1 to 6 carbon atoms and cycloalkyl having 3 to 6 carbon atoms. Reference may be made to the description of aryl, heteroaryl, alkyl or cycloalkyl as a substituent.
 また、前記>N-RのRは-O-、-S-、-C(-R’)-、単結合または縮合により前記a環、b環、c環およびd環の少なくとも1つと結合していてもよい。なお、前記「-C(-R’)-」のR’は水素または炭素数1~5のアルキルまたは炭素数5~10のシクロアルキルである。
 この規定は、下記式(3-L2)で表される、XやXが縮合環b’および縮合環d’に取り込まれた環構造を有する化合物で表現できる。すなわち、例えば一般式(3)におけるb環(またはd環)であるベンゼン環に対してX(またはX)を取り込むようにして他の環が縮合して形成されるb’環(またはd’環)を有する化合物である。
 形成された縮合環b’(または縮合環d’)は例えばカルバゾール環、フェノキサジン環、フェノチアジン環またはアクリジン環などである。なお、式(3-L2)中の各符号の定義は一般式(3)における定義と同じである。
R in> NR is —O—, —S—, —C (—R ′) 2 —, and is bonded to at least one of the a ring, b ring, c ring, and d ring by a single bond or condensation. It may be. Here, R ′ in the above “—C (—R ′) 2 —” is hydrogen, alkyl having 1 to 5 carbons, or cycloalkyl having 5 to 10 carbons.
This rule can be represented by a compound represented by the following formula (3-L2) having a ring structure in which X 1 and X 3 are incorporated into a condensed ring b ′ and a condensed ring d ′. That is, for example, a b ′ ring (or a ring formed by condensing another ring so as to incorporate X 1 (or X 3 ) into a benzene ring which is a ring b (or a ring d) in the general formula (3) d 'ring).
The formed condensed ring b ′ (or condensed ring d ′) is, for example, a carbazole ring, a phenoxazine ring, a phenothiazine ring or an acridine ring. The definition of each symbol in the formula (3-L2) is the same as the definition in the general formula (3).
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000191
 なお、式(3-L2)ではXやXが縮合環b’および縮合環d’に取り込まれた環構造を示したが、XやXとしての>N-RのRも同様にa環やc環と結合することができ、結合した場合には上記b’環およびd’環と同様に環構造が変化することになる。 In the formula (3-L2), a ring structure in which X 1 and X 3 are incorporated into the condensed ring b ′ and the condensed ring d ′ is shown, but R of> NR as X 2 or X 4 is also the same. Can be bonded to a ring or c ring, and when bonded, the ring structure is changed in the same manner as the b ′ ring and d ′ ring.
 一般式(3)におけるRおよびRは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3~14のシクロアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)またはジアリールボリル(ただしアリールは炭素数6~12のアリールであり、2つのアリールは単結合または連結基を介して結合していてもよい)であるが、水素、炭素数1~6のアルキル、炭素数3~14のシクロアルキルまたは炭素数6~12のアリールであることが好ましい。
 なお、これらの置換基は、上述した式(1)における第1置換基としてのアルキル、シクロアルキル、アリール、ヘテロアリール、ジアリールアミノまたはジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)の説明を引用できる。
R 1 and R 2 in the general formula (3) are each independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 12 carbons, 2 to 15 carbons Heteroaryl, diarylamino (wherein aryl is aryl having 6 to 12 carbons) or diarylboryl (where aryl is aryl having 6 to 12 carbons, and the two aryls are linked via a single bond or a linking group. But preferably hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or aryl having 6 to 12 carbons.
In addition, these substituents may be alkyl, cycloalkyl, aryl, heteroaryl, diarylamino, or diarylboryl as the first substituent in the above formula (1) (two aryls are bonded through a single bond or a linking group. May be quoted).
 また、一般式(3)で表される多環芳香族化合物中の少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい。例えば、式(3)においては、a環、b環、c環、d環、これらの環への置換基、X~Xが>N-Rまたは-C(-R)-であるときのRにおける少なくとも1つの水素がシアノ、ハロゲンまたは重水素で置換されうる。ハロゲンは、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくは塩素である。 Further, at least one hydrogen in the polycyclic aromatic compound represented by the general formula (3) may be substituted with cyano, halogen, or deuterium. For example, in the formula (3), ring a, ring b, ring c, ring d, a substituent on these rings, and X 1 to X 4 are> NR or —C (—R) 2 —. At least one hydrogen at the time R may be replaced by cyano, halogen or deuterium. Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably chlorine.
 一般式(3)で表される多環芳香族化合物としては、具体的には、国際出願番号PCT/JP2018/018731の明細書に記載の化合物が挙げられ、以下に示す化合物が好ましい。 多 Specific examples of the polycyclic aromatic compound represented by the general formula (3) include compounds described in the specification of International Application No. PCT / JP2018 / 018731, and the following compounds are preferred.
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000209
 一般式(3)で表される多環芳香族化合物は、国際公開第2015/102118号公報に記載された製造方法を応用する、および上記式(1)で表される多環芳香族化合物およびその多量体の製造方法を参考にして製造することができる。
 一般式(3)で表される多環芳香族化合物は、基本的には、それぞれの環構造同士で結合させることで中間体を製造し(第1反応)、その後に、それぞれの環構造をホウ素原子で結合させることで最終生成物を製造することができる(第2反応)。第1反応では、例えば、求核置換反応、ウルマン反応といった一般的なエーテル化反応や、ブッフバルト-ハートウィッグ反応といった一般的なアミノ化反応などが利用できる。また、第2反応では、タンデムヘテロフリーデルクラフツ反応(連続的な芳香族求電子置換反応)が利用できる。
The polycyclic aromatic compound represented by the general formula (3) is obtained by applying the production method described in WO 2015/102118, and by applying the polycyclic aromatic compound represented by the above formula (1) and It can be produced by referring to the method for producing the multimer.
The polycyclic aromatic compound represented by the general formula (3) basically produces an intermediate by bonding the respective ring structures to each other (first reaction), and thereafter, converts the respective ring structures to each other. A final product can be produced by bonding with a boron atom (second reaction). In the first reaction, for example, a general etherification reaction such as a nucleophilic substitution reaction or an Ullmann reaction, or a general amination reaction such as a Buchwald-Hartwig reaction can be used. In the second reaction, a tandem hetero Friedel-Crafts reaction (a continuous aromatic electrophilic substitution reaction) can be used.
1-3-6.一般式(4)で表される多環芳香族化合物またはその多量体
 第2成分であるドーパントの一態様として、下記一般式(4)で表される多環芳香族化合物またはその多量体が好ましい。なお、一般式(4)で表される多環芳香族化合物は、上述した式(2-L3)で表されるように、Nが縮合環c’に取り込まれた環構造を有する化合物の一つである。
Figure JPOXMLDOC01-appb-C000210
1-3-6. As one embodiment of the dopant which is the second component of the polycyclic aromatic compound represented by the general formula (4) or a multimer thereof, a polycyclic aromatic compound represented by the following general formula (4) or a multimer thereof is preferable. . The polycyclic aromatic compound represented by the general formula (4) is one of the compounds having a ring structure in which N is incorporated into a condensed ring c ′ as represented by the above-mentioned formula (2-L3). One.
Figure JPOXMLDOC01-appb-C000210
 上記式(4)中、R~RおよびR~R15(以下、「R等」ともいう)は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、シアノまたはハロゲン(以上、第1置換基)であり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい。
 また、R~R、R~R、R~R11およびR12~R15のうちの隣接する基同士が結合してa環、b環、c環およびd環の少なくとも1つと共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)で置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい。
 Yは、B(ホウ素)であり、Xは、>O、>N-R、>S、>Seまたは-C(-R)-であり、前記-C(-R)-のRは炭素数1~6のアルキル、炭素数3~14のシクロアルキルまたは炭素数6~12のアリールであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり、
 Lは、単結合、-C(-R)-、>O、>Sまたは>N-Rであり、前記-C(-R)-および>N-RにおけるRは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)であり、これらはさらにアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよく、ただし、Xが>N-Rであるとき、Lが>Oであることはない。
 多量体の場合の式(4)中のRは水素であり、そして、一般式(4)で表される化合物および構造における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。
In the above formula (4), R 1 to R 3 and R 5 to R 15 (hereinafter also referred to as “R 1 and the like”) each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino , Arylheteroarylamino, diarylboryl (the two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen (the first substituent) And at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl (the above is the second substituent).
Further, adjacent groups among R 1 to R 3 , R 5 to R 7 , R 8 to R 11 and R 12 to R 15 are bonded to each other to form at least one of a ring, b ring, c ring and d ring. May form an aryl ring or a heteroaryl ring together with at least one hydrogen in the formed ring is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryl May be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryloxy (the above is a first substituent), wherein at least one hydrogen atom is an aryl , Heteroaryl, alkyl or cycloalkyl (the above, the second substituent).
Y 1 is B (boron), X is>O,>NR,>S,> Se or —C (—R) 2 —, and R of the above —C (—R) 2 — Is an alkyl having 1 to 6 carbons, a cycloalkyl having 3 to 14 carbons or an aryl having 6 to 12 carbons, wherein R in the above-mentioned N—R is an aryl having 6 to 12 carbons and an aryl having 2 to 15 carbons Heteroaryl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons,
L is a single bond, -C (-R) 2 -,>O,> S or> NR, and R in -C (-R) 2 -and> NR is each independently , Hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (the two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryloxy (the above is the first substituent) And these may be further substituted with aryl, heteroaryl, alkyl or cycloalkyl (the above is a second substituent), provided that when X is> NR, L is> O Never.
R 2 in the formula (4) in the case of a multimer is hydrogen, and at least one hydrogen in the compound and the structure represented by the general formula (4) may be substituted with cyano, halogen or deuterium. Good.
 上記式(4)におけるR等の第1置換基としての「アリール」、「ヘテロアリール」、「ジアリールアミノ」、「ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)」、「アルキル」、「シクロアルキル」、「アルコキシ」および「アリールオキシ」、ならびに、R等の第2置換基としての「アリール」、「ヘテロアリール」、「アルキル」および「シクロアルキル」は、上述した式(1)における第1置換基としてのこれらの基の説明を引用することができる。
 また、上記式(4)におけるR等の第1置換基としてのジヘテロアリールアミノにおける「ヘテロアリール」、アリールヘテロアリールアミノにおける「ヘテロアリール」は、上述した式(1)における第1置換基としてのヘテロアリールの説明を引用することができ、アリールヘテロアリールアミノにおける「アリール」は、上述した式(1)における第1置換基としてのアリールの説明を引用することができる。
 上記式(4)におけるR等の第1置換基である「ハロゲン」は、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくはフッ素である。
“Aryl”, “heteroaryl”, “diarylamino”, “diarylboryl” as the first substituent such as R 1 in the above formula (4) (the two aryls are bonded via a single bond or a linking group; may also be) "," alkyl "," cycloalkyl "," alkoxy "and" aryloxy ", and" aryl "as a second substituent such as R 1," heteroaryl "," alkyl "and" cyclo As for “alkyl”, the description of these groups as the first substituent in the formula (1) can be cited.
Further, “heteroaryl” in diheteroarylamino and “heteroaryl” in arylheteroarylamino as the first substituent such as R 1 in the above formula (4) are the same as the first substituent in the above formula (1). As for “aryl” in arylheteroarylamino, the description of aryl as the first substituent in formula (1) can be cited.
“Halogen” as the first substituent such as R 1 in the above formula (4) is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine.
 また、上記式(4)におけるR等の第1置換基のより好適な基としては、上記式(1)にR等の第1置換基の好適な基の記載を引用することができる。 As the more preferable group of the first substituent such as R 1 in the above formula (4), the description of the preferable group of the first substituent such as R 1 in the above formula (1) can be cited. .
 一般式(4)におけるR~R、R~R、R~R11およびR12~R15のうちの隣接する基同士は結合してa環、b環、c環およびd環の少なくとも1つと共にアリール環またはヘテロアリール環を形成していてもよく、一般式(4)で表される多環芳香族化合物は、a環、b環、c環およびd環における置換基の相互の結合形態によって、下記一般式(4-L1)、一般式(4-L2)および一般式(4-L3)に示すように、化合物を構成する環構造が変化する。各式中の符号の定義は一般式(4)の定義と同じである。
Figure JPOXMLDOC01-appb-C000211
In the general formula (4), adjacent groups among R 1 to R 3 , R 5 to R 7 , R 8 to R 11 and R 12 to R 15 are bonded to each other to form a ring, b ring, c ring and d. The polycyclic aromatic compound represented by the general formula (4) may form an aryl ring or a heteroaryl ring together with at least one of the rings, and the substituent on the a ring, b ring, c ring and d ring As shown in the following general formulas (4-L1), (4-L2) and (4-L3), the ring structure constituting the compound changes depending on the mutual bonding form. The definitions of the symbols in each formula are the same as those in the general formula (4).
Figure JPOXMLDOC01-appb-C000211
 式(4-L1)~式(4-L3)中のa’環、b’環、c’環およびd’環は、置換基R~R、置換基R~R、置換基R~R11および置換基R12~R15のうちの隣接する基同士が結合して、それぞれa環、b環、c環およびd環の少なくとも1つと共に形成したアリール環またはヘテロアリール環を示す(a環、b環、c環またはd環に他の環構造が縮合してできた縮合環ともいえる)。なお、式では示してはいないが、a環、b環、c環およびd環の全てがa’環、b’環、c’環およびd’環に変化した化合物など、その他の組み合わせもある。また、式(4-L1)~式(4-L3)から分かるように、例えば、a環のRとb環のR11、b環のRとc環のR、c環のRとd環のR15、d環のR12とa環のRなどは「隣接する基同士」には該当せず、これらが結合することはない。すなわち、「隣接する基」とは同一環上で隣接する基を意味する。 In formulas (4-L1) to (4-L3), the a ′ ring, b ′ ring, c ′ ring and d ′ ring represent substituents R 1 to R 3 , substituents R 5 to R 7 , An aryl ring or a heteroaryl ring formed by bonding adjacent groups among R 8 to R 11 and substituents R 12 to R 15 together with at least one of a ring, b ring, c ring and d ring (Also referred to as a condensed ring formed by condensing another ring structure on ring a, ring b, ring c or ring d). Although not shown in the formula, there are other combinations such as a compound in which all of a ring, b ring, c ring and d ring are changed to a ′ ring, b ′ ring, c ′ ring and d ′ ring. . Further, as can be seen from the formulas (4-L1) to (4-L3), for example, R 1 of a ring and R 11 of b ring, R 8 of b ring and R 7 of c ring, and R of c ring 5 and R 15 of d-ring, R 12 of d-ring and R 3 of a-ring do not correspond to “adjacent groups” and do not bond to each other. That is, “adjacent groups” means groups that are adjacent on the same ring.
 形成された「アリール環」(a’環、b’環、c’環またはd’環)または「ヘテロアリール環」(a’環、b’環、c’環またはd’環)は、上述した第1置換基としてのアリールまたはヘテロアリールの、無価の環である。ただし、a’環(b’環、c’環またはd’環)の一部を構成するa環(b環、c環またはd環)がすでに炭素数6のベンゼン環であるため、「アリール環」については当該ベンゼン環に5員環が縮合した縮合環の合計炭素数9が下限の炭素数となり、「ヘテロアリール環」については当該ベンゼン環に5員環が縮合した縮合環の合計炭素数6が下限の炭素数となる。 The formed “aryl ring” (a ′ ring, b ′ ring, c ′ ring or d ′ ring) or “heteroaryl ring” (a ′ ring, b ′ ring, c ′ ring or d ′ ring) is as described above. An aryl or heteroaryl ring as a first substituent. However, since the a ring (b ring, c ring or d ring) constituting a part of the a ′ ring (b ′ ring, c ′ ring or d ′ ring) is already a benzene ring having 6 carbon atoms, “aryl” For the "ring", the total number of carbon atoms of the condensed ring in which the 5-membered ring is fused to the benzene ring is 9 as the lower limit, and for the "heteroaryl ring", the total carbon number of the condensed ring in which the 5-membered ring is fused to the benzene ring is Equation 6 is the lower limit of carbon number.
 式(4-L1)~式(4-L3)で表される化合物は、例えばa環(b環、c環またはd環)であるベンゼン環に対して例えばベンゼン環、インドール環、ピロール環、ベンゾフラン環またはベンゾチオフェン環が縮合して形成されるa’環(b’環、c’環またはd’環)を有する化合物であり、形成された縮合環a’(縮合環b’、縮合環c’または縮合環d’)はそれぞれナフタレン環、カルバゾール環、インドール環、ジベンゾフラン環またはジベンゾチオフェン環である。 The compounds represented by the formulas (4-L1) to (4-L3) are, for example, a benzene ring, an indole ring, a pyrrole ring, a benzene ring which is an a ring (a b ring, a c ring or a d ring). A compound having an a ′ ring (a b ′ ring, a c ′ ring or a d ′ ring) formed by condensing a benzofuran ring or a benzothiophene ring, and the formed condensed ring a ′ (condensed ring b ′, condensed ring c ′ or fused ring d ′) is a naphthalene ring, a carbazole ring, an indole ring, a dibenzofuran ring or a dibenzothiophene ring, respectively.
 形成されたアリール環またはヘテロアリール環に置換する、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)、ならびに、当該第1置換基にさらに置換し得るアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)としては、上述したR等(第1置換基)および上述した式(1)における第1置換基としてのアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシの説明を引用できる。 Aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl, which is substituted on the formed aryl or heteroaryl ring (the two aryls are linked via a single bond or a linking group; ), Alkyl, cycloalkyl, alkoxy or aryloxy (the first substituent), and aryl, heteroaryl, alkyl or cycloalkyl (the second substituent) which can be further substituted on the first substituent. ) Includes R 1 and the like (the first substituent) described above and aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, and diarylboryl as the first substituent in the formula (1). Two aryls have a single bond or a linking group ), Alkyl, cycloalkyl, alkoxy or aryloxy.
 一般式(4)におけるYは、B(ホウ素)であり、Xは、>O、>N-R、>S、>Seまたは-C(-R)-であり、>Oおよび>N-Rが好ましい。
 なお、前記-C(-R)-のRは、炭素数1~6のアルキル、炭素数3~14のシクロアルキルまたは炭素数6~12のアリールであり、前記>N-RのRは、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであるが、これらの置換基としては、上述した式(1)における第1置換基としてのアリール、ヘテロアリール、アルキルまたはシクロアルキルの説明を引用できる。
Y 1 in the general formula (4) is B (boron), X is>O,>NR,>S,> Se or —C (—R) 2 —, and> O and> N -R is preferred.
The R of —C (—R) 2 — is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or aryl having 6 to 12 carbons. , Aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. ), The description of aryl, heteroaryl, alkyl or cycloalkyl as the first substituent can be cited.
 一般式(4)におけるLは、単結合、-C(-R)-、>O、>Sおよび>N-Rであり、単結合、>Oまたは>N-Rが好ましく、単結合がより好ましい。
 前記-C(-R)-および>N-RのRであるアリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)、また、当該第1置換基にさらに置換するアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)としては、上述した式(1)における第1置換基としてのアリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシの説明を引用できる。
L in the general formula (4) is a single bond, —C (—R) 2 —,>O,> S and> NR, preferably a single bond,> O or> NR, and the single bond is More preferred.
Aryl of the above-mentioned —C (—R) 2 — and> NR, aryl, heteroaryl, diarylamino, diarylboryl (the two aryls may be bonded via a single bond or a linking group), alkyl , Cycloalkyl, alkoxy or aryloxy (the above, the first substituent), and aryl, heteroaryl, alkyl or cycloalkyl (the above, the second substituent) further substituting the first substituent are as described above. Aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryl as the first substituent in the formula (1) Oxy's explanation can be quoted.
 なお、式(4)で表される化合物には、Xが>N-Rであり、Lが>Oである化合物は含まれない。 Note that the compound represented by the formula (4) does not include a compound in which X is> NR and L is> O.
 一般式(4)で表される単位構造を複数有する多環芳香族化合物の多量体としては、2~6量体が好ましく、2~3量体がより好ましく、2量体がさらに好ましい。多量体は、1つの化合物の中に上記単位構造を複数有する形態であればよく、例えば、上記単位構造が単結合、炭素数1~3のアルキレン基(例えばメチレン基)、フェニレン基、ナフチレン基などの連結基で複数結合した形態(連結型多量体)に加えて、上記単位構造に含まれる任意の環(a環、b環、c環またはd環)を複数の単位構造で共有するようにして結合した形態(環共有型多量体)であってもよく、また、上記単位構造に含まれる任意の環(a環、b環、c環またはd環)同士が縮合するようにして結合した形態(環縮合型多量体)であってもよいが、環共有型多量体および環縮合型多量体が好ましく、環共有型多量体がより好ましい。
 なお、多量体が複数有する一般式(4)で表される単位構造において、Rは水素である。
As a multimer of the polycyclic aromatic compound having a plurality of unit structures represented by the general formula (4), a dimer to a hexamer is preferable, a dimer to a trimer is more preferable, and a dimer is more preferable. The multimer may be a form having a plurality of the above unit structures in one compound. For example, the above unit structure may be a single bond, an alkylene group having 1 to 3 carbon atoms (eg, a methylene group), a phenylene group, a naphthylene group In addition to the form (linked multimer) in which a plurality of linking groups are linked, such as the above, an arbitrary ring (a ring, b ring, c ring or d ring) contained in the above unit structure may be shared by a plurality of unit structures. (Ring-coupling type multimer), and any of the rings (a-ring, b-ring, c-ring or d-ring) contained in the above unit structure are bonded together so as to be condensed. The ring-condensed multimer and the ring-condensed multimer are preferable, but the ring-condensed multimer is more preferable.
Note that in the unit structure multimer represented by the plurality having the general formula (4), R 2 is hydrogen.
 このような多量体としては、例えば、下記一般式(4-4)、式(4-5-1)、式(4-5-2)、式(4-6-1)または式(4-6-2)で表される多量体が挙げられる。
 下記式(4-4)で表される多量体は、一般式(4)で説明すれば、a環であるベンゼン環を共有するようにして、複数(下記構造式では2つ)の一般式(4)で表される単位構造を1つの化合物中に有する多量体化合物(環共有型多量体)である。
 また、下記式(4-5-1)や式(4-5-2)で表される多量体は、一般式(4)で説明すれば、b環であるベンゼン環を共有するようにして、複数(下記構造式では2つ)の一般式(1)で表される単位構造を1つの化合物中に有する多量体化合物(環共有型多量体)である。
 また、下記式(4-6-1)や式(4-6-2)で表される多量体は、一般式(4)で説明すれば、例えばある単位構造のa環(b環、c環またはd環)であるベンゼン環と、ある単位構造のa環(b環、c環またはd環)であるベンゼン環とが縮合するようにして、複数(下記構造式では2つの)の一般式(4)で表される単位構造を1つの化合物中に有する多量体化合物(環縮合型多量体)である。
 なお、下記各式におけるRは水素である。
Examples of such a multimer include the following general formula (4-4), formula (4-5-1), formula (4-5-2), formula (4-6-1) or formula (4-6-1) And the multimer represented by 6-2).
The multimer represented by the following formula (4-4) may have a plurality (two in the following structural formula) of the general formula (4) described in the general formula (4) so as to share the benzene ring which is the a ring. It is a multimeric compound (ring-sharing type multimer) having the unit structure represented by (4) in one compound.
Further, the multimers represented by the following formulas (4-5-1) and (4-5-2) can share the benzene ring, which is the b ring, according to the general formula (4). And a multimeric compound (ring-sharing type multimer) having a plurality of (two in the following structural formulas) unit structures represented by the general formula (1) in one compound.
Further, the multimer represented by the following formula (4-6-1) or (4-6-2) may be, for example, a ring (b ring, c ring) having a certain unit structure as described by the general formula (4). A plurality (two in the following structural formula) of a benzene ring which is a ring or a d-ring) and a benzene ring which is an a-ring (a b-ring, a c-ring or a d-ring) of a certain unit structure. It is a multimeric compound (ring-fused multimer) having the unit structure represented by the formula (4) in one compound.
Note that R 2 in each of the following formulas is hydrogen.
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000214
 多量体は、式(4-4)で表現される多量化形態と、式(4-5-1)または式(4-5-2)で表現される多量化形態とが組み合わさった多量体であってもよく、式(4-4)、式(4-5-1)または式(4-5-2)で表現される多量化形態と、式(4-6-1)または式(4-6-2)で表現される多量化形態とが組み合わさった多量体であってもよい。 The multimer is a multimer obtained by combining the multimeric form represented by the formula (4-4) with the multimeric form represented by the formula (4-5-1) or the formula (4-5-2) And a multiplication form represented by the formula (4-4), the formula (4-5-1) or the formula (4-5-2), and the formula (4-6-1) or the formula (4-6-1) The multimer may be a combination of the multimerized form represented by 4-6-2).
 また、一般式(4)で表される多環芳香族化合物およびその多量体の化学構造中の少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。例えば、一般式(4)においては、a環、b環、c環、d環、これらの環への置換基、ならびに、Xが>N-Rまたは-C(-R)-であるときのR、Lが-C(-R)-または>N-RであるときのRにおける少なくとも1つの水素がシアノ、ハロゲンまたは重水素で置換されうる。ハロゲンは、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくはフッ素である。 Further, at least one hydrogen in the chemical structure of the polycyclic aromatic compound represented by the general formula (4) and a multimer thereof may be substituted with cyano, halogen, or deuterium. For example, in the general formula (4), when a ring, b ring, c ring, d ring, a substituent to these rings, and X is> NR or —C (—R) 2 — When R and L of —C (—R) 2 — or> NR are at least one hydrogen in R may be replaced by cyano, halogen or deuterium. Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine.
 上記一般式(4)において、RおよびRのうち、一方が、ハロゲン、炭素数1~6のアルキル、炭素数3~14のシクロアルキル、炭素数6~10のアリールまたは炭素数2~10のヘテロアリール(以上、「Z置換基」ともいう)であり、他方が、水素、炭素数1~6のアルキル、炭素数3~14のシクロアルキル、炭素数6~10のアリールまたは炭素数2~10のヘテロアリールであることが好ましい。
 また、この場合、b環のRおよびc環のRは隣接する基と結合することはなく、形成された上記アリール環またはヘテロアリール環の一部を構成することはない。また、前記「一方」はRであり、前記「他方」はRであることが好ましい。
In the general formula (4), one of R 7 and R 8 is halogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 10 carbons or 2 to 2 carbons. 10 heteroaryl (hereinafter also referred to as “Z substituent”), and the other is hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 10 carbons or carbon having Preferably, it is 2 to 10 heteroaryls.
Further, in this case, R 8 of ring b and R 7 of ring c do not bond to an adjacent group, and do not constitute a part of the formed aryl ring or heteroaryl ring. Further, it is preferable that the “one” is R 8 and the “the other” is R 7 .
 RおよびRのハロゲンは、フッ素、塩素、臭素またはヨウ素である。重原子効果によるスピン軌道相互作用の増大の観点からは、分子量の大きなハロゲンが好ましく、塩素、臭素およびヨウ素が好ましく、塩素および臭素がより好ましく、ヨウ素がさらに好ましい。電気陰性度の高い元素の導入によりHOMO/LUMO軌道を深くする観点からは、電気陰性度の大きな元素が好ましく、フッ素、塩素および臭素が好ましく、フッ素および塩素がより好ましく、フッ素がさらに好ましい。 The halogen for R 7 and R 8 is fluorine, chlorine, bromine or iodine. From the viewpoint of increasing spin-orbit interaction due to the heavy atom effect, a halogen having a large molecular weight is preferable, chlorine, bromine and iodine are preferable, chlorine and bromine are more preferable, and iodine is further preferable. From the viewpoint of deepening the HOMO / LUMO orbit by introducing an element having a high electronegativity, an element having a high electronegativity is preferable, fluorine, chlorine and bromine are preferable, fluorine and chlorine are more preferable, and fluorine is further preferable.
 RおよびRの炭素数1~6のアルキルは、直鎖および分岐鎖のいずれでもよく、炭素数1~5のアルキル(炭素数3~5の分岐鎖アルキル)が好ましく、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)がより好ましく、具体的には、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチルなどであり、メチルまたはt-ブチルがより好ましく、メチルがさらに好ましい。
 RおよびRの炭素数3~14のシクロアルキルは、炭素数3~12のシクロアルキルが好ましく、炭素数5~10のシクロアルキルがより好ましく、具体的には、シクロペンチル、シクロヘキシル、ノルボルネニルまたはアダマンチルが好ましく、シクロヘキシルがより好ましい。
 RおよびRの炭素数6~10のアリールは、フェニルまたはナフチルが好ましく、フェニルがより好ましい。
 RおよびRの炭素数2~10のヘテロアリールは、一般式(1)の第1置換基の「ヘテロアリール」と同様の基が挙げられ、6員環または5員環の一環構造の基が好ましい。
The alkyl having 1 to 6 carbon atoms for R 7 and R 8 may be any of linear or branched, and is preferably an alkyl having 1 to 5 carbons (a branched alkyl having 3 to 5 carbons), and preferably 1 to 6 carbons. Alkyl (branched alkyl having 3 to 4 carbon atoms) is more preferable, specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl , Isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, etc., and methyl or t-butyl is more preferable. Is more preferred.
The C 3-14 cycloalkyl for R 7 and R 8 is preferably a C 3-12 cycloalkyl, more preferably a C 5-10 cycloalkyl, specifically, cyclopentyl, cyclohexyl, norbornenyl or Adamantyl is preferred, and cyclohexyl is more preferred.
The aryl having 6 to 10 carbon atoms for R 7 and R 8 is preferably phenyl or naphthyl, and more preferably phenyl.
Examples of the heteroaryl having 2 to 10 carbon atoms represented by R 7 and R 8 include the same groups as the “heteroaryl” of the first substituent in the general formula (1), and include a 6-membered ring or a 5-membered ring having a partial structure. Groups are preferred.
 なお、Z置換基としては、下記部分構造式(m)、式(e)、式(v)、式(t)、式(h)、式(p)、式(q)、式(r)、式(s)、式(y)、式(u)、式(w)、式(j)、式(k)、式(f)、式(c)、式(b)、式(i)または式(n)の基が好ましく、式(m)、式(t)、式(p)、式(f)または式(n)の基がより好ましく、式(m)または式(t)の基がさらに好ましい。 The Z substituent includes the following partial structural formulas (m), (e), (v), (t), (h), (p), (q), and (r) , Expression (s), Expression (y), Expression (u), Expression (w), Expression (j), Expression (k), Expression (f), Expression (c), Expression (b), Expression (i) Or a group of the formula (n) is preferred, a group of the formula (m), the formula (t), the formula (p), the formula (f) or the formula (n) is more preferred, and the formula (m) or the formula (t) Groups are more preferred.
Figure JPOXMLDOC01-appb-C000215
(上記式中、Meはメチル、Etはエチル、iPrはイソプロピル、tBuはブチルを示す。)
Figure JPOXMLDOC01-appb-C000215
(In the above formula, Me represents methyl, Et represents ethyl, iPr represents isopropyl, and tBu represents butyl.)
 分子に歪みを与えることで、遅延蛍光寿命を短くしTADF機構を発現させる観点から、RおよびRが共にZ置換基であることが好ましい。高いPLQYを得る観点および分子の安定性からは、RおよびRのどちらか一方のみがZ置換基であることが好ましい。合成の容易さの観点からは、RがZ置換基であることが好ましい。 It is preferable that both R 7 and R 8 are Z substituents from the viewpoint of shortening the delayed fluorescence lifetime and expressing the TADF mechanism by imparting strain to the molecule. From the viewpoint of obtaining a high PLQY and the stability of the molecule, it is preferable that only one of R 7 and R 8 is a Z substituent. From the viewpoint of ease of synthesis, R 8 is preferably a Z substituent.
 合成の容易さの観点から、RがZ置換基であるときR10に置換基を有する方が好ましく、同様に、RがZ置換基であるときRおよびR13の少なくとも1つに置換基を有する方が好ましく、同様にRがZ置換基であるときRおよびR14の少なくとも1つに置換基を有する方が好ましい。
 また、合成の容易さおよび安定性の観点から、置換基は小さい方が好ましく、上記式(m)、式(e)、式(v)、式(t)、式(h)、式(p)、式(q)、式(r)、式(s)、式(j)、式(k)、式(f)、式(c)、式(b)、式(i)および式(n)の基が好ましく、これらの中でも式(m)、式(e)、式(v)、式(t)、式(p)、式(f)および式(n)の基がより好ましく、式(m)および式(t)の基がさらに好ましく、式(m)の基が最も好ましい。
From the viewpoint of ease of synthesis, when R 8 is a Z substituent, it is preferable that R 10 has a substituent. Similarly, when R 7 is a Z substituent, at least one of R 5 and R 13 It is preferable to have a substituent. Similarly, when R 5 is a Z substituent, it is more preferable to have a substituent in at least one of R 7 and R 14 .
In addition, from the viewpoints of ease of synthesis and stability, the substituent is preferably small, and the above formulas (m), (e), (v), (t), (h), and (p) ), (Q), (r), (s), (j), (k), (f), (c), (b), (i) and (n) Are preferred, and among these, the groups represented by the formulas (m), (e), (v), (t), (p), (f) and (n) are more preferable. Groups of formula (m) and formula (t) are more preferred, and groups of formula (m) are most preferred.
 RおよびRの組み合わせについては、RおよびRのうち、一方が、ハロゲン、炭素数1~5(好ましくは1~4)のアルキル、炭素数5~10のシクロアルキルまたはフェニルであり、かつ、他方が、水素、炭素数1~5(好ましくは1~4)のアルキル、炭素数5~10のシクロアルキルまたはフェニルであることが好ましく、RおよびRの分子量の和が小さい方が好ましい。また、一方が、メチル、t-ブチルまたはフェニルであり、かつ、他方が、水素、メチル、t-ブチルまたはフェニルであることがより好ましい。また、一方が、メチルまたはt-ブチルであり、かつ、他方が水素またはメチルであることがさらに好ましい。また、一方がメチルであり、かつ、他方が水素またはメチルであることが特に好ましい。また、一方がメチルであり、かつ、他方が水素であることが最も好ましい。また、前記「一方」はRであり、前記「他方」はRであることが好ましい。 The combination of R 7 and R 8, among the R 7 and R 8, one of halogen, alkyl having 1-5 carbon atoms (preferably 1-4), cycloalkyl, or phenyl having 5 to 10 carbon atoms And the other is preferably hydrogen, alkyl having 1 to 5 carbon atoms (preferably 1 to 4), cycloalkyl having 5 to 10 carbon atoms or phenyl, and the sum of the molecular weights of R 7 and R 8 is small. Is more preferred. More preferably, one is methyl, t-butyl or phenyl and the other is hydrogen, methyl, t-butyl or phenyl. More preferably, one is methyl or t-butyl and the other is hydrogen or methyl. It is particularly preferred that one is methyl and the other is hydrogen or methyl. Most preferably, one is methyl and the other is hydrogen. Further, it is preferable that the “one” is R 8 and the “the other” is R 7 .
 一般式(4)の化合物の合成の観点からは、Rの対称位置にあるR10が水素以外の基であることが好ましく、RおよびR10が同じ基であることがより好ましい。また同様に、Rが水素以外の基である場合、Rの対称位置にあるRも水素以外の基であることが好ましく、RおよびRが同じ基であることがより好ましい。 From the viewpoint of the synthesis of compounds of general formula (4), it is preferable that R 10 in the symmetrical position of R 8 is a group other than hydrogen, more preferably R 8 and R 10 are the same group. Similarly, when R 7 is a group other than hydrogen, R 5 at the symmetric position of R 7 is also preferably a group other than hydrogen, and more preferably, R 7 and R 5 are the same group.
 一般式(4)で表される多環芳香族化合物およびその多量体としては、具体的には、特願2018-110876の明細書に記載の化合物が挙げられ、以下に示す化合物が好ましい。 多 Specific examples of the polycyclic aromatic compound represented by the general formula (4) and its multimer include compounds described in the specification of Japanese Patent Application No. 2018-110876, and the following compounds are preferred.
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000227
Figure JPOXMLDOC01-appb-C000227
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000229
Figure JPOXMLDOC01-appb-C000229
Figure JPOXMLDOC01-appb-C000230
Figure JPOXMLDOC01-appb-C000230
Figure JPOXMLDOC01-appb-C000231
Figure JPOXMLDOC01-appb-C000231
Figure JPOXMLDOC01-appb-C000232
Figure JPOXMLDOC01-appb-C000232
Figure JPOXMLDOC01-appb-C000233
Figure JPOXMLDOC01-appb-C000233
Figure JPOXMLDOC01-appb-C000234
Figure JPOXMLDOC01-appb-C000234
Figure JPOXMLDOC01-appb-C000235
Figure JPOXMLDOC01-appb-C000235
Figure JPOXMLDOC01-appb-C000236
Figure JPOXMLDOC01-appb-C000236
Figure JPOXMLDOC01-appb-C000237
Figure JPOXMLDOC01-appb-C000237
Figure JPOXMLDOC01-appb-C000238
Figure JPOXMLDOC01-appb-C000238
Figure JPOXMLDOC01-appb-C000239
Figure JPOXMLDOC01-appb-C000239
Figure JPOXMLDOC01-appb-C000240
Figure JPOXMLDOC01-appb-C000240
Figure JPOXMLDOC01-appb-C000241
Figure JPOXMLDOC01-appb-C000241
Figure JPOXMLDOC01-appb-C000242
Figure JPOXMLDOC01-appb-C000242
Figure JPOXMLDOC01-appb-C000243
Figure JPOXMLDOC01-appb-C000243
Figure JPOXMLDOC01-appb-C000244
Figure JPOXMLDOC01-appb-C000244
Figure JPOXMLDOC01-appb-C000245
Figure JPOXMLDOC01-appb-C000245
Figure JPOXMLDOC01-appb-C000246
Figure JPOXMLDOC01-appb-C000246
 式(4)で表される多環芳香族化合物およびその多量体は、国際公開第2015/102118号公報に記載された製造方法を応用することで製造することができる。
 すなわち、下記スキームのように、Z基を有する中間体を合成して、それをタンデムヘテロフリーデルクラフツ反応(連続的な芳香族求電子置換反応)で環化させることで所望の多環芳香族化合物およびその多量体を合成できる。下記スキーム中、Zはハロゲンまたは水素を表し、その他の符号の定義は上述した定義と同じである。
Figure JPOXMLDOC01-appb-C000247
The polycyclic aromatic compound represented by the formula (4) and a multimer thereof can be produced by applying the production method described in WO 2015/102118.
That is, as shown in the following scheme, an intermediate having a Z 1 group is synthesized and cyclized by a tandem hetero Friedel-Crafts reaction (continuous aromatic electrophilic substitution reaction) to obtain a desired polycyclic aromatic compound. A group compound and its multimer can be synthesized. In the following scheme, Z 1 represents halogen or hydrogen, and the definitions of other symbols are the same as those described above.
Figure JPOXMLDOC01-appb-C000247
 上記スキーム中の環化前の中間体も、同様に国際公開第2015/102118号公報などに示されている方法で合成することができる。すなわちBuchwald-Hartwig反応や鈴木カップリング反応、または求核置換反応やUllmann反応などによるエーテル化反応などを適宜組み合わせることで、所望の置換基を有する中間体を合成することができる。 中間 The intermediate before cyclization in the above scheme can also be synthesized by the method shown in WO 2015/102118 and the like. That is, an intermediate having a desired substituent can be synthesized by appropriately combining a Buchwald-Hartwig reaction, a Suzuki coupling reaction, or an etherification reaction such as a nucleophilic substitution reaction or an Ullmann reaction.
1-3-7.一般式(5)で表される多環芳香族化合物またはその多量体
 第2成分であるドーパントの一態様として、下記一般式(5)で表される多環芳香族化合物またはその多量体が好ましい。
Figure JPOXMLDOC01-appb-C000248
1-3-7. As an embodiment of the dopant that is the second component of the polycyclic aromatic compound represented by the general formula (5) or a multimer thereof, a polycyclic aromatic compound represented by the following general formula (5) or a multimer thereof is preferable. .
Figure JPOXMLDOC01-appb-C000248
 上記式(5)中、R~R(以下、「R等」ともいう)は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、シアノまたはハロゲン(以上、第1置換基)であり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい。
 また、R~Rのうちの隣接する基同士が結合してa環、b環およびc環の少なくとも1つと共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)で置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい。
 Yは、B(ホウ素)であり、X、XおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは-C(-R)-であり(X、XおよびXのうちの少なくとも2つはN-Rである)、前記-C(-R)-のRは炭素数1~6のアルキル、炭素数3~14のシクロアルキルまたは炭素数6~12のアリールであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり、また、当該>N-RのRは-O-、-S-、-C(-R’)-、単結合または縮合により前記a環、b環およびc環の少なくとも1つと結合していてもよい(なお、前記「-C(-R’)-」のR’は水素または炭素数1~5のアルキルまたは炭素数5~10のシクロアルキルである)。
 一般式(5)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。
In the above formula (5), R 1 to R 9 (hereinafter also referred to as “R 1 etc.”) each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, Diarylboryl (the two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen (the first substituent), and at least one of these One hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl (the above, the second substituent).
Further, adjacent groups among R 1 to R 9 may be bonded to each other to form an aryl ring or a heteroaryl ring together with at least one of the a ring, the b ring and the c ring. At least one hydrogen is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl, cycloalkyl , Alkoxy or aryloxy (the first substituent), and at least one hydrogen in these may be substituted with an aryl, heteroaryl, alkyl or cycloalkyl (the second substituent). Is also good.
Y 1 is B (boron), and X 1 , X 2 and X 3 are each independently>O,>NR,>S,> Se or —C (—R) 2 —. (At least two of X 1 , X 2 and X 3 are NR), wherein R of —C (—R) 2 — is alkyl having 1 to 6 carbons, cyclo is 3 to 14 carbons. Alkyl or aryl having 6 to 12 carbons, wherein R in the above-mentioned —N—R is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons or 3 to 6 carbons Wherein R in> NR is —O—, —S—, —C (—R ′) 2 —, or at least one of the a ring, b ring and c ring by a single bond or by condensation. optionally one bound (Note that the "-C (-R ') 2 -" of R' is hydrogen or aralkyl of 1 to 5 carbon atoms Cycloalkyl Le carbon atoms or 5-10).
At least one hydrogen in the compound represented by the general formula (5) may be substituted with cyano, halogen, or deuterium.
 上記式(5)におけるR等の第1置換基としての「アリール」、「ヘテロアリール」、「ジアリールアミノ」、「ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)」、「アルキル」、「シクロアルキル」、「アルコキシ」および「アリールオキシ」、ならびに、R等の第2置換基としての「アリール」、「ヘテロアリール」、「アルキル」および「シクロアルキル」は、上述した式(1)における第1置換基としてのこれらの基の説明を引用することができる。
 また、上記式(5)におけるR等の第1置換基としてのジヘテロアリールアミノにおける「ヘテロアリール」、アリールヘテロアリールアミノにおける「ヘテロアリール」は、上述した式(1)における第1置換基としてのヘテロアリールの説明を引用することができ、アリールヘテロアリールアミノにおける「アリール」は、上述した式(1)における第1置換基としてのアリールの説明を引用することができる。
 上記式(5)におけるR等の第1置換基である「ハロゲン」は、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくはフッ素である。
“Aryl”, “heteroaryl”, “diarylamino”, “diarylboryl” as the first substituent such as R 1 in the above formula (5) (the two aryls are bonded via a single bond or a linking group; may also be) "," alkyl "," cycloalkyl "," alkoxy "and" aryloxy ", and" aryl "as a second substituent such as R 1," heteroaryl "," alkyl "and" cyclo As for “alkyl”, the description of these groups as the first substituent in the formula (1) can be cited.
Further, “heteroaryl” in diheteroarylamino and “heteroaryl” in arylheteroarylamino as the first substituent such as R 1 in the above formula (5) are the same as the first substituent in the above formula (1). As for “aryl” in arylheteroarylamino, the description of aryl as the first substituent in formula (1) can be cited.
“Halogen” as the first substituent such as R 1 in the above formula (5) is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine.
 一般式(5)におけるR~Rのうちの隣接する基同士が結合してa環、b環およびc環の少なくとも1つと共にアリール環またはヘテロアリール環を形成していてもよく、一般式(5)で表される多環芳香族化合物は、a環、b環およびc環における置換基の相互の結合形態によって、下記一般式(5-L1)および一般式(5-L2)に示すように、化合物を構成する環構造が変化する。各式中の符号の定義は一般式(5)の定義と同じである。 Adjacent groups among R 1 to R 9 in the general formula (5) may be bonded to each other to form an aryl ring or a heteroaryl ring together with at least one of a ring, b ring and c ring. The polycyclic aromatic compound represented by the formula (5) has the following general formulas (5-L1) and (5-L2) depending on the mutual bonding form of the substituents on the ring a, ring b and ring c. As shown, the ring structure of the compound changes. The definition of the symbols in each formula is the same as the definition of general formula (5).
Figure JPOXMLDOC01-appb-C000249
Figure JPOXMLDOC01-appb-C000249
 式(5-L1)および式(5-L2)中のa’環、b’環およびc’環は、置換基R~Rのうちの隣接する基同士が結合して、それぞれa環、b環およびc環と共に形成したアリール環またはヘテロアリール環を示す(a環、b環またはc環に他の環構造が縮合してできた縮合環ともいえる)。なお、式では示してはいないが、a環、b環およびc環の全てがa’環、b’環およびd’環に変化した化合物など、その他の組み合わせもある。また、上記式(5-L1)および式(5-L2)から分かるように、例えば、a環のRとb環のR、b環のRとc環のR、c環のRとa環のRなどは「隣接する基同士」には該当せず、これらが結合することはない。すなわち、「隣接する基」とは同一環上で隣接する基を意味する。 The a ′ ring, b ′ ring and c ′ ring in the formulas (5-L1) and (5-L2) are formed by bonding adjacent groups of the substituents R 1 to R 9 to form a ring a , An aryl ring or a heteroaryl ring formed together with a ring b and a ring c (also referred to as a condensed ring formed by condensing another ring structure on the ring a, ring b or ring c). Although not shown in the formula, there are other combinations such as a compound in which all of a ring, b ring and c ring are changed to a ′ ring, b ′ ring and d ′ ring. Further, as can be seen from the above formulas (5-L1) and (5-L2), for example, R 1 of ring a and R 9 of ring b, R 7 of ring b and R 6 of ring c, and ring C of ring c R 4 and R 3 of the a-ring do not correspond to “adjacent groups” and do not bond to each other. That is, “adjacent groups” means groups that are adjacent on the same ring.
 形成された「アリール環」(a’環、b’環またはc’環)または「ヘテロアリール環」(a’環、b’環またはc’環)は、上述した第1置換基としてのアリールまたはヘテロアリールの、無価の環である。ただし、a’環(b’環またはc’環)の一部を構成するa環(b環またはc環)がすでに炭素数6のベンゼン環であるため、「アリール環」については当該ベンゼン環に5員環が縮合した縮合環の合計炭素数9が下限の炭素数となり、「ヘテロアリール環」については当該ベンゼン環に5員環が縮合した縮合環の合計炭素数6が下限の炭素数となる。 The formed “aryl ring” (a ′ ring, b ′ ring or c ′ ring) or “heteroaryl ring” (a ′ ring, b ′ ring or c ′ ring) is an aryl as the first substituent described above. Or a heteroaryl, non-valent ring. However, since the a ring (the b ring or the c ring) constituting a part of the a ′ ring (the b ′ ring or the c ′ ring) is already a benzene ring having 6 carbon atoms, the “aryl ring” is the benzene ring. The total number of carbon atoms of the condensed ring obtained by condensing a 5-membered ring with the 5-membered ring is the lower limit of the number of carbon atoms. Becomes
 式(5-L1)および式(5-L2)で表される化合物は、例えばa環(b環またはc環)であるベンゼン環に対して例えばベンゼン環、インドール環、ピロール環、ベンゾフラン環またはベンゾチオフェン環が縮合して形成されるa’環(b環またはc環)を有する化合物であり、形成された縮合環a’(縮合環b’または縮合環c’)はそれぞれナフタレン環、カルバゾール環、インドール環、ジベンゾフラン環またはジベンゾチオフェン環である。 The compound represented by the formula (5-L1) and the formula (5-L2) is, for example, a benzene ring, an indole ring, a pyrrole ring, a benzofuran ring or a benzene ring which is an a ring (a b ring or a c ring). A compound having an a ′ ring (a b-ring or a c-ring) formed by condensing a benzothiophene ring, wherein the formed condensed ring a ′ (the condensed ring b ′ or the condensed ring c ′) is a naphthalene ring, a carbazole ring, respectively. Ring, indole ring, dibenzofuran ring or dibenzothiophene ring.
 形成されたアリール環またはヘテロアリール環に置換する、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)、ならびに、当該第1置換基にさらに置換し得るアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)としては、上述したR等(第1置換基)および上述した式(1)における第1置換基としてのアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシの説明を引用できる。 Aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl, which is substituted on the formed aryl or heteroaryl ring (the two aryls are linked via a single bond or a linking group; ), Alkyl, cycloalkyl, alkoxy or aryloxy (the first substituent), and aryl, heteroaryl, alkyl or cycloalkyl (the second substituent) which can be further substituted on the first substituent. ) Includes R 1 and the like (the first substituent) described above and aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, and diarylboryl as the first substituent in the formula (1). Two aryls have a single bond or a linking group ), Alkyl, cycloalkyl, alkoxy or aryloxy.
 一般式(5)におけるYは、B(ホウ素)であり、X、XおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは-C(-R)-であり、ただし、X、XおよびXのうちの少なくとも2つはN-Rであり、X、XおよびXの3つがN-Rであることが好ましい。 Y 1 in the general formula (5) is B (boron), and X 1 , X 2 and X 3 are each independently>O,>NR,>S,> Se or -C (- R) 2 - a the proviso that at least two of X 1, X 2 and X 3 is N-R, it is preferable three of X 1, X 2 and X 3 is a N-R.
 前記-C(-R)-のRは、炭素数1~6のアルキル、炭素数3~14のシクロアルキルまたは炭素数6~12のアリールであり、前記>N-RのRは、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであるが、これらの置換基としては、上述した式(1)における第1置換基としてのアリール、ヘテロアリール、アルキルまたはシクロアルキルの説明を引用できる。 The R of —C (—R) 2 — is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or aryl having 6 to 12 carbons. Aryl having 6 to 12 carbon atoms, heteroaryl having 2 to 15 carbon atoms, alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms, and these substituents are represented by the above-mentioned formula (1). Reference may be made to the description of aryl, heteroaryl, alkyl or cycloalkyl as first substituent.
 また、前記>N-RのRは-O-、-S-、-C(-R’)-、単結合または縮合により前記a環、b環およびc環の少なくとも1つと結合していてもよい。なお、前記「-C(-R’)-」のR’は水素、炭素数1~5のアルキルまたは炭素数5~10のシクロアルキルである。
 この規定は、下記式(5-L3)で表される、式(5)のXやXの位置のNが縮合環b’および縮合環c’に取り込まれた環構造を有する化合物で表現できる。すなわち、例えば一般式(5)におけるb環(またはc環)であるベンゼン環に対してX(またはX)の位置のNを取り込むようにして他の環が縮合して形成されるb’環(またはc’環)を有する化合物である。形成されてできた縮合環b’(または縮合環c’)は例えばフェノキサジン環、フェノチアジン環、アクリジン環またはフェノホスファジン環である。
 また、上記規定は、下記式(5-L4)や式(5-L5)で表される、XおよびXの少なくとも1つの位置のNが縮合環a’に取り込まれた環構造を有する化合物でも表現できる。すなわち、例えば一般式(5)におけるa環であるベンゼン環に対してX(およびXの少なくとも1つ)の位置のNを取り込むようにして他の環が縮合して形成されるa’環を有する化合物である。形成されてできた縮合環A’は例えばフェノキサジン環、フェノチアジン環、アクリジン環またはフェノホスファジン環である。
 なお、式(5-L3)~式(5-L5)における各符号は式(5)における定義と同じである。
R in the above-mentioned —N—R is —O—, —S—, —C (—R ′) 2 —, and is bonded to at least one of the a ring, b ring and c ring by a single bond or condensation. Is also good. Here, R ′ in the above “—C (—R ′) 2 —” is hydrogen, alkyl having 1 to 5 carbons, or cycloalkyl having 5 to 10 carbons.
This rule specifies a compound represented by the following formula (5-L3) having a ring structure in which N at the position of X 2 or X 1 in the formula (5) is incorporated into a condensed ring b ′ and a condensed ring c ′. Can be expressed. That is, for example, b is formed by condensing another ring so as to incorporate N at the position of X 1 (or X 2 ) into the benzene ring which is ring b (or ring c) in the general formula (5). It is a compound having a 'ring (or c' ring). The formed condensed ring b ′ (or condensed ring c ′) is, for example, a phenoxazine ring, a phenothiazine ring, an acridine ring or a phenophosphazine ring.
In addition, the above definition has a ring structure represented by the following formula (5-L4) or (5-L5) in which N at at least one position of X 1 and X 2 is incorporated into a condensed ring a ′. It can also be expressed as a compound. That is, for example, a ′ is formed by condensing another ring such that N at the position of X 1 (and at least one of X 2 ) is incorporated into the benzene ring which is the a ring in the general formula (5). It is a compound having a ring. The condensed ring A ′ formed is, for example, a phenoxazine ring, a phenothiazine ring, an acridine ring or a phenophosphazine ring.
Note that each symbol in the equations (5-L3) to (5-L5) is the same as the definition in the equation (5).
Figure JPOXMLDOC01-appb-C000250
Figure JPOXMLDOC01-appb-C000250
 具体的には説明しなかったが、上記規定には、XのN-RのRが連結基や単結合でb環およびc環の少なくとも1つと結合した形態も含まれる。例えば一般式(5)におけるb環(またはc環)であるベンゼン環に対してXを取り込むようにして他の環が縮合して形成されるb’環(またはc’環)を有する化合物である。形成されてできた縮合環b’(または縮合環c’)は例えばフェノキサジン環、フェノチアジン環、アクリジン環またはフェノホスファジン環である。
 また、上記規定には、X、XまたはXがいずれかの縮合環に取り込まれた形態が複合した形態も含まれる。
Although not described specifically, the above provisions, N-R a R a X 3 is also included at least one bound forms of b rings and c ring linking group or a single bond. For example, a compound having a b ′ ring (or c ′ ring) formed by condensing another ring by incorporating X 3 into a benzene ring which is a b ring (or c ring) in the general formula (5) It is. The formed condensed ring b ′ (or condensed ring c ′) is, for example, a phenoxazine ring, a phenothiazine ring, an acridine ring or a phenophosphazine ring.
Further, the above definition also includes a form in which X 1 , X 2 or X 3 is incorporated into any one of the condensed rings in a complex form.
 一般式(5)で表される単位構造を複数有する多環芳香族化合物の多量体としては、2~6量体が好ましく、2~3量体が好ましく、2量体がさらに好ましい。多量体は、1つの化合物の中に、上記単位構造を複数有する形態であればよく、例えば、上記単位構造が単結合、炭素数1~3のアルキレン基(例えばメチレン基)、フェニレン基、ナフチレン基などの連結基で複数結合した形態(連結型多量体)に加えて、上記単位構造に含まれる任意の環(a環、b環またはc環)を複数の単位構造で共有するようにして結合した形態(環共有型多量体)であってもよく、また、上記単位構造に含まれる任意の環(a環、b環またはc環)同士が縮合するようにして結合した形態(環縮合型多量体)であってもよいが、環共有型多量体および環縮合型多量体が好ましく、環共有型多量体がより好ましい。
 なお、多量体が複数有する一般式(5)で表される単位構造において、Rは水素であることが好ましい。
The polymer of the polycyclic aromatic compound having a plurality of unit structures represented by the general formula (5) is preferably a dimer to a hexamer, more preferably a dimer to a trimer, and further preferably a dimer. The multimer may be a form having a plurality of the above-mentioned unit structures in one compound. For example, the above-mentioned unit structure may be a single bond, an alkylene group having 1 to 3 carbon atoms (eg, a methylene group), a phenylene group, a naphthylene. In addition to the form in which a plurality of groups are linked by a linking group such as a group (linked type multimer), an arbitrary ring (a ring, b ring or c ring) contained in the above unit structure is shared by a plurality of unit structures. It may be in a bonded form (ring-coupling type multimer), or in a form in which arbitrary rings (ring a, ring b or ring c) contained in the above unit structure are fused to each other (ring fused) A multimer), but a ring-sharing multimer and a ring-fused multimer are preferable, and a ring-sharing multimer is more preferable.
In addition, in the unit structure represented by the general formula (5) that a plurality of multimers have, R 2 is preferably hydrogen.
 このような多量体としては、例えば、下記式(5-4)、式(5-5)または式(5-6)で表される多量体が挙げられる。
 下記式(5-4)で表される多量体は、一般式(5)で説明すれば、a環であるベンゼン環を共有するようにして、2つの一般式(5)で表される単位構造を1つの化合物中に有する2量体化合物(環共有型多量体)である。
 また、下記式(5-5)で表される多量体は、一般式(5)で説明すれば、a環であるベンゼン環とXを共有するようにして、3つの一般式(5)で表される単位構造を1つの化合物中に有する3量体化合物(環共有型多量体)である。
 また、下記式(5-6)で表される多量体は、一般式(5)で説明すれば、例えばある単位構造のa環(またはb環、c環)であるベンゼン環とある単位構造のa環(またはb環、c環)であるベンゼン環とが縮合するようにして、2つの一般式(5)で表される単位構造を1つの化合物中に有する2量体化合物(環縮合型多量体)である。
 なお、下記式における各符号は式(5)における定義と同じである。
Such a multimer includes, for example, a multimer represented by the following formula (5-4), formula (5-5) or formula (5-6).
The multimer represented by the following formula (5-4) is, as described in the general formula (5), a unit represented by two general formulas (5) so as to share a benzene ring which is a ring. It is a dimer compound having a structure in one compound (ring-sharing multimer).
In addition, the multimer represented by the following formula (5-5) can be expressed by three general formulas (5) by sharing X 2 with a benzene ring which is an a ring as described in the general formula (5). Is a trimer compound (ring-sharing multimer) having the unit structure represented by the formula in one compound.
The multimer represented by the following formula (5-6) is, for example, a benzene ring that is a ring (or a b-ring or a c-ring) of a certain unit structure and a certain unit structure, as described in the general formula (5). Is condensed with a benzene ring which is a ring (or a b ring or a c ring) of a dimer compound having two unit structures represented by the general formula (5) in one compound (ring condensation) Type multimer).
In addition, each symbol in the following equation is the same as the definition in equation (5).
Figure JPOXMLDOC01-appb-C000251
Figure JPOXMLDOC01-appb-C000251
 また、一般式(5)で表される多環芳香族化合物およびその多量体の化学構造中の少なくとも1つの水素はシアノ、ハロゲンまたは重水素であってもよい。例えば、一般式(5)においては、a環、b環、c環、これらの環への置換基、ならびに、X、XおよびXが>N-Rまたは-C(-R)-であるときのRにおける少なくとも1つの水素がシアノ、ハロゲンや重水素で置換されうる。ハロゲンは、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくは塩素である。 Further, at least one hydrogen in the chemical structure of the polycyclic aromatic compound represented by the general formula (5) and a multimer thereof may be cyano, halogen, or deuterium. For example, in the general formula (5), a ring, b ring, c ring, substituents on these rings, and X 1 , X 2 and X 3 are> NR or —C (—R) 2 At least one hydrogen in R when-can be replaced by cyano, halogen or deuterium. Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably chlorine.
 一般式(5)で表される多環芳香族化合物およびその多量体としては、具体的には、特願2017-171324の明細書に記載の化合物が挙げられ、以下に示す化合物が好ましい。 多 Specific examples of the polycyclic aromatic compound represented by the general formula (5) and its multimer include the compounds described in the specification of Japanese Patent Application No. 2017-171324, and the following compounds are preferred.
Figure JPOXMLDOC01-appb-C000252
Figure JPOXMLDOC01-appb-C000252
 式(5)で表される多環芳香族化合物およびその多量体は、国際公開第2015/102118号公報に記載された製造方法を応用することで製造することができる。また、上記式(1)で表される多環芳香族化合物およびその多量体の製造方法を参考にして、第1反応においてエーテル化反応ではなく、ブッフバルト-ハートウィッグ反応などの一般的アミノ化反応を用いて製造することができる。 多 The polycyclic aromatic compound represented by the formula (5) and a multimer thereof can be produced by applying the production method described in WO 2015/102118. Also, referring to the method for producing the polycyclic aromatic compound represented by the above formula (1) and a multimer thereof, a general amination reaction such as a Buchwald-Hartwig reaction may be used instead of an etherification reaction in the first reaction. Can be manufactured.
1-3-8.第2成分の多環芳香族化合物として好適な部分構造
 第2成分のホウ素を含有する多環芳香族化合物としては、下記式のいずれかの部分構造を含む化合物であることが好ましい。
 なお、下記式の部分構造における少なくとも1つの水素はアリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、ハロゲンまたは重水素で置換されていてもよい。
1-3-8. Partial Structure Suitable as Second Component Polycyclic Aromatic Compound The boron-containing polycyclic aromatic compound as the second component is preferably a compound containing any of the following partial structures.
In addition, at least one hydrogen in the partial structure of the following formula may be substituted with aryl, heteroaryl, alkyl, cycloalkyl, cyano, halogen, or deuterium.
Figure JPOXMLDOC01-appb-C000253
Figure JPOXMLDOC01-appb-C000253
Figure JPOXMLDOC01-appb-C000254
Figure JPOXMLDOC01-appb-C000254
Figure JPOXMLDOC01-appb-C000255
Figure JPOXMLDOC01-appb-C000255
Figure JPOXMLDOC01-appb-C000256
Figure JPOXMLDOC01-appb-C000256
Figure JPOXMLDOC01-appb-C000257
Figure JPOXMLDOC01-appb-C000257
1-3-9.第2成分の多環芳香族化合物を高分子化させた高分子化合物
 一般式(2)~(5)のいずれかで表される多環芳香族化合物は、これらに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物、もしくはその高分子架橋体、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物、もしくはそのペンダント型高分子架橋体としても、発光層用材料に用いることができる。この場合の反応性置換基としては、式(1)で表される多環芳香族化合物での説明を引用できる。また、このような高分子化合物及び高分子架橋体の用途の詳細については後述する。
1-3-9. A polymer compound obtained by polymerizing the polycyclic aromatic compound of the second component The polycyclic aromatic compound represented by any of the general formulas (2) to (5) is substituted with a reactive substituent. A polymer compound obtained by polymerizing a reactive compound as a monomer, or a crosslinked polymer thereof, or a pendant polymer compound obtained by reacting a main chain polymer with the reactive compound, or a pendant polymer compound thereof It can be used as a light emitting layer material also as a molecular crosslinked product. As the reactive substituent in this case, the description of the polycyclic aromatic compound represented by the formula (1) can be cited. The details of the use of such a polymer compound and a polymer crosslinked product will be described later.
 なお、一般式(1)で表される多環芳香族化合物に反応性置換基が置換した反応性化合物(H)に由来する第1の構成単位と、第2成分のホウ素を含有する多環芳香族化合物(一般式(2)~(5)のいずれかで表される多環芳香族化合物)に反応性置換基が置換した反応性化合物(D)に由来する第2の構成単位とを有する共重合体である高分子化合物(HD)としてもよい。また、当該高分子化合物(HD)をさらに架橋させた高分子架橋体(HD)としてもよい。
 高分子化合物(HD)および高分子架橋体(HD)は、同一の主鎖中に、ホストに対応する第1の構成単位と、ドーパントに対応する第2の構成単位を有する構造となる。
The first structural unit derived from the reactive compound (H) in which the reactive substituent is substituted on the polycyclic aromatic compound represented by the general formula (1), and a polycyclic compound containing boron as the second component An aromatic compound (a polycyclic aromatic compound represented by any of formulas (2) to (5)) and a second structural unit derived from the reactive compound (D) in which a reactive substituent is substituted. It may be a polymer compound (HD) which is a copolymer having the same. Further, a cross-linked polymer (HD) obtained by further cross-linking the polymer (HD) may be used.
The polymer compound (HD) and the crosslinked polymer (HD) have a structure having a first structural unit corresponding to the host and a second structural unit corresponding to the dopant in the same main chain.
 さらに、主鎖型高分子に、反応性化合物(H)および反応性化合物(D)を置換させたペンダント型高分子化合物(HD)としてもよく、当該ペンダント型高分子化合物(HD)をさらに架橋させたペンダント型高分子架橋体(HD)としてもよい。
 ペンダント型高分子化合物(HD)およびペンダント型高分子架橋体(HD)は、主鎖に対して、ホストおよびドーパントに対応する側鎖が置換したペンダント型構造を有する。
Further, a pendant polymer compound (HD) in which the reactive compound (H) and the reactive compound (D) are substituted for the main chain polymer may be used, and the pendant polymer compound (HD) is further crosslinked. It may be a pendant type crosslinked polymer (HD).
The pendant polymer compound (HD) and the pendant polymer crosslinked product (HD) have a pendant structure in which a side chain corresponding to a host and a dopant is substituted for a main chain.
2.有機電界発光素子のより詳細な説明
 以下に、本実施形態に係る有機EL素子について図面に基づいて詳細に説明する。図1は、本実施形態に係る有機EL素子を示す概略断面図である。
2. A more detailed description of the organic electroluminescent device below, the organic EL element according to the present embodiment will be described in detail with reference to the drawings. FIG. 1 is a schematic sectional view showing the organic EL device according to the present embodiment.
2-1.有機電界発光素子の構造
 図1に示された有機EL素子100は、基板101と、基板101上に設けられた陽極102と、陽極102の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた発光層105と、発光層105の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた電子注入層107と、電子注入層107の上に設けられた陰極108とを有する。
2-1. Structure of Organic Electroluminescent Element The organic EL element 100 shown in FIG. 1 includes a substrate 101, an anode 102 provided on the substrate 101, a hole injection layer 103 provided on the anode 102, A hole transport layer 104 provided on the injection layer 103; a light emitting layer 105 provided on the hole transport layer 104; an electron transport layer 106 provided on the light emitting layer 105; It has an electron injection layer 107 provided on 106 and a cathode 108 provided on the electron injection layer 107.
 なお、有機EL素子100は、作製順序を逆にして、例えば、基板101と、基板101上に設けられた陰極108と、陰極108の上に設けられた電子注入層107と、電子注入層107の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた発光層105と、発光層105の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた陽極102とを有する構成としてもよい。 The organic EL element 100 is manufactured by reversing the manufacturing order, for example, the substrate 101, the cathode 108 provided on the substrate 101, the electron injection layer 107 provided on the cathode 108, and the electron injection layer 107. An electron transport layer 106 provided on the electron transport layer 106, a light emitting layer 105 provided on the electron transport layer 106, a hole transport layer 104 provided on the light emitting layer 105, And the anode 102 provided on the hole injection layer 103 may be provided.
 上記各層すべてがなくてはならないわけではなく、最小構成単位を陽極102と発光層105と陰極108とからなる構成として、正孔注入層103、正孔輸送層104、電子輸送層106、電子注入層107は任意に設けられる層である。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。 It is not essential that all of the above layers be present. The minimum constitutional unit is composed of the anode 102, the light emitting layer 105, and the cathode 108, and the hole injection layer 103, the hole transport layer 104, the electron transport layer 106, the electron injection layer The layer 107 is an optional layer. Further, each of the above layers may be composed of a single layer or a plurality of layers.
 有機EL素子を構成する層の態様としては、上述する「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」の構成態様の他に、「基板/陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子注入層/陰極」の構成態様であってもよい。 As an embodiment of the layer constituting the organic EL element, in addition to the above-described embodiment of “substrate / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode”, "Substrate / anode / hole transport layer / emission layer / electron transport layer / electron injection layer / cathode", "substrate / anode / hole injection layer / emission layer / electron transport layer / electron injection layer / cathode", "substrate / Anode / hole injection layer / hole transport layer / emission layer / electron injection layer / cathode "," substrate / anode / hole injection layer / hole transport layer / emission layer / electron transport layer / cathode "," substrate / Anode / light-emitting layer / electron transport layer / electron injection layer / cathode "," substrate / anode / hole transport layer / emission layer / electron injection layer / cathode "," substrate / anode / hole transport layer / emission layer / electron " "Transport layer / cathode", "substrate / anode / hole injection layer / emission layer / electron injection layer / cathode", "substrate / anode / hole injection layer / emission layer / electron transport" / Cathode "," substrate / anode / light emitting layer / electron transporting layer / cathode "may be configured aspect of the" substrate / anode / light emitting layer / electron injection layer / cathode ".
2-2.有機電界発光素子における基板
 基板101は、有機EL素子100の支持体であり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状、またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルム、プラスチックシートなどが用いられる。なかでも、ガラス板、および、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよいので、例えば、0.2mm以上あればよい。厚さの上限値としては、例えば、2mm以下、好ましくは1mm以下である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
2-2. Board substrate 101 in the organic electroluminescent element is a support of the organic EL element 100, typically, quartz, glass, metal, plastic, or the like is used. The substrate 101 is formed in a plate shape, a film shape, or a sheet shape depending on the purpose. For example, a glass plate, a metal plate, a metal foil, a plastic film, a plastic sheet, or the like is used. Among them, a glass plate and a plate made of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate, and polysulfone are preferable. For a glass substrate, soda lime glass, non-alkali glass, or the like is used, and the thickness only needs to be 0.2 mm or more, as long as it has a thickness sufficient to maintain mechanical strength. The upper limit of the thickness is, for example, 2 mm or less, preferably 1 mm or less. As for the material of the glass, alkali-free glass is preferable because it is preferable that the amount of ions eluted from the glass is small, but soda lime glass with a barrier coat such as SiO 2 is also commercially available. it can. In addition, the substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one side in order to enhance gas barrier properties. In particular, a plate, film, or sheet made of a synthetic resin having low gas barrier properties is used as the substrate 101. When used, it is preferable to provide a gas barrier film.
2-3.有機電界発光素子における陽極
 陽極102は、発光層105へ正孔を注入する役割を果たす。なお、陽極102と発光層105との間に正孔注入層103および正孔輸送層104の少なくとも1つが設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
2-3. The anode 102 in the organic electroluminescent device plays a role of injecting holes into the light emitting layer 105. Note that when at least one of the hole injection layer 103 and the hole transport layer 104 is provided between the anode 102 and the light-emitting layer 105, holes are injected into the light-emitting layer 105 through these layers. Become.
 陽極102を形成する材料としては、無機化合物および有機化合物があげられる。無機化合物としては、例えば、金属(アルミニウム、金、銀、ニッケル、パラジウム、クロムなど)、金属酸化物(インジウムの酸化物、スズの酸化物、インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)など)、ハロゲン化金属(ヨウ化銅など)、硫化銅、カーボンブラック、ITOガラスやネサガラスなどがあげられる。有機化合物としては、例えば、ポリ(3-メチルチオフェン)などのポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどがあげられる。その他、有機EL素子の陽極として用いられている物質の中から適宜選択して用いることができる。 材料 As a material for forming the anode 102, an inorganic compound and an organic compound can be given. Examples of the inorganic compound include metals (aluminum, gold, silver, nickel, palladium, chromium, etc.), metal oxides (indium oxide, tin oxide, indium-tin oxide (ITO), indium-zinc oxide) (IZO), metal halides (eg, copper iodide), copper sulfide, carbon black, ITO glass, Nesa glass, and the like. Examples of the organic compound include conductive polymers such as polythiophene such as poly (3-methylthiophene), polypyrrole, and polyaniline. In addition, it can be appropriately selected from the substances used as the anode of the organic EL element.
 透明電極の抵抗は、発光素子の発光に十分な電流が供給できればよいので限定されないが、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、例えば100~5Ω/□、好ましくは50~5Ω/□の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常50~300nmの間で用いられることが多い。 (4) The resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the light emitting element can be supplied, but is preferably low from the viewpoint of power consumption of the light emitting element. For example, an ITO substrate having a resistance of 300 Ω / □ or less functions as an element electrode. However, since a substrate of about 10 Ω / □ can be supplied at present, for example, 100 to 5 Ω / □, preferably 50 to 5 Ω. It is particularly desirable to use a low-resistance product of /. The thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 50 to 300 nm.
2-4.有機電界発光素子における正孔注入層、正孔輸送層
 正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たす。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たす。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の1種または2種以上を積層、混合するか、正孔注入・輸送材料と高分子結着剤の混合物により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
2-4. The hole injection layer and the hole transport layer 103 in the organic electroluminescent element serve to inject holes moving from the anode 102 into the light emitting layer 105 or the hole transport layer 104 efficiently. Fulfill. The hole transport layer 104 plays a role in efficiently transporting holes injected from the anode 102 or holes injected from the anode 102 through the hole injection layer 103 to the light-emitting layer 105. The hole injection layer 103 and the hole transport layer 104 are each formed by laminating and mixing one or more of hole injection / transport materials, or by using a mixture of a hole injection / transport material and a polymer binder. It is formed. Further, a layer may be formed by adding an inorganic salt such as iron (III) chloride to the hole injecting / transporting material.
 正孔注入・輸送性物質としては電界を与えられた電極間において正極からの正孔を効率よく注入・輸送することが必要で、正孔注入効率が高く、注入された正孔を効率よく輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。 As a hole injection / transport substance, it is necessary to efficiently inject and transport holes from the positive electrode between the electrodes to which an electric field is applied, and the hole injection efficiency is high, and the injected holes are efficiently transported. It is desirable to do. For that purpose, it is preferable that the ionization potential is small, the hole mobility is large, the stability is further improved, and impurities serving as traps are less likely to be generated during production and use.
 正孔注入層103および正孔輸送層104を形成する材料としては、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物、p型半導体、有機EL素子の正孔注入層および正孔輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。それらの具体例は、カルバゾール誘導体(N-フェニルカルバゾール、ポリビニルカルバゾールなど)、ビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、トリアリールアミン誘導体(芳香族第3級アミノを主鎖あるいは側鎖に持つポリマー、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミン、N,N4’-ジフェニル-N,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、N,N,N4’,N4’-テトラ[1,1’-ビフェニル]-4-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、スターバーストアミン誘導体など)、スチルベン誘導体、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ピラゾリン誘導体、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、キノキサリン誘導体(例えば、1,4,5,8,9,12-ヘキサアザトリフェニレン-2,3,6,7,10,11-ヘキサカルボニトリルなど)、ポルフィリン誘導体などの複素環化合物、ポリシランなどである。ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されない。 Examples of the material for forming the hole injection layer 103 and the hole transport layer 104 include a compound conventionally used as a hole charge transport material in a photoconductive material, a p-type semiconductor, and a hole injection layer of an organic EL element. Any known compound used in the hole transport layer can be used. Specific examples thereof include a carbazole derivative (N-phenylcarbazole, polyvinylcarbazole, etc.), a biscarbazole derivative such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), and a triarylamine derivative (aromatic tertiary). Polymer having amino in the main chain or side chain, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N′-diphenyl-N, N′-di (3-methylphenyl) -4 , 4'-Diaminobiphenyl, N, N'-diphenyl-N, N'-dinaphthyl-4,4'-diaminobiphenyl, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4 , 4′-Diphenyl-1,1′-diamine, N, N′-dinaphthyl-N, N′-diphenyl-4,4′-diphenyl-1,1′-diamine, 4, N 4 '- diphenyl -N 4, N 4' - bis (9-phenyl -9H- carbazol-3-yl) - [1,1'-biphenyl] -4,4'-diamine, N 4, N 4 , N 4 ′ , N 4′ -tetra [1,1′-biphenyl] -4-yl)-[1,1′-biphenyl] -4,4′-diamine, 4,4 ′, 4 ″ -tris (Triphenylamine derivatives such as (3-methylphenyl (phenyl) amino) triphenylamine, starburst amine derivatives, etc.), stilbene derivatives, phthalocyanine derivatives (metal-free, copper phthalocyanine, etc.), pyrazoline derivatives, hydrazone compounds, benzofuran derivatives And thiophene derivatives, oxadiazole derivatives, quinoxaline derivatives (eg, 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7, 0,11-hexacarbonitrile), heterocyclic compounds such as porphyrin derivatives, polysilanes, etc. In the polymer system, polycarbonates having the above monomers in the side chain, styrene derivatives, polyvinyl carbazole, polysilane, etc. are preferable, but light emission is preferred. The compound is not particularly limited as long as it is a compound capable of forming a thin film necessary for manufacturing an element, injecting holes from the anode, and transporting holes.
 また、有機半導体の導電性は、そのドーピングにより、強い影響を受けることも知られている。このような有機半導体マトリックス物質は、電子供与性の良好な化合物、または、電子受容性の良好な化合物から構成されている。電子供与物質のドーピングのために、テトラシアノキノンジメタン(TCNQ)または2,3,5,6-テトラフルオロテトラシアノ-1,4-ベンゾキノンジメタン(F4TCNQ)などの強い電子受容体が知られている(例えば、文献「M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(22),3202-3204(1998)」および文献「J.Blochwitz,M.Pheiffer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(6),729-731(1998)」を参照)。これらは、電子供与型ベース物質(正孔輸送物質)における電子移動プロセスによって、いわゆる正孔を生成する。正孔の数および移動度によって、ベース物質の伝導性が、かなり大きく変化する。正孔輸送特性を有するマトリックス物質としては、例えばベンジジン誘導体(TPDなど)またはスターバーストアミン誘導体(TDATAなど)、あるいは、特定の金属フタロシアニン(特に、亜鉛フタロシアニンZnPcなど)が知られている(特開2005-167175号公報)。 It is also known that the conductivity of an organic semiconductor is strongly affected by its doping. Such an organic semiconductor matrix material is composed of a compound having a good electron donating property or a compound having a good electron accepting property. Strong electron acceptors such as tetracyanoquinonedimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinonedimethane (F4TCNQ) are known for doping of electron donors. (See, for example, M. Pfeiffer, A. Beyer, T. Fritz, K. Leo, Appl. Phys. Lett., 73 (22), 3202-3204 (1998) and reference J. Blochwitz, M. Pheiffer, T. Fritz, K. Leo, Appl. Phys. Lett., 73 (6), 729-731 (1998)). These generate so-called holes by an electron transfer process in an electron donating base material (hole transporting material). Depending on the number and mobility of the holes, the conductivity of the base material varies considerably. As a matrix material having a hole transporting property, for example, a benzidine derivative (such as TPD) or a starburst amine derivative (such as TDATA), or a specific metal phthalocyanine (particularly, zinc phthalocyanine ZnPc or the like) is known (Japanese Unexamined Patent Application, First Publication No. H11-163686). 2005-167175).
 上述した正孔注入層用材料および正孔輸送層用材料は、これらに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物、もしくはその高分子架橋体、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物、もしくはそのペンダント型高分子架橋体としても、正孔層用材料に用いることができる。この場合の反応性置換基としては、式(1)で表される多環芳香族化合物での説明を引用できる。
 このような高分子化合物および高分子架橋体の用途の詳細については後述する。
The above-described material for the hole injection layer and the material for the hole transport layer are a polymer compound obtained by polymerizing a reactive compound in which a reactive substituent is substituted as a monomer, or a cross-linked polymer thereof, or A pendant polymer compound obtained by reacting the main chain polymer with the reactive compound, or a pendant polymer crosslinked product thereof can also be used as a material for the hole layer. As the reactive substituent in this case, the description of the polycyclic aromatic compound represented by the formula (1) can be cited.
Details of uses of such a polymer compound and a polymer crosslinked product will be described later.
2-5.有機電界発光素子における発光層
 発光層105は、電界を与えられた電極間において、陽極102から注入された正孔と、陰極108から注入された電子とを再結合させることにより発光する層である。発光層105を形成する材料としては、正孔と電子との再結合によって励起されて発光する化合物(発光性化合物)であればよく、安定な薄膜形状を形成することができ、かつ、固体状態で強い発光(蛍光)効率を示す化合物であるのが好ましい。
2-5. The light emitting layer 105 in the organic electroluminescent element is a layer that emits light by recombining holes injected from the anode 102 and electrons injected from the cathode 108 between electrodes to which an electric field is applied. . The material for forming the light-emitting layer 105 may be any compound that emits light when excited by recombination of holes and electrons (light-emitting compound), and can form a stable thin film, and It is preferred that the compound exhibits a strong luminescence (fluorescence) efficiency.
 発光層は単一層でも複数層からなってもどちらでもよく、それぞれ発光層用材料(ホスト材料、ドーパント材料)により形成される。ホスト材料とドーパント材料は、それぞれ1種であっても、複数種の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。
 なお、本発明の有機電界発光素子が有する発光層は、第1成分として、式(1)で表される多環芳香族化合物をホスト材料として含み、第2成分として、ホウ素を含有する多環芳香族化合物をドーパント材料として含む。
The light emitting layer may be a single layer or a plurality of layers, each of which is formed of a light emitting layer material (host material, dopant material). The host material and the dopant material may each be one kind or a combination of a plurality of kinds. The dopant material may be included in the entire host material, may be partially included, or may be included therein.
The light emitting layer included in the organic electroluminescent device of the present invention includes, as a first component, a polycyclic aromatic compound represented by the formula (1) as a host material, and as a second component, a polycyclic aromatic compound containing boron. An aromatic compound is included as a dopant material.
 ホスト材料の使用量はホスト材料の種類によって異なり、そのホスト材料の特性に合わせて決めればよい。ホスト材料の使用量の目安は、好ましくは発光層用材料全体の50~99.999重量%であり、より好ましくは70~99.9重量%であり、さらに好ましくは80~99.9重量%であり、特に好ましくは90~99.9重量%である。 量 The amount of host material used depends on the type of host material, and may be determined according to the characteristics of the host material. The standard of the usage amount of the host material is preferably 50 to 99.999% by weight, more preferably 70 to 99.9% by weight, and still more preferably 80 to 99.9% by weight of the whole light emitting layer material. And particularly preferably 90 to 99.9% by weight.
 ドーパント材料の使用量はドーパント材料の種類によって異なり、そのドーパント材料の特性に合わせて決めればよい。ドーパントの使用量の目安は、好ましくは発光層用材料全体の0.001~50重量%であり、より好ましくは0.1~30重量%であり、さらに好ましくは0.1~20重量%であり、特に好ましくは0.1~10重量%である。上記の範囲であれば、例えば、濃度消光現象を防止できるという点で好ましい。
 一方で、TADFの発現の観点からは、ドーパントは多いほうが好ましい。また、発光層以外の層によっても影響を受けるため、発光層のホストおよびドーパントだけでなく素子構成によって、ドーパントの濃度が決定される。
The amount of the dopant material used depends on the type of the dopant material, and may be determined according to the characteristics of the dopant material. The standard of the amount of the dopant to be used is preferably 0.001 to 50% by weight, more preferably 0.1 to 30% by weight, even more preferably 0.1 to 20% by weight of the whole light emitting layer material. And particularly preferably 0.1 to 10% by weight. The above range is preferable, for example, in that the density quenching phenomenon can be prevented.
On the other hand, from the viewpoint of TADF expression, it is preferable that the amount of the dopant is large. In addition, the concentration of the dopant is determined not only by the host and the dopant of the light-emitting layer but also by the element configuration because the layer is affected by layers other than the light-emitting layer.
 式(1)で表される化合物と併用することができるホスト材料としては、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、フルオレン誘導体、ベンゾフルオレン誘導体などがあげられる。 Examples of the host material that can be used in combination with the compound represented by the formula (1) include condensed ring derivatives such as anthracene and pyrene, and bisstyryl such as bisstyrylanthracene derivatives and distyrylbenzene derivatives, which have been known as luminescent materials. Derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives, fluorene derivatives, benzofluorene derivatives and the like.
 また、ホウ素を含有する多環芳香族化合物と併用することができるドーパント材料としては、特に限定されず、既知の化合物を用いることができ、所望の発光色に応じて様々な材料の中から選択することができる。具体的には、例えば、フェナンスレン、アントラセン、ピレン、テトラセン、ペンタセン、ペリレン、ナフトピレン、ジベンゾピレン、ルブレンおよびクリセンなどの縮合環誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、ベンゾトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、イミダゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラゾリン誘導体、スチルベン誘導体、チオフェン誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体(特開平1-245087号公報)、ビススチリルアリーレン誘導体(特開平2-247278号公報)、ジアザインダセン誘導体、フラン誘導体、ベンゾフラン誘導体、フェニルイソベンゾフラン、ジメシチルイソベンゾフラン、ジ(2-メチルフェニル)イソベンゾフラン、ジ(2-トリフルオロメチルフェニル)イソベンゾフラン、フェニルイソベンゾフランなどのイソベンゾフラン誘導体、ジベンゾフラン誘導体、7-ジアルキルアミノクマリン誘導体、7-ピペリジノクマリン誘導体、7-ヒドロキシクマリン誘導体、7-メトキシクマリン誘導体、7-アセトキシクマリン誘導体、3-ベンゾチアゾリルクマリン誘導体、3-ベンゾイミダゾリルクマリン誘導体、3-ベンゾオキサゾリルクマリン誘導体などのクマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、ポリメチン誘導体、シアニン誘導体、オキソベンゾアンスラセン誘導体、キサンテン誘導体、ローダミン誘導体、フルオレセイン誘導体、ピリリウム誘導体、カルボスチリル誘導体、アクリジン誘導体、オキサジン誘導体、フェニレンオキサイド誘導体、キナクリドン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、フロピリジン誘導体、1,2,5-チアジアゾロピレン誘導体、ピロメテン誘導体、ペリノン誘導体、ピロロピロール誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、アクリドン誘導体、デアザフラビン誘導体、フルオレン誘導体およびベンゾフルオレン誘導体などがあげられる。 In addition, the dopant material that can be used in combination with the boron-containing polycyclic aromatic compound is not particularly limited, a known compound can be used, and is selected from various materials according to a desired emission color. can do. Specifically, for example, condensed ring derivatives such as phenanthrene, anthracene, pyrene, tetracene, pentacene, perylene, naphthopyrene, dibenzopyrene, rubrene and chrysene, benzoxazole derivatives, benzothiazole derivatives, benzimidazole derivatives, benzotriazole derivatives, oxazole Derivatives, oxadiazole derivatives, thiazole derivatives, imidazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazoline derivatives, stilbene derivatives, thiophene derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives, bisstyryl derivatives such as bisstyrylanthracene derivatives and distyrylbenzene derivatives (Japanese Patent Application Laid-Open No. 1-245087), bisstyryl arylene derivatives (Japanese Patent Application Laid-Open No. 2-247278), diazain Isobenzofuran derivatives such as dacene derivatives, furan derivatives, benzofuran derivatives, phenylisobenzofuran, dimesitylisobenzofuran, di (2-methylphenyl) isobenzofuran, di (2-trifluoromethylphenyl) isobenzofuran, and phenylisobenzofuran; Dibenzofuran derivative, 7-dialkylaminocoumarin derivative, 7-piperidinocoumarin derivative, 7-hydroxycoumarin derivative, 7-methoxycoumarin derivative, 7-acetoxycoumarin derivative, 3-benzothiazolyl coumarin derivative, 3-benzimidazolyl coumarin derivative , Coumarin derivatives such as 3-benzoxazolyl coumarin derivatives, dicyanomethylenepyran derivatives, dicyanomethylenethiopyran derivatives, polymethine derivatives, cyanine derivatives, oxobe Zoanthracene derivative, xanthene derivative, rhodamine derivative, fluorescein derivative, pyrylium derivative, carbostyril derivative, acridine derivative, oxazine derivative, phenylene oxide derivative, quinacridone derivative, quinazoline derivative, pyrrolopyridine derivative, furopyridine derivative, 1,2,5-thiadiazo Lopylene derivatives, pyromethene derivatives, perinone derivatives, pyrrolopyrrole derivatives, squarylium derivatives, biolanthrone derivatives, phenazine derivatives, acridone derivatives, deazaflavin derivatives, fluorene derivatives and benzofluorene derivatives.
 発色光ごとに例示すると、青~青緑色ドーパント材料としては、ナフタレン、アントラセン、フェナンスレン、ピレン、トリフェニレン、ペリレン、フルオレン、インデン、クリセンなどの芳香族炭化水素化合物やその誘導体、フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどの芳香族複素環化合物やその誘導体、ジスチリルベンゼン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、クマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体およびN,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミンに代表される芳香族アミン誘導体などがあげられる。 Illustrating for each color-forming light, blue-blue-green dopant materials include aromatic hydrocarbon compounds such as naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perylene, fluorene, indene, chrysene and derivatives thereof, furan, pyrrole, thiophene, Aromatic complex such as silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, thioxanthene Ring compounds and derivatives, distyrylbenzene derivatives, tetraphenylbutadiene derivatives, stilbene derivatives, aldazine derivatives, coumarin derivatives, imidazole, thiazole, thiadia Derivatives such as phenol, carbazole, oxazole, oxadiazole, and triazole and metal complexes thereof, and N, N′-diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1, Aromatic amine derivatives represented by 1′-diamine and the like can be mentioned.
 また、緑~黄色ドーパント材料としては、クマリン誘導体、フタルイミド誘導体、ナフタルイミド誘導体、ペリノン誘導体、ピロロピロール誘導体、シクロペンタジエン誘導体、アクリドン誘導体、キナクリドン誘導体およびルブレンなどのナフタセン誘導体などがあげられ、さらに上記青~青緑色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。 Examples of the green to yellow dopant materials include coumarin derivatives, phthalimide derivatives, naphthalimide derivatives, perinone derivatives, pyrrolopyrrole derivatives, cyclopentadiene derivatives, acridone derivatives, quinacridone derivatives, and naphthacene derivatives such as rubrene. Preferable examples include compounds obtained by introducing a substituent capable of increasing the wavelength, such as aryl, heteroaryl, arylvinyl, amino, and cyano, to the compounds exemplified as the blue-green dopant material.
 さらに、橙~赤色ドーパント材料としては、ビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのナフタルイミド誘導体、ペリノン誘導体、アセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体などの希土類錯体、4-(ジシアノメチレン)-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピランやその類縁体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、ローダミン化合物、デアザフラビン誘導体、クマリン誘導体、キナクリドン誘導体、フェノキサジン誘導体、オキサジン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、フェノキサゾン誘導体およびチアジアゾロピレン誘導体などあげられ、さらに上記青~青緑色および緑~黄色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。 Further, as an orange-red dopant material, naphthalimide derivatives such as bis (diisopropylphenyl) perylenetetracarboxylic imide, perinone derivatives, rare earth complexes such as Eu complexes having acetylacetone, benzoylacetone and phenanthroline as ligands, and the like. -(Dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran and its analogs, metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, quinacridone Derivatives, phenoxazine derivatives, oxazine derivatives, quinazoline derivatives, pyrrolopyridine derivatives, squarylium derivatives, biolanthrone derivatives, phenazine derivatives, phenoxazo Derivatives and thiadiazolopyrene derivatives. Further, the compounds exemplified as the blue-cyan-green and green-yellow dopant materials described above may be further substituted with a substituent capable of increasing the wavelength, such as aryl, heteroaryl, arylvinyl, amino, and cyano. The introduced compound is also a preferred example.
 その他、ドーパントとしては、化学工業2004年6月号13頁、および、それにあげられた参考文献などに記載された化合物などの中から適宜選択して用いることができる。 In addition, the dopant can be appropriately selected and used from the compounds described in Chemical Industry, June 2004, p. 13 and the references cited therein.
 スチルベン構造を有するアミンは、例えば、下記式で表される。
Figure JPOXMLDOC01-appb-C000258
 当該式中、Arは炭素数6~30のアリールからさらに任意のm-1個の水素原子を除いて表されるm価の基であり、ArおよびArは、それぞれ独立して炭素数6~30のアリールであるが、Ar~Arの少なくとも1つはスチルベン構造を有し、Ar~Arは置換されていてもよく、そして、mは1~4の整数である。
The amine having a stilbene structure is represented, for example, by the following formula.
Figure JPOXMLDOC01-appb-C000258
In the formula, Ar 1 is an m-valent group represented by removing any m-1 hydrogen atoms from aryl having 6 to 30 carbon atoms, and Ar 2 and Ar 3 are each independently a carbon atom. Although a number of 6 to 30 aryl, at least one of Ar 1 ~ Ar 3 has a stilbene structure may Ar 1 ~ Ar 3 is substituted, and, m is an integer of from 1 to 4 .
 スチルベン構造を有するアミンは、下記式で表されるジアミノスチルベンがより好ましい。
Figure JPOXMLDOC01-appb-C000259
 当該式中、ArおよびArは、それぞれ独立して炭素数6~30のアリールであり、ArおよびArは置換されていてもよい。
The amine having a stilbene structure is more preferably diaminostilbene represented by the following formula.
Figure JPOXMLDOC01-appb-C000259
In the formula, Ar 2 and Ar 3 are each independently an aryl having 6 to 30 carbon atoms, and Ar 2 and Ar 3 may be substituted.
 炭素数6~30のアリールの具体例は、ベンゼン、ナフタレン、アセナフチレン、フルオレン、フェナレン、フェナントレン、アントラセン、フルオランテン、トリフェニレン、ピレン、クリセン、ナフタセン、ペリレン、スチルベン、ジスチリルベンゼン、ジスチリルビフェニル、ジスチリルフルオレンなどがあげられる。 Specific examples of the aryl having 6 to 30 carbon atoms include benzene, naphthalene, acenaphthylene, fluorene, phenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, chrysene, naphthacene, perylene, stilbene, distyrylbenzene, distyrylbiphenyl, and distyryl. Fluorene and the like.
 スチルベン構造を有するアミンの具体例は、N,N,N’,N’-テトラ(4-ビフェニリル)-4,4’-ジアミノスチルベン、N,N,N’,N’-テトラ(1-ナフチル)-4,4’-ジアミノスチルベン、N,N,N’,N’-テトラ(2-ナフチル)-4,4’-ジアミノスチルベン、N,N’-ジ(2-ナフチル)-N,N’-ジフェニル-4,4’-ジアミノスチルベン、N,N’-ジ(9-フェナントリル)-N,N’-ジフェニル-4,4’-ジアミノスチルベン、4,4’-ビス[4”-ビス(ジフェニルアミノ)スチリル]-ビフェニル、1,4-ビス[4’-ビス(ジフェニルアミノ)スチリル]-ベンゼン、2,7-ビス[4’-ビス(ジフェニルアミノ)スチリル]-9,9-ジメチルフルオレン、4,4’-ビス(9-エチル-3-カルバゾビニレン)-ビフェニル、4,4’-ビス(9-フェニル-3-カルバゾビニレン)-ビフェニルなどがあげられる。
 また、特開2003-347056号公報、および特開2001-307884号公報などに記載されたスチルベン構造を有するアミンを用いてもよい。
Specific examples of the amine having a stilbene structure include N, N, N ′, N′-tetra (4-biphenylyl) -4,4′-diaminostilbene, N, N, N ′, N′-tetra (1-naphthyl) ) -4,4'-Diaminostilbene, N, N, N ', N'-tetra (2-naphthyl) -4,4'-diaminostilbene, N, N'-di (2-naphthyl) -N, N '-Diphenyl-4,4'-diaminostilbene, N, N'-di (9-phenanthryl) -N, N'-diphenyl-4,4'-diaminostilbene, 4,4'-bis [4 "-bis (Diphenylamino) styryl] -biphenyl, 1,4-bis [4′-bis (diphenylamino) styryl] -benzene, 2,7-bis [4′-bis (diphenylamino) styryl] -9,9-dimethyl Fluorene, 4,4'-bis (9-ethyl-3-cal (Bazovinylene) -biphenyl, 4,4'-bis (9-phenyl-3-carbazovinylene) -biphenyl and the like.
Further, an amine having a stilbene structure described in JP-A-2003-347056 and JP-A-2001-307884 may be used.
 ペリレン誘導体としては、例えば、3,10-ビス(2,6-ジメチルフェニル)ペリレン、3,10-ビス(2,4,6-トリメチルフェニル)ペリレン、3,10-ジフェニルペリレン、3,4-ジフェニルペリレン、2,5,8,11-テトラ-t-ブチルペリレン、3,4,9,10-テトラフェニルペリレン、3-(1’-ピレニル)-8,11-ジ(t-ブチル)ペリレン、3-(9’-アントリル)-8,11-ジ(t-ブチル)ペリレン、3,3’-ビス(8,11-ジ(t-ブチル)ペリレニル)などがあげられる。
 また、特開平11-97178号公報、特開2000-133457号公報、特開2000-26324号公報、特開2001-267079号公報、特開2001-267078号公報、特開2001-267076号公報、特開2000-34234号公報、特開2001-267075号公報、および特開2001-217077号公報などに記載されたペリレン誘導体を用いてもよい。
Examples of perylene derivatives include 3,10-bis (2,6-dimethylphenyl) perylene, 3,10-bis (2,4,6-trimethylphenyl) perylene, 3,10-diphenylperylene, 3,4- Diphenylperylene, 2,5,8,11-tetra-t-butylperylene, 3,4,9,10-tetraphenylperylene, 3- (1′-pyrenyl) -8,11-di (t-butyl) perylene , 3- (9'-anthryl) -8,11-di (t-butyl) perylene, 3,3'-bis (8,11-di (t-butyl) perylenyl) and the like.
Also, JP-A-11-97178, JP-A-2000-133457, JP-A-2000-26324, JP-A-2001-267079, JP-A-2001-267078, JP-A-2001-267076, Perylene derivatives described in JP-A-2000-34234, JP-A-2001-267075, JP-A-2001-217077 and the like may be used.
 ボラン誘導体としては、例えば、1,8-ジフェニル-10-(ジメシチルボリル)アントラセン、9-フェニル-10-(ジメシチルボリル)アントラセン、4-(9’-アントリル)ジメシチルボリルナフタレン、4-(10’-フェニル-9’-アントリル)ジメシチルボリルナフタレン、9-(ジメシチルボリル)アントラセン、9-(4’-ビフェニリル)-10-(ジメシチルボリル)アントラセン、9-(4’-(N-カルバゾリル)フェニル)-10-(ジメシチルボリル)アントラセンなどがあげられる。
 また、国際公開第2000/40586号パンフレットなどに記載されたボラン誘導体を用いてもよい。
Examples of the borane derivative include 1,8-diphenyl-10- (dimesitylboryl) anthracene, 9-phenyl-10- (dimesitylboryl) anthracene, 4- (9′-anthryl) dimesitylborylnaphthalene, and 4- (10 ′) -Phenyl-9'-anthryl) dimesitylborylnaphthalene, 9- (dimesitylboryl) anthracene, 9- (4'-biphenylyl) -10- (dimesitylboryl) anthracene, 9- (4 '-(N-carbazolyl) phenyl) And -10- (dimesitylboryl) anthracene.
Further, a borane derivative described in WO 2000/40586 pamphlet or the like may be used.
 芳香族アミン誘導体は、例えば、下記式で表される。
Figure JPOXMLDOC01-appb-C000260
 当該式中、Arは炭素数6~30のアリールからさらに任意のn-1個の水素原子を除いて表されるn価の基であり、ArおよびArはそれぞれ独立して炭素数6~30のアリールであり、Ar~Arは置換されていてもよく、そして、nは1~4の整数である。
The aromatic amine derivative is represented, for example, by the following formula.
Figure JPOXMLDOC01-appb-C000260
In the formula, Ar 4 is an n-valent group represented by removing any n-1 hydrogen atoms from aryl having 6 to 30 carbon atoms, and Ar 5 and Ar 6 are each independently a carbon atom having 6 to 30 carbon atoms. 6 to 30 aryl, Ar 4 to Ar 6 may be substituted, and n is an integer of 1 to 4.
 特に、Arがアントラセン、クリセン、フルオレン、ベンゾフルオレンまたはピレンから任意の2つの水素原子を除いて表される2価の基であり、ArおよびArがそれぞれ独立して炭素数6~30のアリールであり、Ar~Arは置換されていてもよく、そして、nは2である、芳香族アミン誘導体がより好ましい。 In particular, Ar 4 is a divalent group represented by removing any two hydrogen atoms from anthracene, chrysene, fluorene, benzofluorene or pyrene, and Ar 5 and Ar 6 each independently have 6 to 30 carbon atoms. An aromatic amine derivative, wherein Ar 4 to Ar 6 may be substituted and n is 2, is more preferred.
 炭素数6~30のアリールの具体例は、ベンゼン、ナフタレン、アセナフチレン、フルオレンフェナレン、フェナントレン、アントラセン、フルオランテン、トリフェニレン、ピレン、クリセン、ナフタセン、ペリレン、ペンタセンなどがあげられる。 Specific examples of aryl having 6 to 30 carbon atoms include benzene, naphthalene, acenaphthylene, fluorenephenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, chrysene, naphthacene, perylene, pentacene, and the like.
 芳香族アミン誘導体としては、クリセン系としては、例えば、N,N,N’,N’-テトラフェニルクリセン-6,12-ジアミン、N,N,N’,N’-テトラ(p-トリル)クリセン-6,12-ジアミン、N,N,N’,N’-テトラ(m-トリル)クリセン-6,12-ジアミン、N,N,N’,N’-テトラキス(4-イソプロピルフェニル)クリセン-6,12-ジアミン、N,N,N’,N’-テトラ(ナフタレン-2-イル)クリセン-6,12-ジアミン、N,N’-ジフェニル-N,N’-ジ(p-トリル)クリセン-6,12-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-エチルフェニル)クリセン-6,12-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-エチルフェニル)クリセン-6,12-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-イソプロピルフェニル)クリセン-6,12-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-t-ブチルフェニル)クリセン-6,12-ジアミン、N,N’-ビス(4-イソプロピルフェニル)-N,N’-ジ(p-トリル)クリセン-6,12-ジアミンなどがあげられる。 Examples of the aromatic amine derivative include, for example, N, N, N ′, N′-tetraphenylchrysene-6,12-diamine, N, N, N ′, N′-tetra (p-tolyl) Chrysene-6,12-diamine, N, N, N ', N'-tetra (m-tolyl) chrysene-6,12-diamine, N, N, N', N'-tetrakis (4-isopropylphenyl) chrysene -6,12-diamine, N, N, N ', N'-tetra (naphthalen-2-yl) chrysene-6,12-diamine, N, N'-diphenyl-N, N'-di (p-tolyl ) Chrysene-6,12-diamine, N, N'-diphenyl-N, N'-bis (4-ethylphenyl) chrysene-6,12-diamine, N, N'-diphenyl-N, N'-bis ( 4-ethylphenyl) chrysene-6 12-diamine, N, N'-diphenyl-N, N'-bis (4-isopropylphenyl) chrysene-6,12-diamine, N, N'-diphenyl-N, N'-bis (4-t-butyl Phenyl) chrysene-6,12-diamine, N, N'-bis (4-isopropylphenyl) -N, N'-di (p-tolyl) chrysene-6,12-diamine and the like.
 また、ピレン系としては、例えば、N,N,N’,N’-テトラフェニルピレン-1,6-ジアミン、N,N,N’,N’-テトラ(p-トリル)ピレン-1,6-ジアミン、N,N,N’,N’-テトラ(m-トリル)ピレン-1,6-ジアミン、N,N,N’,N’-テトラキス(4-イソプロピルフェニル)ピレン-1,6-ジアミン、N,N,N’,N’-テトラキス(3,4-ジメチルフェニル)ピレン-1,6-ジアミン、N,N’-ジフェニル-N,N’-ジ(p-トリル)ピレン-1,6-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-エチルフェニル)ピレン-1,6-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-エチルフェニル)ピレン-1,6-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-イソプロピルフェニル)ピレン-1,6-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-t-ブチルフェニル)ピレン-1,6-ジアミン、N,N’-ビス(4-イソプロピルフェニル)-N,N’-ジ(p-トリル)ピレン-1,6-ジアミン、N,N,N’,N’-テトラキス(3,4-ジメチルフェニル)-3,8-ジフェニルピレン-1,6-ジアミン、N,N,N,N-テトラフェニルピレン-1,8-ジアミン、N,N’-ビス(ビフェニル-4-イル)-N,N’-ジフェニルピレン-1,8-ジアミン、N,N-ジフェニル-N,N-ビス-(4-トリメチルシラニル-フェニル)-1H,8H-ピレン-1,6-ジアミンなどがあげられる。 Examples of pyrene-based compounds include, for example, N, N, N ', N'-tetraphenylpyrene-1,6-diamine, N, N, N', N'-tetra (p-tolyl) pyrene-1,6. -Diamine, N, N, N ', N'-tetra (m-tolyl) pyrene-1,6-diamine, N, N, N', N'-tetrakis (4-isopropylphenyl) pyrene-1,6- Diamine, N, N, N ', N'-tetrakis (3,4-dimethylphenyl) pyrene-1,6-diamine, N, N'-diphenyl-N, N'-di (p-tolyl) pyrene-1 , 6-Diamine, N, N'-diphenyl-N, N'-bis (4-ethylphenyl) pyrene-1,6-diamine, N, N'-diphenyl-N, N'-bis (4-ethylphenyl ) Pyrene-1,6-diamine, N, N'-diphenyl-N, N'-bis (4-isopropyl Nyl) pyrene-1,6-diamine, N, N′-diphenyl-N, N′-bis (4-t-butylphenyl) pyrene-1,6-diamine, N, N′-bis (4-isopropylphenyl ) -N, N'-di (p-tolyl) pyrene-1,6-diamine, N, N, N ', N'-tetrakis (3,4-dimethylphenyl) -3,8-diphenylpyrene-1, 6-diamine, N, N, N, N-tetraphenylpyrene-1,8-diamine, N, N′-bis (biphenyl-4-yl) -N, N′-diphenylpyrene-1,8-diamine, N 1 , N 6 -diphenyl-N 1 , N 6 -bis- (4-trimethylsilanyl-phenyl) -1H, 8H-pyrene-1,6-diamine.
 また、アントラセン系としては、例えば、N,N,N,N-テトラフェニルアントラセン-9,10-ジアミン、N,N,N’,N’-テトラ(p-トリル)アントラセン-9,10-ジアミン、N,N,N’,N’-テトラ(m-トリル)アントラセン-9,10-ジアミン、N,N,N’,N’-テトラキス(4-イソプロピルフェニル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ジ(p-トリル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ジ(m-トリル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-エチルフェニル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-エチルフェニル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-イソプロピルフェニル)アントラセン-9,10-ジアミン、N,N’-ジフェニル-N,N’-ビス(4-t-ブチルフェニル)アントラセン-9,10-ジアミン、N,N’-ビス(4-イソプロピルフェニル)-N,N’-ジ(p-トリル)アントラセン-9,10-ジアミン、2,6-ジ-t-ブチル-N,N,N’,N’-テトラ(p-トリル)アントラセン-9,10-ジアミン、2,6-ジ-t-ブチル-N,N’-ジフェニル-N,N’-ビス(4-イソプロピルフェニル)アントラセン-9,10-ジアミン、2,6-ジ-t-ブチル-N,N’-ビス(4-イソプロピルフェニル)-N,N’-ジ(p-トリル)アントラセン-9,10-ジアミン、2,6-ジシクロヘキシル-N,N’-ビス(4-イソプロピルフェニル)-N,N’-ジ(p-トリル)アントラセン-9,10-ジアミン、2,6-ジシクロヘキシル-N,N’-ビス(4-イソプロピルフェニル)-N,N’-ビス(4-t-ブチルフェニル)アントラセン-9,10-ジアミン、9,10-ビス(4-ジフェニルアミノ-フェニル)アントラセン、9,10-ビス(4-ジ(1-ナフチルアミノ)フェニル)アントラセン、9,10-ビス(4-ジ(2-ナフチルアミノ)フェニル)アントラセン、10-ジ-p-トリルアミノ-9-(4-ジ-p-トリルアミノ-1-ナフチル)アントラセン、10-ジフェニルアミノ-9-(4-ジフェニルアミノ-1-ナフチル)アントラセン、10-ジフェニルアミノ-9-(6-ジフェニルアミノ-2-ナフチル)アントラセンなどがあげられる。 Examples of anthracene-based compounds include N, N, N, N-tetraphenylanthracene-9,10-diamine, N, N, N ′, N′-tetra (p-tolyl) anthracene-9,10-diamine N, N, N ′, N′-tetra (m-tolyl) anthracene-9,10-diamine, N, N, N ′, N′-tetrakis (4-isopropylphenyl) anthracene-9,10-diamine, N, N'-diphenyl-N, N'-di (p-tolyl) anthracene-9,10-diamine, N, N'-diphenyl-N, N'-di (m-tolyl) anthracene-9,10- Diamine, N, N'-diphenyl-N, N'-bis (4-ethylphenyl) anthracene-9,10-diamine, N, N'-diphenyl-N, N'-bis (4-ethylphenyl) anthra 9,9-diamine, N, N′-diphenyl-N, N′-bis (4-isopropylphenyl) anthracene-9,10-diamine, N, N′-diphenyl-N, N′-bis (4 -T-butylphenyl) anthracene-9,10-diamine, N, N'-bis (4-isopropylphenyl) -N, N'-di (p-tolyl) anthracene-9,10-diamine, 2,6- Di-tert-butyl-N, N, N ', N'-tetra (p-tolyl) anthracene-9,10-diamine, 2,6-di-tert-butyl-N, N'-diphenyl-N, N '-Bis (4-isopropylphenyl) anthracene-9,10-diamine, 2,6-di-t-butyl-N, N'-bis (4-isopropylphenyl) -N, N'-di (p-tolyl ) Anthracene-9,10-dia 2,6-dicyclohexyl-N, N'-bis (4-isopropylphenyl) -N, N'-di (p-tolyl) anthracene-9,10-diamine, 2,6-dicyclohexyl-N, N ' -Bis (4-isopropylphenyl) -N, N'-bis (4-t-butylphenyl) anthracene-9,10-diamine, 9,10-bis (4-diphenylamino-phenyl) anthracene, 9,10- Bis (4-di (1-naphthylamino) phenyl) anthracene, 9,10-bis (4-di (2-naphthylamino) phenyl) anthracene, 10-di-p-tolylamino-9- (4-di-p -Tolylamino-1-naphthyl) anthracene, 10-diphenylamino-9- (4-diphenylamino-1-naphthyl) anthracene, 10-diphenylamino And -9- (6-diphenylamino-2-naphthyl) anthracene.
 また、他には、[4-(4-ジフェニルアミノ-フェニル)ナフタレン-1-イル]-ジフェニルアミン、[6-(4-ジフェニルアミノ-フェニル)ナフタレン-2-イル]-ジフェニルアミン、4,4’-ビス[4-ジフェニルアミノナフタレン-1-イル]ビフェニル、4,4’-ビス[6-ジフェニルアミノナフタレン-2-イル]ビフェニル、4,4”-ビス[4-ジフェニルアミノナフタレン-1-イル]-p-テルフェニル、4,4”-ビス[6-ジフェニルアミノナフタレン-2-イル]-p-テルフェニルなどがあげられる。
 また、特開2006-156888号公報などに記載された芳香族アミン誘導体を用いてもよい。
Other examples include [4- (4-diphenylamino-phenyl) naphthalen-1-yl] -diphenylamine, [6- (4-diphenylamino-phenyl) naphthalen-2-yl] -diphenylamine, and 4,4 ′ -Bis [4-diphenylaminonaphthalen-1-yl] biphenyl, 4,4'-bis [6-diphenylaminonaphthalen-2-yl] biphenyl, 4,4 "-bis [4-diphenylaminonaphthalen-1-yl ] -P-terphenyl, 4,4 "-bis [6-diphenylaminonaphthalen-2-yl] -p-terphenyl and the like.
Further, an aromatic amine derivative described in JP-A-2006-156888 or the like may be used.
 クマリン誘導体としては、クマリン-6、クマリン-334などがあげられる。
 また、特開2004-43646号公報、特開2001-76876号公報、および特開平6-298758号公報などに記載されたクマリン誘導体を用いてもよい。
Coumarin derivatives include coumarin-6 and coumarin-334.
Further, coumarin derivatives described in JP-A-2004-43646, JP-A-2001-76876, and JP-A-6-298758 may be used.
 ピラン誘導体としては、下記のDCM、DCJTBなどがあげられる。
Figure JPOXMLDOC01-appb-C000261
 また、特開2005-126399号公報、特開2005-097283号公報、特開2002-234892号公報、特開2001-220577号公報、特開2001-081090号公報、および特開2001-052869号公報などに記載されたピラン誘導体を用いてもよい。
Examples of the pyran derivative include DCM and DCJTB described below.
Figure JPOXMLDOC01-appb-C000261
Also, JP 2005-126399, JP 2005-097283, JP 2002-234892, JP 2001-220577, JP 2001-081090, and JP 2001-052869 And the like.
 上述した発光層用材料(ホスト材料およびドーパント材料)は、これらに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物、もしくはその高分子架橋体、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物、もしくはそのペンダント型高分子架橋体としても、発光層用材料に用いることができる。この場合の反応性置換基としては、式(1)で表される多環芳香族化合物での説明を引用できる。
 このような高分子化合物および高分子架橋体の用途の詳細については後述する。
The above-mentioned materials for the light emitting layer (host material and dopant material) are a polymer compound obtained by polymerizing a reactive compound in which these are substituted with a reactive substituent as a monomer, or a polymer crosslinked product thereof, or a main chain. Pendant polymer compound obtained by reacting a reactive polymer with the reactive polymer, or a pendant polymer crosslinked product thereof can also be used as a material for the light emitting layer. As the reactive substituent in this case, the description of the polycyclic aromatic compound represented by the formula (1) can be cited.
Details of uses of such a polymer compound and a polymer crosslinked product will be described later.
2-6.有機電界発光素子における電子注入層、電子輸送層
 電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たす。電子輸送層106は、陰極108から注入された電子または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たす。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合するか、電子輸送・注入材料と高分子結着剤の混合物により形成される。
2-6. The electron injection layer and the electron transport layer 107 in the organic electroluminescent element play a role to efficiently inject electrons moving from the cathode 108 into the light emitting layer 105 or the electron transport layer 106. The electron transport layer 106 plays a role in efficiently transporting electrons injected from the cathode 108 or electrons injected from the cathode 108 through the electron injection layer 107 to the light emitting layer 105. The electron transporting layer 106 and the electron injecting layer 107 are each formed by laminating and mixing one or more of the electron transporting / injecting materials or a mixture of the electron transporting / injecting material and the polymer binder.
 電子注入・輸送層とは、陰極から電子が注入され、さらに電子を輸送することをつかさどる層であり、電子注入効率が高く、注入された電子を効率よく輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本実施形態における電子注入・輸送層は、正孔の移動を効率よく阻止できる層の機能も含まれてもよい。 (4) The electron injection / transport layer is a layer that controls the injection of electrons from the cathode and the transport of electrons. It is desirable that the electron injection efficiency is high and the injected electrons are transported efficiently. For this purpose, it is preferable that the substance be a substance having a high electron affinity, a high electron mobility, excellent stability, and hardly generating impurities serving as traps during production and use. However, considering the transport balance between holes and electrons, if the role of mainly preventing the holes from the anode from flowing to the cathode side without recombination is to play an important role, the electron transport capability is not so high. Even if it is not high, the effect of improving the luminous efficiency is equivalent to a material having a high electron transporting ability. Therefore, the electron injecting / transporting layer in the present embodiment may include a function of a layer that can efficiently block the movement of holes.
 電子輸送層106または電子注入層107を形成する材料(電子輸送材料)としては、光導電材料において電子伝達化合物として従来から慣用されている化合物、有機EL素子の電子注入層および電子輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。 As a material (electron transporting material) for forming the electron transporting layer 106 or the electron injecting layer 107, a compound conventionally used as an electron transporting compound in a photoconductive material, and used for an electron injecting layer and an electron transporting layer of an organic EL device. Any of the known compounds can be used.
 電子輸送層または電子注入層に用いられる材料としては、炭素、水素、酸素、硫黄、ケイ素およびリンの中から選ばれる一種以上の原子で構成される芳香族環または複素芳香族環からなる化合物、ピロール誘導体およびその縮合環誘導体および電子受容性窒素を有する金属錯体の中から選ばれる少なくとも一種を含有することが好ましい。具体的には、ナフタレン、アントラセンなどの縮合環系芳香族環誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香族環誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体およびインドール誘導体などが挙げられる。電子受容性窒素を有する金属錯体としては、例えば、ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などが挙げられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。 As the material used for the electron transporting layer or the electron injecting layer, carbon, hydrogen, oxygen, sulfur, a compound comprising an aromatic ring or a heteroaromatic ring composed of one or more atoms selected from silicon and phosphorus, It is preferable to contain at least one selected from a pyrrole derivative, a fused ring derivative thereof, and a metal complex having an electron-accepting nitrogen. Specifically, condensed ring aromatic ring derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4'-bis (diphenylethenyl) biphenyl, perinone derivatives, coumarin derivatives, and naphthalimide derivatives And quinone derivatives such as anthraquinone and diphenoquinone, phosphorus oxide derivatives, carbazole derivatives and indole derivatives. Examples of the metal complex having an electron accepting nitrogen include a hydroxyazole complex such as a hydroxyphenyloxazole complex, an azomethine complex, a tropolone metal complex, a flavonol metal complex, and a benzoquinoline metal complex. These materials may be used alone or in combination with different materials.
 また、他の電子伝達化合物の具体例として、ピリジン誘導体、ナフタレン誘導体、アントラセン誘導体、フェナントロリン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン誘導体、ジフェノキノン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体(1,3-ビス[(4-t-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなど)、チオフェン誘導体、トリアゾール誘導体(N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなど)、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノリノール系金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パーフルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体(2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなど)、イミダゾピリジン誘導体、ボラン誘導体、ベンゾイミダゾール誘導体(トリス(N-フェニルベンゾイミダゾール-2-イル)ベンゼンなど)、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、テルピリジンなどのオリゴピリジン誘導体、ビピリジン誘導体、テルピリジン誘導体(1,3-ビス(4’-(2,2’:6’2”-テルピリジニル))ベンゼンなど)、ナフチリジン誘導体(ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなど)、アルダジン誘導体、カルバゾール誘導体、インドール誘導体、リンオキサイド誘導体、ビススチリル誘導体などが挙げられる。 Further, specific examples of other electron transfer compounds include pyridine derivatives, naphthalene derivatives, anthracene derivatives, phenanthroline derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinone derivatives, diphenoquinone derivatives, diphenylquinone derivatives, perylene derivatives, and oxadiazole. Derivatives (such as 1,3-bis [(4-t-butylphenyl) 1,3,4-oxadiazolyl] phenylene), thiophene derivatives, and triazole derivatives (N-naphthyl-2,5-diphenyl-1,3,4- Triazole), metal complexes of thiadiazole derivatives, oxine derivatives, quinolinol-based metal complexes, quinoxaline derivatives, polymers of quinoxaline derivatives, benzazoles, gallium complexes, pyrazole derivatives, perfluorinated Nylene derivatives, triazine derivatives, pyrazine derivatives, benzoquinoline derivatives (such as 2,2'-bis (benzo [h] quinolin-2-yl) -9,9'-spirobifluorene), imidazopyridine derivatives, borane derivatives, benzones Imidazole derivatives (such as tris (N-phenylbenzimidazol-2-yl) benzene), benzoxazole derivatives, benzothiazole derivatives, quinoline derivatives, oligopyridine derivatives such as terpyridine, bipyridine derivatives, terpyridine derivatives (1,3-bis (4 '-(2,2': 6'2 "-terpyridinyl)) benzene and the like, naphthyridine derivatives (bis (1-naphthyl) -4- (1,8-naphthyridin-2-yl) phenylphosphine oxide and the like), aldazine Derivatives, carbazole derivatives, in Lumpur derivatives, phosphorus oxide derivatives, such as bis-styryl derivatives.
 また、電子受容性窒素を有する金属錯体を用いることもでき、例えば、キノリノール系金属錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などが挙げられる。 In addition, a metal complex having an electron-accepting nitrogen can also be used.Examples thereof include a hydroxyazole complex such as a quinolinol-based metal complex and a hydroxyphenyloxazole complex, an azomethine complex, a tropolone metal complex, a flavonol metal complex, and a benzoquinoline metal complex. No.
 上述した材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。 材料 The above-mentioned materials may be used alone, but may be used in combination with different materials.
 上述した材料の中でも、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、カルバゾール誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体、およびキノリノール系金属錯体が好ましい。 Among the above-mentioned materials, borane derivatives, pyridine derivatives, fluoranthene derivatives, BO derivatives, anthracene derivatives, benzofluorene derivatives, phosphine oxide derivatives, pyrimidine derivatives, carbazole derivatives, triazine derivatives, benzimidazole derivatives, phenanthroline derivatives, and quinolinol-based metals Complexes are preferred.
<ボラン誘導体>
 ボラン誘導体は、例えば下記一般式(ETM-1)で表される化合物であり、詳細には特開2007-27587号公報に開示されている。
Figure JPOXMLDOC01-appb-C000262
 上記式(ETM-1)中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよいアリーレンであり、Yは、置換されていてもよい炭素数16以下のアリール、置換されているボリル、または置換されていてもよいカルバゾリルであり、そして、nはそれぞれ独立して0~3の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどが挙げられる。
<Borane derivative>
The borane derivative is, for example, a compound represented by the following general formula (ETM-1), and is disclosed in detail in JP-A-2007-27587.
Figure JPOXMLDOC01-appb-C000262
In the above formula (ETM-1), R 11 and R 12 are each independently hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, Or at least one of cyano, R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl, and X is an optionally substituted arylene Wherein Y is an optionally substituted aryl having 16 or less carbon atoms, a substituted boryl, or an optionally substituted carbazolyl, and n is each independently an integer of 0-3. is there. In addition, examples of the substituent when “optionally substituted” or “substituted” include aryl, heteroaryl, alkyl and cycloalkyl.
 上記一般式(ETM-1)で表される化合物の中でも、下記一般式(ETM-1-1)で表される化合物や下記一般式(ETM-1-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000263
 式(ETM-1-1)中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、R21およびR22は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、nはそれぞれ独立して0~3の整数であり、そして、mはそれぞれ独立して0~4の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどが挙げられる。
Figure JPOXMLDOC01-appb-C000264
 式(ETM-1-2)中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、そして、nはそれぞれ独立して0~3の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどが挙げられる。
Among the compounds represented by the general formula (ETM-1), a compound represented by the following general formula (ETM-1-1) or a compound represented by the following general formula (ETM-1-2) is preferable.
Figure JPOXMLDOC01-appb-C000263
In the formula (ETM-1-1), R 11 and R 12 are each independently hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle. R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl, and R 21 and R 22 are each independently And is at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano, and X 1 is optionally substituted A good arylene having 20 or less carbon atoms, n is each independently an integer of 0 to 3, and m is each independently an integer of 0 to 4. In addition, examples of the substituent when “optionally substituted” or “substituted” include aryl, heteroaryl, alkyl and cycloalkyl.
Figure JPOXMLDOC01-appb-C000264
In the formula (ETM-1-2), R 11 and R 12 are each independently hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle. Or at least one of cyano, and R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl, and X 1 is optionally substituted It is a good arylene having 20 or less carbon atoms, and n is each independently an integer of 0 to 3. In addition, examples of the substituent when “optionally substituted” or “substituted” include aryl, heteroaryl, alkyl and cycloalkyl.
 Xの具体的な例としては、下記式(X-1)~式(X-9)のいずれかで表される2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000265
(各式中、Rは、それぞれ独立してアルキル基または置換されていてもよいフェニル基である。)
Specific examples of X 1 include divalent groups represented by any of the following formulas (X-1) to (X-9).
Figure JPOXMLDOC01-appb-C000265
(In each formula, Ra is each independently an alkyl group or an optionally substituted phenyl group.)
 このボラン誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000266
Specific examples of the borane derivative include the following.
Figure JPOXMLDOC01-appb-C000266
 このボラン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This borane derivative can be produced using a known raw material and a known synthesis method.
<ピリジン誘導体>
 ピリジン誘導体は、例えば下記式(ETM-2)で表される化合物であり、好ましくは式(ETM-2-1)または式(ETM-2-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000267
<Pyridine derivative>
The pyridine derivative is, for example, a compound represented by the following formula (ETM-2), preferably a compound represented by formula (ETM-2-1) or (ETM-2-2).
Figure JPOXMLDOC01-appb-C000267
 φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数である。 φ is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4. is there.
 上記式(ETM-2-1)において、R11~R18は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)である。 In the above formula (ETM-2-1), R 11 to R 18 are each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) Alkyl) or aryl (preferably aryl having 6 to 30 carbon atoms).
 上記式(ETM-2-2)において、R11およびR12は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)であり、R11およびR12は結合して環を形成していてもよい。 In the above formula (ETM-2-2), R 11 and R 12 are each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) Alkyl) or aryl (preferably aryl having 6 to 30 carbon atoms), and R 11 and R 12 may combine to form a ring.
 各式において、「ピリジン系置換基」は、下記式(Py-1)~式(Py-15)のいずれかであり、ピリジン系置換基はそれぞれ独立して炭素数1~4のアルキルで置換されていてもよい。また、ピリジン系置換基はフェニレン基やナフチレン基を介して各式におけるφ、アントラセン環またはフルオレン環に結合していてもよい。 In each formula, the “pyridine-based substituent” is any of the following formulas (Py-1) to (Py-15), and the pyridine-based substituents are each independently substituted with alkyl having 1 to 4 carbon atoms. It may be. Further, the pyridine-based substituent may be bonded to φ, an anthracene ring or a fluorene ring in each formula via a phenylene group or a naphthylene group.
Figure JPOXMLDOC01-appb-C000268
Figure JPOXMLDOC01-appb-C000268
 ピリジン系置換基は、上記式(Py-1)~式(Py-15)のいずれかであるが、これらの中でも、下記式(Py-21)~式(Py-44)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000269
The pyridine-based substituent is any of the above formulas (Py-1) to (Py-15), and among them, any of the following formulas (Py-21) to (Py-44) Is preferred.
Figure JPOXMLDOC01-appb-C000269
 各ピリジン誘導体における少なくとも1つの水素が重水素で置換されていてもよく、また、上記式(ETM-2-1)および式(ETM-2-2)における2つの「ピリジン系置換基」のうちの一方はアリールで置き換えられていてもよい。 At least one hydrogen in each pyridine derivative may be substituted with deuterium, and among the two “pyridine-based substituents” in the above formula (ETM-2-1) and formula (ETM-2-2) May be replaced by an aryl.
 R11~R18における「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルが挙げられる。好ましい「アルキル」は、炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)である。より好ましい「アルキル」は、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)である。特に好ましい「アルキル」は、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)である。 The “alkyl” for R 11 to R 18 may be linear or branched, and includes, for example, linear alkyl having 1 to 24 carbons or branched alkyl having 3 to 24 carbons. Preferred “alkyl” is alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons). More preferred “alkyl” is alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons). More preferred “alkyl” is alkyl having 1 to 6 carbons (branched alkyl having 3 to 6 carbons). Particularly preferred “alkyl” is alkyl having 1 to 4 carbons (branched alkyl having 3 to 4 carbons).
 具体的な「アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどが挙げられる。 Specific “alkyl” includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, -Propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl, n-dodecyl, n-tridecyl, 1-hexylheptyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-he Tadeshiru, n- octadecyl, etc. n- eicosyl and the like.
 ピリジン系置換基に置換する炭素数1~4のアルキルとしては、上記アルキルの説明を引用することができる。 As the alkyl having 1 to 4 carbon atoms to be substituted with the pyridine-based substituent, the description of the above alkyl can be cited.
 R11~R18における「シクロアルキル」としては、例えば、炭素数3~12のシクロアルキルが挙げられる。好ましい「シクロアルキル」は、炭素数3~10のシクロアルキルである。より好ましい「シクロアルキル」は、炭素数3~8のシクロアルキルである。さらに好ましい「シクロアルキル」は、炭素数3~6のシクロアルキルである。
 具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどが挙げられる。
“Cycloalkyl” for R 11 to R 18 includes, for example, cycloalkyl having 3 to 12 carbon atoms. Preferred “cycloalkyl” is cycloalkyl having 3 to 10 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 8 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 6 carbon atoms.
Specific “cycloalkyl” includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, dimethylcyclohexyl and the like.
 R11~R18における「アリール」としては、好ましいアリールは炭素数6~30のアリールであり、より好ましいアリールは炭素数6~18のアリールであり、さらに好ましくは炭素数6~14のアリールであり、特に好ましくは炭素数6~12のアリールである。 As the “aryl” for R 11 to R 18 , preferred aryl is aryl having 6 to 30 carbon atoms, more preferred aryl is aryl having 6 to 18 carbon atoms, and still more preferred is aryl having 6 to 14 carbon atoms. And particularly preferably an aryl having 6 to 12 carbon atoms.
 具体的な「炭素数6~30のアリール」としては、単環系アリールであるフェニル、縮合二環系アリールである(1-,2-)ナフチル、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどが挙げられる。 Specific examples of "aryl having 6 to 30 carbon atoms" include phenyl which is a monocyclic aryl, (1-, 2-) naphthyl which is a fused bicyclic aryl, and acenaphthylene- (which is a fused tricyclic aryl. 1-, 3-, 4-, 5-) yl, fluoren- (1-, 2-, 3-, 4-, 9-) yl, phenalen- (1-, 2-) yl, (1-, 2 -, 3-, 4-, 9-) phenanthryl, fused tetracyclic aryl triphenylene- (1-, 2-) yl, pyrene- (1-, 2-, 4-) yl, naphthacene- (1- , 2-, 5-) yl, perylene- (1-, 2-, 3-) yl which is a fused pentacyclic aryl, pentacene- (1-, 2-, 5-, 6-) yl and the like. .
 好ましい「炭素数6~30のアリール」は、フェニル、ナフチル、フェナントリル、クリセニルまたはトリフェニレニルなどが挙げられ、さらに好ましくはフェニル、1-ナフチル、2-ナフチルまたはフェナントリルが挙げられ、特に好ましくはフェニル、1-ナフチルまたは2-ナフチルが挙げられる。 Preferred “aryl having 6 to 30 carbon atoms” include phenyl, naphthyl, phenanthryl, chrysenyl or triphenylenyl, more preferably phenyl, 1-naphthyl, 2-naphthyl or phenanthryl, and particularly preferably phenyl, -Naphthyl or 2-naphthyl.
 上記式(ETM-2-2)におけるR11およびR12は結合して環を形成していてもよく、この結果、フルオレン骨格の5員環には、シクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、フルオレンまたはインデンなどがスピロ結合していてもよい。 R 11 and R 12 in the above formula (ETM-2-2) may combine to form a ring, and as a result, the 5-membered ring of the fluorene skeleton has cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, Cyclohexane, fluorene or indene may be spiro-bonded.
 このピリジン誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000270
Specific examples of the pyridine derivative include, for example, the following.
Figure JPOXMLDOC01-appb-C000270
 このピリジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 ピ リ ジ ン This pyridine derivative can be produced using a known raw material and a known synthesis method.
<フルオランテン誘導体>
 フルオランテン誘導体は、例えば下記一般式(ETM-3)で表される化合物であり、詳細には国際公開第2010/134352号公報に開示されている。
Figure JPOXMLDOC01-appb-C000271
<Fluoranthene derivative>
The fluoranthene derivative is, for example, a compound represented by the following general formula (ETM-3), and is disclosed in detail in WO 2010/134352.
Figure JPOXMLDOC01-appb-C000271
 上記式(ETM-3)中、X12~X21は水素、ハロゲン、直鎖、分岐もしくは環状のアルキル、直鎖、分岐もしくは環状のアルコキシ、置換もしくは無置換のアリール、または置換もしくは無置換のヘテロアリールを表す。ここで、置換されている場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどが挙げられる。 In the above formula (ETM-3), X 12 to X 21 represent hydrogen, halogen, linear, branched or cyclic alkyl, linear, branched or cyclic alkoxy, substituted or unsubstituted aryl, or substituted or unsubstituted Represents heteroaryl. Here, when substituted, the substituent includes aryl, heteroaryl, alkyl, cycloalkyl and the like.
 このフルオランテン誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000272
Specific examples of the fluoranthene derivative include the following.
Figure JPOXMLDOC01-appb-C000272
<BO系誘導体>
 BO系誘導体は、例えば下記式(ETM-4)で表される多環芳香族化合物、または下記式(ETM-4)で表される構造を複数有する多環芳香族化合物の多量体である。
Figure JPOXMLDOC01-appb-C000273
<BO derivative>
The BO derivative is, for example, a polycyclic aromatic compound represented by the following formula (ETM-4) or a polymer of a polycyclic aromatic compound having a plurality of structures represented by the following formula (ETM-4).
Figure JPOXMLDOC01-appb-C000273
 R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。 R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, wherein at least one hydrogen is May be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
 また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。 Further, adjacent groups among R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, the b ring or the c ring, and at least one hydrogen atom in the formed ring May be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, wherein at least one hydrogen is aryl, heteroaryl, alkyl or It may be substituted with cycloalkyl.
 また、式(ETM-4)で表される化合物または構造における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよい。 Further, at least one hydrogen in the compound or structure represented by the formula (ETM-4) may be substituted with halogen or deuterium.
 式(ETM-4)における置換基や環形成の形態、また式(ETM-4)の構造が複数合わさってできる多量体の説明については、上記一般式(1)で表される多環芳香族化合物やその多量体の説明を引用することができる。 For the description of the substituent and the form of ring formation in the formula (ETM-4) and the multimer formed by combining a plurality of structures of the formula (ETM-4), the polycyclic aromatic compound represented by the above general formula (1) Descriptions of the compound and its multimer can be cited.
 このBO系誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000274
Specific examples of the BO derivative include the following.
Figure JPOXMLDOC01-appb-C000274
 このBO系誘導体は公知の原料と公知の合成方法を用いて製造することができる。 B This BO derivative can be produced using a known raw material and a known synthesis method.
<アントラセン誘導体>
 アントラセン誘導体の一つは、例えば下記式(ETM-5-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000275
<Anthracene derivative>
One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-1).
Figure JPOXMLDOC01-appb-C000275
 Arは、それぞれ独立して、2価のベンゼンまたはナフタレンであり、R~Rは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3から6のシクロアルキルまたは炭素数6~20のアリールである。 Ar is each independently divalent benzene or naphthalene; R 1 to R 4 are each independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons or carbon 6-20 aryls.
 Arは、それぞれ独立して、2価のベンゼンまたはナフタレンから適宜選択することができ、2つのArが異なっていても同じであってもよいが、アントラセン誘導体の合成の容易さの観点からは同じであることが好ましい。Arはピリジンと結合して、「Arおよびピリジンからなる部位」を形成しており、この部位は例えば下記式(Py-1)~式(Py-12)のいずれかで表される基としてアントラセンに結合している。 Ar can be independently selected from divalent benzene or naphthalene as appropriate, and the two Ars may be different or the same, but are the same from the viewpoint of ease of synthesis of the anthracene derivative. It is preferred that Ar is bonded to pyridine to form a “site consisting of Ar and pyridine”, and this site is an anthracene as a group represented by any of the following formulas (Py-1) to (Py-12). Is bound to.
Figure JPOXMLDOC01-appb-C000276
Figure JPOXMLDOC01-appb-C000276
 これらの基の中でも、上記式(Py-1)~式(Py-9)のいずれかで表される基が好ましく、上記式(Py-1)~式(Py-6)のいずれかで表される基がより好ましい。アントラセンに結合する2つの「Arおよびピリジンからなる部位」は、その構造が同じであっても異なっていてもよいが、アントラセン誘導体の合成の容易さの観点からは同じ構造であることが好ましい。ただし、素子特性の観点からは、2つの「Arおよびピリジンからなる部位」の構造が同じであっても異なっていても好ましい。 Among these groups, a group represented by any of the above formulas (Py-1) to (Py-9) is preferable, and a group represented by any of the above formulas (Py-1) to (Py-6) is preferable. Are more preferred. The two “sites composed of Ar and pyridine” bonded to anthracene may have the same or different structures, but preferably have the same structure from the viewpoint of easy synthesis of an anthracene derivative. However, from the viewpoint of device characteristics, it is preferable that the two “sites composed of Ar and pyridine” have the same or different structures.
 R~Rにおける炭素数1~6のアルキルについては直鎖および分岐鎖のいずれでもよい。すなわち、炭素数1~6の直鎖アルキルまたは炭素数3~6の分岐鎖アルキルである。より好ましくは、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)である。具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、または2-エチルブチルなどが挙げられ、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、またはt-ブチルが好ましく、メチル、エチル、またはt-ブチルがより好ましい。 The alkyl having 1 to 6 carbon atoms in R 1 to R 4 may be linear or branched. That is, it is a straight-chain alkyl having 1 to 6 carbons or a branched alkyl having 3 to 6 carbons. More preferably, it is an alkyl having 1 to 4 carbons (a branched alkyl having 3 to 4 carbons). Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, or 2-ethylbutyl; and the like, preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, or t-butyl , Methyl, ethyl, or t-butyl are more preferred.
 R~Rにおける炭素数3~6のシクロアルキルの具体例としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどが挙げられる。 Specific examples of the cycloalkyl having 3 to 6 carbon atoms for R 1 to R 4 include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, dimethylcyclohexyl and the like.
 R~Rにおける炭素数6~20のアリールについては、炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。 The aryl having 6 to 20 carbon atoms in R 1 to R 4 is preferably an aryl having 6 to 16 carbon atoms, more preferably an aryl having 6 to 12 carbon atoms, and particularly preferably an aryl having 6 to 10 carbon atoms.
 「炭素数6~20のアリール」の具体例としては、単環系アリールであるフェニル、(o-,m-,p-)トリル、(2,3-,2,4-,2,5-,2,6-,3,4-,3,5-)キシリル、メシチル(2,4,6-トリメチルフェニル)、(o-,m-,p-)クメニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アントラセン-(1-,2-,9-)イル、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、テトラセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イルなどが挙げられる。 Specific examples of "aryl having 6 to 20 carbon atoms" include phenyl which is a monocyclic aryl, (o-, m-, p-) tolyl, (2,3-, 2,4-, 2,5- , 2,6-, 3,4-, 3,5-) xylyl, mesityl (2,4,6-trimethylphenyl), (o-, m-, p-) cumenyl and bicyclic aryl (2 -, 3-, 4-) biphenylyl, condensed bicyclic aryl (1-, 2-) naphthyl, tricyclic aryl terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4 '-Yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o-terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2 -Yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphe Ru-2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl ), Fused anthracene- (1-, 2-, 9-) yl, acenaphthylene- (1-, 3-, 4-, 5-) yl, fluorene- (1-, 2-, 3-, 4-, 9-) yl, phenalen- (1-, 2-) yl, (1-, 2-, 3-, 4-, 9-) phenanthryl, triphenylene- (which is a fused tetracyclic aryl 1-, 2-) yl, pyrene- (1-, 2-, 4-) yl, tetracene- (1-, 2-, 5-) yl, perylene- (1-, 2) which is a fused pentacyclic aryl -, 3-) yl and the like.
 好ましい「炭素数6~20のアリール」は、フェニル、ビフェニリル、テルフェニリルまたはナフチルであり、より好ましくは、フェニル、ビフェニリル、1-ナフチル、2-ナフチルまたはm-テルフェニル-5’-イルであり、さらに好ましくは、フェニル、ビフェニリル、1-ナフチルまたは2-ナフチルであり、最も好ましくはフェニルである。 Preferred "aryl having 6 to 20 carbon atoms" is phenyl, biphenylyl, terphenylyl or naphthyl, more preferably phenyl, biphenylyl, 1-naphthyl, 2-naphthyl or m-terphenyl-5'-yl, More preferably, it is phenyl, biphenylyl, 1-naphthyl or 2-naphthyl, most preferably phenyl.
 アントラセン誘導体の一つは、例えば下記式(ETM-5-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000277
One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-2).
Figure JPOXMLDOC01-appb-C000277
 Arは、それぞれ独立して、単結合、2価のベンゼン、ナフタレン、アントラセン、フルオレン、またはフェナレンである。 Ar 1 is each independently a single bond, divalent benzene, naphthalene, anthracene, fluorene, or phenalene.
 Arは、それぞれ独立して、炭素数6~20のアリールであり、上記式(ETM-5-1)における「炭素数6~20のアリール」と同じ説明を引用することができる。炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。具体例としては、フェニル、ビフェニリル、ナフチル、テルフェニリル、アントラセニル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、テトラセニル、ペリレニルなどが挙げられる。 Ar 2 is independently aryl having 6 to 20 carbon atoms, and the same description as “aryl having 6 to 20 carbon atoms” in the above formula (ETM-5-1) can be referred to. An aryl having 6 to 16 carbon atoms is preferable, an aryl having 6 to 12 carbon atoms is more preferable, and an aryl having 6 to 10 carbon atoms is particularly preferable. Specific examples include phenyl, biphenylyl, naphthyl, terphenylyl, anthracenyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, tetracenyl, perylenyl and the like.
 R~Rは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3から6のシクロアルキルまたは炭素数6~20のアリールであり、上記式(ETM-5-1)における説明を引用することができる。 R 1 to R 4 are each independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons or aryl having 6 to 20 carbons, and the above formula (ETM-5-1) Can be cited.
 これらのアントラセン誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000278
Specific examples of these anthracene derivatives include, for example, the following.
Figure JPOXMLDOC01-appb-C000278
 これらのアントラセン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 These anthracene derivatives can be produced using known raw materials and known synthesis methods.
<ベンゾフルオレン誘導体>
 ベンゾフルオレン誘導体は、例えば下記式(ETM-6)で表される化合物である。
Figure JPOXMLDOC01-appb-C000279
<Benzofluorene derivative>
The benzofluorene derivative is, for example, a compound represented by the following formula (ETM-6).
Figure JPOXMLDOC01-appb-C000279
 Arは、それぞれ独立して、炭素数6~20のアリールであり、上記式(ETM-5-1)における「炭素数6~20のアリール」と同じ説明を引用することができる。炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。具体例としては、フェニル、ビフェニリル、ナフチル、テルフェニリル、アントラセニル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、テトラセニル、ペリレニルなどが挙げられる。 Ar 1 is independently aryl having 6 to 20 carbon atoms, and the same description as “aryl having 6 to 20 carbon atoms” in the above formula (ETM-5-1) can be cited. An aryl having 6 to 16 carbon atoms is preferable, an aryl having 6 to 12 carbon atoms is more preferable, and an aryl having 6 to 10 carbon atoms is particularly preferable. Specific examples include phenyl, biphenylyl, naphthyl, terphenylyl, anthracenyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, tetracenyl, perylenyl and the like.
 Arは、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)であり、2つのArは結合して環を形成していてもよい。 Ar 2 is each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbons), cycloalkyl (preferably cycloalkyl having 3 to 12 carbons) or aryl (preferably aryl having 6 to 30 carbons) ), And the two Ar 2 may combine to form a ring.
 Arにおける「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルが挙げられる。好ましい「アルキル」は、炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)である。より好ましい「アルキル」は、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)である。特に好ましい「アルキル」は、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)である。具体的な「アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシルなどが挙げられる。 The “alkyl” in Ar 2 may be either linear or branched, and includes, for example, linear alkyl having 1 to 24 carbons or branched alkyl having 3 to 24 carbons. Preferred “alkyl” is alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons). More preferred “alkyl” is alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons). More preferred “alkyl” is alkyl having 1 to 6 carbons (branched alkyl having 3 to 6 carbons). Particularly preferred “alkyl” is alkyl having 1 to 4 carbons (branched alkyl having 3 to 4 carbons). Specific “alkyl” includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl and the like.
 Arにおける「シクロアルキル」としては、例えば、炭素数3~12のシクロアルキルが挙げられる。好ましい「シクロアルキル」は、炭素数3~10のシクロアルキルである。より好ましい「シクロアルキル」は、炭素数3~8のシクロアルキルである。さらに好ましい「シクロアルキル」は、炭素数3~6のシクロアルキルである。具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどが挙げられる。 The “cycloalkyl” in Ar 2 includes, for example, cycloalkyl having 3 to 12 carbon atoms. Preferred “cycloalkyl” is cycloalkyl having 3 to 10 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 8 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 6 carbon atoms. Specific “cycloalkyl” includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, dimethylcyclohexyl and the like.
 Arにおける「アリール」としては、好ましいアリールは炭素数6~30のアリールであり、より好ましいアリールは炭素数6~18のアリールであり、さらに好ましくは炭素数6~14のアリールであり、特に好ましくは炭素数6~12のアリールである。 As the “aryl” in Ar 2 , a preferred aryl is an aryl having 6 to 30 carbon atoms, a more preferred aryl is an aryl having 6 to 18 carbon atoms, and further preferably an aryl having 6 to 14 carbon atoms. Preferably, it is an aryl having 6 to 12 carbon atoms.
 具体的な「炭素数6~30のアリール」としては、フェニル、ナフチル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、ナフタセニル、ペリレニル、ペンタセニルなどが挙げられる。 Specific “aryl having 6 to 30 carbon atoms” includes phenyl, naphthyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, naphthacenyl, perylenyl, pentacenyl and the like.
 2つのArは結合して環を形成していてもよく、この結果、フルオレン骨格の5員環には、シクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、フルオレンまたはインデンなどがスピロ結合していてもよい。 Two Ar 2 may form a ring, as a result, the 5-membered ring of the fluorene skeleton, cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, fluorene or indene are spiro-linked You may.
 このベンゾフルオレン誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000280
Specific examples of the benzofluorene derivative include, for example, the following.
Figure JPOXMLDOC01-appb-C000280
 このベンゾフルオレン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 ベ ン ゾ This benzofluorene derivative can be produced using a known raw material and a known synthesis method.
<ホスフィンオキサイド誘導体>
 ホスフィンオキサイド誘導体は、例えば下記式(ETM-7-1)で表される化合物である。詳細は国際公開第2013/079217号公報にも記載されている。
Figure JPOXMLDOC01-appb-C000281
 Rは、置換または無置換の、炭素数1~20のアルキル、炭素数6~20のアリールまたは炭素数5~20のヘテロアリールであり、
 Rは、CN、置換または無置換の、炭素数1~20のアルキル、炭素数1~20のヘテロアルキル、炭素数6~20のアリール、炭素数5~20のヘテロアリール、炭素数1~20のアルコキシまたは炭素数6~20のアリールオキシであり、
 RおよびRは、それぞれ独立して、置換または無置換の、炭素数6~20のアリールまたは炭素数5~20のヘテロアリールであり、
 Rは酸素または硫黄であり、
 jは0または1であり、kは0または1であり、rは0~4の整数であり、qは1~3の整数である。
 ここで、置換されている場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどが挙げられる。
<Phosphine oxide derivative>
The phosphine oxide derivative is, for example, a compound represented by the following formula (ETM-7-1). The details are also described in WO2013 / 079217.
Figure JPOXMLDOC01-appb-C000281
R 5 is a substituted or unsubstituted alkyl having 1 to 20 carbons, an aryl having 6 to 20 carbons or a heteroaryl having 5 to 20 carbons,
R 6 is CN, substituted or unsubstituted alkyl having 1 to 20 carbons, heteroalkyl having 1 to 20 carbons, aryl having 6 to 20 carbons, heteroaryl having 5 to 20 carbons, 1 to carbons 20 alkoxy or aryloxy having 6 to 20 carbon atoms,
R 7 and R 8 are each independently a substituted or unsubstituted aryl having 6 to 20 carbons or a heteroaryl having 5 to 20 carbons,
R 9 is oxygen or sulfur;
j is 0 or 1, k is 0 or 1, r is an integer of 0 to 4, and q is an integer of 1 to 3.
Here, when substituted, the substituent includes aryl, heteroaryl, alkyl, cycloalkyl and the like.
 ホスフィンオキサイド誘導体は、例えば下記式(ETM-7-2)で表される化合物でもよい。
Figure JPOXMLDOC01-appb-C000282
The phosphine oxide derivative may be, for example, a compound represented by the following formula (ETM-7-2).
Figure JPOXMLDOC01-appb-C000282
 R~Rは、同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、アミノ基、ニトロ基、シリル基、および隣接置換基との間に形成される縮合環の中から選ばれる。 R 1 to R 3 may be the same or different, and include hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an arylether group, and an arylthioether group. , An aryl group, a heterocyclic group, a halogen, a cyano group, an aldehyde group, a carbonyl group, a carboxyl group, an amino group, a nitro group, a silyl group, and a condensed ring formed between adjacent substituents.
 Arは、同じでも異なっていてもよく、アリーレン基またはヘテロアリーレン基である。Arは、同じでも異なっていてもよく、アリール基またはヘテロアリール基である。ただし、ArおよびArのうち少なくとも一方は置換基を有しているか、または隣接置換基との間に縮合環を形成している。nは0~3の整数であり、nが0のとき不飽和構造部分は存在せず、nが3のときR1は存在しない。 Ar 1 may be the same or different and is an arylene group or a heteroarylene group. Ar 2 may be the same or different and is an aryl group or a heteroaryl group. However, at least one of Ar 1 and Ar 2 has a substituent or forms a condensed ring with an adjacent substituent. n is an integer of 0 to 3. When n is 0, there is no unsaturated structure part, and when n is 3, R 1 does not exist.
 これらの置換基の内、アルキル基とは、例えば、メチル基、エチル基、プロピル基、ブチル基などの飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。置換されている場合の置換基には特に制限は無く、例えば、アルキル基、アリール基、複素環基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、通常、1~20の範囲である。 ア ル キ ル Of these substituents, the alkyl group means a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group, and a butyl group, which may be unsubstituted or substituted. When substituted, the substituent is not particularly limited, and examples thereof include an alkyl group, an aryl group, and a heterocyclic group. This point is also common to the following description. The number of carbon atoms in the alkyl group is not particularly limited, but is usually in the range of 1 to 20 from the viewpoint of availability and cost.
 また、シクロアルキル基とは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキル基部分の炭素数は特に限定されないが、通常、3~20の範囲である。 Further, the cycloalkyl group refers to, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, and adamantyl, which may be unsubstituted or substituted. The number of carbon atoms in the alkyl group is not particularly limited, but is usually in the range of 3 to 20.
 また、アラルキル基とは、例えば、ベンジル基、フェニルエチル基などの脂肪族炭化水素を介した芳香族炭化水素基を示し、脂肪族炭化水素と芳香族炭化水素はいずれも無置換でも置換されていてもかまわない。脂肪族部分の炭素数は特に限定されないが、通常、1~20の範囲である。 The aralkyl group refers to, for example, an aromatic hydrocarbon group via an aliphatic hydrocarbon such as a benzyl group and a phenylethyl group, and both the aliphatic hydrocarbon and the aromatic hydrocarbon are unsubstituted or substituted. It doesn't matter. The carbon number of the aliphatic moiety is not particularly limited, but is usually in the range of 1 to 20.
 また、アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルケニル基の炭素数は特に限定されないが、通常、2~20の範囲である。 ア ル ケ ニ Alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group and a butadienyl group, which may be unsubstituted or substituted. The number of carbon atoms in the alkenyl group is not particularly limited, but is usually in the range of 2 to 20.
 また、シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセン基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。 The cycloalkenyl group refers to, for example, an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, and a cyclohexene group, which may be unsubstituted or substituted. I don't care.
 また、アルキニル基とは、例えば、アセチレニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキニル基の炭素数は特に限定されないが、通常、2~20の範囲である。 ア ル Alkynyl group means, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an acetylenyl group, which may be unsubstituted or substituted. The number of carbon atoms in the alkynyl group is not particularly limited, but is usually in the range of 2 to 20.
 また、アルコキシ基とは、例えば、メトキシ基などのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。アルコキシ基の炭素数は特に限定されないが、通常、1~20の範囲である。 ア ル コ キ シ Alkoxy group means, for example, an aliphatic hydrocarbon group via an ether bond such as a methoxy group, and the aliphatic hydrocarbon group may be unsubstituted or substituted. Although the carbon number of the alkoxy group is not particularly limited, it is usually in the range of 1 to 20.
 また、アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換された基である。 ア ル キ ル Alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted by a sulfur atom.
 また、アリールエーテル基とは、例えば、フェノキシ基などのエーテル結合を介した芳香族炭化水素基を示し、芳香族炭化水素基は無置換でも置換されていてもかまわない。アリールエーテル基の炭素数は特に限定されないが、通常、6~40の範囲である。 The aryl ether group refers to, for example, an aromatic hydrocarbon group via an ether bond such as a phenoxy group, and the aromatic hydrocarbon group may be unsubstituted or substituted. The number of carbon atoms in the aryl ether group is not particularly limited, but is usually in the range of 6 to 40.
 また、アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換された基である。 ア リ ー ル The arylthioether group is a group in which an oxygen atom of an ether bond of the arylether group is substituted with a sulfur atom.
 また、アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、テルフェニル基、ピレニル基などの芳香族炭化水素基を示す。アリール基は、無置換でも置換されていてもかまわない。アリール基の炭素数は特に限定されないが、通常、6~40の範囲である。 ア リ ー ル The aryl group means, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, and a pyrenyl group. The aryl group may be unsubstituted or substituted. The carbon number of the aryl group is not particularly limited, but is usually in the range of 6 to 40.
 また、複素環基とは、例えば、フラニル基、チオフェニル基、オキサゾリル基、ピリジル基、キノリニル基、カルバゾリル基などの炭素以外の原子を有する環状構造基を示し、これは無置換でも置換されていてもかまわない。複素環基の炭素数は特に限定されないが、通常、2~30の範囲である。 Further, the heterocyclic group refers to, for example, a cyclic structure group having an atom other than carbon, such as a furanyl group, a thiophenyl group, an oxazolyl group, a pyridyl group, a quinolinyl group, and a carbazolyl group. It doesn't matter. The carbon number of the heterocyclic group is not particularly limited, but is usually in the range of 2 to 30.
 ハロゲンとは、フッ素、塩素、臭素、ヨウ素を示す。 Halogen refers to fluorine, chlorine, bromine and iodine.
 アルデヒド基、カルボニル基、アミノ基には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環などで置換された基も含むことができる。 The aldehyde group, carbonyl group, and amino group may also include groups substituted with an aliphatic hydrocarbon, an alicyclic hydrocarbon, an aromatic hydrocarbon, a heterocyclic ring, and the like.
 また、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環は無置換でも置換されていてもかまわない。 脂肪 Alternatively, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, and heterocycles may be unsubstituted or substituted.
 シリル基とは、例えば、トリメチルシリル基などのケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。シリル基の炭素数は特に限定されないが、通常、3~20の範囲である。また、ケイ素数は、通常、1~6である。 The term "silyl group" means a silicon compound group such as a trimethylsilyl group, which may be unsubstituted or substituted. Although the carbon number of the silyl group is not particularly limited, it is usually in the range of 3 to 20. Further, the number of silicon is usually 1 to 6.
 隣接置換基との間に形成される縮合環とは、例えば、ArとR、ArとR、ArとR、ArとR、RとR、ArとAr等の間で形成された共役または非共役の縮合環である。ここで、nが1の場合、2つのR同士で共役または非共役の縮合環を形成してもよい。これら縮合環は、環内構造に窒素、酸素、硫黄原子を含んでいてもよいし、さらに別の環と縮合してもよい。 The condensed ring formed between adjacent substituents is, for example, Ar 1 and R 2 , Ar 1 and R 3 , Ar 2 and R 2 , Ar 2 and R 3 , R 2 and R 3 , Ar 1 and It is a conjugated or non-conjugated fused ring formed between Ar 2 and the like. Here, when n is 1, may be formed conjugated or non-conjugated fused ring with two of R 1 each other. These condensed rings may contain nitrogen, oxygen and sulfur atoms in the ring structure, or may be condensed with another ring.
 このホスフィンオキサイド誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000283
Specific examples of the phosphine oxide derivative include the following.
Figure JPOXMLDOC01-appb-C000283
 このホスフィンオキサイド誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This phosphine oxide derivative can be produced using a known raw material and a known synthesis method.
<ピリミジン誘導体>
 ピリミジン誘導体は、例えば下記式(ETM-8)で表される化合物であり、好ましくは下記式(ETM-8-1)で表される化合物である。詳細は国際公開第2011/021689号公報にも記載されている。
Figure JPOXMLDOC01-appb-C000284
<Pyrimidine derivative>
The pyrimidine derivative is, for example, a compound represented by the following formula (ETM-8), and preferably a compound represented by the following formula (ETM-8-1). The details are also described in WO 2011/021689.
Figure JPOXMLDOC01-appb-C000284
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは1~4の整数であり、好ましくは1~3の整数であり、より好ましくは2または3である。 Ar is each independently an optionally substituted aryl or an optionally substituted heteroaryl. n is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 2 or 3.
 「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールが挙げられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。 The “aryl” of the “optionally substituted aryl” includes, for example, aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferably, it is an aryl having 6 to 12 carbon atoms.
 具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどが挙げられる Specific examples of “aryl” include phenyl which is a monocyclic aryl, (2-, 3-, 4-) biphenylyl which is a bicyclic aryl, and (1-, 2-) naphthyl which is a fused bicyclic aryl Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) Is a fused tricyclic aryl, acena Thylene- (1-, 3-, 4-, 5-) yl, fluoren- (1-, 2-, 3-, 4-, 9-) yl, phenalene- (1-, 2-) yl, (1 -, 2-, 3-, 4-, 9-) phenanthryl, quaterphenylyl (5'-phenyl-m-terphenyl-2-yl, 5'-phenyl-m-terphenyl which is a tetracyclic aryl) -3-yl, 5'-phenyl-m-terphenyl-4-yl, m-quaterphenylyl), triphenylene- (1-, 2-) yl which is a fused tetracyclic aryl, pyrene- (1- , 2-, 4-) yl, naphthacene- (1-, 2-, 5-) yl, perylene- (1-, 2-, 3-) yl which is a fused pentacyclic aryl, pentacene- (1-, 2-, 5-, 6-) yl and the like
 「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールが挙げられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。 The “heteroaryl” of the “optionally substituted heteroaryl” includes, for example, a heteroaryl having 2 to 30 carbon atoms, preferably a heteroaryl having 2 to 25 carbon atoms, and a heteroaryl having 2 to 20 carbon atoms. Aryl is more preferred, heteroaryl having 2 to 15 carbon atoms is still more preferred, and heteroaryl having 2 to 10 carbon atoms is particularly preferred. The heteroaryl includes, for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
 具体的なヘテロアリールとしては、例えば、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジニル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリニル、イソキノリニル、シンノリニル、キナゾリニル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサチイニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェナザシリニル、インドリジニル、フラニル、ベンゾフラニル、イソベンゾフラニル、ジベンゾフラニル、ナフトベンゾフラニル、チオフェニル、ベンゾチオフェニル、ジベンゾチオフェニル、ナフトベンゾチオフェニル、ベンゾホスホーリル、ジベンゾホスホーリル、ベンゾホスホールオキシド環の1価の基、ジベンゾホスホールオキシド環の1価の基、フラザニル、チアントレニル、インドロカルバゾリル、ベンゾインドロカルバゾリルおよびベンゾベンゾインドロカルバゾリルなどがあげられる。 Specific examples of the heteroaryl include, for example, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, isoindolyl, 1H-indazolyl, Benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, naphthyridinyl, prinyl, pteridinyl, carbazolyl, acridinyl, phenoxathinyl, phenoxazinyl, phenoxazinyll Fenazasilinyl, indolizinyl, furanyl, Benzofuranyl, isobenzofuranyl, dibenzofuranyl, naphthobenzofuranyl, thiophenyl, benzothiophenyl, dibenzothiophenyl, naphthobenzothiophenyl, benzophosphoryl, dibenzophosphoryl, monovalent of benzophosphoroxide ring Groups, monovalent groups of a dibenzophosphoroxide ring, flazanyl, thianthrenyl, indolocarbazolyl, benzoindolocarbazolyl, benzobenzoindolocarbazolyl and the like.
 また、上記アリールおよびヘテロアリールにおける少なくとも1つの水素は置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。 Also, at least one hydrogen in the above aryl and heteroaryl may be substituted, for example, each may be substituted with the above aryl and heteroaryl.
 このピリミジン誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000285
Specific examples of the pyrimidine derivative include, for example, the following.
Figure JPOXMLDOC01-appb-C000285
 このピリミジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This pyrimidine derivative can be produced using a known raw material and a known synthesis method.
<カルバゾール誘導体>
 カルバゾール誘導体は、例えば下記式(ETM-9)で表される化合物、またはそれが単結合などで複数結合した多量体である。詳細は米国公開公報2014/0197386号公報に記載されている。
Figure JPOXMLDOC01-appb-C000286
<Carbazole derivative>
The carbazole derivative is, for example, a compound represented by the following formula (ETM-9) or a multimer in which a plurality of the carbazole derivatives are bonded by a single bond or the like. The details are described in U.S. Publication No. 2014/0197386.
Figure JPOXMLDOC01-appb-C000286
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは独立して0~4の整数であり、好ましくは0~3の整数であり、より好ましくは0または1である。 Ar is each independently an optionally substituted aryl or an optionally substituted heteroaryl. n is independently an integer of 0 to 4, preferably an integer of 0 to 3, and more preferably 0 or 1.
 「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールが挙げられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。 The “aryl” of the “optionally substituted aryl” includes, for example, aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferably, it is an aryl having 6 to 12 carbon atoms.
 具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどが挙げられる Specific examples of “aryl” include phenyl which is a monocyclic aryl, (2-, 3-, 4-) biphenylyl which is a bicyclic aryl, and (1-, 2-) naphthyl which is a fused bicyclic aryl Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) Is a fused tricyclic aryl, acena Thylene- (1-, 3-, 4-, 5-) yl, fluoren- (1-, 2-, 3-, 4-, 9-) yl, phenalene- (1-, 2-) yl, (1 -, 2-, 3-, 4-, 9-) phenanthryl, quaterphenylyl (5'-phenyl-m-terphenyl-2-yl, 5'-phenyl-m-terphenyl which is a tetracyclic aryl) -3-yl, 5'-phenyl-m-terphenyl-4-yl, m-quaterphenylyl), triphenylene- (1-, 2-) yl which is a fused tetracyclic aryl, pyrene- (1- , 2-, 4-) yl, naphthacene- (1-, 2-, 5-) yl, perylene- (1-, 2-, 3-) yl which is a fused pentacyclic aryl, pentacene- (1-, 2-, 5-, 6-) yl and the like
 「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールが挙げられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。 The “heteroaryl” of the “optionally substituted heteroaryl” includes, for example, a heteroaryl having 2 to 30 carbon atoms, preferably a heteroaryl having 2 to 25 carbon atoms, and a heteroaryl having 2 to 20 carbon atoms. Aryl is more preferred, heteroaryl having 2 to 15 carbon atoms is still more preferred, and heteroaryl having 2 to 10 carbon atoms is particularly preferred. The heteroaryl includes, for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
 具体的なヘテロアリールとしては、例えば、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジニル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリニル、イソキノリニル、シンノリニル、キナゾリニル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサチイニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェナザシリニル、インドリジニル、フラニル、ベンゾフラニル、イソベンゾフラニル、ジベンゾフラニル、ナフトベンゾフラニル、チオフェニル、ベンゾチオフェニル、ジベンゾチオフェニル、ナフトベンゾチオフェニル、ベンゾホスホーリル、ジベンゾホスホーリル、ベンゾホスホールオキシド環の1価の基、ジベンゾホスホールオキシド環の1価の基、フラザニル、チアントレニル、インドロカルバゾリル、ベンゾインドロカルバゾリルおよびベンゾベンゾインドロカルバゾリルなどがあげられる。 Specific examples of the heteroaryl include, for example, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, isoindolyl, 1H-indazolyl, Benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, naphthyridinyl, prinyl, pteridinyl, carbazolyl, acridinyl, phenoxathinyl, phenoxazinyl, phenoxazinyll Fenazasilinyl, indolizinyl, furanyl, Benzofuranyl, isobenzofuranyl, dibenzofuranyl, naphthobenzofuranyl, thiophenyl, benzothiophenyl, dibenzothiophenyl, naphthobenzothiophenyl, benzophosphoryl, dibenzophosphoryl, monovalent of benzophosphoroxide ring Groups, monovalent groups of a dibenzophosphoroxide ring, flazanyl, thianthrenyl, indolocarbazolyl, benzoindolocarbazolyl, benzobenzoindolocarbazolyl and the like.
 また、上記アリールおよびヘテロアリールにおける少なくとも1つの水素は置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。 Also, at least one hydrogen in the above aryl and heteroaryl may be substituted, for example, each may be substituted with the above aryl and heteroaryl.
 カルバゾール誘導体は、上記式(ETM-9)で表される化合物が単結合などで複数結合した多量体であってもよい。この場合、単結合以外に、アリール環(好ましくは多価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)で結合されていてもよい。 The carbazole derivative may be a multimer in which a plurality of compounds represented by the above formula (ETM-9) are bonded by a single bond or the like. In this case, in addition to a single bond, they may be bonded by an aryl ring (preferably a polyvalent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring).
 このカルバゾール誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000287
Specific examples of the carbazole derivative include, for example, the following.
Figure JPOXMLDOC01-appb-C000287
 このカルバゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This carbazole derivative can be produced using a known raw material and a known synthesis method.
<トリアジン誘導体>
 トリアジン誘導体は、例えば下記式(ETM-10)で表される化合物であり、好ましくは下記式(ETM-10-1)で表される化合物である。詳細は米国公開公報2011/0156013号公報に記載されている。
Figure JPOXMLDOC01-appb-C000288
<Triazine derivative>
The triazine derivative is, for example, a compound represented by the following formula (ETM-10), and preferably a compound represented by the following formula (ETM-10-1). Details are described in U.S. Publication No. 2011/0156013.
Figure JPOXMLDOC01-appb-C000288
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは1~3の整数であり、好ましくは2または3である。 Ar is each independently an optionally substituted aryl or an optionally substituted heteroaryl. n is an integer of 1 to 3, and is preferably 2 or 3.
 「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールが挙げられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。 The “aryl” of the “optionally substituted aryl” includes, for example, aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferably, it is an aryl having 6 to 12 carbon atoms.
 具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどが挙げられる Specific examples of “aryl” include phenyl which is a monocyclic aryl, (2-, 3-, 4-) biphenylyl which is a bicyclic aryl, and (1-, 2-) naphthyl which is a fused bicyclic aryl Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) Is a fused tricyclic aryl, acena Thylene- (1-, 3-, 4-, 5-) yl, fluoren- (1-, 2-, 3-, 4-, 9-) yl, phenalene- (1-, 2-) yl, (1 -, 2-, 3-, 4-, 9-) phenanthryl, quaterphenylyl (5'-phenyl-m-terphenyl-2-yl, 5'-phenyl-m-terphenyl which is a tetracyclic aryl) -3-yl, 5'-phenyl-m-terphenyl-4-yl, m-quaterphenylyl), triphenylene- (1-, 2-) yl which is a fused tetracyclic aryl, pyrene- (1- , 2-, 4-) yl, naphthacene- (1-, 2-, 5-) yl, perylene- (1-, 2-, 3-) yl which is a fused pentacyclic aryl, pentacene- (1-, 2-, 5-, 6-) yl and the like
 「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールが挙げられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。 The “heteroaryl” of the “optionally substituted heteroaryl” includes, for example, a heteroaryl having 2 to 30 carbon atoms, preferably a heteroaryl having 2 to 25 carbon atoms, and a heteroaryl having 2 to 20 carbon atoms. Aryl is more preferred, heteroaryl having 2 to 15 carbon atoms is still more preferred, and heteroaryl having 2 to 10 carbon atoms is particularly preferred. The heteroaryl includes, for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
 具体的なヘテロアリールとしては、例えば、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジニル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリニル、イソキノリニル、シンノリニル、キナゾリニル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサチイニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェナザシリニル、インドリジニル、フラニル、ベンゾフラニル、イソベンゾフラニル、ジベンゾフラニル、ナフトベンゾフラニル、チオフェニル、ベンゾチオフェニル、ジベンゾチオフェニル、ナフトベンゾチオフェニル、ベンゾホスホーリル、ジベンゾホスホーリル、ベンゾホスホールオキシド環の1価の基、ジベンゾホスホールオキシド環の1価の基、フラザニル、チアントレニル、インドロカルバゾリル、ベンゾインドロカルバゾリルおよびベンゾベンゾインドロカルバゾリルなどがあげられる。 Specific examples of the heteroaryl include, for example, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, isoindolyl, 1H-indazolyl, Benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, naphthyridinyl, prinyl, pteridinyl, carbazolyl, acridinyl, phenoxathinyl, phenoxazinyl, phenoxazinyll Fenazasilinyl, indolizinyl, furanyl, Benzofuranyl, isobenzofuranyl, dibenzofuranyl, naphthobenzofuranyl, thiophenyl, benzothiophenyl, dibenzothiophenyl, naphthobenzothiophenyl, benzophosphoryl, dibenzophosphoryl, monovalent of benzophosphoroxide ring Groups, monovalent groups of a dibenzophosphoroxide ring, flazanyl, thianthrenyl, indolocarbazolyl, benzoindolocarbazolyl, benzobenzoindolocarbazolyl and the like.
 また、上記アリールおよびヘテロアリールにおける少なくとも1つの水素は置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。 Also, at least one hydrogen in the above aryl and heteroaryl may be substituted, for example, each may be substituted with the above aryl and heteroaryl.
 このトリアジン誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000289
Specific examples of the triazine derivative include, for example, the following.
Figure JPOXMLDOC01-appb-C000289
 このトリアジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This triazine derivative can be produced using a known raw material and a known synthesis method.
<ベンゾイミダゾール誘導体>
 ベンゾイミダゾール誘導体は、例えば下記式(ETM-11)で表される化合物である。
Figure JPOXMLDOC01-appb-C000290
<Benzimidazole derivative>
The benzimidazole derivative is, for example, a compound represented by the following formula (ETM-11).
Figure JPOXMLDOC01-appb-C000290
 φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数であり、「ベンゾイミダゾール系置換基」は、上記式(ETM-2)、式(ETM-2-1)および式(ETM-2-2)における「ピリジン系置換基」の中のピリジル基がベンゾイミダゾール基に置き換わった基であり、ベンゾイミダゾール誘導体における少なくとも1つの水素は重水素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000291
φ is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4. The “benzimidazole-based substituent” means that the pyridyl group in the “pyridine-based substituent” in the above formulas (ETM-2), (ETM-2-1) and (ETM-2-2) is benzo. It is a group replaced by an imidazole group, and at least one hydrogen in the benzimidazole derivative may be substituted with deuterium.
Figure JPOXMLDOC01-appb-C000291
 上記ベンゾイミダゾール基におけるR11は、水素、炭素数1~24のアルキル、炭素数3~12のシクロアルキルまたは炭素数6~30のアリールであり、上記式(ETM-2-1)および式(ETM-2-2)におけるR11の説明を引用することができる。 R 11 in the benzimidazole group is hydrogen, alkyl having 1 to 24 carbons, cycloalkyl having 3 to 12 carbons or aryl having 6 to 30 carbons, and is represented by the above formula (ETM-2-1) or ( It may be cited to the description of R 11 in ETM-2-2).
 φは、さらに、アントラセン環またはフルオレン環であることが好ましく、この場合の構造は上記式(ETM-2-1)または式(ETM-2-2)の構造を引用することができ、各式中のR11~R18は上記式(ETM-2-1)または式(ETM-2-2)での説明を引用することができる。また、上記式(ETM-2-1)または式(ETM-2-2)では2つのピリジン系置換基が結合した形態で説明されているが、これらをベンゾイミダゾール系置換基に置き換えるときには、両方のピリジン系置換基をベンゾイミダゾール系置換基で置き換えてもよいし(すなわちn=2)、いずれか1つのピリジン系置換基をベンゾイミダゾール系置換基で置き換えて他方のピリジン系置換基をR11~R18で置き換えてもよい(すなわちn=1)。さらに、例えば上記式(ETM-2-1)におけるR11~R18の少なくとも1つをベンゾイミダゾール系置換基で置き換えて「ピリジン系置換基」をR11~R18で置き換えてもよい。 φ is more preferably an anthracene ring or a fluorene ring, and in this case, the structure of the above formula (ETM-2-1) or the formula (ETM-2-2) can be referred to. For R 11 to R 18 therein, the description of the above formula (ETM-2-1) or (ETM-2-2) can be cited. In the above formula (ETM-2-1) or (ETM-2-2), two pyridine-based substituents are described as being bonded. However, when these are replaced with benzimidazole-based substituents, both are substituted. May be replaced with a benzimidazole-based substituent (that is, n = 2), or one of the pyridine-based substituents may be replaced with a benzimidazole-based substituent and the other pyridine-based substituent may be substituted with R 11 It may be replaced by ~ R 18 (i.e. n = 1). Further, for example, at least one of R 11 to R 18 in the above formula (ETM-2-1) may be replaced with a benzimidazole-based substituent, and the “pyridine-based substituent” may be replaced with R 11 to R 18 .
 このベンゾイミダゾール誘導体の具体例としては、例えば1-フェニル-2-(4-(10-フェニルアントラセン-9-イル)フェニル)-1H-ベンゾ[d]イミダゾール、2-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、5-(10-(ナフタレン-2-イル)アントラセン-9-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾール、1-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、2-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、1-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、5-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾールなどが挙げられる。
Figure JPOXMLDOC01-appb-C000292
Specific examples of the benzimidazole derivative include, for example, 1-phenyl-2- (4- (10-phenylanthracen-9-yl) phenyl) -1H-benzo [d] imidazole, 2- (4- (10- ( Naphthalen-2-yl) anthracen-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 2- (3- (10- (naphthalen-2-yl) anthracen-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 5- (10- (naphthalen-2-yl) anthracen-9-yl) -1,2-diphenyl-1H-benzo [d] imidazole, 1- (4 -(10- (naphthalen-2-yl) anthracen-9-yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 2- (4- (9,10 Di (naphthalen-2-yl) anthracen-2-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 1- (4- (9,10-di (naphthalen-2-yl) anthracene-2) -Yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 5- (9,10-di (naphthalen-2-yl) anthracen-2-yl) -1,2-diphenyl-1H-benzo [ d] Imidazole and the like.
Figure JPOXMLDOC01-appb-C000292
 このベンゾイミダゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This benzimidazole derivative can be produced using a known raw material and a known synthesis method.
<フェナントロリン誘導体>
 フェナントロリン誘導体は、例えば下記式(ETM-12)または式(ETM-12-1)で表される化合物である。詳細は国際公開2006/021982号公報に記載されている。
Figure JPOXMLDOC01-appb-C000293
<Phenanthroline derivative>
The phenanthroline derivative is, for example, a compound represented by the following formula (ETM-12) or (ETM-12-1). Details are described in WO 2006/021982.
Figure JPOXMLDOC01-appb-C000293
 φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数である。 φ is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4. is there.
 各式のR11~R18は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)である。また、上記式(ETM-12-1)においてはR11~R18のいずれかがアリール環であるφと結合する。 R 11 to R 18 in each formula are each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbons), cycloalkyl (preferably cycloalkyl having 3 to 12 carbons) or aryl (preferably carbon Aryl of formulas 6 to 30). In the above formula (ETM-12-1), any one of R 11 to R 18 bonds to φ which is an aryl ring.
 各フェナントロリン誘導体における少なくとも1つの水素が重水素で置換されていてもよい。 少 な く と も At least one hydrogen in each phenanthroline derivative may be replaced with deuterium.
 R11~R18におけるアルキル、シクロアルキルおよびアリールとしては、上記式(ETM-2)におけるR11~R18の説明を引用することができる。また、φは上記した構造のほかに、例えば、以下の構造式が挙げられる。なお、下記構造式中のRは、それぞれ独立して、水素、メチル、エチル、イソプロピル、シクロヘキシル、フェニル、1-ナフチル、2-ナフチル、ビフェニリルまたはテルフェニリルである。
Figure JPOXMLDOC01-appb-C000294
Alkyl in R 11 ~ R 18, cycloalkyl and aryl may be cited to the description of R 11 ~ R 18 in the formula (ETM-2). Φ is, for example, the following structural formula in addition to the above-mentioned structure. R in the following structural formulas is each independently hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl or terphenylyl.
Figure JPOXMLDOC01-appb-C000294
 このフェナントロリン誘導体の具体例としては、例えば4,7-ジフェニル-1,10-フェナントロリン、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、9,10-ジ(1,10-フェナントロリン-2-イル)アントラセン、2,6-ジ(1,10-フェナントロリン-5-イル)ピリジン、1,3,5-トリ(1,10-フェナントロリン-5-イル)ベンゼン、9,9’-ジフルオロ-ビ(1,10-フェナントロリン-5-イル)、バソクプロインや1,3-ビス(2-フェニル-1,10-フェナントロリン-9-イル)ベンゼンなどが挙げられる。
Figure JPOXMLDOC01-appb-C000295
Specific examples of the phenanthroline derivative include, for example, 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di (1,10- Phenanthroline-2-yl) anthracene, 2,6-di (1,10-phenanthroline-5-yl) pyridine, 1,3,5-tri (1,10-phenanthroline-5-yl) benzene, 9,9 ′ -Difluoro-bi (1,10-phenanthroline-5-yl), bathocuproine, 1,3-bis (2-phenyl-1,10-phenanthroline-9-yl) benzene and the like.
Figure JPOXMLDOC01-appb-C000295
 このフェナントロリン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This phenanthroline derivative can be produced using a known raw material and a known synthesis method.
<キノリノール系金属錯体>
 キノリノール系金属錯体は、例えば下記一般式(ETM-13)で表される化合物である。
Figure JPOXMLDOC01-appb-C000296
 式中、R~Rは、それぞれ独立して、水素、フッ素、アルキル、アラルキル、アルケニル、シアノ、アルコキシまたはアリールであり、MはLi、Al、Ga、BeまたはZnであり、nは1~3の整数である。
<Quinolinol-based metal complex>
The quinolinol-based metal complex is, for example, a compound represented by the following general formula (ETM-13).
Figure JPOXMLDOC01-appb-C000296
In the formula, R 1 to R 6 are each independently hydrogen, fluorine, alkyl, aralkyl, alkenyl, cyano, alkoxy or aryl, M is Li, Al, Ga, Be or Zn, and n is 1 It is an integer of 33.
 キノリノール系金属錯体の具体例としては、8-キノリノールリチウム、トリス(8-キノリノラート)アルミニウム、トリス(4-メチル-8-キノリノラート)アルミニウム、トリス(5-メチル-8-キノリノラート)アルミニウム、トリス(3,4-ジメチル-8-キノリノラート)アルミニウム、トリス(4,5-ジメチル-8-キノリノラート)アルミニウム、トリス(4,6-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(フェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,3-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,4-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,5,6-テトラメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(1-ナフトラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-ナフトラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-8-キノリノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2,4-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム、ビス(10-ヒドロキシベンゾ[h]キノリン)ベリリウムなどが挙げられる。 Specific examples of quinolinol-based metal complexes include 8-quinolinol lithium, tris (8-quinolinolate) aluminum, tris (4-methyl-8-quinolinolate) aluminum, tris (5-methyl-8-quinolinolate) aluminum, tris (3 , 4-Dimethyl-8-quinolinolate) aluminum, tris (4,5-dimethyl-8-quinolinolate) aluminum, tris (4,6-dimethyl-8-quinolinolate) aluminum, bis (2-methyl-8-quinolinolate) ( Phenolate) aluminum, bis (2-methyl-8-quinolinolate) (2-methylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (3-methylphenolate) aluminum, bis (2-methyl-8- Quinolinolate) (4- Butylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (2-phenylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (3-phenylphenolate) aluminum, bis (2-methyl- 8-quinolinolate) (4-phenylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (2,3-dimethylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (2,6-dimethyl Phenolate) aluminum, bis (2-methyl-8-quinolinolate) (3,4-dimethylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (3,5-dimethylphenolate) aluminum, bis (2 -Methyl-8-quinolinolate) (3,5-di-t- Tyl phenolate) aluminum, bis (2-methyl-8-quinolinolate) (2,6-diphenylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (2,4,6-triphenylphenolate) aluminum Bis (2-methyl-8-quinolinolate) (2,4,6-trimethylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (2,4,5,6-tetramethylphenolate) aluminum, Bis (2-methyl-8-quinolinolate) (1-naphtholate) aluminum, bis (2-methyl-8-quinolinolate) (2-naphtholate) aluminum, bis (2,4-dimethyl-8-quinolinolate) (2-phenyl Phenolate) aluminum, bis (2,4-dimethyl-8-quinolinoler) G) (3-phenylphenolate) aluminum, bis (2,4-dimethyl-8-quinolinolate) (4-phenylphenolate) aluminum, bis (2,4-dimethyl-8-quinolinolate) (3,5-dimethyl Phenolate) aluminum, bis (2,4-dimethyl-8-quinolinolate) (3,5-di-t-butylphenolato) aluminum, bis (2-methyl-8-quinolinolate) aluminum-μ-oxo-bis ( 2-methyl-8-quinolinolate) aluminum, bis (2,4-dimethyl-8-quinolinolate) aluminum-μ-oxo-bis (2,4-dimethyl-8-quinolinolate) aluminum, bis (2-methyl-4- Ethyl-8-quinolinolato) aluminum-μ-oxo-bis (2-methyl-4-ethyl- -Quinolinolate) aluminum, bis (2-methyl-4-methoxy-8-quinolinolate) aluminum-μ-oxo-bis (2-methyl-4-methoxy-8-quinolinolate) aluminum, bis (2-methyl-5-cyano) -8-quinolinolato) aluminum-μ-oxo-bis (2-methyl-5-cyano-8-quinolinolato) aluminum, bis (2-methyl-5-trifluoromethyl-8-quinolinolato) aluminum-μ-oxo-bis (2-methyl-5-trifluoromethyl-8-quinolinolate) aluminum and bis (10-hydroxybenzo [h] quinoline) beryllium.
 このキノリノール系金属錯体は公知の原料と公知の合成方法を用いて製造することができる。 This quinolinol-based metal complex can be produced using a known raw material and a known synthesis method.
<チアゾール誘導体およびベンゾチアゾール誘導体>
 チアゾール誘導体は、例えば下記式(ETM-14-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000297
 ベンゾチアゾール誘導体は、例えば下記式(ETM-14-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000298
<Thiazole derivative and benzothiazole derivative>
The thiazole derivative is, for example, a compound represented by the following formula (ETM-14-1).
Figure JPOXMLDOC01-appb-C000297
The benzothiazole derivative is, for example, a compound represented by the following formula (ETM-14-2).
Figure JPOXMLDOC01-appb-C000298
 各式のφは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数であり、「チアゾール系置換基」や「ベンゾチアゾール系置換基」は、上記式(ETM-2)、式(ETM-2-1)および式(ETM-2-2)における「ピリジン系置換基」の中のピリジル基がチアゾール基やベンゾチアゾール基に置き換わった基であり、チアゾール誘導体およびベンゾチアゾール誘導体における少なくとも1つの水素が重水素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000299
Φ in each formula is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is 1 to 4 In the formulas (ETM-2), (ETM-2-1) and (ETM-2-2), the “thiazole-based substituent” and “benzothiazole-based substituent” The pyridyl group in the “substituent” is a group in which a thiazole group or a benzothiazole group is substituted, and at least one hydrogen in the thiazole derivative and the benzothiazole derivative may be substituted with deuterium.
Figure JPOXMLDOC01-appb-C000299
 φは、さらに、アントラセン環またはフルオレン環であることが好ましく、この場合の構造は上記式(ETM-2-1)または式(ETM-2-2)の構造を引用することができ、各式中のR11~R18は上記式(ETM-2-1)または式(ETM-2-2)での説明を引用することができる。また、上記式(ETM-2-1)または式(ETM-2-2)では2つのピリジン系置換基が結合した形態で説明されているが、これらをチアゾール系置換基(またはベンゾチアゾール系置換基)に置き換えるときには、両方のピリジン系置換基をチアゾール系置換基(またはベンゾチアゾール系置換基)で置き換えてもよいし(すなわちn=2)、いずれか1つのピリジン系置換基をチアゾール系置換基(またはベンゾチアゾール系置換基)で置き換えて他方のピリジン系置換基をR11~R18で置き換えてもよい(すなわちn=1)。さらに、例えば上記式(ETM-2-1)におけるR11~R18の少なくとも1つをチアゾール系置換基(またはベンゾチアゾール系置換基)で置き換えて「ピリジン系置換基」をR11~R18で置き換えてもよい。 φ is more preferably an anthracene ring or a fluorene ring, and in this case, the structure of the above formula (ETM-2-1) or the formula (ETM-2-2) can be referred to. For R 11 to R 18 therein, the description of the above formula (ETM-2-1) or (ETM-2-2) can be cited. In the above formula (ETM-2-1) or (ETM-2-2), two pyridine-based substituents are described as being bonded, but these are replaced with thiazole-based substituents (or benzothiazole-based substituents). ), Both pyridine-based substituents may be replaced with thiazole-based substituents (or benzothiazole-based substituents) (that is, n = 2), or one of the pyridine-based substituents may be replaced with a thiazole-based substituent. Group (or benzothiazole-based substituent) and the other pyridine-based substituent may be replaced by R 11 to R 18 (ie, n = 1). Further, for example, by replacing at least one of R 11 to R 18 in the above formula (ETM-2-1) with a thiazole-based substituent (or benzothiazole-based substituent), the “pyridine-based substituent” is replaced with R 11 to R 18 May be replaced by
 これらのチアゾール誘導体またはベンゾチアゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。 These thiazole derivatives or benzothiazole derivatives can be produced using known raw materials and known synthesis methods.
 電子輸送層または電子注入層には、さらに、電子輸送層または電子注入層を形成する材料を還元できる物質を含んでいてもよい。この還元性物質は、一定の還元性を有する物質であれば、様々な物質が用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを好適に使用することができる。 The electron transport layer or the electron injection layer may further contain a substance capable of reducing a material forming the electron transport layer or the electron injection layer. As the reducing substance, various substances are used as long as the substance has a certain reducing property, for example, an alkali metal, an alkaline earth metal, a rare earth metal, an oxide of an alkali metal, a halide of an alkali metal, and an alkali metal. From the group consisting of earth metal oxides, alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, and rare earth metal organic complexes At least one selected can be suitably used.
 好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0~2.5eV)またはBa(同2.52eV)などのアルカリ土類金属が挙げられ、仕事関数が2.9eV以下の物質が特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。 Preferred reducing substances include alkali metals such as Na (2.36 eV), K (2.28 eV), Rb (2.16 eV) or Cs (1.95 eV), and Ca (2. eV). Alkaline earth metals such as 9 eV), Sr (2.0 to 2.5 eV) and Ba (2.52 eV), and a substance having a work function of 2.9 eV or less is particularly preferable. Among these, a more preferable reducing substance is an alkali metal of K, Rb or Cs, further preferably Rb or Cs, and most preferably Cs. These alkali metals have particularly high reducing ability, and by adding a relatively small amount to the material forming the electron transporting layer or the electron injecting layer, the emission luminance and the life of the organic EL device can be improved. Further, as a reducing substance having a work function of 2.9 eV or less, a combination of these two or more kinds of alkali metals is also preferable. Particularly, a combination containing Cs, for example, Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred. By containing Cs, the reduction ability can be efficiently exhibited, and by adding the material to the material forming the electron transport layer or the electron injection layer, the emission luminance and the life of the organic EL element can be improved.
 上述した電子輸注入層用材料および電子輸送層用材料は、これらに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物、もしくはその高分子架橋体、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物、もしくはそのペンダント型高分子架橋体としても、電子層用材料に用いることができる。この場合の反応性置換基としては、式(1)で表される多環芳香族化合物での説明を引用できる。
 このような高分子化合物および高分子架橋体の用途の詳細については後述する。
The material for the electron injecting layer and the material for the electron transporting layer described above may be a polymer compound obtained by polymerizing a reactive compound substituted with a reactive substituent as a monomer, or a polymer crosslinked body thereof, or A pendant polymer compound obtained by reacting a chain polymer with the reactive compound, or a pendant polymer crosslinked product thereof can also be used as a material for an electronic layer. As the reactive substituent in this case, the description of the polycyclic aromatic compound represented by the formula (1) can be cited.
Details of uses of such a polymer compound and a polymer crosslinked product will be described later.
2-7.有機電界発光素子における陰極
 陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たす。
2-7. The cathode in the organic electroluminescent device plays a role of injecting electrons into the light emitting layer 105 via the electron injection layer 107 and the electron transport layer.
 陰極108を形成する材料としては、電子を有機層に効率よく注入できる物質であれば特に限定されないが、陽極102を形成する材料と同様の材料を用いることができる。なかでも、スズ、インジウム、カルシウム、アルミニウム、銀、銅、ニッケル、クロム、金、白金、鉄、亜鉛、リチウム、ナトリウム、カリウム、セシウムおよびマグネシウムなどの金属またはそれらの合金(マグネシウム-銀合金、マグネシウム-インジウム合金、フッ化リチウム/アルミニウムなどのアルミニウム-リチウム合金など)などが好ましい。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は一般に大気中で不安定であることが多い。この点を改善するために、例えば、有機層に微量のリチウム、セシウムやマグネシウムをドーピングして、安定性の高い電極を使用する方法が知られている。その他のドーパントとしては、フッ化リチウム、フッ化セシウム、酸化リチウムおよび酸化セシウムのような無機塩も使用することができる。ただし、これらに限定されない。 材料 The material for forming the cathode 108 is not particularly limited as long as it is a substance capable of efficiently injecting electrons into the organic layer, but the same material as the material for forming the anode 102 can be used. Among them, metals such as tin, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium and magnesium or alloys thereof (magnesium-silver alloy, magnesium) -An indium alloy, an aluminum-lithium alloy such as lithium fluoride / aluminum, etc.). In order to improve the device characteristics by increasing the electron injection efficiency, lithium, sodium, potassium, cesium, calcium, magnesium or an alloy containing these low work function metals is effective. However, these low work function metals are generally often unstable in the atmosphere. In order to improve this point, for example, a method is known in which an organic layer is doped with a small amount of lithium, cesium, or magnesium to use a highly stable electrode. As other dopants, inorganic salts such as lithium fluoride, cesium fluoride, lithium oxide and cesium oxide can also be used. However, it is not limited to these.
 さらに、電極保護のために白金、金、銀、銅、鉄、スズ、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例としてあげられる。これらの電極の作製法も、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。 Furthermore, for electrode protection, metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, and inorganic substances such as silica, titania and silicon nitride, polyvinyl alcohol, and vinyl chloride It is preferable to laminate a hydrocarbon polymer compound and the like. The method for producing these electrodes is not particularly limited as long as conduction can be achieved by resistance heating, electron beam, sputtering, ion plating and coating.
2-8.各層で用いてもよい結着剤
 以上の正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層に用いられる材料は単独で各層を形成することができるが、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N-ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル樹脂、ABS樹脂、ポリウレタン樹脂などの溶媒可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
2-8. The materials used for the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer that are higher than the binder that may be used in each layer can be used alone to form each layer. Polyvinyl chloride, polycarbonate, polystyrene, poly (N-vinylcarbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, Solvent-soluble resins such as vinyl acetate resin, ABS resin and polyurethane resin, and curable resins such as phenol resin, xylene resin, petroleum resin, urea resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicone resin, etc. Dispersed in It is also possible to have.
2-9.有機電界発光素子の作製方法
 有機EL素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、スピンコート法またはキャスト法、コーティング法などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、ボート加熱温度+50~+400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚2nm~5μmの範囲で適宜設定することが好ましい。
2-9. Layers constituting the manufacturing method organic EL element of the organic electroluminescent device, an evaporation method material for constituting each layer, resistance heating evaporation, electron beam evaporation, sputtering, a molecular lamination method, a printing method, a spin coating method or a casting method, It can be formed by forming a thin film by a method such as a coating method. The thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm. The film thickness can usually be measured with a quartz oscillation type film thickness measuring device or the like. When a thin film is formed using an evaporation method, the evaporation conditions vary depending on the type of material, the target crystal structure, association structure, and the like of the film. In general, the deposition conditions are as follows: boat heating temperature +50 to + 400 ° C., degree of vacuum 10 −6 to 10 −3 Pa, deposition rate 0.01 to 50 nm / sec, substrate temperature −150 to + 300 ° C., film thickness 2 nm to 5 μm. It is preferable to set appropriately within the range.
 このようにして得られた有機EL素子に直流電圧を印加する場合には、陽極を+、陰極を-の極性として印加すればよく、電圧2~40V程度を印加すると、透明または半透明の電極側(陽極または陰極、および両方)より発光が観測できる。また、この有機EL素子は、パルス電流や交流電流を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the organic EL device thus obtained, the anode may be applied with a positive polarity and the cathode may be applied with a negative polarity. When a voltage of about 2 to 40 V is applied, a transparent or translucent electrode is applied. Light emission can be observed from the side (anode or cathode, and both). The organic EL element also emits light when a pulse current or an alternating current is applied. The waveform of the applied alternating current may be arbitrary.
 次に、有機EL素子を作製する方法の一例として、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法について説明する。 Next, as an example of a method for manufacturing an organic EL element, an organic EL element including an anode / a hole injection layer / a hole transport layer / a light emitting layer composed of a host material and a dopant material / an electron transport layer / an electron injection layer / a cathode The method of manufacturing will be described.
2-9-1.蒸着法
 適当な基板上に、陽極材料の薄膜を蒸着法などにより形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上にホスト材料とドーパント材料を共蒸着し薄膜を形成させて発光層とし、この発光層の上に電子輸送層、電子注入層を形成させ、さらに陰極用物質からなる薄膜を蒸着法などにより形成させて陰極とすることにより、目的の有機EL素子が得られる。なお、上述の有機EL素子の作製においては、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
2-9-1. Evaporation Method A thin film of an anode material is formed on a suitable substrate by an evaporation method or the like to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode. A host material and a dopant material are co-evaporated thereon to form a thin film to form a light emitting layer, an electron transport layer and an electron injection layer are formed on the light emitting layer, and a thin film made of a cathode material is formed by a vapor deposition method or the like. A target organic EL device is obtained by forming the cathode. In the production of the above-mentioned organic EL device, the production order can be reversed, and the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be produced in this order. It is.
2-9-2.湿式成膜法
 湿式成膜法は、有機EL素子の各有機層を形成し得る低分子化合物を液状の有機層形成用組成物として準備し、これを用いることによって実施される。この低分子化合物を溶解する適当な有機溶媒がない場合には、当該低分子化合物に反応性置換基を置換させた反応性化合物として溶解性機能を有する他のモノマーや主鎖型高分子と共に高分子化させた高分子化合物などから有機層形成用組成物を準備してもよい。
2-9-2. Wet film formation method The wet film formation method is carried out by preparing a low molecular weight compound capable of forming each organic layer of an organic EL device as a liquid composition for forming an organic layer, and using this. When there is no suitable organic solvent for dissolving the low-molecular compound, the low-molecular compound is highly reactive with another monomer or a main-chain type polymer having a solubility function as a reactive compound in which a reactive substituent is substituted. The composition for forming an organic layer may be prepared from a polymerized polymer compound or the like.
 湿式成膜法は、一般的には、基板に有機層形成用組成物を塗布する塗布工程および塗布された有機層形成用組成物から溶媒を取り除く乾燥工程を経ることで塗膜を形成する。上記高分子化合物が架橋性置換基を有する場合(これを架橋性高分子化合物ともいう)には、この乾燥工程によりさらに架橋して高分子架橋体が形成される。塗布工程の違いにより、スピンコーターを用いる方法をスピンコート法、スリットコーターを用いる方法をスリットコート法、版を用いる方法をグラビア、オフセット、リバースオフセット、フレキソ印刷法、インクジェットプリンタを用いる方法をインクジェット法、霧状に吹付ける方法をスプレー法と呼ぶ。乾燥工程には、風乾、加熱、減圧乾燥などの方法がある。乾燥工程は1回のみ行なってもよく、異なる方法や条件を用いて複数回行なってもよい。また、例えば、減圧下での焼成のように、異なる方法を併用してもよい。 In general, in the wet film forming method, a coating film is formed through a coating step of applying a composition for forming an organic layer to a substrate and a drying step of removing a solvent from the applied composition for forming an organic layer. When the polymer compound has a crosslinkable substituent (this is also referred to as a crosslinkable polymer compound), the polymer is further crosslinked by this drying step to form a crosslinked polymer. Depending on the difference in the coating process, the method using a spin coater is a spin coating method, the method using a slit coater is a slit coating method, the method using a plate is a gravure, offset, reverse offset, flexographic printing method, and a method using an inkjet printer is an inkjet method. The method of spraying in a mist state is called a spray method. The drying step includes methods such as air drying, heating, and vacuum drying. The drying step may be performed only once, or may be performed a plurality of times using different methods and conditions. Further, for example, different methods such as firing under reduced pressure may be used in combination.
 湿式成膜法とは溶液を用いた成膜法であり、例えば、一部の印刷法(インクジェット法)、スピンコート法またはキャスト法、コーティング法などである。湿式成膜法は真空蒸着法と異なり高価な真空蒸着装置を用いる必要が無く、大気圧下で成膜することができる。加えて、湿式成膜法は大面積化や連続生産が可能であり、製造コストの低減につながる。 The wet film forming method is a film forming method using a solution, and for example, a partial printing method (ink jet method), a spin coating method or a casting method, a coating method, and the like. The wet film formation method does not require an expensive vacuum deposition apparatus unlike the vacuum deposition method, and can form a film under atmospheric pressure. In addition, the wet film forming method enables a large area and continuous production, which leads to a reduction in manufacturing cost.
 一方で、真空蒸着法と比較した場合には、湿式成膜法は積層化が難しい場合がある。湿式成膜法を用いて積層膜を作製する場合、上層の組成物による下層の溶解を防ぐ必要があり、溶解性を制御した組成物、下層の架橋および直交溶媒(Orthogonal solvent、互いに溶解し合わない溶媒)などが駆使される。しかしながら、それらの技術を用いても、全ての膜の塗布に湿式成膜法を用いるのは難しい場合がある。 On the other hand, when compared with the vacuum deposition method, the wet film formation method may be difficult to laminate. When a multilayer film is formed by a wet film formation method, it is necessary to prevent the dissolution of the lower layer by the composition of the upper layer, a composition having controlled solubility, crosslinking of the lower layer, and an orthogonal solvent (orthogonal solvent, which dissolve each other). No solvent). However, even with these techniques, it may be difficult to use a wet film forming method for coating all films.
 そこで、一般的には、幾つかの層だけを湿式成膜法を用い、残りを真空蒸着法で有機EL素子を作製するという方法が採用される。 Therefore, in general, a method is adopted in which only some of the layers are formed by a wet film forming method, and the remaining layers are formed by a vacuum evaporation method to form an organic EL device.
 例えば、湿式成膜法を一部適用し有機EL素子を作製する手順を以下に示す。
(手順1)陽極の真空蒸着法による成膜
(手順2)正孔注入層用材料を含む正孔注入層形成用組成物の湿式成膜法による成膜
(手順3)正孔輸送層用材料を含む正孔輸送層形成用組成物の湿式成膜法による成膜
(手順4)ホスト材料とドーパント材料を含む発光層形成用組成物の湿式成膜法による成膜
(手順5)電子輸送層の真空蒸着法による成膜
(手順6)電子注入層の真空蒸着法による成膜
(手順7)陰極の真空蒸着法による成膜
 この手順を経ることで、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機EL素子が得られる。
 もちろん、下層の発光層の溶解を防ぐ手段があったり、また上記手順とは逆に陰極側から成膜する手段などを用いることで、電子輸送層用材料や電子注入層用材料を含む層形成用組成物として準備して、それらを湿式成膜法により成膜できる。
For example, a procedure for manufacturing an organic EL element by partially applying a wet film forming method is described below.
(Procedure 1) Film formation by the vacuum deposition method of the anode (Procedure 2) Film formation of the composition for forming the hole injection layer including the material for the hole injection layer by the wet film formation method (Procedure 3) Material for the hole transport layer Of a composition for forming a hole transporting layer containing helium (Procedure 4) Formation of a composition for forming a light emitting layer containing a host material and a dopant material by a wet deposition method (Procedure 5) (Step 6) Film formation of the electron injection layer by the vacuum evaporation method (Step 7) Film formation of the cathode by the vacuum evaporation method Through this procedure, the anode / hole injection layer / hole transport An organic EL device comprising a layer / a light emitting layer composed of a host material and a dopant material / an electron transport layer / an electron injection layer / a cathode is obtained.
Needless to say, there is a means for preventing the dissolution of the lower light emitting layer, and a method for forming a layer containing a material for an electron transport layer or a material for an electron injection layer by using a means for forming a film from the cathode side contrary to the above procedure. Prepared as a composition for use, and they can be formed into a film by a wet film forming method.
2-9-3.その他の成膜法
 有機層形成用組成物の成膜化には、レーザー加熱描画法(LITI)を用いることができる。LITIとは基材に付着させた化合物をレーザーで加熱蒸着する方法で、基材へ塗布される材料に有機層形成用組成物を用いることができる。
2-9-3. Other Film Forming Methods For forming a film of the composition for forming an organic layer, a laser heating drawing method (LITI) can be used. LITI is a method in which a compound attached to a substrate is heated and vapor-deposited with a laser, and a composition for forming an organic layer can be used as a material applied to the substrate.
2-9-4.任意の工程
 成膜の各工程の前後に、適切な処理工程、洗浄工程および乾燥工程を適宜入れてもよい。処理工程としては、例えば、露光処理、プラズマ表面処理、超音波処理、オゾン処理、適切な溶媒を用いた洗浄処理および加熱処理等が挙げられる。さらには、バンクを作製する一連の工程も挙げられる。
2-9-4. Arbitrary Steps Before and after each step of film formation, an appropriate treatment step, washing step and drying step may be appropriately inserted. Examples of the treatment process include an exposure treatment, a plasma surface treatment, an ultrasonic treatment, an ozone treatment, a cleaning treatment using an appropriate solvent, a heat treatment, and the like. Furthermore, a series of steps for manufacturing a bank is also included.
 バンクの作製にはフォトリソグラフィ技術を用いることができる。フォトリソグラフィの利用可能なバンク材としては、無機系材料および有機系材料のいずれも用いることができる。無機系材料としては、例えば、SiN、SiOおよびその混合物等があげられる。一方で、有機系材料としては、例えば、ポジ型レジスト材料およびネガ型レジスト材料等があげられる。また、インクジェット法、グラビアオフセット印刷、リバースオフセット印刷、スクリーン印刷などのパターン可能な印刷法も用いることができる。その際には永久レジスト材料を用いることもできる。 Photolithography technology can be used for manufacturing the bank. As a bank material that can be used for photolithography, any of an inorganic material and an organic material can be used. Examples of the inorganic material include SiN x , SiO x and a mixture thereof. On the other hand, examples of the organic material include a positive resist material and a negative resist material. Further, a patternable printing method such as an inkjet method, gravure offset printing, reverse offset printing, and screen printing can also be used. In that case, a permanent resist material can be used.
 バンクに用いられる材料としては、多糖類およびその誘導体、ヒドロキシルを有するエチレン性モノマーの単独重合体および共重合体、生体高分子化合物、ポリアクリロイル化合物、ポリエステル、ポリスチレン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルフィド、ポリスルホン、ポリフェニレン、ポリフェニルエーテル、ポリウレタン、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、ポリオレフィン、環状ポリオレフィン、アクリロニトリル-ブタジエン-スチレン共重合ポリマー(ABS)、シリコーン樹脂、ポリ塩化ビニル、塩素化ポリエチレン、塩素化ポリプロピレン、ポリアセテート、ポリノルボルネン、合成ゴム、ポリフルオロビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン等のフッ化ポリマー、フルオロオレフィン-ヒドロカーボンオレフィンの共重合ポリマー、フルオロカーボンポリマーが挙げられるが、それだけに限定されない。 Materials used for the bank include polysaccharides and derivatives thereof, homopolymers and copolymers of ethylenic monomers having hydroxyls, biopolymer compounds, polyacryloyl compounds, polyesters, polystyrene, polyimide, polyamideimide, and polyetherimide. , Polysulfide, polysulfone, polyphenylene, polyphenyl ether, polyurethane, epoxy (meth) acrylate, melamine (meth) acrylate, polyolefin, cyclic polyolefin, acrylonitrile-butadiene-styrene copolymer (ABS), silicone resin, polyvinyl chloride, chlorine Polyethylene, chlorinated polypropylene, polyacetate, polynorbornene, synthetic rubber, polyfluorovinylidene, polytetrafluoroethylene, polyhexa Le Oro propylene fluoride such as polymers, fluoroolefin - hydrocarbonoxy olefin copolymer, but fluorocarbon polymers include, but are not limited to.
 例えば、バンクのフォトリソグラフィ技術での有機系材料を用いた形成方法としては、
電極が形成された素子基板に、有機層形成用組成物に対して撥液性を示す材料を塗布し、乾燥することにより、有機層を形成する。この有機層に対して露光用マスクを用いて露光工程および現像工程を行うことにより、電極が形成された素子基板上にバンクが形成できる。この後、必要に応じて、有機層形成用組成物をムラなく広げるため、バンクの表面の不純物を取り除くための、溶媒による洗浄・乾燥工程や紫外線処理等の工程を行ってもよい。
For example, as a formation method using an organic material in the photolithography technology of the bank,
A material exhibiting liquid repellency to the composition for forming an organic layer is applied to the element substrate on which the electrodes are formed, and dried to form an organic layer. By performing an exposure step and a development step on the organic layer using an exposure mask, a bank can be formed on the element substrate on which the electrodes are formed. Thereafter, if necessary, in order to spread the composition for forming an organic layer evenly, a process such as a washing / drying process with a solvent or an ultraviolet treatment may be performed to remove impurities on the surface of the bank.
 また、バンクを有する基板にインクジェット法を用いて有機EL素子を作製することもでき、具体的には、電極が形成された素子基板にバンクを設けた上、インクジェットヘッドより、バンク間に、有機層形成用組成物の液滴を滴下し、乾燥させることで膜を形成することができる。そして、これを繰り返し、順次膜を積層し、真空蒸着法を用いて電子輸送層、電子注入層および電極を成膜すれば、バンク材で発光部位が区切られた有機EL素子を作製することができる。
 なお、このように作製した有機EL素子は、水分や酸素から保護するために、封止層によって覆うことが好ましい。例えば、外部から水分や酸素などが浸入すると、発光機能が阻害され、発光効率の低下や、発光しない暗点(ダークスポット)が発生する。また、発光寿命が短くなる可能性がある。
 封止層としては、例えば、水分や酸素などの透過性が低い、酸窒化シリコン(SiON)などの無機絶縁材料を用いることができる。また、透明なガラスや不透明なセラミックなどの封止基板を、有機EL素子が形成された素子基板に接着剤を介して貼り付けることにより、有機EL素子を封止してもよい。
In addition, an organic EL element can be manufactured on a substrate having a bank by an ink-jet method. Specifically, a bank is provided on an element substrate on which electrodes are formed, and an organic head is provided between the banks by an ink-jet head. A film can be formed by dropping a droplet of the layer-forming composition and drying the composition. Then, by repeating this process and sequentially stacking the films and forming the electron transport layer, the electron injection layer, and the electrode by using a vacuum evaporation method, an organic EL element in which light emitting portions are separated by a bank material can be manufactured. it can.
Note that the organic EL element manufactured in this manner is preferably covered with a sealing layer in order to protect the element from moisture and oxygen. For example, when moisture, oxygen, or the like enters from the outside, the light emitting function is impaired, and the luminous efficiency is reduced, and dark spots (dark spots) that do not emit light are generated. Further, the light emission life may be shortened.
As the sealing layer, for example, an inorganic insulating material such as silicon oxynitride (SiON) having low permeability to moisture or oxygen can be used. Further, the organic EL element may be sealed by attaching a sealing substrate such as a transparent glass or an opaque ceramic to an element substrate on which the organic EL element is formed via an adhesive.
2-9-5.湿式成膜法に使用される有機層形成用組成物
 有機層形成用組成物は、有機EL素子の各有機層を形成し得る低分子化合物、または当該低分子化合物を高分子化させた高分子化合物を有機溶媒に溶解させて得られる。例えば、発光層形成用組成物は、第1成分として、ホスト材料である、上記一般式(1)で表される多環芳香族化合物(またはその高分子化合物)と、第2成分として、ドーパント材料である、上述のホウ素を含有する多環芳香族化合物(またはその高分子化合物)と、第3成分として少なくとも1種の有機溶媒とを含有することが好ましい。第3成分は、組成物中の第1成分と第2成分を溶解する溶媒として機能し、塗布時には第3成分自身の制御された蒸発速度により平滑で均一な表面形状を与える。
2-9-5. Organic Layer Forming Composition Used in Wet Film Forming Method The organic layer forming composition is a low molecular compound capable of forming each organic layer of an organic EL device, or a polymer obtained by polymerizing the low molecular compound. It is obtained by dissolving a compound in an organic solvent. For example, the composition for forming a light emitting layer includes, as a first component, a polycyclic aromatic compound (or a polymer compound thereof) represented by the above general formula (1), which is a host material, and a dopant as a second component. It is preferable to contain the above-mentioned boron-containing polycyclic aromatic compound (or a polymer compound thereof), which is a material, and at least one organic solvent as the third component. The third component functions as a solvent for dissolving the first component and the second component in the composition, and gives a smooth and uniform surface shape due to the controlled evaporation rate of the third component itself during coating.
 なお、上記高分子化合物には、上述の一般式(1)で表される多環芳香族化合物に反応性置換基が置換した反応性化合物(H)に由来する第1の構成単位と、第2成分のホウ素を含有する多環芳香族化合物(一般式(2)~(5)のいずれかで表される多環芳香族化合物)に反応性置換基が置換した反応性化合物(D)に由来する第2の構成単位とを有する共重合体である高分子化合物(HD)および当該高分子化合物(HD)をさらに架橋させた高分子架橋体(HD)、ならびに、主鎖型高分子に、反応性化合物(H)および反応性化合物(D)を置換させたペンダント型高分子化合物(HD)および当該ペンダント型高分子化合物(HD)をさらに架橋させたペンダント型高分子架橋体(HD)も含まれる。
 つまり、高分子化合物(HD)、高分子架橋体(HD)、ペンダント型高分子化合物(HD)およびペンダント型高分子架橋体(HD)から選ばれる少なくとも1つと、有機溶媒とを含む有機層形成用組成物とすることができる。
 なお、高分子化合物(HD)、高分子架橋体(HD)、ペンダント型高分子化合物(HD)およびペンダント型高分子架橋体(HD)は、第1成分であるホストと、第2成分であるドーパントとが同一分子内に組み込まれた構造を有する。
The polymer compound includes a first structural unit derived from a reactive compound (H) in which a reactive substituent is substituted on the polycyclic aromatic compound represented by the general formula (1), The reactive compound (D) in which a reactive substituent is substituted on a two-component boron-containing polycyclic aromatic compound (polycyclic aromatic compound represented by any of formulas (2) to (5)) Polymer compound (HD), which is a copolymer having a second structural unit derived therefrom, and a polymer crosslinked body (HD) obtained by further crosslinking the polymer compound (HD); and a main chain polymer. , A pendant polymer compound (HD) in which the reactive compound (H) and the reactive compound (D) are substituted, and a pendant polymer crosslinked product (HD) in which the pendant polymer compound (HD) is further crosslinked Is also included.
That is, formation of an organic layer containing at least one selected from a polymer compound (HD), a crosslinked polymer (HD), a pendant polymer compound (HD) and a pendant polymer crosslinked product (HD), and an organic solvent. Composition.
The polymer compound (HD), the crosslinked polymer (HD), the pendant polymer compound (HD) and the crosslinked pendant polymer (HD) are a host as the first component and a second component. It has a structure in which a dopant is incorporated in the same molecule.
<有機溶媒>
 有機層形成用組成物は少なくとも一種の有機溶媒を含む。成膜時に有機溶媒の蒸発速度を制御することで、成膜性および塗膜の欠陥の有無、表面粗さ、平滑性を制御および改善することができる。また、インクジェット法を用いた成膜時は、インクジェットヘッドのピンホールでのメニスカス安定性を制御し、吐出性を制御・改善することができる。加えて、膜の乾燥速度および誘導体分子の配向を制御することで、該有機層形成用組成物より得られる有機層を有する有機EL素子の電気特性、発光特性、効率、および寿命を改善することができる。
<Organic solvent>
The composition for forming an organic layer contains at least one organic solvent. By controlling the evaporation rate of the organic solvent at the time of film formation, it is possible to control and improve the film formability and the presence / absence of defects in the coating film, surface roughness, and smoothness. In addition, during film formation using the inkjet method, the meniscus stability at the pinhole of the inkjet head can be controlled, and the ejection property can be controlled and improved. In addition, by controlling the drying rate of the film and the orientation of the derivative molecules, the electric characteristics, light-emitting characteristics, efficiency, and lifetime of an organic EL device having an organic layer obtained from the composition for forming an organic layer are improved. Can be.
(1)有機溶媒の物性
 少なくとも1種の有機溶媒の沸点は、130~350℃であり、好ましくは140~300℃、更に好ましくは150~250℃である。沸点が130℃以上であれば、インクジェットの吐出性の観点から好ましい。また、沸点が350℃以下であれば、塗膜の欠陥、表面粗さ、残留溶媒および平滑性の観点から好ましい。有機溶媒は、良好なインクジェットの吐出性、成膜性、平滑性および低い残留溶媒の観点から、2種以上の有機溶媒を含む構成がより好ましい。一方で、場合によっては、運搬性などを考慮し、有機層形成用組成物中から溶媒を除去することで固形状態とした組成物であってもよい。
(1) Physical Properties of Organic Solvent The boiling point of at least one organic solvent is from 130 to 350 ° C., preferably from 140 to 300 ° C., more preferably from 150 to 250 ° C. When the boiling point is 130 ° C. or higher, it is preferable from the viewpoint of inkjet dischargeability. When the boiling point is 350 ° C. or lower, it is preferable from the viewpoints of coating film defects, surface roughness, residual solvent, and smoothness. The organic solvent is more preferably configured to include two or more organic solvents from the viewpoints of good ink jet ejection properties, film formability, smoothness, and low residual solvent. On the other hand, in some cases, the composition may be in a solid state by removing a solvent from the composition for forming an organic layer in consideration of transportability and the like.
 さらに、有機溶媒が第1成分のホストおよび第2成分のドーパントの少なくとも1種に対する良溶媒(GS)と貧溶媒(PS)とを含み、良溶媒(GS)の沸点(BPGS)が貧溶媒(PS)の沸点(BPPS)よりも低いことが好ましい。
 高沸点の貧溶媒を加えることで成膜時に低沸点の良溶媒が先に揮発し、組成物中の含有物の濃度と貧溶媒の濃度が増加し速やかな成膜が促される。これにより、欠陥が少なく、表面粗さが小さい、平滑性の高い塗膜が得られる。
Further, the organic solvent contains a good solvent (GS) and a poor solvent (PS) for at least one of the host of the first component and the dopant of the second component, and the boiling point (BP GS ) of the good solvent ( GS ) is poor. It is preferably lower than the boiling point (BP PS ) of ( PS ).
By adding a poor solvent having a high boiling point, a good solvent having a low boiling point volatilizes first during the film formation, and the concentration of the components contained in the composition and the concentration of the poor solvent are increased, thereby promoting a rapid film formation. Thereby, a coating film with few defects, small surface roughness, and high smoothness can be obtained.
 溶解度の差(SGS-SPS)は、1%以上であることが好ましく、3%以上であることがより好ましく、5%以上であることがさらに好ましい。沸点の差(BPPS-BPGS)は、10℃以上であることが好ましく、30℃以上であることがより好ましく、50℃以上であることがさらに好ましい。 The difference in solubility (S GS -S PS ) is preferably at least 1%, more preferably at least 3%, even more preferably at least 5%. The difference in boiling points (BP PS -BP GS ) is preferably at least 10 ° C., more preferably at least 30 ° C., even more preferably at least 50 ° C.
 有機溶媒は、成膜後に、真空、減圧、加熱などの乾燥工程により塗膜より取り除かれる。加熱を行う場合、塗布成膜性改善の観点からは、溶質の少なくとも1種のガラス転移温度(Tg)+30℃以下で行うことが好ましい。また、残留溶媒の削減の観点からは、溶質の少なくとも1種のガラス転移点(Tg)-30℃以上で加熱することが好ましい。加熱温度が有機溶媒の沸点より低くても膜が薄いために、有機溶媒は十分に取り除かれる。また、異なる温度で複数回乾燥を行ってもよく、複数の乾燥方法を併用してもよい。 After the film is formed, the organic solvent is removed from the coating film by a drying process such as vacuum, reduced pressure, and heating. In the case of performing heating, it is preferable to perform the heating at a temperature of at least one kind of glass transition temperature (Tg) + 30 ° C. of the solute from the viewpoint of improving coating film forming properties. From the viewpoint of reducing the residual solvent, it is preferable to heat the solute at least at least one kind of glass transition point (Tg) of −30 ° C. or higher. Even when the heating temperature is lower than the boiling point of the organic solvent, the organic solvent is sufficiently removed because the film is thin. Further, drying may be performed a plurality of times at different temperatures, or a plurality of drying methods may be used in combination.
(2)有機溶媒の具体例
 有機層形成用組成物に用いられる有機溶媒としては、アルキルベンゼン系溶媒、フェニルエーテル系溶媒、アルキルエーテル系溶媒、環状ケトン系溶媒、脂肪族ケトン系溶媒、単環性ケトン系溶媒、ジエステル骨格を有する溶媒および含フッ素系溶媒などがあげられ、具体例として、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、テトラデカノール、ヘキサン-2-オール、ヘプタン-2-オール、オクタン-2-オール、デカン-2-オール、ドデカン-2-オール、シクロヘキサノール、α-テルピネオール、β-テルピネオール、γ-テルピネオール、δ-テルピネオール、テルピネオール(混合物)、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールブチルメチルエーテル、ポリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、p-キシレン、m-キシレン、o-キシレン、2,6-ルチジン、2-フルオロ-m-キシレン、3-フルオロ-o-キシレン、2-クロロベンゾ三フッ化物、クメン、トルエン、2-クロロ-6-フルオロトルエン、2-フルオロアニソール、アニソール、2,3-ジメチルピラジン、ブロモベンゼン、4-フルオロアニソール、3-フルオロアニソール、3-トリフルオロメチルアニソール、メシチレン、1,2,4-トリメチルベンゼン、t-ブチルベンゼン、2-メチルアニソール、フェネトール、ベンゾジオキソール、4-メチルアニソール、s-ブチルベンゼン、3-メチルアニソール、4-フルオロ-3-メチルアニソール、シメン、1,2,3-トリメチルベンゼン、1,2-ジクロロベンゼン、2-フルオロベンゾニトリル、4-フルオロベラトロール、2,6-ジメチルアニソール、n-ブチルベンゼン、3-フルオロベンゾニトリル、デカリン(デカヒドロナフタレン)、ネオペンチルベンゼン、2,5-ジメチルアニソール、2,4-ジメチルアニソール、ベンゾニトリル、3,5-ジメチルアニソール、ジフェニルエーテル、1-フルオロ-3,5-ジメトキシベンゼン、安息香酸メチル、イソペンチルベンゼン、3,4-ジメチルアニソール、o-トルニトリル、n-アミルベンゼン、ベラトロール、1,2,3,4-テトラヒドロナフタレン、安息香酸エチル、n-ヘキシルベンゼン、安息香酸プロピル、シクロヘキシルベンゼン、1-メチルナフタレン、安息香酸ブチル、2-メチルビフェニル、3-フェノキシトルエン、2,2’-ビトリル、ドデシルベンゼン、ジペンチルベンゼン、テトラメチルベンゼン、トリメトキシベンゼン、トリメトキシトルエン、2,3-ジヒドロベンゾフラン、1-メチル-4-(プロポキシメチル)ベンゼン、1-メチル-4-(ブチルオキシメチル)ベンゼン、1-メチル-4-(ペンチルオキシメチル)ベンゼン、1-メチル-4-(ヘキシルオキシメチル)ベンゼン、1-メチル-4-(ヘプチルオキシメチル)ベンゼンベンジルブチルエーテル、ベンジルペンチルエーテル、ベンジルヘキシルエーテル、ベンジルヘプチルエーテル、ベンジルオクチルエーテル、ニトロベンゼン、ジメチルニトロベンゼン、アミノビフェニル、ジフェニルアミンなどが挙げられるが、それだけに限定されない。また、溶媒は単一で用いてもよく、混合してもよい。
(2) Specific Examples of Organic Solvents The organic solvents used in the composition for forming an organic layer include alkylbenzene solvents, phenyl ether solvents, alkyl ether solvents, cyclic ketone solvents, aliphatic ketone solvents, and monocyclic solvents. Examples thereof include ketone solvents, solvents having a diester skeleton, and fluorinated solvents. Specific examples include pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tetradecanol, hexane-2-ol, Heptane-2-ol, octane-2-ol, decane-2-ol, dodecane-2-ol, cyclohexanol, α-terpineol, β-terpineol, γ-terpineol, δ-terpineol, δ-terpineol, terpineol (mixture), ethylene glycol Monomethyle Teracetate, propylene glycol monomethyl ether acetate, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol isopropyl methyl ether, dipropylene glycol monomethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether , Triethylene glycol dimethyl ether, diethylene glycol monobutyl ether, ethylene glycol monophenyl ether, triethylene glycol monomethyl ether, diethylene glycol dibutyl ether, triethylene glycol butyl Methyl ether, polyethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, p-xylene, m-xylene, o-xylene, 2,6-lutidine, 2-fluoro-m-xylene, 3-fluoro-o-xylene, 2-chlorobenzo Fluoride, cumene, toluene, 2-chloro-6-fluorotoluene, 2-fluoroanisole, anisole, 2,3-dimethylpyrazine, bromobenzene, 4-fluoroanisole, 3-fluoroanisole, 3-trifluoromethylanisole, Mesitylene, 1,2,4-trimethylbenzene, t-butylbenzene, 2-methylanisole, phenetole, benzodioxole, 4-methylanisole, s-butylbenzene, 3-methylanisole, 4-fluoro-3-methylani Sole, cymene, 1,2,3-trimethylbenzene, 1,2-dichlorobenzene, 2-fluorobenzonitrile, 4-fluoroveratrol, 2,6-dimethylanisole, n-butylbenzene, 3-fluorobenzonitrile, Decalin (decahydronaphthalene), neopentylbenzene, 2,5-dimethylanisole, 2,4-dimethylanisole, benzonitrile, 3,5-dimethylanisole, diphenylether, 1-fluoro-3,5-dimethoxybenzene, benzoic acid Methyl, isopentylbenzene, 3,4-dimethylanisole, o-tolunitrile, n-amylbenzene, veratrol, 1,2,3,4-tetrahydronaphthalene, ethyl benzoate, n-hexylbenzene, propyl benzoate, cyclohexylbenzene , 1-me Lunaphthalene, butyl benzoate, 2-methylbiphenyl, 3-phenoxytoluene, 2,2'-vitrile, dodecylbenzene, dipentylbenzene, tetramethylbenzene, trimethoxybenzene, trimethoxytoluene, 2,3-dihydrobenzofuran, -Methyl-4- (propoxymethyl) benzene, 1-methyl-4- (butyloxymethyl) benzene, 1-methyl-4- (pentyloxymethyl) benzene, 1-methyl-4- (hexyloxymethyl) benzene, 1-methyl-4- (heptyloxymethyl) benzene benzyl butyl ether, benzyl pentyl ether, benzyl hexyl ether, benzyl heptyl ether, benzyl octyl ether, nitrobenzene, dimethyl nitrobenzene, aminobiphenyl, diphenyl Amines, and the like but, but is not so limited. Further, the solvent may be used alone or may be mixed.
 これらの中でも、有機溶媒としては、アルキルベンゼン系溶媒およびフェニルエーテル系溶媒から選ばれる1種以上が好ましく、3-フェノキシトルエンとシクロヘキシルベンゼンとの混合溶媒がより好ましい。 Among these, as the organic solvent, one or more selected from an alkylbenzene-based solvent and a phenylether-based solvent is preferable, and a mixed solvent of 3-phenoxytoluene and cyclohexylbenzene is more preferable.
<任意成分>
 有機層形成用組成物は、その性質を損なわない範囲で、任意成分を含んでいてもよい。任意成分としては、バインダーおよび界面活性剤等が挙げられる。
<Optional components>
The composition for forming an organic layer may contain an optional component as long as its properties are not impaired. Optional components include a binder and a surfactant.
(1)バインダー
 有機層形成用組成物は、バインダーを含有していてもよい。バインダーは、成膜時には膜を形成するとともに、得られた膜を基板と接合する。また、該有機層形成用組成物中で他の成分を溶解および分散および結着させる役割を果たす。
(1) Binder The composition for forming an organic layer may contain a binder. The binder forms a film during film formation and bonds the obtained film to the substrate. Further, it plays a role of dissolving, dispersing and binding other components in the composition for forming an organic layer.
 有機層形成用組成物に用いられるバインダーとしては、例えば、アクリル樹脂、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、アクリロニトリル-エチレン-スチレン共重合体(AES)樹脂、アイオノマー、塩素化ポリエーテル、ジアリルフタレート樹脂、不飽和ポリエステル樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、テフロン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、アクリロニトリル-スチレン共重合体(AS)樹脂、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、ポリウレタン、および、上記樹脂およびポリマーの共重合体、が挙げられるが、それだけに限定されない。 Examples of the binder used in the composition for forming an organic layer include acrylic resin, polyethylene terephthalate, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, acrylonitrile-ethylene-styrene copolymer (AES) resin, Ionomer, chlorinated polyether, diallyl phthalate resin, unsaturated polyester resin, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, Teflon, acrylonitrile-butadiene-styrene copolymer (ABS) resin, acrylonitrile Styrene copolymer (AS) resins, phenolic resins, epoxy resins, melamine resins, urea resins, alkyd resins, polyurethanes, and copolymers of the above resins and polymers, Re not limited to.
 有機層形成用組成物に用いられるバインダーは、1種のみであってもよく複数種を混合して用いてもよい。 は The binder used in the composition for forming an organic layer may be used alone or in combination of two or more.
(2)界面活性剤
 有機層形成用組成物は、例えば、有機層形成用組成物の膜面均一性、膜表面の親溶媒性および撥液性の制御のために界面活性剤を含有してもよい。界面活性剤は、親水性基の構造からイオン性および非イオン性に分類され、さらに、疎水性基の構造からアルキル系およびシリコン系およびフッ素系に分類される。また、分子の構造から、分子量が比較的小さく単純な構造を有する単分子系および分子量が大きく側鎖や枝分かれを有する高分子系に分類される。また、組成から、単一系、二種以上の界面活性剤および基材を混合した混合系に分類される。該有機層形成用組成物に用いることのできる界面活性剤としては、全ての種類の界面活性剤を用いることができる。
(2) Surfactant The composition for forming an organic layer contains, for example, a surfactant for controlling the film surface uniformity, the solvent affinity and the liquid repellency of the film surface of the composition for forming an organic layer. Is also good. Surfactants are classified into ionic and nonionic according to the structure of the hydrophilic group, and further classified into alkyl, silicon and fluorine based on the structure of the hydrophobic group. Further, according to the molecular structure, they are classified into a monomolecular system having a relatively small molecular weight and a simple structure and a high molecular system having a large molecular weight and having side chains or branches. In addition, the composition is classified into a single system and a mixed system in which two or more surfactants and a base material are mixed from the composition. As surfactants that can be used in the composition for forming an organic layer, all kinds of surfactants can be used.
 界面活性剤としては、例えば、ポリフローNo.45、ポリフローKL-245、ポリフローNo.75、ポリフローNo.90、ポリフローNo.95(商品名、共栄社化学工業(株)製)、ディスパーベイク(Disperbyk)161、ディスパーベイク162、ディスパーベイク163、ディスパーベイク164、ディスパーベイク166、ディスパーベイク170、ディスパーベイク180、ディスパーベイク181、ディスパーベイク182、BYK300、BYK306、BYK310、BYK320、BYK330、BYK342、BYK344、BYK346(商品名、ビックケミー・ジャパン(株)製)、KP-341、KP-358、KP-368、KF-96-50CS、KF-50-100CS(商品名、信越化学工業(株)製)、サーフロンSC-101、サーフロンKH-40(商品名、セイミケミカル(株)製)、フタージェント222F、フタージェント251、FTX-218(商品名、(株)ネオス製)、EFTOP EF-351、EFTOP EF-352、EFTOP EF-601、EFTOP EF-801、EFTOP EF-802(商品名、三菱マテリアル(株)製)、メガファックF-470、メガファックF-471、メガファックF-475、メガファックR-08、メガファックF-477、メガファックF-479、メガファックF-553、メガファックF-554(商品名、DIC(株)製)、フルオロアルキルベンゼンスルホン酸塩、フルオルアルキルカルボン酸塩、フルオロアルキルポリオキシエチレンエーテル、フルオロアルキルアンモニウムヨージド、フルオロアルキルベタイン、フルオロアルキルスルホン酸塩、ジグリセリンテトラキス(フルオロアルキルポリオキシエチレンエーテル)、フルオロアルキルトリメチルアンモニウム塩、フルオロアルキルアミノスルホン酸塩、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンラウレート、ポリオキシエチレンオレエート、ポリオキシエチレンステアレート、ポリオキシエチレンラウリルアミン、ソルビタンラウレート、ソルビタンパルミテート、ソルビタンステアレート、ソルビタンオレエート、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタンラウレート、ポリオキシエチレンソルビタンパルミテート、ポリオキシエチレンソルビタンステアレート、ポリオキシエチレンソルビタンオレエート、ポリオキシエチレンナフチルエーテル、アルキルベンゼンスルホン酸塩およびアルキルジフェニルエーテルジスルホン酸塩を挙げることができる。 と し て As the surfactant, for example, Polyflow No. 45, Polyflow KL-245, Polyflow No. 75, polyflow no. 90, polyflow no. 95 (trade name, manufactured by Kyoeisha Chemical Industry Co., Ltd.), Disperbyk 161, Disperbake 162, Disperbake 163, Disperbake 164, Disperbake 166, Disperbake 170, Disperbake 180, Disperbake 181, Disperbake Bake 182, BYK300, BYK306, BYK310, BYK320, BYK330, BYK342, BYK344, BYK346 (trade name, manufactured by BYK Japan KK), KP-341, KP-358, KP-368, KF-96-50CS, KF -50-100CS (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), Surflon SC-101, Surflon KH-40 (trade name, manufactured by Seimi Chemical Co., Ltd.), Futergent 222F, Futerge 251, FTX-218 (trade name, manufactured by Neos Corporation), EFTOP EF-351, EFTOP EF-352, EFTOP EF-601, EFTOP EF-801, EFTOP EF-802 (trade name, Mitsubishi Materials Corporation) MegaFac F-470, Megafac F-471, Megafac F-475, Megafac R-08, Megafac F-477, Megafac F-479, Megafac F-553, Megafac F-554 (Trade name, manufactured by DIC Corporation), fluoroalkyl benzene sulfonate, fluoroalkyl carboxylate, fluoroalkyl polyoxyethylene ether, fluoroalkyl ammonium iodide, fluoroalkyl betaine, fluoroalkyl sulfonate, diglycerin tetrakis (F Oroalkyl polyoxyethylene ether), fluoroalkyltrimethylammonium salt, fluoroalkylaminosulfonate, polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene laurate, polyoxyethylene Oleate, polyoxyethylene stearate, polyoxyethylene laurylamine, sorbitan laurate, sorbitan palmitate, sorbitan stearate, sorbitan oleate, sorbitan fatty acid ester, polyoxyethylene sorbitan laurate, polyoxyethylene sorbitan palmitate, poly Oxyethylene sorbitan stearate, polyoxyethylene sorbitan oleate, polyoxyethylene Mention may be made of nannaphthyl ether, alkylbenzenesulfonates and alkyldiphenyletherdisulfonates.
 また、界面活性剤は1種で用いてもよく、2種以上を併用してもよい。 The surfactant may be used alone or in combination of two or more.
<有機層形成用組成物の組成および物性>
 有機層形成用組成物における各成分の含有量は、有機層形成用組成物中の各成分の良好な溶解性、保存安定性および成膜性、ならびに、該有機層形成用組成物から得られる塗膜の良質な膜質、また、インクジェット法を用いた場合の良好な吐出性、該組成物を用いて作製された有機層を有する有機EL素子の、良好な電気特性、発光特性、効率、寿命の観点を考慮して決定される。例えば、発光層形成用組成物の場合には、第1成分のホスト材料が発光層形成用組成物の全質量に対して、0.0999~8.0質量%、第2成分であるドーパント材料が発光層形成用組成物の全質量に対して、0.0001~2.0質量%、第3成分である有機溶媒が発光層形成用組成物の全質量に対して、90.0~99.9質量%であることが好ましい。
<Composition and physical properties of the composition for forming an organic layer>
The content of each component in the composition for forming an organic layer is good solubility of each component in the composition for forming an organic layer, storage stability and film formability, and is obtained from the composition for forming an organic layer. Good film quality of the coating film, good ejection property when using the inkjet method, good electric characteristics, luminous characteristics, efficiency, and life of the organic EL device having the organic layer manufactured using the composition. Is determined in consideration of the viewpoint. For example, in the case of the composition for forming a light emitting layer, the host material of the first component is 0.0999 to 8.0% by mass based on the total mass of the composition for forming the light emitting layer, and the dopant material is the second component. Is 0.0001 to 2.0% by mass with respect to the total mass of the light emitting layer forming composition, and the organic solvent as the third component is 90.0 to 99% by mass with respect to the total mass of the light emitting layer forming composition. It is preferably 0.9% by mass.
 より好ましくは、第1成分であるホスト材料が発光層形成用組成物の全質量に対して、0.095~4.0質量%、第2成分が発光層形成用組成物の全質量に対して、0.005~1.0質量%、第3成分である有機溶媒が発光層形成用組成物の全質量に対して、95.0~99.9質量%である。
 さらに好ましくは、第1成分であるホスト材料が発光層形成用組成物の全質量に対して、0.25~2.5質量%、第2成分であるドーパント材料が発光層形成用組成物の全質量に対して、0.05~0.5質量%、第3成分である有機溶媒が発光層形成用組成物の全質量に対して、97.0~99.7質量%である。
More preferably, the host material as the first component is 0.095 to 4.0% by mass based on the total mass of the composition for forming a light emitting layer, and the second component is based on the total mass of the composition for forming a light emitting layer. And the organic solvent as the third component is 95.0 to 99.9% by mass based on the total mass of the composition for forming a light emitting layer.
More preferably, the host material as the first component is 0.25 to 2.5% by mass with respect to the total mass of the composition for forming a light emitting layer, and the dopant material as the second component is a compound of the composition for forming a light emitting layer. The organic solvent as the third component is 0.05 to 0.5% by mass with respect to the total mass, and 97.0 to 99.7% by mass with respect to the total mass of the composition for forming a light emitting layer.
 有機層形成用組成物は、上述した成分を、公知の方法で攪拌、混合、加熱、冷却、溶解、分散等を適宜選択して行うことによって製造できる。また、調製後に、ろ過、脱ガス(デガスとも言う)、イオン交換処理および不活性ガス置換・封入処理等を適宜選択して行ってもよい。 The composition for forming an organic layer can be produced by appropriately selecting the above-mentioned components by stirring, mixing, heating, cooling, dissolving, dispersing and the like by a known method. After the preparation, filtration, degassing (also referred to as degassing), ion exchange treatment, inert gas replacement / sealing treatment, and the like may be appropriately selected and performed.
 有機層形成用組成物の粘度としては、高粘度である方が、良好な成膜性とインクジェット法を用いた場合の良好な吐出性が得られる。一方、低粘度である方が薄い膜を作りやすい。このことから、該有機層形成用組成物の粘度は、25℃における粘度が0.3~3mPa・sであることが好ましく、1~3mPa・sであることがより好ましい。本発明において、粘度は円錐平板型回転粘度計(コーンプレートタイプ)を用いて測定した値である。 As for the viscosity of the composition for forming an organic layer, the higher the viscosity, the better the film formability and the good ejection property when the ink jet method is used. On the other hand, the lower the viscosity, the easier it is to form a thin film. For this reason, the viscosity of the composition for forming an organic layer at 25 ° C. is preferably 0.3 to 3 mPa · s, more preferably 1 to 3 mPa · s. In the present invention, the viscosity is a value measured using a conical plate type rotary viscometer (cone plate type).
 有機層形成用組成物の表面張力としては、低い方が良好な成膜性および欠陥のない塗膜が得られる。一方、高い方が良好なインクジェット吐出性を得られる。このことから、該有機層形成用組成物の粘度は、25℃における表面張力が20~40mN/mであることが好ましく、20~30mN/mであることがより好ましい。本発明において、表面張力は懸滴法を用いて測定した値である。 (4) The lower the surface tension of the composition for forming an organic layer, the better the film forming property and the coating film without defects can be obtained. On the other hand, the higher the value, the better the ink jetting property can be obtained. For this reason, the viscosity of the composition for forming an organic layer preferably has a surface tension at 25 ° C. of 20 to 40 mN / m, more preferably 20 to 30 mN / m. In the present invention, the surface tension is a value measured using the hanging drop method.
2-9-6.架橋性高分子化合物:一般式(XLP-1)で表される化合物
 次に、上述した高分子化合物が架橋性置換基を有する場合について説明する。このような架橋性高分子化合物は例えば下記一般式(XLP-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000300
 式(XLP-1)において、
 MUx、ECxおよびkは上記式(SPH-1)におけるMU、ECおよびkと同定義であり、ただし、式(XLP-1)で表される化合物は少なくとも1つの架橋性置換基(XLS)を有し、好ましくは架橋性置換基を有する1価または2価の芳香族化合物の含有量は、分子中0.1~80質量%である。
2-9-6. Crosslinkable polymer compound: Compound represented by formula (XLP-1) Next, the case where the above-mentioned polymer compound has a crosslinkable substituent will be described. Such a crosslinkable polymer compound is, for example, a compound represented by the following general formula (XLP-1).
Figure JPOXMLDOC01-appb-C000300
In the formula (XLP-1),
MUx, ECx and k have the same definition as MU, EC and k in the above formula (SPH-1), provided that the compound represented by the formula (XLP-1) has at least one crosslinkable substituent (XLS) And preferably the content of the monovalent or divalent aromatic compound having a crosslinkable substituent is 0.1 to 80% by mass in the molecule.
 架橋性置換基を有する1価または2価の芳香族化合物の含有量は、0.5~50質量%が好ましく、1~20質量%がより好ましい。 含有 The content of the monovalent or divalent aromatic compound having a crosslinkable substituent is preferably from 0.5 to 50% by mass, more preferably from 1 to 20% by mass.
 架橋性置換基(XLS)としては、上述した高分子化合物をさらに架橋化できる基であれば特に限定されないが、以下の構造の置換基が好ましい。各構造式中の*は結合位置を示す。
Figure JPOXMLDOC01-appb-C000301
The crosslinkable substituent (XLS) is not particularly limited as long as it is a group that can further crosslink the above-described polymer compound, but a substituent having the following structure is preferable. * In each structural formula shows a bonding position.
Figure JPOXMLDOC01-appb-C000301
 Lは、それぞれ独立して、単結合、-O-、-S-、>C=O、-O-C(=O)-、炭素数1~12のアルキレン、炭素数1~12のオキシアルキレンおよび炭素数1~12のポリオキシアルキレンである。上記置換基の中でも、式(XLS-1)、式(XLS-2)、式(XLS-3)、式(XLS-9)、式(XLS-10)または式(XLS-17)で表される基が好ましく、式(XLS-1)、式(XLS-3)または式(XLS-17)で表される基がより好ましい。 L is each independently a single bond, —O—, —S—,> C = O, —OC (= O) —, alkylene having 1 to 12 carbons, oxyalkylene having 1 to 12 carbons And a polyoxyalkylene having 1 to 12 carbon atoms. Among the above substituents, it is represented by the formula (XLS-1), (XLS-2), (XLS-3), (XLS-9), (XLS-10) or (XLS-17). The group represented by the formula (XLS-1), (XLS-3) or (XLS-17) is more preferable.
 また、上記以外の架橋性置換基としては、塩素、臭素またはヨウ素や、下記式(XLS-19)で表されるホウ素含有基であってもよい。構造式中の*は結合位置を示す。
Figure JPOXMLDOC01-appb-C000302
 上記式(XLS-19)中、R41およびR42は、それぞれ独立して、アルキルであり、R41およびR42は互いに結合して環を形成してもよい。また、R41およびR42の合計炭素数は2~10であることが好ましい。
Further, the crosslinking substituent other than those described above may be chlorine, bromine or iodine, or a boron-containing group represented by the following formula (XLS-19). * In the structural formula indicates a bonding position.
Figure JPOXMLDOC01-appb-C000302
In the above formula (XLS-19), R 41 and R 42 are each independently an alkyl, and R 41 and R 42 may combine with each other to form a ring. Further, the total carbon number of R 41 and R 42 is preferably 2 to 10.
 架橋性置換基を有する2価の芳香族化合物としては、例えば下記部分構造を有する化合物が挙げられる。各構造式中の*は結合位置を示す。
Figure JPOXMLDOC01-appb-C000303
Figure JPOXMLDOC01-appb-C000304
Figure JPOXMLDOC01-appb-C000305
Figure JPOXMLDOC01-appb-C000306
Examples of the divalent aromatic compound having a crosslinkable substituent include a compound having the following partial structure. * In each structural formula shows a bonding position.
Figure JPOXMLDOC01-appb-C000303
Figure JPOXMLDOC01-appb-C000304
Figure JPOXMLDOC01-appb-C000305
Figure JPOXMLDOC01-appb-C000306
2-9-7.高分子化合物および架橋性高分子化合物の製造方法
 高分子化合物および架橋性高分子化合物の製造方法について、上述した式(SPH-1)で表される化合物および(XLP-1)で表される化合物を例にして説明する。これらの化合物は、公知の製造方法を適宜組み合わせて合成することができる。
2-9-7. Method for producing polymer compound and cross-linkable polymer compound Regarding the method for producing polymer compound and cross-linkable polymer compound, the compound represented by formula (SPH-1) and the compound represented by (XLP-1) described above Will be described as an example. These compounds can be synthesized by appropriately combining known production methods.
 反応で用いられる溶媒としては、芳香族溶媒、飽和/不飽和炭化水素溶媒、アルコール溶媒、エーテル系溶媒などがあげられ、例えば、ジメトキシエタン、2-(2-メトキシエトキシ)エタン、2-(2-エトキシエトキシ)エタン等があげられる。 Examples of the solvent used in the reaction include an aromatic solvent, a saturated / unsaturated hydrocarbon solvent, an alcohol solvent, and an ether solvent, and examples thereof include dimethoxyethane, 2- (2-methoxyethoxy) ethane, and 2- (2 -Ethoxyethoxy) ethane and the like.
 また、反応は2相系で行ってもよい。2相系で反応させる場合は、必要に応じて、第4級アンモニウム塩等の相間移動触媒を加えてもよい。 反 応 The reaction may be performed in a two-phase system. When the reaction is performed in a two-phase system, a phase transfer catalyst such as a quaternary ammonium salt may be added as necessary.
 式(SPH-1)の化合物および(XLP-1)の化合物を製造する際、一段階で製造してもよいし、多段階を経て製造してもよい。また、原料を反応容器に全て入れてから反応を開始する一括重合法により行ってもよいし、原料を反応容器に滴下し加える滴下重合法により行ってもよいし、生成物が反応の進行に伴い沈殿する沈殿重合法により行ってもよく、これらを適宜組み合わせて合成することができる。例えば、式(SPH-1)で表される化合物を一段階で合成する際、モノマーユニット(MU)およびエンドキャップユニット(EC)を反応容器に加えた状態で反応を行うことで目的物を得る。また、一般式(SPH-1)で表される化合物を多段階で合成する際、モノマーユニット(MU)を目的の分子量まで重合した後、エンドキャップユニット(EC)を加えて反応させることで目的物を得る。多段階で異なる種類のモノマーユニット(MU)を加え反応を行えば、モノマーユニットの構造について濃度勾配を有するポリマーを作ることができる。また、前駆体ポリマーを調製した後、あと反応により目的物ポリマーを得ることができる。 際 When producing the compound of formula (SPH-1) and the compound of (XLP-1), the compound may be produced in one step or may be produced through multiple steps. Further, the reaction may be carried out by a batch polymerization method in which the reaction is started after all the raw materials are put into the reaction vessel, or may be carried out by a drop polymerization method in which the raw materials are added dropwise to the reaction vessel, or the product may be used in the course of the reaction. It may be carried out by a precipitation polymerization method in which precipitation occurs, and these can be synthesized by appropriately combining them. For example, when synthesizing the compound represented by the formula (SPH-1) in one step, the desired product is obtained by performing a reaction in a state where a monomer unit (MU) and an end cap unit (EC) are added to a reaction vessel. . Further, when synthesizing the compound represented by the general formula (SPH-1) in multiple steps, the monomer unit (MU) is polymerized to a target molecular weight, and then the reaction is performed by adding an end cap unit (EC). Get things. By adding and reacting different types of monomer units (MU) in multiple stages, a polymer having a concentration gradient in the structure of the monomer units can be produced. After the precursor polymer is prepared, the target polymer can be obtained by post-reaction.
 また、モノマーユニット(MU)の重合性基を選べばポリマーの一次構造を制御することができる。例えば、合成スキームの1~3に示すように、ランダムな一次構造を有するポリマー(合成スキームの1)、規則的な一次構造を有するポリマー(合成スキームの2および3)などを合成することが可能であり、目的物に応じて適宜組み合わせて用いることができる。さらには、重合性基を3つ以上有するモノマーユニットを用いれば、ハイパーブランチポリマーやデンドリマーを合成することができる。 The primary structure of the polymer can be controlled by selecting the polymerizable group of the monomer unit (MU). For example, as shown in synthesis schemes 1 to 3, polymers having a random primary structure (synthesis scheme 1), polymers having a regular primary structure (synthesis schemes 2 and 3), and the like can be synthesized. And can be used in an appropriate combination depending on the object. Furthermore, if a monomer unit having three or more polymerizable groups is used, a hyperbranched polymer or dendrimer can be synthesized.
Figure JPOXMLDOC01-appb-C000307
Figure JPOXMLDOC01-appb-C000307
 本発明で用いることのできるモノマーユニットとしては、特開2010-189630号公報、国際公報第2012/086671号、国際公開第2013/191088号、国際公開第2002/045184号、国際公開第2011/049241号、国際公開第2013/146806号、国際公開第2005/049546号、国際公開第2015/145871号、特開2010-215886号、特開2008-106241号公報、特開2010-215886号公報、国際公開第2016/031639号、特開2011-174062号公報、国際公開第2016/031639号、国際公開第2016/031639号、国際公開第2002/045184号に記載の方法に準じて合成することができる。 As the monomer unit that can be used in the present invention, JP 2010-189630 A, International Publication No. 2012/086671, WO 2013/191088, WO 2002/045184, WO 2011/049241 No., WO2013 / 146806, WO2005 / 049546, WO2015 / 145871, JP2010-215886, JP2008-106241, JP2010-215886, International Publication No. 2016/031639, JP 2011-174062, WO 2016/031639, WO 2016/031639, can be synthesized according to the method described in WO 2002/045184. .
 また、具体的なポリマー合成手順については、特開2012-036388号公報、国際公開第2015/008851号、特開2012-36381号公報、特開2012-144722号公報、国際公開第2015/194448号、国際公開第2013/146806号、国際公開第2015/145871号、国際公開第2016/031639号、国際公開第2016/125560号、国際公開第2016/031639号、国際公開第2016/031639号、国際公開第2016/125560号、国際公開第2015/145871号、国際公開第2011/049241号、特開2012-144722号公報に記載の方法に準じて合成することができる。 In addition, for specific polymer synthesis procedures, JP 2012-036388 A, WO 2015/008851, JP 2012-36381 JP, JP 2012-144722 A, WO 2015/194448 , WO 2013/146806, WO 2015/145871, WO 2016/031639, WO 2016/125560, WO 2016/031639, WO 2016/031639, International It can be synthesized according to the methods described in WO 2016/125560, WO 2015/145871, WO 2011/049241, and JP-A 2012-144722.
2-10.有機電界発光素子の応用例
 また、本発明は、有機EL素子を備えた表示装置または有機EL素子を備えた照明装置などにも応用することができる。有機EL素子を備えた表示装置または照明装置は、本実施形態にかかる有機EL素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
2-10. Application Example of Organic Electroluminescent Element The present invention can also be applied to a display device including an organic EL element, a lighting device including an organic EL element, and the like. A display device or a lighting device including the organic EL element can be manufactured by a known method such as connecting the organic EL element according to the present embodiment to a known driving device, and includes DC driving, pulse driving, AC driving, and the like. Driving can be performed using a known driving method as appropriate.
 表示装置としては、例えば、カラーフラットパネルディスプレイなどのパネルディスプレイ、フレキシブルカラー有機電界発光(EL)ディスプレイなどのフレキシブルディスプレイなどが挙げられる(例えば、特開平10-335066号公報、特開2003-321546号公報、特開2004-281086号公報など参照)。また、ディスプレイの表示方式としては、例えば、マトリクス方式およびセグメント方式の少なくとも1つなどが挙げられる。なお、マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。 Examples of the display device include a panel display such as a color flat panel display and a flexible display such as a flexible color organic electroluminescence (EL) display (for example, JP-A-10-335066, JP-A-2003-321546). Gazette, JP-A-2004-281086). Examples of the display method of the display include at least one of a matrix method and a segment method. Note that the matrix display and the segment display may coexist in the same panel.
 マトリクスは、表示のための画素が格子状やモザイク状など二次元的に配置されており、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が、構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。 In the matrix, pixels for display are two-dimensionally arranged such as in a grid or mosaic, and a set of pixels displays a character or an image. The shape and size of the pixel depend on the application. For example, a square pixel having a side of 300 μm or less is normally used for displaying images and characters on a personal computer, a monitor, and a television. In the case of a large display such as a display panel, a pixel having a side of mm order is used. become. In the case of monochrome display, pixels of the same color may be arranged, but in the case of color display, red, green and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type. The matrix may be driven by either a line-sequential driving method or an active matrix. The line-sequential driving has an advantage that the structure is simpler. However, in consideration of the operation characteristics, the active matrix may be more excellent. Therefore, it is necessary to use the active matrix properly depending on the application.
 セグメント方式(タイプ)では、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などが挙げられる。 In the segment method (type), a pattern is formed so as to display predetermined information, and a predetermined area emits light. For example, there are a time display and a temperature display on a digital clock or a thermometer, an operation state display of an audio device or an electromagnetic cooker, and a panel display of a car.
 照明装置としては、例えば、室内照明などの照明装置、液晶表示装置のバックライトなどが挙げられる(例えば、特開2003-257621号公報、特開2003-277741号公報、特開2004-119211号公報など参照)。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式では蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本実施形態に係る発光素子を用いたバックライトは薄型で軽量が特徴になる。 Illumination devices include, for example, illumination devices such as interior lighting, backlights of liquid crystal display devices (for example, JP-A-2003-257621, JP-A-2003-277741, and JP-A-2004-119211). Etc.). A backlight is mainly used for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like. In particular, considering that it is difficult to reduce the thickness of a conventional liquid crystal display device, particularly a backlight for a personal computer for which thinning is an issue, since the conventional method is made of a fluorescent lamp or a light guide plate, The backlight using the light emitting element according to the above is characterized by being thin and lightweight.
 また現在、色変換方式によるマルチカラー化技術を、液晶ディスプレイや有機ELディスプレイ、照明などへ応用することが盛んに検討されている。色変換とは、発光体からの発光をより長波長な光へと変換(波長変換)することであり、たとえば青色発光を緑色や赤色発光へと変換することを表す。この波長変換機能を有する組成物をフィルム化し、例えば青色光源と組み合わせることにより、青色光源から、青、緑、赤色の3原色を取り出すこと、すなわち白色光を取り出すことが可能となる。このような青色光源と波長変換機能を有するフィルムを組み合わせた白色光源を光源ユニットとし、液晶駆動部分と、カラーフィルターと組み合わせることで、フルカラーディスプレイの作製が可能になる。また液晶駆動部分が無ければ、そのまま白色光源として用いることができ、たとえばLED照明などの白色光源として応用できる。また、青色有機EL素子を光源として、緑色および赤色に変換するフィルムと組み合わせて用いることでメタルマスクを用いないフルカラー有機ELディスプレイの作製が可能になる。さらに、青色マイクロLEDを光源として、緑色および赤色に変換するフィルムと組み合わせて用いることで低コストのフルカラーマイクロLEDディスプレイの作製が可能になる。
 上記一般式(1)で表される多環芳香族化合物は、励起光によって色純度の高い青色発光あるいは緑色発光を与える蛍光材料として有用であり、このような波長変換機能を有する材料としても用いることができる。具体的には、式(1)の多環芳香族化合物は、例えば波長300nm~449nmの光を450nm~500nmに極大値を有する狭い半値幅(25nm以下、さらには20nm以下)の青色発光に変換する波長変換材料として使用することができる。また、例えば波長300nm~499nmの光を500nm~570nmに極大値を有する狭い半値幅(25nm以下、さらには20nm以下)の緑色発光に変換する波長変換材料として使用することができる。
 波長変換機能を有する組成物は、式(1)の多環芳香族化合物のほか、バインダー樹脂、その他の添加剤、および溶媒を含んでいてもよい。バインダー樹脂としては、例えば国際公開第2016/190283号の段落[0173]~[0176]に記載の樹脂を用いることができる。その他の添加剤としては、国際公開第2016/190283号の段落[0177]~[0181]に記載の化合物を用いることができる。また、溶媒としては、これらの材料を適切に溶解し得る溶媒を用いればよい。
 波長変換フィルムは波長変換機能を有する組成物を硬化させることにより形成される波長変換層を含む。組成物から波長変換層を作製する方法としては公知のフィルム形成方法を参照することができる。波長変換フィルムは式(1)の多環芳香族化合物を含む組成物から形成される波長変換層のみからなっていてもよく、他の波長変換層(例えば、青色光を緑色光や赤色光に変換する波長変換層、青色光や緑色光を赤色光に変換する波長変換層)を含んでいてもよい。さらに波長変換フィルムは基材層や、色変換層の酸素、水分や熱による劣化を防ぐためのバリア層を含んでいてもよい。
At present, application of a multi-color technology using a color conversion method to a liquid crystal display, an organic EL display, lighting, and the like is being actively studied. The color conversion is to convert light emitted from a light emitter to light having a longer wavelength (wavelength conversion), for example, to convert blue light to green or red light. By forming the composition having the wavelength conversion function into a film and combining it with, for example, a blue light source, it becomes possible to extract three primary colors of blue, green, and red from a blue light source, that is, to extract white light. A full-color display can be manufactured by combining such a blue light source and a film having a wavelength conversion function with a white light source as a light source unit and combining it with a liquid crystal driving portion and a color filter. In addition, if there is no liquid crystal driving portion, it can be used as it is as a white light source, and can be applied as a white light source such as LED lighting. Further, by using a blue organic EL element as a light source in combination with a film for converting into green and red, a full-color organic EL display without using a metal mask can be manufactured. Further, by using a blue micro LED as a light source in combination with a film for converting into green and red, a low-cost full-color micro LED display can be manufactured.
The polycyclic aromatic compound represented by the general formula (1) is useful as a fluorescent material that emits blue light or green light with high color purity by excitation light, and is also used as a material having such a wavelength conversion function. be able to. Specifically, the polycyclic aromatic compound of the formula (1) converts light having a wavelength of, for example, 300 nm to 449 nm into blue light emission having a narrow half width (25 nm or less, further 20 nm or less) having a maximum value at 450 nm to 500 nm. It can be used as a wavelength conversion material. Further, for example, it can be used as a wavelength conversion material for converting light having a wavelength of 300 nm to 499 nm into green light emission having a narrow half width (25 nm or less, further 20 nm or less) having a maximum value at 500 nm to 570 nm.
The composition having a wavelength conversion function may contain, in addition to the polycyclic aromatic compound of the formula (1), a binder resin, other additives, and a solvent. As the binder resin, for example, the resins described in paragraphs [0173] to [0176] of WO 2016/190283 can be used. As other additives, the compounds described in paragraphs [0177] to [0181] of WO 2016/190283 can be used. As the solvent, a solvent that can appropriately dissolve these materials may be used.
The wavelength conversion film includes a wavelength conversion layer formed by curing a composition having a wavelength conversion function. As a method for producing the wavelength conversion layer from the composition, a known film forming method can be referred to. The wavelength conversion film may be composed of only a wavelength conversion layer formed from a composition containing the polycyclic aromatic compound of the formula (1), and may include other wavelength conversion layers (for example, converting blue light into green light or red light). A wavelength conversion layer for converting blue light or green light to red light). Further, the wavelength conversion film may include a base layer and a barrier layer for preventing the color conversion layer from being deteriorated by oxygen, moisture or heat.
 以下、実施例により本発明をさらに具体的に説明していくが、本発明はこれらに限定されない。つまり、本発明の有機EL素子の構成は、以下の実施例として示す構成に限定されず、各層の膜厚や構成材料は、本発明の基礎物性によって適宜変更することができる。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. That is, the configuration of the organic EL device of the present invention is not limited to the configuration shown in the following examples, and the thickness and constituent material of each layer can be appropriately changed according to the basic physical properties of the present invention.
吸収特性と発光特性の評価
 前記サンプルの吸収スペクトルの測定は、紫外可視近赤外分光光度計((株)島津製作所、UV-2600)を用いて行った。また、前記サンプルの蛍光スペクトルの測定は、分光蛍光光度計(日立ハイテク(株)製、F-7000)を用いて行った。
Evaluation of Absorption Characteristics and Emission Characteristics The absorption spectrum of the sample was measured using an ultraviolet-visible-near-infrared spectrophotometer (UV-2600, Shimadzu Corporation). The fluorescence spectrum of the sample was measured using a spectrofluorometer (F-7000, manufactured by Hitachi High-Tech Co., Ltd.).
 蛍光スペクトルの測定に対しては、室温で適切な励起波長で励起しフォトルミネッセンスを測定した。燐光スペクトルの測定に対しては、付属の冷却ユニットを使用して、前記サンプルを液体窒素に浸した状態(温度77K)で測定した。サンプルは適切な励起波長で励起しフォトルミネッセンスを測定した。 (4) For measurement of the fluorescence spectrum, photoluminescence was measured by exciting at an appropriate excitation wavelength at room temperature. For the measurement of the phosphorescence spectrum, the sample was immersed in liquid nitrogen (temperature 77 K) using an attached cooling unit. The sample was excited at the appropriate excitation wavelength and photoluminescence was measured.
 また、絶対PL量子収率測定装置(浜松ホトニクス(株)製、C9920-02G)を用いて蛍光量子収率(PLQY)を測定する。 蛍 光 Further, the fluorescence quantum yield (PLQY) is measured using an absolute PL quantum yield measuring device (C9920-02G, manufactured by Hamamatsu Photonics KK).
<有機EL素子の評価>
評価項目および評価方法
 評価項目としては、駆動電圧(V)、発光波長(nm)、CIE色度(x,y)、外部量子効率(%)、発光スペクトルの最大波長(nm)、半値幅(nm)およびロールオフなどがある。これらの評価項目は、適切な発光輝度時の値を用いることができる。
<Evaluation of organic EL element>
Evaluation items and evaluation methods Evaluation items include driving voltage (V), emission wavelength (nm), CIE chromaticity (x, y), external quantum efficiency (%), maximum wavelength of emission spectrum (nm), and half width ( nm) and roll-off. For these evaluation items, values at appropriate emission luminance can be used.
 発光素子の量子効率には、内部量子効率と外部量子効率とがあるが、内部量子効率は、発光素子の発光層に電子(または正孔)として注入される外部エネルギーが純粋に光子に変換される割合を示している。一方、外部量子効率は、この光子が発光素子の外部にまで放出された量に基づいて算出され、発光層において発生した光子は、その一部が発光素子の内部で吸収されたりあるいは反射され続けたりして、発光素子の外部に放出されないため、外部量子効率は内部量子効率よりも低くなる。 The quantum efficiency of a light-emitting device includes an internal quantum efficiency and an external quantum efficiency. The internal quantum efficiency is such that external energy injected as electrons (or holes) into the light-emitting layer of the light-emitting device is purely converted into photons. Shows the ratio of On the other hand, the external quantum efficiency is calculated based on the amount of this photon emitted to the outside of the light emitting element, and a part of the photon generated in the light emitting layer is continuously absorbed or reflected inside the light emitting element. As a result, the external quantum efficiency is lower than the internal quantum efficiency because the external quantum efficiency is not emitted to the outside of the light emitting element.
 分光放射輝度(発光スペクトル)と外部量子効率の測定方法は次の通りである。アドバンテスト社製電圧/電流発生器R6144を用いて、電圧を印加することにより素子を発光させた。TOPCON社製分光放射輝度計SR-3ARを用いて、発光面に対して垂直方向から可視光領域の分光放射輝度を測定した。発光面が完全拡散面であると仮定して、測定した各波長成分の分光放射輝度の値を波長エネルギーで割ってπを掛けた数値が各波長におけるフォトン数である。次いで、観測した全波長領域でフォトン数を積算し、素子から放出された全フォトン数とした。印加電流値を素電荷で割った数値を素子へ注入したキャリア数として、素子から放出された全フォトン数を素子へ注入したキャリア数で割った数値が外部量子効率である。また、発光スペクトルの半値幅は、極大発光波長を中心として、その強度が50%になる上下の波長間の幅として求められる。 測定 The method of measuring the spectral radiance (emission spectrum) and external quantum efficiency is as follows. The element was made to emit light by applying a voltage using a voltage / current generator R6144 manufactured by Advantest Corporation. Using a spectral radiance meter SR-3AR manufactured by TOPCON, the spectral radiance in the visible light region was measured from the direction perpendicular to the light emitting surface. Assuming that the light emitting surface is a perfect diffusion surface, the value obtained by dividing the measured value of the spectral radiance of each wavelength component by the wavelength energy and multiplying by π is the number of photons at each wavelength. Next, the number of photons was integrated in all the observed wavelength regions to obtain the total number of photons emitted from the device. The external quantum efficiency is a value obtained by dividing a value obtained by dividing an applied current value by an elementary charge as the number of carriers injected into the device and dividing the total number of photons emitted from the device by the number of carriers injected into the device. The half width of the emission spectrum is determined as the width between the upper and lower wavelengths at which the intensity becomes 50% with the maximum emission wavelength as the center.
 ロールオフとは素子に電圧を印加したとき、電圧の印加に従って効率が低下する現象であり、小さい方が好ましい。TADF素子においては、ドーパントまたはアシストドーパントのtau(delay)が大きいときロールオフが大きくなり、tau(delay)が小さいときロールオフが小さくなる。ロールオフの程度の比較および評価方法としては、任意の2点の輝度または電流密度における効率を比較することで評価することができる。効率が高くロールオフも小さいことが好ましい。 Roll-off is a phenomenon in which, when a voltage is applied to an element, the efficiency decreases as the voltage is applied. In the TADF element, when tau (delay) of the dopant or assist dopant is large, the roll-off is large, and when tau (delay) is small, the roll-off is small. As a method of comparing and evaluating the degree of roll-off, evaluation can be performed by comparing the efficiency at any two points of luminance or current density. Preferably, the efficiency is high and the roll-off is small.
 ロールオフは任意の2つの輝度間における効率の低下の程度を示し、例えば、100cd/mおよび1000cd/m間のロールオフ(RO)は以下式(XXXX)で求められる。式中EQE(100cd/m)およびEQE(1000cd/m)はそれぞれ100cd/mおよび1000cd/mにおける外部量子効率を示す。
RO=1-(EQE(100cd/m)/EQE(1000cd/m))
The roll-off indicates a degree of reduction in efficiency between any two luminances. For example, a roll-off (RO) between 100 cd / m 2 and 1000 cd / m 2 is obtained by the following equation (XXXX). Wherein EQE (100cd / m 2) and EQE (1000cd / m 2) each represent an external quantum efficiency at 100 cd / m 2 and 1000 cd / m 2.
RO = 1− (EQE (100 cd / m 2 ) / EQE (1000 cd / m 2 ))
(1)蒸着型有機EL素子
 文献(Adv. Mater. 2016, 28, 2777-2781)で示され、熱活性化型遅延蛍光用材料に適合した高い効率を期待できる素子構成を備える有機EL素子を作製した。
 以下の実施例および比較例にて、構成Aの有機EL素子を作製するに際し、使用した発光層以外の各層の形成材料は以下のとおりである。
 表1中の作製した有機EL素子の各層の形成材料を示す。
 正孔注入層材料である「HI」はN,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニルであり、正孔輸送層材料である「HT」は4,4’,4”-トリス(N-カルバゾリル)トリフェニルアミンであり、電子阻止層材料である「EB」は1,3-ビス(N-カルバゾリル)ベンゼンであり、電子輸送層材料である「ET」はジフェニル[4-(トリフェニルシリル)フェニル]ホスフィンオキシドである。
 以下に化学構造を示す。
(1) Vapor-deposited organic EL device An organic EL device having a device configuration that can be expected to have high efficiency, which is shown in the literature (Adv. Mater. 2016, 28, 2777-2781) and is suitable for thermally activated delayed fluorescent material Produced.
In the following Examples and Comparative Examples, when forming the organic EL device having the configuration A, the materials used for forming the layers other than the light emitting layer used are as follows.
The forming materials of each layer of the manufactured organic EL device in Table 1 are shown.
“HI” as the hole injection layer material is N, N′-diphenyl-N, N′-dinaphthyl-4,4′-diaminobiphenyl, and “HT” as the hole transport layer material is 4,4 ′. , 4 "-tris (N-carbazolyl) triphenylamine, electron blocking layer material" EB "is 1,3-bis (N-carbazolyl) benzene, and electron transporting layer material" ET "is Diphenyl [4- (triphenylsilyl) phenyl] phosphine oxide.
The chemical structure is shown below.
Figure JPOXMLDOC01-appb-C000308
Figure JPOXMLDOC01-appb-C000308
<実施例1~9、比較例1~3>
 表1に示す形成材料および膜厚の各層を積層してなる有機EL素子を作製した。
Figure JPOXMLDOC01-appb-T000309
<Examples 1 to 9, Comparative Examples 1 to 3>
An organic EL device was prepared by laminating each layer having the forming material and film thickness shown in Table 1.
Figure JPOXMLDOC01-appb-T000309
 また、発光層のホストおよびドーパントとして用いた化合物の構造は以下のとおりである。
Figure JPOXMLDOC01-appb-C000310
The structures of the compounds used as the host and the dopant of the light emitting layer are as follows.
Figure JPOXMLDOC01-appb-C000310
Figure JPOXMLDOC01-appb-C000311
Figure JPOXMLDOC01-appb-C000311
<実施例1>
 スパッタリングにより200nmの厚さに成膜したITOを50nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とする。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、HI、HT、EB、化合物(BO2-0220)、化合物(DABNA2)、およびETをそれぞれ入れたタンタル製蒸着用ボート、LiFおよびアルミニウムをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
<Example 1>
A glass substrate (manufactured by OptoScience Corp.) of 26 mm × 28 mm × 0.7 mm, which is obtained by polishing ITO formed to a thickness of 200 nm by sputtering to 50 nm, is used as a transparent support substrate. This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition device (manufactured by Choshu Sangyo Co., Ltd.), and tantalum made of HI, HT, EB, compound (BO2-0220), compound (DABNA2), and ET, respectively. An evaporation boat, an aluminum nitride evaporation boat containing LiF and aluminum, respectively, were mounted.
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIを加熱して膜厚40nmになるように蒸着し、次に、HTを加熱して膜厚15nmになるように蒸着して正孔注入層および正孔輸送層をそれぞれ形成した。次に、EBを加熱して膜厚15nmになるように蒸着して電子阻止層を形成した。次に、化合物(BO2-0220)と化合物(DABNA2)を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(BO2-0220)と化合物(DABNA2)の重量比が99対1になるように蒸着速度を調節した。次に、ETを加熱して膜厚40nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒でした。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得られた。このとき、アルミニウムの蒸着速度は1~10nm/秒になるように調節した。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The pressure in the vacuum chamber was reduced to 5 × 10 −4 Pa. First, HI was heated to deposit a film to a thickness of 40 nm, and then HT was heated to deposit a film to a thickness of 15 nm to form holes. An injection layer and a hole transport layer were formed, respectively. Next, EB was heated to be deposited to a thickness of 15 nm to form an electron blocking layer. Next, the compound (BO2-0220) and the compound (DABNA2) were simultaneously heated and evaporated to a thickness of 20 nm to form a light emitting layer. The deposition rate was adjusted such that the weight ratio of the compound (BO2-0220) to the compound (DABNA2) was 99: 1. Next, ET was heated and vapor-deposited to a thickness of 40 nm to form an electron transport layer. The deposition rate for each layer was 0.01-1 nm / sec. Thereafter, LiF is heated to deposit a film at a deposition rate of 0.01 to 0.1 nm / sec to a thickness of 1 nm, and then aluminum is heated to deposit a film to a thickness of 100 nm to form a cathode. Thus, an organic EL device was obtained. At this time, the deposition rate of aluminum was adjusted to be 1 to 10 nm / sec.
 ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長467nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は23.7%であり、高い量子効率が得られた。 When a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 467 nm, and deep blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 23.7%, and high quantum efficiency was obtained.
<実施例2>
 ホストを化合物(BO2-0511S)に変更した以外は実施例1と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長465nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は15.4%であり、高い量子効率が得られた。
<Example 2>
An organic EL device was obtained by the same procedure and configuration as in Example 1 except that the host was changed to the compound (BO2-0511S). When a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of emission of 100 cd / m 2 were measured, the emission spectrum was at a peak wavelength of 465 nm, and deep blue emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 15.4%, and high quantum efficiency was obtained.
<実施例3>
 ホストを化合物(BO2-0264/0511S)に変更した以外は実施例1と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長465nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は14.2%であり、高い量子効率が得られた。
<Example 3>
An organic EL device was obtained by the same procedure and configuration as in Example 1 except that the host was changed to the compound (BO2-0264 / 0511S). When a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of emission of 100 cd / m 2 were measured, the emission spectrum was at a peak wavelength of 465 nm, and deep blue emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 14.2%, and high quantum efficiency was obtained.
<比較例1>
 ホストを化合物(EMH1)に変更した以外は実施例1と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長465nmであり、深い青色発光が見られた。一方、100cd/m発光時の外部量子効率は10.8%であり、実施例1~3と比較して効率が低かった。
<Comparative Example 1>
An organic EL device was obtained by the same procedure and configuration as in Example 1 except that the host was changed to the compound (EMH1). When a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of emission of 100 cd / m 2 were measured, the emission spectrum was at a peak wavelength of 465 nm, and deep blue emission was observed. On the other hand, the external quantum efficiency at the time of light emission of 100 cd / m 2 was 10.8%, which was lower than those of Examples 1 to 3.
<実施例4>
 ドーパントを化合物(BD1)に変更した以外は実施例1と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長462nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は28.6%であり、高い量子効率が得られた。
<Example 4>
An organic EL device was obtained in the same procedure and configuration as in Example 1 except that the dopant was changed to the compound (BD1). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 462 nm, and deep blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 28.6%, and high quantum efficiency was obtained.
<実施例5>
 ホストを化合物(BO2-0220/0511S)に、ドーパントを化合物(BD1)に変更した以外は実施例1と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長461nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は22.4%であり、高い量子効率が得られた。
<Example 5>
An organic EL device was obtained in the same procedure and configuration as in Example 1, except that the host was changed to the compound (BO2-0220 / 0511S) and the dopant was changed to the compound (BD1). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 461 nm, and deep blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 22.4%, and high quantum efficiency was obtained.
<比較例2>
 ドーパントを化合物(BD1)に変更した以外は実施例1と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長461nmであり、深い青色発光が見られた。一方、100cd/m発光時の外部量子効率は12.6%であり、実施例4および5と比較して効率が低かった。
<Comparative Example 2>
An organic EL device was obtained in the same procedure and configuration as in Example 1 except that the dopant was changed to the compound (BD1). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 461 nm, and deep blue light emission was observed. On the other hand, the external quantum efficiency at the time of light emission of 100 cd / m 2 was 12.6%, which was lower than those of Examples 4 and 5.
<実施例6>
 ホストを化合物(BO2-0220)に、ドーパントを化合物(BD2)に変更した以外は実施例1と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長473nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は34.0%であり、高い量子効率が得られた。
<Example 6>
An organic EL device was obtained in the same procedure and configuration as in Example 1, except that the host was changed to the compound (BO2-0220) and the dopant was changed to the compound (BD2). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 34.0%, and high quantum efficiency was obtained.
<実施例7>
 ホストを化合物(BO2-0511S)に、ドーパントを化合物(BD2)に変更した以外は実施例1と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長473nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は28.0%であり、高い量子効率が得られた。
<Example 7>
An organic EL device was obtained in the same procedure and configuration as in Example 1, except that the host was changed to the compound (BO2-0511S) and the dopant was changed to the compound (BD2). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 28.0%, and high quantum efficiency was obtained.
<実施例8>
 ホストを化合物(BO2-0520S)に、ドーパントを化合物(BD2)に変更した以外は実施例1と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長473nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は29.2%であり、高い量子効率が得られた。
<Example 8>
An organic EL device was obtained in the same procedure and configuration as in Example 1, except that the host was changed to the compound (BO2-0520S) and the dopant was changed to the compound (BD2). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 29.2%, and high quantum efficiency was obtained.
<実施例9>
 ホストを化合物(BO2-0264/0511S)に、ドーパントを化合物(BD2)に変更した以外は実施例1と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長470nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は30.3%であり、高い量子効率が得られた。
<Example 9>
An organic EL device was obtained by the same procedure and configuration as in Example 1 except that the host was changed to the compound (BO2-0264 / 0511S) and the dopant was changed to the compound (BD2). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission at 100 cd / m 2 were measured, the emission spectrum was at a peak wavelength of 470 nm, and deep blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 30.3%, and high quantum efficiency was obtained.
<比較例3>
 ホストを化合物(EMH1)に、ドーパントを化合物(BD2)に変更した以外は実施例1と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長471nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は19.1%であり、実施例6~9と比べて効率が低かった。
<Comparative Example 3>
An organic EL device was obtained by the same procedure and configuration as in Example 1, except that the host was changed to the compound (EMH1) and the dopant was changed to the compound (BD2). When a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 471 nm, and deep blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 19.1%, which was lower than those of Examples 6 to 9.
<実施例10~14、比較例4~8>
 表2に示す形成材料および膜厚の各層を積層してなる有機EL素子を作製した。
Figure JPOXMLDOC01-appb-T000312
<Examples 10 to 14, Comparative Examples 4 to 8>
An organic EL device formed by laminating each layer having the forming material and the film thickness shown in Table 2 was produced.
Figure JPOXMLDOC01-appb-T000312
 また、発光層のホストおよびドーパントとして用いた化合物の構造は以下のとおりである。
Figure JPOXMLDOC01-appb-C000313
The structures of the compounds used as the host and the dopant of the light emitting layer are as follows.
Figure JPOXMLDOC01-appb-C000313
<実施例10>
 スパッタリングにより200nmの厚さに成膜したITOを50nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とする。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、HI、HT、EB、化合物(BO2-0511S)、化合物(BD3)、およびETをそれぞれ入れたタンタル製蒸着用ボート、LiFおよびアルミニウムをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
<Example 10>
A glass substrate (manufactured by OptoScience Corp.) of 26 mm × 28 mm × 0.7 mm, which is obtained by polishing ITO formed to a thickness of 200 nm by sputtering to 50 nm, is used as a transparent support substrate. This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Choshu Sangyo Co., Ltd.), and tantalum made of HI, HT, EB, compound (BO2-0511S), compound (BD3), and ET, respectively. An evaporation boat, an aluminum nitride evaporation boat containing LiF and aluminum, respectively, were mounted.
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIを加熱して膜厚40nmになるように蒸着し、次に、HTを加熱して膜厚15nmになるように蒸着して正孔注入層および正孔輸送層をそれぞれ形成した。次に、EBを加熱して膜厚15nmになるように蒸着して電子阻止層を形成した。次に、化合物(BO2-0511S)とBD3を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(BO2-0511S)と化合物(BD3)の重量比が99対1になるように蒸着速度を調節した。次に、ETを加熱して膜厚30nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒でした。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得られた。このとき、アルミニウムの蒸着速度は1~10nm/秒になるように調節した。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The pressure in the vacuum chamber was reduced to 5 × 10 −4 Pa. First, HI was heated to deposit a film to a thickness of 40 nm, and then HT was heated to deposit a film to a thickness of 15 nm to form holes. An injection layer and a hole transport layer were formed, respectively. Next, EB was heated to be deposited to a thickness of 15 nm to form an electron blocking layer. Next, the compound (BO2-0511S) and BD3 were simultaneously heated and evaporated to a thickness of 20 nm to form a light emitting layer. The deposition rate was adjusted such that the weight ratio of the compound (BO2-0511S) to the compound (BD3) became 99: 1. Next, the ET was heated and vapor-deposited so as to have a thickness of 30 nm to form an electron transport layer. The deposition rate for each layer was 0.01-1 nm / sec. Thereafter, LiF is heated to deposit a film at a deposition rate of 0.01 to 0.1 nm / sec to a thickness of 1 nm, and then aluminum is heated to deposit a film to a thickness of 100 nm to form a cathode. Thus, an organic EL device was obtained. At this time, the deposition rate of aluminum was adjusted to be 1 to 10 nm / sec.
 ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長451nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は14.8%であり、高い量子効率が得られた。 When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 451 nm, and deep blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 14.8%, and high quantum efficiency was obtained.
<比較例4>
 ホストを化合物(EMH1)に変更した以外は実施例10と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長452nmであり、深い青色発光が見られた。一方、100cd/m発光時の外部量子効率は8.1%であり、実施例10と比較して効率が低かった。
<Comparative Example 4>
An organic EL device was obtained in the same procedure and configuration as in Example 10, except that the host was changed to the compound (EMH1). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 452 nm, and deep blue light emission was observed. On the other hand, the external quantum efficiency at the time of light emission of 100 cd / m 2 was 8.1%, which was lower than that of Example 10.
<実施例11>
 ドーパントを化合物(BD4)に変更した以外は実施例10と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長461nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は19.5%であり、高い量子効率が得られた。
<Example 11>
An organic EL device was obtained in the same procedure and configuration as in Example 10, except that the dopant was changed to the compound (BD4). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 461 nm, and deep blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 19.5%, and high quantum efficiency was obtained.
<比較例5>
 ホストを化合物(EMH1)に変更した以外は実施例11と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長461nmであり、深い青色発光が見られた。一方、100cd/m発光時の外部量子効率は11.1%であり、実施例11と比較して効率が低かった。
<Comparative Example 5>
An organic EL device was obtained in the same procedure and configuration as in Example 11, except that the host was changed to the compound (EMH1). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 461 nm, and deep blue light emission was observed. On the other hand, the external quantum efficiency at the time of light emission of 100 cd / m 2 was 11.1%, which was lower than that of Example 11.
<実施例12>
 ドーパントを化合物(BD5)に変更した以外は実施例10と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長468nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は17.5%であり、高い量子効率が得られた。
<Example 12>
An organic EL device was obtained in the same procedure and configuration as in Example 10, except that the dopant was changed to the compound (BD5). When a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 468 nm, and deep blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 17.5%, and high quantum efficiency was obtained.
<比較例6>
 ホストを化合物(EMH1)に変更した以外は実施例12と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長468nmであり、深い青色発光が見られた。一方、100cd/m発光時の外部量子効率は11.4%であり、実施例12と比較して効率が低かった。
<Comparative Example 6>
An organic EL device was obtained in the same procedure and configuration as in Example 12, except that the host was changed to the compound (EMH1). When a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 468 nm, and deep blue light emission was observed. On the other hand, the external quantum efficiency at the time of light emission of 100 cd / m 2 was 11.4%, which was lower than that of Example 12.
<実施例13>
 ドーパントを化合物(BD5)に変更した以外は実施例10と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長489nmであり、青色発光が見られた。また、100cd/m発光時の外部量子効率は18.1%であり、高い量子効率が得られた。
<Example 13>
An organic EL device was obtained in the same procedure and configuration as in Example 10, except that the dopant was changed to the compound (BD5). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 489 nm, and blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 18.1%, and high quantum efficiency was obtained.
<比較例7>
 ホストを化合物(EMH1)に変更した以外は実施例13と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長490nmであり、青色発光が見られた。一方、100cd/m発光時の外部量子効率は12.2%であり、実施例13と比較して効率が低かった。
<Comparative Example 7>
An organic EL device was obtained in the same procedure and configuration as in Example 13, except that the host was changed to the compound (EMH1). When a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 490 nm, and blue light emission was observed. On the other hand, the external quantum efficiency at the time of light emission of 100 cd / m 2 was 12.2%, which was lower than that of Example 13.
<実施例14>
 ドーパントを化合物(BD7)に変更した以外は実施例10と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長468nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は11.6%であり、高い量子効率が得られた。
<Example 14>
An organic EL device was obtained in the same procedure and configuration as in Example 10, except that the dopant was changed to the compound (BD7). When a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 468 nm, and deep blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 11.6%, and high quantum efficiency was obtained.
<比較例8>
 ホストを化合物(EMH1)に変更した以外は実施例12と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、発光スペクトルはピーク波長468nmであり、深い青色発光が見られたが、劣化のため100cd/mでは光らなかった。
<Comparative Example 8>
An organic EL device was obtained in the same procedure and configuration as in Example 12, except that the host was changed to the compound (EMH1). A direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode. The emission spectrum was at a peak wavelength of 468 nm, and deep blue emission was observed. However, no emission was observed at 100 cd / m 2 due to deterioration.
<実施例15~16、比較例9>
 表3に示す形成材料および膜厚の各層を積層してなる有機EL素子を作製した。
Figure JPOXMLDOC01-appb-T000314
<Examples 15 and 16, Comparative Example 9>
An organic EL device formed by laminating each layer having the forming material and the film thickness shown in Table 3 was produced.
Figure JPOXMLDOC01-appb-T000314
 また、発光層のホストおよびドーパントとして用いた化合物の構造は以下のとおりである。
Figure JPOXMLDOC01-appb-C000315
The structures of the compounds used as the host and the dopant of the light emitting layer are as follows.
Figure JPOXMLDOC01-appb-C000315
<実施例15>
 スパッタリングにより200nmの厚さに成膜したITOを50nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とする。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、HI、HT、EB、化合物(BO2-0231)、化合物(BD2)、およびETをそれぞれ入れたタンタル製蒸着用ボート、LiFおよびアルミニウムをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
<Example 15>
A glass substrate (manufactured by OptoScience Corp.) of 26 mm × 28 mm × 0.7 mm, which is obtained by polishing ITO formed to a thickness of 200 nm by sputtering to 50 nm, is used as a transparent support substrate. This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition device (manufactured by Choshu Sangyo Co., Ltd.), and tantalum made of HI, HT, EB, compound (BO2-0231), compound (BD2), and ET, respectively. An evaporation boat, an aluminum nitride evaporation boat containing LiF and aluminum, respectively, were mounted.
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIを加熱して膜厚40nmになるように蒸着し、次に、HTを加熱して膜厚15nmになるように蒸着して正孔注入層および正孔輸送層をそれぞれ形成した。次に、EBを加熱して膜厚15nmになるように蒸着して電子阻止層を形成した。次に、化合物(BO2-0231)と化合物(BD2)を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(BO2-0231)と化合物(BD2)の重量比が99対1になるように蒸着速度を調節した。次に、ETを加熱して膜厚30nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒でした。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得られた。このとき、アルミニウムの蒸着速度は1~10nm/秒になるように調節した。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The pressure in the vacuum chamber was reduced to 5 × 10 −4 Pa. First, HI was heated to deposit a film to a thickness of 40 nm, and then HT was heated to deposit a film to a thickness of 15 nm to form holes. An injection layer and a hole transport layer were formed, respectively. Next, EB was heated to be deposited to a thickness of 15 nm to form an electron blocking layer. Next, the compound (BO2-0231) and the compound (BD2) were simultaneously heated and evaporated to a thickness of 20 nm to form a light-emitting layer. The deposition rate was adjusted such that the weight ratio of the compound (BO2-0231) to the compound (BD2) became 99: 1. Next, the ET was heated and vapor-deposited so as to have a thickness of 30 nm to form an electron transport layer. The deposition rate for each layer was 0.01-1 nm / sec. Thereafter, LiF is heated to deposit a film at a deposition rate of 0.01 to 0.1 nm / sec to a thickness of 1 nm, and then aluminum is heated to deposit a film to a thickness of 100 nm to form a cathode. Thus, an organic EL device was obtained. At this time, the deposition rate of aluminum was adjusted to be 1 to 10 nm / sec.
 ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、1000cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長476nmであり、深い青色発光が見られた。また、100cd/mおよび1000cd/m発光時の外部量子効率は27.7%および24.5%であり、高い量子効率が得られた。くわえて、100cd/mおよび1000cd/m間のロールオフも-11.6%と小さかった。 When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 476 nm, and deep blue light emission was observed. The external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 27.7% and 24.5%, and high quantum efficiency was obtained. In addition, the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -11.6%.
<実施例16>
 ホストを化合物(BO2-0431)に変更した以外は実施例15と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、1000cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長474nmであり、深い青色発光が見られた。また、100cd/mおよび1000cd/m発光時の外部量子効率は29.4%および25.3%であり、高い量子効率が得られた。くわえて、100cd/mおよび1000cd/m間のロールオフも-14%と小さかった。
<Example 16>
An organic EL device was obtained by the same procedure and configuration as in Example 15 except that the host was changed to the compound (BO2-0431). When a DC voltage was applied using the ITO electrode as an anode and the aluminum electrode as a cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 474 nm, and deep blue light emission was observed. The external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 29.4% and 25.3%, and high quantum efficiency was obtained. In addition, the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -14%.
<比較例9>
 ホストをEMH1に変更した以外は実施例16と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、1000cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長471nmであり、深い青色発光が見られた。また、100cd/mおよび1000cd/m発光時の外部量子効率は18.2%および12.7%であり、高い量子効率が得られた。くわえて、100cd/mおよび1000cd/m間のロールオフも-30%と大きかった。
<Comparative Example 9>
An organic EL device was obtained in the same procedure and configuration as in Example 16 except that the host was changed to EMH1. When a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 471 nm, and deep blue light emission was observed. The external quantum efficiencies at the time of emission of 100 cd / m 2 and 1000 cd / m 2 were 18.2% and 12.7%, and high quantum efficiencies were obtained. In addition, the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as large as -30%.
<実施例17~25、比較例10>
 表4に示す形成材料および膜厚の各層を積層してなる有機EL素子を作製した。
Figure JPOXMLDOC01-appb-T000316
<Examples 17 to 25, Comparative Example 10>
An organic EL device was prepared by laminating each layer having the forming material and film thickness shown in Table 4.
Figure JPOXMLDOC01-appb-T000316
 また、発光層のホストおよびドーパント、ならびに電子輸送層の形成材料として用いた化合物の構造は以下のとおりである。なお、発光層および電子輸送層以外の各層の形成材料として用いた化合物の構造は上述のとおりである。 構造 The structures of the host and the dopant of the light emitting layer and the compound used as the material for forming the electron transport layer are as follows. The structure of the compound used as a material for forming each layer other than the light emitting layer and the electron transporting layer is as described above.
Figure JPOXMLDOC01-appb-C000317
Figure JPOXMLDOC01-appb-C000317
Figure JPOXMLDOC01-appb-C000318
Figure JPOXMLDOC01-appb-C000318
<実施例17>
 スパッタリングにより200nmの厚さに成膜したITOを50nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とする。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、HI、HT、EB、化合物(BO2-0431)、化合物(BD2)、2CzBNおよびBPy-TP2をそれぞれ入れたタンタル製蒸着用ボート、LiFおよびアルミニウムをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
<Example 17>
A glass substrate (manufactured by OptoScience Corp.) of 26 mm × 28 mm × 0.7 mm, which is obtained by polishing ITO formed to a thickness of 200 nm by sputtering to 50 nm, is used as a transparent support substrate. This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition device (manufactured by Choshu Sangyo Co., Ltd.), and HI, HT, EB, compound (BO2-0431), compound (BD2), 2CzBN and BPy-TP2 were respectively placed therein. A tantalum evaporation boat and an aluminum nitride evaporation boat containing LiF and aluminum, respectively, were mounted.
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIを加熱して膜厚40nmになるように蒸着し、次に、HTを加熱して膜厚15nmになるように蒸着して正孔注入層および正孔輸送層をそれぞれ形成した。次に、EBを加熱して膜厚15nmになるように蒸着して電子阻止層を形成した。次に、化合物(BO2-0231)と化合物(BD2)を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(BO2-0231)と化合物(BD2)の重量比が99対1になるように蒸着速度を調節した。次に、2CzBNを加熱して膜厚10nmになるように蒸着して電子輸送層1を形成した。次に、BPy-TP2を加熱して膜厚20nmになるように蒸着して電子輸送層1を形成した。各層の蒸着速度は0.01~1nm/秒でした。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得られた。このとき、アルミニウムの蒸着速度は1~10nm/秒になるように調節した。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The pressure in the vacuum chamber was reduced to 5 × 10 −4 Pa. First, HI was heated to deposit a film to a thickness of 40 nm, and then HT was heated to deposit a film to a thickness of 15 nm to form holes. An injection layer and a hole transport layer were formed, respectively. Next, EB was heated to be deposited to a thickness of 15 nm to form an electron blocking layer. Next, the compound (BO2-0231) and the compound (BD2) were simultaneously heated and evaporated to a thickness of 20 nm to form a light-emitting layer. The deposition rate was adjusted such that the weight ratio of the compound (BO2-0231) to the compound (BD2) became 99: 1. Next, 2CzBN was heated and evaporated to a thickness of 10 nm to form an electron transport layer 1. Next, BPy-TP2 was heated and vapor-deposited to a thickness of 20 nm to form an electron transport layer 1. The deposition rate for each layer was 0.01-1 nm / sec. Thereafter, LiF is heated to deposit a film at a deposition rate of 0.01 to 0.1 nm / sec to a thickness of 1 nm, and then aluminum is heated to deposit a film to a thickness of 100 nm to form a cathode. Thus, an organic EL device was obtained. At this time, the deposition rate of aluminum was adjusted to be 1 to 10 nm / sec.
 ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、1000cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長473nmであり、深い青色発光が見られた。また、100cd/mおよび1000cd/m発光時の外部量子効率は28.0%および25.1%であり、高い量子効率が得られた。くわえて、100cd/mおよび1000cd/m間のロールオフも-10.4%と小さかった。また、輝度100cd/mの電流値で連続駆動させたとき輝度80cd/mになるまで時間(LT80)は83時間であった。 When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed. The external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 28.0% and 25.1%, and high quantum efficiency was obtained. In addition, the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -10.4%. The time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 83 hours.
<実施例18>
 ホストを化合物(BO2-0520)に変更した以外は実施例17と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、1000cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長473nmであり、深い青色発光が見られた。また、100cd/mおよび1000cd/m発光時の外部量子効率は28.6%および25.7%であり、高い量子効率が得られた。くわえて、100cd/mおよび1000cd/m間のロールオフも-9.2%と小さかった。また、輝度100cd/mの電流値で連続駆動させたとき輝度80cd/mになるまで時間(LT80)は90時間であった。
<Example 18>
An organic EL device was obtained in the same procedure and configuration as in Example 17, except that the host was changed to the compound (BO2-0520). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed. Further, the external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 28.6% and 25.7%, and high quantum efficiency was obtained. In addition, the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -9.2%. The time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 90 hours.
<実施例19>
 ホストを化合物(BO2-0220)に変更した以外は実施例17と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、1000cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長473nmであり、深い青色発光が見られた。また、100cd/mおよび1000cd/m発光時の外部量子効率は29.3%および26.6%であり、高い量子効率が得られた。くわえて、100cd/mおよび1000cd/m間のロールオフも-10.1%と小さかった。また、輝度100cd/mの電流値で連続駆動させたとき輝度cd/mになるまで時間(LT80)は30時間であった。
<Example 19>
An organic EL device was obtained in the same procedure and configuration as in Example 17, except that the host was changed to the compound (BO2-0220). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed. The external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 29.3% and 26.6%, and high quantum efficiency was obtained. In addition, the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -10.1%. The time until the luminance cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 30 hours.
<実施例20>
 ホストを化合物(BO2-0220-4)に変更した以外は実施例17と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、1000cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長473nmであり、深い青色発光が見られた。また、100cd/mおよび1000cd/m発光時の外部量子効率は24.3%および20.9%であり、高い量子効率が得られた。くわえて、100cd/mおよび1000cd/m間のロールオフも-14.0%と小さかった。また、輝度100cd/mの電流値で連続駆動させたとき輝度80cd/mになるまで時間(LT80)は100時間であった。
<Example 20>
An organic EL device was obtained in the same procedure and configuration as in Example 17, except that the host was changed to the compound (BO2-0220-4). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed. The external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 24.3% and 20.9%, and high quantum efficiency was obtained. In addition, the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -14.0%. The time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 100 hours.
<実施例21>
 ホストを化合物(BO2-0431-1)に変更した以外は実施例17と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、1000cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長473nmであり、深い青色発光が見られた。また、100cd/mおよび1000cd/m発光時の外部量子効率は26.1%および23.5%であり、高い量子効率が得られた。くわえて、100cd/mおよび1000cd/m間のロールオフも-10.0%と小さかった。また、輝度100cd/mの電流値で連続駆動させたとき輝度80cd/mになるまで時間(LT80)は90時間であった。
<Example 21>
An organic EL device was obtained in the same procedure and configuration as in Example 17, except that the host was changed to the compound (BO2-0431-1). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed. The external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 26.1% and 23.5%, and high quantum efficiency was obtained. In addition, the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -10.0%. The time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 90 hours.
<実施例22>
 ホストを化合物(BO2-0431-2)に変更した以外は実施例17と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、1000cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長473nmであり、深い青色発光が見られた。また、100cd/mおよび1000cd/m発光時の外部量子効率は26.3%および23.5%であり、高い量子効率が得られた。くわえて、100cd/mおよび1000cd/m間のロールオフも-10.6%と小さかった。また、輝度100cd/mの電流値で連続駆動させたとき輝度80cd/mになるまで時間(LT80)は98時間であった。
<Example 22>
An organic EL device was obtained in the same procedure and configuration as in Example 17, except that the host was changed to the compound (BO2-0431-2). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed. The external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 26.3% and 23.5%, and high quantum efficiency was obtained. In addition, the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -10.6%. The time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 98 hours.
<実施例23>
 ホストを化合物(BO2-0220/0511S-1)に変更した以外は実施例17と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、1000cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長473nmであり、深い青色発光が見られた。また、100cd/mおよび1000cd/m発光時の外部量子効率は24.7%および21.1%であり、高い量子効率が得られた。くわえて、100cd/mおよび1000cd/m間のロールオフも-14.6%と小さかった。また、輝度100cd/mの電流値で連続駆動させたとき輝度80cd/mになるまで時間(LT80)は67時間であった。
<Example 23>
An organic EL device was obtained in the same procedure and configuration as in Example 17, except that the host was changed to the compound (BO2-0220 / 0511S-1). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum was at a peak wavelength of 473 nm, and deep blue light emission was observed. The external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 24.7% and 21.1%, and high quantum efficiency was obtained. In addition, the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -14.6%. The time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 67 hours.
<実施例24>
 ドーパントを化合物(BD8)に変更した以外は実施例18と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、1000cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長470nmであり、深い青色発光が見られた。また、100cd/mおよび1000cd/m発光時の外部量子効率は24.6%および22.5%であり、高い量子効率が得られた。くわえて、100cd/mおよび1000cd/m間のロールオフも-8.5%と小さかった。また、輝度100cd/mの電流値で連続駆動させたとき輝度80cd/mになるまで時間(LT80)は80時間であった。
<Example 24>
An organic EL device was obtained in the same procedure and configuration as in Example 18, except that the dopant was changed to the compound (BD8). When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 470 nm, and deep blue light emission was observed. The external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 24.6% and 22.5%, and high quantum efficiency was obtained. In addition, the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -8.5%. The time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 80 hours.
<実施例25>
 ドーパントを化合物(BD9)に変更した以外は実施例18と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、1000cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長462nmであり、深い青色発光が見られた。また、100cd/mおよび1000cd/m発光時の外部量子効率は23.9%および21.0%であり、高い量子効率が得られた。くわえて、100cd/mおよび1000cd/m間のロールオフも-12.1%と小さかった。また、輝度100cd/mの電流値で連続駆動させたとき輝度80cd/mになるまで時間(LT80)は61時間であった。
<Example 25>
An organic EL device was obtained in the same procedure and configuration as in Example 18, except that the dopant was changed to the compound (BD9). When a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 462 nm, and deep blue light emission was observed. The external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 23.9% and 21.0%, and high quantum efficiency was obtained. In addition, the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as small as -12.1%. The time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 61 hours.
<比較例10>
 ホストをEMH1に変更した以外は実施例17と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、1000cd/m発光時の特性を測定したところ、発光スペクトルはピーク波長471nmであり、深い青色発光が見られた。また、100cd/mおよび1000cd/m発光時の外部量子効率は17.5%および10.9%であり、高い量子効率が得られた。くわえて、100cd/mおよび1000cd/m間のロールオフも-38%と大きかった。また、輝度100cd/mの電流値で連続駆動させたとき輝度80cd/mになるまで時間(LT80)は22時間であった。
<Comparative Example 10>
An organic EL device was obtained in the same procedure and configuration as in Example 17, except that the host was changed to EMH1. When a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 1000 cd / m 2 were measured, the light emission spectrum had a peak wavelength of 471 nm, and deep blue light emission was observed. The external quantum efficiencies at the time of light emission of 100 cd / m 2 and 1000 cd / m 2 were 17.5% and 10.9%, and high quantum efficiency was obtained. In addition, the roll-off between 100 cd / m 2 and 1000 cd / m 2 was as large as −38%. The time until the luminance 80 cd / m 2 when is continuously driven at a current value of the luminance 100cd / m 2 (LT 80) was 22 hours.
 次に、本発明をさらに詳細に説明するために、本発明の発光層形成用組成物の例の評価および本発明の発光層形成用組成物を用いた有機EL素子の実施例を示すが、本発明はこれらに限定されない。 Next, in order to explain the present invention in more detail, evaluation of examples of the composition for forming a light emitting layer of the present invention and examples of an organic EL device using the composition for forming a light emitting layer of the present invention will be described. The present invention is not limited to these.
(2)発光層形成用組成物
<実施例S-1~実施例S-10および比較例S-1>
 表6に記載の第1成分のホストを0.99質量%、第2成分のドーパントを0.01質量%および第3成分の溶媒を99質量%混合して、固形分濃度1質量%の発光層形成用組成物をそれぞれ調製した。
 なお、これらの調製した組成物のうち、実施例S-9の発光層形成用組成物の粘度および表面張力を測定したところ、粘度は3.5mPa・sであり、表面張力36.3mN/mであった。
(2) Composition for forming light emitting layer <Example S-1 to Example S-10 and Comparative Example S-1>
In Table 6, 0.99% by mass of the host of the first component, 0.01% by mass of the dopant of the second component, and 99% by mass of the solvent of the third component were mixed to emit light at a solid concentration of 1% by mass. Each layer-forming composition was prepared.
When the viscosity and surface tension of the composition for forming a light emitting layer of Example S-9 among these prepared compositions were measured, the viscosity was 3.5 mPa · s, and the surface tension was 36.3 mN / m. Met.
 発光層形成用組成物の調製に際して使用した表6に記載のホストおよびドーパントの化合物の構造は以下のとおりであり、溶媒は表5に記載のとおりである。
Figure JPOXMLDOC01-appb-C000319
The structures of the compounds of the host and the dopant shown in Table 6 used for preparing the composition for forming a light emitting layer are as follows, and the solvents are as shown in Table 5.
Figure JPOXMLDOC01-appb-C000319
Figure JPOXMLDOC01-appb-T000320
Figure JPOXMLDOC01-appb-T000320
 調製した発光層形成用組成物について、以下の評価を行った。これらの結果は表6に示すとおりであった。 (4) The prepared composition for forming a light emitting layer was evaluated as follows. The results are as shown in Table 6.
<溶解性の評価>
 調製した発光層形成用組成物の濁りおよび沈殿の有無を確認することで溶解性の評価を行った。濁りおよび沈殿のない組成物を「A」、濁りまたは沈殿が起きた組成物を「F」とし、溶解性を評価した。
<Evaluation of solubility>
The solubility was evaluated by confirming the presence or absence of turbidity and precipitation of the prepared composition for forming a light emitting layer. The composition without turbidity or precipitation was designated as "A", and the composition with turbidity or precipitation was designated as "F", and the solubility was evaluated.
<成膜性の評価>
 溶解性の評価が「A」であった発光層形成用組成物に関して、下記の操作に沿って、スピンコート成膜後またはインクジェット印刷後に得られた膜を観察し、膜に、ピンホールまたは析出またはムラのある膜を「C」、ピンホール、化合物の析出およびムラのない膜を「B」、ピンホール、化合物の析出およびムラがなく、平滑性が高い(Ra<5nm)膜を「A」として成膜性を評価した。
(スピンコートによる成膜方法)
 厚み0.5mm、サイズ28×26mmの清浄なガラス基板に、照射エネルギー1000mJ/cm(低圧水銀灯(254ナノメートル))を照射することでUV-O処理を行った。次いで、0.3~0.6mLの発光層形成用組成物をガラス上に滴下し、スピンコート(スロープ(5秒間で所定の回転数まで上げる)→500~5000rpmで塗布(所定の回転数で10秒間維持)→スロープ(5秒間で回転数を下げ、回転数を0rpmとする))を行った。さらに、120℃のホットプレート上で10分間乾燥させて成膜した。
(インクジェットによる成膜方法)
 インクジェットを用いて、100ppiのピクセル内に発光層形成用組成物を吐出し、100℃で乾燥させて成膜した。
<Evaluation of film formability>
With respect to the composition for forming a light emitting layer whose solubility was "A", the film obtained after spin coating or ink jet printing was observed according to the following operation, and pinholes or deposits were formed on the film. A film having unevenness is denoted by “C”, a film having no pinholes, no compound precipitation and unevenness is denoted by “B”, and a film having no pinholes, compound deposition and unevenness and having high smoothness (Ra <5 nm) is denoted by “A”. The film formability was evaluated as "."
(Film formation method by spin coating)
A UV-O 3 treatment was performed by irradiating a clean glass substrate having a thickness of 0.5 mm and a size of 28 × 26 mm with irradiation energy of 1000 mJ / cm 2 (low-pressure mercury lamp (254 nanometers)). Next, 0.3 to 0.6 mL of the composition for forming a light emitting layer is dropped on glass, and spin-coated (slope (increase to a predetermined number of revolutions in 5 seconds)) → applied at 500 to 5000 rpm (at a predetermined number of revolutions). 10 seconds) → slope (rotation speed is reduced in 5 seconds and rotation speed is set to 0 rpm). Further, the film was dried on a hot plate at 120 ° C. for 10 minutes to form a film.
(Film formation method by inkjet)
The composition for forming a light emitting layer was discharged into a pixel of 100 ppi using an inkjet, and dried at 100 ° C. to form a film.
<インクジェット吐出安定性の評価>
 溶解性の評価が「A」であった発光層形成用組成物に関して、インクジェットを用いて、100ppiのピクセル内に発光層形成用組成物を吐出開始し、吐出開始直後と24時間連続運転後におけるそれぞれのインクジェットの吐出安定性を評価した。なお、評価に際して、吐出できない場合は「C」、9割未満の吐出孔から吐出できる場合は「B」、9割以上の吐出孔から吐出できる場合は「A」とした。
<Evaluation of inkjet ejection stability>
With respect to the composition for forming a light emitting layer whose solubility was “A”, the composition for forming a light emitting layer was started to be discharged into a pixel of 100 ppi using an inkjet, and immediately after the start of discharge and after continuous operation for 24 hours. The ejection stability of each ink jet was evaluated. In the evaluation, "C" was given when discharge was not possible, "B" when discharge was possible from less than 90% of the discharge holes, and "A" when discharge was possible from more than 90% of the discharge holes.
Figure JPOXMLDOC01-appb-T000321
Figure JPOXMLDOC01-appb-T000321
(3)塗布型有機EL素子
 次に、有機層を塗布形成して得られる有機EL素子について説明する。
(3) Coating type organic EL device Next, an organic EL device obtained by coating and forming an organic layer will be described.
<高分子正孔輸送化合物:XLP-101の合成>
 特開2018-61028号公報に記載の方法に従い、下記のようにXLP-101を合成した。M4の隣にはM5またはM6が結合した共重合体が得られ、仕込み比より各ユニットは40:10:50(モル比)であると推測される。なお、下記式において、Bpinはピナコラートボリルである。
<Synthesis of Polymeric Hole Transport Compound: XLP-101>
According to the method described in JP-A-2018-61028, XLP-101 was synthesized as follows. A copolymer having M5 or M6 bonded thereto is obtained next to M4, and it is estimated from the charging ratio that each unit is 40:10:50 (molar ratio). In the following formula, Bpin is pinacolate boryl.
Figure JPOXMLDOC01-appb-C000322
Figure JPOXMLDOC01-appb-C000322
<実施例SD-1~実施例SD-3の有機EL素子の作製>
 有機EL素子における、各層の材料構成を表7に示す。
<Production of Organic EL Devices of Example SD-1 to Example SD-3>
Table 7 shows the material constitution of each layer in the organic EL device.
Figure JPOXMLDOC01-appb-T000323
Figure JPOXMLDOC01-appb-T000323
 表7における、正孔注入層の形成材料である「PEDOT:PSS」としては、市販のPEDOT:PSS溶液(Clevios(TM) P VP AI4083、下記式で表されるPEDOT:PSSの水分散液、Heraeus Holdings社製)を用いた。 In Table 7, "PEDOT: PSS" which is a material for forming the hole injection layer is a commercially available PEDOT: PSS solution (Clevios (TM) P VP AI4083, an aqueous dispersion of PEDOT: PSS represented by the following formula, Heraeus (Holdings) was used.
Figure JPOXMLDOC01-appb-C000324
Figure JPOXMLDOC01-appb-C000324
 表7における、正孔輸送層の形成材料である「OTPD」としては、下記式で表されるOTPD(LT-N159、Luminescence Technology Corp社製)およびIK-2(光カチオン重合開始剤、サンアプロ社製)をトルエンに溶解させ、OTPD濃度0.7質量%、IK-2濃度0.007質量%のOTPD溶液とした。
Figure JPOXMLDOC01-appb-C000325
In Table 7, "OTPD" which is a material for forming the hole transport layer includes OTPD (LT-N159, manufactured by Luminescence Technology Corp.) and IK-2 (photo cationic polymerization initiator, manufactured by San Apro Was dissolved in toluene to obtain an OTPD solution having an OTPD concentration of 0.7% by mass and an IK-2 concentration of 0.007% by mass.
Figure JPOXMLDOC01-appb-C000325
 表7における、正孔輸送層の形成材料である「XLP-101」としては、キシレンに、上記の高分子正孔輸送化合物であるXLP-101を0.6質量%の濃度で溶解させた、XLP-101溶液とした。 In Table 7, “XLP-101” as the material for forming the hole transport layer was obtained by dissolving XLP-101, which is the above-described polymer hole transport compound, in xylene at a concentration of 0.6% by mass. An XLP-101 solution was obtained.
 表7における「PCz」としては、下記式で表されるPCz(ポリビニルカルバゾール)をジクロロベンゼンに溶解させ、0.7質量%PCz溶液とした。
Figure JPOXMLDOC01-appb-C000326
As “PCz” in Table 7, PCz (polyvinyl carbazole) represented by the following formula was dissolved in dichlorobenzene to obtain a 0.7% by mass PCz solution.
Figure JPOXMLDOC01-appb-C000326
 表7における、「BO2-0431-2」、「BD2」、「2CzBN」「BPy-TP2」の化合物の構造は以下のとおりである。
Figure JPOXMLDOC01-appb-C000327
The structures of the compounds “BO2-0431-2”, “BD2”, “2CzBN”, and “BPy-TP2” in Table 7 are as follows.
Figure JPOXMLDOC01-appb-C000327
<実施例SD-1>
 ITOが50nmの厚さに蒸着されたガラス基板上に、PEDOT:PSS溶液をスピンコートし、200℃のホットプレート上で1時間焼成することで、膜厚40nmのPEDOT:PSS膜を成膜した(正孔注入層)。次いで、OTPD溶液をスピンコートし、80℃のホットプレート上で10分間乾燥した後、露光機で露光強度100mJ/cmで露光し、100℃のホットプレート上で1時間焼成することで、溶液に不溶な膜厚30nmのOTPD膜を成膜した(正孔輸送層)。次いで、実施例S-9で調製した発光層形成用組成物をスピンコートし、120℃のホットプレート上で1時間焼成することで、膜厚20nmの発光層を成膜した。
<Example SD-1>
A PEDOT: PSS solution was spin-coated on a glass substrate on which ITO was deposited to a thickness of 50 nm, and baked on a hot plate at 200 ° C. for 1 hour to form a PEDOT: PSS film having a thickness of 40 nm. (Hole injection layer). Next, the OTPD solution is spin-coated, dried on a hot plate at 80 ° C. for 10 minutes, exposed to light at an exposure intensity of 100 mJ / cm 2 with an exposure machine, and baked on a hot plate at 100 ° C. for 1 hour to obtain a solution. A OTPD film having a thickness of 30 nm, which was insoluble in the above, was formed (hole transport layer). Next, the composition for forming a light-emitting layer prepared in Example S-9 was spin-coated and baked on a hot plate at 120 ° C. for 1 hour to form a light-emitting layer having a thickness of 20 nm.
 作製した多層膜を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、2CzBNおよびBPy-TP2を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボート、アルミニウムを入れたタングステン製蒸着用ボートを装着した。真空槽を5×10-4Paまで減圧した後、2CzBNを加熱して膜厚10nmになるように蒸着して電子輸送層1を形成した。次いで、BPy-TP2を加熱して膜厚20nmになるように蒸着して電子輸送層2を形成した。電子輸送層を形成する際の蒸着速度は1nm/秒とした。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成した。このようにして有機EL素子を得た。 The produced multilayer film was fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), and a molybdenum vapor deposition boat containing 2CzBN and BPy-TP2, a molybdenum vapor deposition boat containing LiF, and aluminum The inserted tungsten deposition boat was mounted. After the pressure in the vacuum chamber was reduced to 5 × 10 −4 Pa, 2CzBN was heated and vapor-deposited to a thickness of 10 nm to form the electron transport layer 1. Next, BPy-TP2 was heated and vapor-deposited to a thickness of 20 nm to form an electron transport layer 2. The deposition rate at the time of forming the electron transport layer was 1 nm / sec. Thereafter, LiF was heated to be deposited at a deposition rate of 0.01 to 0.1 nm / sec so as to have a film thickness of 1 nm. Next, aluminum was heated and vapor-deposited to a thickness of 100 nm to form a cathode. Thus, an organic EL device was obtained.
 ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光面は均一であり、発光スペクトルはピーク波長472nm、半値幅21nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は10.1%であった。 When a DC voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emitting surface was uniform, and the light emission spectrum was 472 nm at peak wavelength, 21 nm at half maximum width, and deep. Blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 10.1%.
<実施例SD-2>
 正孔輸送層を、XLP-101溶液をスピンコートし、200℃のホットプレート上で1時間焼成することで、膜厚30nmの膜を成膜した以外は実施例SD-1と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光面は均一であり、発光スペクトルはピーク波長472nm、半値幅20nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は12.1%であった。
<Example SD-2>
The same procedures and procedures as in Example SD-1 were performed, except that the hole transport layer was spin-coated with an XLP-101 solution and baked on a hot plate at 200 ° C. for 1 hour to form a 30 nm-thick film. An organic EL device was obtained with the above configuration. When a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of emission of 100 cd / m 2 were measured, the emission surface was uniform, and the emission spectrum was 472 nm at the peak wavelength, 20 nm at half width at half maximum, and deep. Blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 12.1%.
<実施例SD-3>
 正孔輸送層を、PCz溶液をスピンコートし、120℃のホットプレート上で1時間焼成することで、膜厚30nmの膜を成膜した以外は実施例SD-1と同様の手順および構成にて有機EL素子を得た。ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、100cd/m発光時の特性を測定したところ、発光面は均一であり、発光スペクトルはピーク波長472nmおよび半値幅20nmであり、深い青色発光が見られた。また、100cd/m発光時の外部量子効率は11.5%であった。
<Example SD-3>
The hole transport layer was spin-coated with a PCz solution and baked on a hot plate at 120 ° C. for 1 hour to form a 30 nm-thick film, with the same procedure and configuration as in Example SD-1. Thus, an organic EL device was obtained. When a direct current voltage was applied using the ITO electrode as the anode and the aluminum electrode as the cathode, and the characteristics at the time of light emission of 100 cd / m 2 were measured, the light emitting surface was uniform, and the light emission spectrum was 472 nm at the peak wavelength, 20 nm at half width at half maximum, and deep. Blue light emission was observed. The external quantum efficiency at the time of light emission of 100 cd / m 2 was 11.5%.
 実施例SD-1~SD-3で作製した塗布型有機EL素子は、外部量子効率が10%以上であると共に、深い青色と半値幅の狭い発光が見られ、色味が優れていた。 塗布 The coating-type organic EL devices prepared in Examples SD-1 to SD-3 had an external quantum efficiency of 10% or more, emitted deep blue light and a narrow half-value width, and were excellent in color.
(4)高分子化合物
 本発明の有機EL素子は、高分子化合物や高分子架橋体を含む発光層を有する構成としてもよい。このような発光層に含まれる高分子化合物としては、例えば、実施例PS-1に記載の高分子化合物があげられる。
(4) Polymer Compound The organic EL device of the present invention may be configured to have a light-emitting layer containing a polymer compound or a crosslinked polymer. Examples of the high molecular compound contained in such a light emitting layer include the high molecular compound described in Example PS-1.
<実施例PS-1>
 国際特許公開番号WO2019/004248に記載の方法で以下の第1成分であるホストと第2成分であるドーパントおよびエミッティングドーパントの構造を含む高分子化合物を合成することができる。下記高分子化合物は、第1成分および第2成分を高分子化し、それぞれに由来の構成単位を有する。
<Example PS-1>
According to the method described in International Patent Publication No. WO2019 / 004248, a polymer compound having the following structure of the host as the first component, the dopant as the second component, and the emitting dopant can be synthesized. The following polymer compound polymerizes the first component and the second component, and has a structural unit derived from each.
Figure JPOXMLDOC01-appb-C000328
Figure JPOXMLDOC01-appb-C000328
 以上、本発明に係る化合物の一部およびホスト材料とドーパント材料の組み合わせの一部について、有機EL素子の発光層用材料としての評価を行い、その有用性を示したが、評価を行っていない他の化合物や組み合わせも同じ基本骨格や基本性能を有し、全体としても類似の構造や類似の特性を有する化合物であり、当業者においては他の化合物や組み合わせからも同様に優れた発光層用材料が得られることを理解できる。 As described above, a part of the compound according to the present invention and a part of the combination of the host material and the dopant material were evaluated as the material for the light emitting layer of the organic EL element, and the usefulness was shown, but the evaluation was not performed. Other compounds and combinations also have the same basic skeleton and basic performance, and are compounds having a similar structure and similar properties as a whole. It can be seen that the material is obtained.
 本発明の好ましい態様によれば、従来具体的には知られていなかった、第1成分のホストとして、式(1)で表される多環芳香族化合物と、第2成分のドーパントとして、ホウ素を含有する多環芳香族化合物とを組み合わせて含有する発光層とすることで、発光特性などの有機EL特性を更に高めることができる。 According to a preferred embodiment of the present invention, a polycyclic aromatic compound represented by the formula (1) as a host of the first component and boron as a dopant of the second component, which have not been specifically known before, The organic EL characteristics such as light emission characteristics can be further enhanced by forming a light emitting layer containing a combination of a polycyclic aromatic compound containing
 100  有機電界発光素子
 101  基板
 102  陽極
 103  正孔注入層
 104  正孔輸送層
 105  発光層
 106  電子輸送層
 107  電子注入層
 108  陰極
REFERENCE SIGNS LIST 100 Organic electroluminescent element 101 Substrate 102 Anode 103 Hole injection layer 104 Hole transport layer 105 Light emitting layer 106 Electron transport layer 107 Electron injection layer 108 Cathode

Claims (32)

  1.  陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層を有する有機電界発光素子であって、
     該有機電界発光素子における発光層が、
     第1成分として、下記一般式(1)で表される多環芳香族化合物をホストとして含み、
     第2成分として、ホウ素を含有する多環芳香族化合物をドーパントとして含む、有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)中、
     R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、
     前記アリール、前記ヘテロアリール、前記ジアリールアミノおよび前記ジアリールボリルにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     式(1)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
    A pair of electrodes consisting of an anode and a cathode, and an organic electroluminescent element having a light emitting layer disposed between the pair of electrodes,
    The light emitting layer in the organic electroluminescent device,
    As a first component, a polycyclic aromatic compound represented by the following general formula (1) is contained as a host,
    An organic electroluminescent device comprising, as a second component, a boron-containing polycyclic aromatic compound as a dopant.
    Figure JPOXMLDOC01-appb-C000001
    (In the above formula (1),
    R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, Alkoxy or aryloxy;
    At least one hydrogen in the aryl, the heteroaryl, the diarylamino, and the diarylboryl may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl;
    At least one hydrogen in the compound represented by the formula (1) may be substituted with cyano, halogen, or deuterium. )
  2.  上記一般式(1)において、R~R11は、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジアリールボリル(ただしアリールは炭素数6~12のアリールであり、2つのアリールは単結合または連結基を介して結合していてもよい)、炭素数1~24のアルキル、炭素数3~12のシクロアルキル、炭素数1~24のアルコキシまたは炭素数6~30のアリールオキシであり、
     前記アリール、前記ヘテロアリール、前記ジアリールアミノおよび前記ジアリールボリルにおける少なくとも1つの水素は炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~24のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよい、
    請求項1に記載の有機電界発光素子。
    In the above general formula (1), R 1 to R 11 each independently represent hydrogen, aryl having 6 to 30 carbons, heteroaryl having 2 to 30 carbons, or diarylamino (wherein aryl has 6 to 12 carbons). Aryl), diarylboryl (wherein aryl is aryl having 6 to 12 carbons, and two aryls may be linked via a single bond or a linking group), alkyl having 1 to 24 carbons, A cycloalkyl having 3 to 12 carbons, an alkoxy having 1 to 24 carbons or an aryloxy having 6 to 30 carbons,
    At least one hydrogen atom in the aryl, the heteroaryl, the diarylamino, and the diarylboryl is an aryl having 6 to 30 carbons, a heteroaryl having 2 to 30 carbons, an alkyl having 1 to 24 carbons or 3 to 12 carbons. May be substituted with cycloalkyl,
    The organic electroluminescent device according to claim 1.
  3.  上記一般式(1)において、R~R11は、それぞれ独立して、水素、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~10のアリール)、ジアリールボリル(ただしアリールは炭素数6~10のアリールであり、2つのアリールは単結合または連結基を介して結合していてもよい)、炭素数1~6のアルキル、炭素数6~10のシクロアルキル、炭素数1~6のアルコキシまたは炭素数6~16のアリールオキシであり、
     前記アリール、前記ヘテロアリール、前記ジアリールアミノおよび前記ジアリールボリルにおける少なくとも1つの水素は炭素数6~16のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数6~10のシクロアルキルで置換されていてもよい、
    請求項1に記載の有機電界発光素子。
    In the general formula (1), R 1 to R 11 each independently represent hydrogen, aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, or diarylamino (wherein aryl has 6 to 10 carbons). Aryl), diarylboryl (wherein aryl is aryl having 6 to 10 carbons, and two aryls may be bonded via a single bond or a linking group), alkyl having 1 to 6 carbons, carbon A cycloalkyl having 6 to 10 carbon atoms, an alkoxy having 1 to 6 carbon atoms or an aryloxy having 6 to 16 carbon atoms,
    At least one hydrogen atom in the aryl, the heteroaryl, the diarylamino, and the diarylboryl is an aryl having 6 to 16 carbons, a heteroaryl having 2 to 15 carbons, an alkyl having 1 to 6 carbons or 6 to 10 carbons. May be substituted with cycloalkyl,
    The organic electroluminescent device according to claim 1.
  4.  上記一般式(1)において、R~R11の少なくとも1つは、下記式(1-a)~(1-s)のいずれかで表される基である、請求項1~3のいずれか一項に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000002
    (上記式中、*は結合位置を示し、
     式(1-a)~式(1-h)および式(1-p)~式(1-q)における少なくとも1つの水素は、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~24のアルキルまたは炭素数3~12のシクロアルキルで置換されていてもよく、
     式(1-i)、式(1-j)、式(1-k)および式(1-r)におけるRは、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~24のアルキルまたは炭素数3~12のシクロアルキルを示す。)
    4. The method according to claim 1, wherein in the general formula (1), at least one of R 1 to R 11 is a group represented by any of the following formulas (1-a) to (1-s). The organic electroluminescent device according to claim 1.
    Figure JPOXMLDOC01-appb-C000002
    (In the above formula, * indicates a bonding position,
    In formulas (1-a) to (1-h) and formulas (1-p) to (1-q), at least one hydrogen atom is an aryl having 6 to 30 carbon atoms or a heteroaryl having 2 to 30 carbon atoms. May be substituted with alkyl having 1 to 24 carbons or cycloalkyl having 3 to 12 carbons,
    R in the formula (1-i), the formula (1-j), the formula (1-k) and the formula (1-r) are each independently hydrogen, aryl having 6 to 30 carbon atoms, and 2 to 2 carbon atoms. It represents 30 heteroaryl, alkyl having 1 to 24 carbons or cycloalkyl having 3 to 12 carbons. )
  5.  上記一般式(1)において、R~R11の少なくとも1つは、上記式(1-d)で表される基である、請求項4に記載の有機電界発光素子。 The organic electroluminescent device according to claim 4, wherein in the general formula (1), at least one of R 1 to R 11 is a group represented by the formula (1-d).
  6.  上記一般式(1)において、R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキルまたはアルコキシであり、
     前記アリール、前記ヘテロアリール、前記ジアリールアミノおよび前記ジアリールボリルにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい、
    請求項1~5のいずれか一項に記載の有機電界発光素子。
    In the general formula (1), R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (even when two aryls are bonded through a single bond or a linking group). Good), alkyl, cycloalkyl or alkoxy,
    At least one hydrogen in the aryl, the heteroaryl, the diarylamino, and the diarylboryl may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl.
    An organic electroluminescent device according to any one of claims 1 to 5.
  7.  上記一般式(1)において、R~R11の少なくとも1つは、ヘテロアリールであり、当該ヘテロアリールにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい、請求項1~6のいずれか一項に記載の有機電界発光素子。 In the general formula (1), at least one of R 4 to R 11 is heteroaryl, and at least one hydrogen in the heteroaryl may be substituted with aryl, heteroaryl, alkyl, or cycloalkyl. The organic electroluminescent device according to any one of claims 1 to 6.
  8.  上記一般式(1)において、R~Rの少なくとも1つは、アリールまたはジベンゾフラニルであり、前記アリールおよび前記ジベンゾフラニルにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい、請求項1~7のいずれか一項に記載の有機電界発光素子。 In the general formula (1), at least one of R 1 to R 3 is aryl or dibenzofuranyl, and at least one hydrogen in the aryl and dibenzofuranyl is aryl, heteroaryl, alkyl or cycloalkyl. The organic electroluminescent device according to any one of claims 1 to 7, which may be substituted.
  9.  上記一般式(1)において、R~Rの少なくとも1つは、ヘテロアリールであり(当該ヘテロアリールにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい)、且つ、R~R11の少なくとも1つは、アリールである(当該アリールにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい)、請求項1~6のいずれか一項に記載の有機電界発光素子。 In the general formula (1), at least one of R 1 to R 3 is heteroaryl (at least one hydrogen in the heteroaryl may be substituted with aryl, heteroaryl, alkyl, or cycloalkyl). And at least one of R 4 to R 11 is aryl (at least one hydrogen in said aryl may be substituted by aryl, heteroaryl, alkyl or cycloalkyl). The organic electroluminescent device according to claim 1.
  10.  第1成分のホストが、下記式のいずれかで表される多環芳香族化合物である、請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000003
    The organic electroluminescent device according to claim 1, wherein the host of the first component is a polycyclic aromatic compound represented by any of the following formulas.
    Figure JPOXMLDOC01-appb-C000003
  11.  第2成分であるドーパントが、下記一般式(2)で表される多環芳香族化合物またはその多量体である、請求項1~10のいずれか一項に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000004
    (上記式(2)中、
     R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     Yは、B(ホウ素)であり、
     XおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは-C(-R)-であり(ただし、XおよびXは同時に>Oであることはない)、前記-C(-R)-のRは炭素数1~6のアルキル、炭素数3~14のシクロアルキルまたは炭素数6~12のアリールであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり、また、当該>N-RのRは-O-、-S-、-C(-R’)-、単結合または縮合により前記a環、b環およびc環の少なくとも1つと結合していてもよく(なお、前記「-C(-R’)-」のR’は水素または炭素数1~5のアルキルまたは炭素数5~10のシクロアルキルである)、そして、
     式(2)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
    11. The organic electroluminescent device according to claim 1, wherein the dopant as the second component is a polycyclic aromatic compound represented by the following general formula (2) or a polymer thereof.
    Figure JPOXMLDOC01-appb-C000004
    (In the above formula (2),
    R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls are linked via a single bond or a linking group; ), Alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl;
    Further, adjacent groups among R 1 to R 11 may be bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, the b ring or the c ring, and at least one hydrogen atom in the formed ring Is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryl Optionally substituted with oxy, wherein at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl;
    Y 1 is B (boron),
    X 1 and X 2 are each independently>O,>NR,>S,> Se or —C (—R) 2 — (provided that X 1 and X 2 are simultaneously> O The R of —C (—R) 2 — is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or aryl having 6 to 12 carbons, and R is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons, and R of> NR is —O —, —S—, —C (—R ′) 2 —, which may be bonded to at least one of the a ring, b ring and c ring by a single bond or a condensate (the above-mentioned “—C (—R ') 2 - "of R' cycloalkyl der alkyl or C 5-10 hydrogen or a C 1-5 ), And,
    At least one hydrogen in the compound represented by the formula (2) may be substituted with cyano, halogen, or deuterium. )
  12.  上記一般式(2)において、Rは、ハロゲン、炭素数1~6のアルキル、炭素数3~14のシクロアルキル、炭素数6~10のアリールまたは炭素数2~10のヘテロアリールであり、
     Rは、水素、炭素数1~6のアルキル、炭素数3~14のシクロアルキル、炭素数6~10のアリールまたは炭素数2~10のヘテロアリールである、請求項11に記載の有機電界発光素子。
    In the general formula (2), R 8 is halogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 10 carbons or heteroaryl having 2 to 10 carbons,
    The organic electric field according to claim 11, wherein R 7 is hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 10 carbons or heteroaryl having 2 to 10 carbons. Light emitting element.
  13.  第2成分であるドーパントが、2つの上記一般式(2)で表される部分構造と、当該2つの部分構造を連結する連結基L1とからなる二量体化合物であり、
     前記連結基L1は、単結合、炭素数6~12のアリーレン、炭素数2~15のヘテロアリーレン、炭素数1~6のアルキレン、炭素数1~6のアルケニレン、炭素数1~6のアルキニレン、-O-、-S-、>N-R、または、これらの組み合わせであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~14のシクロアルキルであり、
     前記二量体化合物における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい、請求項11に記載の有機電界発光素子。
    The dopant as the second component is a dimer compound including two partial structures represented by the general formula (2) and a linking group L1 that connects the two partial structures,
    The linking group L1 is a single bond, arylene having 6 to 12 carbons, heteroarylene having 2 to 15 carbons, alkylene having 1 to 6 carbons, alkenylene having 1 to 6 carbons, alkynylene having 1 to 6 carbons, —O—, —S—,> NR, or a combination thereof, wherein R in> NR is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, 1 to carbons 6 alkyl or cycloalkyl having 3 to 14 carbon atoms,
    The organic electroluminescent device according to claim 11, wherein at least one hydrogen in the dimer compound may be substituted with cyano, halogen, or deuterium.
  14.  第2成分であるドーパントが、下記一般式(3)で表される多環芳香族化合物である、請求項1~11のいずれか一項に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000005
    (上記式(3)中、
     R~R12、ZおよびZは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     また、R~RおよびR10~R12のうちの隣接する基同士が結合してb環およびd環の少なくとも1つと共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、さらにこれらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     Zは連結基または単結合でa環と結合してもよく、また、Zは連結基または単結合でc環と結合してもよく、
     YはB(ホウ素)であり、
     X、X、XおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは-C(-R)-であり(ただし、XおよびXが同時に>Oであることはなく、また、XおよびXが同時に>Oであることもない)、前記-C(-R)-のRは炭素数1~6のアルキル、炭素数3~14のシクロアルキル、または炭素数6~12のアリールであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり、また、当該>N-RのRは-O-、-S-、-C(-R’)-、単結合または縮合により前記a環、b環、c環およびd環の少なくとも1つと結合していてもよく(なお、前記「-C(-R’)-」のR’は水素または炭素数1~5のアルキルまたは炭素数5~10のシクロアルキルである)、
     RおよびRは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3~14のシクロアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリールまたはジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジアリールボリル(ただしアリールは炭素数6~12のアリールであり、2つのアリールは単結合または連結基を介して結合していてもよい)であり、
     式(3)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
    The organic electroluminescent device according to any one of claims 1 to 11, wherein the dopant as the second component is a polycyclic aromatic compound represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000005
    (In the above formula (3),
    R 3 to R 12 , Z 1 and Z 2 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryls are a single bond or a linking group) ), Alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl. ,
    Further, adjacent groups among R 5 to R 7 and R 10 to R 12 may be bonded to each other to form an aryl ring or a heteroaryl ring together with at least one of the b ring and the d ring. At least one hydrogen in the ring is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl , Cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl;
    Z 1 may be bonded to ring a by a linking group or a single bond, and Z 2 may be bonded to ring c by a linking group or a single bond;
    Y is B (boron),
    X 1 , X 2 , X 3 and X 4 are each independently>O,>NR,>S,> Se or —C (—R) 2 — (provided that X 1 and X 2 Are not simultaneously> O, and X 3 and X 4 are not simultaneously> O), R of —C (—R) 2 — is an alkyl having 1 to 6 carbons, A cycloalkyl having 3 to 14 carbons or an aryl having 6 to 12 carbons, wherein R in the above-mentioned —N—R is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons Or a cycloalkyl having 3 to 6 carbon atoms, and R of> NR represents —O—, —S—, —C (—R ′) 2 —, a single bond or a condensed ring, may also be at least one bond c ring and d ring (Note that the "-C (-R ') 2 -" of R' Cycloalkyl alkyl or C 5-10 hydrogen or C 1 -C 5),
    R 1 and R 2 are each independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons, aryl having 6 to 12 carbons, heteroaryl or diarylamino having 2 to 15 carbons (Wherein, aryl is aryl having 6 to 12 carbons) and diarylboryl (provided that aryl is aryl having 6 to 12 carbons, and two aryls may be bonded via a single bond or a linking group). ,
    At least one hydrogen in the compound represented by the formula (3) may be substituted with cyano, halogen, or deuterium. )
  15.  第2成分であるドーパントが、下記一般式(4)で表される多環芳香族化合物またはその多量体である、請求項1~11のいずれか一項に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000006
    (上記式(4)中、
     R~RおよびR~R15は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     また、R~R、R~R、R~R11およびR12~R15のうちの隣接する基同士が結合してa環、b環、c環およびd環の少なくとも1つと共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、さらにこれらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     Yは、B(ホウ素)であり、
     Xは、>O、>N-R、>S、>Seまたは-C(-R)-であり、前記-C(-R)-のRは炭素数1~6のアルキル、炭素数3~14のシクロアルキルまたは炭素数6~12のアリールであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり、
     Lは、単結合、-C(-R)-、>O、>Sまたは>N-Rであり、前記-C(-R)-および>N-RにおけるRは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はさらにアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     ただし、Xが>N-Rであるとき、Lが>Oであることはなく、
     多量体の場合の式(4)中のRは水素であり、そして、
     一般式(4)で表される化合物および構造における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
    12. The organic electroluminescent device according to claim 1, wherein the dopant as the second component is a polycyclic aromatic compound represented by the following general formula (4) or a polymer thereof.
    Figure JPOXMLDOC01-appb-C000006
    (In the above formula (4),
    R 1 to R 3 and R 5 to R 15 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryls are a single bond or a linking group) ), Alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl. ,
    Further, adjacent groups among R 1 to R 3 , R 5 to R 7 , R 8 to R 11 and R 12 to R 15 are bonded to each other to form at least one of a ring, b ring, c ring and d ring. May form an aryl ring or a heteroaryl ring together with at least one hydrogen in the formed ring is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryl May be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryloxy, and at least one hydrogen in these may be aryl, heteroaryl, alkyl or cyclo May be substituted with alkyl,
    Y 1 is B (boron),
    X is>O,>NR,>S,> Se or -C (-R) 2- , wherein R of -C (-R) 2- is alkyl having 1 to 6 carbons, A cycloalkyl having 3 to 14 carbons or an aryl having 6 to 12 carbons, wherein R in> NR is an aryl having 6 to 12 carbons, a heteroaryl having 2 to 15 carbons, an alkyl having 1 to 6 carbons or Cycloalkyl having 3 to 6 carbon atoms,
    L is a single bond, -C (-R) 2 -,>O,> S or> NR, and R in -C (-R) 2 -and> NR is each independently , Hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryloxy, at least one of which One hydrogen may be further substituted with an aryl, heteroaryl, alkyl or cycloalkyl;
    However, when X is> NR, L cannot be> O,
    R 2 in formula (4) for a multimer is hydrogen, and
    At least one hydrogen in the compound and the structure represented by the general formula (4) may be substituted with cyano, halogen, or deuterium. )
  16.  第2成分であるドーパントが、下記一般式(5)で表される多環芳香族化合物またはその多量体である、請求項1~10のいずれか一項に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000007
    (上記式(5)中、
     R~Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     また、R~Rのうちの隣接する基同士が結合してa環、b環およびc環の少なくとも1つと共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、さらにこれらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     Yは、B(ホウ素)であり、
     X、XおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは-C(-R)-であり(X、XおよびXのうちの少なくとも2つはN-Rである)、前記-C(-R)-のRは炭素数1~6のアルキル、炭素数3~14のシクロアルキルまたは炭素数6~12のアリールであり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり、また、当該>N-RのRは-O-、-S-、-C(-R’)-、単結合または縮合により前記a環、b環およびc環の少なくとも1つと結合していてもよく(なお、前記「-C(-R’)-」のR’は水素または炭素数1~5のアルキルまたは炭素数5~10のシクロアルキルである)、そして、
     式(5)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
    11. The organic electroluminescent device according to claim 1, wherein the dopant as the second component is a polycyclic aromatic compound represented by the following general formula (5) or a polymer thereof.
    Figure JPOXMLDOC01-appb-C000007
    (In the above formula (5),
    R 1 to R 9 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls are linked via a single bond or a linking group; ), Alkyl, cycloalkyl, alkoxy, aryloxy, cyano or halogen, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl;
    Further, adjacent groups among R 1 to R 9 may be bonded to each other to form an aryl ring or a heteroaryl ring together with at least one of the a ring, the b ring and the c ring. At least one hydrogen is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls may be linked via a single bond or a linking group), alkyl, cycloalkyl , May be substituted with alkoxy or aryloxy, and at least one hydrogen in these may be substituted with aryl, heteroaryl, alkyl or cycloalkyl,
    Y 1 is B (boron),
    X 1 , X 2 and X 3 are each independently>O,>NR,>S,> Se or —C (—R) 2 — (of X 1 , X 2 and X 3 ) At least two are NR), wherein R of -C (-R) 2- is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 14 carbons or aryl having 6 to 12 carbons. Wherein R in the formula> N—R is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. R of —R may be —O—, —S—, —C (—R ′) 2 —, or may be bonded to at least one of the a ring, b ring and c ring by a single bond or a condensate (here, R ′ of the above “—C (—R ′) 2 —” is hydrogen, alkyl having 1 to 5 carbons, or cycloalkyl having 5 to 10 carbons. Loalkyl) and
    At least one hydrogen in the compound represented by the formula (5) may be substituted with cyano, halogen, or deuterium. )
  17.  第2成分のドーパントが、下記式のいずれかで表される多環芳香族化合物である、請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000008
    The organic electroluminescent device according to claim 1, wherein the dopant of the second component is a polycyclic aromatic compound represented by any of the following formulas.
    Figure JPOXMLDOC01-appb-C000008
  18.  前記陰極と前記発光層との間に配置される電子輸送層および電子注入層の少なくとも1つを有し、該電子輸送層および電子注入層の少なくとも1つは、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、カルバゾール誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体およびキノリノール系金属錯体からなる群から選択される少なくとも1つを含有する、請求項1~17のいずれかに一項に記載の有機電界発光素子。 And at least one of an electron transport layer and an electron injection layer disposed between the cathode and the light emitting layer, wherein at least one of the electron transport layer and the electron injection layer is a borane derivative, a pyridine derivative, or a fluoranthene derivative. Containing at least one selected from the group consisting of a BO derivative, an anthracene derivative, a benzofluorene derivative, a phosphine oxide derivative, a pyrimidine derivative, a carbazole derivative, a triazine derivative, a benzimidazole derivative, a phenanthroline derivative and a quinolinol-based metal complex. An organic electroluminescent device according to any one of claims 1 to 17.
  19.  前記電子輸送層および電子注入層の少なくとも1つが、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項18に記載の有機電界発光素子。 At least one of the electron transport layer and the electron injection layer further comprises an alkali metal, an alkaline earth metal, a rare earth metal, an oxide of an alkali metal, a halide of an alkali metal, an oxide of an alkaline earth metal, and an alkaline earth metal. And at least one selected from the group consisting of a halide of a rare earth metal, an oxide of a rare earth metal, a halide of a rare earth metal, an organic complex of an alkali metal, an organic complex of an alkaline earth metal and an organic complex of a rare earth metal. Item 19. An organic electroluminescent device according to Item 18.
  20.  下記一般式(1)で表される、多環芳香族化合物。
    Figure JPOXMLDOC01-appb-C000009
    (上記式(1)中、
     R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシであり、
     前記アリール、前記ヘテロアリール、前記ジアリールアミノおよび前記ジアリールボリルにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     R~R11の少なくとも1つは、下記式(1-d)で表される基であり、
     式(1)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000010
    (上記式中、*は結合位置を示し、式(1-d)における少なくとも1つの水素はさらにアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。)
    A polycyclic aromatic compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000009
    (In the above formula (1),
    R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, Alkoxy, aryloxy,
    At least one hydrogen in the aryl, the heteroaryl, the diarylamino, and the diarylboryl may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl;
    At least one of R 1 to R 11 is a group represented by the following formula (1-d),
    At least one hydrogen in the compound represented by the formula (1) may be substituted with cyano, halogen, or deuterium. )
    Figure JPOXMLDOC01-appb-C000010
    (In the above formula, * indicates a bonding position, and at least one hydrogen in the formula (1-d) may be further substituted with aryl, heteroaryl, alkyl or cycloalkyl.)
  21.  下記一般式(1)で表される多環芳香族化合物に反応性置換基が置換した、反応性化合物。
    Figure JPOXMLDOC01-appb-C000011
    (上記式(1)中、
     R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、
     前記アリール、前記ヘテロアリール、前記ジアリールアミノおよび前記ジアリールボリルにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     式(1)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
    A reactive compound in which a polycyclic aromatic compound represented by the following general formula (1) is substituted with a reactive substituent.
    Figure JPOXMLDOC01-appb-C000011
    (In the above formula (1),
    R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, Alkoxy or aryloxy;
    At least one hydrogen in the aryl, the heteroaryl, the diarylamino, and the diarylboryl may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl;
    At least one hydrogen in the compound represented by the formula (1) may be substituted with cyano, halogen, or deuterium. )
  22.  請求項21に記載の反応性化合物をモノマーとして高分子化させた高分子化合物、または、当該高分子化合物をさらに架橋させた高分子架橋体。 A polymer compound obtained by polymerizing the reactive compound according to claim 21 as a monomer, or a cross-linked polymer obtained by further cross-linking the polymer compound.
  23.  主鎖型高分子に請求項21に記載する反応性化合物を置換させたペンダント型高分子化合物、または、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体。 ペ ン A pendant polymer compound obtained by substituting the reactive compound according to claim 21 with a main chain polymer, or a pendant polymer crosslinked product obtained by further crosslinking the pendant polymer compound.
  24.  第1成分として、請求項21に記載の反応性化合物、請求項22に記載の高分子化合物もしくは高分子架橋体、または、請求項23に記載のペンダント型高分子化合物もしくはペンダント型高分子架橋体をホストとして含み、
     第2成分として、ホウ素を含有する多環芳香族化合物をドーパントとして含み、
     第3成分として、有機溶媒を含む、
    発光層形成用組成物。
    The reactive compound according to claim 21, the polymer compound or crosslinked polymer according to claim 22, or the pendant polymer compound or crosslinked pendant polymer according to claim 23 as the first component. Including as a host,
    As a second component, containing a boron-containing polycyclic aromatic compound as a dopant,
    Including an organic solvent as a third component,
    A composition for forming a light emitting layer.
  25.  第1成分として、下記一般式(1)で表される多環芳香族化合物をホストとして含み、
     第2成分として、ホウ素を含有する多環芳香族化合物をドーパントとして含み、
     第3成分として、有機溶媒を含む、発光層形成用組成物。
    Figure JPOXMLDOC01-appb-C000012
    (上記式(1)中、
     R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、
     前記アリール、前記ヘテロアリール、前記ジアリールアミノおよび前記ジアリールボリルにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     式(1)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。)
    As a first component, a polycyclic aromatic compound represented by the following general formula (1) is contained as a host,
    As a second component, containing a boron-containing polycyclic aromatic compound as a dopant,
    A composition for forming a light-emitting layer, which comprises an organic solvent as a third component.
    Figure JPOXMLDOC01-appb-C000012
    (In the above formula (1),
    R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, Alkoxy or aryloxy;
    At least one hydrogen in the aryl, the heteroaryl, the diarylamino, and the diarylboryl may be substituted with an aryl, heteroaryl, alkyl, or cycloalkyl;
    At least one hydrogen in the compound represented by the formula (1) may be substituted with cyano, halogen, or deuterium. )
  26.  第3成分の少なくとも1種の有機溶媒の沸点が130~350℃である、請求項24または25に記載の発光層形成用組成物。 26. The composition for forming a light emitting layer according to claim 24, wherein the at least one organic solvent of the third component has a boiling point of 130 to 350 ° C.
  27.  第3成分の有機溶媒が、第1成分のホストおよび第2成分のドーパントの少なくとも1種に対する良溶媒(GS)と貧溶媒(PS)とを含み、良溶媒(GS)の沸点(BPGS)が貧溶媒(PS)の沸点(BPPS)よりも低い、請求項24~26のいずれか一項に記載の発光層形成用組成物。 The organic solvent of the third component contains a good solvent (GS) and a poor solvent (PS) for at least one of the host of the first component and the dopant of the second component, and the boiling point (BP GS ) of the good solvent ( GS ) There below the boiling point (BP PS) of the poor solvent (PS), light-emitting layer forming composition according to any one of claims 24-26.
  28.  第1成分が発光層形成用組成物の全質量に対して0.0999質量%~8.0質量%であり、
     第2成分が発光層形成用組成物の全質量に対して0.0001質量%~2.0質量%であり、
     第3成分が発光層形成用組成物の全質量に対して90.0質量%~99.9質量%である、
     請求項24~27のいずれか一項に記載の発光層形成用組成物。
    The first component is 0.0999% by mass to 8.0% by mass based on the total mass of the composition for forming a light emitting layer;
    The second component is 0.0001% by mass to 2.0% by mass relative to the total mass of the light emitting layer forming composition;
    The third component is 90.0% by mass to 99.9% by mass relative to the total mass of the composition for forming a light emitting layer;
    A composition for forming a light emitting layer according to any one of claims 24 to 27.
  29.  請求項21に記載の反応性化合物に由来する第1の構成単位と、ホウ素を含有する多環芳香族化合物に反応性置換基が置換した反応性化合物に由来する第2の構成単位とを有する高分子化合物、
     当該高分子化合物をさらに架橋させた高分子架橋体、
     主鎖型高分子に請求項21に記載する反応性化合物およびホウ素を含有する多環芳香族化合物に反応性置換基が置換した反応性化合物を置換させたペンダント型高分子化合物、ならびに、
     当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体
    から選ばれる少なくとも1種と、
     有機溶媒とを含む、発光層形成用組成物。
    A first structural unit derived from the reactive compound according to claim 21, and a second structural unit derived from the reactive compound in which a reactive substituent is substituted on a boron-containing polycyclic aromatic compound. Polymer compound,
    A polymer crosslinked body obtained by further crosslinking the polymer compound,
    A pendant-type polymer compound obtained by substituting a reactive compound in which a reactive substituent has been substituted with a reactive compound according to claim 21 and a boron-containing polycyclic aromatic compound in a main chain type polymer, and
    At least one selected from a pendant polymer crosslinked body obtained by further crosslinking the pendant polymer compound;
    A composition for forming a light-emitting layer, comprising: an organic solvent.
  30.  陽極および陰極からなる一対の電極と、該一対の電極間に配置され、
     請求項24~29のいずれか一項に記載の発光層形成用組成物を用いて形成された発光層を有する、有機電界発光素子。
    A pair of electrodes consisting of an anode and a cathode, disposed between the pair of electrodes,
    An organic electroluminescent device having a light emitting layer formed using the composition for forming a light emitting layer according to any one of claims 24 to 29.
  31.  正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層のうちの少なくとも1つの層が、各層を形成し得る低分子化合物をモノマーとして高分子化させた高分子化合物、もしくは、当該高分子化合物をさらに架橋させた高分子架橋体、または、各層を形成し得る低分子化合物を主鎖型高分子と反応させたペンダント型高分子化合物、もしくは、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体を含む、請求項1~19および30のいずれかに記載する有機電界発光素子。 At least one of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer is a polymer compound obtained by polymerizing a low molecular compound capable of forming each layer as a monomer, or A polymer crosslinked product obtained by further crosslinking the polymer compound, or a pendant polymer compound obtained by reacting a low molecular compound capable of forming each layer with a main chain polymer, or the pendant polymer compound. The organic electroluminescent device according to any one of claims 1 to 19 and 30, further comprising a crosslinked pendant polymer crosslinked product.
  32.  請求項1~19、30および31のいずれか一項に記載する有機電界発光素子を備えた表示装置または照明装置。
     
    A display or lighting device comprising the organic electroluminescent device according to any one of claims 1 to 19, 30, and 31.
PCT/JP2019/034473 2018-08-31 2019-09-02 Organic electroluminescent element using light emitting material composed of polycyclic aromatic compound WO2020045681A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980072016.4A CN112997334A (en) 2018-08-31 2019-09-02 Organic electroluminescent element using luminescent material of polycyclic aromatic compound
JP2020539658A JPWO2020045681A1 (en) 2018-08-31 2019-09-02 Organic electroluminescent device using a light emitting material of a polycyclic aromatic compound
KR1020217009580A KR20210053945A (en) 2018-08-31 2019-09-02 Organic electroluminescent device using light emitting material of polycyclic aromatic compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-163412 2018-08-31
JP2018163412 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045681A1 true WO2020045681A1 (en) 2020-03-05

Family

ID=69643134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034473 WO2020045681A1 (en) 2018-08-31 2019-09-02 Organic electroluminescent element using light emitting material composed of polycyclic aromatic compound

Country Status (4)

Country Link
JP (1) JPWO2020045681A1 (en)
KR (1) KR20210053945A (en)
CN (1) CN112997334A (en)
WO (1) WO2020045681A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167392A (en) * 2019-03-29 2020-10-08 住友化学株式会社 Light emitting device and manufacturing method thereof, and composition for light emitting element and manufacturing method thereof
WO2021187507A1 (en) * 2020-03-18 2021-09-23 株式会社Kyulux Compound, light-emitting material, and organic light-emitting device
CN113493474A (en) * 2020-04-03 2021-10-12 三星显示有限公司 Condensed-cyclic compound and organic light-emitting element including same
WO2021230658A1 (en) * 2020-05-12 2021-11-18 머티어리얼사이언스 주식회사 Organic light-emitting diode
KR20210138512A (en) * 2020-05-12 2021-11-19 머티어리얼사이언스 주식회사 Organic electroluminescent device
WO2022084505A1 (en) * 2020-10-23 2022-04-28 Cynora Gmbh Organic molecules for optoelectronic devices
WO2022102877A1 (en) * 2020-11-11 2022-05-19 경희대학교 산학협력단 Organic light-emitting device with improved lifespan characteristics
JP2022077011A (en) * 2020-11-10 2022-05-20 エルジー ディスプレイ カンパニー リミテッド Organic light-emitting diode and organic light-emitting device
EP4059915A3 (en) * 2021-02-26 2022-12-28 Universal Display Corporation Organic electroluminescent materials and devices
WO2023094936A1 (en) * 2021-11-26 2023-06-01 株式会社半導体エネルギー研究所 Light-emitting device, light-emitting apparatus, organic compound, electronic instrument, and illumination apparatus
KR20230093426A (en) 2020-10-26 2023-06-27 미쯔비시 케미컬 주식회사 Organic electroluminescence device, organic EL display device and organic EL lighting
US11919914B2 (en) 2019-10-25 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230051852A (en) * 2021-10-12 2023-04-19 엘지디스플레이 주식회사 Organic light emitting diode and organic light emitting device including thereof
CN116218283B (en) * 2023-04-13 2024-04-05 义乌清越光电技术研究院有限公司 Quantum dot ink for TFB hole transport layer and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152418A1 (en) * 2015-03-25 2016-09-29 学校法人関西学院 Polycyclic aromatic compound and light emission layer-forming composition
JP2018076281A (en) * 2016-10-28 2018-05-17 学校法人関西学院 Boronic acid or boronic ester, or method of producing polycyclic aromatic compound or polycyclic aromatic polymer compound using them
WO2018095394A1 (en) * 2016-11-23 2018-05-31 广州华睿光电材料有限公司 Organic mixture, composition, organic electronic device and application
WO2019004248A1 (en) * 2017-06-30 2019-01-03 住友化学株式会社 Macromolecular compound and light-emitting element using same
WO2019009052A1 (en) * 2017-07-07 2019-01-10 学校法人関西学院 Polycyclic aromatic compound
WO2019151204A1 (en) * 2018-02-05 2019-08-08 学校法人関西学院 Organic field-effect light emitting element using light emitting material of polycyclic aromatic compound

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735703B2 (en) 1999-12-21 2006-01-18 大阪大学長 Electroluminescence element
US20040131881A1 (en) 2002-12-31 2004-07-08 Eastman Kodak Company Complex fluorene-containing compounds for use in OLED devices
JP2005170911A (en) 2003-12-15 2005-06-30 Idemitsu Kosan Co Ltd Aromatic compound and organic electroluminescent element using the same
DE102010009903A1 (en) 2010-03-02 2011-09-08 Merck Patent Gmbh Connections for electronic devices
US20140058099A1 (en) 2011-03-03 2014-02-27 Kyushu University National University Corporation Novel compound, charge transport material, and organic device
TWI636056B (en) 2014-02-18 2018-09-21 學校法人關西學院 Polycyclic aromatic compound and method for production the same, material for organic device and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152418A1 (en) * 2015-03-25 2016-09-29 学校法人関西学院 Polycyclic aromatic compound and light emission layer-forming composition
JP2018076281A (en) * 2016-10-28 2018-05-17 学校法人関西学院 Boronic acid or boronic ester, or method of producing polycyclic aromatic compound or polycyclic aromatic polymer compound using them
WO2018095394A1 (en) * 2016-11-23 2018-05-31 广州华睿光电材料有限公司 Organic mixture, composition, organic electronic device and application
WO2019004248A1 (en) * 2017-06-30 2019-01-03 住友化学株式会社 Macromolecular compound and light-emitting element using same
WO2019009052A1 (en) * 2017-07-07 2019-01-10 学校法人関西学院 Polycyclic aromatic compound
WO2019151204A1 (en) * 2018-02-05 2019-08-08 学校法人関西学院 Organic field-effect light emitting element using light emitting material of polycyclic aromatic compound

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203212A1 (en) * 2019-03-29 2020-10-08 住友化学株式会社 Light-emitting element and manufacturing method therefor, and composition for light-emitting element and production method therefor
JP2020167392A (en) * 2019-03-29 2020-10-08 住友化学株式会社 Light emitting device and manufacturing method thereof, and composition for light emitting element and manufacturing method thereof
US11919914B2 (en) 2019-10-25 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
WO2021187507A1 (en) * 2020-03-18 2021-09-23 株式会社Kyulux Compound, light-emitting material, and organic light-emitting device
CN113493474A (en) * 2020-04-03 2021-10-12 三星显示有限公司 Condensed-cyclic compound and organic light-emitting element including same
KR102550442B1 (en) 2020-05-12 2023-07-03 머티어리얼사이언스 주식회사 Organic electroluminescent device
WO2021230658A1 (en) * 2020-05-12 2021-11-18 머티어리얼사이언스 주식회사 Organic light-emitting diode
KR20210138512A (en) * 2020-05-12 2021-11-19 머티어리얼사이언스 주식회사 Organic electroluminescent device
WO2022084505A1 (en) * 2020-10-23 2022-04-28 Cynora Gmbh Organic molecules for optoelectronic devices
KR20230093426A (en) 2020-10-26 2023-06-27 미쯔비시 케미컬 주식회사 Organic electroluminescence device, organic EL display device and organic EL lighting
JP7246453B2 (en) 2020-11-10 2023-03-27 エルジー ディスプレイ カンパニー リミテッド Organic Light Emitting Diodes and Organic Light Emitting Devices
JP2022077011A (en) * 2020-11-10 2022-05-20 エルジー ディスプレイ カンパニー リミテッド Organic light-emitting diode and organic light-emitting device
WO2022102877A1 (en) * 2020-11-11 2022-05-19 경희대학교 산학협력단 Organic light-emitting device with improved lifespan characteristics
EP4059915A3 (en) * 2021-02-26 2022-12-28 Universal Display Corporation Organic electroluminescent materials and devices
WO2023094936A1 (en) * 2021-11-26 2023-06-01 株式会社半導体エネルギー研究所 Light-emitting device, light-emitting apparatus, organic compound, electronic instrument, and illumination apparatus

Also Published As

Publication number Publication date
CN112997334A (en) 2021-06-18
JPWO2020045681A1 (en) 2021-09-30
KR20210053945A (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP7202572B2 (en) polycyclic aromatic compound
WO2020045681A1 (en) Organic electroluminescent element using light emitting material composed of polycyclic aromatic compound
JP6688281B2 (en) Polycyclic aromatic compound and composition for forming light emitting layer
WO2020040298A1 (en) Organic electroluminescent element, display device, illumination device, luminescent layer forming composition, and compound
KR20200107848A (en) Polycyclic aromatic compounds and multimers thereof
JPWO2019235452A1 (en) Tershally alkyl-substituted polycyclic aromatic compounds
JP2021091644A (en) Multimer compound
WO2020250700A1 (en) Polycyclic aromatic compound
KR20200099107A (en) Polycyclic aromatic compounds and multimers of the same
WO2020080528A1 (en) Polycyclic aromatic compound
JP2022074041A (en) Polycyclic aromatic compound
CN112645967A (en) Polycyclic aromatic compound, material containing same, organic electroluminescent element, display device, and lighting device
KR20220157312A (en) Polycyclic aromatic compound
KR20210045339A (en) Cyano-substituted polycyclic compounds
JP7515098B2 (en) Polycyclic aromatic compounds and their polymers
WO2022185897A1 (en) Polycyclic aromatic compound
JP2022082867A (en) Polycyclic aromatic compound
KR20240047307A (en) Polycyclic Aromatic Compound
JP2022179317A (en) Polycyclic aromatic compound
JP2022191159A (en) polycyclic aromatic compound
KR20240100291A (en) Polycyclic aromatic compound
KR20230041616A (en) Polycyclic aromatic compounds, organic electroluminescent element, display device and lighting apparatus
KR20220168161A (en) Polycyclic aromatic compounds
JP2022044212A (en) Polycyclic aromatic compound
KR20210007909A (en) Compositions for forming light emitting layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217009580

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19853676

Country of ref document: EP

Kind code of ref document: A1