WO2020045580A1 - Microorganism adsorbent and method for sterilizing microorganisms using same - Google Patents

Microorganism adsorbent and method for sterilizing microorganisms using same Download PDF

Info

Publication number
WO2020045580A1
WO2020045580A1 PCT/JP2019/033956 JP2019033956W WO2020045580A1 WO 2020045580 A1 WO2020045580 A1 WO 2020045580A1 JP 2019033956 W JP2019033956 W JP 2019033956W WO 2020045580 A1 WO2020045580 A1 WO 2020045580A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganism
soil
adsorbent
volcanic ash
microorganism adsorbent
Prior art date
Application number
PCT/JP2019/033956
Other languages
French (fr)
Japanese (ja)
Inventor
尚明 三澤
広幸 木之下
賢太郎 安井
太一 小林
秀樹 長▲濱▼
Original Assignee
国立大学法人宮崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人宮崎大学 filed Critical 国立大学法人宮崎大学
Priority to JP2020539594A priority Critical patent/JP7398807B2/en
Publication of WO2020045580A1 publication Critical patent/WO2020045580A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth

Definitions

  • the present invention relates to a microorganism adsorbent for adsorbing microorganisms such as bacteria such as Escherichia coli and viruses such as avian influenza virus contained in manure and the like, and a method for sterilizing microorganisms using the same.
  • chlorine or ozone injection, ultraviolet irradiation or the like is generally used as a method for removing coliform bacteria contained in the treated water, but chlorine injection has a problem that it is inexpensive but corrodes equipment such as steel piping. is there.
  • ozone injection and ultraviolet irradiation have a problem that the treatment cost is high, so that it is difficult to introduce equipment especially for small-scale livestock farmers.
  • avian influenza virus may be changed to highly pathogenic avian influenza virus by mutation.
  • highly pathogenic avian influenza virus is carried in the intestinal tract of wild birds, feces containing the virus are dropped around the poultry farm, and it is thought that they are a source of infection for chickens.
  • the present inventors have found that a specific volcanic ash soil, particularly a specific Kikai Akahoya volcanic ash soil, not only has excellent adsorption performance for enterohemorrhagic Escherichia coli and avian influenza virus, but also has a surprisingly bactericidal effect.
  • the present invention has been made in view of such problems, and is intended to provide a microorganism adsorbent capable of adsorbing and sterilizing microorganisms such as bacteria and viruses at a low cost and a low burden on the environment, and a microorganism sterilizing method using the same.
  • the purpose is to provide.
  • the microorganism adsorbent of the present invention is characterized by using a volcanic ash soil containing 30 wt% or more of Al 2 O 3 . According to this feature, water containing microorganisms such as bacteria and viruses is easily adsorbed, and the adsorption and sterilization ability is high.
  • the volcanic ash soil is characterized by being Kikai Akahoya volcanic ash soil containing 3 to 8 wt% of Fe 2 O 3 . According to this feature, the ratio of Al 2 O 3 is three times or more as large as that of Fe 2 O 3 and it is easy to form a complex with aluminum ions and phosphate ions. Excellent.
  • the volcanic ash soil is characterized by comprising 39 to 65 wt% of SiO 2 , 31 to 45 wt% of Al 2 O 3 , 3 to 8 wt% of Fe 2 O 3 and 0 to 22 wt% of others. According to this feature, there is little processing to natural Kikai Akahoya volcanic ash soil.
  • the volcanic ash soil is characterized by being fired. According to this feature, it is possible to eliminate various germs contained in the natural Kikai Akahoya volcanic ash soil.
  • the calcination is performed at a temperature of 1000 ° C. or less. According to this feature, those having small pores in the volcanic ash soil are likely to exist, and the microorganisms are easily adsorbed.
  • the volcanic ash soil is characterized by having at least pores having a diameter of 100 nm or less. According to this feature, pores having a small diameter are likely to exist, and microorganisms are easily adsorbed.
  • the volcanic ash soil has a specific surface area of 3.9 m 2 g ⁇ 1 or more. According to this feature, the surface area is large and the microorganisms are easily adsorbed.
  • the volcanic ash soil is a powder having a particle size of 1 mm or less. According to this feature, since it is in the form of a powder, it is easy to spray and use it.
  • the volcanic ash soil is a powder having a soil particle density of 2.6 to 2.7 g / cm 3 . According to this feature, since the soil particle density is low, it can be used in a state of being floated on water by stirring or aeration.
  • a method for sterilizing microorganisms using a microorganism adsorbent of the present invention is characterized by using the microorganism adsorbent. According to this feature, microorganisms such as bacteria and viruses can be sterilized at low cost and with less burden on the environment.
  • the present inventors adsorb or sterilize bacteria such as enterohemorrhagic Escherichia coli (hereinafter sometimes simply referred to as “Escherichia coli”) contained in manure of livestock and microorganisms such as viruses such as avian influenza virus. It has been found that volcanic ash soils, especially natural Kikai Akahoya volcanic ash soils (hereinafter simply referred to as “Akahoya”) are excellent. As a result of the research, it was significant to pay attention to the components and the structure. First, this matter will be described.
  • the mechanism of adsorption or sterilization of microorganisms by the microorganism adsorbent will be described.
  • the microbial adsorbent has innumerable pores with a diameter of 100 nm or less and has a large specific surface area, so it has excellent physical adsorption to microorganisms due to van der Waals force and hydrogen bonding, and also has excellent water absorption. ing.
  • the microorganism adsorbent has a high composition ratio of Al 2 O 3 (aluminum oxide) and Fe 2 O 3 (iron oxide) and shows hydrophilicity
  • ionized Al 3+ (aluminum ion) and Fe 3+ (iron ion) shows high chemical bonding (chemical reactivity) with PO 4 3- (phosphate ion) constituting the surface of the cell membrane of the microorganism (hydrophilic group of phospholipid), and insoluble AlPO 4 (phosphate Aluminum) and FePO 4 (iron phosphate) are produced.
  • the chemical formula of the chemical bond between ionized Al 3+ and Fe 3+ and PO 4 3- is shown in the following chemical formula 1.
  • the cell membrane of the microorganism constitutes a lipid bilayer by self-assembly of phospholipids, but PO 4 3- constituting the surface of the cell membrane (hydrophilic groups of the phospholipid) is replaced with the microorganism adsorbents Al 3+ and Fe 3.
  • the formation of AlPO 4 and FePO 4 by chemical bonding with 3+ degrades the phospholipid.
  • Escherichia coli is considered to be killed by the decomposition of the cell membrane due to the decomposition of the phospholipid.
  • Escherichia coli suspended in the treated water without being adsorbed by the microorganism adsorbent is also killed by chemically bonding to Al 3+ and Fe 3+ dissolved in the treated water.
  • the microorganism adsorbent physically adsorbs the microorganism through the innumerable pores having a diameter of 100 nm or less, and has high chemical bonding between the ionized Al 3+ and Fe 3+ with PO 4 3- constituting the cell membrane of the microorganism.
  • each test result such as the composition ratio of components is an average value of three or more samples.
  • the microbial adsorbent is obtained by crushing and sifting red sea squirts from the Higashi-Moryo-gun district of Miyazaki Prefecture, and then firing under the following conditions to kill soil-derived bacteria, stabilize constituent compounds, and maintain a certain shape and strength. To secure. Temperature 800 ° C Holding time 60 minutes (temperature rise 100 ° C / 1 hour) Firing device (electric muffle furnace FUW220PA manufactured by ADVANTEC)
  • the component composition ratios of the red sea squirt before firing were as follows.
  • the composition ratio of the components was analyzed according to JIS K0119: 2008 using an energy dispersive X-ray fluorescence analyzer EDX-720 manufactured by Shimadzu Corporation. 51.0 wt% SiO 2 39.7 wt% Al 2 O 3 4.71 wt% Fe 2 O 3 1.49 wt% K 2 O 1.40wt% CaO 0.51wt% MgO 0.53wt% TiO 2 0.66wt% other
  • the red squirt after firing has an Al 2 O 3 component composition ratio of 38.3 wt% and a Fe 2 O 3 component composition ratio of 3.96 wt%, and Al 2 O 3 and Fe 2 O 3 with respect to SiO 2 . Ratio is high.
  • the pore diameter distribution and the specific surface area change depending on the firing temperature, which will be described below.
  • the pore diameter distribution was analyzed by a mercury intrusion method (JIS R1655) using AutoPore V9620 manufactured by Micromeritics.
  • the pores of red sea squirt are distributed with a diameter of 0.01 to 10 ⁇ m (100 to 10000 nm), and at a firing temperature of 800 to 1000 ° C., pores having a diameter of 100 nm or less are 1 volume. % And pore distribution, but at a firing temperature of 1100 ° C. and 1150 ° C., pores having a diameter of 100 nm or less are less than 1% by volume and the pore distribution is lost. That is, it was confirmed that the pores were closed and the pore size distribution changed as the firing temperature increased.
  • the specific surface area was determined by BET method (JIS Z8830) using FlowSorb3 2310 manufactured by Micromeritics.
  • the specific surface area of the red sea squirt was 68.7 m 2 g ⁇ 1 without firing, but was 36.0 m 2 g ⁇ 1 at the firing temperature of 800 ° C. and 9.90 at the firing temperature of 900 ° C. 54m 2 g -1, 3.9m 2 g -1 at a firing temperature 1000 °C, 1.35m 2 g -1 at a firing temperature 1100 ° C., is reduced with 0.79 m 2 g -1 at a firing temperature 1150 ° C.. That is, as the firing temperature increases, the specific surface area decreases as the pores are closed.
  • the firing temperature is 1000 at which the pores having a diameter of 100 nm or less are distributed and the specific surface area is 3.9 m 2 g ⁇ 1 or more (preferably 36.0 to 69.0 m 2 g ⁇ 1 ).
  • the calcination temperature is less than 100 ° C., it is found that the calcination temperature is preferably 100 to 1000 ° C., and more preferably 180 to 800 ° C., since the bacteria derived from the soil may not be sufficiently killed. . Further, it is preferable that there is no organic matter in the volcanic ash soil.
  • the firing temperature is desirably 800 ° C. or higher.
  • the component composition ratio of Akadama before firing was as follows. 46.5wt% SiO 2 34.9 wt% Al 2 O 3 13.2 wt% Fe 2 O 3 1.37wt% K 2 O 0.58wt% CaO 1.31wt% MgO 1.35 wt% TiO 2 0.79wt% other
  • Akadama clay after firing has an Al 2 O 3 component composition ratio of 33.0 wt%, a Fe 2 O 3 component composition ratio of 12.5 wt%, and Al 2 O 3 and Fe 2 O with respect to SiO 2 .
  • the ratio of 3 is high. Also, the composition ratio of Al 2 O 3 is lower and the composition ratio of Fe 2 O 3 is higher than that of red sea squirt.
  • the component composition ratio before firing was as follows. 65.2 wt% SiO 2 23.0 wt% Al 2 O 3 5.18 wt% Fe 2 O 3 3.71 wt% K 2 O 0.24wt% CaO 1.65wt% MgO 0.81wt% TiO 2 0.21wt% other
  • the fired clay has a component composition ratio of Al 2 O 3 of 22.7 wt% and a composition ratio of Fe 2 O 3 of 4.76 wt%, and Al 2 O 3 and Fe 2 O 3 with respect to SiO 2 . Ratio is low. Also, the composition ratio of Al 2 O 3 is lower than that of red sea squirt, and the composition ratio of Fe 2 O 3 is substantially the same.
  • the shirasu after firing is characterized by Al 2 O 3 with respect to SiO 2 as a characteristic of a general component. And the ratio of Fe 2 O 3 is low. Further, the composition ratio of Al 2 O 3 and Fe 2 O 3 is lower than that of red sea squirt.
  • the ratio of Al 2 O 3 and Fe 2 O 3 to SiO 2 is low in the fired Kanuma soil as a characteristic of a general component. Further, the ratio of Al 2 O 3 and Fe 2 O 3 is lower than that of red sea squirt.
  • Akahoya has a higher component composition ratio of Al 2 O 3 that produces Al 3+ having a higher stability constant than Akadama clay, clay, Shirasu and Kanuma soil, and Fe 2 O 3 component compared to Akadama clay. Since the composition ratio is low, for example, a complex is easily formed by Al 3+ (aluminum ion) and PO 4 3- (phosphate ion) in feces, and the sequential reaction between the complex and PO 4 3- constituting the cell membrane of the microorganism Then, microorganisms can be adsorbed more efficiently.
  • the microbial adsorbent is composed of red sea squirt, which is an inexhaustible natural material in a relatively shallow place underground in southern Kyushu, while having a high adsorption capacity for microorganisms such as bacteria and viruses,
  • the burden on the environment can be reduced at low cost.
  • the red sea squirt used as the microorganism adsorbent is not limited to the one produced in the district of Higashi-Moryo-gun, Miyazaki Prefecture as long as it is produced in southern Kyushu.
  • the volcanic ash soil such as red sea squirt in each of the following examples uses the above-mentioned components.
  • Example 1 A microorganism adsorbent according to Example 1 will be described.
  • the microbial adsorbent of Example 1 is constituted by pulverizing and sterilizing by dry heat under the following conditions, and then packing 10 g of red squirt adjusted to a particle size of 0.5 mm or less into a cylindrical column having a diameter of 15 mm. .
  • Temperature 180 ° C Time 40 minutes Dry heat sterilizer (STA620DA manufactured by ADVANTEC)
  • microorganism adsorbent according to the second embodiment.
  • the microorganism adsorbent of Example 2 is constituted by putting 0.2 g of red sea squirt which has been pulverized and sterilized by dry heat into a 0.6 ml column (microtube).
  • the microbial adsorbent is inoculated with 0.4 ml of avian influenza virus (H3N2 subtype) (HA value: 16 times, see the second row from the top in FIG. 4), and the passing solution after passing through the red sea squirt is diluted by 2- to 256 times.
  • the agglutination titer (HA titer) was measured and, as shown in the photograph of FIG. 4, the avian influenza virus was adsorbed on the red sea squirt and did not agglutinate with the blood cells (HA titer negative, two columns from the bottom of FIG. 4). Eyes).
  • the microorganism adsorbent of Example 3 is a natural or calcined red sea squirt.
  • the microorganism adsorbent is put into a large container together with the object to be treated, such as livestock manure, and then stirred to produce microorganisms such as Escherichia coli contained in the object to be treated.
  • Adsorb or sterilize while promoting contact with The sludge (microbial adsorbent after use) generated in these treatments can be reduced to the ground, so that the treatment cost is low and sludge treatment equipment is not required.
  • the microorganism adsorbent of Example 4 is a natural or baked red sea squirt processed into a powder having a particle size of 0.5 mm or less, and is easily sprayed.
  • the powdery microorganism adsorbent is sprayed, for example, around the livestock barn, thereby adsorbing or sterilizing microorganisms existing around the livestock barn and preventing the invasion of microorganisms into the livestock barn.
  • red sea squirt which is a natural material, as a microorganism adsorbent, even if it is sprayed in large quantities, the cost is low and the environmental load is small.
  • the particle size is 1 mm or less, preferably 0.5 mm or less, more preferably 0.1 mm or less.
  • a red sea squirt as a material of the microorganism adsorbent may be stirred or aerated so that it can be used in a state of being suspended in water.
  • water can be applied to trays installed at the entrances of livestock barns, etc., and the microorganism adsorbing material can be sprayed on the water surface and floated on the water surface to ensure that the microorganism adsorbing material adheres to shoes, livestock legs, etc. This ensures that microorganisms present in shoes, livestock legs, etc. are adsorbed or sterilized, and that the microorganisms can be prevented from entering the livestock barn.
  • the soil particle density is preferably 2.6 to 2.7 g / cm 3 , and more preferably the density is as low as possible.
  • the soil particle density was determined according to JIS A1202: 2009.
  • Example 5 describes a survival test of Escherichia coli.
  • the microbial adsorbent of Example 5 was pulverized, sterilized by dry heat under the following conditions, and then adjusted to a particle size of 0.5 mm or less, 10 g each of Akahoya, Akadama, Kanuma, and Shirasu in a cylindrical column with a diameter of 15 mm. Respectively.
  • the number of days when the number of bacteria is less than 1/100, that is, the number of days when E. coli is killed, is E. coli adsorbed on Akashiya and Akadama soil three days later, E. coli adsorbed on Kanuma soil nine days later, and E. coli adsorbed on Shirasu After 17 days, the bactericidal effect was confirmed. As described above, it was confirmed that the microorganism adsorbent made of red sea squirt and red slag can obtain a bactericidal effect in a short period of time.
  • the number of Escherichia coli adsorbed on red sea squirt, Akadama soil and Kanuma soil has been reduced to about 1 log @ cfu / g after 17 days, and it has been confirmed that almost all bacteria are killed over a long period of time. Was done.
  • Example 6 describes a survival test of enterohemorrhagic Escherichia coli O-157. In addition, what was manufactured like Example 5 was used for the microorganism adsorbent.
  • O-157 enterohemorrhagic Escherichia coli O-157 (hereinafter simply referred to as “O-157”) was passed through the microorganism adsorbent, 10 mg each of Akahoya, Akadama soil, Kanuma soil and Shirasu in the column was added to each of 4 mg.
  • the viability of the adsorbed O-157 was confirmed by a culture method.
  • the O-157 adsorbed on the red sea squirt, the Akadama soil, and the Kanuma soil was over time, as shown in the graph of FIG. It was confirmed that the number of bacteria decreased.
  • the microorganism adsorbent made from red sea squirt, Akadama soil, and Kanuma soil has O-157 adsorption / sterilization ability.
  • the number of bacteria is reduced to 1/100, that is, 99% of the bacteria are killed, it can be said that a significant bactericidal effect is obtained.
  • the bactericidal ability against Escherichia coli in a short period of time that is, the rate of decrease in the number of bacteria from day 0 to day 3 is superior to Akahoya over Akadama clay.
  • the bactericidal ability of O-157 in a short period that is, the rate of reduction of the number of bacteria from day 0 to day 7 is superior to Akahoya.
  • red or green sea squirt was used as a microorganism adsorbent after processing such as natural or sintering, but the present invention is not limited to this, and Al 2 O 3 containing 30 wt% or more is contained.
  • it is a volcanic ash soil, for example, it may be natural akadama soil or calcined akadama soil, and processed so as to contain 30 wt% or more of Al 2 O 3 in a volcanic ash soil such as Kanuma soil, clay or shirasu. It may be processed.
  • microorganism adsorbent has an adsorption effect on microorganisms other than Escherichia coli (eg, Staphylococcus aureus, Salmonella spp., Campylobacter, Bacillus subtilis spores, Bacillus anthracis spores), and viruses other than avian influenza virus. Play.
  • Escherichia coli eg, Staphylococcus aureus, Salmonella spp., Campylobacter, Bacillus subtilis spores, Bacillus anthracis spores
  • viruses other than avian influenza virus eg, avian influenza virus.
  • microorganism adsorbent is not limited to firing, and may be sterilized by, for example, ultraviolet light.
  • adsorbent for livestock raising environment purification systems.
  • Use as an air purification system for example, as an adsorbent for adsorbing microorganisms in the atmosphere.
  • Water purification systems for example eutrophic salt (phosphorus) removal in closed water bodies (lake) and use as adsorbent for microorganisms such as Escherichia coli or coliforms.
  • Use as feed containing pathogen-adsorbed substances for livestock raising environment purification systems.
  • Use as an air purification system for example, as an adsorbent for adsorbing microorganisms in the atmosphere.
  • Water purification systems for example eutrophic salt (phosphorus) removal in closed water bodies (lake) and use as adsorbent for microorganisms such as Escherichia coli or coliforms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Sludge (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Provided are a microorganism adsorbent capable of adsorbing and sterilizing microorganisms such as bacteria and viruses, said microorganism adsorbent being less expensive and eco-friendly, and a method for sterilizing microorganisms using the same. As the microorganism adsorbent, a volcanic ash soil containing 30 wt% or more of Al2O3 is used.

Description

微生物吸着材およびこれを用いた微生物殺菌方法Microbial adsorbent and microorganism sterilization method using the same
 本発明は、糞尿等に含まれる大腸菌等の細菌、鳥インフルエンザウイルス等のウイルス等の微生物を吸着する微生物吸着材およびこれを用いた微生物殺菌方法に関する。 The present invention relates to a microorganism adsorbent for adsorbing microorganisms such as bacteria such as Escherichia coli and viruses such as avian influenza virus contained in manure and the like, and a method for sterilizing microorganisms using the same.
 人や家畜にとって有害な細菌やウイルスに対しては種々の対策がなされている。例えば、家畜の糞尿の処理方法は、形状や畜種によって異なっているが、「野積み」、「素掘り」での処理は、水質汚濁、悪臭の発生源となっており改善が求められている。また、畜産農家から発生した処理水を河川や湖沼等の公共用水域に排出する場合、「水質汚濁防止法」に基づき排水基準(生活環境項目および健康項目)が適用される。このように、処理水の排出には、排水基準が設けられているものの、処理水に含まれる大腸菌群数は、限りなくゼロにすることが望ましいのは言うまでもない。 種 々 Various measures are taken against bacteria and viruses that are harmful to humans and livestock. For example, the method of treating livestock manure varies depending on the shape and animal species, but the processing of "open pile" and "undigging" is a source of water pollution and offensive odor, and needs improvement. . In the case where treated water generated by livestock farmers is discharged to public water bodies such as rivers and lakes, drainage standards (living environment items and health items) are applied based on the “Water Pollution Control Law”. As described above, although the drainage standard is set for the discharge of the treated water, it is needless to say that the number of coliform bacteria contained in the treated water is desirably set to zero as much as possible.
 ここで、処理水に含まれる大腸菌群の除去方法として、塩素またはオゾン注入、紫外線照射等が一般的であるが、塩素注入は、安価であるものの鋼製配管等の設備を腐食させるという問題がある。また、オゾン注入や紫外線照射は、処理コストが高くなるため、特に小規模の畜産農家では設備導入が難しいという問題がある。 Here, chlorine or ozone injection, ultraviolet irradiation or the like is generally used as a method for removing coliform bacteria contained in the treated water, but chlorine injection has a problem that it is inexpensive but corrodes equipment such as steel piping. is there. In addition, ozone injection and ultraviolet irradiation have a problem that the treatment cost is high, so that it is difficult to introduce equipment especially for small-scale livestock farmers.
 また、鳥インフルエンザウイルスは、変異によって高病原性鳥インフルエンザウイルスに変化することがある。野鳥の腸管内に高病原性鳥インフルエンザウイルスが保有されると、養鶏農場周囲にウイルスを含む糞便を落下させ、それらが鶏の感染源となっていると考えられている。ここで、高病原性鳥インフルエンザウイルスの鶏舎内への侵入を防ぐためには、鶏舎周囲への石灰等の薬剤散布が重要となるが、化学薬品の大量使用による環境負荷とコスト面が課題となっていた。 鳥 Also, avian influenza virus may be changed to highly pathogenic avian influenza virus by mutation. When highly pathogenic avian influenza virus is carried in the intestinal tract of wild birds, feces containing the virus are dropped around the poultry farm, and it is thought that they are a source of infection for chickens. Here, in order to prevent highly pathogenic avian influenza virus from entering the poultry house, it is important to spray lime or other chemicals around the poultry house. I was
 発明者らは、特定の火山灰土壌、特に特定の鬼界アカホヤ火山灰土壌が腸管出血性大腸菌や鳥インフルエンザウイルスの吸着性能に優れるのみならず、驚くことに殺菌効果もあることを見出した。 The present inventors have found that a specific volcanic ash soil, particularly a specific Kikai Akahoya volcanic ash soil, not only has excellent adsorption performance for enterohemorrhagic Escherichia coli and avian influenza virus, but also has a surprisingly bactericidal effect.
 本発明は、このような問題点に着目してなされたもので、安価にかつ環境への負担の少ない細菌やウイルス等の微生物を吸着・殺菌できる微生物吸着材およびこれを用いた微生物殺菌方法を提供することを目的とする。 The present invention has been made in view of such problems, and is intended to provide a microorganism adsorbent capable of adsorbing and sterilizing microorganisms such as bacteria and viruses at a low cost and a low burden on the environment, and a microorganism sterilizing method using the same. The purpose is to provide.
 前記課題を解決するために、本発明の微生物吸着材は、
 Alが30wt%以上である火山灰土壌を用いたことを特徴としている。
 この特徴によれば、細菌、ウイルス等の微生物を含む水分を吸着しやすく、吸着・殺菌能力が高い。
In order to solve the above problems, the microorganism adsorbent of the present invention,
It is characterized by using a volcanic ash soil containing 30 wt% or more of Al 2 O 3 .
According to this feature, water containing microorganisms such as bacteria and viruses is easily adsorbed, and the adsorption and sterilization ability is high.
 前記火山灰土壌は、Feが3~8wt%である鬼界アカホヤ火山灰土壌であることを特徴としている。
 この特徴によれば、Alの割合がFeに比べ3倍以上と多く、アルミニウムイオンとリン酸イオンで錯体を形成しやすいため、リン酸を含む微生物等の吸着・殺菌能力に優れる。
The volcanic ash soil is characterized by being Kikai Akahoya volcanic ash soil containing 3 to 8 wt% of Fe 2 O 3 .
According to this feature, the ratio of Al 2 O 3 is three times or more as large as that of Fe 2 O 3 and it is easy to form a complex with aluminum ions and phosphate ions. Excellent.
 前記火山灰土壌は、SiOが39~65wt%、Alが31~45wt%、Feが3~8wt%、その他が0~22wt%からなることを特徴としている。
 この特徴によれば、天然の鬼界アカホヤ火山灰土壌への加工処理が少ない。
The volcanic ash soil is characterized by comprising 39 to 65 wt% of SiO 2 , 31 to 45 wt% of Al 2 O 3 , 3 to 8 wt% of Fe 2 O 3 and 0 to 22 wt% of others.
According to this feature, there is little processing to natural Kikai Akahoya volcanic ash soil.
 前記火山灰土壌は、焼成されていることを特徴としている。
 この特徴によれば、天然の鬼界アカホヤ火山灰土壌中に含まれている雑菌を消滅させることができる。
The volcanic ash soil is characterized by being fired.
According to this feature, it is possible to eliminate various germs contained in the natural Kikai Akahoya volcanic ash soil.
 前記焼成は、1000℃以下で行われることを特徴としている。
 この特徴によれば、火山灰土壌が有する細孔の径が小さいものが存在しやすく、微生物を吸着しやすい。
The calcination is performed at a temperature of 1000 ° C. or less.
According to this feature, those having small pores in the volcanic ash soil are likely to exist, and the microorganisms are easily adsorbed.
 前記火山灰土壌は、少なくとも径100nm以下の細孔を有することを特徴としている。
 この特徴によれば、細孔の径が小さいものが存在しやすく、微生物を吸着しやすい。
The volcanic ash soil is characterized by having at least pores having a diameter of 100 nm or less.
According to this feature, pores having a small diameter are likely to exist, and microorganisms are easily adsorbed.
 前記火山灰土壌は、比表面積が3.9m-1以上であることを特徴としている。
 この特徴によれば、表面積が広く、微生物を吸着しやすい。
The volcanic ash soil has a specific surface area of 3.9 m 2 g −1 or more.
According to this feature, the surface area is large and the microorganisms are easily adsorbed.
 前記火山灰土壌は、粒径1mm以下の粉末であることを特徴としている。
 この特徴によれば、粉末状であるので散布して使用することが簡便である。
The volcanic ash soil is a powder having a particle size of 1 mm or less.
According to this feature, since it is in the form of a powder, it is easy to spray and use it.
 前記火山灰土壌は、土粒子密度2.6~2.7g/cmの粉末であることを特徴としている。
 この特徴によれば、土粒子密度が低いため、攪拌やばっ気を行うことで水に浮かせた状態で使用することができる。
The volcanic ash soil is a powder having a soil particle density of 2.6 to 2.7 g / cm 3 .
According to this feature, since the soil particle density is low, it can be used in a state of being floated on water by stirring or aeration.
 前記課題を解決するために、本発明の微生物吸着材を用いた微生物殺菌方法は、前記微生物吸着材を用いたことを特徴としている。
 この特徴によれば、細菌やウイルス等の微生物を安価にかつ環境への負担の少なく殺菌することができる。
In order to solve the above-mentioned problems, a method for sterilizing microorganisms using a microorganism adsorbent of the present invention is characterized by using the microorganism adsorbent.
According to this feature, microorganisms such as bacteria and viruses can be sterilized at low cost and with less burden on the environment.
本発明の実施例における微生物吸着材を構成するアカホヤの焼成温度と細孔径分布の関係を示すグラフである。It is a graph which shows the relationship between the sintering temperature of red sea squirt and the pore size distribution which constitute the microorganism adsorbent in the example of the present invention. 実施例における微生物吸着材を構成するアカホヤの大腸菌に対する吸着能力を調べた実験結果を示す図である。It is a figure which shows the experimental result which investigated the adsorption ability with respect to Escherichia coli of the red sea squirt which comprises the microorganism adsorption material in an Example. 本発明の実施例1における微生物吸着材の大腸菌に対する殺菌能力を調べた実験結果を示す図である。It is a figure showing the experimental result which investigated the bactericidal ability to Escherichia coli of the microorganism adsorbent in Example 1 of the present invention. 本発明の実施例2における微生物吸着材の鳥インフルエンザウイルスに対する吸着能力を調べた実験結果を示す図である。It is a figure which shows the experimental result which investigated the adsorption capability with respect to avian influenza virus of the microorganism adsorbent in Example 2 of this invention. 本発明の実施例5における微生物吸着材に吸着された大腸菌の生存試験の結果を示すグラフである。It is a graph which shows the result of the survival test of Escherichia coli adsorbed on the microorganism adsorbent in Example 5 of the present invention. 本発明の実施例6における微生物吸着材に吸着されたO-157の生存試験の結果を示すグラフである。9 is a graph showing the results of a survival test of O-157 adsorbed on the microorganism adsorbent in Example 6 of the present invention.
 発明者らは、家畜の糞尿等に含まれる腸管出血性大腸菌(以下、単に「大腸菌」と表記することもある。)等の細菌、鳥インフルエンザウイルス等のウイルス等の微生物を吸着ないし殺菌する素材として、火山灰土壌、特に天然の鬼界アカホヤ火山灰土壌(以下、単に「アカホヤ」と表記する。)が優れるとの知見を得た。研究の結果から、成分および構造に着目することが有意であったことから、先ずこの事項について説明する。 The present inventors adsorb or sterilize bacteria such as enterohemorrhagic Escherichia coli (hereinafter sometimes simply referred to as “Escherichia coli”) contained in manure of livestock and microorganisms such as viruses such as avian influenza virus. It has been found that volcanic ash soils, especially natural Kikai Akahoya volcanic ash soils (hereinafter simply referred to as “Akahoya”) are excellent. As a result of the research, it was significant to pay attention to the components and the structure. First, this matter will be described.
 微生物吸着材による微生物の吸着ないし殺菌のメカニズムについて説明する。微生物吸着材は、径100nm以下の無数の細孔を有し、その比表面積が大きいため、ファンデルワールス力や水素結合による微生物に対する物理的な吸着性に優れているとともに、吸水性にも優れている。さらに、微生物吸着材は、Al(酸化アルミニウム)およびFe(酸化鉄)の組成比が高く、親水性を示すため、吸水後では、イオン化したAl3+(アルミニウムイオン)およびFe3+(鉄イオン)が微生物の細胞膜の表面(リン脂質の親水基)を構成するPO 3-(リン酸イオン)と高い化学結合性(化学反応性)を示し、不溶性のAlPO(リン酸アルミニウム)およびFePO(リン酸鉄)が生成される。イオン化したAl3+およびFe3+とPO 3-との化学結合の化学式を下記の化1に示す。 The mechanism of adsorption or sterilization of microorganisms by the microorganism adsorbent will be described. The microbial adsorbent has innumerable pores with a diameter of 100 nm or less and has a large specific surface area, so it has excellent physical adsorption to microorganisms due to van der Waals force and hydrogen bonding, and also has excellent water absorption. ing. Furthermore, since the microorganism adsorbent has a high composition ratio of Al 2 O 3 (aluminum oxide) and Fe 2 O 3 (iron oxide) and shows hydrophilicity, after absorbing water, ionized Al 3+ (aluminum ion) and Fe 3+ (iron ion) shows high chemical bonding (chemical reactivity) with PO 4 3- (phosphate ion) constituting the surface of the cell membrane of the microorganism (hydrophilic group of phospholipid), and insoluble AlPO 4 (phosphate Aluminum) and FePO 4 (iron phosphate) are produced. The chemical formula of the chemical bond between ionized Al 3+ and Fe 3+ and PO 4 3- is shown in the following chemical formula 1.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 尚、微生物の細胞膜は、リン脂質の自己組織化により脂質二重層を構成しているが、細胞膜の表面(リン脂質の親水基)を構成するPO 3-が微生物吸着材のAl3+およびFe3+と化学結合してAlPOおよびFePOを生成することにより、リン脂質が分解する。特に、大腸菌については、このリン脂質の分解を原因として細胞膜の分解が起こり死滅するものと考えられる。尚、微生物吸着材に吸着されず処理水中を浮遊している大腸菌についても、処理水中に溶け出したAl3+およびFe3+と化学結合することにより同様に死滅する。 The cell membrane of the microorganism constitutes a lipid bilayer by self-assembly of phospholipids, but PO 4 3- constituting the surface of the cell membrane (hydrophilic groups of the phospholipid) is replaced with the microorganism adsorbents Al 3+ and Fe 3. The formation of AlPO 4 and FePO 4 by chemical bonding with 3+ degrades the phospholipid. In particular, Escherichia coli is considered to be killed by the decomposition of the cell membrane due to the decomposition of the phospholipid. Escherichia coli suspended in the treated water without being adsorbed by the microorganism adsorbent is also killed by chemically bonding to Al 3+ and Fe 3+ dissolved in the treated water.
 このように、微生物吸着材は、径100nm以下の無数の細孔により微生物を物理的に吸着するとともに、イオン化したAl3+およびFe3+が微生物の細胞膜を構成するPO 3-と高い化学結合性を示してAlPOおよびFePOを生成することにより、微生物を効率よく吸着ないし殺菌することができる。 As described above, the microorganism adsorbent physically adsorbs the microorganism through the innumerable pores having a diameter of 100 nm or less, and has high chemical bonding between the ionized Al 3+ and Fe 3+ with PO 4 3- constituting the cell membrane of the microorganism. By producing AlPO 4 and FePO 4 by the above, microorganisms can be efficiently adsorbed or sterilized.
 本発明に係る微生物吸着材を実施するための形態を実施例に基づいて以下に説明する。尚、本実施例において成分組成比等の各試験結果はサンプル数3以上の平均値である。 形態 Embodiments for implementing the microorganism adsorbent according to the present invention will be described below based on examples. In this example, each test result such as the composition ratio of components is an average value of three or more samples.
 微生物吸着材は、宮崎県東諸県郡地区産出のアカホヤを粉砕してふるいにかけた後、次の条件で焼成することにより土壌由来の細菌を死滅させるとともに、構成化合物を安定させ、一定の形状と強度を確保する。
   温度 800℃
   保持時間 60分(昇温100℃/1時間)
   焼成装置(ADVANTEC社製電気マッフル炉FUW220PA)
The microbial adsorbent is obtained by crushing and sifting red sea squirts from the Higashi-Moryo-gun district of Miyazaki Prefecture, and then firing under the following conditions to kill soil-derived bacteria, stabilize constituent compounds, and maintain a certain shape and strength. To secure.
Temperature 800 ° C
Holding time 60 minutes (temperature rise 100 ° C / 1 hour)
Firing device (electric muffle furnace FUW220PA manufactured by ADVANTEC)
 焼成前のアカホヤの成分組成比は以下のとおりであった。尚、成分組成比は、島津製作所社製エネルギー分散型蛍光X線分析装置EDX-720を用いてJIS K0119:2008により分析した。
   51.0wt% SiO
   39.7wt% Al
   4.71wt% Fe
   1.49wt% K
   1.40wt% CaO
   0.51wt% MgO
   0.53wt% TiO
   0.66wt% その他
The component composition ratios of the red sea squirt before firing were as follows. The composition ratio of the components was analyzed according to JIS K0119: 2008 using an energy dispersive X-ray fluorescence analyzer EDX-720 manufactured by Shimadzu Corporation.
51.0 wt% SiO 2
39.7 wt% Al 2 O 3
4.71 wt% Fe 2 O 3
1.49 wt% K 2 O
1.40wt% CaO
0.51wt% MgO
0.53wt% TiO 2
0.66wt% other
 焼成後のアカホヤの成分組成比は以下の表1のとおりであった。 成分 The composition ratio of the components of the red sea squirt after firing was as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 焼成後のアカホヤは、Alの成分組成比が38.3wt%、Feの成分組成比が3.96wt%であり、SiOに対してAlおよびFeの比率が高い。 The red squirt after firing has an Al 2 O 3 component composition ratio of 38.3 wt% and a Fe 2 O 3 component composition ratio of 3.96 wt%, and Al 2 O 3 and Fe 2 O 3 with respect to SiO 2 . Ratio is high.
 ここで、焼成温度によって細孔径分布、比表面積が変化しているので以下説明する。尚、細孔径分布は、Micromeritics社製AutoPoreV9620を用いて水銀圧入法(JIS R1655)により分析した。 細孔 Here, the pore diameter distribution and the specific surface area change depending on the firing temperature, which will be described below. In addition, the pore diameter distribution was analyzed by a mercury intrusion method (JIS R1655) using AutoPore V9620 manufactured by Micromeritics.
 図1のグラフに示されるように、アカホヤの細孔は、径0.01~10μm(100~10000nm)に分布しており、焼成温度800~1000℃では、径100nm以下の細孔は1体積%以上であり細孔の分布があるが、焼成温度1100℃、1150℃では、径100nm以下の細孔は1体積%未満であり細孔の分布がなくなっている。すなわち、焼成温度が高くなるにつれて細孔が閉塞し、細孔径分布が変化することが確認された。 As shown in the graph of FIG. 1, the pores of red sea squirt are distributed with a diameter of 0.01 to 10 μm (100 to 10000 nm), and at a firing temperature of 800 to 1000 ° C., pores having a diameter of 100 nm or less are 1 volume. % And pore distribution, but at a firing temperature of 1100 ° C. and 1150 ° C., pores having a diameter of 100 nm or less are less than 1% by volume and the pore distribution is lost. That is, it was confirmed that the pores were closed and the pore size distribution changed as the firing temperature increased.
 また、比表面積は、Micromeritics社製FlowSorb3 2310を用いてBET法(JIS Z8830)により求めた。 比 The specific surface area was determined by BET method (JIS Z8830) using FlowSorb3 2310 manufactured by Micromeritics.
 表2に示されるように、アカホヤの比表面積は、焼成無しで68.7m-1であったものが、焼成温度800℃で36.0m-1、焼成温度900℃で9.54m-1、焼成温度1000℃で3.9m-1、焼成温度1100℃で1.35m-1、焼成温度1150℃で0.79m-1と低下している。すなわち、焼成温度が高くなるにつれて細孔の閉塞に伴い比表面積が低下する。 As shown in Table 2, the specific surface area of the red sea squirt was 68.7 m 2 g −1 without firing, but was 36.0 m 2 g −1 at the firing temperature of 800 ° C. and 9.90 at the firing temperature of 900 ° C. 54m 2 g -1, 3.9m 2 g -1 at a firing temperature 1000 ℃, 1.35m 2 g -1 at a firing temperature 1100 ° C., is reduced with 0.79 m 2 g -1 at a firing temperature 1150 ° C.. That is, as the firing temperature increases, the specific surface area decreases as the pores are closed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 また、図2の写真に示されるように、焼成温度800℃で焼成したアカホヤに大腸菌の浮遊液をろ過した後の通過液を培養すると、生菌が検出されなかった(図2の中段参照)。また、大腸菌の浮遊液をろ過した後のアカホヤに再びバッファ液を通して洗浄した洗浄液を培養しても、同様の結果が得られた(図2の下段参照)。すなわち、アカホヤの焼成は、径100nm以下の細孔の分布があり、その比表面積が3.9m-1以上(好ましくは36.0~69.0m-1)となる焼成温度1000℃以下(好ましくは800℃以下)で行われることにより、アカホヤの細孔による微生物の物理的な吸着能力を維持することができる。また、焼成温度が100℃未満では、土壌由来の細菌が十分に死滅しない可能性があることから、焼成温度は、好ましくは100~1000℃、さらに好ましくは180~800℃であることが判明した。さらに、火山灰土壌中の有機物は無い方が好ましく、この場合、焼成温度は800℃以上であることが望ましい。 In addition, as shown in the photograph of FIG. 2, when the passed solution after filtering the suspension of Escherichia coli on red sea squirt fired at a firing temperature of 800 ° C. was cultured, no viable bacteria were detected (see the middle part of FIG. 2). . Similar results were obtained by culturing the washing solution that had been washed by passing the buffer solution again through the red sea squirt after filtering the suspension of Escherichia coli (see the lower part of FIG. 2). That is, in the firing of red sea squirt, the firing temperature is 1000 at which the pores having a diameter of 100 nm or less are distributed and the specific surface area is 3.9 m 2 g −1 or more (preferably 36.0 to 69.0 m 2 g −1 ). By carrying out at a temperature of not more than ℃ (preferably not more than 800 ℃), it is possible to maintain the physical adsorption ability of microorganisms by the pores of red sea squirt. If the calcination temperature is less than 100 ° C., it is found that the calcination temperature is preferably 100 to 1000 ° C., and more preferably 180 to 800 ° C., since the bacteria derived from the soil may not be sufficiently killed. . Further, it is preferable that there is no organic matter in the volcanic ash soil. In this case, the firing temperature is desirably 800 ° C. or higher.
 次に、上述したアカホヤと同様の加工処理を行った栃木県鹿沼地区産出の赤玉土について説明する。 (4) Next, the Akadama clay from the Kanuma area of Tochigi prefecture that has been processed in the same manner as the red sea squirt described above will be described.
 焼成前の赤玉土の成分組成比は以下のとおりであった。
   46.5wt% SiO
   34.9wt% Al
   13.2wt% Fe
   1.37wt% K
   0.58wt% CaO
   1.31wt% MgO
   1.35wt% TiO
   0.79wt% その他
The component composition ratio of Akadama before firing was as follows.
46.5wt% SiO 2
34.9 wt% Al 2 O 3
13.2 wt% Fe 2 O 3
1.37wt% K 2 O
0.58wt% CaO
1.31wt% MgO
1.35 wt% TiO 2
0.79wt% other
 焼成後の赤玉土の成分組成比は以下の表3のとおりであった。 成分 The component composition ratio of the fired red clay was as shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 焼成後の赤玉土は、Alの成分組成比が33.0wt%、Feの成分組成比が12.5wt%であり、SiOに対してAlおよびFeの比率が高い。また、アカホヤと比べてAlの成分組成比が低く、Feの成分組成比が高い。 Akadama clay after firing has an Al 2 O 3 component composition ratio of 33.0 wt%, a Fe 2 O 3 component composition ratio of 12.5 wt%, and Al 2 O 3 and Fe 2 O with respect to SiO 2 . The ratio of 3 is high. Also, the composition ratio of Al 2 O 3 is lower and the composition ratio of Fe 2 O 3 is higher than that of red sea squirt.
 次に、上述したアカホヤおよび赤玉土と同様の加工処理を行った宮崎県新富地区産出の粘土について説明する。 粘土 Next, the clay produced in Shintomi area, Miyazaki Prefecture, which has been processed in the same manner as the above-mentioned Akahoya and Akadama clay will be described.
 焼成前の成分組成比は以下のとおりであった。
   65.2wt% SiO
   23.0wt% Al
   5.18wt% Fe
   3.71wt% K
   0.24wt% CaO
   1.65wt% MgO
   0.81wt% TiO
   0.21wt% その他
The component composition ratio before firing was as follows.
65.2 wt% SiO 2
23.0 wt% Al 2 O 3
5.18 wt% Fe 2 O 3
3.71 wt% K 2 O
0.24wt% CaO
1.65wt% MgO
0.81wt% TiO 2
0.21wt% other
 焼成後の粘土の成分組成比は以下の表4のとおりであった。 成分 The composition ratio of the clay after firing was as shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 焼成後の粘土は、Alの成分組成比が22.7wt%、Feの成分組成比が4.76wt%であり、SiOに対してAlおよびFeの比率が低い。また、アカホヤと比べてAlの成分組成比が低く、Feの成分組成比が略同じである。 The fired clay has a component composition ratio of Al 2 O 3 of 22.7 wt% and a composition ratio of Fe 2 O 3 of 4.76 wt%, and Al 2 O 3 and Fe 2 O 3 with respect to SiO 2 . Ratio is low. Also, the composition ratio of Al 2 O 3 is lower than that of red sea squirt, and the composition ratio of Fe 2 O 3 is substantially the same.
 尚、上述したアカホヤ、赤玉土および粘土と同様の加工処理を行った宮崎県都城地区産出のシラスについて、焼成後のシラスは、一般的な成分の特徴として、SiOに対してAlおよびFeの比率が低い。また、アカホヤと比べてAlおよびFeの成分組成比が低い。 In addition, regarding the shirasu produced in the Miyakonojo area of Miyazaki prefecture that has been subjected to the same processing as the above-described red sea squirt, Akadama clay, and clay, the shirasu after firing is characterized by Al 2 O 3 with respect to SiO 2 as a characteristic of a general component. And the ratio of Fe 2 O 3 is low. Further, the composition ratio of Al 2 O 3 and Fe 2 O 3 is lower than that of red sea squirt.
 同じく、栃木県鹿沼地区産出の鹿沼土について、焼成後の鹿沼土は、一般的な成分の特徴として、SiOに対してAlおよびFeの比率が低い。また、アカホヤと比べてAlおよびFeの比率が低い。 Similarly, with respect to the Kanuma soil produced in the Kanuma area of Tochigi Prefecture, the ratio of Al 2 O 3 and Fe 2 O 3 to SiO 2 is low in the fired Kanuma soil as a characteristic of a general component. Further, the ratio of Al 2 O 3 and Fe 2 O 3 is lower than that of red sea squirt.
 すなわち、アカホヤは、赤玉土、粘土、シラスおよび鹿沼土と比べて、安定度定数の高いAl3+を生じるAlの成分組成比が高く、かつ赤玉土と比べてFeの成分組成比が低いため、例えばAl3+(アルミニウムイオン)と糞尿中のPO 3-(リン酸イオン)で錯体を形成しやすく、当該錯体と微生物の細胞膜を構成するPO 3-との逐次反応が起こり、微生物をより効率よく吸着することができる。 In other words, Akahoya has a higher component composition ratio of Al 2 O 3 that produces Al 3+ having a higher stability constant than Akadama clay, clay, Shirasu and Kanuma soil, and Fe 2 O 3 component compared to Akadama clay. Since the composition ratio is low, for example, a complex is easily formed by Al 3+ (aluminum ion) and PO 4 3- (phosphate ion) in feces, and the sequential reaction between the complex and PO 4 3- constituting the cell membrane of the microorganism Then, microorganisms can be adsorbed more efficiently.
 このように、微生物吸着材は、九州南部において地下の比較的浅い場所に無尽蔵に存在する自然素材であるアカホヤから構成されることにより、細菌やウイルス等の微生物に対する高い吸着能力を有しながら、安価にかつ環境への負担の少なくすることができる。尚、微生物吸着材として用いるアカホヤは、九州南部において産出されたものであれば、宮崎県東諸県郡地区産出のものに限らない。 In this way, the microbial adsorbent is composed of red sea squirt, which is an inexhaustible natural material in a relatively shallow place underground in southern Kyushu, while having a high adsorption capacity for microorganisms such as bacteria and viruses, The burden on the environment can be reduced at low cost. The red sea squirt used as the microorganism adsorbent is not limited to the one produced in the district of Higashi-Moryo-gun, Miyazaki Prefecture as long as it is produced in southern Kyushu.
 尚、以下の各実施例におけるアカホヤ等の火山灰土壌は、上述した成分のものを用いている。 The volcanic ash soil such as red sea squirt in each of the following examples uses the above-mentioned components.
 実施例1に係る微生物吸着材について説明する。実施例1の微生物吸着材は、粉砕し次の条件で乾熱滅菌した後、粒径0.5mm以下に調整したアカホヤ10gを径15mmの円筒形状のカラム内に充填することにより構成されている。
   温度 180℃
   時間 40分
   乾熱滅菌器(ADVANTEC社製STA620DA)
A microorganism adsorbent according to Example 1 will be described. The microbial adsorbent of Example 1 is constituted by pulverizing and sterilizing by dry heat under the following conditions, and then packing 10 g of red squirt adjusted to a particle size of 0.5 mm or less into a cylindrical column having a diameter of 15 mm. .
Temperature 180 ° C
Time 40 minutes Dry heat sterilizer (STA620DA manufactured by ADVANTEC)
 微生物吸着材に大腸菌(10cfu/ml)10mlを通過させた後、カラム内のアカホヤ10mgを4℃で保存し、吸着した大腸菌の生存性を培養法により確認すると、図3の写真に示されるように、アカホヤに吸着された大腸菌は時間の経過と共に死滅していき、6日以降は生菌が検出されなかった(図3の左シャーレ参照)。尚、対照実験として、同一のカラムに宮崎県都城地区産出のシラス10gを充填して同様の実験を行った場合には、17日後まで生菌が検出された(図3の右シャーレ参照)。すなわち、アカホヤを素材とする微生物吸着材は、大腸菌の吸着・殺菌能力を有する。 After 10 ml of Escherichia coli (10 5 cfu / ml) was passed through the microorganism adsorbent, 10 mg of red sea squirt in the column was stored at 4 ° C., and the viability of the adsorbed Escherichia coli was confirmed by a culture method. As can be seen, the E. coli adsorbed on the red sea squirt died over time, and no viable bacteria were detected after 6 days (see the left petri dish in FIG. 3). In addition, as a control experiment, when the same column was filled with 10 g of shirasu from Miyakonojo, Miyazaki Prefecture, and a similar experiment was performed, viable bacteria were detected until 17 days later (see the right petri dish in FIG. 3). That is, the microorganism adsorbent made of red sea squirt has the ability to adsorb and sterilize Escherichia coli.
 尚、本実施例では、180℃で40分乾熱滅菌したアカホヤを使用する例について説明したが、焼成温度800℃で焼成されたアカホヤについても、同様の結果が得られた。 In this example, the example using the red sea squirt sterilized by dry heat at 180 ° C. for 40 minutes was described, but the same result was obtained with the red sea squirt fired at the firing temperature of 800 ° C.
 実施例2に係る微生物吸着材について説明する。実施例2の微生物吸着材は、粉砕し乾熱滅菌したアカホヤ0.2gを0.6mlのカラム(マイクロチューブ)に入れることにより構成されている。 微生物 A description will be given of the microorganism adsorbent according to the second embodiment. The microorganism adsorbent of Example 2 is constituted by putting 0.2 g of red sea squirt which has been pulverized and sterilized by dry heat into a 0.6 ml column (microtube).
 微生物吸着材に鳥インフルエンザウイルス(H3N2亜型)0.4ml(HA価16倍、図4の上から2段目参照)を接種し、アカホヤを通過した後の通過液を2~256倍に希釈して血球凝集価(HA価)を測定すると、図4の写真に示されるように、鳥インフルエンザウイルスがアカホヤに吸着され、血球と凝集しなかった(HA価陰性、図4の下から2段目参照)。尚、対照実験として、0.6mlのカラムに宮崎県都城地区産出のシラス0.2gを入れて同様の実験を行った場合には、鳥インフルエンザウイルスがシラスにほとんど吸着されず血球と凝集した(HA価8倍,図4の最下段参照)。すなわち、アカホヤを素材とする微生物吸着材は、鳥インフルエンザウイルスの吸着能力を有する。 The microbial adsorbent is inoculated with 0.4 ml of avian influenza virus (H3N2 subtype) (HA value: 16 times, see the second row from the top in FIG. 4), and the passing solution after passing through the red sea squirt is diluted by 2- to 256 times. The agglutination titer (HA titer) was measured and, as shown in the photograph of FIG. 4, the avian influenza virus was adsorbed on the red sea squirt and did not agglutinate with the blood cells (HA titer negative, two columns from the bottom of FIG. 4). Eyes). As a control experiment, when 0.2 g of shirasu produced in the Miyakonojo district of Miyazaki was placed in a 0.6 ml column and the same experiment was performed, the bird influenza virus was hardly adsorbed to the shirasu and aggregated with blood cells ( HA number 8 times, see the bottom of FIG. 4). That is, the microorganism adsorbent made of red sea squirt has the ability to adsorb avian influenza virus.
 実施例3に係る微生物吸着材について説明する。実施例3の微生物吸着材は、天然または焼成されたアカホヤであり、大型の容器に家畜の糞尿等の処理対象と一緒に投入した後、攪拌ことにより、処理対象物に含まれる大腸菌等の微生物との接触を促進しながら吸着ないし殺菌する。尚、これらの処理において発生する汚泥(使用後の微生物吸着材)は、大地還元が可能であることから処理コストが安く、汚泥の処理設備も不要となる。 微生物 A description will be given of the microorganism adsorbent according to the third embodiment. The microorganism adsorbent of Example 3 is a natural or calcined red sea squirt. The microorganism adsorbent is put into a large container together with the object to be treated, such as livestock manure, and then stirred to produce microorganisms such as Escherichia coli contained in the object to be treated. Adsorb or sterilize while promoting contact with The sludge (microbial adsorbent after use) generated in these treatments can be reduced to the ground, so that the treatment cost is low and sludge treatment equipment is not required.
 実施例4に係る微生物吸着材について説明する。実施例4の微生物吸着材は、粒径0.5mm以下の粉末状に加工処理された天然または焼成されたアカホヤであり、散布しやすくなっている。粉末状の微生物吸着材は、例えば畜舎周囲に散布されることにより、畜舎周囲に存在する微生物を吸着ないし殺菌し、微生物の畜舎内への侵入を防ぐことができる。また、微生物吸着材として自然素材であるアカホヤを使用することにより、大量散布してもコストが安く、環境負荷も少ない。 微生物 A description will be given of the microorganism adsorbent according to the fourth embodiment. The microorganism adsorbent of Example 4 is a natural or baked red sea squirt processed into a powder having a particle size of 0.5 mm or less, and is easily sprayed. The powdery microorganism adsorbent is sprayed, for example, around the livestock barn, thereby adsorbing or sterilizing microorganisms existing around the livestock barn and preventing the invasion of microorganisms into the livestock barn. Also, by using red sea squirt, which is a natural material, as a microorganism adsorbent, even if it is sprayed in large quantities, the cost is low and the environmental load is small.
 これらのことから、粒径は1mm以下、好ましくは0.5mm以下、さらに好ましくは0.1mm以下である。 From these facts, the particle size is 1 mm or less, preferably 0.5 mm or less, more preferably 0.1 mm or less.
 さらに、微生物吸着材の素材としてのアカホヤを攪拌またはばっ気させることにより、水中に浮遊させた状態で使用できるようにしてもよい。また、例えば畜舎の出入口等に設置したトレー等に水を張り、水面に微生物吸着材を散布し、水面に浮かせた状態とすることにより、微生物吸着材を靴や家畜の脚等に確実に付着させ、靴や家畜の脚等に存在する微生物を確実に吸着ないし殺菌し、微生物の畜舎内への侵入を防ぐことができる。 Furthermore, a red sea squirt as a material of the microorganism adsorbent may be stirred or aerated so that it can be used in a state of being suspended in water. Also, for example, water can be applied to trays installed at the entrances of livestock barns, etc., and the microorganism adsorbing material can be sprayed on the water surface and floated on the water surface to ensure that the microorganism adsorbing material adheres to shoes, livestock legs, etc. This ensures that microorganisms present in shoes, livestock legs, etc. are adsorbed or sterilized, and that the microorganisms can be prevented from entering the livestock barn.
 これらのことから、土粒子密度は2.6~2.7g/cmが好ましく、さらにできる限り密度が低いことが好ましい。尚、土粒子密度は、JIS A1202:2009により求めた。 For these reasons, the soil particle density is preferably 2.6 to 2.7 g / cm 3 , and more preferably the density is as low as possible. The soil particle density was determined according to JIS A1202: 2009.
 実施例5では大腸菌の生存試験について説明する。実施例5の微生物吸着材は、粉砕し次の条件で乾熱滅菌した後、粒径0.5mm以下に調整したアカホヤ、赤玉土、鹿沼土、シラス各10gを径15mmの円筒形状のカラム内にそれぞれ充填することにより構成されている。
   温度 180℃
   時間 40分
   乾熱滅菌器(ADVANTEC社製STA620DA)
Example 5 describes a survival test of Escherichia coli. The microbial adsorbent of Example 5 was pulverized, sterilized by dry heat under the following conditions, and then adjusted to a particle size of 0.5 mm or less, 10 g each of Akahoya, Akadama, Kanuma, and Shirasu in a cylindrical column with a diameter of 15 mm. Respectively.
Temperature 180 ° C
Time 40 minutes Dry heat sterilizer (STA620DA manufactured by ADVANTEC)
 微生物吸着材に定量の大腸菌を通過させた後、カラム内のアカホヤ、赤玉土、鹿沼土、シラス各10mgをそれぞれ4℃で保存し、吸着した大腸菌の生存性を培養法により確認すると、図5のグラフに示されるように、アカホヤ、赤玉土、鹿沼土、シラスに吸着された大腸菌は時間の経過と共にその菌数が減少していくことが確認された。このように、アカホヤ、赤玉土、鹿沼土、シラスを素材とする微生物吸着材は、大腸菌の吸着・殺菌能力を有する。 After passing a certain amount of E. coli through the microbial adsorbent, 10 mg each of red sea squirt, Akadama soil, Kanuma soil and Shirasu in the column were stored at 4 ° C., and the viability of the adsorbed E. coli was confirmed by a culture method. As shown in the graph, it was confirmed that the number of Escherichia coli adsorbed on the red sea squirt, Akadama soil, Kanuma soil and Shirasu decreased over time. As described above, the microorganism adsorbent made of red sea squirt, Akadama soil, Kanuma soil and Shirasu has the ability to adsorb and sterilize Escherichia coli.
 ここで、菌数が100分の1まで減少、すなわち99%の菌が死滅することで、有意な殺菌効果と言えるので、この値を評価基準とした。菌数が100分の1未満となる日数、すなわち大腸菌が死滅する日数は、アカホヤ、赤玉土に吸着された大腸菌は3日後、鹿沼土に吸着された大腸菌は9日後、シラスに吸着された大腸菌は17日後であり、それぞれ殺菌効果が確認された。このように、アカホヤ、赤玉土を素材とする微生物吸着材は、短期間で殺菌効果が得られることが確認された。尚、アカホヤ、赤玉土、鹿沼土に吸着された大腸菌は、その菌数が17日後には約1log cfu/gまで減少しており、長期間かけて略全ての菌が殺菌されることが確認された。 Here, since the number of bacteria is reduced to 1/100, that is, 99% of the bacteria are killed, it can be said that a significant bactericidal effect is obtained. The number of days when the number of bacteria is less than 1/100, that is, the number of days when E. coli is killed, is E. coli adsorbed on Akashiya and Akadama soil three days later, E. coli adsorbed on Kanuma soil nine days later, and E. coli adsorbed on Shirasu After 17 days, the bactericidal effect was confirmed. As described above, it was confirmed that the microorganism adsorbent made of red sea squirt and red slag can obtain a bactericidal effect in a short period of time. The number of Escherichia coli adsorbed on red sea squirt, Akadama soil and Kanuma soil has been reduced to about 1 log @ cfu / g after 17 days, and it has been confirmed that almost all bacteria are killed over a long period of time. Was done.
 実施例6では腸管出血性大腸菌O-157の生存試験について説明する。尚、微生物吸着材は実施例5と同様に製作したものを用いた。 Example 6 describes a survival test of enterohemorrhagic Escherichia coli O-157. In addition, what was manufactured like Example 5 was used for the microorganism adsorbent.
 微生物吸着材に定量の腸管出血性大腸菌O-157(以下、単に「O-157」と表記する。)を通過させた後、カラム内のアカホヤ、赤玉土、鹿沼土、シラス各10mgをそれぞれ4℃で保存し、吸着したO-157の生存性を培養法により確認すると、図6のグラフに示されるように、アカホヤ、赤玉土、鹿沼土に吸着されたO-157は時間の経過と共にその菌数が減少していくことが確認された。このように、アカホヤ、赤玉土、鹿沼土を素材とする微生物吸着材は、O-157の吸着・殺菌能力を有する。 After a certain amount of enterohemorrhagic Escherichia coli O-157 (hereinafter simply referred to as “O-157”) was passed through the microorganism adsorbent, 10 mg each of Akahoya, Akadama soil, Kanuma soil and Shirasu in the column was added to each of 4 mg. The viability of the adsorbed O-157 was confirmed by a culture method. The O-157 adsorbed on the red sea squirt, the Akadama soil, and the Kanuma soil was over time, as shown in the graph of FIG. It was confirmed that the number of bacteria decreased. As described above, the microorganism adsorbent made from red sea squirt, Akadama soil, and Kanuma soil has O-157 adsorption / sterilization ability.
 ここで、菌数が100分の1まで減少、すなわち99%の菌が死滅することで、有意な殺菌効果と言えるので、この値を評価基準とした。菌数が100分の1未満となる日数、すなわちO-157が死滅する日数は、アカホヤ、赤玉土に吸着されたO-157は7日後、鹿沼土に吸着されたO-157は14日以上後であり、それぞれ殺菌効果が確認された。このように、アカホヤ、赤玉土を素材とする微生物吸着材は、短期間で殺菌効果が得られることが確認された。尚、アカホヤ、赤玉土に吸着されたO-157は、その菌数が1ヶ月後には約1log cfu/gまで減少しており、長期間かけて略全ての菌が殺菌されることが確認された。 Here, since the number of bacteria is reduced to 1/100, that is, 99% of the bacteria are killed, it can be said that a significant bactericidal effect is obtained. The number of days when the number of bacteria is less than 1/100, that is, the number of days when O-157 is killed, is O-157 adsorbed on Akahoya and Akadama soil after 7 days, and O-157 adsorbed on Kanuma soil is 14 days or more. Later, the bactericidal effect was confirmed respectively. As described above, it was confirmed that the microorganism adsorbent made of red sea squirt and red slag can obtain a bactericidal effect in a short period of time. The number of bacteria of O-157 adsorbed on red sea squirt and Akadama soil decreased to about 1 log @ cfu / g after one month, and it was confirmed that almost all bacteria were killed over a long period of time. Was.
 これら実施例5,6から、表5に示されるように、アカホヤ、赤玉土を素材とする微生物吸着材は、鹿沼土、シラスを素材とする微生物吸着材と比べて大腸菌およびO-157に対する有意な殺菌能力を有する。尚、表5中の「○」は有意な殺菌能力があることを示し、「△」は長い期間を要するものの殺菌能力があること示し、「×」は殺菌能力が不十分であったものを示している。 As shown in Table 5, from Examples 5 and 6, as shown in Table 5, the microorganism adsorbents made of red sea squirt and Akadama soil showed a significant effect on Escherichia coli and O-157 as compared with the microorganism adsorbents made of Kanuma soil and Shirasu. It has excellent sterilization ability. In Table 5, “○” indicates that there is a significant sterilizing ability, “△” indicates that the sterilizing ability is required although a long period is required, and “×” indicates that the sterilizing ability is insufficient. Is shown.
 また、図5を参照し大腸菌に対する短期間(3日間以内)での殺菌能力、すなわち0日から3日後までの菌数の減少率は、アカホヤが赤玉土よりも優位である。同様に、図6を参照しO-157に対する短期間(7日間以内)での殺菌能力、すなわち0日から7日後までの菌数の減少率は、赤玉土がアカホヤよりも優位である。 Also, referring to FIG. 5, the bactericidal ability against Escherichia coli in a short period of time (within 3 days), that is, the rate of decrease in the number of bacteria from day 0 to day 3 is superior to Akahoya over Akadama clay. Similarly, referring to FIG. 6, the bactericidal ability of O-157 in a short period (within 7 days), that is, the rate of reduction of the number of bacteria from day 0 to day 7 is superior to Akahoya.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, the specific configuration is not limited to these embodiments, and even if there are changes and additions without departing from the gist of the present invention, they are included in the present invention. It is.
 例えば、前記実施例1~4では、微生物吸着材に天然または焼成等の加工処理が行われたアカホヤが用いられる例について説明したが、これに限らず、Alを30wt%以上含有している火山灰土壌であれば、例えば天然の赤玉土、あるいは焼成された赤玉土であってもよく、鹿沼土や粘土やシラス等の火山灰土壌にAlを30wt%以上含有させるように加工処理したものであってもよい。 For example, in the above-described Examples 1 to 4, an example was described in which red or green sea squirt was used as a microorganism adsorbent after processing such as natural or sintering, but the present invention is not limited to this, and Al 2 O 3 containing 30 wt% or more is contained. If it is a volcanic ash soil, for example, it may be natural akadama soil or calcined akadama soil, and processed so as to contain 30 wt% or more of Al 2 O 3 in a volcanic ash soil such as Kanuma soil, clay or shirasu. It may be processed.
 また、微生物吸着材は、大腸菌以外の細菌(例えば、黄色ブドウ球菌、サルモネラ属菌、カンピロバクター、枯草菌芽胞、炭疽菌芽胞等)、鳥インフルエンザウイルス以外のウイルス等の微生物に対しても吸着効果を奏する。 In addition, the microorganism adsorbent has an adsorption effect on microorganisms other than Escherichia coli (eg, Staphylococcus aureus, Salmonella spp., Campylobacter, Bacillus subtilis spores, Bacillus anthracis spores), and viruses other than avian influenza virus. Play.
 また、微生物吸着材は、焼成に限らず、例えば紫外線等により殺菌処理されてもよい。 微生物 In addition, the microorganism adsorbent is not limited to firing, and may be sterilized by, for example, ultraviolet light.
産業上の利用分野Industrial applications
 1.家畜飼育環境の浄化システムの吸着材としての利用。
 2.空気の浄化システム、例えば大気中の微生物を吸着する吸着材としての利用。
 3.水の浄化システム、例えば閉鎖性水域(湖沼)における富栄養塩(リン)除去および大腸菌または大腸菌群等の微生物の吸着材としての利用。
 4.バイオテロ対策システムにおける炭疽菌芽胞等の細菌やウイルスの吸着材としての利用。
 5.病原体吸着物質含有飼料としての利用。
1. Use as an adsorbent for livestock raising environment purification systems.
2. Use as an air purification system, for example, as an adsorbent for adsorbing microorganisms in the atmosphere.
3. Water purification systems, for example eutrophic salt (phosphorus) removal in closed water bodies (lake) and use as adsorbent for microorganisms such as Escherichia coli or coliforms.
4. Use as an adsorbent for bacteria and viruses such as anthrax spores in bioterrorism control systems.
5. Use as feed containing pathogen-adsorbed substances.

Claims (10)

  1.  Alが30wt%以上である火山灰土壌を用いたことを特徴とする微生物吸着材。 A microorganism adsorbent characterized by using a volcanic ash soil in which Al 2 O 3 is 30 wt% or more.
  2.  前記火山灰土壌は、Feが3~8wt%である鬼界アカホヤ火山灰土壌であることを特徴とする請求項1に記載の微生物吸着材。 The microorganism adsorbent according to claim 1, wherein the volcanic ash soil is Kikai Akahoya volcanic ash soil containing 3 to 8 wt% of Fe 2 O 3 .
  3.  前記火山灰土壌は、SiOが39~65wt%、Alが31~45wt%、Feが3~8wt%、その他が0~22wt%からなることを特徴とする請求項1または2に記載の微生物吸着材。 The volcanic ash soil according to claim 1, wherein SiO 2 is 39 to 65 wt%, Al 2 O 3 is 31 to 45 wt%, Fe 2 O 3 is 3 to 8 wt%, and others are 0 to 22 wt%. 3. The microorganism adsorbent according to 2.
  4.  前記火山灰土壌は、焼成されていることを特徴とする請求項1ないし3のいずれかに記載の微生物吸着材。 The microorganism adsorbent according to any one of claims 1 to 3, wherein the volcanic ash soil is fired.
  5.  前記焼成は、1000℃以下で行われることを特徴とする請求項1ないし4のいずれかに記載の微生物吸着材。 (5) The microorganism adsorbing material according to any one of (1) to (4), wherein the calcination is performed at 1000 ° C. or lower.
  6.  前記火山灰土壌は、少なくとも径100nm以下の細孔を有することを特徴とする請求項1ないし5のいずれかに記載の微生物吸着材。 The microorganism adsorbent according to any one of claims 1 to 5, wherein the volcanic ash soil has pores having a diameter of at least 100 nm or less.
  7.  前記火山灰土壌は、比表面積が3.9m-1以上であることを特徴とする請求項1ないし6のいずれかに記載の微生物吸着材。 7. The microorganism adsorbent according to claim 1, wherein the volcanic ash soil has a specific surface area of 3.9 m 2 g −1 or more.
  8.  前記火山灰土壌は、粒径1mm以下の粉末であることを特徴とする請求項1ないし7のいずれかに記載の微生物吸着材。 The microorganism adsorbent according to any one of claims 1 to 7, wherein the volcanic ash soil is a powder having a particle size of 1 mm or less.
  9.  前記火山灰土壌は、土粒子密度2.6~2.7g/cmの粉末であることを特徴とする請求項1ないし8のいずれかに記載の微生物吸着材。 The microorganism adsorbent according to any one of claims 1 to 8, wherein the volcanic ash soil is a powder having a soil particle density of 2.6 to 2.7 g / cm 3 .
  10.  前記請求項1ないし9のいずれかに記載の微生物吸着材を用いた微生物殺菌方法。 微生物 A method for sterilizing microorganisms using the microorganism adsorbent according to any one of claims 1 to 9.
PCT/JP2019/033956 2018-08-29 2019-08-29 Microorganism adsorbent and method for sterilizing microorganisms using same WO2020045580A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020539594A JP7398807B2 (en) 2018-08-29 2019-08-29 Microbial adsorbent and microbial sterilization method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-160790 2018-08-29
JP2018160790 2018-08-29

Publications (1)

Publication Number Publication Date
WO2020045580A1 true WO2020045580A1 (en) 2020-03-05

Family

ID=69642783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033956 WO2020045580A1 (en) 2018-08-29 2019-08-29 Microorganism adsorbent and method for sterilizing microorganisms using same

Country Status (2)

Country Link
JP (1) JP7398807B2 (en)
WO (1) WO2020045580A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7511829B2 (en) 2020-02-28 2024-07-08 国立大学法人 宮崎大学 Nucleic acid adsorbent

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613014A (en) * 1979-07-11 1981-02-07 Toru Taniguchi Water treating method
JPH0937782A (en) * 1995-07-27 1997-02-10 Kirin Brewery Co Ltd Carrier with immobilized microorganism and fermentation using the same
JP2000042538A (en) * 1998-07-29 2000-02-15 Asuku Technica:Kk Method of removing phosphorus in water
JP2004105944A (en) * 2002-07-25 2004-04-08 Toshio Kitahara Stabilizing material for heavy metals, method of stabilizing heavy metals and method of treating substance containing heavy metals
JP2010247062A (en) * 2009-04-15 2010-11-04 Nishimatsu Constr Co Ltd Water cleaning method and water cleaning apparatus
JP2011206694A (en) * 2010-03-30 2011-10-20 Kurita Water Ind Ltd Permeable reactive wall and ground water purifying structure
JP2014128773A (en) * 2012-12-28 2014-07-10 Nbc Meshtec Inc Virus adsorbent and virus adsorbing component with use of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3040097B2 (en) 1998-10-16 2000-05-08 艮一 小松 Contact purification material and method for producing the same
JP2001314882A (en) 2000-05-09 2001-11-13 Dreams:Kk Biological cleaning material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613014A (en) * 1979-07-11 1981-02-07 Toru Taniguchi Water treating method
JPH0937782A (en) * 1995-07-27 1997-02-10 Kirin Brewery Co Ltd Carrier with immobilized microorganism and fermentation using the same
JP2000042538A (en) * 1998-07-29 2000-02-15 Asuku Technica:Kk Method of removing phosphorus in water
JP2004105944A (en) * 2002-07-25 2004-04-08 Toshio Kitahara Stabilizing material for heavy metals, method of stabilizing heavy metals and method of treating substance containing heavy metals
JP2010247062A (en) * 2009-04-15 2010-11-04 Nishimatsu Constr Co Ltd Water cleaning method and water cleaning apparatus
JP2011206694A (en) * 2010-03-30 2011-10-20 Kurita Water Ind Ltd Permeable reactive wall and ground water purifying structure
JP2014128773A (en) * 2012-12-28 2014-07-10 Nbc Meshtec Inc Virus adsorbent and virus adsorbing component with use of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASAOKA SATOSHI ET AL.: "Desalination of sea water by Akadama soil and Akadama Soil-Inorganic absorbents mixtures", JAPANESE JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, vol. 77, no. 1, 2006, pages 33 - 39, XP055697266 *
FUJIHARA MAKOTO ET AL.: "Glass composition and emplacement mode of Koya pyroclastic flow deposit and its proximal equivalent", BULLETIN OF THE VOLCANOLOGICAL SOCIETY OF JAPAN, vol. 58, no. 4, 2013, pages 489 - 498, XP055697270 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7511829B2 (en) 2020-02-28 2024-07-08 国立大学法人 宮崎大学 Nucleic acid adsorbent

Also Published As

Publication number Publication date
JPWO2020045580A1 (en) 2021-09-24
JP7398807B2 (en) 2023-12-15

Similar Documents

Publication Publication Date Title
Hrenovic et al. Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite
KR960013344B1 (en) Method of treating waste water sludge
JP6664707B2 (en) Mineral functional water, method for producing the same, and method for controlling single-celled organisms and / or viruses
EA012032B1 (en) Functional transition metal silicates (ftms)
CA3233656A1 (en) Antimicrobial compositions and methods with novel polymeric binding system
NO176794B (en) Process for the treatment of sludge from wastewater for the production of fertilizers
CN108786432A (en) A kind of biological enzyme air purifying preparation and the preparation method and application thereof
Yao et al. Cow dung-derived biochars engineered as antibacterial agents for bacterial decontamination
WO2020045580A1 (en) Microorganism adsorbent and method for sterilizing microorganisms using same
Ahmadi et al. Antimicrobial polymer nanocomposite films and coatings
Mohammed et al. The prevalence of Campylobacter species in broiler flocks and their environment: assessing the efficiency of chitosan/zinc oxide nanocomposite for adopting control strategy
Bai et al. Encapsulation of Zn/Co nanocrystals into sponge‐like 3D porous carbon for Escherichia coli inactivation coupled with ultrasound: Characterization, kinetics and inactivation mechanism
KR101165053B1 (en) Manufacturing method of a paint comprising natural mineral
Gera et al. Fabrication of a pocket friendly, reusable water purifier using silver nano embedded porous concrete pebbles based on green technology
KR20090044958A (en) Play ground ozone water sand sterilization a method
Xie et al. Effect of TiO2 loading, water depth and light intensity on photo-disinfection efficacy of Escherichia coli O157: H7 using TiO2 NP-embedded cellulose acetate film in water
ES2308781T3 (en) PROCEDURE FOR THE DISINFECTION OF ORGANIC RESIDUAL MUD.
JP2021186812A (en) Disinfectant, disinfection method and disinfection kit
Ghorpade et al. Elimination of Pseudomonas aeruginosa from water systems: A review
KR101355177B1 (en) Water treating agent for removing green algae, red algae and odors in water
CN105820884B (en) Free of contamination Na2Fe04 cleaning toilet sterilization slow-release material of a kind of Cheap highly effective and preparation method thereof
JP6679256B2 (en) Water purification agent and water purification method
CN108585400A (en) A kind of preparation method of farm house livestock culture deodorant
KR20120108386A (en) Method to keep freshness of low temperature ware house
Han Investigation on Methods and Mechanisms of Bacterial Reduction in Agricultural Wastewater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539594

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855800

Country of ref document: EP

Kind code of ref document: A1