WO2020045359A1 - Injection molding machine - Google Patents

Injection molding machine Download PDF

Info

Publication number
WO2020045359A1
WO2020045359A1 PCT/JP2019/033351 JP2019033351W WO2020045359A1 WO 2020045359 A1 WO2020045359 A1 WO 2020045359A1 JP 2019033351 W JP2019033351 W JP 2019033351W WO 2020045359 A1 WO2020045359 A1 WO 2020045359A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial force
tie bar
temperature
tie
injection molding
Prior art date
Application number
PCT/JP2019/033351
Other languages
French (fr)
Japanese (ja)
Inventor
大吾 堀田
大石 潔
勇希 横倉
佑樹 松井
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN202310897361.XA priority Critical patent/CN116787722A/en
Priority to CN201980056432.5A priority patent/CN112638616A/en
Publication of WO2020045359A1 publication Critical patent/WO2020045359A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/26Mechanisms or devices for locking or opening dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/64Mould opening, closing or clamping devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/64Mould opening, closing or clamping devices
    • B29C45/66Mould opening, closing or clamping devices mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating

Definitions

  • the present invention relates to an injection molding machine.
  • the injection molding machine has a mold clamping device that closes, clamps, and opens the mold device.
  • the mold clamping device has a plurality of tie bars that extend according to the mold clamping force.
  • the mold clamping force is applied to a plurality of tie bars and the tie bars are extended.
  • the force that resists the extension of the tie bar is called the axial force.
  • the thickness of each molded product may be different.
  • the present invention has been made in view of the above problems, and has as its main object to provide an injection molding machine capable of shortening the time required for stabilizing the balance of axial force.
  • a mold clamping device having a plurality of tie bars, A tie bar axial force adjusting device for adjusting the axial force of the tie bar, and an injection molding machine, The tie bar axial force adjusting device, An axial force detector for detecting an axial force of the tie bar; An axial force control unit that controls the temperature of the tie bar based on a deviation between a detected value and a set value of the axial force of the tie bar, The axial force detector is provided on the plurality of tie bars, The axial force control unit, when the detected value of the axial force of the tie bar is higher than a set value, has an axial force control command generation unit that generates a control command to increase the temperature of the tie bar, When the detected value of the axial force of the tie bar is lower than a set value, the axial force control command generation unit performs a deviation reduction process to reduce a deviation between the detected value and the set value, and the amount of decrease in the temperature of the tie bar
  • an injection molding machine capable of shortening the time until the balance of the axial force is stabilized.
  • FIG. 4 is a diagram illustrating a positional relationship of a tie bar of the injection molding machine according to one embodiment, and is a diagram when a fixed platen is viewed from a movable platen side. It is a block diagram showing an example of axial force control of an injection molding machine concerning one embodiment. It is a block diagram showing other examples of axial force control of the injection molding machine concerning one embodiment. It is a block diagram showing yet another example of axial force control of an injection molding machine concerning one embodiment. 4 is a graph showing an example of the temperature of each tie bar and the mold clamping force in the axial force control of the injection molding machine according to one embodiment.
  • FIG. 1 is a diagram showing a state of the injection molding machine according to one embodiment at the time of completion of mold opening.
  • FIG. 2 is a diagram showing a state of the injection molding machine according to one embodiment at the time of mold clamping.
  • the injection molding machine includes a frame Fr, a mold clamping device 10, an operation device 70, a display device 80, a controller 90, and the like.
  • the controller 90 has a CPU (Central Pocessing Unit) 91 and a storage medium 92 such as a memory.
  • the controller 90 controls the mold clamping device 10, the operating device 70, the display device 80, and the like by causing the CPU 91 to execute the program stored in the storage medium 92.
  • CPU Central Pocessing Unit
  • the controller 90 is connected to the operation device 70 and the display device 80.
  • the operation device 70 accepts an input operation by the user and outputs a signal corresponding to the input operation to the controller 90.
  • the display device 80 displays a display screen according to an input operation on the operation device 70 under the control of the controller 90.
  • the display screen is used for setting the injection molding machine.
  • a plurality of display screens are prepared and displayed by switching or overlapping.
  • the user operates the operation device 70 while looking at the display screen displayed on the display device 80 to set the injection molding machine (including input of set values) and the like.
  • the operation device 70 and the display device 80 may be configured by, for example, a touch panel and may be integrated. Although the operation device 70 and the display device 80 of the present embodiment are integrated, they may be provided independently. Further, a plurality of operation devices 70 may be provided.
  • the mold clamping device 10 performs mold closing, pressurization, mold clamping, depressurization, and mold opening of the mold device 30.
  • the mold clamping device 10 includes a fixed platen 12, a movable platen 13, a toggle support 15, a tie bar 16, a toggle mechanism 20, and a mold clamping motor 21.
  • the moving direction of the movable platen 13 when the mold is closed (the right direction in FIGS. 1 and 2) is referred to as forward
  • the moving direction of the movable platen 13 when the mold is opened is referred to as the rear. I do.
  • the fixed platen 12 is fixed to the frame Fr.
  • a fixed mold 32 is attached to a surface of the fixed platen 12 facing the movable platen 13.
  • the movable platen 13 is movable along a guide (for example, a guide rail) 17 laid on the frame Fr, and is movable forward and backward with respect to the fixed platen 12.
  • a movable mold 33 is attached to a surface of the movable platen 13 facing the fixed platen 12.
  • the mold device 30 is composed of the fixed mold 32 and the movable mold 33.
  • the toggle support 15 is connected to the fixed platen 12 at an interval, and is movably mounted on the frame Fr in the mold opening and closing direction.
  • the toggle support 15 may be movable along a guide laid on the frame Fr.
  • the guide of the toggle support 15 may be the same as the guide 17 of the movable platen 13.
  • the fixed platen 12 is fixed to the frame Fr, and the toggle support 15 is movable with respect to the frame Fr in the mold opening and closing direction.
  • the toggle support 15 is fixed to the frame Fr, and the fixed platen 12 is fixed to the frame Fr. 12 may be movable in the mold opening and closing direction with respect to the frame Fr.
  • the tie bar 16 connects the fixed platen 12 and the toggle support 15 at an interval.
  • a plurality of tie bars 16 are used.
  • Each tie bar 16 is parallel to the mold opening / closing direction and extends in accordance with the mold clamping force.
  • the toggle mechanism 20 is provided between the movable platen 13 and the toggle support 15.
  • the toggle mechanism 20 includes a crosshead 20a, a plurality of links 20b, 20c, and the like.
  • One link 20b is swingably attached to the movable platen 13, and the other link 20c is swingably attached to the toggle support 15.
  • These links 20b and 20c are flexibly connected by pins or the like.
  • the mold clamping motor 21 is attached to the toggle support 15.
  • the mold clamping motor 21 moves the movable platen 13 forward and backward by moving the crosshead 20a forward and backward.
  • a movement conversion mechanism is provided between the mold clamping motor 21 and the crosshead 20a for converting the rotational movement of the mold clamping motor 21 into a linear movement and transmitting the linear movement to the crosshead 20a.
  • the motion conversion mechanism is composed of, for example, a ball screw mechanism.
  • the mold clamping device 10 performs a mold closing step, a pressure increasing step, a mold clamping step, a depressurizing step, a mold opening step, and the like under the control of the controller 90.
  • the injection molding machine performs a weighing step, a mold closing step, a pressurizing step, a mold clamping step, a filling step, a pressure holding step, a cooling step, a depressurizing step, a mold opening step, an ejection step, and the like. Is repeated to produce a molded article repeatedly.
  • a series of operations for obtaining a molded product for example, operations from the start of a weighing process to the start of the next weighing process, are also called “shots” or “molding cycles”.
  • shots operations from the start of a weighing process to the start of the next weighing process.
  • the time required for one shot is also referred to as “molding cycle time” or “cycle time”.
  • One molding cycle includes, for example, a measuring step, a mold closing step, a pressurizing step, a mold clamping step, a filling step, a pressure keeping step, a cooling step, a depressurizing step, a mold opening step, and an ejection step in this order.
  • the order here is the order in which each step starts.
  • the filling step, the pressure holding step, and the cooling step are performed during the mold clamping step.
  • the end of the depressurization step coincides with the start of the mold opening step.
  • a measuring motor of an injection device (not shown) is driven to rotate a screw of the injection device (not shown) at a set rotation speed, and the molding material is fed forward along a spiral groove of the screw. Along with this, the molding material is gradually melted. As the liquid molding material is fed to the front of the screw and accumulates at the front of the cylinder of an injection device (not shown), the screw is retracted.
  • the movable platen 13 is moved forward by moving the cross head 20a to the mold closing completion position at the set moving speed by driving the mold clamping motor 21 to make the movable mold 33 touch the fixed mold 32. .
  • a mold clamping force is generated by further driving the mold clamping motor 21 to further advance the crosshead 20a from the mold closing position to the mold clamping position.
  • a cavity space (not shown) is formed between the movable mold 33 and the fixed mold 32.
  • the injection motor of the injection device is driven to advance the screw of the injection device at the set moving speed, and the liquid molding material accumulated in front of the screw is filled in the cavity space in the mold device 30.
  • the injection motor of the injection device (not shown) is driven to push the screw of the injection device forward, and the pressure of the molding material at the front end of the screw (hereinafter also referred to as “holding pressure”) is maintained at a set pressure. Then, the molding material remaining in the cylinder of the injection device is pushed toward the mold device 30. Insufficient molding material due to cooling shrinkage in the mold apparatus 30 can be replenished.
  • the filling step and the pressure holding step are collectively referred to as an injection step.
  • the cooling step is started.
  • the molding material in the cavity space is solidified.
  • a metering step may be performed during the cooling step for the purpose of shortening the molding cycle time.
  • the movable platen 13 is retracted by driving the mold clamping motor 21 to retract the crosshead 20a from the mold clamping position to the mold opening start position, thereby reducing the mold clamping force.
  • the mold opening start position and the mold closing completion position may be the same position.
  • the movable platen 13 is retracted by moving the cross head 20a from the mold opening start position to the mold opening completion position at the set moving speed by driving the mold clamping motor 21 to move the movable mold 33 to the fixed mold. Separate from the mold 32.
  • the ejector rod of the ejector device (not shown) is advanced from the standby position to the ejecting position at the set moving speed, whereby the movable member (not shown) of the mold device 30 is advanced to eject the molded product. Thereafter, the ejector rod is retracted at the set moving speed, and the movable member is retracted to the original standby position.
  • mold thickness adjustment is performed so that a predetermined mold clamping force is obtained at the time of mold clamping.
  • the distance L between the fixed platen 12 and the toggle support 15 is set so that the link angle of the toggle mechanism 20 becomes a predetermined angle at the time of mold touch when the movable mold 33 touches the fixed mold 32. adjust.
  • the mold clamping device 10 has a mold thickness adjusting mechanism 22.
  • the mold thickness adjusting mechanism 22 adjusts the mold thickness by adjusting the distance L between the fixed platen 12 and the toggle support 15. The timing of the mold thickness adjustment is performed, for example, after the end of the molding cycle and before the start of the next molding cycle.
  • the mold thickness adjusting mechanism 22 is screwed to the screw shaft 22a formed at, for example, the rear end of the tie bar 16, a screw nut 22b rotatably held by the toggle support 15 and unable to advance and retreat.
  • a mold thickness adjusting motor 22c for rotating the screw nut 22b.
  • the screw shaft 22a and the screw nut 22b are provided for each tie bar 16.
  • the rotational driving force of the mold thickness adjusting motor 22c may be transmitted to the plurality of screw nuts 22b via the rotational driving force transmitting unit 22e.
  • the plurality of screw nuts 22b can be rotated synchronously. It is also possible to individually rotate the plurality of screw nuts 22b by changing the transmission path of the rotational driving force transmission unit 22e.
  • Rotation drive force transmission part 22e is constituted by a gear, for example.
  • a passive gear is formed on the outer periphery of each screw nut 22b
  • a driving gear is mounted on the output shaft of the mold thickness adjusting motor 22c
  • a plurality of passive gears and an intermediate gear meshing with the driving gear are provided at the central portion of the toggle support 15. Is held rotatably.
  • the rotational driving force transmission unit 22e may be configured by a belt, a pulley, or the like, instead of the gear.
  • the operation of the mold thickness adjusting mechanism 22 is controlled by the controller 90.
  • the controller 90 drives the mold thickness adjusting motor 22c to rotate the screw nut 22b.
  • the position of the toggle support 15 with respect to the tie bar 16 is adjusted, and the distance L between the fixed platen 12 and the toggle support 15 is adjusted.
  • a plurality of mold thickness adjusting mechanisms may be used in combination.
  • the interval L is detected using the mold thickness adjustment motor encoder 22d.
  • the mold thickness adjustment motor encoder 22d detects the amount and direction of rotation of the mold thickness adjustment motor 22c, and sends a signal indicating the detection result to the controller 90.
  • the detection result of the mold thickness adjusting motor encoder 22d is used for monitoring and controlling the position and the interval L of the toggle support 15. Note that the toggle support position detector for detecting the position of the toggle support 15 and the interval detector for detecting the interval L are not limited to the mold thickness adjustment motor encoder 22d, but general ones can be used.
  • the mold clamping device 10 of the present embodiment has the mold clamping motor 21 as a drive source for moving the movable platen 13, but may have a hydraulic cylinder instead of the mold clamping motor 21. Further, the mold clamping device 10 may have a linear motor for opening and closing the mold, and may have an electromagnet for clamping.
  • FIG. 3 is a view showing a positional relationship of a tie bar of the injection molding machine according to one embodiment, and is a view of a fixed platen viewed from a movable platen side.
  • the injection molding machine has four tie bars 16.
  • the four tie bars 16 are vertically symmetrically arranged about the horizontal line L1 and symmetrically arranged about the vertical line L2 in the mold opening and closing direction.
  • the upper side of the horizontal line L1 is called a top side
  • the lower side of the horizontal line L1 is called a ground side.
  • the operation device 70 side with respect to the vertical line L2 is referred to as an operation side
  • the side opposite to the operation device 70 with respect to the vertical line L2 is referred to as a non-operation side.
  • the mold clamping force is distributed and applied to the four tie bars 16, and each tie bar 16 extends.
  • the force that resists the elongation of each tie bar 16 is called the axial force.
  • the effective length of the tie bar 16 refers to an interval between the fixed platen 12 and the toggle support 15 connected by the tie bar 16, and is measured, for example, in a state where no mold clamping force is applied.
  • the balance of the axial force can be adjusted.
  • the balance of the axial force is set, for example, so that the surface pressure of the fixed mold 32 and the movable mold 33 has a target distribution at the time of mold clamping.
  • the target distribution may be either a uniform distribution or a non-uniform distribution, and is set according to the situation. Molding defects can be reduced.
  • the effective length of the tie bar 16 changes according to the temperature of the tie bar 16. As the temperature of the tie bar 16 increases, the effective length of the tie bar 16 increases. By adjusting the temperature of the tie bar 16, the effective length of the tie bar 16 can be adjusted, and the balance of the axial force can be adjusted.
  • a heater 25, a temperature detector 27, an axial force detector 28, and the like are attached to each tie bar 16, as shown in FIGS.
  • the heater 25, the temperature detector 27, the axial force detector 28, and the like are provided in the mold clamping device 10.
  • the heater 25 heats the tie bar 16 in order to adjust the effective length of the tie bar 16.
  • the portion of the tie bar 16 heated by the heater 25 is called a heating unit.
  • the heater 25 is composed of, for example, an electric heater such as a heater.
  • the heater 25 is not limited to an electric heater, and may be configured with, for example, a warm water jacket.
  • the temperature detector 27 detects the temperature of the tie bar 16 heated by the heater 25 and cooled by natural cooling.
  • the temperature detector 27 is disposed near the heater 25 and detects the temperature of the heating part of the tie bar.
  • the temperature detector 27 outputs a detection result to the controller 90.
  • the controller 90 controls the heater 25 so that the actual value of the temperature of the heating section of the tie bar 16 becomes a set value.
  • the control may be either feedback control or feedforward control.
  • the controller 90 of the present embodiment controls the heater 25.
  • the axial force detector 28 detects the axial force of the tie bar 16 heated by the heater 25 and cooled by natural cooling.
  • the axial force detector 28 is, for example, a strain gauge type, and detects the axial force of the tie bar 16 by detecting the strain of the tie bar 16.
  • the axial force detector 28 of the above embodiment is of a strain gauge type, but may be of a piezoelectric type, a capacitive type, a hydraulic type, an electromagnetic type, or the like.
  • the axial force detector 28 outputs the detection result to the controller 90.
  • the controller 90 may set the heating temperature of the tie bar 16 heated by the heater 25 so that the actual value of the axial force detected by the axial force detector 28 becomes a set value.
  • the heater 25 when increasing the temperature of the tie bar 16, the heater 25 is operated to increase the temperature. On the other hand, when lowering the temperature of the tie bar 16, the heater 25 is stopped, and the temperature is lowered by natural cooling (natural heat radiation and heat conduction to other members). As described above, since the temperature of the tie bar 16 can be changed only by turning on / off the heater 25, the control can be prevented from being discontinuous, and the controllability can be prevented from deteriorating.
  • the response speed when lowering the temperature of the tie bar 16 is slower than the response speed when increasing the temperature. Further, when lowering the temperature of the tie bar 16, the temperature cannot be reduced below a predetermined temperature (for example, the atmospheric temperature).
  • FIG. 4 is a block diagram illustrating an example of axial force control of the injection molding machine according to one embodiment.
  • the axial force command unit 910 is provided in the controller 90, for example.
  • the axial force command unit 910 instructs an axial force command (axial force set value) of each tie bar 16 to the axial force control unit 920.
  • the upper left is the first tie bar
  • the lower left is the second tie bar
  • the upper right is the third tie bar
  • the lower right is the fourth tie bar.
  • the operator inputs the axial force setting values of the first to fourth tie bars to the controller 90 via the operation device 70.
  • the axial force command unit 910 calculates the axial force set value Ncmd1, the second tie bar axial force set value Ncmd2, the axial force set value Ncmd3 of the third tie bar, and the axial force set value Ncmd4 of the fourth tie bar. It is output to the axial force control unit 920 as an axial force command.
  • the axial force control unit 920 is provided in the controller 90, for example.
  • the axial force control unit 920 determines the heater 25 based on the axial force set values (Ncmd1 to Ncmd4) of the axial force command unit 910 and the axial force detection values (Nfb1 to Nfb4 described later) detected by the axial force detector 28. To control the temperature of the tie bar 16.
  • the axial force controller 920 includes a temperature command generator 921, a current command generator 922, a temperature calculator 923, an axial force calculator 924, calculators 925, 926, and a correction calculator 927. I have.
  • the computing unit 925 receives the axial force setting values (Ncmd1 to Ncmd4) of each tie bar 16 from the axial force command unit 910, and outputs the axial force detection values (Nfb1 to Nfb4) of each tie bar 16 from the axial force calculating unit 924 described later. Then, the difference (Ncmd1-Nfb1,..., Ncmd4-Nfb4) between the axial force setting value and the axial force detection value of each tie bar 16 is output.
  • the temperature command generation unit 921 calculates the temperature change amount of each tie bar 16 based on the output value of the calculator 925 such that the difference between the axial force set value and the detected axial force is small (deviation reduction processing).
  • the temperature command generator 921 has a table indicating the relationship between the temperature rise of the tie bar 16 and the axial force rise. The table is configured such that the axial force decreases as the temperature of the tie bar 16 increases.
  • the temperature command generation unit 921 calculates the temperature change amount of each tie bar 16 from the difference between the axial force setting value and the axial force detection value based on a table, for example.
  • a temperature change amount for lowering the temperature of the tie bar 16 is calculated.
  • a temperature change amount for increasing the temperature of the tie bar 16 is calculated.
  • the temperature command generation unit 921 generates a new target temperature for each tie bar 16 based on the temperature change amount of each tie bar 16 and the current target temperature of each tie bar 16.
  • the temperature command generation unit 921 calculates the generated target temperature (the target temperature Tcmd1 of the first tie bar, the target temperature Tcmd2 of the second tie bar, the target temperature Tcmd3 of the third tie bar, and the target temperature Tcmd4 of the fourth tie bar) as a temperature command.
  • Output to the output unit 926 the target temperature Tcmd1 of the first tie bar, the target temperature Tcmd2 of the second tie bar, the target temperature Tcmd3 of the third tie bar, and the target temperature Tcmd4 of the fourth tie bar
  • the computing unit 926 receives the target temperatures (Tcmd1 to Tcmd4) of the tie bars 16 from the temperature command generation unit 921, and the temperature detection values (Tfb1 to Tfb4) of the tie bars 16 from the temperature calculation unit 923 described later. The difference between the target temperature of the tie bar 16 and the detected temperature value (Tcmd1-Tfb1,..., Tcmd4-Tfb4) is output.
  • the current command generator 922 outputs a control signal to the relay 25b corresponding to the heater 25 of each tie bar 16 based on the output value of the calculator 926 so that the deviation between the target temperature and the detected temperature value is reduced.
  • Relay 25b controls power supply from heater power supply 25a to heater 25 based on a control signal from current command generator 922.
  • the current command generator 922 outputs a control signal for turning off the heater 25.
  • current command generator 922 outputs a control signal for turning on heater 25.
  • the power supplied from the heater power supply 25a to the heater 25 may be controlled by changing the duty ratio of the control signal according to the difference between the target temperature and the detected temperature value.
  • the tie bar 16 is heated by supplying power from the heater power supply 25a to the heater 25.
  • the temperature calculation unit 923 calculates the temperature of the tie bar 16 based on the detection signal of the temperature detector 27.
  • the temperature detector 27 is provided in each tie bar 16 respectively.
  • the calculated temperature of the tie bar 16 (the temperature detection value Tfb1 of the first tie bar, the temperature detection value Tfb2 of the second tie bar, the temperature detection value Tfb3 of the third tie bar, and the temperature detection value Tfb4 of the fourth tie bar) are sent to the calculator 926. Is output.
  • the axial force calculator 924 calculates the axial force of the tie bar 16 based on the detection signal of the axial force detector 28.
  • the axial force detector 28 is provided on each tie bar 16.
  • the calculated axial force of the tie bar 16 (the axial force detected value Nfb1, the axial force detected value Nfb2 of the second tie bar, the axial force detected value Nfb3 of the third tie bar, and the axial force detected value Nfb4 of the fourth tie bar) is Are output to the arithmetic unit 925.
  • the correction calculation unit 927 receives the difference between the target temperature of each tie bar 16 and the detected temperature value (Tcmd1 ⁇ Tfb1,..., Tcmd4 ⁇ Tfb4) output from the calculator 926.
  • the correction calculation unit 927 determines the presence or absence of the tie bar 16 of which the temperature decrease has been instructed, among the four tie bars 16.
  • the instruction for lowering the temperature is an instruction for lowering the temperature of the tie bar 16 and means that the output from the computing unit 926 “target temperature-temperature detection value” is a negative value.
  • the temperature increase command is a command to increase the temperature of the tie bar 16 and refers to a case where the "target temperature-temperature detection value" output from the calculator 926 is a positive value.
  • the correction calculation unit 927 outputs a command to the axial force command unit 910 to reduce the axial force set value.
  • the axial force offset amount Ns is output.
  • the axial force offset amount Ns may be a predetermined value, or may be a value that changes according to the temperature decrease amount (difference between the target temperature and the temperature detection value) of the tie bar 16 to which the temperature decrease is instructed. Good.
  • the axial force command unit 910 Upon receiving a command to reduce the axial force set value from the correction calculating unit 927, the axial force command unit 910 reduces the axial force set value of each tie bar 16. For example, assuming the offset amount Ns of the axial force to be reduced, the axial force set value Ncmd1-Ns of the first tie bar, the axial force set value Ncmd2-Ns of the second tie bar, the axial force set value Ncmd3-Ns of the third tie bar, The axial force setting value Ncmd4-Ns of the four tie bars is output to the axial force control unit 920 as a new axial force command.
  • the target temperature generated by the temperature command generation unit 921 increases. For example, assuming that a temperature offset amount corresponding to the axial force offset amount Ns is Ts, the temperature command generation unit 921 determines that the target temperature Tcmd1 + Ts of the first tie bar, the target temperature Tcmd2 + Ts of the second tie bar, the target temperature Tcmd3 + Ts of the third tie bar, The target temperature Tcmd4 + Ts of the four tie bars is output to the calculator 926 as a new temperature command.
  • the target temperature can be raised while maintaining the temperature difference between the target temperatures of the four tie bars 16. Since the temperature difference between the target temperatures of the four tie bars 16 can be maintained, the balance of the axial force, for example, the balance of the axial force in the vertical direction (the set of the first and third tie bars and the set of the second and fourth tie bars, ), Horizontal axial force balance (relationship between the first and second tie-bar sets and third and fourth tie-bar sets), and torsional axial force balance (the first and fourth tie-bar sets and the 2, the relationship with the set of the third tie bar) can be adjusted.
  • the balance of the axial force for example, the balance of the axial force in the vertical direction (the set of the first and third tie bars and the set of the second and fourth tie bars, ), Horizontal axial force balance (relationship between the first and second tie-bar sets and third and fourth tie-bar sets), and torsional axial force balance (the first and fourth tie-bar sets and the 2, the relationship with the set of the third tie bar) can be
  • the target temperature can be increased by the correction calculation unit 927, so that the amount of temperature decrease can be reduced and the time required for natural cooling can be reduced. It can be reduced and the responsiveness is improved.
  • the axial force offset amount Ns of the correction calculation unit 927 is increased, the temperature offset amount Ts is also increased, and the difference between the target temperature output from the calculator 926 and the detected temperature value is set to 0 or more in all the tie bars 16. Can be. Thereby, the axial force can be controlled by the temperature rise of the tie bar 16 by the heater 25 having good response, so that the response is further improved.
  • the correction operation unit 927 determines whether there is a command to lower the temperature of the tie bar 16 based on the output of the calculator 926. However, the correction calculation unit 927 determines whether there is a command to lower the temperature of the tie bar 16 based on the output of the calculator 925. You may. That is, when the “axial force setting value ⁇ axial force detection value” output from the computing unit 925 is positive, the correction arithmetic unit 927 determines that a command to lower the temperature of the tie bar 16 has been issued, and Decrease the set value.
  • FIG. 5 is a block diagram showing another example of the axial force control of the injection molding machine according to one embodiment.
  • the axial force control shown in FIG. 5 when the detected axial force value of any of the tie bars 16 is lower than the set axial force value (the detected temperature value of the tie bar 16 is higher than the target temperature), 4 shows a configuration for increasing (offsetting) a force detection value.
  • the axial force controller 920A includes a temperature command generator 921, a current command generator 922, a temperature calculator 923, an axial force calculator 924, calculators 925A and 926, and a correction calculator 927A. I have.
  • the axial force control unit 920A illustrated in FIG. 5 differs from the axial force control unit 920 illustrated in FIG. 4 in the configuration of the correction arithmetic unit 927A and the arithmetic unit 925A. Other configurations are the same, and redundant description will be omitted.
  • the correction operation unit 927A receives the difference between the target temperature of each tie bar 16 and the detected temperature value (Tcmd1-Tfb1,..., Tcmd4-Tfb4) output from the operation unit 926.
  • the correction calculation unit 927A determines whether or not there is a tie bar 16 for which a temperature decrease has been instructed, among the four tie bars 16. If there is a tie bar 16 for which a temperature decrease has been instructed, the correction calculation unit 927A outputs a command to increase (offset) the axial force detection value.
  • the axial force offset amount Ns is output.
  • the axial force offset amount Ns may be a predetermined value, or may be a value that changes according to the temperature decrease amount (difference between the target temperature and the temperature detection value) of the tie bar 16 to which the temperature decrease is instructed. Good.
  • the computing unit 925A receives the axial force setting values (Ncmd1 to Ncmd4) of each tie bar 16 from the axial force command unit 910, and receives the axial force detection values (Nfb1 to Nfb4) of each tie bar 16 from the axial force calculation unit 924.
  • the axial force offset amount Ns is input from the correction operation unit 927A, and the difference (Ncmd1-Nfb1-Ns,..., Ncmd4-Nfb4-Ns) between the axial force set value of each tie bar 16 and the offset axial force detection value is output. I do.
  • the correction calculation unit 927A determines whether or not there is a command to lower the temperature of the tie bar 16 based on the output of the calculator 926, it determines whether or not there is a command to lower the temperature of the tie bar 16 based on the output of the calculator 925A. You may. That is, when the “axial force set value ⁇ axial force detected value” output from the calculator 925 is positive, the correction arithmetic unit 927A determines that a command to decrease the temperature of the tie bar 16 has been issued, and The detection value may be increased.
  • FIG. 6 is a block diagram showing still another example of the axial force control of the injection molding machine according to one embodiment.
  • the axial force control shown in FIG. 6 when the detected axial force value of any of the tie bars 16 is lower than the set axial force value (when the detected temperature value of the tie bar 16 is higher than the target temperature), 3 shows a configuration for increasing (offsetting) the temperature.
  • the axial force controller 920B includes a temperature command generator 921, a current command generator 922, a temperature calculator 923, an axial force calculator 924, calculators 925, 926, 928B, and a correction calculator 927B.
  • the axial force control unit 920B illustrated in FIG. 6 is different from the axial force control unit 920 illustrated in FIG. 4 in the configuration of the correction arithmetic unit 927B and the arithmetic unit 928B. Other configurations are the same, and redundant description will be omitted.
  • the correction calculation unit 927B receives the difference between the target temperature of each tie bar 16 and the detected temperature value (Tcmd1-Tfb1,..., Tcmd4-Tfb4) output from the calculator 926.
  • the correction calculating unit 927B determines the presence or absence of the tie bar 16 of which the temperature reduction has been instructed, among the four tie bars 16. If there is a tie bar 16 for which a temperature decrease has been instructed, the correction calculation unit 927B outputs a command to increase the target temperature. For example, a temperature offset amount Ts is output.
  • the temperature offset amount Ts may be a predetermined value, or may be a value that changes according to the temperature decrease amount (difference between the target temperature and the temperature detection value) of the tie bar 16 to which the temperature decrease has been instructed. .
  • the computing unit 928B receives the target temperatures (Tcmd1 to Tcmd4) of the tie bars 16 from the temperature command generating unit 921, the temperature offset amount Ts from the correction computing unit 927B described later, and inputs a new target temperature ( Tcmd1 + Ts,..., Tcmd4 + Ts).
  • the new target temperature (Tcmd1 + Ts,..., Tcmd4 + Ts) is input to the calculator 926.
  • the responsiveness can be improved while adjusting the balance of the axial force, similarly to the axial force control shown in FIG.
  • the correction operation unit 927B determines whether or not there is a command to lower the temperature of the tie bar 16 based on the output of the calculator 926. However, the correction calculator 927B determines whether or not there is a command to lower the temperature of the tie bar 16 based on the output of the calculator 925. You may. That is, when the “axial force set value ⁇ axial force detected value” output from the arithmetic unit 925 is positive, the correction arithmetic unit 927B determines that a command to lower the temperature of the tie bar 16 has been issued, and determines the target temperature. May be raised.
  • FIG. 7 is a graph showing an example of the temperature of each tie bar and the mold clamping force in the axial force control of the injection molding machine according to one embodiment.
  • the horizontal axis represents the number of shots
  • the vertical axis represents the temperature
  • T1 represents the temperature of the first tie bar
  • T2 represents the temperature of the second tie bar
  • T3 represents the temperature of the third tie bar
  • T4 represents the temperature of the fourth tie bar.
  • Temperature In the lower graph, the horizontal axis represents the number of shots, and the vertical axis represents the detected value of the mold clamping force during mold clamping.
  • the vertical axis may be an average value of the detected values of the mold clamping force during the mold clamping process.
  • the vertical axis may be the maximum value of the mold clamping force during the mold clamping process.
  • the mold clamping force is the sum of the axial forces of the first to fourth tie bars (Nfb1 + Nfb2 + Nfb3 + Nfb4). That is, the axial force detector 28 also functions as a mold clamping force detector that detects the mold clamping force.
  • the axial force control of the injection molding machine is started (control ON). As shown in the upper graph, the tie bar 16 is heated or the axial force is controlled so as to maintain the temperature. In the example shown in FIG. 7, the temperatures T2 to T4 of the second to fourth tie bars are increased while maintaining the temperature T1 of the first tie bar. This improves the responsiveness of the axial force control while adjusting the balance of the axial force.
  • the instruction to decrease the temperature of the tie bar 16 is set to increase the target temperature, thereby reducing the amount of decrease in the temperature or increasing the temperature.
  • the amount of reduction is reduced or the temperature is raised, so that the axial force of the tie bar 16 is reduced. That is, the axial force is reduced by the amount of the temperature offset.
  • the actual value of the mold clamping force decreases.
  • the controller 90 controls the mold thickness adjusting mechanism 22 so that the actual value of the mold clamping force approaches the set value, thereby reducing the interval L.
  • the position of the toggle support 15 is advanced toward the fixed platen 12. Thereby, a desired mold clamping force can be recovered (mold clamping force correction).
  • the timing of the mold clamping force correction is performed, for example, after the end of the molding cycle and before the start of the next molding cycle.
  • the axial force command is changed during the axial force control (command change).
  • the temperatures T1, T3, and T4 of the first, third, and fourth tie bars are increased while maintaining the temperature T2 of the second tie bar.
  • the correction calculation unit 927 maintains the relative temperature difference between the four tie bars 16 and The temperature of 16 is lowered. Thereby, the temperature of the tie bar 16 can be reduced while maintaining the balance of the axial force. Further, as the temperature of the tie bars 16 decreases, the axial force of each tie bar 16 also increases, and the mold clamping force can be recovered.
  • the correction calculation unit 927 may perform control to lower the target temperature.
  • the temperature of the tie bar 16 is lowered while maintaining the relative temperature difference between the four tie bars 16. Thereby, the temperature of the tie bar 16 can be reduced while maintaining the balance of the axial force.
  • the above-described axial force control may be restarted.
  • the injection molding machine may include a heating range restricting unit that restricts a heating range of the tie bar 16 heated by the heater 25.
  • the heating range limiting means is constituted by, for example, coolers disposed on both sides of the tie bar 16 in the axial direction with the heater 25 interposed therebetween.
  • the cooler is composed of, for example, a water cooling jacket.
  • the cooler is not limited to the water cooling jacket, and may be configured by, for example, a cooling fin.
  • the cooling method of the cooling fins may be either a forced air cooling method using a cooling fan or a natural air cooling method.
  • the heating range limiting means By the heating range limiting means, the movement of the heat applied to the tie bar 16 by the heater 25 can be limited, the time required for the temperature of the entire mold clamping device 10 to be stabilized can be reduced, and the balance of the axial force can be stabilized. You can save time. Further, the thermal expansion range of the tie bar 16 can be managed, the amount of change in the effective length due to the temperature change of the tie bar 16 can be managed with high accuracy, and the axial force can be adjusted with high accuracy. Further, the heating range limiting means is not limited to the cooler, and may have any configuration as long as it can limit the movement of heat. That is, it is only necessary that heat insulation be provided between the heating range and the outside of the heating range.
  • the controller 90 controls the cooler so as to limit the heating range of the tie bar 16.
  • the controller 90 may control the cooler so that the actual value of the temperature of the cooling unit of the tie bar 16 becomes the set value.
  • the temperature of the cooling section of the tie bar 16 is detected by a temperature detector different from the temperature detector 27. This temperature detector is arranged near the cooler.
  • the controller 90 controls the temperature by the heater 25 in a state where the heating range limiting unit is operated. That is, the temperature control by the heating range limiting means and the heater 25 is performed simultaneously.
  • the injection molding machine has been described as being provided with the axial force detectors 28 on four tie bars, the invention is not limited to this. At least the tie bars 16 arranged above and below the mold device 30 and / or the tie bars 16 arranged right and left of the mold device 30 may be arranged. By providing the axial force detectors 28 on the tie bars 16 arranged above and below the mold device 30, the balance of the axial force in the vertical direction can be adjusted. By providing the axial force detectors 28 on the tie bars 16 arranged on the left and right sides of the mold device 30, the balance of the axial force in the horizontal direction can be adjusted. Further, the number of detectors can be reduced.
  • the injection molding machine has been described as adjusting the axial force of the tie bar 16 in a direction in which the tie bar 16 is heated from the steady temperature using the heater 25 controlled by the controller 90.
  • the controller 90 it is not limited to this. That is, a configuration in which a cooler controlled by the controller 90 is provided instead of the heater 25 and the axial force of the tie bar 16 is adjusted in a direction in which the tie bar 16 is cooled below the steady temperature may be employed.
  • the response speed when increasing the temperature of the tie bar 16 is lower than the response speed when decreasing the temperature.
  • the temperature of the tie bar 16 is raised, it cannot be raised above a predetermined temperature (for example, atmospheric temperature).
  • the correction calculation unit increases the axial force set value in all the tie bars 16.
  • the correction calculation unit may decrease the axial force detection value in all the tie bars 16.
  • the correction calculation unit may decrease the target temperature in all the tie bars 16.
  • the target temperature can be reduced by the correction calculation unit, so that the amount of temperature rise can be reduced and the balance of axial force can be adjusted. And the responsiveness is improved.
  • Mold Clamping Device 16 Tie Bar 22 Mold Thickness Adjusting Mechanism 25 Heater 27 Temperature Detector 28 Axial Force Detector 90 Controller 910 Axial Force Command Units 920, 920A, 920B Axial Force Control Unit 921 Temperature Command Generation Unit Part) 922 Current command generation unit 923 Temperature calculation unit 924 Axial force calculation units 925, 925A, 926, 928B Operators 927, 927A, 927B Correction calculation unit (axial force control command generation unit)

Abstract

The objective of the present invention is to provide an injection molding machine with which the time until an axial force balance is stabilized can be reduced. This injection molding machine comprises a mold clamping device including a plurality of tie bars, and a tie bar axial force adjusting device for adjusting the axial forces of the tie bars, wherein: the tie bar axial force adjusting device includes axial force detectors for detecting the axial forces of the tie bars, and an axial force control unit for controlling the temperatures of the tie bars on the basis of a deviation between the detected value and a set value of the axial force of each tie bar; the axial force detectors are provided on the plurality of tie bars; the axial force control unit includes an axial force control command generating unit for generating control commands for increasing the temperature of each tie bar if the detected value of the axial force of the tie bar is higher than the set value; and if the detected value of the axial force of each tie bar is lower than the set value, the axial force control command generating unit performs a deviation reduction process to reduce the deviation between the detected value and the set value, to reduce an amount of decrease in the temperature of the tie bar.

Description

射出成形機Injection molding machine
 本発明は、射出成形機に関する。 The present invention relates to an injection molding machine.
 射出成形機は、金型装置の型閉、型締、型開を行う型締装置を有する。型締装置は、型締力に応じて伸びる複数本のタイバーを有する。型締力は複数本のタイバーに分散してかかり、タイバーが伸びる。タイバーの伸びに抵抗する力を軸力という。 The injection molding machine has a mold clamping device that closes, clamps, and opens the mold device. The mold clamping device has a plurality of tie bars that extend according to the mold clamping force. The mold clamping force is applied to a plurality of tie bars and the tie bars are extended. The force that resists the extension of the tie bar is called the axial force.
 例えば、多数個取りの成形においては、金型を押す力のバランスが悪いと各成形品の厚みが異なってしまうことがある。これを解消するために、タイバーの温度を制御して金型を押す力のバランスを改善することが検討されている。具体的には、加熱器/冷却器でタイバーの温度を上昇/低下させるようにするものである(例えば、特許文献1参照)。 For example, in multi-cavity molding, if the balance of the pressing force of the mold is not good, the thickness of each molded product may be different. In order to solve this, it has been studied to control the temperature of the tie bar to improve the balance of the pressing force of the mold. Specifically, the temperature of a tie bar is raised / lowered by a heater / cooler (for example, see Patent Document 1).
 ここで、加熱と冷却の切り替えは、制御が不連続になり制御性が悪化する。このため、冷却器を用いずに加熱器のON/OFFのみでタイバー温度を変化させるようにするのが好ましい。 Here, switching between heating and cooling causes discontinuous control and poor controllability. Therefore, it is preferable to change the tie bar temperature only by turning on / off the heater without using a cooler.
特開2008-114513号公報JP 2008-114513 A
 しかしながら、加熱器を停止してタイバーの温度を下げる(自然冷却)方法では、所定温度まで低下させるのに時間がかかる。このため、歩留まりの低下や立上げの長時間化の問題がある。 However, in the method of stopping the heater and lowering the temperature of the tie bar (natural cooling), it takes time to lower the temperature to a predetermined temperature. For this reason, there is a problem of a decrease in yield and a prolonged startup.
 本発明は、上記課題に鑑みてなされたものであって、軸力のバランスが安定化するまでの時間を短縮できる、射出成形機の提供を主な目的とする。 The present invention has been made in view of the above problems, and has as its main object to provide an injection molding machine capable of shortening the time required for stabilizing the balance of axial force.
 上記課題を解決するため、本発明の一態様によれば、
 複数のタイバーを有する型締装置と、
 前記タイバーの軸力を調整するタイバー軸力調整装置と、を有する射出成形機であって、
 前記タイバー軸力調整装置は、
 前記タイバーの軸力を検出する軸力検出器と、
 前記タイバーの軸力の検出値と設定値との偏差に基づいて、前記タイバーの温度を制御する軸力制御部と、を有し、
 前記軸力検出器は、前記複数のタイバーに設けられ、
 前記軸力制御部は、前記タイバーの軸力の検出値が設定値よりも高い場合、前記タイバーの温度を上昇させる制御指令を生成する軸力制御指令生成部を有し、
 前記軸力制御指令生成部は、前記タイバーの軸力の検出値が設定値よりも低い場合、前記検出値と設定値との偏差を小さくする偏差低減処理を行い、前記タイバーの温度の低下量を小さくする、射出成形機が提供される。
In order to solve the above problems, according to one embodiment of the present invention,
A mold clamping device having a plurality of tie bars,
A tie bar axial force adjusting device for adjusting the axial force of the tie bar, and an injection molding machine,
The tie bar axial force adjusting device,
An axial force detector for detecting an axial force of the tie bar;
An axial force control unit that controls the temperature of the tie bar based on a deviation between a detected value and a set value of the axial force of the tie bar,
The axial force detector is provided on the plurality of tie bars,
The axial force control unit, when the detected value of the axial force of the tie bar is higher than a set value, has an axial force control command generation unit that generates a control command to increase the temperature of the tie bar,
When the detected value of the axial force of the tie bar is lower than a set value, the axial force control command generation unit performs a deviation reduction process to reduce a deviation between the detected value and the set value, and the amount of decrease in the temperature of the tie bar. , An injection molding machine is provided.
 本発明の一態様によれば、軸力のバランスが安定化するまでの時間を短縮できる、射出成形機が提供される。 According to one aspect of the present invention, there is provided an injection molding machine capable of shortening the time until the balance of the axial force is stabilized.
一実施形態による射出成形機の型開完了時の状態を示す図である。It is a figure showing the state at the time of the mold opening completion of the injection molding machine by one embodiment. 一実施形態による射出成形機の型締時の状態を示す図である。It is a figure showing the state at the time of mold closure of the injection molding machine by one embodiment. 一実施形態による射出成形機のタイバーの位置関係を示す図であって、可動プラテン側から固定プラテンを見た図である。FIG. 4 is a diagram illustrating a positional relationship of a tie bar of the injection molding machine according to one embodiment, and is a diagram when a fixed platen is viewed from a movable platen side. 一実施形態に係る射出成形機の軸力制御の一例を示すブロック図である。It is a block diagram showing an example of axial force control of an injection molding machine concerning one embodiment. 一実施形態に係る射出成形機の軸力制御の他の一例を示すブロック図である。It is a block diagram showing other examples of axial force control of the injection molding machine concerning one embodiment. 一実施形態に係る射出成形機の軸力制御のさらに他の一例を示すブロック図である。It is a block diagram showing yet another example of axial force control of an injection molding machine concerning one embodiment. 一実施形態に係る射出成形機の軸力制御における各タイバーの温度、型締力の一例を示すグラフである。4 is a graph showing an example of the temperature of each tie bar and the mold clamping force in the axial force control of the injection molding machine according to one embodiment.
 以下、本発明を実施するための形態について図面を参照して説明するが、各図面において、同一の又は対応する構成については同一の又は対応する符号を付して説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted.
 図1は、一実施形態による射出成形機の型開完了時の状態を示す図である。図2は、一実施形態による射出成形機の型締時の状態を示す図である。射出成形機は、フレームFr、型締装置10、操作装置70、表示装置80およびコントローラ90などを有する。 FIG. 1 is a diagram showing a state of the injection molding machine according to one embodiment at the time of completion of mold opening. FIG. 2 is a diagram showing a state of the injection molding machine according to one embodiment at the time of mold clamping. The injection molding machine includes a frame Fr, a mold clamping device 10, an operation device 70, a display device 80, a controller 90, and the like.
 コントローラ90は、CPU(Central Pocessing Unit)91と、メモリなどの記憶媒体92とを有する。コントローラ90は、記憶媒体92に記憶されたプログラムをCPU91に実行させることにより、型締装置10、操作装置70および表示装置80などを制御する。 The controller 90 has a CPU (Central Pocessing Unit) 91 and a storage medium 92 such as a memory. The controller 90 controls the mold clamping device 10, the operating device 70, the display device 80, and the like by causing the CPU 91 to execute the program stored in the storage medium 92.
 コントローラ90は、操作装置70や表示装置80と接続されている。操作装置70は、ユーザによる入力操作を受け付け、入力操作に応じた信号をコントローラ90に出力する。表示装置80は、コントローラ90による制御下で、操作装置70における入力操作に応じた表示画面を表示する。 The controller 90 is connected to the operation device 70 and the display device 80. The operation device 70 accepts an input operation by the user and outputs a signal corresponding to the input operation to the controller 90. The display device 80 displays a display screen according to an input operation on the operation device 70 under the control of the controller 90.
 表示画面は、射出成形機の設定などに用いられる。表示画面は、複数用意され、切換えて表示されたり、重ねて表示されたりする。ユーザは、表示装置80で表示される表示画面を見ながら、操作装置70を操作することにより射出成形機の設定(設定値の入力を含む)などを行う。 The display screen is used for setting the injection molding machine. A plurality of display screens are prepared and displayed by switching or overlapping. The user operates the operation device 70 while looking at the display screen displayed on the display device 80 to set the injection molding machine (including input of set values) and the like.
 操作装置70および表示装置80は、例えばタッチパネルで構成され、一体化されてよい。尚、本実施形態の操作装置70および表示装置80は、一体化されているが、独立に設けられてもよい。また、操作装置70は、複数設けられてもよい。 The operation device 70 and the display device 80 may be configured by, for example, a touch panel and may be integrated. Although the operation device 70 and the display device 80 of the present embodiment are integrated, they may be provided independently. Further, a plurality of operation devices 70 may be provided.
 型締装置10は、金型装置30の型閉、昇圧、型締、脱圧および型開を行う。型締装置10は、固定プラテン12、可動プラテン13、トグルサポート15、タイバー16、トグル機構20、および型締モータ21を有する。以下、型閉時の可動プラテン13の移動方向(図1、図2中右方向)を前方とし、型開時の可動プラテン13の移動方向(図1、図2中左方向)を後方として説明する。 The mold clamping device 10 performs mold closing, pressurization, mold clamping, depressurization, and mold opening of the mold device 30. The mold clamping device 10 includes a fixed platen 12, a movable platen 13, a toggle support 15, a tie bar 16, a toggle mechanism 20, and a mold clamping motor 21. Hereinafter, the moving direction of the movable platen 13 when the mold is closed (the right direction in FIGS. 1 and 2) is referred to as forward, and the moving direction of the movable platen 13 when the mold is opened (the left direction in FIGS. 1 and 2) is referred to as the rear. I do.
 固定プラテン12は、フレームFrに対し固定される。固定プラテン12における可動プラテン13との対向面に固定金型32が取り付けられる。 The fixed platen 12 is fixed to the frame Fr. A fixed mold 32 is attached to a surface of the fixed platen 12 facing the movable platen 13.
 可動プラテン13は、フレームFr上に敷設されるガイド(例えばガイドレール)17に沿って移動自在とされ、固定プラテン12に対し進退自在とされる。可動プラテン13における固定プラテン12との対向面に可動金型33が取り付けられる。 The movable platen 13 is movable along a guide (for example, a guide rail) 17 laid on the frame Fr, and is movable forward and backward with respect to the fixed platen 12. A movable mold 33 is attached to a surface of the movable platen 13 facing the fixed platen 12.
 固定プラテン12に対し可動プラテン13を進退させることにより、型閉、型締、型開が行われる。固定金型32と可動金型33とで金型装置30が構成される。 型 By moving the movable platen 13 with respect to the fixed platen 12, the mold is closed, the mold is closed, and the mold is opened. The mold device 30 is composed of the fixed mold 32 and the movable mold 33.
 トグルサポート15は、固定プラテン12と間隔をおいて連結され、フレームFr上に型開閉方向に移動自在に載置される。尚、トグルサポート15は、フレームFr上に敷設されるガイドに沿って移動自在とされてもよい。トグルサポート15のガイドは、可動プラテン13のガイド17と共通のものでもよい。 The toggle support 15 is connected to the fixed platen 12 at an interval, and is movably mounted on the frame Fr in the mold opening and closing direction. The toggle support 15 may be movable along a guide laid on the frame Fr. The guide of the toggle support 15 may be the same as the guide 17 of the movable platen 13.
 尚、本実施形態では、固定プラテン12がフレームFrに対し固定され、トグルサポート15がフレームFrに対し型開閉方向に移動自在とされるが、トグルサポート15がフレームFrに対し固定され、固定プラテン12がフレームFrに対し型開閉方向に移動自在とされてもよい。 In this embodiment, the fixed platen 12 is fixed to the frame Fr, and the toggle support 15 is movable with respect to the frame Fr in the mold opening and closing direction. However, the toggle support 15 is fixed to the frame Fr, and the fixed platen 12 is fixed to the frame Fr. 12 may be movable in the mold opening and closing direction with respect to the frame Fr.
 タイバー16は、固定プラテン12とトグルサポート15とを間隔をおいて連結する。タイバー16は、複数本用いられる。各タイバー16は、型開閉方向に平行とされ、型締力に応じて伸びる。 The tie bar 16 connects the fixed platen 12 and the toggle support 15 at an interval. A plurality of tie bars 16 are used. Each tie bar 16 is parallel to the mold opening / closing direction and extends in accordance with the mold clamping force.
 トグル機構20は、可動プラテン13とトグルサポート15との間に配設される。トグル機構20は、クロスヘッド20a、複数のリンク20b、20cなどで構成される。一方のリンク20bは可動プラテン13に揺動自在に取り付けられ、他方のリンク20cはトグルサポート15に揺動自在に取り付けられる。これらのリンク20b、20cは、ピンなどで屈伸自在に連結される。クロスヘッド20aを進退させることにより、複数のリンク20b、20cが屈伸され、トグルサポート15に対し可動プラテン13が進退される。 The toggle mechanism 20 is provided between the movable platen 13 and the toggle support 15. The toggle mechanism 20 includes a crosshead 20a, a plurality of links 20b, 20c, and the like. One link 20b is swingably attached to the movable platen 13, and the other link 20c is swingably attached to the toggle support 15. These links 20b and 20c are flexibly connected by pins or the like. By moving the crosshead 20a back and forth, the plurality of links 20b and 20c are bent and extended, and the movable platen 13 is moved forward and backward with respect to the toggle support 15.
 型締モータ21は、トグルサポート15に取り付けられる。型締モータ21は、クロスヘッド20aを進退させることにより、可動プラテン13を進退させる。型締モータ21とクロスヘッド20aとの間には、型締モータ21の回転運動を直線運動に変換してクロスヘッド20aに伝達する運動変換機構が設けられる。運動変換機構は例えばボールねじ機構で構成される。 The mold clamping motor 21 is attached to the toggle support 15. The mold clamping motor 21 moves the movable platen 13 forward and backward by moving the crosshead 20a forward and backward. A movement conversion mechanism is provided between the mold clamping motor 21 and the crosshead 20a for converting the rotational movement of the mold clamping motor 21 into a linear movement and transmitting the linear movement to the crosshead 20a. The motion conversion mechanism is composed of, for example, a ball screw mechanism.
 型締装置10は、コントローラ90による制御下で、型閉工程、昇圧工程、型締工程、脱圧工程、および型開工程などを行う。また、射出成形機は、コントローラ90による制御下で、計量工程、型閉工程、昇圧工程、型締工程、充填工程、保圧工程、冷却工程、脱圧工程、型開工程、および突き出し工程などを繰り返し行うことにより、成形品を繰り返し製造する。成形品を得るための一連の動作、例えば計量工程の開始から次の計量工程の開始までの動作を「ショット」または「成形サイクル」とも呼ぶ。また、1回のショットに要する時間を「成形サイクル時間」または「サイクル時間」とも呼ぶ。 The mold clamping device 10 performs a mold closing step, a pressure increasing step, a mold clamping step, a depressurizing step, a mold opening step, and the like under the control of the controller 90. In addition, under the control of the controller 90, the injection molding machine performs a weighing step, a mold closing step, a pressurizing step, a mold clamping step, a filling step, a pressure holding step, a cooling step, a depressurizing step, a mold opening step, an ejection step, and the like. Is repeated to produce a molded article repeatedly. A series of operations for obtaining a molded product, for example, operations from the start of a weighing process to the start of the next weighing process, are also called “shots” or “molding cycles”. The time required for one shot is also referred to as “molding cycle time” or “cycle time”.
 一回の成形サイクルは、例えば、計量工程、型閉工程、昇圧工程、型締工程、充填工程、保圧工程、冷却工程、脱圧工程、型開工程、および突き出し工程をこの順で有する。ここでの順番は、各工程の開始の順番である。充填工程、保圧工程、および冷却工程は、型締工程の間に行われる。脱圧工程の終了は型開工程の開始と一致する。 One molding cycle includes, for example, a measuring step, a mold closing step, a pressurizing step, a mold clamping step, a filling step, a pressure keeping step, a cooling step, a depressurizing step, a mold opening step, and an ejection step in this order. The order here is the order in which each step starts. The filling step, the pressure holding step, and the cooling step are performed during the mold clamping step. The end of the depressurization step coincides with the start of the mold opening step.
 計量工程では、図示しない射出装置の計量モータを駆動して図示しない射出装置のスクリュを設定回転速度で回転させ、スクリュの螺旋状の溝に沿って成形材料を前方に送る。これに伴い、成形材料が徐々に溶融される。液状の成形材料がスクリュの前方に送られ図示しない射出装置のシリンダの前部に蓄積されるにつれ、スクリュが後退させられる。 In the measuring step, a measuring motor of an injection device (not shown) is driven to rotate a screw of the injection device (not shown) at a set rotation speed, and the molding material is fed forward along a spiral groove of the screw. Along with this, the molding material is gradually melted. As the liquid molding material is fed to the front of the screw and accumulates at the front of the cylinder of an injection device (not shown), the screw is retracted.
 型閉工程では、型締モータ21を駆動してクロスヘッド20aを設定移動速度で型閉完了位置まで前進させることにより、可動プラテン13を前進させ、可動金型33を固定金型32にタッチさせる。 In the mold closing step, the movable platen 13 is moved forward by moving the cross head 20a to the mold closing completion position at the set moving speed by driving the mold clamping motor 21 to make the movable mold 33 touch the fixed mold 32. .
 昇圧工程では、型締モータ21をさらに駆動してクロスヘッド20aを型閉完了位置から型締位置までさらに前進させることで型締力を生じさせる。型締時に可動金型33と固定金型32との間に図示しないキャビティ空間が形成される。 In the step-up step, a mold clamping force is generated by further driving the mold clamping motor 21 to further advance the crosshead 20a from the mold closing position to the mold clamping position. At the time of mold clamping, a cavity space (not shown) is formed between the movable mold 33 and the fixed mold 32.
 型締工程では、昇圧工程で発生させた型締力が維持される。 で は In the mold clamping process, the mold clamping force generated in the pressure increasing process is maintained.
 充填工程では、射出装置の射出モータを駆動して射出装置のスクリュを設定移動速度で前進させ、スクリュの前方に蓄積された液状の成形材料を金型装置30内のキャビティ空間に充填させる。 In the filling step, the injection motor of the injection device is driven to advance the screw of the injection device at the set moving speed, and the liquid molding material accumulated in front of the screw is filled in the cavity space in the mold device 30.
 保圧工程では、図示しない射出装置の射出モータを駆動して射出装置のスクリュを前方に押し、スクリュの前端部における成形材料の圧力(以下、「保持圧力」とも呼ぶ。)を設定圧に保ち、射出装置のシリンダ内に残る成形材料を金型装置30に向けて押す。金型装置30内での冷却収縮による不足分の成形材料を補充できる。なお、充填工程と保圧工程とをまとめて射出工程とも呼ぶ。 In the pressure holding step, the injection motor of the injection device (not shown) is driven to push the screw of the injection device forward, and the pressure of the molding material at the front end of the screw (hereinafter also referred to as “holding pressure”) is maintained at a set pressure. Then, the molding material remaining in the cylinder of the injection device is pushed toward the mold device 30. Insufficient molding material due to cooling shrinkage in the mold apparatus 30 can be replenished. The filling step and the pressure holding step are collectively referred to as an injection step.
 保圧工程後、冷却工程が開始される。冷却工程では、キャビティ空間内の成形材料の固化が行われる。成形サイクル時間の短縮を目的として、冷却工程中に計量工程が行われてよい。 後 After the pressure holding step, the cooling step is started. In the cooling step, the molding material in the cavity space is solidified. A metering step may be performed during the cooling step for the purpose of shortening the molding cycle time.
 脱圧工程では、型締モータ21を駆動してクロスヘッド20aを型締位置から型開開始位置まで後退させることにより、可動プラテン13を後退させ、型締力を減少させる。型開開始位置と、型閉完了位置とは、同じ位置であってよい。 In the depressurizing step, the movable platen 13 is retracted by driving the mold clamping motor 21 to retract the crosshead 20a from the mold clamping position to the mold opening start position, thereby reducing the mold clamping force. The mold opening start position and the mold closing completion position may be the same position.
 型開工程では、型締モータ21を駆動してクロスヘッド20aを設定移動速度で型開開始位置から型開完了位置まで後退させることにより、可動プラテン13を後退させ、可動金型33を固定金型32から離間させる。 In the mold opening step, the movable platen 13 is retracted by moving the cross head 20a from the mold opening start position to the mold opening completion position at the set moving speed by driving the mold clamping motor 21 to move the movable mold 33 to the fixed mold. Separate from the mold 32.
 突き出し工程では、図示しないエジェクタ装置のエジェクタロッドを設定移動速度で待機位置から突き出し位置まで前進させることにより、金型装置30の図示しない可動部材を前進させ、成形品を突き出す。その後、エジェクタロッドを設定移動速度で後退させ、可動部材を元の待機位置まで後退させる。 In the ejecting step, the ejector rod of the ejector device (not shown) is advanced from the standby position to the ejecting position at the set moving speed, whereby the movable member (not shown) of the mold device 30 is advanced to eject the molded product. Thereafter, the ejector rod is retracted at the set moving speed, and the movable member is retracted to the original standby position.
 金型装置30の交換や金型装置30の温度変化などにより金型装置30の厚さが変化した場合、型締時に所定の型締力が得られるように、型厚調整が行われる。型厚調整では、例えば可動金型33が固定金型32にタッチする型タッチの時点でトグル機構20のリンク角度が所定の角度になるように、固定プラテン12とトグルサポート15との間隔Lを調整する。 (4) When the thickness of the mold device 30 changes due to replacement of the mold device 30 or a change in the temperature of the mold device 30, mold thickness adjustment is performed so that a predetermined mold clamping force is obtained at the time of mold clamping. In the mold thickness adjustment, for example, the distance L between the fixed platen 12 and the toggle support 15 is set so that the link angle of the toggle mechanism 20 becomes a predetermined angle at the time of mold touch when the movable mold 33 touches the fixed mold 32. adjust.
 型締装置10は、型厚調整機構22を有する。型厚調整機構22は、固定プラテン12とトグルサポート15との間隔Lを調整することで、型厚調整を行う。なお、型厚調整のタイミングは、例えば、成形サイクル終了後、次の成形サイクル開始前までの間に行われる。型厚調整機構22は、例えば、タイバー16の後端部に形成されるねじ軸22aと、トグルサポート15に回転自在に且つ進退不能に保持されるねじナット22bと、ねじ軸22aに螺合するねじナット22bを回転させる型厚調整モータ22cとを有する。 The mold clamping device 10 has a mold thickness adjusting mechanism 22. The mold thickness adjusting mechanism 22 adjusts the mold thickness by adjusting the distance L between the fixed platen 12 and the toggle support 15. The timing of the mold thickness adjustment is performed, for example, after the end of the molding cycle and before the start of the next molding cycle. The mold thickness adjusting mechanism 22 is screwed to the screw shaft 22a formed at, for example, the rear end of the tie bar 16, a screw nut 22b rotatably held by the toggle support 15 and unable to advance and retreat. A mold thickness adjusting motor 22c for rotating the screw nut 22b.
 ねじ軸22aおよびねじナット22bは、タイバー16ごとに設けられる。型厚調整モータ22cの回転駆動力は、回転駆動力伝達部22eを介して複数のねじナット22bに伝達されてよい。複数のねじナット22bを同期して回転できる。尚、回転駆動力伝達部22eの伝達経路を変更することで、複数のねじナット22bを個別に回転することも可能である。 The screw shaft 22a and the screw nut 22b are provided for each tie bar 16. The rotational driving force of the mold thickness adjusting motor 22c may be transmitted to the plurality of screw nuts 22b via the rotational driving force transmitting unit 22e. The plurality of screw nuts 22b can be rotated synchronously. It is also possible to individually rotate the plurality of screw nuts 22b by changing the transmission path of the rotational driving force transmission unit 22e.
 回転駆動力伝達部22eは、例えば歯車などで構成される。この場合、各ねじナット22bの外周に受動歯車が形成され、型厚調整モータ22cの出力軸には駆動歯車が取付けられ、複数の受動歯車および駆動歯車と噛み合う中間歯車がトグルサポート15の中央部に回転自在に保持される。尚、回転駆動力伝達部22eは、歯車の代わりに、ベルトやプーリなどで構成されてもよい。 Rotation drive force transmission part 22e is constituted by a gear, for example. In this case, a passive gear is formed on the outer periphery of each screw nut 22b, a driving gear is mounted on the output shaft of the mold thickness adjusting motor 22c, and a plurality of passive gears and an intermediate gear meshing with the driving gear are provided at the central portion of the toggle support 15. Is held rotatably. Note that the rotational driving force transmission unit 22e may be configured by a belt, a pulley, or the like, instead of the gear.
 型厚調整機構22の動作は、コントローラ90によって制御される。コントローラ90は、型厚調整モータ22cを駆動して、ねじナット22bを回転させる。その結果、トグルサポート15のタイバー16に対する位置が調整され、固定プラテン12とトグルサポート15との間隔Lが調整される。尚、複数の型厚調整機構が組合わせて用いられてもよい。 The operation of the mold thickness adjusting mechanism 22 is controlled by the controller 90. The controller 90 drives the mold thickness adjusting motor 22c to rotate the screw nut 22b. As a result, the position of the toggle support 15 with respect to the tie bar 16 is adjusted, and the distance L between the fixed platen 12 and the toggle support 15 is adjusted. Note that a plurality of mold thickness adjusting mechanisms may be used in combination.
 間隔Lは、型厚調整モータエンコーダ22dを用いて検出する。型厚調整モータエンコーダ22dは、型厚調整モータ22cの回転量や回転方向を検出し、その検出結果を示す信号をコントローラ90に送る。型厚調整モータエンコーダ22dの検出結果は、トグルサポート15の位置や間隔Lの監視や制御に用いられる。尚、トグルサポート15の位置を検出するトグルサポート位置検出器、および間隔Lを検出する間隔検出器は、型厚調整モータエンコーダ22dに限定されず、一般的なものを使用できる。 The interval L is detected using the mold thickness adjustment motor encoder 22d. The mold thickness adjustment motor encoder 22d detects the amount and direction of rotation of the mold thickness adjustment motor 22c, and sends a signal indicating the detection result to the controller 90. The detection result of the mold thickness adjusting motor encoder 22d is used for monitoring and controlling the position and the interval L of the toggle support 15. Note that the toggle support position detector for detecting the position of the toggle support 15 and the interval detector for detecting the interval L are not limited to the mold thickness adjustment motor encoder 22d, but general ones can be used.
 尚、本実施形態の型締装置10は、可動プラテン13を移動させる駆動源として、型締モータ21を有するが、型締モータ21の代わりに、油圧シリンダを有してもよい。また、型締装置10は、型開閉用にリニアモータを有し、型締用に電磁石を有してもよい。 The mold clamping device 10 of the present embodiment has the mold clamping motor 21 as a drive source for moving the movable platen 13, but may have a hydraulic cylinder instead of the mold clamping motor 21. Further, the mold clamping device 10 may have a linear motor for opening and closing the mold, and may have an electromagnet for clamping.
 図3は、一実施形態による射出成形機のタイバーの位置関係を示す図であって、可動プラテン側から固定プラテンを見た図である。射出成形機は、タイバー16を4本有する。4本のタイバー16は、型開閉方向視において、水平線L1を中心に上下対称に配設され、且つ、鉛直線L2を中心に左右対称に配設される。水平線L1よりも上側を天側、水平線L1よりも下側を地側と呼ぶ。また、鉛直線L2よりも操作装置70側を操作側、鉛直線L2よりも操作装置70とは反対側を反操作側と呼ぶ。 FIG. 3 is a view showing a positional relationship of a tie bar of the injection molding machine according to one embodiment, and is a view of a fixed platen viewed from a movable platen side. The injection molding machine has four tie bars 16. The four tie bars 16 are vertically symmetrically arranged about the horizontal line L1 and symmetrically arranged about the vertical line L2 in the mold opening and closing direction. The upper side of the horizontal line L1 is called a top side, and the lower side of the horizontal line L1 is called a ground side. The operation device 70 side with respect to the vertical line L2 is referred to as an operation side, and the side opposite to the operation device 70 with respect to the vertical line L2 is referred to as a non-operation side.
 型締力は4本のタイバー16に分散してかかり、各タイバー16が伸びる。各タイバー16の伸びに抵抗する力を軸力という。4本のタイバー16の有効長に差がある場合、有効長の短いタイバー16と、有効長の長いタイバー16とでは軸力に差が生じる。ここで、タイバー16の有効長とは、タイバー16によって連結される固定プラテン12とトグルサポート15との間隔をいい、例えば型締力が作用していない状態で計測される。 The mold clamping force is distributed and applied to the four tie bars 16, and each tie bar 16 extends. The force that resists the elongation of each tie bar 16 is called the axial force. When there is a difference between the effective lengths of the four tie bars 16, there is a difference in axial force between the tie bar 16 having a short effective length and the tie bar 16 having a long effective length. Here, the effective length of the tie bar 16 refers to an interval between the fixed platen 12 and the toggle support 15 connected by the tie bar 16, and is measured, for example, in a state where no mold clamping force is applied.
 タイバー16の有効長を調整することで、軸力のバランスを調整することができる。軸力のバランスは、例えば型締時に固定金型32と可動金型33との面圧が目標の分布になるように設定される。目標の分布は、均一分布、不均一分布のいずれでもよく、状況に応じて設定される。成形不良を低減することができる。 軸 By adjusting the effective length of the tie bar 16, the balance of the axial force can be adjusted. The balance of the axial force is set, for example, so that the surface pressure of the fixed mold 32 and the movable mold 33 has a target distribution at the time of mold clamping. The target distribution may be either a uniform distribution or a non-uniform distribution, and is set according to the situation. Molding defects can be reduced.
 タイバー16は金属材料で形成されるため、タイバー16の有効長はタイバー16の温度により変化する。タイバー16の温度が高いほど、タイバー16の有効長が長くなる。タイバー16の温度を調節することで、タイバー16の有効長を調整することができ、軸力のバランスを調整することができる。 Since the tie bar 16 is formed of a metal material, the effective length of the tie bar 16 changes according to the temperature of the tie bar 16. As the temperature of the tie bar 16 increases, the effective length of the tie bar 16 increases. By adjusting the temperature of the tie bar 16, the effective length of the tie bar 16 can be adjusted, and the balance of the axial force can be adjusted.
 そこで、各タイバー16には、図1および図2に示すように、加熱器25、温度検出器27、軸力検出器28などが取り付けられる。加熱器25、温度検出器27、軸力検出器28などは、型締装置10に備えられる。 Therefore, a heater 25, a temperature detector 27, an axial force detector 28, and the like are attached to each tie bar 16, as shown in FIGS. The heater 25, the temperature detector 27, the axial force detector 28, and the like are provided in the mold clamping device 10.
 加熱器25は、タイバー16の有効長を調整するため、タイバー16を加熱する。タイバー16の加熱器25によって加熱する部分を加熱部と呼ぶ。加熱器25は、例えばヒータなどの電熱器で構成される。尚、加熱器25は、電熱器に限定されず、例えば温水ジャケットなどで構成されてもよい。 The heater 25 heats the tie bar 16 in order to adjust the effective length of the tie bar 16. The portion of the tie bar 16 heated by the heater 25 is called a heating unit. The heater 25 is composed of, for example, an electric heater such as a heater. In addition, the heater 25 is not limited to an electric heater, and may be configured with, for example, a warm water jacket.
 温度検出器27は、加熱器25によって加熱され、自然冷却により冷却されるタイバー16の温度を検出する。例えば、温度検出器27は、加熱器25の付近に配設され、タイバーの加熱部の温度を検出する。温度検出器27は、検出結果をコントローラ90に出力する。 The temperature detector 27 detects the temperature of the tie bar 16 heated by the heater 25 and cooled by natural cooling. For example, the temperature detector 27 is disposed near the heater 25 and detects the temperature of the heating part of the tie bar. The temperature detector 27 outputs a detection result to the controller 90.
 コントローラ90は、タイバー16の加熱部の温度の実績値が設定値になるように加熱器25を制御する。制御は、フィードバック制御、フィードフォワード制御のいずれでもよい。 The controller 90 controls the heater 25 so that the actual value of the temperature of the heating section of the tie bar 16 becomes a set value. The control may be either feedback control or feedforward control.
 尚、本実施形態のコントローラ90は、加熱器25を制御する。 The controller 90 of the present embodiment controls the heater 25.
 軸力検出器28は、加熱器25によって加熱され、自然冷却により冷却されるタイバー16の軸力を検出する。軸力検出器28は、例えば歪みゲージ式であって、タイバー16の歪みを検出することによってタイバー16の軸力を検出する。 The axial force detector 28 detects the axial force of the tie bar 16 heated by the heater 25 and cooled by natural cooling. The axial force detector 28 is, for example, a strain gauge type, and detects the axial force of the tie bar 16 by detecting the strain of the tie bar 16.
 尚、上記実施形態の軸力検出器28は、歪みゲージ式であるが、圧電式、容量式、油圧式、電磁式などでもよい。 The axial force detector 28 of the above embodiment is of a strain gauge type, but may be of a piezoelectric type, a capacitive type, a hydraulic type, an electromagnetic type, or the like.
 軸力検出器28は、検出結果をコントローラ90に出力する。コントローラ90は、軸力検出器28によって検出される軸力の実績値が設定値になるように、加熱器25により加熱されるタイバー16の加熱温度を設定してよい。 The axial force detector 28 outputs the detection result to the controller 90. The controller 90 may set the heating temperature of the tie bar 16 heated by the heater 25 so that the actual value of the axial force detected by the axial force detector 28 becomes a set value.
 ここで、一実施形態による射出成形機において、タイバー16の温度を上昇させる際には、加熱器25を動作させることにより、温度を上昇させる。一方、タイバー16の温度を低下させる際には、加熱器25を停止させ、自然冷却(自然放熱及び他の部材への熱伝導)により、温度を低下させる。このように、加熱器25のON/OFFのみでタイバー16の温度を変化させることができるので、制御が不連続になることを防止して、制御性が悪化することを防止することができる。 Here, in the injection molding machine according to one embodiment, when increasing the temperature of the tie bar 16, the heater 25 is operated to increase the temperature. On the other hand, when lowering the temperature of the tie bar 16, the heater 25 is stopped, and the temperature is lowered by natural cooling (natural heat radiation and heat conduction to other members). As described above, since the temperature of the tie bar 16 can be changed only by turning on / off the heater 25, the control can be prevented from being discontinuous, and the controllability can be prevented from deteriorating.
 ところで、このような構成のため、タイバー16の温度を低下させる際の応答速度は、温度を上昇させる際の応答速度と比較して、遅くなっている。また、タイバー16の温度を低下させる際、所定の温度(例えば、大気温度、等)以下には下げることができない。 By the way, due to such a configuration, the response speed when lowering the temperature of the tie bar 16 is slower than the response speed when increasing the temperature. Further, when lowering the temperature of the tie bar 16, the temperature cannot be reduced below a predetermined temperature (for example, the atmospheric temperature).
 次に、一実施形態に係る射出成形機の軸力制御について図4を用いて説明する。図4は、一実施形態に係る射出成形機の軸力制御の一例を示すブロック図である。 Next, the axial force control of the injection molding machine according to one embodiment will be described with reference to FIG. FIG. 4 is a block diagram illustrating an example of axial force control of the injection molding machine according to one embodiment.
 軸力指令部910は、例えば、コントローラ90に設けられている。軸力指令部910は、各タイバー16の軸力指令(軸力設定値)を軸力制御部920に指令する。図3に示す4本のタイバー16について、左上を第1タイバー、左下を第2タイバー、右上を第3タイバー、右下を第4タイバーとする。作業者は、操作装置70を介して、コントローラ90に第1~第4タイバーの軸力設定値をそれぞれ入力する。これにより、軸力指令部910は、第1タイバーの軸力設定値Ncmd1、第2タイバーの軸力設定値Ncmd2、第3タイバーの軸力設定値Ncmd3、第4タイバーの軸力設定値Ncmd4を軸力指令として、軸力制御部920に出力する。 The axial force command unit 910 is provided in the controller 90, for example. The axial force command unit 910 instructs an axial force command (axial force set value) of each tie bar 16 to the axial force control unit 920. Regarding the four tie bars 16 shown in FIG. 3, the upper left is the first tie bar, the lower left is the second tie bar, the upper right is the third tie bar, and the lower right is the fourth tie bar. The operator inputs the axial force setting values of the first to fourth tie bars to the controller 90 via the operation device 70. Accordingly, the axial force command unit 910 calculates the axial force set value Ncmd1, the second tie bar axial force set value Ncmd2, the axial force set value Ncmd3 of the third tie bar, and the axial force set value Ncmd4 of the fourth tie bar. It is output to the axial force control unit 920 as an axial force command.
 軸力制御部920は、例えば、コントローラ90に設けられている。軸力制御部920は、軸力指令部910の軸力設定値(Ncmd1~Ncmd4)、軸力検出器28で検出された軸力検出値(後述するNfb1~Nfb4)に基づいて、加熱器25を制御することにより、タイバー16の温度を制御する。 The axial force control unit 920 is provided in the controller 90, for example. The axial force control unit 920 determines the heater 25 based on the axial force set values (Ncmd1 to Ncmd4) of the axial force command unit 910 and the axial force detection values (Nfb1 to Nfb4 described later) detected by the axial force detector 28. To control the temperature of the tie bar 16.
 軸力制御部920は、温度指令生成部921と、電流指令生成部922と、温度算出部923と、軸力算出部924と、演算器925,926と、補正演算部927と、を備えている。 The axial force controller 920 includes a temperature command generator 921, a current command generator 922, a temperature calculator 923, an axial force calculator 924, calculators 925, 926, and a correction calculator 927. I have.
 演算器925は、軸力指令部910から各タイバー16の軸力設定値(Ncmd1~Ncmd4)が入力され、後述する軸力算出部924から各タイバー16の軸力検出値(Nfb1~Nfb4)が入力され、各タイバー16の軸力設定値と軸力検出値の差(Ncmd1-Nfb1、…、Ncmd4-Nfb4)を出力する。 The computing unit 925 receives the axial force setting values (Ncmd1 to Ncmd4) of each tie bar 16 from the axial force command unit 910, and outputs the axial force detection values (Nfb1 to Nfb4) of each tie bar 16 from the axial force calculating unit 924 described later. Then, the difference (Ncmd1-Nfb1,..., Ncmd4-Nfb4) between the axial force setting value and the axial force detection value of each tie bar 16 is output.
 温度指令生成部921は、演算器925の出力値に基づいて、軸力設定値と軸力検出値の偏差が小さくなるように、各タイバー16の温度変更量を算出する(偏差低減処理)。例えば、温度指令生成部921は、タイバー16の温度上昇と軸力上昇との関係を示すテーブルを有している。なお、テーブルは、タイバー16の温度が上昇するほど軸力は減少するように構成されている。温度指令生成部921は、例えば、テーブルに基づいて軸力設定値と軸力検出値の差分から各タイバー16の温度変更量を算出する。即ち、軸力検出値が軸力設定値よりも低い場合、タイバー16の温度を低下させる温度変更量が算出される。一方、軸力検出値が軸力設定値よりも高い場合、タイバー16の温度を上昇させる温度変更量が算出される。 The temperature command generation unit 921 calculates the temperature change amount of each tie bar 16 based on the output value of the calculator 925 such that the difference between the axial force set value and the detected axial force is small (deviation reduction processing). For example, the temperature command generator 921 has a table indicating the relationship between the temperature rise of the tie bar 16 and the axial force rise. The table is configured such that the axial force decreases as the temperature of the tie bar 16 increases. The temperature command generation unit 921 calculates the temperature change amount of each tie bar 16 from the difference between the axial force setting value and the axial force detection value based on a table, for example. That is, when the detected axial force value is lower than the set axial force value, a temperature change amount for lowering the temperature of the tie bar 16 is calculated. On the other hand, when the detected axial force is higher than the set axial force, a temperature change amount for increasing the temperature of the tie bar 16 is calculated.
 また、温度指令生成部921は、各タイバー16の温度変更量と現在の各タイバー16の目標温度とに基づいて、各タイバー16の新たな目標温度を生成する。温度指令生成部921は、生成された目標温度(第1タイバーの目標温度Tcmd1、第2タイバーの目標温度Tcmd2、第3タイバーの目標温度Tcmd3、第4タイバーの目標温度Tcmd4)を温度指令として演算器926に出力する。 (4) The temperature command generation unit 921 generates a new target temperature for each tie bar 16 based on the temperature change amount of each tie bar 16 and the current target temperature of each tie bar 16. The temperature command generation unit 921 calculates the generated target temperature (the target temperature Tcmd1 of the first tie bar, the target temperature Tcmd2 of the second tie bar, the target temperature Tcmd3 of the third tie bar, and the target temperature Tcmd4 of the fourth tie bar) as a temperature command. Output to the output unit 926.
 演算器926は、温度指令生成部921から各タイバー16の目標温度(Tcmd1~Tcmd4)が入力され、後述する温度算出部923から各タイバー16の温度検出値(Tfb1~Tfb4)が入力され、各タイバー16の目標温度と温度検出値の差(Tcmd1-Tfb1、…、Tcmd4-Tfb4)を出力する。 The computing unit 926 receives the target temperatures (Tcmd1 to Tcmd4) of the tie bars 16 from the temperature command generation unit 921, and the temperature detection values (Tfb1 to Tfb4) of the tie bars 16 from the temperature calculation unit 923 described later. The difference between the target temperature of the tie bar 16 and the detected temperature value (Tcmd1-Tfb1,..., Tcmd4-Tfb4) is output.
 電流指令生成部922は、演算器926の出力値に基づいて、目標温度と温度検出値の偏差が小さくなるように、各タイバー16の加熱器25に対応するリレー25bに制御信号を出力する。リレー25bは、電流指令生成部922の制御信号に基づいて、加熱器電源25aから加熱器25への電力供給を制御する。ここで、温度検出値が目標温度よりも高い場合、電流指令生成部922は、加熱器25をOFFする制御信号を出力する。また、温度検出値が目標温度よりも低い場合、電流指令生成部922は、加熱器25をONする制御信号を出力する。なお、加熱器25をONする際、目標温度と温度検出値の差に応じて、制御信号のデューティ比を変更して加熱器電源25aから加熱器25に供給する電力を制御してもよい。加熱器電源25aから加熱器25への電力供給されることにより、タイバー16は加熱される。 The current command generator 922 outputs a control signal to the relay 25b corresponding to the heater 25 of each tie bar 16 based on the output value of the calculator 926 so that the deviation between the target temperature and the detected temperature value is reduced. Relay 25b controls power supply from heater power supply 25a to heater 25 based on a control signal from current command generator 922. Here, when the detected temperature value is higher than the target temperature, the current command generator 922 outputs a control signal for turning off the heater 25. When the detected temperature value is lower than the target temperature, current command generator 922 outputs a control signal for turning on heater 25. When the heater 25 is turned on, the power supplied from the heater power supply 25a to the heater 25 may be controlled by changing the duty ratio of the control signal according to the difference between the target temperature and the detected temperature value. The tie bar 16 is heated by supplying power from the heater power supply 25a to the heater 25.
 温度算出部923は、温度検出器27の検出信号に基づいて、タイバー16の温度を算出する。なお、温度検出器27は各タイバー16にそれぞれ設けられている。算出されたタイバー16の温度(第1タイバーの温度検出値Tfb1、第2タイバーの温度検出値Tfb2、第3タイバーの温度検出値Tfb3、第4タイバーの温度検出値Tfb4)は、演算器926に出力される。 The temperature calculation unit 923 calculates the temperature of the tie bar 16 based on the detection signal of the temperature detector 27. In addition, the temperature detector 27 is provided in each tie bar 16 respectively. The calculated temperature of the tie bar 16 (the temperature detection value Tfb1 of the first tie bar, the temperature detection value Tfb2 of the second tie bar, the temperature detection value Tfb3 of the third tie bar, and the temperature detection value Tfb4 of the fourth tie bar) are sent to the calculator 926. Is output.
 軸力算出部924は、軸力検出器28の検出信号に基づいて、タイバー16の軸力を算出する。なお、軸力検出器28は各タイバー16にそれぞれ設けられている。算出されたタイバー16の軸力(第1タイバーの軸力検出値Nfb1、第2タイバーの軸力検出値Nfb2、第3タイバーの軸力検出値Nfb3、第4タイバーの軸力検出値Nfb4)は、演算器925に出力される。 The axial force calculator 924 calculates the axial force of the tie bar 16 based on the detection signal of the axial force detector 28. The axial force detector 28 is provided on each tie bar 16. The calculated axial force of the tie bar 16 (the axial force detected value Nfb1, the axial force detected value Nfb2 of the second tie bar, the axial force detected value Nfb3 of the third tie bar, and the axial force detected value Nfb4 of the fourth tie bar) is Are output to the arithmetic unit 925.
 補正演算部927は、演算器926から出力された各タイバー16の目標温度と温度検出値の差(Tcmd1-Tfb1、…、Tcmd4-Tfb4)が入力される。補正演算部927は、4本のタイバー16のうち、温度低下が指令されたタイバー16の有無を判定する。ここで、温度低下の指令とは、タイバー16の温度を低下させる指令であり、演算器926からの出力である「目標温度-温度検出値」が負の値の場合をいう。また、温度上昇の指令とは、タイバー16の温度を上昇させる指令であり、演算器926からの出力である「目標温度-温度検出値」が正の値の場合をいう。 The correction calculation unit 927 receives the difference between the target temperature of each tie bar 16 and the detected temperature value (Tcmd1−Tfb1,..., Tcmd4−Tfb4) output from the calculator 926. The correction calculation unit 927 determines the presence or absence of the tie bar 16 of which the temperature decrease has been instructed, among the four tie bars 16. Here, the instruction for lowering the temperature is an instruction for lowering the temperature of the tie bar 16 and means that the output from the computing unit 926 “target temperature-temperature detection value” is a negative value. The temperature increase command is a command to increase the temperature of the tie bar 16 and refers to a case where the "target temperature-temperature detection value" output from the calculator 926 is a positive value.
 温度低下が指令されたタイバー16がある場合、補正演算部927は、軸力指令部910に軸力設定値を低減させる指令を出力する。例えば、軸力オフセット量Nsを出力する。なお、軸力オフセット量Nsは、所定の値であってもよく、温度低下が指令されたタイバー16の温度低下量(目標温度と温度検出値の差)に応じて変化する値であってもよい。 If there is a tie bar 16 for which a temperature decrease has been instructed, the correction calculation unit 927 outputs a command to the axial force command unit 910 to reduce the axial force set value. For example, the axial force offset amount Ns is output. The axial force offset amount Ns may be a predetermined value, or may be a value that changes according to the temperature decrease amount (difference between the target temperature and the temperature detection value) of the tie bar 16 to which the temperature decrease is instructed. Good.
 軸力指令部910は、補正演算部927から軸力設定値を低減させる指令を受けると、各タイバー16の軸力設定値を低減させる。例えば、低減させる軸力のオフセット量Nsとすると、第1タイバーの軸力設定値Ncmd1-Ns、第2タイバーの軸力設定値Ncmd2-Ns、第3タイバーの軸力設定値Ncmd3-Ns、第4タイバーの軸力設定値Ncmd4-Nsを新たな軸力指令として、軸力制御部920に出力する。 Upon receiving a command to reduce the axial force set value from the correction calculating unit 927, the axial force command unit 910 reduces the axial force set value of each tie bar 16. For example, assuming the offset amount Ns of the axial force to be reduced, the axial force set value Ncmd1-Ns of the first tie bar, the axial force set value Ncmd2-Ns of the second tie bar, the axial force set value Ncmd3-Ns of the third tie bar, The axial force setting value Ncmd4-Ns of the four tie bars is output to the axial force control unit 920 as a new axial force command.
 このように、各タイバー16の軸力設定値を低減させることにより、温度指令生成部921が生成する目標温度が高くなる。例えば、軸力オフセット量Nsに相当する温度オフセット量をTsとすると、温度指令生成部921は、第1タイバーの目標温度Tcmd1+Ts、第2タイバーの目標温度Tcmd2+Ts、第3タイバーの目標温度Tcmd3+Ts、第4タイバーの目標温度Tcmd4+Tsを新たな温度指令として、演算器926に出力する。 目標 By reducing the axial force set value of each tie bar 16 in this way, the target temperature generated by the temperature command generation unit 921 increases. For example, assuming that a temperature offset amount corresponding to the axial force offset amount Ns is Ts, the temperature command generation unit 921 determines that the target temperature Tcmd1 + Ts of the first tie bar, the target temperature Tcmd2 + Ts of the second tie bar, the target temperature Tcmd3 + Ts of the third tie bar, The target temperature Tcmd4 + Ts of the four tie bars is output to the calculator 926 as a new temperature command.
 これにより、4つのタイバー16の目標温度の温度差を維持しつつ、目標温度を上昇させることができる。4つのタイバー16の目標温度の温度差を維持することができるので、軸力のバランス、例えば、垂直方向の軸力バランス(第1,第3タイバーの組と第2,第4タイバーの組との関係)、水平方向の軸力バランス(第1,第2タイバーの組と第3,第4タイバーの組との関係)、ねじれ方向の軸力バランス(第1,第4タイバーの組と第2,第3タイバーの組との関係)を調整することができる。 に よ り Thereby, the target temperature can be raised while maintaining the temperature difference between the target temperatures of the four tie bars 16. Since the temperature difference between the target temperatures of the four tie bars 16 can be maintained, the balance of the axial force, for example, the balance of the axial force in the vertical direction (the set of the first and third tie bars and the set of the second and fourth tie bars, ), Horizontal axial force balance (relationship between the first and second tie-bar sets and third and fourth tie-bar sets), and torsional axial force balance (the first and fourth tie-bar sets and the 2, the relationship with the set of the third tie bar) can be adjusted.
 また、温度検出値が目標温度よりも高くなっているタイバー16について、補正演算部927により目標温度を上昇させることができるので、温度の低下量を小さくすることができ、自然冷却に要する時間を削減することができ、応答性が向上する。なお、補正演算部927の軸力オフセット量Nsを大きくすると、温度オフセット量Tsも大きくなり、演算器926から出力される目標温度と温度検出値の差を全てのタイバー16において0以上とすることができる。これにより、応答性の良い加熱器25によるタイバー16の温度上昇によって、軸力制御をすることができるので応答性がさらに向上する。 Further, for the tie bar 16 whose temperature detection value is higher than the target temperature, the target temperature can be increased by the correction calculation unit 927, so that the amount of temperature decrease can be reduced and the time required for natural cooling can be reduced. It can be reduced and the responsiveness is improved. When the axial force offset amount Ns of the correction calculation unit 927 is increased, the temperature offset amount Ts is also increased, and the difference between the target temperature output from the calculator 926 and the detected temperature value is set to 0 or more in all the tie bars 16. Can be. Thereby, the axial force can be controlled by the temperature rise of the tie bar 16 by the heater 25 having good response, so that the response is further improved.
 なお、補正演算部927は、演算器926の出力に基づいてタイバー16の温度低下の指令の有無を判定したが、演算器925の出力に基づいてタイバー16の温度低下の指令の有無を判定してもよい。即ち、補正演算部927は、演算器925からの出力である「軸力設定値-軸力検出値」が正の場合、タイバー16の温度低下の指令がされたものと判定して、軸力設定値を低減させる。 The correction operation unit 927 determines whether there is a command to lower the temperature of the tie bar 16 based on the output of the calculator 926. However, the correction calculation unit 927 determines whether there is a command to lower the temperature of the tie bar 16 based on the output of the calculator 925. You may. That is, when the “axial force setting value−axial force detection value” output from the computing unit 925 is positive, the correction arithmetic unit 927 determines that a command to lower the temperature of the tie bar 16 has been issued, and Decrease the set value.
 以上、図4に示す軸力制御では、いずれかのタイバー16において軸力検出値が軸力設定値よりも低い場合(タイバー16の温度検出値が目標温度よりも高い場合)、すべてのタイバー16において軸力設定値を低減させる構成を示した。他の軸力制御について図5及び図6を用いて説明する。 As described above, in the axial force control shown in FIG. 4, when the detected axial force value of any of the tie bars 16 is lower than the set axial force value (when the detected temperature value of the tie bar 16 is higher than the target temperature), In the above, the configuration for reducing the set value of the axial force was shown. Another axial force control will be described with reference to FIGS.
 図5は、一実施形態に係る射出成形機の軸力制御の他の一例を示すブロック図である。図5に示す軸力制御では、いずれかのタイバー16において軸力検出値が軸力設定値よりも低い場合(タイバー16の温度検出値が目標温度よりも高い場合)、すべてのタイバー16において軸力検出値を増加させる(オフセットする)構成を示す。 FIG. 5 is a block diagram showing another example of the axial force control of the injection molding machine according to one embodiment. In the axial force control shown in FIG. 5, when the detected axial force value of any of the tie bars 16 is lower than the set axial force value (the detected temperature value of the tie bar 16 is higher than the target temperature), 4 shows a configuration for increasing (offsetting) a force detection value.
 軸力制御部920Aは、温度指令生成部921と、電流指令生成部922と、温度算出部923と、軸力算出部924と、演算器925A,926と、補正演算部927Aと、を備えている。図5に示す軸力制御部920Aは、図4に示す軸力制御部920と比較して、補正演算部927A及び演算器925Aの構成が異なっている。その他の構成は同様であり、重複する説明を省略する。 The axial force controller 920A includes a temperature command generator 921, a current command generator 922, a temperature calculator 923, an axial force calculator 924, calculators 925A and 926, and a correction calculator 927A. I have. The axial force control unit 920A illustrated in FIG. 5 differs from the axial force control unit 920 illustrated in FIG. 4 in the configuration of the correction arithmetic unit 927A and the arithmetic unit 925A. Other configurations are the same, and redundant description will be omitted.
 補正演算部927Aは、演算器926から出力された各タイバー16の目標温度と温度検出値の差(Tcmd1-Tfb1、…、Tcmd4-Tfb4)が入力される。補正演算部927Aは、4本のタイバー16のうち、温度低下が指令されたタイバー16の有無を判定する。温度低下が指令されたタイバー16がある場合、補正演算部927Aは、軸力検出値を増加させる(オフセットする)指令を出力する。例えば、軸力オフセット量Nsを出力する。なお、軸力オフセット量Nsは、所定の値であってもよく、温度低下が指令されたタイバー16の温度低下量(目標温度と温度検出値の差)に応じて変化する値であってもよい。 The correction operation unit 927A receives the difference between the target temperature of each tie bar 16 and the detected temperature value (Tcmd1-Tfb1,..., Tcmd4-Tfb4) output from the operation unit 926. The correction calculation unit 927A determines whether or not there is a tie bar 16 for which a temperature decrease has been instructed, among the four tie bars 16. If there is a tie bar 16 for which a temperature decrease has been instructed, the correction calculation unit 927A outputs a command to increase (offset) the axial force detection value. For example, the axial force offset amount Ns is output. The axial force offset amount Ns may be a predetermined value, or may be a value that changes according to the temperature decrease amount (difference between the target temperature and the temperature detection value) of the tie bar 16 to which the temperature decrease is instructed. Good.
 演算器925Aは、軸力指令部910から各タイバー16の軸力設定値(Ncmd1~Ncmd4)が入力され、軸力算出部924から各タイバー16の軸力検出値(Nfb1~Nfb4)が入力され、補正演算部927Aから軸力オフセット量Nsが入力され、各タイバー16の軸力設定値とオフセットされた軸力検出値の差(Ncmd1-Nfb1-Ns、…、Ncmd4-Nfb4-Ns)を出力する。 The computing unit 925A receives the axial force setting values (Ncmd1 to Ncmd4) of each tie bar 16 from the axial force command unit 910, and receives the axial force detection values (Nfb1 to Nfb4) of each tie bar 16 from the axial force calculation unit 924. , The axial force offset amount Ns is input from the correction operation unit 927A, and the difference (Ncmd1-Nfb1-Ns,..., Ncmd4-Nfb4-Ns) between the axial force set value of each tie bar 16 and the offset axial force detection value is output. I do.
 このような構成により、図5に示す軸力制御においても、図4に示す軸力制御と同様に、軸力のバランスを調整しつつ、応答性を向上させることができる。 With such a configuration, in the axial force control shown in FIG. 5 as well, the responsiveness can be improved while adjusting the balance of the axial force, similarly to the axial force control shown in FIG.
 なお、補正演算部927Aは、演算器926の出力に基づいてタイバー16の温度低下の指令の有無を判定したが、演算器925Aの出力に基づいてタイバー16の温度低下の指令の有無を判定してもよい。即ち、補正演算部927Aは、演算器925からの出力である「軸力設定値-軸力検出値」が正の場合、タイバー16の温度低下の指令がされたものと判定して、軸力検出値を増加させるようにしてもよい。 Although the correction calculation unit 927A determines whether or not there is a command to lower the temperature of the tie bar 16 based on the output of the calculator 926, it determines whether or not there is a command to lower the temperature of the tie bar 16 based on the output of the calculator 925A. You may. That is, when the “axial force set value−axial force detected value” output from the calculator 925 is positive, the correction arithmetic unit 927A determines that a command to decrease the temperature of the tie bar 16 has been issued, and The detection value may be increased.
 図6は、一実施形態に係る射出成形機の軸力制御のさらに他の一例を示すブロック図である。図6に示す軸力制御では、いずれかのタイバー16において軸力検出値が軸力設定値よりも低い場合(タイバー16の温度検出値が目標温度よりも高い場合)、すべてのタイバー16において目標温度を増加させる(オフセットする)構成を示す。 FIG. 6 is a block diagram showing still another example of the axial force control of the injection molding machine according to one embodiment. In the axial force control shown in FIG. 6, when the detected axial force value of any of the tie bars 16 is lower than the set axial force value (when the detected temperature value of the tie bar 16 is higher than the target temperature), 3 shows a configuration for increasing (offsetting) the temperature.
 軸力制御部920Bは、温度指令生成部921と、電流指令生成部922と、温度算出部923と、軸力算出部924と、演算器925,926,928Bと、補正演算部927Bと、を備えている。図6に示す軸力制御部920Bは、図4に示す軸力制御部920と比較して、補正演算部927B及び演算器928Bの構成が異なっている。その他の構成は同様であり、重複する説明を省略する。 The axial force controller 920B includes a temperature command generator 921, a current command generator 922, a temperature calculator 923, an axial force calculator 924, calculators 925, 926, 928B, and a correction calculator 927B. Have. The axial force control unit 920B illustrated in FIG. 6 is different from the axial force control unit 920 illustrated in FIG. 4 in the configuration of the correction arithmetic unit 927B and the arithmetic unit 928B. Other configurations are the same, and redundant description will be omitted.
 補正演算部927Bは、演算器926から出力された各タイバー16の目標温度と温度検出値の差(Tcmd1-Tfb1、…、Tcmd4-Tfb4)が入力される。補正演算部927Bは、4本のタイバー16のうち、温度低下が指令されたタイバー16の有無を判定する。温度低下が指令されたタイバー16がある場合、補正演算部927Bは、目標温度を増加させる指令を出力する。例えば、温度オフセット量Tsを出力する。なお、温度オフセット量Tsは、所定の値であってもよく、温度低下が指令されたタイバー16の温度低下量(目標温度と温度検出値の差)に応じて変化する値であってもよい。 The correction calculation unit 927B receives the difference between the target temperature of each tie bar 16 and the detected temperature value (Tcmd1-Tfb1,..., Tcmd4-Tfb4) output from the calculator 926. The correction calculating unit 927B determines the presence or absence of the tie bar 16 of which the temperature reduction has been instructed, among the four tie bars 16. If there is a tie bar 16 for which a temperature decrease has been instructed, the correction calculation unit 927B outputs a command to increase the target temperature. For example, a temperature offset amount Ts is output. The temperature offset amount Ts may be a predetermined value, or may be a value that changes according to the temperature decrease amount (difference between the target temperature and the temperature detection value) of the tie bar 16 to which the temperature decrease has been instructed. .
 演算器928Bは、温度指令生成部921から各タイバー16の目標温度(Tcmd1~Tcmd4)が入力され、後述する補正演算部927Bから温度オフセット量Tsが入力され、各タイバー16の新たな目標温度(Tcmd1+Ts、…、Tcmd4+Ts)を出力する。なお、演算器926には、この新たな目標温度(Tcmd1+Ts、…、Tcmd4+Ts)が入力される。 The computing unit 928B receives the target temperatures (Tcmd1 to Tcmd4) of the tie bars 16 from the temperature command generating unit 921, the temperature offset amount Ts from the correction computing unit 927B described later, and inputs a new target temperature ( Tcmd1 + Ts,..., Tcmd4 + Ts). The new target temperature (Tcmd1 + Ts,..., Tcmd4 + Ts) is input to the calculator 926.
 このような構成により、図6に示す軸力制御においても、図4に示す軸力制御と同様に、軸力のバランスを調整しつつ、応答性を向上させることができる。 According to such a configuration, in the axial force control shown in FIG. 6 as well, the responsiveness can be improved while adjusting the balance of the axial force, similarly to the axial force control shown in FIG.
 なお、補正演算部927Bは、演算器926の出力に基づいてタイバー16の温度低下の指令の有無を判定したが、演算器925の出力に基づいてタイバー16の温度低下の指令の有無を判定してもよい。即ち、補正演算部927Bは、演算器925からの出力である「軸力設定値-軸力検出値」が正の場合、タイバー16の温度低下の指令がされたものと判定して、目標温度を上昇させるようにしてもよい。 The correction operation unit 927B determines whether or not there is a command to lower the temperature of the tie bar 16 based on the output of the calculator 926. However, the correction calculator 927B determines whether or not there is a command to lower the temperature of the tie bar 16 based on the output of the calculator 925. You may. That is, when the “axial force set value−axial force detected value” output from the arithmetic unit 925 is positive, the correction arithmetic unit 927B determines that a command to lower the temperature of the tie bar 16 has been issued, and determines the target temperature. May be raised.
 図7は、一実施形態に係る射出成形機の軸力制御における各タイバーの温度、型締力の一例を示すグラフである。なお、上段のグラフは、横軸をショット数とし、縦軸を温度とし、T1は第1タイバーの温度、T2は第2タイバーの温度、T3は第3タイバーの温度、T4は第4タイバーの温度である。下段のグラフは、横軸をショット数とし、縦軸を型締時の型締力の検出値とする。なお、縦軸は、型締工程中の型締力の検出値の平均値としてもよい。また、縦軸は、型締工程中の型締力の最大値としてもよい。なお、型締力は、第1~第4タイバーの軸力の和(Nfb1+Nfb2+Nfb3+Nfb4)である。即ち、軸力検出器28は、型締力を検出する型締力検出器を兼ねる。 FIG. 7 is a graph showing an example of the temperature of each tie bar and the mold clamping force in the axial force control of the injection molding machine according to one embodiment. In the upper graph, the horizontal axis represents the number of shots, the vertical axis represents the temperature, T1 represents the temperature of the first tie bar, T2 represents the temperature of the second tie bar, T3 represents the temperature of the third tie bar, and T4 represents the temperature of the fourth tie bar. Temperature. In the lower graph, the horizontal axis represents the number of shots, and the vertical axis represents the detected value of the mold clamping force during mold clamping. The vertical axis may be an average value of the detected values of the mold clamping force during the mold clamping process. The vertical axis may be the maximum value of the mold clamping force during the mold clamping process. The mold clamping force is the sum of the axial forces of the first to fourth tie bars (Nfb1 + Nfb2 + Nfb3 + Nfb4). That is, the axial force detector 28 also functions as a mold clamping force detector that detects the mold clamping force.
 一実施形態に係る射出成形機の軸力制御を開始する(制御ON)。上段のグラフに示すように、タイバー16を加熱または温度を維持するように軸力制御する。図7に示す例では第1タイバーの温度T1を維持しつつ、第2~第4タイバーの温度T2~T4を上昇させている。これにより、軸力のバランスを調整しつつ、軸力制御の応答性を向上する。 軸 The axial force control of the injection molding machine according to one embodiment is started (control ON). As shown in the upper graph, the tie bar 16 is heated or the axial force is controlled so as to maintain the temperature. In the example shown in FIG. 7, the temperatures T2 to T4 of the second to fourth tie bars are increased while maintaining the temperature T1 of the first tie bar. This improves the responsiveness of the axial force control while adjusting the balance of the axial force.
 ところで、タイバー16の温度を低下させる指令を、目標温度を上昇させることにより、温度の低下量を小さくする、または、温度を上昇させるようにした。本来ならば、温度を低下させるところをその低下量を小さくする、または、温度を上昇させるようにした分、タイバー16の軸力が低下する。即ち、温度オフセット量の分、軸力が低下する。下段のグラフに示すように、型締力の実績値が低下する。コントローラ90は、型締力の実績値が設定値よりも所定値以上小さくなると、型締力の実績値が設定値に近づくように型厚調整機構22を制御して間隔Lを狭くする、換言すれば、トグルサポート15の位置を固定プラテン12の側に前進させる。これにより、所望の型締力を回復させることができる(型締力補正)。なお、型締力補正のタイミングは、例えば、成形サイクル終了後、次の成形サイクル開始前までの間に行われる。 By the way, the instruction to decrease the temperature of the tie bar 16 is set to increase the target temperature, thereby reducing the amount of decrease in the temperature or increasing the temperature. Normally, when the temperature is lowered, the amount of reduction is reduced or the temperature is raised, so that the axial force of the tie bar 16 is reduced. That is, the axial force is reduced by the amount of the temperature offset. As shown in the lower graph, the actual value of the mold clamping force decreases. When the actual value of the mold clamping force becomes smaller than the set value by a predetermined value or more, the controller 90 controls the mold thickness adjusting mechanism 22 so that the actual value of the mold clamping force approaches the set value, thereby reducing the interval L. Then, the position of the toggle support 15 is advanced toward the fixed platen 12. Thereby, a desired mold clamping force can be recovered (mold clamping force correction). The timing of the mold clamping force correction is performed, for example, after the end of the molding cycle and before the start of the next molding cycle.
 なお、図7に示す例では、軸力制御の途中で軸力指令を変更している(指令変更)。図7に示す例では第2タイバーの温度T2を維持しつつ、第1,3,4タイバーの温度T1,T3,T4を上昇させている。 In the example shown in FIG. 7, the axial force command is changed during the axial force control (command change). In the example shown in FIG. 7, the temperatures T1, T3, and T4 of the first, third, and fourth tie bars are increased while maintaining the temperature T2 of the second tie bar.
 また、軸力検出値と軸力設定値との差が所定の範囲内に収束すると、図7に示すように、補正演算部927は、4つのタイバー16の相対温度差を維持しつつ、タイバー16の温度を低下させる。これにより、軸力のバランスを維持しつつ、タイバー16の温度を低下させることができる。また、タイバー16の温度が低下することにより、各タイバー16の軸力も増加して、型締力を回復させることができる。 When the difference between the detected axial force value and the set axial force value converges within a predetermined range, as shown in FIG. 7, the correction calculation unit 927 maintains the relative temperature difference between the four tie bars 16 and The temperature of 16 is lowered. Thereby, the temperature of the tie bar 16 can be reduced while maintaining the balance of the axial force. Further, as the temperature of the tie bars 16 decreases, the axial force of each tie bar 16 also increases, and the mold clamping force can be recovered.
 なお、図示は省略するが、タイバー16の温度が所定の第1閾値温度以上となった場合、補正演算部927は目標温度を下げるように制御してもよい。これにより、タイバー16が高温になり過ぎることを防止することができる。この際、4つのタイバー16の相対温度差を維持しつつ、タイバー16の温度を低下させる。これにより、軸力のバランスを維持しつつ、タイバー16の温度を低下させることができる。なお、タイバー16の温度が所定の第2閾値温度以下となった場合、上述の軸力制御を再開してもよい。 Although not shown, when the temperature of the tie bar 16 becomes equal to or higher than a predetermined first threshold temperature, the correction calculation unit 927 may perform control to lower the target temperature. Thus, it is possible to prevent the tie bar 16 from becoming too hot. At this time, the temperature of the tie bar 16 is lowered while maintaining the relative temperature difference between the four tie bars 16. Thereby, the temperature of the tie bar 16 can be reduced while maintaining the balance of the axial force. When the temperature of the tie bar 16 becomes equal to or lower than the predetermined second threshold temperature, the above-described axial force control may be restarted.
 以上、射出成形機の実施形態等について説明したが、本発明は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。 The embodiments of the injection molding machine and the like have been described above. However, the present invention is not limited to the embodiments and the like, and various modifications and changes may be made within the scope of the invention described in the appended claims. Improvements are possible.
 射出成形機は、加熱器25によって加熱されるタイバー16の加熱範囲を制限する加熱範囲制限手段を備えていてもよい。加熱範囲制限手段は、例えば、加熱器25を挟んでタイバー16の軸方向両側に配設される冷却器で構成される。冷却器は、例えば水冷ジャケットで構成される。なお、冷却器は、水冷ジャケットに限定されず、例えば冷却フィンなどで構成されてもよい。冷却フィンの冷却方式は、冷却ファンを使用する強制空冷方式、自然空冷方式のいずれでもよい。加熱範囲制限手段により、加熱器25がタイバー16に加えた熱の移動を制限でき、型締装置10全体の温度が安定化するまでの時間を短縮でき、軸力のバランスが安定化するまでの時間を短縮できる。また、タイバー16の熱膨張範囲を管理でき、タイバー16の温度変化による有効長の変化量を精度良く管理でき、軸力を精度良く調整できる。また、加熱範囲制限手段は、冷却器に限られるものではなく、熱の移動が制限できるものであれば、どのような構成であってもよい。即ち、加熱範囲と加熱範囲外との間で断熱できればよい。 The injection molding machine may include a heating range restricting unit that restricts a heating range of the tie bar 16 heated by the heater 25. The heating range limiting means is constituted by, for example, coolers disposed on both sides of the tie bar 16 in the axial direction with the heater 25 interposed therebetween. The cooler is composed of, for example, a water cooling jacket. In addition, the cooler is not limited to the water cooling jacket, and may be configured by, for example, a cooling fin. The cooling method of the cooling fins may be either a forced air cooling method using a cooling fan or a natural air cooling method. By the heating range limiting means, the movement of the heat applied to the tie bar 16 by the heater 25 can be limited, the time required for the temperature of the entire mold clamping device 10 to be stabilized can be reduced, and the balance of the axial force can be stabilized. You can save time. Further, the thermal expansion range of the tie bar 16 can be managed, the amount of change in the effective length due to the temperature change of the tie bar 16 can be managed with high accuracy, and the axial force can be adjusted with high accuracy. Further, the heating range limiting means is not limited to the cooler, and may have any configuration as long as it can limit the movement of heat. That is, it is only necessary that heat insulation be provided between the heating range and the outside of the heating range.
 コントローラ90は、タイバー16の加熱範囲を制限するように冷却器を制御する。この場合、タイバー16の冷却部の温度の実績値が設定値になるように、コントローラ90が冷却器を制御してもよい。タイバー16の冷却部の温度は、温度検出器27とは別の温度検出器によって検出する。この温度検出器は、冷却器の付近に配設される。コントローラ90は、加熱範囲制限手段を作動させた状態で、加熱器25による温度制御を行う。即ち、加熱範囲制限手段と加熱器25による温度制御は同時に行われる。 The controller 90 controls the cooler so as to limit the heating range of the tie bar 16. In this case, the controller 90 may control the cooler so that the actual value of the temperature of the cooling unit of the tie bar 16 becomes the set value. The temperature of the cooling section of the tie bar 16 is detected by a temperature detector different from the temperature detector 27. This temperature detector is arranged near the cooler. The controller 90 controls the temperature by the heater 25 in a state where the heating range limiting unit is operated. That is, the temperature control by the heating range limiting means and the heater 25 is performed simultaneously.
 一実施形態に係る射出成形機は、4本のタイバーに軸力検出器28をそれぞれ設けるものとして説明したが、これに限られるものではない。少なくとも金型装置30の上下に配置されるタイバー16、および/または、金型装置30の左右に配置されるタイバー16に、それぞれ配置されるようにしてもよい。金型装置30の上下に配置されるタイバー16に軸力検出器28をそれぞれ設けることにより、垂直方向の軸力のバランスを調整することができる。金型装置30の左右に配置されるタイバー16に軸力検出器28をそれぞれ設けることにより、水平方向の軸力のバランスを調整することができる。また、検出器の数を削減することができる。 Although the injection molding machine according to one embodiment has been described as being provided with the axial force detectors 28 on four tie bars, the invention is not limited to this. At least the tie bars 16 arranged above and below the mold device 30 and / or the tie bars 16 arranged right and left of the mold device 30 may be arranged. By providing the axial force detectors 28 on the tie bars 16 arranged above and below the mold device 30, the balance of the axial force in the vertical direction can be adjusted. By providing the axial force detectors 28 on the tie bars 16 arranged on the left and right sides of the mold device 30, the balance of the axial force in the horizontal direction can be adjusted. Further, the number of detectors can be reduced.
 また、一実施形態に係る射出成形機は、コントローラ90に制御される加熱器25を用いて、定常温度よりもタイバー16を加熱する方向でタイバー16の軸力を調整するものとして説明したが、これに限られるものではない。即ち、加熱器25に代えてコントローラ90に制御される冷却器を設けて、定常温度よりもタイバー16を冷却する方向でタイバー16の軸力を調整する構成であってもよい。 Also, the injection molding machine according to one embodiment has been described as adjusting the axial force of the tie bar 16 in a direction in which the tie bar 16 is heated from the steady temperature using the heater 25 controlled by the controller 90. However, it is not limited to this. That is, a configuration in which a cooler controlled by the controller 90 is provided instead of the heater 25 and the axial force of the tie bar 16 is adjusted in a direction in which the tie bar 16 is cooled below the steady temperature may be employed.
 ここで、加熱器25に代えて冷却器を備える射出成形機において、タイバー16の温度を低下させる際には、冷却器を動作させることにより、温度を低下させる。一方、タイバー16の温度を上昇させる際には、冷却器を停止させることにより、温度を上昇させる。このように、冷却器のON/OFFのみでタイバー16の温度を変化させることができるので、制御が不連続になることを防止して、制御性が悪化することを防止することができる。 Here, in an injection molding machine having a cooler in place of the heater 25, when the temperature of the tie bar 16 is lowered, the temperature is lowered by operating the cooler. On the other hand, when raising the temperature of the tie bar 16, the temperature is raised by stopping the cooler. As described above, since the temperature of the tie bar 16 can be changed only by turning on / off the cooler, the control can be prevented from being discontinuous, and the controllability can be prevented from deteriorating.
 ところで、このような構成のため、タイバー16の温度を上昇させる際の応答速度は、温度を低下させる際の応答速度と比較して、遅くなっている。また、タイバー16の温度を上昇させる際、所定の温度(例えば、大気温度、等)以上には上げることができない。 By the way, due to such a configuration, the response speed when increasing the temperature of the tie bar 16 is lower than the response speed when decreasing the temperature. In addition, when the temperature of the tie bar 16 is raised, it cannot be raised above a predetermined temperature (for example, atmospheric temperature).
 この場合、補正演算部は、いずれかのタイバー16において温度上昇が指令されたタイバー16がある場合、すべてのタイバー16において軸力設定値を増加させる。また、補正演算部は、いずれかのタイバー16において温度上昇が指令されたタイバー16がある場合、すべてのタイバー16において軸力検出値を減少させるようにしてもよい。また、補正演算部は、いずれかのタイバー16において温度上昇が指令されたタイバー16がある場合、すべてのタイバー16において目標温度を低下させるようにしてもよい。 In this case, when there is a tie bar 16 for which a temperature increase is instructed in any of the tie bars 16, the correction calculation unit increases the axial force set value in all the tie bars 16. In addition, when there is a tie bar 16 for which a temperature increase is instructed in any of the tie bars 16, the correction calculation unit may decrease the axial force detection value in all the tie bars 16. Further, when there is a tie bar 16 for which a temperature increase is instructed in any of the tie bars 16, the correction calculation unit may decrease the target temperature in all the tie bars 16.
 これにより、温度検出値が目標温度よりも低くなっているタイバー16について、補正演算部により目標温度を減少させることができるので、温度の上昇量を小さくすることができ、軸力のバランスを調整しつつ、応答性が向上する。 With this, for the tie bar 16 whose temperature detection value is lower than the target temperature, the target temperature can be reduced by the correction calculation unit, so that the amount of temperature rise can be reduced and the balance of axial force can be adjusted. And the responsiveness is improved.
 尚、本願は、2018年8月27日に出願した日本国特許出願2018-158629号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2018-158629 filed on Aug. 27, 2018, the entire contents of which are incorporated herein by reference.
10    型締装置
16    タイバー
22    型厚調整機構
25    加熱器
27    温度検出器
28    軸力検出器
90    コントローラ
910   軸力指令部
920,920A,920B 軸力制御部
921   温度指令生成部(軸力制御指令生成部)
922   電流指令生成部
923   温度算出部
924   軸力算出部
925,925A,926,928B  演算器
927,927A,927B 補正演算部(軸力制御指令生成部)
10 Mold Clamping Device 16 Tie Bar 22 Mold Thickness Adjusting Mechanism 25 Heater 27 Temperature Detector 28 Axial Force Detector 90 Controller 910 Axial Force Command Units 920, 920A, 920B Axial Force Control Unit 921 Temperature Command Generation Unit Part)
922 Current command generation unit 923 Temperature calculation unit 924 Axial force calculation units 925, 925A, 926, 928B Operators 927, 927A, 927B Correction calculation unit (axial force control command generation unit)

Claims (13)

  1.  複数のタイバーを有する型締装置と、
     前記タイバーの軸力を調整するタイバー軸力調整装置と、を有する射出成形機であって、
     前記タイバー軸力調整装置は、
     前記タイバーの軸力を検出する軸力検出器と、
     前記タイバーの軸力の検出値と設定値との偏差に基づいて、前記タイバーの温度を制御する軸力制御部と、を有し、
     前記軸力検出器は、前記複数のタイバーに設けられ、
     前記軸力制御部は、前記タイバーの軸力の検出値が設定値よりも高い場合、前記タイバーの温度を上昇させる制御指令を生成する軸力制御指令生成部を有し、
     前記軸力制御指令生成部は、前記タイバーの軸力の検出値が設定値よりも低い場合、前記検出値と設定値との偏差を小さくする偏差低減処理を行い、前記タイバーの温度の低下量を小さくする、射出成形機。
    A mold clamping device having a plurality of tie bars,
    A tie bar axial force adjusting device for adjusting the axial force of the tie bar, and an injection molding machine,
    The tie bar axial force adjusting device,
    An axial force detector for detecting an axial force of the tie bar;
    An axial force control unit that controls the temperature of the tie bar based on a deviation between a detected value and a set value of the axial force of the tie bar,
    The axial force detector is provided on the plurality of tie bars,
    The axial force control unit, when the detected value of the axial force of the tie bar is higher than a set value, has an axial force control command generation unit that generates a control command to increase the temperature of the tie bar,
    When the detected value of the axial force of the tie bar is lower than a set value, the axial force control command generation unit performs a deviation reduction process to reduce a deviation between the detected value and the set value, and the amount of decrease in the temperature of the tie bar. Injection molding machine.
  2.  前記軸力制御部は、前記タイバーを加熱する加熱器を有し、前記加熱器を停止させることで前記タイバーの温度を低下させる、請求項1に記載の射出成形機。 2. The injection molding machine according to claim 1, wherein the axial force control unit has a heater that heats the tie bar, and stops the heater to lower the temperature of the tie bar. 3.
  3.  前記軸力制御指令生成部は、前記タイバーの軸力の検出値が設定値よりも低い場合、前記軸力の設定値を低減させる、請求項1または請求項2に記載の射出成形機。 3. The injection molding machine according to claim 1, wherein the axial force control command generation unit reduces the set value of the axial force when the detected value of the axial force of the tie bar is lower than a set value. 4.
  4.  前記軸力制御指令生成部は、前記タイバーの軸力の検出値が設定値よりも低い場合、前記軸力の検出値を増加させる、請求項1乃至請求項3のいずれか1項に記載の射出成形機。 4. The axial force control command generator according to claim 1, wherein when the detected value of the axial force of the tie bar is lower than a set value, the detected value of the axial force is increased. 5. Injection molding machine.
  5.  前記軸力制御指令生成部は、前記タイバーの軸力の検出値が設定値よりも低い場合、前記タイバーの温度を上昇させる制御指令を加算する、請求項1乃至請求項4のいずれか1項に記載の射出成形機。 The said axial force control command production | generation part adds the control command which raises the temperature of the said tie bar when the detected value of the axial force of the said tie bar is lower than a set value, The one of Claim 1 thru | or 4 characterized by the above-mentioned. 3. The injection molding machine according to claim 1.
  6.  前記軸力制御指令生成部は、前記タイバーの軸力の検出値と設定値との差が所定の範囲内になった場合に、前記タイバーの温度を低下させる制御指令を生成する、請求項1乃至請求項5のいずれかに1項に記載の射出成形機。 2. The axial force control command generator, when a difference between a detected value of the axial force of the tie bar and a set value falls within a predetermined range, generates a control command to decrease the temperature of the tie bar. 3. The injection molding machine according to claim 1.
  7.  前記軸力制御部は、前記タイバーの温度を検出するタイバー温度検出器を有し、
     前記軸力制御指令生成部は、前記タイバー温度検出器が前記タイバーの温度が所定の温度まで上昇したことを検出すると、前記タイバーの温度を低下させる制御指令を生成する、請求項1乃至請求項6のいずれか1項に記載の射出成形機。
    The axial force control unit has a tie bar temperature detector that detects the temperature of the tie bar,
    The said axial force control command production | generation part produces | generates the control command which reduces the temperature of the said tie-bar, when the said tie-bar temperature detector detects that the temperature of the said tie-bar rose to predetermined temperature. 7. The injection molding machine according to any one of 6.
  8.  前記軸力制御指令生成部は、前記複数のタイバーの温度差を維持しながら各タイバーの温度を低下させる制御指令を生成する、請求項6または請求項7に記載の射出成形機。 8. The injection molding machine according to claim 6, wherein the axial force control command generation unit generates a control command for lowering the temperature of each tie bar while maintaining the temperature difference between the plurality of tie bars. 9.
  9.  前記型締装置は、可動プラテンを前後進させるトグル機構と、前記トグル機構が接続されるトグルサポートと、を有し、
     前記型締装置を制御する制御部を、更に有し、
     前記制御部は、前記タイバー軸力調整装置による前記タイバーの加熱で型締力の実績値が設定値よりも所定値以上小さくなると、前記型締力の実績値が設定値に近づくように前記トグルサポートの位置を変更する、請求項1乃至請求項8のいずれか1項に記載の射出成形機。
    The mold clamping device has a toggle mechanism for moving the movable platen back and forth, and a toggle support to which the toggle mechanism is connected,
    A control unit for controlling the mold clamping device,
    The controller controls the toggle so that the actual value of the mold clamping force approaches a set value when the actual value of the mold clamping force becomes smaller than a set value by a predetermined value or more due to heating of the tie bar by the tie bar axial force adjusting device. The injection molding machine according to any one of claims 1 to 8, wherein a position of the support is changed.
  10.  複数のタイバーを有する型締装置と、
     前記タイバーの軸力を調整するタイバー軸力調整装置と、を有する射出成形機であって、
     前記タイバー軸力調整装置は、
     前記タイバーの軸力を検出する軸力検出器と、
     前記タイバーの軸力の検出値と設定値との偏差に基づいて、前記タイバーの温度を制御する軸力制御部と、を有し、
     前記軸力検出器は、前記複数のタイバーに設けられ、
     前記軸力制御部は、前記タイバーの軸力の検出値が設定値よりも低い場合、前記タイバーの温度を低下させる制御指令を生成する軸力制御指令生成部を有し、
     前記軸力制御指令生成部は、前記タイバーの軸力の検出値が設定値よりも高い場合、前記検出値と設定値との偏差を小さくする偏差低減処理を行い、前記タイバーの温度の上昇量を小さくする、射出成形機。
    A mold clamping device having a plurality of tie bars,
    A tie bar axial force adjusting device for adjusting the axial force of the tie bar, and an injection molding machine,
    The tie bar axial force adjusting device,
    An axial force detector for detecting an axial force of the tie bar;
    An axial force control unit that controls the temperature of the tie bar based on a deviation between a detected value and a set value of the axial force of the tie bar,
    The axial force detector is provided on the plurality of tie bars,
    The axial force control unit, when the detected value of the axial force of the tie bar is lower than a set value, has an axial force control command generation unit that generates a control command to reduce the temperature of the tie bar,
    When the detected value of the axial force of the tie bar is higher than a set value, the axial force control command generation unit performs a deviation reducing process to reduce a deviation between the detected value and the set value, and increases the temperature of the tie bar. Injection molding machine.
  11.  前記軸力制御部は、前記タイバーを冷却する冷却器を有し、前記冷却器を停止させることで前記タイバーの温度を上昇させる、請求項10に記載の射出成形機。 The injection molding machine according to claim 10, wherein the axial force control unit includes a cooler that cools the tie bar, and stops the cooler to increase the temperature of the tie bar.
  12.  前記軸力検出器は、型締力を検出する型締力検出器を兼用する、請求項1乃至請求項11の何れか1項に記載の射出成形機。 The injection molding machine according to any one of claims 1 to 11, wherein the axial force detector also functions as a mold clamping force detector that detects a mold clamping force.
  13.  前記タイバーは、金型装置の周囲に複数配置され、
     前記軸力検出器は、少なくとも、前記金型装置の上下に配置されるタイバー、および/または、前記金型装置の左右に配置されるタイバーに、それぞれ配置される、請求項1乃至請求項12のいずれか1項に記載の射出成形機。
    A plurality of the tie bars are arranged around the mold apparatus,
    13. The axial force detector is arranged at least on tie bars arranged above and below the mold device and / or tie bars arranged on the left and right sides of the mold device. The injection molding machine according to any one of the above.
PCT/JP2019/033351 2018-08-27 2019-08-26 Injection molding machine WO2020045359A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310897361.XA CN116787722A (en) 2018-08-27 2019-08-26 Injection molding machine
CN201980056432.5A CN112638616A (en) 2018-08-27 2019-08-26 Injection molding machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-158629 2018-08-27
JP2018158629A JP7175674B2 (en) 2018-08-27 2018-08-27 Injection molding machine

Publications (1)

Publication Number Publication Date
WO2020045359A1 true WO2020045359A1 (en) 2020-03-05

Family

ID=69645109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033351 WO2020045359A1 (en) 2018-08-27 2019-08-26 Injection molding machine

Country Status (3)

Country Link
JP (1) JP7175674B2 (en)
CN (2) CN116787722A (en)
WO (1) WO2020045359A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347078A (en) * 2005-06-17 2006-12-28 Japan Steel Works Ltd:The Mold clamping device of injection molding machine and effective length regulating method of tie bar
JP2016185691A (en) * 2015-03-27 2016-10-27 住友重機械工業株式会社 Injection molding machine
JP2017132228A (en) * 2016-01-29 2017-08-03 住友重機械工業株式会社 Injection molding machine
WO2017164423A1 (en) * 2016-03-25 2017-09-28 住友重機械工業株式会社 Injection molding machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533041A (en) * 1991-07-25 1993-02-09 Meidensha Corp Method for heat-treating surface of long shaft material
JP4842645B2 (en) * 2006-01-23 2011-12-21 住友重機械工業株式会社 Injection molding machine and method for detecting abnormality of pressure detector provided in injection molding machine
JP6644473B2 (en) * 2015-03-27 2020-02-12 住友重機械工業株式会社 Injection molding machine
JP6614634B2 (en) * 2015-03-27 2019-12-04 住友重機械工業株式会社 Injection molding machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347078A (en) * 2005-06-17 2006-12-28 Japan Steel Works Ltd:The Mold clamping device of injection molding machine and effective length regulating method of tie bar
JP2016185691A (en) * 2015-03-27 2016-10-27 住友重機械工業株式会社 Injection molding machine
JP2017132228A (en) * 2016-01-29 2017-08-03 住友重機械工業株式会社 Injection molding machine
WO2017164423A1 (en) * 2016-03-25 2017-09-28 住友重機械工業株式会社 Injection molding machine

Also Published As

Publication number Publication date
CN112638616A (en) 2021-04-09
JP2020032544A (en) 2020-03-05
JP7175674B2 (en) 2022-11-21
CN116787722A (en) 2023-09-22

Similar Documents

Publication Publication Date Title
JP6938614B2 (en) Correction device, injection molding system and correction method
JP7321998B2 (en) Injection molding machine
JP6797723B2 (en) Injection molding machine
JP6815892B2 (en) Injection molding machine
TW201726353A (en) Injection molding machine capable of suppressing the discontinuity of temperature control of the tie bar and improving the accuracy of temperature control of the tie bar
WO2018143291A1 (en) Injection molding machine
JP6791948B2 (en) Injection molding machine
WO2020045359A1 (en) Injection molding machine
EP3778182A1 (en) Mold system
JP6009385B2 (en) Injection molding machine
TWI626143B (en) Injection molding machine
TWI584935B (en) Injection molding machine
KR101847263B1 (en) Injection molding machine and operation screen of injection molding machine
JP7317476B2 (en) Injection molding machine
JP7315441B2 (en) Injection molding machine
JP6404081B2 (en) Injection molding machine
WO2022210979A1 (en) Control device for injection molding machine, injection molding machine, and control method
WO2022210969A1 (en) Injection molding machine
JP6517063B2 (en) Injection molding machine
US20240092005A1 (en) Control device of injection molding machine, injection molding machine, and method of controlling injection molding machine
JP6716154B2 (en) Injection molding machine
JP2018122507A (en) Injection molding machine
JP2022157852A (en) Injection molding machine, control device for injection molding machine, and control method
JP6840600B2 (en) Injection molding machine
JP2023079857A (en) Controller for injection molding machine, injection molding machine, method of controlling injection molding machine, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856376

Country of ref document: EP

Kind code of ref document: A1