WO2020045214A1 - Resin composition and cured film obtained therefrom - Google Patents

Resin composition and cured film obtained therefrom Download PDF

Info

Publication number
WO2020045214A1
WO2020045214A1 PCT/JP2019/032782 JP2019032782W WO2020045214A1 WO 2020045214 A1 WO2020045214 A1 WO 2020045214A1 JP 2019032782 W JP2019032782 W JP 2019032782W WO 2020045214 A1 WO2020045214 A1 WO 2020045214A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
polysiloxane
mol
general formulas
Prior art date
Application number
PCT/JP2019/032782
Other languages
French (fr)
Japanese (ja)
Inventor
日比野利保
的羽良典
諏訪充史
藤井真実
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020217000310A priority Critical patent/KR20210052431A/en
Priority to JP2019549505A priority patent/JP7327163B2/en
Priority to CN201980040304.1A priority patent/CN112368336A/en
Publication of WO2020045214A1 publication Critical patent/WO2020045214A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/27Compounds containing a nitrogen atom bound to two other nitrogen atoms, e.g. diazoamino-compounds
    • C08K5/28Azides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to a resin composition, a cured film thereof, and a solid-state imaging device, an organic EL device, and a display device including the same.
  • polysiloxane materials are known as highly transparent and low refractive index materials, and are widely used in liquid crystal displays, touch panels, solid-state imaging devices, and the like.
  • a large amount of fluorine-containing siloxane compound and particles such as silica nanoparticles and hollow silica are added in order to reduce the refractive index.
  • a decrease in heat resistance was unavoidable, and when the particles were processed into a pattern, fine irregularities on the surface and edges were unavoidable.
  • a low-refractive-index material excellent in heat resistance and chemical resistance without addition of particles was strongly demanded.
  • the present invention provides a resin composition which is a low refractive index material having excellent heat resistance, excellent chemical resistance, and excellent pattern workability without adding particles. With the goal.
  • the present invention provides a resin composition containing (A) a polysiloxane and (B) a solvent, wherein the (A) polysiloxane has a structure represented by the following general formulas (1) to (3).
  • a resin composition comprising at least one or more structures having at least one structure represented by the following general formulas (4) and (5).
  • Y is an alicyclic or aromatic linking group having 5 to 10 carbon atoms.
  • R 1 is a single bond or an alkylene group having 1 to 4 carbon atoms, and R 2 is independently hydrogen or 1 carbon atom.
  • R 3 are independently an organic group having 1 to 8 carbon atoms, X is a hydrogen atom or an acid dissociable group, a is an integer of 1 to 3, and n is an integer of 1 to 10.
  • FIG. 3 is a process chart showing an example of producing a cured film using the resin composition according to the embodiment of the present invention.
  • FIG. 3 is a process chart showing an example of producing a cured film using the resin composition according to the embodiment of the present invention.
  • FIG. 3 is a process chart showing an example of producing a cured film using the resin composition according to the embodiment of the present invention.
  • the resin composition of the present invention has at least one structure represented by the following general formulas (1) to (3) and at least one structure represented by the following general formulas (4) to (5) It contains the polysiloxane contained above.
  • the structures represented by (1) to (3) and at least one or more of the structures represented by (4) to (5) in the polysiloxane Since the alkali dissolution inhibiting effect due to the interaction between the photosensitizer and the silanol can be exhibited while enhancing the alkali solubility, the contrast between the exposed and unexposed portions before and after development can be increased, and a film having excellent resolution can be obtained.
  • Y is an alicyclic or aromatic linking group having 5 to 10 carbon atoms.
  • R 1 is a single bond or an alkylene group having 1 to 4 carbon atoms
  • R 2 is independently hydrogen or 1 carbon atom.
  • R 3 are independently an organic group having 1 to 8 carbon atoms
  • X is a hydrogen atom or an acid dissociable group
  • a is an integer of 1 to 3
  • n is an integer of 1 to 10.
  • R 1 is a single bond or an alkylene group having 1 to 4 carbon atoms
  • R 2 is independently hydrogen or an alkyl group having 1 to 4 carbon atoms
  • R 3 is independently an organic group having 1 to 8 carbon atoms
  • alkylene group for R 1 examples include a methylene group, an ethylene group, an n-propylene group, an isopropylene group, an n-butylene group, and a t-butylene group.
  • alkyl group for R 2 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutoxy group, a t-butyl group, and the like.
  • Examples of the organic group for R 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a cyclohexyl group, a phenyl group, and a naphthyl group.
  • X is a hydrogen atom or an acid dissociable group, and when there are a plurality of Xs, the Xs may be the same or different.
  • the acid dissociable group is a group that dissociates in the presence of an acid to generate a polar group.
  • the acid dissociable group has an acetal structure or a ketal structure which is relatively stable to alkali, and these are dissociated by the action of an acid. Specific examples include, but are not limited to, an alkoxycarbonyl group, an acetal group, a silyl group, and an acyl group.
  • alkoxycarbonyl group examples include a tert-butoxycarbonyl group, a tert-amyloxycarbonyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an i-propoxycarbonyl group, and the like.
  • acetal group methoxymethyl group, ethoxyethyl group, butoxyethyl group, cyclohexyloxyethyl group, benzyloxyethyl group, phenethyloxyethyl group, ethoxypropyl group, benzyloxypropyl group, phenethyloxypropyl group, ethoxybutyl group, An ethoxyisobutyl group is exemplified.
  • silyl group examples include a trimethylsilyl group, an ethyldimethylsilyl group, a methyldiethylsilyl group, a triethylsilyl group, an i-propyldimethylsilyl group, a methyldi-i-propylsilyl group, a tri-i-propylsilyl group, and tert-butyl.
  • Examples include a dimethylsilyl group, a methyldi-tert-butylsilyl group, a tri-tert-butylsilyl group, a phenyldimethylsilyl group, a methyldiphenylsilyl group, and a triphenylsilyl group.
  • acyl group examples include, for example, acetyl, propionyl, butyryl, heptanoyl, hexanoyl, valeryl, pivaloyl, isovaleryl, lauryloyl, myristoyl, palmitoyl, stearoyl, oxalyl, malonyl, succinyl Group, glutaryl group, adipoyl group, piperoyl group, suberoyl group, azeolaoyl group, sebacoil group, acryloyl group, propioloyl group, methacryloyl group, crotonoyl group, oleoyl group, maleoyl group, fumaroyl group, mesaconoyl group, camphoryl group, benzoyl group , Phthaloyl, isophthaloyl, terephthaloyl, naphthoyl, toluoyl, hydroatropoyl, atrop
  • the structures represented by the general formulas (1) to (3) are preferably the structures represented by the following general formulas (6) to (8).
  • the compatibility between the photosensitive agent and the siloxane is improved, so that it is possible to prevent the film from becoming cloudy due to phase separation at the time of thermosetting, and to form a cured film without impairing the transparency.
  • a is an integer of 1 to 3, but from the viewpoint of solubility and chemical resistance, a is preferably 1 to 2, and more preferably a.
  • * indicates a bond directly connected to R 1 .
  • R 1 is a single bond, it represents a bond directly connected to a silicon atom.
  • These structures are preferably contained in the polysiloxane (A) in an amount of 5 to 50 mol%, more preferably 5 to 30 mol%.
  • the content ratio of the organosilane units represented by the general formulas (1) to (3) can be determined by measuring 29 Si-NMR of polysiloxane, and determining the peak area of Si having an aromatic group bonded thereto and the ratio of the aromatic group being bonded. It can be determined from the ratio of the peak area of the Si derived from the untreated organosilane unit.
  • organosilane units represented by the general formulas (1) to (3) can be identified using 1 H-NMR, 19 F-NMR, 13 C-NMR, IR, TOF-MS, and the like.
  • R 2 independently represents hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • Specific examples of the siloxane having the structure represented by the general formula (4) or (5) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetratertiarybutoxysilane, Methyl silicate 51 (manufactured by Fuso Chemical Industry Co., Ltd.), M silicate 51, silicate 40, silicate 45 (manufactured by Tama Chemical Industry Co., Ltd.), methyl silicate 51, methyl silicate 53A, ethyl silicate 48 (manufactured by Colcoat Co., Ltd.) and the like.
  • a desirable content is 5 to 50 mol%, more preferably 5 to 30 mol%, in the polysiloxane that is a hydrolyzed condensate.
  • the content ratio of the organosilane unit represented by the general formula (4) or (5) is determined by 1 H-NMR, 13 C-NMR, 29 Si-NMR, IR, TOF-MS, elemental analysis, ash measurement, and the like. Can be obtained in combination.
  • the polysiloxane may further contain a structure represented by the following general formulas (9) to (11).
  • R 2 is independently hydrogen or an alkyl group having 1 to 4 carbon atoms
  • R 3 is independently an organic group having 1 to 8 carbon atoms
  • R 4 is an organic group having 1 to 10 carbon atoms having a fluoro group. Represents a group.
  • Specific examples of the fluorine-containing silane compound having the structure of the general formulas (9) to (11) include trifluoroethyltrimethoxysilane, trifluoroethyltriethoxysilane, trifluoroethyltriisopropoxysilane, and trifluoropropyltrisilane.
  • triisopropoxysilane is used.
  • the content in the polysiloxane (A) is preferably from 5 to 50 mol%, more preferably from 10 to 40 mol%, from the viewpoint of chemical resistance.
  • the polysiloxane (A) used in the resin composition of the present invention may be copolymerized with another organosilane compound in addition to the above-mentioned organosilane compound.
  • the copolymerizable organosilane compound examples include methyltrimethoxysilane, methyltriethoxysilane, methyltri (methoxyethoxy) silane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, and ethyltrimethoxysilane.
  • Ethyltriethoxysilane hexyltrimethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2aminoethyl) -3-aminopropyltri Methoxysilane, 3-chloropropyltrimethoxysilane, 3- (N, N-glycidyl) aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, ⁇ -aminopropyl Trimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -cyanoethyltriethoxysilane
  • acryloyl propyl methyl dimethoxy silane .gamma. acryloyl propyl methyl diethoxy silane, .gamma.-methacryloxypropyltrimethoxysilane such as acryloyl propyl (methoxyethoxy) silane.
  • an organosilane compound having a hydrophilic group may be copolymerized as a raw material of the polysiloxane, if necessary.
  • an organosilane compound having a hydrophilic group an organosilane compound having a carboxylic acid structure or an organosilane compound having a carboxylic acid anhydride structure is preferable, and an organosilane compound having a carboxylic acid anhydride structure is more preferable.
  • organosilane compound having a carboxylic anhydride structure examples include an organosilane compound represented by any of the following formulas (12) to (14). Two or more of these may be used.
  • R 5 to R 7 , R 9 to R 11 and R 13 to R 15 each represent an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a phenyl group.
  • R 8 , R 12 and R 16 each represent a single bond or a linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 16 carbon atoms, and alkylcarbonyloxy having 2 to 6 carbon atoms.
  • h and k represent an integer of 0 to 3.
  • R 8 , R 12 and R 16 include —C 2 H 4 —, —C 3 H 6 —, —C 4 H 8 —, —O—, —C 3 H 6 OCH 2 CH (OH) Examples include CH 2 O 2 C—, —CO—, —CO 2 —, and —CONH—, and the following organic groups.
  • organosilane compound represented by the general formula (12) include 3-trimethoxysilylpropylsuccinic anhydride, 3-triethoxysilylpropylsuccinic anhydride, and 3-triphenoxysilylpropylsuccinic anhydride. Things.
  • organosilane compound represented by the general formula (13) include 3-trimethoxysilylpropylcyclohexyldicarboxylic anhydride.
  • organosilane compound represented by the general formula (14) examples include 3-trimethoxysilylpropyl phthalic anhydride.
  • the content of the component derived from the hydrolysis / condensation reaction product (siloxane compound) of the alkoxysilane compound in the resin composition is preferably at least 10% by mass, more preferably at least 20% by mass, based on the total solid content excluding the solvent. preferable. Further, the content is more preferably 80% by mass or less. By containing the siloxane compound in this range, the transmittance and crack resistance of the coating film can be further increased.
  • the hydrolysis reaction is preferably carried out at room temperature to 110 ° C. for 1 to 180 minutes after adding an acid catalyst and water to the above alkoxysilane compound in a solvent over 1 to 180 minutes. By performing the hydrolysis reaction under such conditions, a rapid reaction can be suppressed.
  • the reaction temperature is more preferably from 40 to 105 ° C.
  • the reaction solution is preferably heated at 50 ° C. or higher and the boiling point of the solvent for 1 to 100 hours to conduct a condensation reaction. Further, in order to increase the degree of polymerization of the siloxane compound obtained by the condensation reaction, reheating or addition of a base catalyst can be performed.
  • Various conditions for hydrolysis are to obtain physical properties suitable for the intended use by setting, for example, acid concentration, reaction temperature, reaction time, etc. in consideration of the reaction scale, the size and shape of the reaction vessel, etc. Can be.
  • Examples of the acid catalyst used in the hydrolysis reaction include acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polycarboxylic acids or anhydrides thereof, and ion exchange resins. Particularly, an acidic aqueous solution using formic acid, acetic acid or phosphoric acid is preferable.
  • the preferred content of the acid catalyst is preferably at least 0.05 part by mass, more preferably at least 0.1 part by mass, based on 100 parts by mass of all the alkoxysilane compounds used in the hydrolysis reaction. , Preferably 10 parts by mass or less, more preferably 5 parts by mass or less.
  • the total amount of the alkoxysilane compound refers to an amount including all of the alkoxysilane compound, its hydrolyzate, and its condensate, and hereinafter the same.
  • the weight average molecular weight (Mw) of the polysiloxane (A) used in the resin composition of the present invention is not particularly limited, but is preferably 1,000 or more in terms of polystyrene measured by gel permeation chromatography (GPC). More preferably, it is 2,000 or more. Further, it is preferably at most 100,000, more preferably at most 50,000. By setting Mw within the above range, good coating characteristics can be obtained, and the solubility in a developing solution at the time of pattern formation also becomes good.
  • the content of the polysiloxane (A) is not particularly limited and can be arbitrarily selected depending on the desired film thickness and intended use, but is generally 5% by mass to 80% by mass in the resin composition. It is. Further, the content is preferably from 5% by mass to 50% by mass, more preferably from 20% by mass to 40% by mass in the solid content.
  • Ion-exchanged water is preferable as the water used for the hydrolysis reaction.
  • the amount of water can be arbitrarily selected, but is preferably used in the range of 1.0 to 4.0 mol per 1 mol of the alkoxysilane compound.
  • the polysiloxane solution after hydrolysis and partial condensation does not contain the above catalyst, and the catalyst can be removed as necessary.
  • water washing and / or treatment with an ion-exchange resin are preferred from the viewpoint of easy operation and removability.
  • the water washing is a method of diluting a polysiloxane solution with an appropriate hydrophobic solvent, washing the resultant with water several times, and concentrating an organic layer obtained using an evaporator or the like.
  • the treatment with an ion exchange resin is a method in which a polysiloxane solution is brought into contact with an appropriate ion exchange resin.
  • the polysiloxane (A) used in the resin composition of the present invention is an organosilane compound derived from any of the structures of the above general formulas (1) to (3), and any one of the above general formulas (4) and (5). Hydrolyzing an organosilane compound derived from such a structure, and preferably an organosilane compound derived from any of the structures represented by the general formulas (9) to (11) in the presence of metal compound particles described below; When obtained by condensation of the hydrolyzate, the refractive index and hardness of the cured film are further improved.
  • the metal compound particles By performing polymerization of the polysiloxane in the presence of the metal compound particles, a chemical bond (covalent bond) with the metal compound particles is generated in at least a part of the polysiloxane, and the metal compound particles are uniformly dispersed to preserve the coating liquid. It is considered that the stability and the uniformity of the cured film are improved. Further, the refractive index of the obtained cured film can be adjusted depending on the type of the metal compound particles. As the metal compound particles, those exemplified as metal compound particles described later can be used.
  • the resin composition of the present invention contains (B) a solvent.
  • the solvent used in the resin composition of the present invention is not particularly limited, but it is preferable to contain at least one aromatic hydrocarbon solvent having a hetero atom.
  • Aromatic hydrocarbon solvents containing heteroatoms have high polarity but high solubility of organic compounds having a rigid skeleton such as naphthoquinonediazide.
  • the liquid be a liquid at 23 ° C. and 1 atm. If the melting point is higher than this, it is necessary to heat the material during use, and it becomes difficult to treat it as a solvent.
  • the boiling point of the solvent is preferably from 100 ° C to 300 ° C, more preferably from 120 ° C to 250 ° C.
  • the boiling point is 100 ° C. or higher, the volatility of the solvent is appropriately suppressed, the leveling property during coating is improved, and a uniform coating film is easily formed.
  • the boiling point is 300 ° C. or lower, the solvent hardly remains after the film is thermally cured, and the outgas of the cured film can be reduced.
  • aromatic hydrocarbon solvent having a hetero atom examples include benzyl alcohol, 2-methylbenzyl alcohol, 3-methylbenzyl alcohol, 4-methylbenzyl alcohol, 4-isopropylbenzyl alcohol, 1-phenylethyl alcohol, 2-phenyl-2-propanol, 2-ethylbenzyl alcohol, 3-ethylbenzyl alcohol, 4-ethylbenzyl alcohol, anisole, 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, 1,4-dimethoxybenzene, phenyl Ether, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, dibenzyl ether, methyl benzoate, ethyl benzoate, and 1,4-bis (methoxymethyl) benzene.
  • the content of these solvents is preferably from 10 to 50% by mass, more preferably from 20 to 40% by mass, based on all the solvents in the resin composition.
  • the content is 50% by mass or less, the drying property is improved when the resin composition is applied and dried.
  • the content is 10% by mass or more, the compatibility between the siloxane and the photosensitive agent is improved, and the coating property is improved.
  • solvent (B) used in the resin composition of the present invention include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, and propylene glycol monopropyl.
  • Ethers such as ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether; ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propyl acetate, butyl Acetate, isobutyl acetate, 3-methoxybutyl acetate Acetates, such as acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate, ethyl acetoacetate, methyl acetoacetate, propyl acetoacetate, butyl acetoacetate, and benzyl acetoacetate; acetylacetone, methylpropyl Ketones such as ketone, methyl butyl ketone, methyl isobutyl
  • the solvent include propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, and diacetone alcohol. , ⁇ -butyrolactone, ethyl lactate and the like. These may be used alone or in combination of two or more.
  • the content of the total solvent in the resin composition of the present invention is preferably in the range of 100 parts by mass to 9900 parts by mass, more preferably 100 parts by mass to 5000 parts by mass, based on 100 parts by mass of the total alkoxysilane compound content. Range.
  • the resin composition of the present invention preferably contains (C) a naphthoquinonediazide compound.
  • the resin composition containing a naphthoquinonediazide compound forms a positive type in which exposed portions are removed by a developer.
  • the naphthoquinonediazide compound used is not particularly limited, but is preferably a compound in which naphthoquinonediazidesulfonic acid is ester-bonded to a compound having a phenolic hydroxyl group, and the ortho position and the para position of the phenolic hydroxyl group of the compound are each independently.
  • a compound that is either hydrogen or a substituent represented by the general formula (15) is used.
  • R 17 , R 18 , and R 19 each independently represent any one of an alkyl group having 1 to 10 carbon atoms, a carboxyl group, a phenyl group, and a substituted phenyl group. Further, R 17 , R 18 and R 19 may form a ring.
  • the alkyl group may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition. Specific examples of the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-hexyl, cyclohexyl, n-heptyl, and n-butyl.
  • Examples include an octyl group, a trifluoromethyl group, and a 2-carboxyethyl group.
  • Examples of the substituent on the phenyl group include a hydroxyl group and a methoxy group.
  • Specific examples of the case where R 17 , R 18 , and R 19 form a ring include a cyclopentane ring, a cyclohexane ring, an adamantane ring, and a fluorene ring.
  • these naphthoquinonediazide compounds can be synthesized by a known esterification reaction between a compound having a phenolic hydroxyl group and naphthoquinonediazidesulfonic acid chloride.
  • Specific examples of the compound having a phenolic hydroxyl group include the following compounds (all manufactured by Honshu Chemical Industry Co., Ltd.).
  • 4-naphthoquinonediazidesulfonic acid chloride or 5-naphthoquinonediazidesulfonic acid chloride can be used as naphthoquinonediazidesulfonic acid chloride as a raw material.
  • the 4-naphthoquinonediazidosulfonic acid ester compound is suitable for i-line exposure because it has absorption in the i-line (wavelength 365 nm) region.
  • the 5-naphthoquinonediazidosulfonic acid ester compound has absorption in a wide range of wavelengths, and thus is suitable for exposure to a wide range of wavelengths.
  • a naphthoquinonediazide compound preferably used in the present invention includes a compound represented by the following general formula (16).
  • R 20 represents hydrogen or an alkyl group selected from 1 to 8 carbon atoms.
  • R 21 , R 22 , and R 23 each represent a hydrogen atom, an alkyl group selected from 1 to 8 carbon atoms, an alkoxyl group, a carboxyl group, or an ester group.
  • Each of R 21 , R 22 and R 23 may be the same or different.
  • Q represents either a 5-naphthoquinonediazidosulfonyl group or a hydrogen atom, and not all of Q is a hydrogen atom.
  • b, c, d, ⁇ , and ⁇ represent an integer of 0 to 4.
  • the addition amount of the naphthoquinonediazide compound is not particularly limited, but is preferably 1 to 30 parts by mass, more preferably 1 to 15 parts by mass, per 100 parts by mass of the resin (polysiloxane).
  • the addition amount of the naphthoquinonediazide compound is less than 1 part by mass, the dissolution contrast between the exposed and unexposed portions is too low and does not exhibit practically sufficient photosensitivity.
  • the amount is preferably 5 parts by mass or more.
  • the addition amount of the naphthoquinonediazide compound is more than 30 parts by mass, whitening of the coating film occurs due to poor compatibility between the polysiloxane and the naphthoquinonediazide compound, or coloring due to decomposition of the quinonediazide compound which occurs during heat curing. Because it becomes remarkable, the colorless transparency of the cured film decreases. Further, in order to obtain a highly transparent film, the amount is preferably 15 parts by mass or less.
  • the present invention preferably contains metal compound particles.
  • the metal compound particles are not particularly limited, but preferably contain (D) silica particles from the viewpoint of adjusting the refractive index.
  • (D) In the presence of silica particles and (B) a solvent, a silane compound derived from any of the structures of the above general formulas (1) to (3) and a structure of the above general formulas (4) and (5) From the viewpoint of compatibility, it is preferable to use a composite siloxane resin with silica particles (D) obtained by subjecting a derived silane compound to a condensation reaction after hydrolysis.
  • the silica particles preferably have a number average particle diameter of 1 to 200 nm.
  • the number average particle diameter is more preferably from 1 to 120 nm.
  • the number average particle diameter is more preferably 30 to 100 nm. If it is 1 nm or more, the low refractive index property is sufficient, and if it is 200 nm or less, the reflection is sufficiently suppressed, and the hardness of the film is sufficiently high.
  • the number average particle diameter of the silica particles should be measured by a gas adsorption method, a dynamic light scattering method, an X-ray small angle scattering method, a method of directly measuring the particle diameter by a transmission electron microscope or a scanning electron microscope, or the like. Can be.
  • the number average particle diameter of the particles in the present invention refers to a value measured by a dynamic light scattering method.
  • the silica particles (D) used in the present invention include silica particles having a porous and / or hollow inside and silica particles that are not porous and have no hollow inside.
  • silica particles silica particles having a porous and / or hollow inside are preferred for lowering the refractive index of the coating film.
  • Silica particles that are not porous and do not have hollows have a small refractive index reduction effect because the particles themselves have a refractive index of 1.45 to 1.5.
  • silica particles having a porous and / or hollow interior have a large effect of lowering the refractive index because the particles themselves have a refractive index of 1.2 to 1.4. That is, silica particles having a porous and / or hollow inside are preferably used because they can impart excellent hardness and can impart low refractive index.
  • Silica particles having a hollow inside refer to silica particles having a hollow portion surrounded by an outer shell. Further, the silica particles having a porous inside used in the present invention refers to silica particles having a large number of cavities on the surface or inside of the particles. Among these, in consideration of the hardness of the transparent coating, silica particles having hollows with high strength of the particles themselves are preferable.
  • the silica particles themselves preferably have a refractive index of 1.2 to 1.4, more preferably 1.2 to 1.35.
  • These silica particles (D) can be produced by the methods disclosed in Japanese Patent No. 3272111 and Japanese Patent Application Laid-Open No. 2001-233611. Examples of such (D) silica particles include, for example, those disclosed in JP-A-2001-233611 and those commercially available as disclosed in Japanese Patent No. 3272111.
  • the refractive index of the silica particles can be measured by the following method.
  • a mixed solution sample of (D) a matrix resin having a solid content concentration of 10% and a silica particle (D) prepared by adjusting the content of silica particles to 0% by mass, 20% by mass, 30% by mass, 40% by mass, and 50% by mass was prepared. Each of them was prepared and applied on a silicon wafer using a spin coater to a thickness of 0.3 to 1.0 ⁇ m, and then heated and dried on a hot plate at 200 ° C. for 5 minutes to form a coating film. Get.
  • the refractive index at a wavelength of 633 nm is determined using, for example, an ellipsometer (manufactured by Otsuka Electronics Co., Ltd.), and the value can be determined by extrapolating the value of (D) 100% by mass of the silica particles.
  • Introducing silica particles having a porous and / or hollow inside into the coating material can not only optimize the refractive index of the film obtained from the coating material but also increase the hardness of the film. preferable.
  • the silica particles which are not porous and have no hollow are, for example, IPA-ST using 12 nm particle size isopropanol as a dispersant, MIBK-ST using 12 nm particle size methyl isobutyl ketone as a dispersant, particles IPA-ST-L using isopropanol having a diameter of 45 nm as a dispersing agent, IPA-ST-ZL using isopropanol having a particle diameter of 100 nm as a dispersing agent (trade name, manufactured by Nissan Chemical Industries, Ltd.), ⁇ having a particle diameter of 12 nm -Oscar 101 using butyrolactone as a dispersant, Oscar 105 using 60-nm-diameter ⁇ -butyrolactone as a dispersant, and Oscar 106 using 120-nm-diameter diacetone alcohol as a dispersant. Co., Ltd.).
  • the presence or absence of the hollow can be confirmed by a particle cross
  • Examples of commercially available (D) silica particles include organosilica sol “OSCAL” (manufactured by JGC Catalysts & Chemicals, Inc.), colloidal silica “Snowtex”, organosilica sol (manufactured by Nissan Chemical Industries, Ltd.), High-purity colloidal silica, high-purity organosol “Quartron” (Fuso Chemical Industry Co., Ltd.) and the like can be mentioned.
  • organosilica sol “OSCAL” manufactured by JGC Catalysts & Chemicals, Inc.
  • colloidal silica “Snowtex” manufactured by Nissan Chemical Industries, Ltd.
  • High-purity colloidal silica high-purity organosol “Quartron” (Fuso Chemical Industry Co., Ltd.) and the like can be mentioned.
  • a cured film having a low refractive index it is preferable to contain hollow silica particles.
  • the presence or absence of the hollow can be confirmed by a particle cross-sectional image by a TEM (scanning electron microscope) photograph.
  • the content of the silica particles is not particularly limited and may be an appropriate amount depending on the application, but is generally about 1 to 80% by mass of the total solids of the siloxane-based resin composition. .
  • the resin composition of the present invention is obtained by mixing at least the (A) polysiloxane, (B) a solvent, and preferably (C) a naphthoquinonediazide compound. At this time, it may be diluted with an arbitrary solvent.
  • the mixing temperature is not particularly limited, but is preferably in the range of 5 to 50 ° C. for simplicity of operation.
  • the siloxane resin composition of the present invention may contain various curing agents for accelerating the curing of the resin composition or facilitating the curing.
  • the curing agent include nitrogen-containing organic substances, silicone resin curing agents, various metal alcoholates, various metal chelate compounds, isocyanate compounds and polymers thereof, methylolated melamine derivatives, methylolated urea derivatives, and the like. Or two or more kinds.
  • a metal chelate compound is preferably used in view of transparency of a coating film, stability of a curing agent, and the like.
  • the metal chelate compound examples include a titanium chelate compound, a zirconium chelate compound, an aluminum chelate compound and a magnesium chelate compound. These metal chelate compounds can be easily obtained by reacting a metal alkoxide with a chelating agent.
  • the chelating agent include ⁇ -diketones such as acetylacetone, benzoylacetone, and dibenzoylmethane; and ⁇ -keto acid esters such as ethyl acetoacetate and ethyl benzoylacetate.
  • the metal chelate compound examples include ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum diisopropylate, aluminum monoacetyl acetate bis (ethyl acetoacetate), and aluminum tris ( Aluminum chelate compounds such as acetylacetonate), magnesium chelate compounds such as ethyl acetoacetate magnesium monoisopropylate, magnesium bis (ethyl acetoacetate), alkyl acetoacetate magnesium monosopropylate, and magnesium bis (acetylacetonate).
  • the content of the curing agent is preferably 0.1% by mass to 10% by mass, more preferably 0.5% by mass to 6% by mass, based on the solid content in the siloxane resin composition.
  • the resin composition of the present invention may contain a curing catalyst such as a thermal acid generator.
  • a curing catalyst such as a thermal acid generator.
  • the thermal acid generator include various onium salt compounds such as aromatic diazonium salts, sulfonium salts, diaryliodonium salts, triarylsulfonium salts, and triarylselenium salts, sulfonic acid esters, and halogen compounds.
  • sulfonium salt 4-hydroxyphenyldimethylsulfonium triflate (prototype "W” manufactured by Sanshin Chemical Industry Co., Ltd.) and benzyl-4-hydroxyphenylmethylsulfonium triflate (prototype) “O” (manufactured by Sanshin Chemical Industry Co., Ltd.), 2-methylbenzyl-4-hydroxyphenylmethylsulfonium triflate (prototype “N” manufactured by Sanshin Chemical Industry Co., Ltd.), 4-methylbenzyl-4 -Hydroxyphenylmethylsulfonium triflate, 4-hydroxyphenylmethyl-1-naphthylmethylsulfonium triflate, 4-methoxycarbonyloxyphenyldimethylsulfonium triflate (prototype "J” Sansan Chemical Industry Co., Ltd.
  • aromatic diazonium salt examples include chlorobenzenediazonium hexafluorophosphate, dimethylaminobenzenediazonium hexafluoroantimonate, naphthyldiazonium hexafluorophosphate, and dimethylaminonaphthyldiazonium tetrafluoroborate.
  • diaryliodonium salt examples include diphenyliodonium tetrafluoroborate, diphenyliodonium hexafluoroantimonate, diphenyliodonium hexafluorophosphate, diphenyliodonium triflate, 4,4′-di-t-butyl-diphenyliodonium triflate, 4,4'-di-t-butyl-diphenyliodonium tetrafluoroborate, 4,4'-di-t-butyl-diphenyliodonium hexafluorophosphate and the like.
  • triarylsulfonium salt examples include triphenylsulfonium tetrafluoroborate, triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, tri (p-chlorophenyl) sulfonium tetrafluoroborate, (P-chlorophenyl) sulfonium hexafluorophosphate, tri (p-chlorophenyl) sulfonium hexafluoroantimonate, 4-t-butyltriphenylsulfonium hexafluorophosphate, and the like.
  • triarylselenium salts include triphenylselenium tetrafluoroborate, triphenylselenium hexafluorophosphate, triphenylselenium hexafluoroantimonate, di (chlorophenyl) phenylselenium tetrafluoroborate, and di (chlorophenyl) phenylselenium hexafluoro Phosphate, di (chlorophenyl) phenyl selenium hexafluoroantimonate and the like can be mentioned.
  • sulfonic acid esters examples include benzoin tosylate, p-nitrobenzyl-9,10-ethoxyanthracene-2-sulfonate, 2-nitrobenzyl tosylate, 2,6-dinitrobenzyl tosylate, and 2,4-dinitrobenzyl tosylate And the like.
  • halogen compound examples include 2-chloro-2-phenylacetophenone, 2,2 ', 4'-trichloroacetophenone, 2,4,6-tris (trichloromethyl) -s-triazine, and 2- (p-methoxystyryl)- 4,6-bis (trichloromethyl) -s-triazine, 2-phenyl-4,6-bis (trichloromethyl) -s-triazine, 2- (p-methoxyphenyl) -4,6-bis (trichloromethyl) -S-triazine, 2- (4'-methoxy-1'-naphthyl) -4,6-bis (trichloromethyl) -s-triazine, bis-2- (4-chlorophenyl) -1,1,1-trichloroethane , Bis-1- (4-chlorophenyl) -2,2,2-trichloroethanol, bis-2- (4-methoxyphenyl)
  • 5-norbornene-2,3-dicarboximidyl triflate (trade name “NDI-105” manufactured by Midori Kagaku Co., Ltd.), 5-norbornene-2,3-dicarboximidyl tosylate (trade name “NDI -101 "manufactured by Midori Kagaku Co., Ltd.), 4-methylphenylsulfonyloxyimino- ⁇ - (4-methoxyphenyl) acetonitrile (trade name” PAI-101 "manufactured by Midori Kagaku Co., Ltd.), trifluoromethylsulfonyloxyimino - ⁇ - (4-methoxyphenyl) acetonitrile (trade name “PAI-105” manufactured by Midori Kagaku Co., Ltd.), 9-camphorsulfonyloxyimino ⁇ -4-methoxyphenylacetonitrile (trade name “PAI-106”) Midori Chemical ( Co., Ltd.),
  • the resin composition of the present invention may contain various surfactants such as various fluorine-based surfactants and silicone-based surfactants in order to improve flowability at the time of application.
  • various surfactants such as various fluorine-based surfactants and silicone-based surfactants in order to improve flowability at the time of application.
  • type of surfactant for example, “MegaFac (registered trademark)” F142D, F172, F173, F183, F430, F444, F445, F470, F475, F477, F553, F554, F555, F556, F559, F560, F563 (all manufactured by Dainippon Ink and Chemicals, Inc.), NBX-15, FTX-218, DFX-18 (Neos Corporation) Fluorinated surfactants such as LE-604, LE-605, LE-606, LE-607 (manufactured by Kyoeisha Chemical Co., Ltd.), BYK-333, BYK-301, BYK-331, B
  • the resin composition of the present invention may contain, if necessary, a silane coupling agent, a crosslinking agent, a crosslinking accelerator, a sensitizer, a thermal radical generator, a dissolution accelerator, a dissolution inhibitor, a stabilizer, and an antifoaming agent. And the like.
  • the cured film of the present invention is obtained by curing the resin composition of the present invention or the photosensitive resin composition which is the resin composition of the present invention.
  • the photosensitive resin composition will be described in detail.
  • One embodiment of the method for producing a cured film of the photosensitive resin composition preferably includes the following steps. (I) a step of applying a photosensitive resin composition on a substrate to form a coating film; (II) a step of exposing and developing the coating, and (III) a step of heating the developed coating. An example will be described below.
  • the photosensitive resin composition is coated on the substrate by a known method such as spin coating or slit coating, and heated (prebaked) using a heating device such as a hot plate or an oven. Prebaking is preferably performed at a temperature in the range of 50 to 150 ° C. for 30 seconds to 30 minutes. The film thickness after prebaking is preferably 0.1 to 15 ⁇ m.
  • an ultraviolet-visible exposure machine such as a stepper, a mirror projection mask aligner (MPA), or a parallel light mask aligner (PLA)
  • MPA mirror projection mask aligner
  • PLA parallel light mask aligner
  • the (un) exposed area is dissolved and removed by development to obtain a negative or positive pattern.
  • the resolution of the pattern is preferably 15 ⁇ m or less.
  • a developing method it is preferable to immerse in a developing solution for 5 seconds to 10 minutes by a method such as shower, dip, or paddle.
  • a known alkali developing solution can be used.
  • inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, 2-diethylaminoethanol
  • examples include aqueous solutions of amines such as ethanolamine and diethanolamine, and quaternary ammonium salts such as tetramethylammonium hydroxide (TMAH) and choline.
  • TMAH tetramethylammonium hydroxide
  • dehydration and baking may be performed at a temperature in the range of 50 to 150 ° C. using a heating device such as a hot plate or an oven.
  • the film is heated (soft bake) at a temperature of 50 to 300 ° C. for 30 seconds to 30 minutes using a heating device such as a hot plate or an oven if necessary, and then heated to 150 to 300 ° C. using a heating device such as a hot plate or an oven.
  • a heating device such as a hot plate or an oven.
  • the photosensitive resin composition from the viewpoint of productivity in the pattern formation, it is preferable that the sensitivity at the time of exposure is 1500 J / m 2 or less, more preferably 1000 J / m 2 or less.
  • the sensitivity at the time of exposure is determined by the following method.
  • the photosensitive resin composition is spin-coated on a silicon wafer at an arbitrary number of revolutions using a spin coater, and prebaked at 120 ° C. for 3 minutes using a hot plate to produce a prebaked film having a thickness of 1 ⁇ m.
  • a cured film is prepared by curing at 220 ° C. for 5 minutes using a hot plate, and the minimum pattern dimension in sensitivity is determined as the post-curing resolution.
  • FIG. 1 shows a specific example of the method for manufacturing a cured film according to the present embodiment.
  • the resin composition of the present invention is applied on a substrate 1 to form a coating film 2. This is overheat-cured to obtain a cured film 3.
  • FIG. 2 shows a specific example of the method for manufacturing a cured film according to the present embodiment.
  • the steps up to the formation of the first coating film 2 are performed as described above.
  • the coating film 2 is exposed to actinic rays 4 and exposed. This is cured by heating to obtain a cured film 3.
  • FIG. 3 shows a specific example of the method for manufacturing a cured film according to the present embodiment.
  • the steps up to the formation of the first coating film 2 are performed as described above.
  • the coating film 2 is exposed to actinic light 4 via the mask 5 to be exposed.
  • the pattern 6 is obtained by developing the exposed coating film.
  • the pattern is irradiated with actinic rays 5 and cured by heating, whereby a cured film 3 is obtained.
  • the cured film obtained by curing the fat composition of the present invention preferably has a light transmittance of 90% or more, more preferably 92% or more per 1 ⁇ m of film thickness at a wavelength of 400 nm.
  • a high transmittance can be easily obtained, for example, by a photosensitive resin composition using a highly transparent polysiloxane as a resin component.
  • the transmittance of the cured film per 1 ⁇ m of film thickness at a wavelength of 400 nm is determined by the following method.
  • the photosensitive resin composition is spin-coated on a Tempax glass plate using a spin coater at an arbitrary rotation speed, and prebaked at 100 ° C. for 3 minutes using a hot plate.
  • the composition is thermally cured at 220 ° C. for 5 minutes in the air using a hot plate to produce a cured film having a thickness of 1 ⁇ m.
  • the ultraviolet-visible absorption spectrum of the obtained cured film is measured using MultiSpec-1500 manufactured by Shimadzu Corporation, and the transmittance at a wavelength of 400 nm is determined.
  • the extinction coefficient and the film thickness of each target cured film at each wavelength can be measured by a spectroscopic ellipsometer FE5000 manufactured by Otsuka Electronics Co., Ltd., and can be obtained by the following equation.
  • Transmittance exp ( ⁇ 4 ⁇ kt / ⁇ )
  • k the extinction coefficient
  • t the film thickness
  • the measurement wavelength
  • the resin composition of the present invention and a cured film obtained by curing the resin composition are suitably used for a solid-state imaging device, an optical filter, an organic EL device, and a display device such as a liquid crystal display, an organic EL television, particularly a transparent liquid crystal television.
  • a solid-state imaging device optical filter such as a backside illumination CMOS image sensor, a color mixing prevention wall, a transparent pixel, a flattening material for a display TFT substrate, a liquid crystal display, a color filter such as a see-through display, and the like.
  • a protective film, a phase shifter, and an antireflection film can be used as a buffer coat of a semiconductor device, an interlayer insulating film, or various protective films.
  • Apparatus JNM GX-270 manufactured by JEOL Ltd.
  • Measurement method Gated decoupling method Measurement nuclear frequency: 53.6693 MHz ( 29 Si nucleus), spectrum width: 20000 Hz Pulse width: 12 ⁇ sec (45 ° pulse), pulse repetition time: 30.0 sec Solvent: acetone-d6, reference substance: tetramethylsilane Measurement temperature: room temperature, sample rotation speed: 0.0 Hz.
  • the solid concentration of the polysiloxane solution was determined by the following method. 1.5 g of the polysiloxane solution was weighed into an aluminum cup and heated at 250 ° C. for 30 minutes using a hot plate to evaporate the liquid. The solid content remaining in the heated aluminum cup was weighed to determine the solid content concentration of the polysiloxane solution.
  • HfTMS (Hf-1) was contacted with celite and filtered, and the filtrate was washed three times with 100 mL of water, dried by adding Na2SO4, and filtered, and the solvent was distilled off.
  • the residue as a reaction product was distilled and produced using a Kugelrohr apparatus under the conditions of 140 ° C. to 190 ° C. and 200 Pa to obtain HfTMS (Hf-1) as a colorless liquid.
  • the result of 1 H-NMR measurement of the obtained HfTMS (Hf-1) was as follows.
  • HfTMS Hf-2
  • Hf compound H-2
  • Hf compound H-1
  • the result of 1 H-NMR measurement of the obtained HfTMS (Hf-1) was as follows.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5)
  • the molar amount in the siloxane was 20 mol% and 3 mol%, respectively.
  • Synthesis Example 4 Synthesis of Polysiloxane (P-2)
  • 112.22 g (0.551 mol) of MTMS, 66.97 g (0.037 mol) of HfTMS (Hf-1), and TES were prepared.
  • 185.62 g of PGMEA were charged, and an aqueous phosphoric acid solution obtained by dissolving 1.01 g of phosphoric acid (0.50% by mass based on charged monomers) in 61.30 g of water was added.
  • a siloxane (P-2) was obtained.
  • the solid content concentration of the obtained polysiloxane (P-2) was 42.8% by mass.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5)
  • the molar amount in the siloxane was 15 mol% and 10 mol%, respectively.
  • the molar amount in the siloxane was 15 mol% and 50 mol%, respectively.
  • Synthesis Example 6 Synthesis of Polysiloxane (P-4)
  • 31.16 g (0.184 mol) of MTMS, 55.79 g (0.037 mol) of HfTMS (Hf-1), and TES were prepared.
  • 188.34 g of PGMEA were charged, and an aqueous solution of phosphoric acid in which 1.01 g of phosphoric acid (0.50% by mass with respect to the charged monomers) was dissolved in 59.31 g of water was added.
  • a siloxane (P-4) was obtained.
  • the solid concentration of the obtained polysiloxane (P-4) was 42.5% by mass.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5)
  • the molar amount in the siloxane was 15 mol% and 60 mol%, respectively.
  • Synthesis Example 7 Synthesis of Polysiloxane (P-5)
  • 63.63 g (0.137 mol) of CFTMS, 196.49 g of PGMEA were charged, and 1.00 g of phosphoric acid was added to 53.35 g of water (0.50 mass% based on the charged monomer).
  • the dissolved phosphoric acid aqueous solution was added to obtain a polysiloxane (P-5).
  • the solid concentration of the obtained polysiloxane (P-5) was 43.7% by mass.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 15 mol% and 5 mol%, respectively.
  • Synthesis Example 8 Synthesis of Polysiloxane (P-6)
  • 62.52 (0.137 mol) of CFTMS, 196.59 g of PGMEA were charged, and 1.00 g of phosphoric acid (0.50% by mass based on charged monomers) was added to 53.28 g of water.
  • the dissolved phosphoric acid aqueous solution was added to obtain a polysiloxane (P-6).
  • the solid concentration of the obtained polysiloxane (P-6) was 42.9% by mass.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5)
  • the molar amount in the siloxane was 15 mol% and 10 mol%, respectively.
  • Synthesis Example 9 Synthesis of Polysiloxane (P-7)
  • MTMS was 46.14 g (0.257 mol)
  • HfTMS (Hf-1) was 59.01 g (0.037 mol)
  • TES was 30.24 g (0.072 mol)
  • 63.38 (0.137 mol) of CFTMS 197.97 g of PGMEA were charged
  • 0.99 g of phosphoric acid was added to 52.27 g of water (0.50 mass% based on the charged monomer).
  • the dissolved phosphoric acid aqueous solution was added to obtain a polysiloxane (P-7).
  • the solid concentration of the obtained polysiloxane (P-7) was 43.1% by mass.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5)
  • the molar amount in the siloxane was 15 mol% and 20 mol%, respectively.
  • Synthesis Example 10 Synthesis of Polysiloxane (P-8) In the same procedure as in Synthesis Example 1, 30.40 g (0.184 mol) of MTMS, 54.42 g (0.037 mol) of HfTMS (Hf-1), and TES were synthesized. 55.78 g (0.144 mol), 58.45 (0.137 mol) of CFTMS, 196.94 g of PGMEA were charged, and 1.00 g of phosphoric acid (0.50% by mass based on charged monomers) was added to 53.02 g of water. The dissolved phosphoric acid aqueous solution was added to obtain a polysiloxane (P-8).
  • the solid concentration of the obtained polysiloxane (P-8) was 43.2% by mass.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 15 mol% and 30 mol%, respectively.
  • the molar amount in the siloxane was 15 mol% and 50 mol%, respectively.
  • Synthesis Example 12 Synthesis of Polysiloxane (P-10) In the same procedure as in Synthesis Example 1, 54.02 g (0.294 mol) of MTMS, 40.30 g (0.025 mol) of HfTMS (Hf-1), and TES were synthesized. 41.31 g (0.096 mol), 64.92 (0.137 mol) of CFTMS, 191.35 g of PGMEA were charged, and 1.00 g of phosphoric acid (0.50% by mass based on charged monomers) was added to 57.11 g of water. The dissolved phosphoric acid aqueous solution was added to obtain a polysiloxane (P-10).
  • the solid content of the obtained polysiloxane (P-10) was 43.1% by mass.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 10 mol% and 20 mol%, respectively.
  • Synthesis Example 13 Synthesis of Polysiloxane (P-11)
  • 35.26 g (0.220 mol) of MTMS, 70.13 g (0.049 mol) of HfTMS (Hf-1), and TES 35.95 g (0.096 mol) of CFTMS, 201.48 g of PGMEA were charged, and 0.99 g of phosphoric acid was added to 49.70 g of water (0.50% by mass based on charged monomers).
  • the dissolved phosphoric acid aqueous solution was added to obtain a polysiloxane (P-11).
  • the solid concentration of the obtained polysiloxane (P-11) was 43.4% by mass.
  • the molar amount in the siloxane was 20 mol% and 20 mol%, respectively.
  • Synthesis Example 14 Synthesis of Polysiloxane (P-12)
  • MTMS was 20.80 g (0.147 mol)
  • HfTMS (Hf-1) was 93.11 g (0.074 mol)
  • TES was 31.82 g (0.096 mol)
  • 50.00 (0.137 mol) of CFTMS 209.29 g of PGMEA were charged, and 0.98 g of phosphoric acid (43.99 g of water) was added to 43.99 g of water.
  • the dissolved phosphoric acid aqueous solution was added to obtain a polysiloxane (P-12).
  • the solid content concentration of the obtained polysiloxane (P-12) was 43.0% by mass.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5)
  • the molar amount in the siloxane was 30 mol% and 20 mol%, respectively.
  • Synthesis Example 15 Synthesis of Polysiloxane (P-13) In a 500-ml three-necked flask, 109.25 g (0.565 mol) of MTMS, 84.67 g (0.049 mol) of HfTMS (Hf-2), and 6.51 g of TES ( 0.014 mol), 191.75 g of PGMEA were charged, and an aqueous phosphoric acid solution obtained by dissolving 1.00 g of phosphoric acid (0.50% by mass based on the charged monomers) in 56.82 g of water while stirring at room temperature was taken for 30 minutes. Was added. Thereafter, the flask was immersed in a 70 ° C.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5)
  • the molar amount in the siloxane was 20 mol% and 3 mol%, respectively.
  • Synthesis Example 16 Synthesis of Polysiloxane (R-1)
  • HfTMS Hf-1
  • PGMEA phosphorus-containing compound
  • An aqueous solution of phosphoric acid in which 0.94 g of acid (0.50% by mass based on the charged monomer) was dissolved was added to obtain a polysiloxane (R-1).
  • the solid concentration of the obtained polysiloxane (R-1) was 43.2% by mass.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5)
  • the molar amount in the siloxane was 100 mol% and 0 mol%, respectively.
  • Synthesis Example 17 Synthesis of Polysiloxane (R-2)
  • 41.54 g (0.330 mol) of MTMS, 151.49 g (0.135 mol) of HfTMS (Hf-1), and PGMEA were prepared.
  • the solid concentration of the obtained polysiloxane (R-2) was 43.5% by mass.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5)
  • the molar amount in the siloxane was 55 mol% and 0 mol%, respectively.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5)
  • the molar amount in the siloxane was 0 mol% and 0 mol%, respectively.
  • Synthesis Example 19 Synthesis of Polysiloxane (R-4)
  • 73.11 g (0.330 mol) of MTMS, 130.10 g (0.277 mol) of PhTMS, and 181.36 g of PGMEA were charged.
  • the solid concentration of the obtained polysiloxane (R-4) was 42.8% by mass.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5)
  • the molar amount in the siloxane was 0 mol% and 0 mol%, respectively.
  • Synthesis Example 20 Synthesis of Polysiloxane (R-5)
  • 120.70 g (0.111 mol) of HfTMS, 71.98 g (0.277 mol) of PhTMS, and 220.71 g of PGMEA were charged.
  • An aqueous phosphoric acid solution obtained by dissolving 0.97 g of phosphoric acid (0.50% by mass based on the charged monomers) in 35.64 g of water was added to obtain a polysiloxane (R-5).
  • the solid content of the obtained polysiloxane (R-5) was 43.2% by mass.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5)
  • the molar amount in the siloxane was 45 mol% and 0 mol%, respectively.
  • Synthesis Example 21 Synthesis of Polysiloxane (R-6)
  • 66.32 g (0.049 mol) of HfTMS, 129.44 g (0.403 mol) of PhTMS, and 209.20 g of PGMEA were charged.
  • An aqueous phosphoric acid solution obtained by dissolving 0.98 g of phosphoric acid (0.50% by mass based on charged monomers) in 44.06 g of water was added to obtain a polysiloxane (R-6).
  • the solid concentration of the obtained polysiloxane (R-6) was 43.2% by mass.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5)
  • the molar amount in the siloxane was 20 mol% and 0 mol%, respectively.
  • Table 1 shows the charged amounts of the alkoxysilanes, which are the raw materials for the polysiloxane (A) obtained in Synthesis Examples 1 to 18.
  • Synthesis Example 22 Synthesis of Polysiloxane (R-7) In the same procedure as in Synthesis Example 1, 15.46 g (0.011 mol) of MTMS, 19.27 g (0.088 mol) of CFTMS, and 10.51 g (0. 0.050 mol), 40.01 g of PGMEA, and an aqueous solution of phosphoric acid in which 0.23 g of phosphoric acid (0.50% by mass based on the charged monomer) was dissolved in 14.53 g of water, and polysiloxane (R-7) was added. ) Got. The solid concentration of the obtained polysiloxane (R-6) was 43.2% by mass.
  • the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5)
  • the molar amount in the siloxane was 0 mol% and 20 mol%, respectively.
  • Table 1 shows the charged amounts of the alkoxysilanes, which are the raw materials for the polysiloxane (A) obtained in Synthesis Examples 1 to 22.
  • Solvent Substitution Example 1 Solvent Substitution of "Surria” 4110 As metal oxide particles, the solvent of "Surria” 4110 (trade name, manufactured by JGC Catalysts & Chemicals, Inc.) was replaced with PGMEA from isopropanol. A 500 ml eggplant flask was charged with 100 g of Isopropanol sol (solid content concentration: 20%) of Sluria 4110 and 80 g of PGMEA, and the pressure was reduced at 30 ° C. for 30 minutes using an evaporator to remove IPA. The PGMEA solution of the resulting Sluria 4110 was obtained. The solid concentration of D-1 was measured and found to be 20.1%.
  • the thickness of the obtained cured film was measured (1) and the thickness was determined as a thickness t1. Subsequently, the cured film was immersed in acetone for 5 minutes, and then heated at 100 ° C. for 1 minute using a hot plate (HP-1SA manufactured by AS ONE Corporation). After the heating, the thickness of the cured film was measured by Surfcom to determine the thickness t2. The film thickness change rate X before and after acetone immersion was calculated by the following formula, and the chemical resistance was evaluated. The evaluation criteria are A to E below.
  • Film thickness change rate X (%) (t1 ⁇ t2) / t1 ⁇ 100
  • the minimum pattern dimension x is x ⁇ 15 ⁇ m
  • B The minimum pattern dimension x is 15 ⁇ m ⁇ x ⁇ 50 ⁇ m
  • C The minimum pattern dimension x is 50 ⁇ m ⁇ x ⁇ 100 ⁇ m
  • D The minimum pattern dimension x is 100 ⁇ m ⁇ x.
  • Example 1 The mixture was prepared according to the ratio of the resin composition (I) in Table 2, mixed and stirred under a yellow light to form a uniform solution, and then filtered through a 0.20 ⁇ m filter to prepare Composition 1.
  • spin coating is performed on a 4-inch silicon wafer using a spin coater (1H-360S manufactured by Mikasa Corporation), and then using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.). Heating at 120 ° C. for 3 minutes produced a pre-baked film having a thickness of 1.0 ⁇ m. Thereafter, the pre-baked film was cured at 230 ° C. for 5 minutes using a hot plate to form a cured film 1.
  • Example 19 The mixture was prepared at the ratio of the resin composition (I) in Table 4, mixed and stirred under a yellow light to form a uniform solution, and then filtered through a 0.20 ⁇ m filter to prepare a composition 25.
  • a 4-inch silicon wafer and a glass substrate were spin-coated using a spin coater (1H-360S, manufactured by Mikasa Co., Ltd.), and then heated on a hot plate (SCW-, manufactured by Dainippon Screen Mfg. Co., Ltd.). 636) and heated at 120 ° C. for 3 minutes to produce a pre-baked film, and (1) film thickness measurement was performed.
  • the prebaked film was shower-developed with a 2.38% by mass TMAH aqueous solution for 30 seconds using an automatic developing device (AD-2000 manufactured by Takizawa Sangyo Co., Ltd.), rinsed with water for 30 seconds, and then on the wafer and the glass substrate.
  • the obtained prebaked film is exposed by using an i-line stepper (i9C manufactured by Nikon Corporation) at intervals of 50 msec from 100 msec to 1000 msec, and then developed and cured in the same manner as described above. I got

Abstract

Provided is a resin composition which has a low refractive index, is excellent in terms of heat resistance, chemical resistance, and applicability, and has excellent patternability. The resin composition comprises (A) a polysiloxane and (B) a solvent, and is characterized in that the polysiloxane (A) includes a structure represented by any of specific general formulae (1) to (3) and a structure represented by either of specific general formulae (4) and (5).

Description

樹脂組成物、その硬化膜Resin composition, cured film thereof
 本発明は、樹脂組成物、その硬化膜、ならびにそれを具備する固体撮像素子、有機EL素子、表示装置に関する。 The present invention relates to a resin composition, a cured film thereof, and a solid-state imaging device, an organic EL device, and a display device including the same.
 近年、液晶ディスプレイや有機ELテレビなどにおいて、LED光源等を用いて、側面から光を導入し、狭額縁化、薄型化を実現している。特に、最近、液晶ディスプレイにおいて、透明液晶ディスプレイが新しい表示装置として、各社で精力的に検討、開発されている。その際側面から入射した光を効率よく一定方向に導光するため、低屈折率で、透明性が高く、加工プロセスに使用される薬品への耐薬品性に優れ、加熱工程において、黄変等の劣化を起こさない、耐熱性良好な新規材料が求められている。高透明で、低屈折率材料としては、特許文献1、2、3に示すように、ポリシロキサン材料が知られており、液晶ディスプレイやタッチパネル、固体撮像素子等に広く使用されている。しかしこれらの材料には、低屈折率にするため、フッ素含有シロキサン化合物の大量添加やシリカナノ粒子や中空シリカ等の粒子添加が採用されているが、フッ素含有シロキサン化合物の大量添加では、耐薬品性、耐熱性の低下は避けられず、粒子添加ではパターン状に加工した際、表面やエッジでの微細な凹凸が避けられなかった。粒子添加無しで、耐熱性、耐薬品性に優れた低屈折率材料が強く求められた。 In recent years, in a liquid crystal display, an organic EL television, and the like, light is introduced from the side using an LED light source or the like, thereby realizing a narrower frame and a thinner frame. In particular, recently, in liquid crystal displays, transparent liquid crystal displays have been intensively studied and developed by various companies as new display devices. At that time, the light incident from the side surface is efficiently guided in a certain direction, so it has a low refractive index, high transparency, excellent chemical resistance to chemicals used in the processing process, yellowing in the heating process, etc. There is a demand for a new material having good heat resistance, which does not cause deterioration of the material. As disclosed in Patent Documents 1, 2, and 3, polysiloxane materials are known as highly transparent and low refractive index materials, and are widely used in liquid crystal displays, touch panels, solid-state imaging devices, and the like. However, in these materials, a large amount of fluorine-containing siloxane compound and particles such as silica nanoparticles and hollow silica are added in order to reduce the refractive index. In addition, a decrease in heat resistance was unavoidable, and when the particles were processed into a pattern, fine irregularities on the surface and edges were unavoidable. A low-refractive-index material excellent in heat resistance and chemical resistance without addition of particles was strongly demanded.
特開2007-119744号公報JP 2007-119744 A 特開2013-014680号公報JP 2013-014680 A 特開2015-129908号公報JP 2015-129908 A
 上記で述べた課題を解決するために、本発明は、粒子添加無しで、耐熱性、耐薬品性に優れ、かつパターン加工性にも優れた低屈折率材料である樹脂組成物を提供することを目的とする。 In order to solve the problems described above, the present invention provides a resin composition which is a low refractive index material having excellent heat resistance, excellent chemical resistance, and excellent pattern workability without adding particles. With the goal.
 すなわち、本発明は、(A)ポリシロキサン、(B)溶剤を含有する樹脂組成物であって、前記(A)ポリシロキサンが、下記一般式(1)~(3)で表される構造を少なくとも一つ以上、および、下記一般式(4)~(5)で表される構造を少なくとも一つ以上含むことを特徴とする樹脂組成物である。 That is, the present invention provides a resin composition containing (A) a polysiloxane and (B) a solvent, wherein the (A) polysiloxane has a structure represented by the following general formulas (1) to (3). A resin composition comprising at least one or more structures having at least one structure represented by the following general formulas (4) and (5).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(Yは炭素数5~10の脂環族または芳香族の連結基である。Rは、単結合または炭素数1~4のアルキレン基、Rは互いに独立して、水素または炭素数1~4のアルキル基、Rは互いに独立して炭素数1~8の有機基、Xは水素原子または酸解離性基、aは1~3の整数、nは1~10の整数を示す。) (Y is an alicyclic or aromatic linking group having 5 to 10 carbon atoms. R 1 is a single bond or an alkylene group having 1 to 4 carbon atoms, and R 2 is independently hydrogen or 1 carbon atom. To 4 alkyl groups, R 3 are independently an organic group having 1 to 8 carbon atoms, X is a hydrogen atom or an acid dissociable group, a is an integer of 1 to 3, and n is an integer of 1 to 10. )
 本発明によれば、低屈折率で、耐熱性、耐薬品性、塗布性に優れ、かつパターン加工性に優れた樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a resin composition having a low refractive index, having excellent heat resistance, chemical resistance, and applicability, and having excellent pattern workability.
本発明の実施の形態に係る樹脂組成物を用いた硬化膜の作製例を示す工程図である。FIG. 3 is a process chart showing an example of producing a cured film using the resin composition according to the embodiment of the present invention. 本発明の実施の形態に係る樹脂組成物を用いた硬化膜の作製例を示す工程図である。FIG. 3 is a process chart showing an example of producing a cured film using the resin composition according to the embodiment of the present invention. 本発明の実施の形態に係る樹脂組成物を用いた硬化膜の作製例を示す工程図である。FIG. 3 is a process chart showing an example of producing a cured film using the resin composition according to the embodiment of the present invention.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 <(A)ポリシロキサン>
 本発明の樹脂組成物は、下記一般式(1)~(3)で表される構造を少なくとも一つ以上、および、下記一般式(4)~(5)で表される構造を少なくとも一つ以上含むポリシロキサンを含有する。ポリシロキサン中に(1)~(3)で表される構造を少なくとも一つ以上、および、(4)~(5)で表される構造を少なくとも一つ以上、含有することで、ポリシロキサンのアルカリ溶解性を高めつつ、感光剤とシラノールの相互作用によるアルカリ溶解抑止効果が発現できるため、現像前後において露光部と未露光部のコントラストを高め、解像度に優れた膜を得ることができる。
<(A) polysiloxane>
The resin composition of the present invention has at least one structure represented by the following general formulas (1) to (3) and at least one structure represented by the following general formulas (4) to (5) It contains the polysiloxane contained above. By including at least one or more of the structures represented by (1) to (3) and at least one or more of the structures represented by (4) to (5) in the polysiloxane, Since the alkali dissolution inhibiting effect due to the interaction between the photosensitizer and the silanol can be exhibited while enhancing the alkali solubility, the contrast between the exposed and unexposed portions before and after development can be increased, and a film having excellent resolution can be obtained.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(Yは炭素数5~10の脂環族または芳香族の連結基である。Rは、単結合または炭素数1~4のアルキレン基、Rは互いに独立して、水素または炭素数1~4のアルキル基、Rは互いに独立して炭素数1~8の有機基、Xは水素原子または酸解離性基、aは1~3の整数、nは1~10の整数を示す。)
 一般式(1)~(3)で表される構造において、Yは炭素数5~10の脂環族または芳香族の連結基である。Rは単結合または炭素数1~4のアルキレン基、Rは互いに独立して水素または炭素数1~4のアルキル基、Rは互いに独立して炭素数1~8の有機基、Xは水素原子または酸解離性基、aは1~3の整数、nは1~10の整数を示す。
(Y is an alicyclic or aromatic linking group having 5 to 10 carbon atoms. R 1 is a single bond or an alkylene group having 1 to 4 carbon atoms, and R 2 is independently hydrogen or 1 carbon atom. To 4 alkyl groups, R 3 are independently an organic group having 1 to 8 carbon atoms, X is a hydrogen atom or an acid dissociable group, a is an integer of 1 to 3, and n is an integer of 1 to 10. )
In the structures represented by the general formulas (1) to (3), Y is an alicyclic or aromatic linking group having 5 to 10 carbon atoms. R 1 is a single bond or an alkylene group having 1 to 4 carbon atoms; R 2 is independently hydrogen or an alkyl group having 1 to 4 carbon atoms; R 3 is independently an organic group having 1 to 8 carbon atoms; Represents a hydrogen atom or an acid dissociable group, a represents an integer of 1 to 3, and n represents an integer of 1 to 10.
 Rのアルキレン基の具体例としては、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、t-ブチレン基などが挙げられる。 Specific examples of the alkylene group for R 1 include a methylene group, an ethylene group, an n-propylene group, an isopropylene group, an n-butylene group, and a t-butylene group.
 Rのアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブトキシ基、t-ブチル基などが挙げられる。 Specific examples of the alkyl group for R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutoxy group, a t-butyl group, and the like.
 Rの有機基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、シクロヘキシル基、フェニル基、ナフチル基などが挙げられる。 Examples of the organic group for R 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a cyclohexyl group, a phenyl group, and a naphthyl group.
 Xは水素原子または酸解離性基であり、Xが複数個存在する場合は、Xは互いに同じでも異なっていてもよい。ここで、酸解離性基とは、酸の存在下で解離して極性基を生じる基である。上記酸解離性基は、アルカリに対しては比較的安定なアセタール構造又はケタール構造を有しており、これらが酸の作用によって、解離することとなる。具体的に例示すると、アルコキシカルボニル基、アセタール基、シリル基、アシル基等を挙げることができるがこの限りではない。アルコキシカルボニル基としては、例えば、tert-ブトキシカルボニル基、tert-アミルオキシカルボニル基、メトキシカルボニル基、エトキシカルボニル基、i-プロポキシカルボニル基等を例示できる。アセタール基としては、メトキシメチル基、エトキシエチル基、ブトキシエチル基、シクロヘキシルオキシエチル基、ベンジルオキシエチル基、フェネチルオキシエチル基、エトキシプロピル基、ベンジルオキシプロピル基、フェネチルオキシプロピル基、エトキシブチル基、エトキシイソブチル基などが挙げられる。シリル基としては、例えば、トリメチルシリル基、エチルジメチルシリル基、メチルジエチルシリル基、トリエチルシリル基、i-プロピルジメチルシリル基、メチルジ-i-プロピルシリル基、トリ-i-プロピルシリル基、tert-ブチルジメチルシリル基、メチルジ-tert-ブチルシリル基、トリ-tert-ブチルシリル基、フェニルジメチルシリル基、メチルジフェニルシリル基、トリフェニルシリル基等を挙げることができる。アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、ヘプタノイル基、ヘキサノイル基、バレリル基、ピバロイル基、イソバレリル基、ラウリロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オキサリル基、マロニル基、スクシニル基、グルタリル基、アジポイル基、ピペロイル基、スベロイル基、アゼラオイル基、セバコイル基、アクリロイル基、プロピオロイル基、メタクリロイル基、クロトノイル基、オレオイル基、マレオイル基、フマロイル基、メサコノイル基、カンホロイル基、ベンゾイル基、フタロイル基、イソフタロイル基、テレフタロイル基、ナフトイル基、トルオイル基、ヒドロアトロポイル基、アトロポイル基、シンナモイル基、フロイル基、テノイル基、ニコチノイル基、イソニコチノイル基等を挙げることができる。これらの酸解離性基の水素原子の一部又は全部がフッ素原子で置換されたものを使用することもできる。また、これらの酸解離性基は単種類が(A)ポリシロキサン化合物に導入されていてもよいし、複数種類が導入されていてもよい。 X is a hydrogen atom or an acid dissociable group, and when there are a plurality of Xs, the Xs may be the same or different. Here, the acid dissociable group is a group that dissociates in the presence of an acid to generate a polar group. The acid dissociable group has an acetal structure or a ketal structure which is relatively stable to alkali, and these are dissociated by the action of an acid. Specific examples include, but are not limited to, an alkoxycarbonyl group, an acetal group, a silyl group, and an acyl group. Examples of the alkoxycarbonyl group include a tert-butoxycarbonyl group, a tert-amyloxycarbonyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an i-propoxycarbonyl group, and the like. As the acetal group, methoxymethyl group, ethoxyethyl group, butoxyethyl group, cyclohexyloxyethyl group, benzyloxyethyl group, phenethyloxyethyl group, ethoxypropyl group, benzyloxypropyl group, phenethyloxypropyl group, ethoxybutyl group, An ethoxyisobutyl group is exemplified. Examples of the silyl group include a trimethylsilyl group, an ethyldimethylsilyl group, a methyldiethylsilyl group, a triethylsilyl group, an i-propyldimethylsilyl group, a methyldi-i-propylsilyl group, a tri-i-propylsilyl group, and tert-butyl. Examples include a dimethylsilyl group, a methyldi-tert-butylsilyl group, a tri-tert-butylsilyl group, a phenyldimethylsilyl group, a methyldiphenylsilyl group, and a triphenylsilyl group. Examples of the acyl group include, for example, acetyl, propionyl, butyryl, heptanoyl, hexanoyl, valeryl, pivaloyl, isovaleryl, lauryloyl, myristoyl, palmitoyl, stearoyl, oxalyl, malonyl, succinyl Group, glutaryl group, adipoyl group, piperoyl group, suberoyl group, azeolaoyl group, sebacoil group, acryloyl group, propioloyl group, methacryloyl group, crotonoyl group, oleoyl group, maleoyl group, fumaroyl group, mesaconoyl group, camphoryl group, benzoyl group , Phthaloyl, isophthaloyl, terephthaloyl, naphthoyl, toluoyl, hydroatropoyl, atropoyl, cinnamoyl, furoyl, tenoyl, nicotinoyl, isonico It can be exemplified alkanoyl group. Those in which part or all of the hydrogen atoms of these acid dissociable groups are substituted with fluorine atoms can also be used. Further, a single kind of these acid dissociable groups may be introduced into the polysiloxane compound (A), or a plurality of kinds may be introduced.
 一般式(1)~(3)で表される構造は、同じものであるが下記の(1’)~(3’)とも表記される。 構造 The structures represented by the general formulas (1) to (3) are the same, but are also represented by the following (1 ′) to (3 ′).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 また、一般式(4)、(5)で表される構造は、同じものであるが下記の(4’)、(5’)とも表記される。 構造 Further, the structures represented by the general formulas (4) and (5) are the same, but are also represented by the following (4 ') and (5').
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 前記一般式(1)~(3)で表される構造は下記一般式(6)~(8)で示される構造が好ましい。下記の構造であることで感光剤とシロキサンの相溶性が向上するため、熱硬化時に各々が相分離することによる膜の白濁化を防止し、透明性を損なうことなく硬化膜を形成できる。 構造 The structures represented by the general formulas (1) to (3) are preferably the structures represented by the following general formulas (6) to (8). With the following structure, the compatibility between the photosensitive agent and the siloxane is improved, so that it is possible to prevent the film from becoming cloudy due to phase separation at the time of thermosetting, and to form a cured film without impairing the transparency.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記一般式で表される部分の具体例としては、aは1~3の整数であるが、溶解性、耐薬性の観点からaは1~2が好ましく、aが1であるとさらに好ましい。
これらの具体例を一般式で示すと以下の構造が挙げられる。
As a specific example of the portion represented by the above general formula, a is an integer of 1 to 3, but from the viewpoint of solubility and chemical resistance, a is preferably 1 to 2, and more preferably a.
When these specific examples are represented by general formulas, the following structures can be mentioned.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 ここで*はRに直結する結合を示す。Rが単結合の場合にはケイ素原子に直結する結合を示す。これらの構造を含有することにより、低屈折率で塗布性に優れ、さらにパターン加工性にも優れた組成物を得ることができる。これらの構造は、(A)ポリシロキサン中に5~50mol%含有することが好ましく、5~30mol%含有するとさらに好ましい。上記一般式(1)~(3)で表されるオルガノシラン単位の含有比率は、ポリシロキサンの29Si-NMRを測定し、芳香族基が結合したSiのピーク面積と、芳香族基が結合していないオルガノシラン単位由来のSiのピーク面積の比から求めることができる。 Here, * indicates a bond directly connected to R 1 . When R 1 is a single bond, it represents a bond directly connected to a silicon atom. By containing these structures, it is possible to obtain a composition having a low refractive index, excellent coating properties, and excellent pattern processing properties. These structures are preferably contained in the polysiloxane (A) in an amount of 5 to 50 mol%, more preferably 5 to 30 mol%. The content ratio of the organosilane units represented by the general formulas (1) to (3) can be determined by measuring 29 Si-NMR of polysiloxane, and determining the peak area of Si having an aromatic group bonded thereto and the ratio of the aromatic group being bonded. It can be determined from the ratio of the peak area of the Si derived from the untreated organosilane unit.
 また、一般式(1)~(3)で表されるオルガノシラン単位はH-NMR、19F-NMR、13C-NMR、IR、TOF-MS等を用いて同定することができる。 The organosilane units represented by the general formulas (1) to (3) can be identified using 1 H-NMR, 19 F-NMR, 13 C-NMR, IR, TOF-MS, and the like.
 次に一般式(4)または(5)で表される構造において、式中Rは互いに独立して、水素、または炭素数1~4のアルキル基を示す。一般式(4)または(5)で表される構造を有するシロキサンの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、テトラターシャリブトキシシラン、メチルシリケート51(扶桑化学工業株式会社製)、Mシリケート51、シリケート40、シリケート45(多摩化学工業株式会社製)、メチルシリケート51、メチルシリケート53A、エチルシリケート48(コルコート株式会社製)等が挙げられる。これらのオルガノシランを含有することにより、耐薬品性を向上させることができる。望ましい含有量は加水分解縮合物であるポリシロキサン中に5~50mol%、より好ましくは5~30mol%である。一般式(4)または(5)で表されるオルガノシラン単位の含有比率は、H-NMR、13C-NMR、29Si-NMR、IR、TOF-MS、元素分析法、灰分測定などを組み合わせて求めることができる。 Next, in the structure represented by the general formula (4) or (5), R 2 independently represents hydrogen or an alkyl group having 1 to 4 carbon atoms. Specific examples of the siloxane having the structure represented by the general formula (4) or (5) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetratertiarybutoxysilane, Methyl silicate 51 (manufactured by Fuso Chemical Industry Co., Ltd.), M silicate 51, silicate 40, silicate 45 (manufactured by Tama Chemical Industry Co., Ltd.), methyl silicate 51, methyl silicate 53A, ethyl silicate 48 (manufactured by Colcoat Co., Ltd.) and the like. Can be By containing these organosilanes, the chemical resistance can be improved. A desirable content is 5 to 50 mol%, more preferably 5 to 30 mol%, in the polysiloxane that is a hydrolyzed condensate. The content ratio of the organosilane unit represented by the general formula (4) or (5) is determined by 1 H-NMR, 13 C-NMR, 29 Si-NMR, IR, TOF-MS, elemental analysis, ash measurement, and the like. Can be obtained in combination.
 さらに(A)ポリシロキサンは下記一般式(9)~(11)で表される構造を含有してもよい。 (A) The polysiloxane may further contain a structure represented by the following general formulas (9) to (11).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 (Rは互いに独立して、水素または炭素数1~4のアルキル基、Rは互いに独立して炭素数1~8の有機基、Rはフルオロ基を有する炭素数1~10の有機基を示す。)
 一般式(9)~(11)の構造を有する、フッ素含有シラン化合物の具体例としては、トリフルオロエチルトリメトキシシラン、トリフルオロエチルトリエトキシシラン、トリフルオロエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリフルオロプロピルトリイソプロポキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、ヘプタデカフルオロデシルトリイソプロポキシシラン、トリデカフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリイソプロポキシシラン、トリフルオロエチルメチルジメトキシシラン、トリフルオロエチルメチルジエトキシシラン、トリフルオロエチルメチルジイソプロポキシシラン、トリフルオロプロピルメチルジメトキシシラン、トリフルオロプロピルメチルジエトキシシラン、トリフルオロプロピルメチルジイソプロポキシシラン、ヘプタデカフルオロデシルメチルジメトキシシラン、ヘプタデカフルオロデシルメチルジエトキシシラン、ヘプタデカフルオロデシルメチルジイソプロポキシシラン、トリデカフルオロオクチルメチルジメトキシシラン、トリデカフルオロオクチルメチルジエトキシシラン、トリデカフルオロオクチルメチルジイソプロポキシシラン、トリフルオロエチルエチルジメトキシシラン、トリフルオロエチルエチルジエトキシシラン、トリフルオロエチルエチルジイソプロポキシシラン、トリフルオロプロピルエチルジメトキシシラン、トリフルオロプロピルエチルジエトキシシラン、トリフルオロプロピルエチルジイソプロポキシシラン、ヘプタデカフルオロデシルエチルジメトキシシラン、ヘプタデカフルオロデシルエチルジエトキシシラン、ヘプタデカフルオロデシルエチルジイソプロポキシシラン、トリデカフルオロオクチルエチルジエトキシシラン、トリデカフルオロオクチルエチルジメトキシシラン、トリデカフルオロオクチルエチルジイソプロポキシシランなどが挙げられる。これらを2種以上用いてもよい。
(R 2 is independently hydrogen or an alkyl group having 1 to 4 carbon atoms, R 3 is independently an organic group having 1 to 8 carbon atoms, and R 4 is an organic group having 1 to 10 carbon atoms having a fluoro group. Represents a group.)
Specific examples of the fluorine-containing silane compound having the structure of the general formulas (9) to (11) include trifluoroethyltrimethoxysilane, trifluoroethyltriethoxysilane, trifluoroethyltriisopropoxysilane, and trifluoropropyltrisilane. Methoxysilane, trifluoropropyltriethoxysilane, trifluoropropyltriisopropoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane, heptadecafluorodecyltriisopropoxysilane, tridecafluorooctyltriethoxysilane , Tridecafluorooctyltrimethoxysilane, tridecafluorooctyltriisopropoxysilane, trifluoroethylmethyldimethoxysilane, trifluoroethylmethyl Ethoxysilane, trifluoroethylmethyldiisopropoxysilane, trifluoropropylmethyldimethoxysilane, trifluoropropylmethyldiethoxysilane, trifluoropropylmethyldiisopropoxysilane, heptadecafluorodecylmethyldimethoxysilane, heptadecafluorodecylmethyldimethoxysilane Ethoxysilane, heptadecafluorodecylmethyldiisopropoxysilane, tridecafluorooctylmethyldimethoxysilane, tridecafluorooctylmethyldiethoxysilane, tridecafluorooctylmethyldiisopropoxysilane, trifluoroethylethyldimethoxysilane, trifluoroethyl Ethyldiethoxysilane, trifluoroethylethyldiisopropoxysilane, trifluoropropylethyldimethyl Xysilane, trifluoropropylethyldiethoxysilane, trifluoropropylethyldiisopropoxysilane, heptadecafluorodecylethyldimethoxysilane, heptadecafluorodecylethyldiethoxysilane, heptadecafluorodecylethyldiisopropoxysilane, tridecafluorooctyl Examples include ethyldiethoxysilane, tridecafluorooctylethyldimethoxysilane, and tridecafluorooctylethyldiisopropoxysilane. Two or more of these may be used.
 これらのうち、耐薬品性の観点から、トリフルオロエチルトリメトキシシラン、トリフルオロエチルトリエトキシシラン、トリフルオロエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリフルオロプロピルトリイソプロポキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、ヘプタデカフルオロデシルトリイソプロポキシシラン、トリデカフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリイソプロポキシシランを用いることが好ましい。また、均一なコーティング膜を形成する観点から、トリフルオロエチルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、トリデカフルオロオクチルトリメトキシシランを用いることが特に好ましい。ポリシロキサン(A)中の含有量としては耐薬性の観点から5~50mol%が好ましく、10~40mol%がより好ましい。
本発明の樹脂組成物に用いられる(A)ポリシロキサンには、上記オルガノシラン化合物に加えて、他のオルガノシラン化合物を共重合してもよい。共重合可能なオルガノシラン化合物の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ(メトキシエトキシ)シラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2アミノエチル)-3-アミノプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-(N,N-グリシジル)アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、β-シアノエチルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリイソプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリ(メトキシエトキシ)シラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、σ-グリシドキシブチルトリメトキシシラン、σ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルメチルジエトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、β-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジ(メトキシエトキシ)シラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルメチルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、オクタデシルメチルジメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、γ-アクリロイルプロピルトリメトキシシラン、γ-アクリロイルプロピルトリエトキシシラン、γ-アクリロイルプロピルトリ(メトキシエトキシ)シラン、γ-メタクリロイルプロピルトリメトキシシラン、γ-メタクリロイルプロピルトリエトキシシラン、γ-メタクリロイルプロピルトリ(メトキシエトキシ)シラン、γ-メタクリロイルプロピルメチルジメトキシシラン、γ-メタクリロイルプロピルメチルジエトキシシラン、γ-アクリロイルプロピルメチルジメトキシシラン、γ-アクリロイルプロピルメチルジエトキシシラン、γ-メタクリロイルプロピル(メトキシエトキシ)シランなどが挙げられる。
Among these, from the viewpoint of chemical resistance, trifluoroethyltrimethoxysilane, trifluoroethyltriethoxysilane, trifluoroethyltriisopropoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, trifluoropropyl Triisopropoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane, heptadecafluorodecyltriisopropoxysilane, tridecafluorooctyltriethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyl Preferably, triisopropoxysilane is used. From the viewpoint of forming a uniform coating film, it is particularly preferable to use trifluoroethyltrimethoxysilane, trifluoropropyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, and tridecafluorooctyltrimethoxysilane. The content in the polysiloxane (A) is preferably from 5 to 50 mol%, more preferably from 10 to 40 mol%, from the viewpoint of chemical resistance.
The polysiloxane (A) used in the resin composition of the present invention may be copolymerized with another organosilane compound in addition to the above-mentioned organosilane compound. Specific examples of the copolymerizable organosilane compound include methyltrimethoxysilane, methyltriethoxysilane, methyltri (methoxyethoxy) silane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, and ethyltrimethoxysilane. , Ethyltriethoxysilane, hexyltrimethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2aminoethyl) -3-aminopropyltri Methoxysilane, 3-chloropropyltrimethoxysilane, 3- (N, N-glycidyl) aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, γ-aminopropyl Trimethoxysilane, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, β-cyanoethyltriethoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxy Silane, α-glycidoxyethyltrimethoxysilane, α-glycidoxyethyltriethoxysilane, β-glycidoxypropyltrimethoxysilane, β-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxy Silane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltripropoxysilane, γ-glycidoxypropyltriisopropoxysilane, γ-glycidoxypropyltributoxysilane, γ-glycidoxypropyltri (Methoxyet Xy) silane, α-glycidoxybutyltrimethoxysilane, α-glycidoxybutyltriethoxysilane, β-glycidoxybutyltrimethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyl Trimethoxysilane, γ-glycidoxybutyltriethoxysilane, σ-glycidoxybutyltrimethoxysilane, σ-glycidoxybutyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3 4- (epoxycyclohexyl) methyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltripropoxysilane, 2- (3,4-epoxycyclohexyl) ethyltributoxysilane, 2- (3,4-epoxycyclohexyl) Ethyltrimethoxysilane, 2- ( 3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriphenoxysilane, 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane, 3- (3,4-epoxycyclohexyl) ) Propyltriethoxysilane, 4- (3,4-epoxycyclohexyl) butyltrimethoxysilane, 4- (3,4-epoxycyclohexyl) butyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, γ-glycidoxy Propylmethyldimethyldimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, glycidoxymethyldimethoxy Sisilane, glycidoxymethylmethyldiethoxysilane, α-glycidoxyethylmethyldimethoxysilane, α-glycidoxyethylmethyldiethoxysilane, β-glycidoxyethylmethyldimethoxysilane, β-glycidoxyethylmethyldi Ethoxysilane, α-glycidoxypropylmethyldimethoxysilane, α-glycidoxypropylmethyldiethoxysilane, β-glycidoxypropylmethyldimethoxysilane, β-glycidoxypropylmethyldiethoxysilane, γ-glycidoxy Propylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldipropoxysilane, β-glycidoxypropylmethyldibutoxysilane, γ-glycidoxypropylmethyldi (methoxyethoxy) Orchid, γ-glycidoxypropylethyldimethoxysilane, γ-glycidoxypropylethyldiethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropylmethyldiethoxysilane, cyclohexylmethyldimethoxysilane, octadecylmethyldimethoxysilane, Tetramethoxysilane, tetraethoxysilane, γ-acryloylpropyltrimethoxysilane, γ-acryloylpropyltriethoxysilane, γ-acryloylpropyltri (methoxyethoxy) silane, γ-methacryloylpropyltrimethoxysilane, γ-methacryloylpropyltriethoxysilane , Γ-methacryloylpropyltri (methoxyethoxy) silane, γ-methacryloylpropylmethyldimethoxysilane, γ-methacryloylpropyl Methyl diethoxy silane, .gamma. acryloyl propyl methyl dimethoxy silane, .gamma. acryloyl propyl methyl diethoxy silane, .gamma.-methacryloxypropyltrimethoxysilane such as acryloyl propyl (methoxyethoxy) silane.
 これらを2種以上使用してもよい。さらにポリシロキサンの原料として親水性基を有するオルガノシラン化合物を必要に応じて共重合してもよい。親水性基を有するオルガノシラン化合物としては、カルボン酸構造を有するオルガノシラン化合物またはカルボン酸無水物構造を有するオルガノシラン化合物が好ましく、カルボン酸無水物構造を有するオルガノシラン化合物がより好ましい。 Two or more of these may be used. Further, an organosilane compound having a hydrophilic group may be copolymerized as a raw material of the polysiloxane, if necessary. As the organosilane compound having a hydrophilic group, an organosilane compound having a carboxylic acid structure or an organosilane compound having a carboxylic acid anhydride structure is preferable, and an organosilane compound having a carboxylic acid anhydride structure is more preferable.
 カルボン酸無水物構造を有するオルガノシラン化合物の具体例としては、下記一般式(12)~(14)のいずれかで表されるオルガノシラン化合物が挙げられる。これらを2種以上用いてもよい。 具体 Specific examples of the organosilane compound having a carboxylic anhydride structure include an organosilane compound represented by any of the following formulas (12) to (14). Two or more of these may be used.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(12)~(14)中、R~R、R~R11およびR13~R15は、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、フェニル基、フェノキシ基または炭素数2~6のアルキルカルボニルオキシ基を表す。R、R12およびR16は、単結合、または炭素数1~10の鎖状脂肪族炭化水素基、炭素数3~16の環状脂肪族炭化水素基、炭素数2~6のアルキルカルボニルオキシ基、カルボニル基、エーテル基、エステル基、アミド基、芳香族基、もしくはこれらのいずれかを有する2価の基を表す。これらの基は置換されていてもよい。hおよびkは0~3の整数を表す。 In the general formulas (12) to (14), R 5 to R 7 , R 9 to R 11 and R 13 to R 15 each represent an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a phenyl group. , A phenoxy group or an alkylcarbonyloxy group having 2 to 6 carbon atoms. R 8 , R 12 and R 16 each represent a single bond or a linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 16 carbon atoms, and alkylcarbonyloxy having 2 to 6 carbon atoms. Represents a group, a carbonyl group, an ether group, an ester group, an amide group, an aromatic group, or a divalent group having any of these. These groups may be substituted. h and k represent an integer of 0 to 3.
 R、R12およびR16の具体例としては、-C-、-C-、-C-、-O-、-COCHCH(OH)CHC-、-CO-、-CO-、-CONH-、以下にあげる有機基などが挙げられる。 Specific examples of R 8 , R 12 and R 16 include —C 2 H 4 —, —C 3 H 6 —, —C 4 H 8 —, —O—, —C 3 H 6 OCH 2 CH (OH) Examples include CH 2 O 2 C—, —CO—, —CO 2 —, and —CONH—, and the following organic groups.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(12)で表されるオルガノシラン化合物の具体例としては、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシシリルプロピルコハク酸無水物、3-トリフェノキシシリルプロピルコハク酸無水物などが挙げられる。 Specific examples of the organosilane compound represented by the general formula (12) include 3-trimethoxysilylpropylsuccinic anhydride, 3-triethoxysilylpropylsuccinic anhydride, and 3-triphenoxysilylpropylsuccinic anhydride. Things.
 一般式(13)で表されるオルガノシラン化合物の具体例としては、3-トリメトキシシリルプロピルシクロヘキシルジカルボン酸無水物などが挙げられる。 具体 Specific examples of the organosilane compound represented by the general formula (13) include 3-trimethoxysilylpropylcyclohexyldicarboxylic anhydride.
 一般式(14)で表されるオルガノシラン化合物の具体例としては、3-トリメトキシシシリルプロピルフタル酸無水物などが挙げられる。 具体 Specific examples of the organosilane compound represented by the general formula (14) include 3-trimethoxysilylpropyl phthalic anhydride.
 樹脂組成物におけるアルコキシシラン化合物の加水分解・縮合反応生成物(シロキサン化合物)に由来する成分の含有量は、溶剤を除く固形分全量に対して10質量%以上が好ましく、20質量%以上がより好ましい。また、80質量%以下がより好ましい。この範囲でシロキサン化合物を含有することにより、塗膜の透過率とクラック耐性をより高めることができる。 The content of the component derived from the hydrolysis / condensation reaction product (siloxane compound) of the alkoxysilane compound in the resin composition is preferably at least 10% by mass, more preferably at least 20% by mass, based on the total solid content excluding the solvent. preferable. Further, the content is more preferably 80% by mass or less. By containing the siloxane compound in this range, the transmittance and crack resistance of the coating film can be further increased.
 加水分解反応は、溶剤中、上記したアルコキシシラン化合物に酸触媒および水を1~180分かけて添加した後、室温~110℃で1~180分反応させることが好ましい。このような条件で加水分解反応を行うことにより、急激な反応を抑制することができる。反応温度は、より好ましくは40~105℃である。 The hydrolysis reaction is preferably carried out at room temperature to 110 ° C. for 1 to 180 minutes after adding an acid catalyst and water to the above alkoxysilane compound in a solvent over 1 to 180 minutes. By performing the hydrolysis reaction under such conditions, a rapid reaction can be suppressed. The reaction temperature is more preferably from 40 to 105 ° C.
 また、加水分解反応によりシラノール化合物を得た後、反応液を50℃以上溶剤の沸点以下で1~100時間加熱し、縮合反応を行うことが好ましい。また、縮合反応により得られるシロキサン化合物の重合度を上げるために、再加熱もしくは塩基触媒の添加を行うことも可能である。 (4) After the silanol compound is obtained by the hydrolysis reaction, the reaction solution is preferably heated at 50 ° C. or higher and the boiling point of the solvent for 1 to 100 hours to conduct a condensation reaction. Further, in order to increase the degree of polymerization of the siloxane compound obtained by the condensation reaction, reheating or addition of a base catalyst can be performed.
 加水分解における各種条件は、反応スケール、反応容器の大きさ、形状などを考慮して、たとえば酸濃度、反応温度、反応時間などを設定することによって、目的とする用途に適した物性を得ることができる。 Various conditions for hydrolysis are to obtain physical properties suitable for the intended use by setting, for example, acid concentration, reaction temperature, reaction time, etc. in consideration of the reaction scale, the size and shape of the reaction vessel, etc. Can be.
 加水分解反応に用いる酸触媒としては、塩酸、酢酸、蟻酸、硝酸、蓚酸、塩酸、硫酸、リン酸、ポリリン酸、多価カルボン酸あるいはその無水物、イオン交換樹脂などの酸触媒が挙げられる。特に蟻酸、酢酸またはリン酸を用いた酸性水溶液が好ましい。 (4) Examples of the acid catalyst used in the hydrolysis reaction include acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polycarboxylic acids or anhydrides thereof, and ion exchange resins. Particularly, an acidic aqueous solution using formic acid, acetic acid or phosphoric acid is preferable.
 酸触媒の好ましい含有量としては、加水分解反応時に使用される全アルコキシシラン化合物100質量部に対して、好ましくは、0.05質量部以上、より好ましくは0.1質量部以上であり、また、好ましくは10質量部以下、より好ましくは5質量部以下である。ここで、全アルコキシシラン化合物量とは、アルコキシシラン化合物、その加水分解物およびその縮合物の全てを含んだ量のことを言い、以下同じとする。酸触媒の量を0.05質量部以上とすることでスムーズに加水分解が進行し、また10質量部以下とすることで加水分解反応の制御が容易となる。 The preferred content of the acid catalyst is preferably at least 0.05 part by mass, more preferably at least 0.1 part by mass, based on 100 parts by mass of all the alkoxysilane compounds used in the hydrolysis reaction. , Preferably 10 parts by mass or less, more preferably 5 parts by mass or less. Here, the total amount of the alkoxysilane compound refers to an amount including all of the alkoxysilane compound, its hydrolyzate, and its condensate, and hereinafter the same. When the amount of the acid catalyst is 0.05 parts by mass or more, the hydrolysis proceeds smoothly, and when the amount is 10 parts by mass or less, the control of the hydrolysis reaction becomes easy.
 本発明の樹脂組成物に用いられる(A)ポリシロキサンの重量平均分子量(Mw)は特に制限されないが、ゲルパーエミッションクロマトグラフィー(GPC)で測定されるポリスチレン換算で、好ましくは1,000以上、より好ましくは2,000以上である。また、好ましくは100,000以下、さらに好ましくは50,000以下である。Mwを上記範囲とすることで、良好な塗布特性が得られ、パターン形成する際の現像液への溶解性も良好になる。 The weight average molecular weight (Mw) of the polysiloxane (A) used in the resin composition of the present invention is not particularly limited, but is preferably 1,000 or more in terms of polystyrene measured by gel permeation chromatography (GPC). More preferably, it is 2,000 or more. Further, it is preferably at most 100,000, more preferably at most 50,000. By setting Mw within the above range, good coating characteristics can be obtained, and the solubility in a developing solution at the time of pattern formation also becomes good.
 本発明の樹脂組成物において、(A)ポリシロキサンの含有量に特に制限はなく、所望の膜厚や用途により任意に選ぶことができるが、樹脂組成中5質量%~80質量%が一般的である。また、固形分中5質量%以上50質量%が好ましく、20質量%以上40質量%以下がより好ましい。 In the resin composition of the present invention, the content of the polysiloxane (A) is not particularly limited and can be arbitrarily selected depending on the desired film thickness and intended use, but is generally 5% by mass to 80% by mass in the resin composition. It is. Further, the content is preferably from 5% by mass to 50% by mass, more preferably from 20% by mass to 40% by mass in the solid content.
 加水分解反応に用いる水としては、イオン交換水が好ましい。水の量は任意に選択可能であるが、アルコキシシラン化合物1モルに対して、1.0~4.0モルの範囲で用いることが好ましい。 水 Ion-exchanged water is preferable as the water used for the hydrolysis reaction. The amount of water can be arbitrarily selected, but is preferably used in the range of 1.0 to 4.0 mol per 1 mol of the alkoxysilane compound.
 また、組成物の貯蔵安定性の観点から、加水分解、部分縮合後のポリシロキサン溶液には上記触媒が含まれないことが好ましく、必要に応じて触媒の除去を行うことができる。除去方法に特に制限は無いが、操作の簡便さと除去性の点で、水洗浄、および/またはイオン交換樹脂の処理が好ましい。水洗浄とは、ポリシロキサン溶液を適当な疎水性溶剤で希釈した後、水で数回洗浄して得られた有機層をエバポレーター等で濃縮する方法である。イオン交換樹脂での処理とは、ポリシロキサン溶液を適当なイオン交換樹脂に接触させる方法である。 From the viewpoint of storage stability of the composition, it is preferable that the polysiloxane solution after hydrolysis and partial condensation does not contain the above catalyst, and the catalyst can be removed as necessary. Although there is no particular limitation on the removal method, water washing and / or treatment with an ion-exchange resin are preferred from the viewpoint of easy operation and removability. The water washing is a method of diluting a polysiloxane solution with an appropriate hydrophobic solvent, washing the resultant with water several times, and concentrating an organic layer obtained using an evaporator or the like. The treatment with an ion exchange resin is a method in which a polysiloxane solution is brought into contact with an appropriate ion exchange resin.
 本発明の樹脂組成物に用いられる(A)ポリシロキサンが、上記一般式(1)~(3)のいずれかの構造に由来するオルガノシラン化合物、上記一般式(4)または(5)のいずれかの構造に由来するオルガノシラン化合物、および、好ましくは、上記一般式(9)~(11)のいずれかの構造に由来するオルガノシラン化合物を、後述する金属化合物粒子存在下で加水分解し、該加水分解物を縮合して得られるものであると、硬化膜の屈折率、硬度がより向上する。金属化合物粒子存在下でポリシロキサンの重合を行なうことで、ポリシロキサンの少なくとも一部に金属化合物粒子との化学的結合(共有結合)が生じ、金属化合物粒子が均一に分散して塗液の保存安定性や硬化膜の均質性が向上するためと考えられる。また、金属化合物粒子の種類により、得られる硬化膜の屈折率を調整することができる。なお、金属化合物粒子としては、後述の金属化合物粒子として例示するものを用いることができる。 The polysiloxane (A) used in the resin composition of the present invention is an organosilane compound derived from any of the structures of the above general formulas (1) to (3), and any one of the above general formulas (4) and (5). Hydrolyzing an organosilane compound derived from such a structure, and preferably an organosilane compound derived from any of the structures represented by the general formulas (9) to (11) in the presence of metal compound particles described below; When obtained by condensation of the hydrolyzate, the refractive index and hardness of the cured film are further improved. By performing polymerization of the polysiloxane in the presence of the metal compound particles, a chemical bond (covalent bond) with the metal compound particles is generated in at least a part of the polysiloxane, and the metal compound particles are uniformly dispersed to preserve the coating liquid. It is considered that the stability and the uniformity of the cured film are improved. Further, the refractive index of the obtained cured film can be adjusted depending on the type of the metal compound particles. As the metal compound particles, those exemplified as metal compound particles described later can be used.
 <(B)溶剤>
 本発明の樹脂組成物は(B)溶剤を含む。
<(B) Solvent>
The resin composition of the present invention contains (B) a solvent.
 本発明の樹脂組成物に用いられる溶剤は特に限定されないが、なかでもヘテロ原子を有する芳香族炭化水素系の溶剤を1種類以上含有することが好ましい。ヘテロ原子を有する芳香族炭化水素系の溶剤は、高い極性を持ちながらも、ナフトキノンジアジドなどの剛直な骨格を有する有機化合物の溶解性が高いため、シロキサンとナフトキノジンアジドの両方と分子間相互作用し、コーティング膜の感光性評価において、現像膜減りを抑制し、未露光部と露光部のコントラストを高くすることができる。また、溶剤としてのハンドリング性を向上するために23℃1気圧下で液体の性状であることが好ましい。これよりも融点が高くなると、使用時に加温する必要があり、溶剤として扱いづらくなる。さらに、溶剤の沸点は100℃以上300℃以下が好ましく、さらに好ましくは120℃以上250℃以下である。沸点が100℃以上であることで溶剤の揮発性が適度に抑えられ、コーティング時のレベリング性が向上し、均一な塗膜を形成しやすくなる。また、沸点が300℃以下であることで、膜の熱硬化後に溶剤が残存しにくく、硬化膜のアウトガスを低減することができる。ヘテロ原子を有する芳香族炭化水素系の溶剤の具体例としては、ベンジルアルコール、2-メチルベンジルアルコール、3-メチルベンジルアルコール、4-メチルベンジルアルコール、4-イソプロピルベンジルアルコール、1-フェニルエチルアルコール、2-フェニル-2-プロパノール、2-エチルベンジルアルコール、3-エチルベンジルアルコール、4-エチルベンジルアルコール、アニソール、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、1,4-ジメトキシベンゼン、フェニルエーテル、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、ジベンジルエーテル、安息香酸メチル、安息香酸エチル、1,4-ビス(メトキシメチル)ベンゼンが挙げられる。 溶 剤 The solvent used in the resin composition of the present invention is not particularly limited, but it is preferable to contain at least one aromatic hydrocarbon solvent having a hetero atom. Aromatic hydrocarbon solvents containing heteroatoms have high polarity but high solubility of organic compounds having a rigid skeleton such as naphthoquinonediazide. In the evaluation of the photosensitivity of the coating film, the reduction of the developed film can be suppressed, and the contrast between the unexposed portion and the exposed portion can be increased. Further, in order to improve the handleability as a solvent, it is preferable that the liquid be a liquid at 23 ° C. and 1 atm. If the melting point is higher than this, it is necessary to heat the material during use, and it becomes difficult to treat it as a solvent. Further, the boiling point of the solvent is preferably from 100 ° C to 300 ° C, more preferably from 120 ° C to 250 ° C. When the boiling point is 100 ° C. or higher, the volatility of the solvent is appropriately suppressed, the leveling property during coating is improved, and a uniform coating film is easily formed. When the boiling point is 300 ° C. or lower, the solvent hardly remains after the film is thermally cured, and the outgas of the cured film can be reduced. Specific examples of the aromatic hydrocarbon solvent having a hetero atom include benzyl alcohol, 2-methylbenzyl alcohol, 3-methylbenzyl alcohol, 4-methylbenzyl alcohol, 4-isopropylbenzyl alcohol, 1-phenylethyl alcohol, 2-phenyl-2-propanol, 2-ethylbenzyl alcohol, 3-ethylbenzyl alcohol, 4-ethylbenzyl alcohol, anisole, 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, 1,4-dimethoxybenzene, phenyl Ether, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, dibenzyl ether, methyl benzoate, ethyl benzoate, and 1,4-bis (methoxymethyl) benzene.
 これらの溶剤の含有量として好ましくは、樹脂組成物中の全溶剤に対して、10~50質量%が好ましく、さらに好ましくは20~40質量%である。50質量%以下の含有量にあることで樹脂組成物を塗布して乾燥する際に乾燥性が良くなる。また、10質量%以上の含有量であることでシロキサンと感光剤の相溶性が向上し、塗布性が向上する。 含有 The content of these solvents is preferably from 10 to 50% by mass, more preferably from 20 to 40% by mass, based on all the solvents in the resin composition. When the content is 50% by mass or less, the drying property is improved when the resin composition is applied and dried. When the content is 10% by mass or more, the compatibility between the siloxane and the photosensitive agent is improved, and the coating property is improved.
 その他、本発明の樹脂組成物に用いられる好ましい(B)溶剤としては、具体的には、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等のエーテル類;エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、アセト酢酸エチル、アセト酢酸メチル、アセト酢酸プロピル、アセト酢酸ブチル、アセト酢酸ベンジル等のアセテート類;アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2-ヘプタノン等のケトン類;メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシ-1-ブタノール、ジアセトンアルコール、等のアルコール類;トルエン、キシレン等の芳香族炭化水素類;および、γ-ブチロラクトン、N-メチルピロリジノン等が挙げられる。これらは単独あるいは混合して用いてもかまわない。 Other preferred examples of the solvent (B) used in the resin composition of the present invention include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, and propylene glycol monopropyl. Ethers such as ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether; ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propyl acetate, butyl Acetate, isobutyl acetate, 3-methoxybutyl acetate Acetates, such as acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate, ethyl acetoacetate, methyl acetoacetate, propyl acetoacetate, butyl acetoacetate, and benzyl acetoacetate; acetylacetone, methylpropyl Ketones such as ketone, methyl butyl ketone, methyl isobutyl ketone, cyclopentanone, 2-heptanone; methanol, ethanol, propanol, butanol, isobutyl alcohol, pentanol, 4-methyl-2-pentanol, 3-methyl-2 Alcohols such as -butanol, 3-methyl-3-methoxy-1-butanol and diacetone alcohol; aromatic hydrocarbons such as toluene and xylene; and γ-butyrolactone, N-methylpyrrolidinone and the like. These may be used alone or as a mixture.
 これらのうち、特に好ましい溶剤の例は、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、ジアセトンアルコール、γ-ブチロラクトン、乳酸エチル等である。これらは単独あるいは2種以上用いてもかまわない。 Among these, particularly preferred examples of the solvent include propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, and diacetone alcohol. , Γ-butyrolactone, ethyl lactate and the like. These may be used alone or in combination of two or more.
 本発明の樹脂組成物における全溶剤の含有量は、全アルコキシシラン化合物含有量100質量部に対して、100質量部~9900質量部の範囲が好ましく、より好ましくは、100質量部~5000質量部の範囲である。 The content of the total solvent in the resin composition of the present invention is preferably in the range of 100 parts by mass to 9900 parts by mass, more preferably 100 parts by mass to 5000 parts by mass, based on 100 parts by mass of the total alkoxysilane compound content. Range.
 <(C)ナフトキノンジアジド化合物>
 本発明の樹脂組成物は、(C)ナフトキノンジアジド化合物を含有することが好ましい。ナフトキノンジアジド化合物を含有する樹脂組成物は、露光部が現像液で除去されるポジ型を形成する。用いるナフトキノンジアジド化合物に特に制限は無いが、好ましくはフェノール性水酸基を有する化合物にナフトキノンジアジドスルホン酸がエステル結合した化合物であり、当該化合物のフェノール性水酸基のオルト位、およびパラ位がそれぞれ独立して水素、もしくは一般式(15)で表される置換基のいずれかである化合物が用いられる。
<(C) Naphthoquinonediazide compound>
The resin composition of the present invention preferably contains (C) a naphthoquinonediazide compound. The resin composition containing a naphthoquinonediazide compound forms a positive type in which exposed portions are removed by a developer. The naphthoquinonediazide compound used is not particularly limited, but is preferably a compound in which naphthoquinonediazidesulfonic acid is ester-bonded to a compound having a phenolic hydroxyl group, and the ortho position and the para position of the phenolic hydroxyl group of the compound are each independently. A compound that is either hydrogen or a substituent represented by the general formula (15) is used.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式中、R17、R18、R19はそれぞれ独立して炭素数1~10のアルキル基、カルボキシル基、フェニル基、置換フェニル基のいずれかを表す。また、R17、R18、R19で環を形成してもよい。アルキル基は無置換体、置換体のいずれでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、トリフルオロメチル基、2-カルボキシエチル基が挙げられる。また、フェニル基上の置換基としては、水酸基、メトキシ基などが挙げられる。また、R17、R18、R19で環を形成する場合の具体例としては、シクロペンタン環、シクロヘキサン環、アダマンタン環、フルオレン環が挙げられる。 In the formula, R 17 , R 18 , and R 19 each independently represent any one of an alkyl group having 1 to 10 carbon atoms, a carboxyl group, a phenyl group, and a substituted phenyl group. Further, R 17 , R 18 and R 19 may form a ring. The alkyl group may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition. Specific examples of the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-hexyl, cyclohexyl, n-heptyl, and n-butyl. Examples include an octyl group, a trifluoromethyl group, and a 2-carboxyethyl group. Examples of the substituent on the phenyl group include a hydroxyl group and a methoxy group. Specific examples of the case where R 17 , R 18 , and R 19 form a ring include a cyclopentane ring, a cyclohexane ring, an adamantane ring, and a fluorene ring.
 フェノール性水酸基のオルト位、およびパラ位が上記以外、例えばメチル基の場合、熱硬化によって酸化分解が起こり、キノイド構造に代表される共役系化合物が形成され、硬化膜が着色して無色透明性が低下する。なお、これらのナフトキノンジアジド化合物は、フェノール性水酸基を有する化合物と、ナフトキノンジアジドスルホン酸クロリドとの公知のエステル化反応により合成することができる。 When the ortho-position and para-position of the phenolic hydroxyl group are other than those described above, for example, a methyl group, oxidative decomposition occurs by thermal curing, a conjugated compound represented by a quinoid structure is formed, and the cured film is colored to be colorless and transparent. Decrease. In addition, these naphthoquinonediazide compounds can be synthesized by a known esterification reaction between a compound having a phenolic hydroxyl group and naphthoquinonediazidesulfonic acid chloride.
 フェノール性水酸基を有する化合物の具体例としては、以下の化合物が挙げられる(いずれも本州化学工業(株)製)。 具体 Specific examples of the compound having a phenolic hydroxyl group include the following compounds (all manufactured by Honshu Chemical Industry Co., Ltd.).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 原料となるナフトキノンジアジドスルホン酸クロリドとしては、4-ナフトキノンジアジドスルホン酸クロリドあるいは5-ナフトキノンジアジドスルホン酸クロリドを用いることができる。4-ナフトキノンジアジドスルホン酸エステル化合物はi線(波長365nm)領域に吸収を持つため、i線露光に適している。また、5-ナフトキノンジアジドスルホン酸エステル化合物は広範囲の波長領域に吸収が存在するため、広範囲の波長での露光に適している。露光する波長によって4-ナフトキノンジアジドスルホン酸エステル化合物、5-ナフトキノンジアジドスルホン酸エステル化合物を選択することが好ましい。4-ナフトキノンジアジドスルホン酸エステル化合物と5-ナフトキノンジアジドスルホン酸エステル化合物を混合して用いることもできる。
本発明で好ましく用いられるナフトキノンジアジド化合物として、下記一般式(16)で表される化合物が挙げられる。
As naphthoquinonediazidesulfonic acid chloride as a raw material, 4-naphthoquinonediazidesulfonic acid chloride or 5-naphthoquinonediazidesulfonic acid chloride can be used. The 4-naphthoquinonediazidosulfonic acid ester compound is suitable for i-line exposure because it has absorption in the i-line (wavelength 365 nm) region. Further, the 5-naphthoquinonediazidosulfonic acid ester compound has absorption in a wide range of wavelengths, and thus is suitable for exposure to a wide range of wavelengths. It is preferable to select a 4-naphthoquinonediazidesulfonic acid ester compound or a 5-naphthoquinonediazidosulfonic acid ester compound according to the wavelength of light to be exposed. It is also possible to use a mixture of a 4-naphthoquinonediazidesulfonic acid ester compound and a 5-naphthoquinonediazidosulfonic acid ester compound.
A naphthoquinonediazide compound preferably used in the present invention includes a compound represented by the following general formula (16).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式中、R20は水素、または炭素数1~8から選ばれるアルキル基を示す。R21、R22、R23は水素原子、炭素数1~8から選ばれるアルキル基、アルコキシル基、カルボキシル基、エステル基のいずれかを示す。各R21、R22、R23は同じであっても異なっていても良い。Qは5-ナフトキノンジアジドスルホニル基、水素原子のいずれかを表し、Qの全てが水素原子になることはない。b、c、d、α、βは0~4の整数を表す。ただし、α+β≧3である。一般式(16)で表されるナフトキノンジアジド化合物を用いることで、パターン加工に於ける感度や、解像度が向上する。 In the formula, R 20 represents hydrogen or an alkyl group selected from 1 to 8 carbon atoms. R 21 , R 22 , and R 23 each represent a hydrogen atom, an alkyl group selected from 1 to 8 carbon atoms, an alkoxyl group, a carboxyl group, or an ester group. Each of R 21 , R 22 and R 23 may be the same or different. Q represents either a 5-naphthoquinonediazidosulfonyl group or a hydrogen atom, and not all of Q is a hydrogen atom. b, c, d, α, and β represent an integer of 0 to 4. Here, α + β ≧ 3. By using the naphthoquinonediazide compound represented by the general formula (16), sensitivity and resolution in pattern processing are improved.
 ナフトキノンジアジド化合物の添加量は特に制限されないが、好ましくは樹脂(ポリシロキサン)100質量部に対して1~30質量部であり、さらに好ましくは1~15質量部である。ナフトキノンジアジド化合物の添加量が1質量部より少ない場合、露光部と未露光部との溶解コントラストが低すぎて、実用に足る感光性を発現しない。また、さらに良好な溶解コントラストを得るためには5質量部以上が好ましい。一方、ナフトキノンジアジド化合物の添加量が30質量部より多い場合、ポリシロキサンとナフトキノンジアジド化合物との相溶性が悪くなることによる塗布膜の白化が起こったり、熱硬化時に起こるキノンジアジド化合物の分解による着色が顕著になるために、硬化膜の無色透明性が低下する。また、さらに高透明性の膜を得るためには15質量部以下が好ましい。 The addition amount of the naphthoquinonediazide compound is not particularly limited, but is preferably 1 to 30 parts by mass, more preferably 1 to 15 parts by mass, per 100 parts by mass of the resin (polysiloxane). When the addition amount of the naphthoquinonediazide compound is less than 1 part by mass, the dissolution contrast between the exposed and unexposed portions is too low and does not exhibit practically sufficient photosensitivity. In order to obtain a better dissolution contrast, the amount is preferably 5 parts by mass or more. On the other hand, when the addition amount of the naphthoquinonediazide compound is more than 30 parts by mass, whitening of the coating film occurs due to poor compatibility between the polysiloxane and the naphthoquinonediazide compound, or coloring due to decomposition of the quinonediazide compound which occurs during heat curing. Because it becomes remarkable, the colorless transparency of the cured film decreases. Further, in order to obtain a highly transparent film, the amount is preferably 15 parts by mass or less.
 <(D)金属化合物粒子>
 本発明には、金属化合物粒子を含有することが好ましい。金属化合物粒子としては、特に限定されないが、(D)シリカ粒子を含有することが、屈折率調整の観点から好ましい。(D)シリカ粒子および(B)溶剤の存在下で上記一般式(1)~(3)のいずれかの構造に由来するシラン化合物、および、上記一般式(4)、(5)の構造に由来するシラン化合物を加水分解後に縮合反応させた、(D)シリカ粒子との複合シロキサン系樹脂とすることが相溶性の観点から好ましい。(D)シリカ粒子は数平均粒子径が1~200nmであることが好ましい。可視光透過率の高い硬化膜を得るためには、数平均粒子径1~120nmであることがより好ましい。中でも、中空を有するシリカ粒子の場合は数平均粒子径30~100nmであることがより好ましい。1nm以上であれば低屈折率性が十分となり、200nm以下であれば反射が十分抑制され、膜の硬度が十分高くなる。(D)シリカ粒子の数平均粒子径は、ガス吸着法や動的光散乱法、X線小角散乱法、透過型電子顕微鏡や走査型電子顕微鏡により粒子径を直接測定する方法などにより測定することができる。本発明における粒子の数平均粒子径とは、動的光散乱法により測定した値をいう。
<(D) Metal compound particles>
The present invention preferably contains metal compound particles. The metal compound particles are not particularly limited, but preferably contain (D) silica particles from the viewpoint of adjusting the refractive index. (D) In the presence of silica particles and (B) a solvent, a silane compound derived from any of the structures of the above general formulas (1) to (3) and a structure of the above general formulas (4) and (5) From the viewpoint of compatibility, it is preferable to use a composite siloxane resin with silica particles (D) obtained by subjecting a derived silane compound to a condensation reaction after hydrolysis. (D) The silica particles preferably have a number average particle diameter of 1 to 200 nm. In order to obtain a cured film having high visible light transmittance, the number average particle diameter is more preferably from 1 to 120 nm. Among them, in the case of hollow silica particles, the number average particle diameter is more preferably 30 to 100 nm. If it is 1 nm or more, the low refractive index property is sufficient, and if it is 200 nm or less, the reflection is sufficiently suppressed, and the hardness of the film is sufficiently high. (D) The number average particle diameter of the silica particles should be measured by a gas adsorption method, a dynamic light scattering method, an X-ray small angle scattering method, a method of directly measuring the particle diameter by a transmission electron microscope or a scanning electron microscope, or the like. Can be. The number average particle diameter of the particles in the present invention refers to a value measured by a dynamic light scattering method.
 本発明で用いる(D)シリカ粒子は内部が多孔質および/または中空を有するシリカ粒子や内部が多孔質でなく、かつ中空を有しないシリカ粒子が挙げられる。これら(D)シリカ粒子のうち、コーティング膜の低屈折率化には、内部が多孔質および/または中空を有するシリカ粒子が好ましい。内部が多孔質でなく、かつ中空を有しないシリカ粒子は、粒子自体の屈折率が1.45~1.5であるため、期待される低屈折率化効果は小さい。一方、内部が多孔質および/または中空を有するシリカ粒子は、粒子自体の屈折率が1.2~1.4であるため、低屈折率化効果が大きい。つまり、内部が多孔質および/または中空を有するシリカ粒子は優れた硬度を付与でき、かつ低屈折率性を付与できる点で好ましく用いられる。 (D) The silica particles (D) used in the present invention include silica particles having a porous and / or hollow inside and silica particles that are not porous and have no hollow inside. Among these (D) silica particles, silica particles having a porous and / or hollow inside are preferred for lowering the refractive index of the coating film. Silica particles that are not porous and do not have hollows have a small refractive index reduction effect because the particles themselves have a refractive index of 1.45 to 1.5. On the other hand, silica particles having a porous and / or hollow interior have a large effect of lowering the refractive index because the particles themselves have a refractive index of 1.2 to 1.4. That is, silica particles having a porous and / or hollow inside are preferably used because they can impart excellent hardness and can impart low refractive index.
 本発明で好適に使用される内部に中空を有するシリカ粒子とは、外殻によって包囲された中空部を有するシリカ粒子のことをいう。また本発明で使用される内部が多孔質であるシリカ粒子とは、粒子表面や内部に多数の空洞部を有するシリカ粒子のことをいう。これらのうち、透明被膜の硬度を考慮した場合、粒子自体の強度が高い中空を有するシリカ粒子が好ましい。(D)シリカ粒子自体の屈折率は1.2~1.4であることが好ましく、1.2~1.35であることがより好ましい。なお、これらの(D)シリカ粒子は、特許第3272111号公報、特開2001-233611号公報に開示されている方法によって製造できる。またこのような(D)シリカ粒子としては、例えば特開2001-233611号公報に開示されているものや、特許第3272111号公報等に示された一般に市販されているものを挙げることもできる。 シ リ カ Silica particles having a hollow inside, preferably used in the present invention, refer to silica particles having a hollow portion surrounded by an outer shell. Further, the silica particles having a porous inside used in the present invention refers to silica particles having a large number of cavities on the surface or inside of the particles. Among these, in consideration of the hardness of the transparent coating, silica particles having hollows with high strength of the particles themselves are preferable. (D) The silica particles themselves preferably have a refractive index of 1.2 to 1.4, more preferably 1.2 to 1.35. These silica particles (D) can be produced by the methods disclosed in Japanese Patent No. 3272111 and Japanese Patent Application Laid-Open No. 2001-233611. Examples of such (D) silica particles include, for example, those disclosed in JP-A-2001-233611 and those commercially available as disclosed in Japanese Patent No. 3272111.
 (D)シリカ粒子の屈折率は以下の方法で測定することができる。(D)シリカ粒子の含有率を0質量%、20質量%、30質量%、40質量%、50質量%に調製した固形分濃度10%のマトリックス樹脂と(D)シリカ粒子の混合溶液サンプルを作製し、それぞれ、シリコンウエハー上に、厚さが0.3~1.0μmとなるように、スピンコーターを用いて塗布し、ついで200℃のホットプレートで5分間、加熱、乾燥させ、コーティング膜を得る。次に例えばエリプソメータ(大塚電子(株)社製)を用いて波長633nmでの屈折率を求め、(D)シリカ粒子100質量%の値を外挿して求めることができる。 (D) The refractive index of the silica particles can be measured by the following method. A mixed solution sample of (D) a matrix resin having a solid content concentration of 10% and a silica particle (D) prepared by adjusting the content of silica particles to 0% by mass, 20% by mass, 30% by mass, 40% by mass, and 50% by mass was prepared. Each of them was prepared and applied on a silicon wafer using a spin coater to a thickness of 0.3 to 1.0 μm, and then heated and dried on a hot plate at 200 ° C. for 5 minutes to form a coating film. Get. Next, the refractive index at a wavelength of 633 nm is determined using, for example, an ellipsometer (manufactured by Otsuka Electronics Co., Ltd.), and the value can be determined by extrapolating the value of (D) 100% by mass of the silica particles.
 内部が多孔質および/または中空を有するシリカ粒子をコーティング材料中に導入することは、コーティング材料から得られる膜の屈折率を最適化することができるだけでなく、膜の硬度を高めることができるため好ましい。 Introducing silica particles having a porous and / or hollow inside into the coating material can not only optimize the refractive index of the film obtained from the coating material but also increase the hardness of the film. preferable.
 内部が多孔質でなく、かつ中空を有しないシリカ粒子とは、例えば、粒子径12nmのイソプロパノールを分散剤としたIPA-ST、粒子径12nmのメチルイソブチルケトンを分散剤としたMIBK-ST、粒子径45nmのイソプロパノールを分散剤としたIPA-ST-L、粒子径100nmのイソプロパノールを分散剤としたIPA-ST-ZL(以上、商品名、日産化学工業(株)製)、粒子径12nmのγ-ブチロラクトンを分散剤としたオスカル101、粒子径60nmのγ-ブチロラクトンを分散剤としたオスカル105、粒子径120nmのジアセトンアルコールを分散剤としたオスカル106(以上、商品名、日揮触媒化成工業(株)製)が挙げられる。なお、中空の有無については、TEM(走査型電子顕微鏡)写真により粒子断面像によって確認できる。 The silica particles which are not porous and have no hollow are, for example, IPA-ST using 12 nm particle size isopropanol as a dispersant, MIBK-ST using 12 nm particle size methyl isobutyl ketone as a dispersant, particles IPA-ST-L using isopropanol having a diameter of 45 nm as a dispersing agent, IPA-ST-ZL using isopropanol having a particle diameter of 100 nm as a dispersing agent (trade name, manufactured by Nissan Chemical Industries, Ltd.), γ having a particle diameter of 12 nm -Oscar 101 using butyrolactone as a dispersant, Oscar 105 using 60-nm-diameter γ-butyrolactone as a dispersant, and Oscar 106 using 120-nm-diameter diacetone alcohol as a dispersant. Co., Ltd.). In addition, the presence or absence of the hollow can be confirmed by a particle cross-sectional image by a TEM (scanning electron microscope) photograph.
 市販されている(D)シリカ粒子の例としては、オルガノシリカゾルの“OSCAL”(日揮触媒化成工業(株)製)、コロイダルシリカ“スノーテックス”、オルガノシリカゾル(日産化学工業(株)製)、高純度コロイダルシリカ、高純度オルガノゾル“クォートロン”(扶桑化学工業(株))などが挙げられる。 Examples of commercially available (D) silica particles include organosilica sol “OSCAL” (manufactured by JGC Catalysts & Chemicals, Inc.), colloidal silica “Snowtex”, organosilica sol (manufactured by Nissan Chemical Industries, Ltd.), High-purity colloidal silica, high-purity organosol “Quartron” (Fuso Chemical Industry Co., Ltd.) and the like can be mentioned.
 また、低屈折率の硬化膜を得るには、中空シリカ粒子を含有することが好ましい。中空の有無については、TEM(走査型電子顕微鏡)写真により粒子断面像によって確認できる。(D)シリカ粒子の含有量に特に制限はなく、用途によって適当な量とすることができるが、シロキサン系樹脂組成物の全固形分の1~80質量%程度とするのが一般的である。 得 る Further, in order to obtain a cured film having a low refractive index, it is preferable to contain hollow silica particles. The presence or absence of the hollow can be confirmed by a particle cross-sectional image by a TEM (scanning electron microscope) photograph. (D) The content of the silica particles is not particularly limited and may be an appropriate amount depending on the application, but is generally about 1 to 80% by mass of the total solids of the siloxane-based resin composition. .
 本発明の樹脂組成物は、少なくとも上記(A)ポリシロキサン、(B)溶剤、そして好ましくは(C)ナフトキノンジアジド化合物、を混合することで得られる。この際、任意の溶剤で希釈してもよい。混合温度に特に制限はないが、操作の簡便さから5~50℃の範囲が好ましい。 樹脂 The resin composition of the present invention is obtained by mixing at least the (A) polysiloxane, (B) a solvent, and preferably (C) a naphthoquinonediazide compound. At this time, it may be diluted with an arbitrary solvent. The mixing temperature is not particularly limited, but is preferably in the range of 5 to 50 ° C. for simplicity of operation.
 本発明のシロキサン樹脂組成物は、樹脂組成物の硬化を促進させる、あるいは硬化を容易ならしめる各種の硬化剤を含有してもよい。硬化剤の具体例としては、窒素含有有機物、シリコーン樹脂硬化剤、各種金属アルコレート、各種金属キレート化合物、イソシアネート化合物およびその重合体、メチロール化メラミン誘導体、メチロール化尿素誘導体などがあり、これらを一種類、ないし2種類以上含有してもよい。なかでも、塗膜の透明性、硬化剤の安定性などから金属キレート化合物が好ましく用いられる。 シ ロ キ サ ン The siloxane resin composition of the present invention may contain various curing agents for accelerating the curing of the resin composition or facilitating the curing. Specific examples of the curing agent include nitrogen-containing organic substances, silicone resin curing agents, various metal alcoholates, various metal chelate compounds, isocyanate compounds and polymers thereof, methylolated melamine derivatives, methylolated urea derivatives, and the like. Or two or more kinds. Among them, a metal chelate compound is preferably used in view of transparency of a coating film, stability of a curing agent, and the like.
 金属キレート化合物としてはチタンキレート化合物、ジルコニウムキレート化合物、アルミニウムキレート化合物およびマグネシウムキレート化合物が挙げられる。これらの金属キレート化合物は、金属アルコキシドにキレート化剤を反応させることにより容易に得ることができる。キレート化剤の例としては、アセチルアセトン、ベンゾイルアセトン、ジベンゾイルメタンなどのβ-ジケトン;アセト酢酸エチル、ベンゾイル酢酸エチルなどのβ-ケト酸エステルなどを挙げることができる。金属キレート化合物の好ましい具体的な例としては、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセテートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)などのアルミニウムキレート化合物、エチルアセトアセテートマグネシウムモノイソプロピレート、マグネシウムビス(エチルアセトアセテート)、アルキルアセトアセテートマグネシウムモノソプロピレート、マグネシウムビス(アセチルアセトネート)などのマグネシウムキレート化合物が挙げられる。硬化剤の含有量は、シロキサン樹脂組成物中の固形分中好ましくは0.1質量%~10質量%であり、より好ましくは、0.5質量%~6質量%である。 Examples of the metal chelate compound include a titanium chelate compound, a zirconium chelate compound, an aluminum chelate compound and a magnesium chelate compound. These metal chelate compounds can be easily obtained by reacting a metal alkoxide with a chelating agent. Examples of the chelating agent include β-diketones such as acetylacetone, benzoylacetone, and dibenzoylmethane; and β-keto acid esters such as ethyl acetoacetate and ethyl benzoylacetate. Preferred specific examples of the metal chelate compound include ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum diisopropylate, aluminum monoacetyl acetate bis (ethyl acetoacetate), and aluminum tris ( Aluminum chelate compounds such as acetylacetonate), magnesium chelate compounds such as ethyl acetoacetate magnesium monoisopropylate, magnesium bis (ethyl acetoacetate), alkyl acetoacetate magnesium monosopropylate, and magnesium bis (acetylacetonate). . The content of the curing agent is preferably 0.1% by mass to 10% by mass, more preferably 0.5% by mass to 6% by mass, based on the solid content in the siloxane resin composition.
 ポリシロキサンは酸により硬化が促進されるので、本発明の樹脂組成物中に熱酸発生剤等の硬化触媒を含有してもよい。熱酸発生剤としては、芳香族ジアゾニウム塩、スルフォニウム塩、ジアリールヨードニウム塩、トリアリールスルフォニウム塩、トリアリールセレニウム塩等の各種オニウム塩系化合物、スルホン酸エステル、ハロゲン化合物等が挙げられる。 (4) Since curing of polysiloxane is accelerated by an acid, the resin composition of the present invention may contain a curing catalyst such as a thermal acid generator. Examples of the thermal acid generator include various onium salt compounds such as aromatic diazonium salts, sulfonium salts, diaryliodonium salts, triarylsulfonium salts, and triarylselenium salts, sulfonic acid esters, and halogen compounds.
 具体例として、スルフォニウム塩としては、4-ヒドロキシフェニルジメチルスルフォニウムトリフレート(試作品「W」 三新化学工業(株)製)、ベンジル-4-ヒドロキシフェニルメチルスルフォニウムトリフレート(試作品「O」 三新化学工業(株)製)、2-メチルベンジル-4-ヒドロキシフェニルメチルスルフォニウムトリフレート(試作品「N」 三新化学工業(株)製)、4-メチルベンジル-4-ヒドロキシフェニルメチルスルフォニウムトリフレート、4-ヒドロキシフェニルメチル-1-ナフチルメチルスルフォニウムトリフレート、4-メトキシカルボニルオキシフェニルジメチルスルフォニウム トリフレート(試作品「J」 三新化学工業(株)製)、ベンジル-4-メトキシカルボニルオキシフェニルメチルスルフォニウムトリフレート(試作品「T」 三新化学工業(株)製)、4-アセトキシフェニルベンジルメチルスルフォニウムトリフレート(試作品「U」 三新化学工業(株)製)、4-アセトキシフェニルメチル-4-メチルベンジルスルフォニウムトリフレート、4-アセトキシフェニルジメチルスルフォニウムトリフレート(試作品「V」 三新化学工業(株)製)、4-ヒドロキシフェニルジメチルスルフォニウムヘキサフルオロフォスフェート、ベンジル-4-ヒドロキシフェニルメチルスルフォニウムヘキサフルオロフォスフェート、2-メチルベンジル-4-ヒドロキシフェニルメチルスルフォニウムヘキサフルオロフォスフェート、4-メチルベンジル-4-ヒドロキシフェニルメチルスルフォニウムヘキサフルオロフォスフェート、4-ヒドロキシフェニルメチル-1-ナフチルメチルスルフォニウムヘキサフルオロフォスフェート、4-メトキシカルボニルオキシフェニルジメチルスルフォニウムヘキサフルオロフォスフェート、ベンジル-4-メトキシカルボニルオキシフェニルメチルスルフォニウムヘキサフルオロフォスフェート、4-アセトキシフェニルベンジルメチルスルフォニウムヘキサフルオロフォスフェート(試作品「A」 三新化学工業(株)製)、4-アセトキシフェニルメチル-4-メチルベンジルスルフォニウムヘキサフルオロフォスフェート、4-アセトキシフェニルジメチルスルフォニウムヘキサフルオロフォスフェート(商品名「SI-150」 三新化学工業(株)製)、「SI-180L」(三新化学工業(株)製)、4-ヒドロキシフェニルジメチルスルフォニウムヘキサフルオロアンチモネート、ベンジル-4-ヒドロキシフェニルメチルスルフォニウムヘキサフルオロアンチモネート、2-メチルベンジル-4-ヒドロキシフェニルメチルスルフォニウムヘキサフルオロアンチモネート、4-メチルベンジル-4-ヒドロキシフェニルメチルスルフォニウムヘキサフルオロアンチモネート、4-ヒドロキシフェニルメチル-1-ナフチルメチルスルフォニウムヘキサフルオロアンチモネート、4-メトキシカルボニルオキシフェニルジメチルスルフォニウムヘキサフルオロアンチモネート、ベンジル-4-メトキシカルボニルオキシフェニルメチルスルフォニウムヘキサフルオロアンチモネート、4-アセトキシフェニルベンジルメチルスルフォニウムヘキサフルオロアンチモネート、4-アセトキシフェニルメチル-4-メチルベンジルスルフォニウムヘキサフルオロアンチモネート、4-アセトキシフェニルジメチルスルフォニウムヘキサフルオロアンチモネート、4-アセトキシフェニルジメチルスルフォニウムヘキサフルオロアンチモネート、ベンジル-4-ヒドロキシフェニルメチルスルフォニウムヘキサフルオロアンチモネート等が挙げられる。 As specific examples, as the sulfonium salt, 4-hydroxyphenyldimethylsulfonium triflate (prototype "W" manufactured by Sanshin Chemical Industry Co., Ltd.) and benzyl-4-hydroxyphenylmethylsulfonium triflate (prototype) “O” (manufactured by Sanshin Chemical Industry Co., Ltd.), 2-methylbenzyl-4-hydroxyphenylmethylsulfonium triflate (prototype “N” manufactured by Sanshin Chemical Industry Co., Ltd.), 4-methylbenzyl-4 -Hydroxyphenylmethylsulfonium triflate, 4-hydroxyphenylmethyl-1-naphthylmethylsulfonium triflate, 4-methoxycarbonyloxyphenyldimethylsulfonium triflate (prototype "J" Sansan Chemical Industry Co., Ltd. )), Benzyl-4-methoxycarbonyloxyphenyl Tylsulfonium triflate (prototype "T" @ Sanshin Chemical Industry Co., Ltd.), 4-acetoxyphenylbenzylmethylsulfonium triflate (prototype "U" @ Sanshin Chemical Industry Co., Ltd.), 4- Acetoxyphenylmethyl-4-methylbenzylsulfonium triflate, 4-acetoxyphenyldimethylsulfonium triflate (prototype "V" manufactured by Sanshin Chemical Industry Co., Ltd.), 4-hydroxyphenyldimethylsulfonium hexafluoro Phosphate, benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate, 2-methylbenzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate, 4-methylbenzyl-4-hydroxyphenylmethylsulfonium hexa full Lophosphate, 4-hydroxyphenylmethyl-1-naphthylmethylsulfonium hexafluorophosphate, 4-methoxycarbonyloxyphenyldimethylsulfonium hexafluorophosphate, benzyl-4-methoxycarbonyloxyphenylmethylsulfonium hexafluoro Phosphate, 4-acetoxyphenylbenzylmethylsulfonium hexafluorophosphate (prototype "A" manufactured by Sanshin Chemical Industry Co., Ltd.), 4-acetoxyphenylmethyl-4-methylbenzylsulfonium hexafluorophosphate, 4-acetoxyphenyldimethylsulfonium hexafluorophosphate (trade name “SI-150” manufactured by Sanshin Chemical Industry Co., Ltd.), “SI-180L” (manufactured by Sanshin Chemical Industry Co., Ltd.) ), 4-hydroxyphenyldimethylsulfonium hexafluoroantimonate, benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 2-methylbenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 4- Methylbenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 4-hydroxyphenylmethyl-1-naphthylmethylsulfonium hexafluoroantimonate, 4-methoxycarbonyloxyphenyldimethylsulfonium hexafluoroantimonate, benzyl -4-methoxycarbonyloxyphenylmethylsulfonium hexafluoroantimonate, 4-acetoxyphenylbenzylmethylsulfonate Hexafluoroantimonate, 4-acetoxyphenylmethyl-4-methylbenzylsulfonium hexafluoroantimonate, 4-acetoxyphenyldimethylsulfonium hexafluoroantimonate, 4-acetoxyphenyldimethylsulfonium hexafluoroantimonate, Benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate;
 芳香族ジアゾニウム塩としては、クロロベンゼンジアゾニウムヘキサフルオロフォスフェイト、ジメチルアミノベンゼンジアゾニウムヘキサフルオロアンチモネ-ト、ナフチルジアゾニウムヘキサフルオロフォスフェイト、ジメチルアミノナフチルジアゾニウムテトラフルオロボレート等が挙げられる。 Examples of the aromatic diazonium salt include chlorobenzenediazonium hexafluorophosphate, dimethylaminobenzenediazonium hexafluoroantimonate, naphthyldiazonium hexafluorophosphate, and dimethylaminonaphthyldiazonium tetrafluoroborate.
 ジアリールヨードニウム塩としては、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムヘキサフルオロアンチモネ-ト、ジフェニルヨードニウムヘキサフルオロフォスフェイト、ジフェニルヨードニウムトリフレート、4,4’-ジ-t-ブチル-ジフェニルヨードニウムトリフレート、4,4’-ジ-t-ブチル-ジフェニルヨードニウムテトラフルオロボレート、4,4’-ジ-t-ブチル-ジフェニルヨードニウムヘキサフルオロフォスフェイト等が挙げられる。 Examples of the diaryliodonium salt include diphenyliodonium tetrafluoroborate, diphenyliodonium hexafluoroantimonate, diphenyliodonium hexafluorophosphate, diphenyliodonium triflate, 4,4′-di-t-butyl-diphenyliodonium triflate, 4,4'-di-t-butyl-diphenyliodonium tetrafluoroborate, 4,4'-di-t-butyl-diphenyliodonium hexafluorophosphate and the like.
 トリアリールスルフォニウム塩としては、トリフェニルスルフォニウムテトラフルオロボレート、トリフェニルスルフォニウムヘキサフルオロフォスフェイト、トリフェニルスルフォニウムヘキサフルオロアンチモネ-ト、トリ(p-クロロフェニル)スルフォニウムテトラフルオロボレート、トリ(p-クロロフェニル)スルフォニウムヘキサフルオロフォスフェイト、トリ(p-クロロフェニル)スルフォニウムヘキサフルオロアンチモネ-ト、4-t-ブチルトリフェニルスルフォニウムヘキサフルオロフォスフェイト等が挙げられる。 Examples of the triarylsulfonium salt include triphenylsulfonium tetrafluoroborate, triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, tri (p-chlorophenyl) sulfonium tetrafluoroborate, (P-chlorophenyl) sulfonium hexafluorophosphate, tri (p-chlorophenyl) sulfonium hexafluoroantimonate, 4-t-butyltriphenylsulfonium hexafluorophosphate, and the like.
 トリアリールセレニウム塩としては、トリフェニルセレニウムテトラフルオロボレート、トリフェニルセレニウムヘキサフルオロフォスフェイト、トリフェニルセレニウムヘキサフルオロアンチモネ-ト、ジ(クロロフェニル)フェニルセレニウムテトラフルオロボレート、ジ(クロロフェニル)フェニルセレニウムヘキサフルオロフォスフェイト、ジ(クロロフェニル)フェニルセレニウムヘキサフルオロアンチモネ-ト等が挙げられる。 Examples of triarylselenium salts include triphenylselenium tetrafluoroborate, triphenylselenium hexafluorophosphate, triphenylselenium hexafluoroantimonate, di (chlorophenyl) phenylselenium tetrafluoroborate, and di (chlorophenyl) phenylselenium hexafluoro Phosphate, di (chlorophenyl) phenyl selenium hexafluoroantimonate and the like can be mentioned.
 スルホン酸エステルとしては、ベンゾイントシレート、p-ニトロベンジル-9,10-エトキシアントラセンー2-スルフォネート、2-ニトロベンジルトシレート、2,6-ジニトロベンジルトシレート、2,4-ジニトロベンジルトシレート等が挙げられる。 Examples of the sulfonic acid esters include benzoin tosylate, p-nitrobenzyl-9,10-ethoxyanthracene-2-sulfonate, 2-nitrobenzyl tosylate, 2,6-dinitrobenzyl tosylate, and 2,4-dinitrobenzyl tosylate And the like.
 ハロゲン化合物としては、2-クロロ-2-フェニルアセトフェノン、2,2’,4’-トリクロロアセトフェノン、2,4,6-トリス(トリクロロメチル)-s-トリアジン、2-(p-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-メトキシ-1´-ナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、ビス-2-(4-クロロフェニル)-1,1,1-トリクロロエタン、ビス-1-(4-クロロフェニル)-2,2,2-トリクロロエタノール、ビス-2-(4-メトキシフェニル)-1,1,1-トリクロロエタン等が挙げられる。 Examples of the halogen compound include 2-chloro-2-phenylacetophenone, 2,2 ', 4'-trichloroacetophenone, 2,4,6-tris (trichloromethyl) -s-triazine, and 2- (p-methoxystyryl)- 4,6-bis (trichloromethyl) -s-triazine, 2-phenyl-4,6-bis (trichloromethyl) -s-triazine, 2- (p-methoxyphenyl) -4,6-bis (trichloromethyl) -S-triazine, 2- (4'-methoxy-1'-naphthyl) -4,6-bis (trichloromethyl) -s-triazine, bis-2- (4-chlorophenyl) -1,1,1-trichloroethane , Bis-1- (4-chlorophenyl) -2,2,2-trichloroethanol, bis-2- (4-methoxyphenyl) -1,1,1-trichloro Ethane and the like.
 その他、5-ノルボルネン-2,3-ジカルボキシイミジルトリフレート(商品名「NDI-105」 みどり化学(株)製)、5-ノルボルネン-2,3-ジカルボキシイミジルトシレート(商品名「NDI-101」 みどり化学(株)製)、4-メチルフェニルスルフォニルオキシイミノ-α-(4-メトキシフェニル)アセトニトリル(商品名「PAI-101」 みどり化学(株)製)、トリフルオロメチルスルフォニルオキシイミノ-α-(4-メトキシフェニル)アセトニトリル(商品名「PAI-105」 みどり化学(株)製)、9-カンファースルフォニルオキシイミノα-4-メトキシフェニルアセトニトリル(商品名「PAI-106」 みどり化学(株)製)、1,8-ナフタルイミジルブタンスルフォネート(商品名「NAI-1004」 みどり化学(株)製)、1,8-ナフタルイミジルトシレート(商品名「NAI-101」 みどり化学(株)製)、1,8-ナフタルイミジルトリフレート(商品名「NAI-105」 みどり化学(株)製)、1,8-ナフタルイミジルノナフルオロブタンスルフォネート(商品名「NAI-109」 みどり化学(株)製)等の熱酸発生剤も例として挙げることができる。 In addition, 5-norbornene-2,3-dicarboximidyl triflate (trade name “NDI-105” manufactured by Midori Kagaku Co., Ltd.), 5-norbornene-2,3-dicarboximidyl tosylate (trade name “NDI -101 "manufactured by Midori Kagaku Co., Ltd.), 4-methylphenylsulfonyloxyimino-α- (4-methoxyphenyl) acetonitrile (trade name" PAI-101 "manufactured by Midori Kagaku Co., Ltd.), trifluoromethylsulfonyloxyimino -Α- (4-methoxyphenyl) acetonitrile (trade name “PAI-105” manufactured by Midori Kagaku Co., Ltd.), 9-camphorsulfonyloxyimino α-4-methoxyphenylacetonitrile (trade name “PAI-106”) Midori Chemical ( Co., Ltd.), 1,8-naphthalimidylbutanesulfonate ( Product name "NAI-1004" (manufactured by Midori Kagaku Co., Ltd.), 1,8-naphthalimidyl tosylate (trade name "NAI-101" manufactured by Midori Kagaku Co., Ltd.), 1,8-naphthalimidyl triflate ( Thermal acid generators such as NAI-105 (trade name, manufactured by Midori Kagaku Co., Ltd.) and 1,8-naphthalimidyl nonafluorobutane sulfonate (trade name "NAI-109," manufactured by Midori Kagaku Co., Ltd.) Can also be mentioned as an example.
 本発明の樹脂組成物は、塗布時のフロー性向上のために、各種のフッ素系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を含有してもよい。界面活性剤の種類に特に制限はなく、例えば、“メガファック(登録商標)”F142D、同F172、同F173、同F183、同F430、同F444、同F445、同F470、同F475、同F477、同F553、同F554、同F555、同F556、同F559、同F560、同F563(以上、大日本インキ化学工業(株)製)、NBX-15、FTX-218、DFX-18((株)ネオス製)、LE-604、LE-605、LE-606、LE-607(共栄社化学(株)製)などのフッ素系界面活性剤、BYK-333、BYK-301、BYK-331、BYK-345、BYK-307(ビックケミージャパン(株)製)KL-402、KL-403、KL-404、KL-700、LE-302、LE-303、LE-304、LE-604、LE-605、LE-606、LE-607(共栄社化学(株)製)などのシリコーン系界面活性剤、ポリアルキレンオキシド系界面活性剤、ポリ(メタ)アクリレート系界面活性剤などを用いることができる。これらを2種以上用いてもよい。 樹脂 The resin composition of the present invention may contain various surfactants such as various fluorine-based surfactants and silicone-based surfactants in order to improve flowability at the time of application. There is no particular limitation on the type of surfactant, and for example, “MegaFac (registered trademark)” F142D, F172, F173, F183, F430, F444, F445, F470, F475, F477, F553, F554, F555, F556, F559, F560, F563 (all manufactured by Dainippon Ink and Chemicals, Inc.), NBX-15, FTX-218, DFX-18 (Neos Corporation) Fluorinated surfactants such as LE-604, LE-605, LE-606, LE-607 (manufactured by Kyoeisha Chemical Co., Ltd.), BYK-333, BYK-301, BYK-331, BYK-345, BYK-307 (manufactured by BYK Japan KK) KL-402, KL-403, KL-404, KL-700, LE-302, LE-30 , LE-304, LE-604, LE-605, LE-606, LE-607 (manufactured by Kyoeisha Chemical Co., Ltd.), silicone-based surfactants, polyalkylene oxide-based surfactants, poly (meth) acrylate-based surfactants Surfactants and the like can be used. Two or more of these may be used.
 さらに、本発明の樹脂組成物は、必要に応じて、シランカップリング剤、架橋剤、架橋促進剤、増感剤、熱ラジカル発生剤、溶解促進剤、溶解抑止剤、安定剤、消泡剤等の添加剤を含有することもできる。 Furthermore, the resin composition of the present invention may contain, if necessary, a silane coupling agent, a crosslinking agent, a crosslinking accelerator, a sensitizer, a thermal radical generator, a dissolution accelerator, a dissolution inhibitor, a stabilizer, and an antifoaming agent. And the like.
 <硬化膜の形成方法>
 本発明の硬化膜は、本発明の樹脂組成物、または、本発明の樹脂組成物である感光性樹脂組成物を硬化させてなるものである。ここでは、感光性樹脂組成物について、詳述する。感光性樹脂組成物の硬化膜の製造方法の1つの実施形態としては、以下の工程を含むことが好ましい。
(I)感光性樹脂組成物を基板上に塗布して塗膜を形成する工程、
(II)その塗膜を露光および現像する工程、および
(III)その現像後の塗膜を加熱する工程。
以下に例を挙げて説明する。
<Method of forming cured film>
The cured film of the present invention is obtained by curing the resin composition of the present invention or the photosensitive resin composition which is the resin composition of the present invention. Here, the photosensitive resin composition will be described in detail. One embodiment of the method for producing a cured film of the photosensitive resin composition preferably includes the following steps.
(I) a step of applying a photosensitive resin composition on a substrate to form a coating film;
(II) a step of exposing and developing the coating, and (III) a step of heating the developed coating.
An example will be described below.
 感光性樹脂組成物を、スピン塗布やスリット塗布等の公知の方法によって基板上に塗布し、ホットプレート、オーブン等の加熱装置を用いて加熱(プリベーク)する。プリベークは、50~150℃の温度範囲で30秒~30分間行うことが好ましい。プリベーク後の膜厚は0.1~15μmが好ましい。 (4) The photosensitive resin composition is coated on the substrate by a known method such as spin coating or slit coating, and heated (prebaked) using a heating device such as a hot plate or an oven. Prebaking is preferably performed at a temperature in the range of 50 to 150 ° C. for 30 seconds to 30 minutes. The film thickness after prebaking is preferably 0.1 to 15 μm.
 プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)等の紫外可視露光機を用い、所望のマスクを介して10~4000J/m程度(波長365nm露光量換算)パターン露光する。 After pre-baking, using an ultraviolet-visible exposure machine such as a stepper, a mirror projection mask aligner (MPA), or a parallel light mask aligner (PLA), and passing through a desired mask, a pattern of about 10 to 4000 J / m 2 (equivalent to a wavelength of 365 nm). Expose.
 露光後、現像により(未)露光部を溶解除去し、ネガまたはポジパターンを得る。パターンの解像度は、好ましくは15μm以下である。現像方法としては、シャワー、ディップ、パドル等の方法で現像液に5秒~10分間浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができ、例えば、アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩等の無機アルカリ、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミン等のアミン類、水酸化テトラメチルアンモニウム(TMAH)、コリン等の4級アンモニウム塩の水溶液等が挙げられる。これらを2種以上用いてもよい。また、現像後は水でリンスすることが好ましく、必要であればホットプレート、オーブン等の加熱装置で50~150℃の温度範囲で脱水乾燥ベークを行ってもよい。膜を、必要であればホットプレート、オーブン等の加熱装置で50~300℃の温度範囲で30秒~30分間加熱(ソフトベーク)を行った後、ホットプレート、オーブン等の加熱装置で150~450℃の温度範囲で30秒~2時間程度加熱(キュア)することで、硬化膜を得る。 After exposure, the (un) exposed area is dissolved and removed by development to obtain a negative or positive pattern. The resolution of the pattern is preferably 15 μm or less. As a developing method, it is preferable to immerse in a developing solution for 5 seconds to 10 minutes by a method such as shower, dip, or paddle. As the developing solution, a known alkali developing solution can be used. For example, inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, 2-diethylaminoethanol, Examples include aqueous solutions of amines such as ethanolamine and diethanolamine, and quaternary ammonium salts such as tetramethylammonium hydroxide (TMAH) and choline. Two or more of these may be used. After development, it is preferable to rinse with water. If necessary, dehydration and baking may be performed at a temperature in the range of 50 to 150 ° C. using a heating device such as a hot plate or an oven. The film is heated (soft bake) at a temperature of 50 to 300 ° C. for 30 seconds to 30 minutes using a heating device such as a hot plate or an oven if necessary, and then heated to 150 to 300 ° C. using a heating device such as a hot plate or an oven. By heating (curing) for about 30 seconds to 2 hours in a temperature range of 450 ° C., a cured film is obtained.
 感光性樹脂組成物は、パターン形成における生産性の観点から、露光時の感度が1500J/m以下であることが好ましく、1000J/m以下であることがより好ましい。 露光時の感度は、以下の方法により求められる。感光性樹脂組成物をシリコンウエハー上にスピンコーターを用いて任意の回転数でスピン塗布し、ホットプレートを用いて120℃で3分間プリベークし、膜厚1μmのプリベーク膜を作製する。PLA(キヤノン(株)製PLA-501F)を用いて、超高圧水銀灯により感度測定用の1~10μmのライン・アンド・スペースパターンを有するグレースケールマスクを介してプリベーク膜を露光した後、自動現像装置(滝沢産業(株)製AD-2000)を用いて2.38質量%TMAH水溶液で90秒間シャワー現像し、次いで水で30秒間リンスする。形成されたパターンにおいて、10μmのライン・アンド・スペースパターンを1対1の幅で解像する露光量を感度として求める。 The photosensitive resin composition, from the viewpoint of productivity in the pattern formation, it is preferable that the sensitivity at the time of exposure is 1500 J / m 2 or less, more preferably 1000 J / m 2 or less. The sensitivity at the time of exposure is determined by the following method. The photosensitive resin composition is spin-coated on a silicon wafer at an arbitrary number of revolutions using a spin coater, and prebaked at 120 ° C. for 3 minutes using a hot plate to produce a prebaked film having a thickness of 1 μm. After exposing the prebaked film using a PLA (PLA-501F manufactured by Canon Inc.) through a gray scale mask having a line and space pattern of 1 to 10 μm for sensitivity measurement using an ultra-high pressure mercury lamp, automatic development is performed. Using a device (AD-2000, manufactured by Takizawa Sangyo Co., Ltd.), develop with a 2.38% by mass aqueous solution of TMAH for 90 seconds, and then rinse with water for 30 seconds. In the formed pattern, an exposure amount for resolving a 10 μm line and space pattern with a one-to-one width is obtained as sensitivity.
 その後、熱硬化工程として、ホットプレートを用いて220℃で5分間キュアして硬化膜を作製し、感度における最小パターン寸法をキュア後解像度として求める。 (5) Thereafter, as a thermal curing step, a cured film is prepared by curing at 220 ° C. for 5 minutes using a hot plate, and the minimum pattern dimension in sensitivity is determined as the post-curing resolution.
 図1に本実施形態による硬化膜の製造方法の具体例を示す。まず、本発明の樹脂組成物を基板1の上に塗布して塗膜2を形成する。これを過熱硬化することで硬化膜3が得られる。 FIG. 1 shows a specific example of the method for manufacturing a cured film according to the present embodiment. First, the resin composition of the present invention is applied on a substrate 1 to form a coating film 2. This is overheat-cured to obtain a cured film 3.
 図2に本実施形態による硬化膜の製造方法の具体例を示す。最初の塗膜2の形成までは前述の通りに行う。次に、塗膜2に活性光線4を照射して露光する。これを加熱硬化することで硬化膜3が得られる。 FIG. 2 shows a specific example of the method for manufacturing a cured film according to the present embodiment. The steps up to the formation of the first coating film 2 are performed as described above. Next, the coating film 2 is exposed to actinic rays 4 and exposed. This is cured by heating to obtain a cured film 3.
 図3に本実施形態による硬化膜の製造方法の具体例を示す。最初の塗膜2の形成までは前述の通りに行う。次にマスク5を介して塗膜2に活性光線4を照射して露光する。露光した塗膜を現像することでパターン6が得られる。このパターンに活性光線5を照射し、これを加熱硬化することで硬化膜3が得られる。 FIG. 3 shows a specific example of the method for manufacturing a cured film according to the present embodiment. The steps up to the formation of the first coating film 2 are performed as described above. Next, the coating film 2 is exposed to actinic light 4 via the mask 5 to be exposed. The pattern 6 is obtained by developing the exposed coating film. The pattern is irradiated with actinic rays 5 and cured by heating, whereby a cured film 3 is obtained.
 本発明の脂組成物を硬化させてなる硬化膜は、波長400nmにおける膜厚1μmあたりの光透過率が90%以上であることが好ましく、92%以上であることがより好ましい。このような高い透過率は、例えば透明性の高いポリシロキサンを樹脂成分として用いた感光性樹脂組成物により容易に得ることができる。 硬化 The cured film obtained by curing the fat composition of the present invention preferably has a light transmittance of 90% or more, more preferably 92% or more per 1 μm of film thickness at a wavelength of 400 nm. Such a high transmittance can be easily obtained, for example, by a photosensitive resin composition using a highly transparent polysiloxane as a resin component.
 硬化膜の波長400nmにおける膜厚1μmあたりの透過率は、以下の方法により求められる。感光性樹脂組成物をテンパックスガラス板にスピンコーターを用いて任意の回転数でスピンコートし、ホットプレートを用いて100℃で3分間プリベークする。ホットプレートを用いて大気中220℃で5分間熱硬化して膜厚1μmの硬化膜を作製する。得られた硬化膜の紫外可視吸収スペクトルを(株)島津製作所製MultiSpec-1500を用いて測定し、波長400nmでの透過率を求める。別の方法としては、対象硬化膜の各波長による消衰係数、膜厚を大塚電子(株)製分光エリプソメータFE5000により測定し、下記式により求めることができる。 透過 The transmittance of the cured film per 1 μm of film thickness at a wavelength of 400 nm is determined by the following method. The photosensitive resin composition is spin-coated on a Tempax glass plate using a spin coater at an arbitrary rotation speed, and prebaked at 100 ° C. for 3 minutes using a hot plate. The composition is thermally cured at 220 ° C. for 5 minutes in the air using a hot plate to produce a cured film having a thickness of 1 μm. The ultraviolet-visible absorption spectrum of the obtained cured film is measured using MultiSpec-1500 manufactured by Shimadzu Corporation, and the transmittance at a wavelength of 400 nm is determined. As another method, the extinction coefficient and the film thickness of each target cured film at each wavelength can be measured by a spectroscopic ellipsometer FE5000 manufactured by Otsuka Electronics Co., Ltd., and can be obtained by the following equation.
 透過率=exp(-4πkt/λ)
ただし、kは消衰係数、tは膜厚、λは測定波長を表す。
Transmittance = exp (−4πkt / λ)
Here, k represents the extinction coefficient, t represents the film thickness, and λ represents the measurement wavelength.
 本発明の樹脂組成物およびそれを硬化させた硬化膜は、固体撮像素子、光学フィルター、有機EL素子、および表示装置である液晶ディスプレイ、有機ELテレビ、特に透明液晶テレビ等に好適に用いられる。より具体的には、裏面照射型CMOSイメージセンサなどの固体撮像素子光学フィルターの反射防止膜、混色防止壁、透明画素、ディスプレイ用TFT基板の平坦化材、液晶ディスプレイ、シースルーディスプレイ等のカラーフィルターおよびその保護膜、位相シフター、反射防止膜、等が挙げられる。また、半導体装置のバッファコート、層間絶縁膜や、各種保護膜として用いることもできる。 The resin composition of the present invention and a cured film obtained by curing the resin composition are suitably used for a solid-state imaging device, an optical filter, an organic EL device, and a display device such as a liquid crystal display, an organic EL television, particularly a transparent liquid crystal television. More specifically, an antireflection film of a solid-state imaging device optical filter such as a backside illumination CMOS image sensor, a color mixing prevention wall, a transparent pixel, a flattening material for a display TFT substrate, a liquid crystal display, a color filter such as a see-through display, and the like. Examples thereof include a protective film, a phase shifter, and an antireflection film. Further, it can be used as a buffer coat of a semiconductor device, an interlayer insulating film, or various protective films.
 以下、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されない。合成例および実施例に用いた化合物のうち、略語を使用しているものについて、以下に示す。
PGMEA:プロピレングリコールモノメチルエーテルアセテート
CPN:シクロペンタノン
gBL:ガンマブチロラクトン
BzOH:ベンジルアルコール
BzME:ベンジルメチルエーテル
MBz:安息香酸メチル
MTMS:メチルトリメトキシシラン
PhTMS:フェニルトリメトキシシラン
TES:テトラエトキシシラン
HfTMS:4-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-1-トリエトキシシリルベンゼン
CFTMS:トリフルオロプロピルトリメトキシシラン。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. Among the compounds used in the Synthesis Examples and Examples, those using abbreviations are shown below.
PGMEA: propylene glycol monomethyl ether acetate CPN: cyclopentanone gBL: gamma butyrolactone BzOH: benzyl alcohol BzME: benzyl methyl ether MBz: methyl benzoate MTMS: methyltrimethoxysilane PhTMS: phenyltrimethoxysilane TES: tetraethoxysilane HfTMS: 4 -(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl) -1-triethoxysilylbenzene CFTMS: trifluoropropyltrimethoxysilane.
 <置換基の比率測定>
 29Si-NMRの測定を行い、全体の積分値から、それぞれのオルガノシランに対する積分値の割合を算出して、比率を計算した。試料(液体)は直径10mmの“テフロン”(登録商標)製NMRサンプル管に注入し測定に用いた。29Si-NMRの測定条件を以下に示す。
<Measurement of ratio of substituents>
29 Si-NMR was measured, and the ratio of the integrated value to each organosilane was calculated from the total integrated value to calculate the ratio. The sample (liquid) was injected into a 10 mm diameter “Teflon” (registered trademark) NMR sample tube and used for measurement. The measurement conditions of 29 Si-NMR are shown below.
 装置:日本電子社製JNM GX-270、測定法:ゲーテッドデカップリング法
 測定核周波数:53.6693MHz(29Si核)、スペクトル幅:20000Hz
 パルス幅:12μsec(45°パルス)、パルス繰り返し時間:30.0sec
 溶剤:アセトン-d6、基準物質:テトラメチルシラン
 測定温度:室温、試料回転数:0.0Hz。
Apparatus: JNM GX-270 manufactured by JEOL Ltd. Measurement method: Gated decoupling method Measurement nuclear frequency: 53.6693 MHz ( 29 Si nucleus), spectrum width: 20000 Hz
Pulse width: 12 μsec (45 ° pulse), pulse repetition time: 30.0 sec
Solvent: acetone-d6, reference substance: tetramethylsilane Measurement temperature: room temperature, sample rotation speed: 0.0 Hz.
 <固形分濃度の測定>
 ポリシロキサン溶液の固形分濃度は、以下の方法により求めた。アルミカップにポリシロキサン溶液を1.5g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分を秤量して、ポリシロキサン溶液の固形分濃度を求めた。
<Measurement of solid content>
The solid concentration of the polysiloxane solution was determined by the following method. 1.5 g of the polysiloxane solution was weighed into an aluminum cup and heated at 250 ° C. for 30 minutes using a hot plate to evaporate the liquid. The solid content remaining in the heated aluminum cup was weighed to determine the solid content concentration of the polysiloxane solution.
 合成例1 HfTMS(Hf-1)の合成
 Hf化合物(H1)を合成するために以下の反応を行った。
Synthesis Example 1 Synthesis of HfTMS (Hf-1) The following reaction was performed to synthesize an Hf compound (H1).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 還流管を取り付けた300mL三口フラスコ内に、予め乾燥させておいたHf化合物(H-1)6.46g(20.0mmol)、テトラブチルアンモニウムヨージド7.38g(40.0mmol)、およびビス(アセトニトリル)(1,5-シクロオクタジエン)ロジウム(I)テトラフルオロボラート0.2280g(0.60mmol)を室温で採取した。次いで、アルゴン雰囲気下で、脱水処理したN,N-ジメチルホルムアミド120mL、脱水処理したトリエチルアミン11.1mL(80.0mmol)、およびトリエトキシシラン7.40mL(40.0mmol)を加えて、80℃に昇温し、4時間攪拌した。反応系を室温までに自然冷却した後、溶剤であるN,N-ジメチルホルムアミドを留去し、次いでジイソプロピルエーテルを200mL加えた。生じた沈殿に、セライトを接触させて濾過した後、濾液を100mLの水で3回洗浄し、Na2SO4を加えて脱水乾燥させ、さらに濾過した後、溶剤を留去した。反応物である残渣を、クーゲルロール装置を用いて140℃~190℃、200Paの条件にて蒸留生成し、無色液体としてHfTMS(Hf-1)を得た。得られたHfTMS(Hf-1)の、H-NMR測定結果は以下のようになった。 In a 300 mL three-necked flask equipped with a reflux tube, 6.46 g (20.0 mmol) of the previously dried Hf compound (H-1), 7.38 g (40.0 mmol) of tetrabutylammonium iodide, and bis ( 0.2280 g (0.60 mmol) of acetonitrile) (1,5-cyclooctadiene) rhodium (I) tetrafluoroborate was collected at room temperature. Then, under an argon atmosphere, 120 mL of dehydrated N, N-dimethylformamide, 11.1 mL (80.0 mmol) of dehydrated triethylamine, and 7.40 mL (40.0 mmol) of triethoxysilane were added, and the mixture was heated to 80 ° C. The mixture was heated and stirred for 4 hours. After the reaction system was naturally cooled to room temperature, the solvent, N, N-dimethylformamide, was distilled off, and then 200 mL of diisopropyl ether was added. The resulting precipitate was contacted with celite and filtered, and the filtrate was washed three times with 100 mL of water, dried by adding Na2SO4, and filtered, and the solvent was distilled off. The residue as a reaction product was distilled and produced using a Kugelrohr apparatus under the conditions of 140 ° C. to 190 ° C. and 200 Pa to obtain HfTMS (Hf-1) as a colorless liquid. The result of 1 H-NMR measurement of the obtained HfTMS (Hf-1) was as follows.
 H-NMR(溶剤CDCl3(重水素化クロロホルム)、TMS(テトラメチルシラン)):δ8.03(1H,s),7.79(2H,d,J=7.6Hz),7.47(1H,t,J=7.6Hz),4.16(1H,s),3.88(6H,q,J=5.0Hz),1.24(9H,t,J=7.4Hz)。 1 H-NMR (solvent CDCl? (Deuterochloroform), TMS (tetramethylsilane)): δ8.03 (1H, s ), 7.79 (2H, d, J = 7.6Hz), 7.47 ( 1H, t, J = 7.6 Hz), 4.16 (1H, s), 3.88 (6H, q, J = 5.0 Hz), 1.24 (9H, t, J = 7.4 Hz).
 合成例2 HfTMS(Hf-2)の合成
 Hf化合物(H1)を合成するために以下の反応を行った。
Synthesis Example 2 Synthesis of HfTMS (Hf-2) The following reaction was performed to synthesize an Hf compound (H1).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 Hf化合物(H-1)の代わりにHf化合物(H-2)を用いた以外は、合成例1と同様の手順で、HfTMS(Hf-2)を得た。得られたHfTMS(Hf-1)の、H-NMR測定結果は以下のようになった。
H-NMR(溶剤CDCl3(重水素化クロロホルム)、TMS(テトラメチルシラン)):δ7.74(4H,dd、J=18.6,18.3Hz),3.89(6H,q,J=7.0Hz),3.57(1H,s),1.26(9H,t,J=7.0Hz)。
HfTMS (Hf-2) was obtained in the same procedure as in Synthesis Example 1 except that the Hf compound (H-2) was used instead of the Hf compound (H-1). The result of 1 H-NMR measurement of the obtained HfTMS (Hf-1) was as follows.
1 H-NMR (solvent CDCl3 (deuterated chloroform), TMS (tetramethylsilane)): δ7.74 (4H, dd, J = 18.6,18.3 Hz), 3.89 (6H, q, J) = 7.0 Hz), 3.57 (1 H, s), 1.26 (9 H, t, J = 7.0 Hz).
 合成例3 ポリシロキサン(P-1)の合成
 500mlの三口フラスコにMTMSを109.25g(0.565mol)、HfTMS(Hf-1)を84.67g(0.049mol)、TESを6.51g(0.014mol)、PGMEAを191.75g仕込み、室温で攪拌しながら水56.82gにリン酸1.00g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて90分間攪拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間過熱攪拌し(内温は100~110℃)、ポリシロキサン(P-1)を得た。なお、昇温および加熱攪拌中、窒素を0.05l(リットル)/分、流した。反応中に副生成物であるメタノール、水が合計154.41g留出した。得られたポリシロキサン(P-1)の固形分濃度は43.1質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ20mol%、3mol%であった。
Synthesis Example 3 Synthesis of Polysiloxane (P-1) In a 500-ml three-necked flask, 109.25 g (0.565 mol) of MTMS, 84.67 g (0.049 mol) of HfTMS (Hf-1), and 6.51 g of TES ( 0.014 mol), 191.75 g of PGMEA were charged, and an aqueous phosphoric acid solution obtained by dissolving 1.00 g of phosphoric acid (0.50% by mass based on the charged monomers) in 56.82 g of water while stirring at room temperature was taken for 30 minutes. Was added. Thereafter, the flask was immersed in a 70 ° C. oil bath and stirred for 90 minutes, and then the temperature of the oil bath was raised to 115 ° C. over 30 minutes. One hour after the start of the temperature rise, the internal temperature of the solution reached 100 ° C., from which the solution was heated and stirred for 2 hours (the internal temperature was 100 to 110 ° C.) to obtain a polysiloxane (P-1). During the heating and stirring while heating, nitrogen was flowed at 0.05 l (liter) / minute. During the reaction, methanol and water as by-products were distilled out in total of 154.41 g. The solid concentration of the obtained polysiloxane (P-1) was 43.1% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 20 mol% and 3 mol%, respectively.
 合成例4 ポリシロキサン(P-2)の合成
 合成例1と同様の手順で、MTMSを112.22g(0.551mol)、HfTMS(Hf-1)を66.97g(0.037mol)、TESを22.88g(0.048mol)、PGMEAを185.62g仕込み、水61.30gにリン酸1.01g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(P-2)を得た。得られたポリシロキサン(P-2)の固形分濃度は42.8質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ15mol%、10mol%であった。
Synthesis Example 4 Synthesis of Polysiloxane (P-2) In the same manner as in Synthesis Example 1, 112.22 g (0.551 mol) of MTMS, 66.97 g (0.037 mol) of HfTMS (Hf-1), and TES were prepared. 22.88 g (0.048 mol), 185.62 g of PGMEA were charged, and an aqueous phosphoric acid solution obtained by dissolving 1.01 g of phosphoric acid (0.50% by mass based on charged monomers) in 61.30 g of water was added. A siloxane (P-2) was obtained. The solid content concentration of the obtained polysiloxane (P-2) was 42.8% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 15 mol% and 10 mol%, respectively.
 合成例5 ポリシロキサン(P-3)の合成
 合成例1と同様の手順で、MTMSを45.14g(0.257mol)、HfTMS(Hf-1)を57.72g(0.037mol)、TESを98.61g(0.240mol)、PGMEAを187.87g仕込み、水59.65gにリン酸1.01g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(P-3)を得た。得られたポリシロキサン(P-3)の固形分濃度は43.5質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ15mol%、50mol%であった。
Synthesis Example 5 Synthesis of Polysiloxane (P-3) In the same manner as in Synthesis Example 1, 45.14 g (0.257 mol) of MTMS, 57.72 g (0.037 mol) of HfTMS (Hf-1), and TES were prepared. 98.61 g (0.240 mol), 187.87 g of PGMEA were charged, and an aqueous solution of phosphoric acid obtained by dissolving 1.01 g of phosphoric acid (0.50% by mass based on charged monomers) in 59.65 g of water was added. A siloxane (P-3) was obtained. The solid concentration of the obtained polysiloxane (P-3) was 43.5% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 15 mol% and 50 mol%, respectively.
 合成例6 ポリシロキサン(P-4)の合成
 合成例1と同様の手順で、MTMSを31.16g(0.184mol)、HfTMS(Hf-1)を55.79g(0.037mol)、TESを114.39g(0.288mol)、PGMEAを188.34g仕込み、水59.31gにリン酸1.01g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(P-4)を得た。得られたポリシロキサン(P-4)の固形分濃度は42.5質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ15mol%、60mol%であった。
Synthesis Example 6 Synthesis of Polysiloxane (P-4) In the same manner as in Synthesis Example 1, 31.16 g (0.184 mol) of MTMS, 55.79 g (0.037 mol) of HfTMS (Hf-1), and TES were prepared. 114.39 g (0.288 mol), 188.34 g of PGMEA were charged, and an aqueous solution of phosphoric acid in which 1.01 g of phosphoric acid (0.50% by mass with respect to the charged monomers) was dissolved in 59.31 g of water was added. A siloxane (P-4) was obtained. The solid concentration of the obtained polysiloxane (P-4) was 42.5% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 15 mol% and 60 mol%, respectively.
 合成例7 ポリシロキサン(P-5)の合成
 合成例1と同様の手順で、MTMSを66.18g(0.367mol)、HfTMS(Hf-1)を59.24g(0.037mol)、TESを10.12g(0.024mol)、CFTMSを63.63g(0.137mol)、PGMEAを196.49g仕込み、水53.35gにリン酸1.00g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(P-5)を得た。得られたポリシロキサン(P-5)の固形分濃度は43.7質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ15mol%、5mol%であった。
Synthesis Example 7 Synthesis of Polysiloxane (P-5) In the same procedure as in Synthesis Example 1, 66.18 g (0.367 mol) of MTMS, 59.24 g (0.037 mol) of HfTMS (Hf-1), and TES 10.12 g (0.024 mol), 63.63 g (0.137 mol) of CFTMS, 196.49 g of PGMEA were charged, and 1.00 g of phosphoric acid was added to 53.35 g of water (0.50 mass% based on the charged monomer). The dissolved phosphoric acid aqueous solution was added to obtain a polysiloxane (P-5). The solid concentration of the obtained polysiloxane (P-5) was 43.7% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 15 mol% and 5 mol%, respectively.
 合成例8 ポリシロキサン(P-6)の合成
 合成例1と同様の手順で、MTMSを58.52g(0.330mol)、HfTMS(Hf-1)を58.21g(0.037mol)、TESを19.89g(0.048mol)、CFTMSを62.52(0.137mol)、PGMEAを196.59g仕込み、水53.28gにリン酸1.00g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(P-6)を得た。得られたポリシロキサン(P-6)の固形分濃度は42.9質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ15mol%、10mol%であった。
Synthesis Example 8 Synthesis of Polysiloxane (P-6) By the same procedure as in Synthesis Example 1, 58.52 g (0.330 mol) of MTMS, 58.21 g (0.037 mol) of HfTMS (Hf-1), and TES 19.89 g (0.048 mol), 62.52 (0.137 mol) of CFTMS, 196.59 g of PGMEA were charged, and 1.00 g of phosphoric acid (0.50% by mass based on charged monomers) was added to 53.28 g of water. The dissolved phosphoric acid aqueous solution was added to obtain a polysiloxane (P-6). The solid concentration of the obtained polysiloxane (P-6) was 42.9% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 15 mol% and 10 mol%, respectively.
 合成例9 ポリシロキサン(P-7)の合成
 合成例1と同様の手順で、MTMSを46.14g(0.257mol)、HfTMS(Hf-1)を59.01g(0.037mol)、TESを30.24g(0.072mol)、CFTMSを63.38(0.137mol)、PGMEAを197.97g仕込み、水52.27gにリン酸0.99g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(P-7)を得た。得られたポリシロキサン(P-7)の固形分濃度は43.1質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ15mol%、20mol%であった。
Synthesis Example 9 Synthesis of Polysiloxane (P-7) In the same procedure as in Synthesis Example 1, MTMS was 46.14 g (0.257 mol), HfTMS (Hf-1) was 59.01 g (0.037 mol), and TES was 30.24 g (0.072 mol), 63.38 (0.137 mol) of CFTMS, 197.97 g of PGMEA were charged, and 0.99 g of phosphoric acid was added to 52.27 g of water (0.50 mass% based on the charged monomer). The dissolved phosphoric acid aqueous solution was added to obtain a polysiloxane (P-7). The solid concentration of the obtained polysiloxane (P-7) was 43.1% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 15 mol% and 20 mol%, respectively.
 合成例10 ポリシロキサン(P-8)の合成
 合成例1と同様の手順で、MTMSを30.40g(0.184mol)、HfTMS(Hf-1)を54.42g(0.037mol)、TESを55.78g(0.144mol)、CFTMSを58.45(0.137mol)、PGMEAを196.94g仕込み、水53.02gにリン酸1.00g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(P-8)を得た。得られたポリシロキサン(P-8)の固形分濃度は43.2質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ15mol%、30mol%であった。
Synthesis Example 10 Synthesis of Polysiloxane (P-8) In the same procedure as in Synthesis Example 1, 30.40 g (0.184 mol) of MTMS, 54.42 g (0.037 mol) of HfTMS (Hf-1), and TES were synthesized. 55.78 g (0.144 mol), 58.45 (0.137 mol) of CFTMS, 196.94 g of PGMEA were charged, and 1.00 g of phosphoric acid (0.50% by mass based on charged monomers) was added to 53.02 g of water. The dissolved phosphoric acid aqueous solution was added to obtain a polysiloxane (P-8). The solid concentration of the obtained polysiloxane (P-8) was 43.2% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 15 mol% and 30 mol%, respectively.
 合成例11 ポリシロキサン(P-9)の合成
 合成例1と同様の手順で、MTMSを5.71g(0.037mol)、HfTMS(Hf-1)を51.09g(0.037mol)、TESを87.29g(0.240mol)、CFTMSを54.88(0.137mol)、PGMEAを197.24g仕込み、水52.80gにリン酸0.99g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(P-9)を得た。得られたポリシロキサン(P-9)の固形分濃度は42.8質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ15mol%、50mol%であった。
Synthesis Example 11 Synthesis of Polysiloxane (P-9) In the same procedure as in Synthesis Example 1, 5.71 g (0.037 mol) of MTMS, 51.09 g (0.037 mol) of HfTMS (Hf-1), and TES 87.29 g (0.240 mol), 54.88 (0.137 mol) of CFTMS, 197.24 g of PGMEA were charged, and 0.99 g of phosphoric acid was added to 52.80 g of water (0.50 mass% based on the charged monomer). The dissolved phosphoric acid aqueous solution was added to obtain a polysiloxane (P-9). The solid content of the obtained polysiloxane (P-9) was 42.8% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 15 mol% and 50 mol%, respectively.
 合成例12 ポリシロキサン(P-10)の合成
 合成例1と同様の手順で、MTMSを54.02g(0.294mol)、HfTMS(Hf-1)を40.30g(0.025mol)、TESを41.31g(0.096mol)、CFTMSを64.92(0.137mol)、PGMEAを191.35g仕込み、水57.11gにリン酸1.00g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(P-10)を得た。得られたポリシロキサン(P-10)の固形分濃度は43.1質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ10mol%、20mol%であった。
Synthesis Example 12 Synthesis of Polysiloxane (P-10) In the same procedure as in Synthesis Example 1, 54.02 g (0.294 mol) of MTMS, 40.30 g (0.025 mol) of HfTMS (Hf-1), and TES were synthesized. 41.31 g (0.096 mol), 64.92 (0.137 mol) of CFTMS, 191.35 g of PGMEA were charged, and 1.00 g of phosphoric acid (0.50% by mass based on charged monomers) was added to 57.11 g of water. The dissolved phosphoric acid aqueous solution was added to obtain a polysiloxane (P-10). The solid content of the obtained polysiloxane (P-10) was 43.1% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 10 mol% and 20 mol%, respectively.
 合成例13 ポリシロキサン(P-11)の合成
 合成例1と同様の手順で、MTMSを35.26g(0.220mol)、HfTMS(Hf-1)を70.13g(0.049mol)、TESを35.95g(0.096mol)、CFTMSを56.49(0.137mol)、PGMEAを201.48g仕込み、水49.70gにリン酸0.99g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(P-11)を得た。得られたポリシロキサン(P-11)の固形分濃度は43.4質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ20mol%、20mol%であった。
Synthesis Example 13 Synthesis of Polysiloxane (P-11) In the same manner as in Synthesis Example 1, 35.26 g (0.220 mol) of MTMS, 70.13 g (0.049 mol) of HfTMS (Hf-1), and TES 35.95 g (0.096 mol), 56.49 (0.137 mol) of CFTMS, 201.48 g of PGMEA were charged, and 0.99 g of phosphoric acid was added to 49.70 g of water (0.50% by mass based on charged monomers). The dissolved phosphoric acid aqueous solution was added to obtain a polysiloxane (P-11). The solid concentration of the obtained polysiloxane (P-11) was 43.4% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 20 mol% and 20 mol%, respectively.
 合成例14 ポリシロキサン(P-12)の合成
 合成例1と同様の手順で、MTMSを20.80g(0.147mol)、HfTMS(Hf-1)を93.11g(0.074mol)、TESを31.82g(0.096mol)、CFTMSを50.00(0.137mol)、PGMEAを209.29g仕込み、水43.99gにリン酸0.98g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(P-12)を得た。得られたポリシロキサン(P-12)の固形分濃度は43.0質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ30mol%、20mol%であった。
Synthesis Example 14 Synthesis of Polysiloxane (P-12) In the same procedure as in Synthesis Example 1, MTMS was 20.80 g (0.147 mol), HfTMS (Hf-1) was 93.11 g (0.074 mol), and TES was 31.82 g (0.096 mol), 50.00 (0.137 mol) of CFTMS, 209.29 g of PGMEA were charged, and 0.98 g of phosphoric acid (43.99 g of water) was added to 43.99 g of water. The dissolved phosphoric acid aqueous solution was added to obtain a polysiloxane (P-12). The solid content concentration of the obtained polysiloxane (P-12) was 43.0% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 30 mol% and 20 mol%, respectively.
 合成例15 ポリシロキサン(P-13)の合成
 500mlの三口フラスコにMTMSを109.25g(0.565mol)、HfTMS(Hf-2)を84.67g(0.049mol)、TESを6.51g(0.014mol)、PGMEAを191.75g仕込み、室温で攪拌しながら水56.82gにリン酸1.00g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて90分間攪拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間過熱攪拌し(内温は100~110℃)、ポリシロキサン(P-13)を得た。なお、昇温および加熱攪拌中、窒素を0.05l(リットル)/分、流した。反応中に副生成物であるメタノール、水が合計154.41g留出した。得られたポリシロキサン(P-1)の固形分濃度は43.0質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ20mol%、3mol%であった。
Synthesis Example 15 Synthesis of Polysiloxane (P-13) In a 500-ml three-necked flask, 109.25 g (0.565 mol) of MTMS, 84.67 g (0.049 mol) of HfTMS (Hf-2), and 6.51 g of TES ( 0.014 mol), 191.75 g of PGMEA were charged, and an aqueous phosphoric acid solution obtained by dissolving 1.00 g of phosphoric acid (0.50% by mass based on the charged monomers) in 56.82 g of water while stirring at room temperature was taken for 30 minutes. Was added. Thereafter, the flask was immersed in a 70 ° C. oil bath and stirred for 90 minutes, and then the temperature of the oil bath was raised to 115 ° C. over 30 minutes. One hour after the start of the temperature rise, the internal temperature of the solution reached 100 ° C., from which the solution was heated and stirred for 2 hours (the internal temperature was 100 to 110 ° C.) to obtain a polysiloxane (P-13). During the heating and stirring while heating, nitrogen was flowed at 0.05 l (liter) / minute. During the reaction, methanol and water as by-products were distilled out in total of 154.41 g. The solid concentration of the obtained polysiloxane (P-1) was 43.0% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 20 mol% and 3 mol%, respectively.
 合成例16 ポリシロキサン(R-1)の合成
 合成例1と同様の手順で、HfTMS(Hf-1)を188.82g(0.246mol)、PGMEAを235.14g仕込み、水25.09gにリン酸0.94g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(R-1)を得た。得られたポリシロキサン(R-1)の固形分濃度は43.2質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ100mol%、0mol%であった。
Synthesis Example 16 Synthesis of Polysiloxane (R-1) In the same manner as in Synthesis Example 1, 188.82 g (0.246 mol) of HfTMS (Hf-1) and 235.14 g of PGMEA were charged, and phosphorus was added to 25.09 g of water. An aqueous solution of phosphoric acid in which 0.94 g of acid (0.50% by mass based on the charged monomer) was dissolved was added to obtain a polysiloxane (R-1). The solid concentration of the obtained polysiloxane (R-1) was 43.2% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 100 mol% and 0 mol%, respectively.
 合成例17 ポリシロキサン(R-2)の合成
 合成例1と同様の手順で、MTMSを41.54g(0.330mol)、HfTMS(Hf-1)を151.49g(0.135mol)、PGMEAを219.40g仕込み、水36.60gにリン酸0.97g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(R-2)を得た。得られたポリシロキサン(R-2)の固形分濃度は43.5質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ55mol%、0mol%であった。
Synthesis Example 17 Synthesis of Polysiloxane (R-2) In the same manner as in Synthesis Example 1, 41.54 g (0.330 mol) of MTMS, 151.49 g (0.135 mol) of HfTMS (Hf-1), and PGMEA were prepared. An aqueous solution of phosphoric acid in which 0.97 g of phosphoric acid (0.50% by mass based on the charged monomers) was added to 219.40 g of water and 36.60 g of water was added to obtain a polysiloxane (R-2). The solid concentration of the obtained polysiloxane (R-2) was 43.5% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 55 mol% and 0 mol%, respectively.
 合成例18 ポリシロキサン(R-3)の合成
 合成例1と同様の手順で、MTMSを68.15g(0.330mol)、CFTMSを133.47g(0.252mol)、PGMEAを187.34g仕込み、水60.04gにリン酸1.01g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(R-3)を得た。得られたポリシロキサン(R-3)の固形分濃度は43.2質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ0mol%、0mol%であった。
Synthesis Example 18 Synthesis of Polysiloxane (R-3) In the same procedure as in Synthesis Example 1, 68.15 g (0.330 mol) of MTMS, 133.47 g (0.252 mol) of CFTMS, and 187.34 g of PGMEA were charged. An aqueous phosphoric acid solution in which 1.01 g of phosphoric acid (0.50% by mass based on the charged monomers) was dissolved in 60.04 g of water was added to obtain a polysiloxane (R-3). The solid concentration of the obtained polysiloxane (R-3) was 43.2% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 0 mol% and 0 mol%, respectively.
 合成例19 ポリシロキサン(R-4)の合成
 合成例1と同様の手順で、MTMSを73.11g(0.330mol)、PhTMSを130.10g(0.277mol)、PGMEAを181.36g仕込み、水64.42gにリン酸1.02g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(R-4)を得た。得られたポリシロキサン(R-4)の固形分濃度は42.8質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ0mol%、0mol%であった。
Synthesis Example 19 Synthesis of Polysiloxane (R-4) In the same procedure as in Synthesis Example 1, 73.11 g (0.330 mol) of MTMS, 130.10 g (0.277 mol) of PhTMS, and 181.36 g of PGMEA were charged. An aqueous phosphoric acid solution in which 1.02 g of phosphoric acid (0.50% by mass based on the charged monomers) was dissolved in 64.42 g of water was added to obtain a polysiloxane (R-4). The solid concentration of the obtained polysiloxane (R-4) was 42.8% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 0 mol% and 0 mol%, respectively.
 合成例20 ポリシロキサン(R-5)の合成
 合成例1と同様の手順で、HfTMSを120.70g(0.111mol)、PhTMSを71.98g(0.277mol)、PGMEAを220.71g仕込み、水35.64gにリン酸0.97g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(R-5)を得た。得られたポリシロキサン(R-5)の固形分濃度は43.2質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ45mol%、0mol%であった。
Synthesis Example 20 Synthesis of Polysiloxane (R-5) In the same procedure as in Synthesis Example 1, 120.70 g (0.111 mol) of HfTMS, 71.98 g (0.277 mol) of PhTMS, and 220.71 g of PGMEA were charged. An aqueous phosphoric acid solution obtained by dissolving 0.97 g of phosphoric acid (0.50% by mass based on the charged monomers) in 35.64 g of water was added to obtain a polysiloxane (R-5). The solid content of the obtained polysiloxane (R-5) was 43.2% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 45 mol% and 0 mol%, respectively.
 合成例21 ポリシロキサン(R-6)の合成
 合成例1と同様の手順で、HfTMSを66.32g(0.049mol)、PhTMSを129.44g(0.403mol)、PGMEAを209.20g仕込み、水44.06gにリン酸0.98g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(R-6)を得た。得られたポリシロキサン(R-6)の固形分濃度は43.2質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ20mol%、0mol%であった。合成例1~18で得られた(A)ポリシロキサンの原料であるアルコキシシランの仕込み量を表1に示す。
Synthesis Example 21 Synthesis of Polysiloxane (R-6) In the same procedure as in Synthesis Example 1, 66.32 g (0.049 mol) of HfTMS, 129.44 g (0.403 mol) of PhTMS, and 209.20 g of PGMEA were charged. An aqueous phosphoric acid solution obtained by dissolving 0.98 g of phosphoric acid (0.50% by mass based on charged monomers) in 44.06 g of water was added to obtain a polysiloxane (R-6). The solid concentration of the obtained polysiloxane (R-6) was 43.2% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 20 mol% and 0 mol%, respectively. Table 1 shows the charged amounts of the alkoxysilanes, which are the raw materials for the polysiloxane (A) obtained in Synthesis Examples 1 to 18.
  合成例22 ポリシロキサン(R-7)の合成
 合成例1と同様の手順で、MTMSを15.46g(0.011mol)、CFTMSを19.27g(0.088mol)、TESを10.51g(0.050mol)、PGMEAを40.01g仕込み、水14.53gにリン酸0.23g(仕込みモノマーに対して0.50質量%)を溶かしたリン酸水溶液を添加して、ポリシロキサン(R-7)を得た。得られたポリシロキサン(R-6)の固形分濃度は43.2質量%であった。29Si-NMRの測定により、一般式(1)~(3)のいずれかで表される構造、および一般式(4)または(5)のいずれかで表される構造の、(A)ポリシロキサン中のモル量は、それぞれ0mol%、20mol%であった。合成例1~22で得られた(A)ポリシロキサンの原料であるアルコキシシランの仕込み量を表1に示す。
Synthesis Example 22 Synthesis of Polysiloxane (R-7) In the same procedure as in Synthesis Example 1, 15.46 g (0.011 mol) of MTMS, 19.27 g (0.088 mol) of CFTMS, and 10.51 g (0. 0.050 mol), 40.01 g of PGMEA, and an aqueous solution of phosphoric acid in which 0.23 g of phosphoric acid (0.50% by mass based on the charged monomer) was dissolved in 14.53 g of water, and polysiloxane (R-7) was added. ) Got. The solid concentration of the obtained polysiloxane (R-6) was 43.2% by mass. According to the measurement by 29 Si-NMR, the (A) poly (A) having a structure represented by any of the general formulas (1) to (3) and a structure represented by any of the general formulas (4) or (5) The molar amount in the siloxane was 0 mol% and 20 mol%, respectively. Table 1 shows the charged amounts of the alkoxysilanes, which are the raw materials for the polysiloxane (A) obtained in Synthesis Examples 1 to 22.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 合成例22 ナフトキノンジアジド化合物(C-1)の合成
 乾燥窒素気流下、フェノール性水酸基を有する化合物TrisP-PA(商品名、本州化学工業(株)製)21.23g(0.05mol)と5-ナフトキノンジアジドスルホニル酸クロリド37.62g(0.14mol)を1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合させたトリエチルアミン15.58g(0.154mol)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入させた。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、下記構造のナフトキノンジアジド化合物C-1を得た。
Synthesis Example 22 Synthesis of naphthoquinonediazide compound (C-1) Under dry nitrogen stream, 21.23 g (0.05 mol) of compound TrisP-PA having a phenolic hydroxyl group (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) was added. 37.62 g (0.14 mol) of naphthoquinonediazidosulfonyl chloride was dissolved in 450 g of 1,4-dioxane, and the mixture was brought to room temperature. To this, 15.58 g (0.154 mol) of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature inside the system did not become 35 ° C. or higher. After the addition, the mixture was stirred at 30 ° C. for 2 hours. The triethylamine salt was filtered and the filtrate was poured into water. Thereafter, the deposited precipitate was collected by filtration. The precipitate was dried using a vacuum drier to obtain a naphthoquinonediazide compound C-1 having the following structure.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 [金属化合物粒子の溶剤置換]
 溶剤置換例1 “スルーリア”4110の溶剤置換
 金属酸化物粒子として、“スルーリア”4110(商品名、日揮触媒化成(株)製)の溶剤をイソプロパノールからPGMEAに置換した。500mlのナスフラスコに“スルーリア4110のイソプロパノールゾル(固形分濃度20%)を100g、PGMEAを80g仕込み、エバポレーターにて30℃で30分間減圧し、IPAを除去した。得られたスルーリア4110のPGMEA溶液D-1の固形分濃度を測定したところ、20.1%であった。
[Solvent replacement of metal compound particles]
Solvent Substitution Example 1 Solvent Substitution of "Surria" 4110 As metal oxide particles, the solvent of "Surria" 4110 (trade name, manufactured by JGC Catalysts & Chemicals, Inc.) was replaced with PGMEA from isopropanol. A 500 ml eggplant flask was charged with 100 g of Isopropanol sol (solid content concentration: 20%) of Sluria 4110 and 80 g of PGMEA, and the pressure was reduced at 30 ° C. for 30 minutes using an evaporator to remove IPA. The PGMEA solution of the resulting Sluria 4110 was obtained. The solid concentration of D-1 was measured and found to be 20.1%.
 得られた樹脂組成物の各評価は、以下の方法で行った。 各 Each evaluation of the obtained resin composition was performed by the following methods.
 (1)膜厚測定
 シリコンウエハー上に形成した膜について、ラムダエースSTM-602(商品名、大日本スクリーン製)を用いて、屈折率1.40でプリベーク膜、現像後膜および硬化膜の厚さを測定した。
(1) Film thickness measurement The thickness of the pre-baked film, the developed film and the cured film at a refractive index of 1.40 using Lambda Ace STM-602 (trade name, manufactured by Dainippon Screen) for the film formed on the silicon wafer. Was measured.
 (2)屈折率の測定
 得られた硬化膜について、大塚電子(株)製分光エリプソメータFE5000を用いて、22℃での633nmにおける屈折率を測定した。
(2) Measurement of Refractive Index The refractive index of the obtained cured film at 633 nm at 22 ° C. was measured using a spectroscopic ellipsometer FE5000 manufactured by Otsuka Electronics Co., Ltd.
 (3)耐薬品性の評価
 得られた硬化膜の膜厚を(1)膜厚測定し、膜厚t1とした。続いて、硬化膜をアセトンに5分間浸漬させた後、ホットプレート(アズワン(株)製HP-1SA)を用いて100℃で1分間加熱した。加熱後、硬化膜の膜厚をサーフコムにより測定し、膜厚t2とした。下記式により、アセトン浸漬前後での膜厚変化率Xを算出し、耐薬品性を評価した。評価基準を下記A~Eとする。
(3) Evaluation of chemical resistance The thickness of the obtained cured film was measured (1) and the thickness was determined as a thickness t1. Subsequently, the cured film was immersed in acetone for 5 minutes, and then heated at 100 ° C. for 1 minute using a hot plate (HP-1SA manufactured by AS ONE Corporation). After the heating, the thickness of the cured film was measured by Surfcom to determine the thickness t2. The film thickness change rate X before and after acetone immersion was calculated by the following formula, and the chemical resistance was evaluated. The evaluation criteria are A to E below.
 膜厚変化率 X(%)=(t1-t2)/t1×100
A:膜厚変化率Xが、X<5%
B:膜厚変化率Xが、5%≦X<15%
C:膜厚変化率Xが、15%≦X<30%
D:膜厚変化率Xが、30%≦X<60%
E:膜厚変化率Xが、60%≦X。
Film thickness change rate X (%) = (t1−t2) / t1 × 100
A: The film thickness change rate X is X <5%
B: The film thickness change rate X is 5% ≦ X <15%
C: film thickness change rate X is 15% ≦ X <30%
D: film thickness change rate X is 30% ≦ X <60%
E: The film thickness change rate X is 60% ≦ X.
 (4)クラック耐性の評価
 得られた硬化膜を顕微鏡で観察することにより、クラックの有無を確認した。
評価基準を下記A~Cとする。
A:全面にクラックは観察されない
B:ウエハー基板の端にのみクラックが見られる
C:全面にクラックが見られる。
(4) Evaluation of crack resistance The presence or absence of cracks was confirmed by observing the obtained cured film with a microscope.
The evaluation criteria are A to C below.
A: No crack is observed on the entire surface. B: Crack is observed only on the edge of the wafer substrate. C: Crack is observed on the entire surface.
 (5)塗布性の評価
 得られた硬化膜を顕微鏡で観察することにより、異物、ハジキの有無を評価した。
A:全面に異物、ハジキは観察されない。
B:ウエハーの中央部のみ異物、ハジキが見られる。
C:ウエハー全面に異物、ハジキが見られる。
(5) Evaluation of coatability The obtained cured film was observed with a microscope to evaluate the presence or absence of foreign matter and cissing.
A: No foreign matter or cissing is observed on the entire surface.
B: Foreign matter and cissing are observed only at the center of the wafer.
C: Foreign matter and cissing are observed on the entire surface of the wafer.
 (6)透過率の測定(400nm波長、1μm換算)
 得られた硬化膜の400nm波長による消衰係数を大塚電子(株)製分光エリプソメータFE5000により測定し、下記式により400nm波長における膜厚1μm換算での光透過率(%)を求めた。
光透過率=exp(-4πkt/λ)
 ただし、kは消衰係数、tは換算膜厚(μm)、λは測定波長(nm)を表す。なお本測定では1μm換算の光透過率を求めるため、tは1(μm)となる。
(6) Measurement of transmittance (400 nm wavelength, 1 μm conversion)
The extinction coefficient of the obtained cured film at a wavelength of 400 nm was measured with a spectroscopic ellipsometer FE5000 manufactured by Otsuka Electronics Co., Ltd., and the light transmittance (%) at a wavelength of 400 nm in terms of a film thickness of 1 μm was determined by the following equation.
Light transmittance = exp (−4πkt / λ)
Here, k represents an extinction coefficient, t represents a converted film thickness (μm), and λ represents a measurement wavelength (nm). In this measurement, since the light transmittance in terms of 1 μm is obtained, t is 1 (μm).
 (7)解像度
 得られた硬化膜について、全ての露光量での正方形パターンを観察し、最小パターン寸法を解像度として観察を行った。評価基準を以下のように定めた。
A:最小パターン寸法xが、x<15μm
B:最小パターン寸法xが、15μm≦x<50μm
C:最小パターン寸法xが、50μm≦x<100μm
D:最小パターン寸法xが、100μm≦x。
(7) Resolution Regarding the obtained cured film, square patterns were observed at all exposure amounts, and observation was performed with the minimum pattern size as the resolution. The evaluation criteria were set as follows.
A: The minimum pattern dimension x is x <15 μm
B: The minimum pattern dimension x is 15 μm ≦ x <50 μm
C: The minimum pattern dimension x is 50 μm ≦ x <100 μm
D: The minimum pattern dimension x is 100 μm ≦ x.
 (8)現像膜減り評価
 実施例19~40および比較例7~12について、現像時の膜減り量を算出した。
現像膜減り=(プリベーク膜の膜厚-現像後膜の膜厚)/プリベーク膜の膜厚×100
なお、プリベーク膜の膜厚および現像後の膜厚は前述の(1)膜厚測定に記載の方法に従って行った。
(8) Evaluation of Reduction in Developed Film For Examples 19 to 40 and Comparative Examples 7 to 12, the amount of reduced film during development was calculated.
Reduction of developed film = (thickness of prebaked film−thickness of developed film) / thickness of prebaked film × 100
The thickness of the prebaked film and the thickness after development were measured according to the method described in (1) Measurement of Film Thickness.
 実施例1
 表2の(I)樹脂組成物の比率にて調合を行い、黄色灯下で混合、撹拌して均一溶液とした後、0.20μmのフィルターで濾過して組成物1を調製した。
Example 1
The mixture was prepared according to the ratio of the resin composition (I) in Table 2, mixed and stirred under a yellow light to form a uniform solution, and then filtered through a 0.20 μm filter to prepare Composition 1.
 組成物1を調製直後に4インチシリコンウエハーにスピンコーター(ミカサ(株)製1H-360S)を用いてスピン塗布した後、ホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて120℃で3分間加熱し、膜厚1.0μmのプリベーク膜を作製した。その後、プリベーク膜をホットプレートを用いて230℃で5分間キュアして硬化膜1を作製した。 Immediately after the composition 1, spin coating is performed on a 4-inch silicon wafer using a spin coater (1H-360S manufactured by Mikasa Corporation), and then using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.). Heating at 120 ° C. for 3 minutes produced a pre-baked film having a thickness of 1.0 μm. Thereafter, the pre-baked film was cured at 230 ° C. for 5 minutes using a hot plate to form a cured film 1.
 硬化膜1を用いて(2)屈折率の測定と(3)耐薬品性の評価、(4)クラック耐性の評価、(5)塗布性の評価を行なった。これらの結果を表3に示す。 Using the cured film 1, (2) measurement of refractive index, (3) evaluation of chemical resistance, (4) evaluation of crack resistance, and (5) evaluation of coating property were performed. Table 3 shows the results.
 実施例2~18、比較例1~7
 樹脂組成物(I)と同様にして、表2に示す組成の組成物2~24を調製した。得られた各組成物を用いて、実施例1と同様にして硬化膜1を作製し、評価を行なった。評価結果を表3に示す。
Examples 2 to 18, Comparative Examples 1 to 7
Compositions 2 to 24 having the compositions shown in Table 2 were prepared in the same manner as the resin composition (I). Using each of the obtained compositions, a cured film 1 was prepared and evaluated in the same manner as in Example 1. Table 3 shows the evaluation results.
 実施例19
 表4の(I)樹脂組成物の比率にて調合を行い、黄色灯下で混合、撹拌して均一溶液とした後、0.20μmのフィルターで濾過して組成物25を調製した。
Example 19
The mixture was prepared at the ratio of the resin composition (I) in Table 4, mixed and stirred under a yellow light to form a uniform solution, and then filtered through a 0.20 μm filter to prepare a composition 25.
 組成物25を調製直後、4インチシリコンウエハーとガラス基板それぞれに、スピンコーター(ミカサ(株)製1H-360S)を用いてスピン塗布した後、ホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて120℃で3分間加熱し、プリベーク膜を作製し、(1)膜厚測定を行った。プリベーク膜を、自動現像装置(滝沢産業(株)製AD-2000)を用いて2.38質量%TMAH水溶液で30秒間シャワー現像し、次いで水で30秒間リンスして、ウエハー上およびガラス基板上にそれぞれ現像後膜1と現像後膜2を得て、現像後膜1について(1)膜厚測定を行った。その後、現像後膜1と現像後膜2を、ホットプレートを用いて230℃で5分間キュアして、硬化膜2と硬化膜3をそれぞれ作製した。硬化膜2について(1)膜厚測定を行った。 Immediately after the composition 25 was prepared, a 4-inch silicon wafer and a glass substrate were spin-coated using a spin coater (1H-360S, manufactured by Mikasa Co., Ltd.), and then heated on a hot plate (SCW-, manufactured by Dainippon Screen Mfg. Co., Ltd.). 636) and heated at 120 ° C. for 3 minutes to produce a pre-baked film, and (1) film thickness measurement was performed. The prebaked film was shower-developed with a 2.38% by mass TMAH aqueous solution for 30 seconds using an automatic developing device (AD-2000 manufactured by Takizawa Sangyo Co., Ltd.), rinsed with water for 30 seconds, and then on the wafer and the glass substrate. Then, after-development film 1 and post-development film 2 were obtained, and (1) film thickness measurement was performed on the post-development film 1. Thereafter, the post-development film 1 and the post-development film 2 were cured at 230 ° C. for 5 minutes using a hot plate to prepare cured films 2 and 3 respectively. The cured film 2 was subjected to (1) film thickness measurement.
 また、得られたプリベーク膜をi-線ステッパー(ニコン(株)製i9C)を用いて、100msec~1000msecまで50msec刻みで露光を行ない、次いで上記と同様の方法で現像、キュアを行ない硬化膜4を得た。 Further, the obtained prebaked film is exposed by using an i-line stepper (i9C manufactured by Nikon Corporation) at intervals of 50 msec from 100 msec to 1000 msec, and then developed and cured in the same manner as described above. I got
 硬化膜2を用いて(2)屈折率の測定と(3)耐薬品性の評価を、硬化膜3を用いて(6)透過率の測定を、硬化膜4を用いて(7)解像度の評価を行なった。これらの結果を表5に示す。 Using the cured film 2, (2) measuring the refractive index and (3) evaluating the chemical resistance, using the cured film 3, (6) measuring the transmittance, and using the cured film 4 (7) measuring the resolution. An evaluation was performed. Table 5 shows the results.
 実施例20~40、比較例8~12
 組成物25と同様にして、表4に示す組成の樹脂組成物26~46を調製した。樹脂組成物44~46では、ナフトキノンジアジド化合物として、PC-5(東洋合成株式会社製)を使用した。得られた各組成物を用いて、実施例19と同様にしてプリベーク膜、硬化膜2~4を作製し、評価を行った。評価結果を表5に示す。
Examples 20 to 40, Comparative Examples 8 to 12
Resin compositions 26 to 46 having the compositions shown in Table 4 were prepared in the same manner as in composition 25. In the resin compositions 44 to 46, PC-5 (manufactured by Toyo Gosei Co., Ltd.) was used as the naphthoquinonediazide compound. Using each of the obtained compositions, prebaked films and cured films 2 to 4 were prepared and evaluated in the same manner as in Example 19. Table 5 shows the evaluation results.
 なお(2)屈折率の測定、(6)透過率の測定において、現像して膜が全部溶解して評価が出来なかった場合は、現像を行わない以外は実施例1と同様にして硬化膜を作製し評価を行った。 In (2) the measurement of the refractive index and (6) the measurement of the transmittance, when the developed film was completely dissolved and could not be evaluated, the cured film was prepared in the same manner as in Example 1 except that the development was not performed. Was prepared and evaluated.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
1  基板
2  塗膜
3  硬化膜
4  活性光線
5  マスク
6  パターン
7  硬化膜パターン
 
Reference Signs List 1 substrate 2 coating film 3 cured film 4 actinic ray 5 mask 6 pattern 7 cured film pattern

Claims (13)

  1. (A)ポリシロキサンおよび(B)溶剤を含有する樹脂組成物であって、前記(A)ポリシロキサンが、下記一般式(1)~(3)で表される構造を少なくとも一つ以上、および、下記一般式(4)~(5)で表される構造を少なくとも一つ以上含むことを特徴とする、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (Yは炭素数5~10の脂環族または芳香族の連結基である。Rは、単結合または炭素数1~4のアルキレン基、Rは互いに独立して、水素または炭素数1~4のアルキル基、Rは互いに独立して炭素数1~8の有機基、Xは水素原子または酸解離性基、aは1~3の整数、nは1~10の整数を示す。)
    A resin composition containing (A) a polysiloxane and (B) a solvent, wherein the (A) polysiloxane has at least one structure represented by the following general formulas (1) to (3), and And a resin composition comprising at least one structure represented by the following general formulas (4) and (5).
    Figure JPOXMLDOC01-appb-C000001
    (Y is an alicyclic or aromatic linking group having 5 to 10 carbon atoms. R 1 is a single bond or an alkylene group having 1 to 4 carbon atoms, and R 2 is independently hydrogen or 1 carbon atom. To 4 alkyl groups, R 3 are independently an organic group having 1 to 8 carbon atoms, X is a hydrogen atom or an acid dissociable group, a is an integer of 1 to 3, and n is an integer of 1 to 10. )
  2. (A)ポリシロキサンが、下記一般式(6)~(8)で表される構造を少なくとも一つ以上含む請求項1記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (Rは、単結合または炭素数1~4のアルキレン基、Rは互いに独立して、水素または炭素数1~4のアルキル基、Rは互いに独立して炭素数1~8の有機基、Xは水素原子または酸解離性基、aは1~3の整数、nは1~10の整数を示す。)
    The resin composition according to claim 1, wherein (A) the polysiloxane contains at least one structure represented by the following general formulas (6) to (8).
    Figure JPOXMLDOC01-appb-C000002
    (R 1 is a single bond or an alkylene group having 1 to 4 carbon atoms, R 2 is independently of each other, hydrogen or an alkyl group having 1 to 4 carbon atoms, and R 3 is independently of each other an organic group having 1 to 8 carbon atoms. Group, X is a hydrogen atom or an acid dissociable group, a is an integer of 1 to 3, and n is an integer of 1 to 10.)
  3. (A)ポリシロキサン骨格中に、前記一般式(4)~(5)で表される構造の少なくとも一つ以上を5~50mol%有する請求項1または2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the polysiloxane skeleton (A) has at least one of the structures represented by the general formulas (4) to (5) in an amount of 5 to 50 mol%.
  4. (A)ポリシロキサンが、下記一般式(9)~(11)で表される構造を少なくとも一つ以上含む請求項1~3のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (Rは互いに独立して、水素または炭素数1~4のアルキル基、Rは互いに独立して炭素数1~8の有機基、Rはフルオロ基を有する炭素数1~10の有機基を示す。)
    4. The resin composition according to claim 1, wherein (A) the polysiloxane contains at least one structure represented by the following general formulas (9) to (11).
    Figure JPOXMLDOC01-appb-C000003
    (R 2 is independently hydrogen or an alkyl group having 1 to 4 carbon atoms, R 3 is independently an organic group having 1 to 8 carbon atoms, and R 4 is an organic group having 1 to 10 carbon atoms having a fluoro group. Represents a group.)
  5. (C)ナフトキノンジアジド化合物を含む請求項1~4のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, further comprising (C) a naphthoquinonediazide compound.
  6. (A)ポリシロキサン100質量部に対して、(C)ナフトキノンジアジド化合物が1~15質量部である請求項5に記載の樹脂組成物。 The resin composition according to claim 5, wherein the naphthoquinonediazide compound (C) is 1 to 15 parts by mass based on 100 parts by mass of the polysiloxane (A).
  7. ヘテロ原子を有する芳香族炭化水素系の(B)溶剤を1種類以上含有する請求項1~6のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, further comprising one or more aromatic hydrocarbon-based (B) solvents having a hetero atom.
  8. (D)金属化合物粒子を含有する請求項1~7のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, further comprising (D) metal compound particles.
  9. 前記(D)金属化合物粒子が、シリカ粒子である請求項8に記載の樹脂組成物。 The resin composition according to claim 8, wherein the (D) metal compound particles are silica particles.
  10. 請求項1~9のいずれかに記載の樹脂組成物の硬化膜。 A cured film of the resin composition according to any one of claims 1 to 9.
  11. 請求項10に記載の硬化膜を具備する固体撮像素子。 A solid-state imaging device comprising the cured film according to claim 10.
  12. 請求項10に記載の硬化膜を具備する有機EL素子。 An organic EL device comprising the cured film according to claim 10.
  13. 請求項10に記載の硬化膜を具備する表示装置。
     
    A display device comprising the cured film according to claim 10.
PCT/JP2019/032782 2018-08-31 2019-08-22 Resin composition and cured film obtained therefrom WO2020045214A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217000310A KR20210052431A (en) 2018-08-31 2019-08-22 Resin composition, cured film thereof
JP2019549505A JP7327163B2 (en) 2018-08-31 2019-08-22 Resin composition, its cured film
CN201980040304.1A CN112368336A (en) 2018-08-31 2019-08-22 Resin composition and cured film thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-162721 2018-08-31
JP2018162721 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045214A1 true WO2020045214A1 (en) 2020-03-05

Family

ID=69644341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032782 WO2020045214A1 (en) 2018-08-31 2019-08-22 Resin composition and cured film obtained therefrom

Country Status (5)

Country Link
JP (1) JP7327163B2 (en)
KR (1) KR20210052431A (en)
CN (1) CN112368336A (en)
TW (1) TW202020024A (en)
WO (1) WO2020045214A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186994A1 (en) * 2020-03-16 2021-09-23 セントラル硝子株式会社 Composition, composition precursor solution, production method for composition, substrate, and production method for patterned substrate
WO2022131278A1 (en) * 2020-12-15 2022-06-23 セントラル硝子株式会社 Coating fluid for optical member, polymer, cured film, photosensitive coating fluid, patterned cured film, optical member, solid imaging element, display device, polysiloxane compound, stabilizer for use in coating fluid, method for producing cured film, method for producing patterned cured film, and method for producing polymer
CN116107163A (en) * 2022-12-28 2023-05-12 上海玟昕科技有限公司 Nanoparticle-containing positive photoresist composition
WO2023171487A1 (en) * 2022-03-07 2023-09-14 東レ株式会社 Photosensitive resin composition, cured article, display device, and method for producing display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085129A (en) * 2004-08-19 2006-03-30 Shin Etsu Chem Co Ltd Resist composition and patterning process using same
WO2014112584A1 (en) * 2013-01-21 2014-07-24 セントラル硝子株式会社 Silicon compound containing hexafluoroisopropanol groups, method for producing same, and polymer compound obtained by polymerizing same
JP2015129908A (en) * 2013-11-01 2015-07-16 セントラル硝子株式会社 Positive photosensitive resin composition, method for producing film using the same, and electronic component
WO2019167771A1 (en) * 2018-02-28 2019-09-06 セントラル硝子株式会社 Silicon-containing layer-forming composition, and method for producing pattern-equipped substrate which uses same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560518B2 (en) 2005-09-28 2014-07-30 東レ株式会社 Thermosetting resin composition
JP4896755B2 (en) * 2007-02-01 2012-03-14 東京応化工業株式会社 Composition for forming flattening insulating film for liquid crystal display element and method for producing flattening insulating film for liquid crystal display element
JP5105073B2 (en) * 2008-03-24 2012-12-19 Jsr株式会社 Radiation-sensitive resin composition, and method for producing interlayer insulating film and microlens
EP2485091B1 (en) * 2009-09-29 2020-02-12 Toray Industries, Inc. Positive photosensitive resin composition, cured film obtained using same, and optical device
JP5817717B2 (en) * 2010-04-28 2015-11-18 Jsr株式会社 Positive radiation-sensitive composition, interlayer insulating film for display element, and method for forming the same
JP5648518B2 (en) 2011-02-10 2015-01-07 Jsr株式会社 Positive-type radiation-sensitive resin composition, interlayer insulating film for display element, and method for forming the same
JP6201280B2 (en) 2011-03-30 2017-09-27 東レ株式会社 Method for producing siloxane-based resin composition, cured film using the same, optical article, and method for producing solid-state imaging device
JP5830978B2 (en) 2011-07-04 2015-12-09 東レ株式会社 Siloxane resin composition and method for producing the same, cured film obtained by curing the same, optical article having the same, and solid-state imaging device
CN110095941B (en) 2011-12-26 2023-02-17 东丽株式会社 Photosensitive resin composition and method for producing semiconductor element
JP6318634B2 (en) 2013-02-14 2018-05-09 東レ株式会社 Photosensitive siloxane composition, cured film and device
KR20150135320A (en) * 2013-03-28 2015-12-02 도레이 카부시키가이샤 Photosensitive resin composition, protection film or insulation film, touch panel and method for manufacturing same
JP2015017195A (en) 2013-07-11 2015-01-29 日産化学工業株式会社 Composition for forming reflow-type high refractive index film for solid-state imaging device
JP6358416B2 (en) 2013-07-11 2018-07-18 日産化学工業株式会社 High refractive index film forming composition for solid-state imaging device containing alkoxysilyl group

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085129A (en) * 2004-08-19 2006-03-30 Shin Etsu Chem Co Ltd Resist composition and patterning process using same
WO2014112584A1 (en) * 2013-01-21 2014-07-24 セントラル硝子株式会社 Silicon compound containing hexafluoroisopropanol groups, method for producing same, and polymer compound obtained by polymerizing same
JP2015129908A (en) * 2013-11-01 2015-07-16 セントラル硝子株式会社 Positive photosensitive resin composition, method for producing film using the same, and electronic component
WO2019167771A1 (en) * 2018-02-28 2019-09-06 セントラル硝子株式会社 Silicon-containing layer-forming composition, and method for producing pattern-equipped substrate which uses same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186994A1 (en) * 2020-03-16 2021-09-23 セントラル硝子株式会社 Composition, composition precursor solution, production method for composition, substrate, and production method for patterned substrate
TWI771950B (en) * 2020-03-16 2022-07-21 日商中央硝子股份有限公司 Composition, solution of composition precursor, method for producing composition, substrate with multilayer film, and method for producing substrate with pattern
WO2022131278A1 (en) * 2020-12-15 2022-06-23 セントラル硝子株式会社 Coating fluid for optical member, polymer, cured film, photosensitive coating fluid, patterned cured film, optical member, solid imaging element, display device, polysiloxane compound, stabilizer for use in coating fluid, method for producing cured film, method for producing patterned cured film, and method for producing polymer
CN116601244A (en) * 2020-12-15 2023-08-15 中央硝子株式会社 Coating liquid for optical member, polymer, cured film, photosensitive coating liquid, pattern cured film, optical member, solid-state imaging element, display device, silicone compound, stabilizer used in coating liquid, method for producing cured film, method for producing pattern cured film, and method for producing polymer
WO2023171487A1 (en) * 2022-03-07 2023-09-14 東レ株式会社 Photosensitive resin composition, cured article, display device, and method for producing display device
CN116107163A (en) * 2022-12-28 2023-05-12 上海玟昕科技有限公司 Nanoparticle-containing positive photoresist composition

Also Published As

Publication number Publication date
KR20210052431A (en) 2021-05-10
JPWO2020045214A1 (en) 2021-08-10
CN112368336A (en) 2021-02-12
JP7327163B2 (en) 2023-08-16
TW202020024A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
JP4973093B2 (en) Siloxane resin composition, optical article, and method for producing siloxane resin composition
JP5907235B2 (en) Siloxane resin composition and method for producing the same
JP7327163B2 (en) Resin composition, its cured film
JP6201280B2 (en) Method for producing siloxane-based resin composition, cured film using the same, optical article, and method for producing solid-state imaging device
KR20170063558A (en) Photosensitive resin composition, cured film, element provided with cured film, and method for manufacturing semiconductor device
WO2011040248A1 (en) Positive photosensitive resin composition, cured film obtained using same, and optical device
JP7027886B2 (en) Resin composition, its cured film and its manufacturing method, and solid-state image sensor
JP5418617B2 (en) Siloxane resin composition, cured film and optical article
JP2010026360A (en) Negative photosensitive siloxane resin composition
JP5353011B2 (en) Siloxane resin composition, optical device using the same, and method for producing siloxane resin composition
CN105359037B (en) Positive photosensitive resin composition, cured film obtained by curing same, and optical device provided with same
JP5830978B2 (en) Siloxane resin composition and method for producing the same, cured film obtained by curing the same, optical article having the same, and solid-state imaging device
JP2015127803A (en) Photosensitive resin composition, cured film obtained by curing the same, and light-emitting element and solid-state imaging device including the cured film
JP7063391B2 (en) Photosensitive resin composition, cured film and display device
JP2021070758A (en) Resin composition and cured film thereof
JP6186766B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having the cured film
WO2022131278A1 (en) Coating fluid for optical member, polymer, cured film, photosensitive coating fluid, patterned cured film, optical member, solid imaging element, display device, polysiloxane compound, stabilizer for use in coating fluid, method for producing cured film, method for producing patterned cured film, and method for producing polymer
KR102649087B1 (en) Positive photosensitive resin composition, cured film thereof, and solid-state imaging device comprising the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019549505

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853462

Country of ref document: EP

Kind code of ref document: A1