WO2020045200A1 - Alkylene compound, quinophthalone compound, and quinophthalone mixture - Google Patents
Alkylene compound, quinophthalone compound, and quinophthalone mixture Download PDFInfo
- Publication number
- WO2020045200A1 WO2020045200A1 PCT/JP2019/032705 JP2019032705W WO2020045200A1 WO 2020045200 A1 WO2020045200 A1 WO 2020045200A1 JP 2019032705 W JP2019032705 W JP 2019032705W WO 2020045200 A1 WO2020045200 A1 WO 2020045200A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- quinophthalone
- compound
- alkylene
- halogen atom
- Prior art date
Links
- 0 *c(cc1*c(cc(*)c2nc(C(C(c3c(*)c(*)c(*)c(*)c33)=O)C3=O)ccc22)c2N(C(c2c(*)c(*)c(*)c(*)c22)=O)C2=O)c2nc(C(C(c3c4c(*)c(*)c(*)c3*)=O)C4=O)ccc2c1N(C(c1c(*)c(*)c(*)c(*)c11)=O)C1=O Chemical compound *c(cc1*c(cc(*)c2nc(C(C(c3c(*)c(*)c(*)c(*)c33)=O)C3=O)ccc22)c2N(C(c2c(*)c(*)c(*)c(*)c22)=O)C2=O)c2nc(C(C(c3c4c(*)c(*)c(*)c3*)=O)C4=O)ccc2c1N(C(c1c(*)c(*)c(*)c(*)c11)=O)C1=O 0.000 description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/16—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D215/38—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B25/00—Quinophthalones
Definitions
- the present invention relates to an alkylene compound, a method for producing a quinophthalone compound, a quinophthalone compound, and a quinophthalone mixture.
- coloring compositions are used in various fields. Specific uses of the coloring compositions include printing inks, paints, coloring agents for resins, coloring agents for fibers, coloring materials for IT information recording (color filters). , Toner, and inkjet). Dyes used in the coloring composition are required to have color characteristics (coloring power, sharpness), resistance (weather resistance, light resistance, heat resistance, solvent resistance) and the like. Dyes are mainly classified into pigments and dyes, but pigments are different from dyes that develop color in a molecular state, and develop color in a particle state (aggregates of primary particles). For this reason, pigments are generally superior to dyes in terms of resistance, but are inferior in coloring power and chroma (clearness).
- Patent Document 1 discloses a coloring composition containing a predetermined quinophthalone compound.
- the conventional coloring composition containing a quinophthalone compound is not always excellent in coloring power, and is not always sufficient for use in applications requiring high color reproducibility such as color filters. Since a quinophthalone compound is obtained by a condensation reaction between a quinaldine (2-methylquinoline) compound and phthalic anhydride, it is important to develop a novel quinalazine compound in order to find a quinophthalone compound having excellent coloring power. Become.
- One aspect of the present invention is an alkylene compound represented by the formula (1).
- X 1 and X 2 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms.
- Z may be a methylene group.
- Another aspect of the present invention relates to a first quinophthalone compound represented by the formula (3) obtained by condensing an alkylene compound represented by the formula (1) with an acid anhydride represented by the formula (2). And a step of obtaining at least one selected from the group consisting of a second quinophthalone compound represented by formula (4) and a second quinophthalone compound.
- X 1 and X 2 each independently represent a hydrogen atom or a halogen atom
- Z represents an alkylene group having 1 to 3 carbon atoms.
- X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom.
- X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms.
- X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms.
- the step may be a step of condensing the alkylene compound and the acid anhydride in the presence of an acid catalyst.
- Still another aspect of the present invention is a quinophthalone compound represented by the formula (4).
- Still another aspect of the present invention is a quinophthalone mixture containing a first quinophthalone compound represented by the formula (3) and a second quinophthalone compound represented by the formula (4).
- a novel quinaldine compound for producing a quinophthalone compound having excellent coloring power as a pigment Further, according to the present invention, a method for producing a quinophthalone compound having excellent coloring power as a pigment is provided. Further, according to the present invention, a novel quinophthalone compound and a quinophthalone mixture containing the quinophthalone compound are provided.
- alkylene compound The alkylene compound according to the present embodiment is a compound represented by the following formula (1).
- X 1 and X 2 each independently represent a hydrogen atom or a halogen atom
- Z represents an alkylene group having 1 to 3 carbon atoms.
- the halogen atom in the formula (1) may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a chlorine atom.
- alkylene group having 1 to 3 carbon atoms in the formula (1) include, for example, a methylene group, an ethylene group (1,1-ethanediyl group or 1,2-ethanediyl group), a propylene group (1,1-ethanediyl group).
- a methylene group a 1,1-ethanediyl group, a 1,1-propanediyl group, , 2-propanediyl group is more preferred, and methylene group is even more preferred.
- the alkylene compound according to the present embodiment can be obtained, for example, by a method including the following Step I, Step II, and Step III.
- the formula (1-i) and the formula (1-ii) a plurality of X 1 and between the plurality of X 2 each other in may be the same or different.
- examples of the strong acid include hydrochloric acid, sulfuric acid, nitric acid and the like.
- examples of the oxidizing agent include sodium iodide, p-chloranil, nitrobenzene, and the like.
- the reaction temperature may be from 80 ° C to 100 ° C, preferably from 90 ° C to 100 ° C, and the reaction time may be from 1 hour to 6 hours, preferably from 3 hours to 6 hours.
- the compound of the formula (1-ii) can be obtained by reacting the obtained compound of the formula (1-i) with nitric acid or fuming nitric acid in the presence of concentrated sulfuric acid.
- the reaction temperature may be -20 ° C to 70 ° C, preferably 0 ° C to 50 ° C, and the reaction time may be 1 hour to 4 hours, preferably 1 hour to 3 hours.
- the alkylene compound represented by the above formula (1) is converted by converting the nitro group (—NO 2 ) into an amino group (—NH 2 ) by reducing the obtained compound of the formula (1-ii). Obtainable.
- the compound of the formula (1-ii) is reduced with reduced iron to obtain the alkylene compound represented by the formula (1).
- the amount of reduced iron may be from 6 to 8 equivalents to 1 equivalent of the compound of the formula (1-ii)
- the reaction temperature is from 60 ° C to 80 ° C, preferably from 70 ° C to 80 ° C.
- the reaction time may be from 1 hour to 3 hours, preferably from 2 hours to 3 hours.
- the compound of the formula (1-ii) is subjected to a reduction treatment using a metal catalyst such as palladium-carbon (Pd-C), platinum-carbon (Pt-C), Raney nickel, etc.
- a metal catalyst such as palladium-carbon (Pd-C), platinum-carbon (Pt-C), Raney nickel, etc.
- the alkylene compound represented by (1) can also be obtained.
- the amount of the metal catalyst may be, for example, 0.4 to 5% by mass of the compound of the formula (1-ii) in terms of the amount of metal, and the reaction temperature is, for example, 30 to 100 ° C.
- the reaction time may be, for example, from 1 hour to 10 hours.
- hydrogen source for the reaction hydrogen gas, hydrazine, ammonium formate and the like can be used.
- an alkylene compound represented by the following formula (1) is condensed with an acid anhydride represented by the following formula (2), and the condensation is represented by the following formula (3).
- a step of obtaining at least one selected from the group consisting of a first quinophthalone compound and a second quinophthalone compound represented by the following formula (4) (hereinafter, referred to as step IV).
- equations (3) and (4) a plurality of X 3 together, a plurality of X 4 each other, a plurality of X 5 and between the plurality of X 6 each other in may the same as or different from each other.
- X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom.
- the halogen atom in the formula (2) may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom, a chlorine atom or a bromine atom, more preferably a chlorine atom.
- At least one of X 3 , X 4 , X 5 and X 6 is preferably a halogen atom, and more preferably two or more are halogen atoms. . Further, it is preferable that at least one of X 4 and X 5 is a halogen atom, more preferably X 4 and X 5 are each a halogen atom.
- Examples of the acid anhydride represented by the formula (2) include phthalic anhydride and halogen-substituted phthalic anhydride.
- Specific examples of the halogen-substituted phthalic anhydride include tetrafluorophthalic anhydride and tetrafluorophthalic anhydride. Examples thereof include chlorophthalic anhydride, tetrabromophthalic anhydride, 4,5-dichlorophthalic anhydride, 4-chlorophthalic anhydride, and 4,5-dibromophthalic anhydride.
- the acid anhydride represented by the formula (2) one type may be used alone, or two or more types may be used in combination.
- the quinophthalone compound is obtained in which a plurality of X 3 , a plurality of X 4 , a plurality of X 5, and a plurality of X 6 are different from each other. be able to.
- X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom.
- the halogen atom in the formulas (3) and (4) may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a chlorine atom. Is more preferred.
- At least one of X 3 , X 4 , X 5 and X 6 is preferably a halogen atom, and two or more are halogen atoms. Is more preferable. Further, it is preferable that at least one of X 4 and X 5 is a halogen atom, more preferably X 4 and X 5 are each a halogen atom.
- a halogen atom is introduced into X 1 , X 2 , X 3 , X 4 , X 5 or X 6 , the dispersibility and durability of the quinophthalone compound are further improved, and the above-mentioned effects are more remarkably obtained. Tend.
- X 1 , X 2 , X 3 , X 4 , X 5 , X 6 and Z are as described above.
- quinophthalone compound ⁇ Specific examples of the quinophthalone compound are described below, but the quinophthalone compound is not limited thereto.
- the quinophthalone compound exhibits selective absorption and transmission due to dimerization of a heterocyclic skeleton centering on a quinoline ring.
- the heterocyclic skeleton is dimerized using the alkylene group, which is a linking group, as a spacer, whereby the conjugation is cut and excessive redness is suppressed.
- the quinophthalone compound has improved dispersibility by introducing an imide structure. From these facts, according to the quinophthalone compound, a pigment having excellent luminance and coloring power can be obtained. Specifically, for example, a yellow pigment composed of the above quinophthalone compound has a better luminance than a currently commonly used yellow pigment (CI Pigment Yellow 150), and has an excellent luminance exceeding this. Coloring power.
- step IV 3 to 6 equivalents of the acid anhydride represented by the formula (2) is used for 1 equivalent of the alkylene compound represented by the formula (1), for example, by the method described in JP-A-2013-61622.
- an acid catalyst to condense the alkylene compound represented by the formula (1) with the acid anhydride represented by the formula (2).
- the reaction temperature of the condensation may be from 180 ° C to 250 ° C, preferably from 200 ° C to 250 ° C.
- the condensation reaction time may be 1 hour to 8 hours, preferably 3 hours to 8 hours.
- the acid catalyst examples include Bronsted acids or Lewis acids such as benzoic acid, p-toluenesulfonic acid, zinc chloride and iron chloride.
- Step IV may be a step of obtaining a first quinophthalone compound represented by the formula (3) or a second quinophthalone compound represented by the formula (4), wherein the first quinophthalone compound and the second quinophthalone compound (A quinophthalone mixture) may be obtained.
- the quinophthalone compound (or quinophthalone mixture) obtained by the production method according to the present embodiment has excellent coloring power as a pigment.
- the quinophthalone compound may be converted into a pigment by a known and commonly used method.
- the pigment (yellow pigment) composed of the quinophthalone compound may be finely divided by, for example, a salt milling treatment.
- the yellow pigment may be surface-treated by a method such as rosin treatment, surfactant treatment, solvent treatment, and resin treatment.
- Example A-1 5.00 g (56.1 mmol) of 4,4′-methylenebis (2-chloroaniline), 27.6 g (112 mmol) of p-chloranil, 150 ml of water, 150 ml of concentrated hydrochloric acid and 100 ml of n-butanol were added to the flask, and the mixture was added to the flask. Stirred at C for 30 minutes. To this mixture was added dropwise 11.8 g (168 mmol) of crotonaldehyde dissolved in 12 ml of n-butanol, and the mixture was further stirred for 1 hour.
- the temperature was lowered to 80 ° C., and 15.3 g (112 mmol) of zinc chloride was added little by little. Then, 200 ml of THF was added, and the mixture was stirred for 1 hour while maintaining the temperature at 80 ° C. After allowing to cool to room temperature, ocher powder was recovered by vacuum filtration. The obtained ocher powder was washed with 200 ml of THF, and the ocher powder was recovered by vacuum filtration again. Further, the obtained ocher powder was transferred to a flask, 200 ml of water and 40 ml of 28% aqueous ammonia were added, and the mixture was stirred at room temperature for 2 hours. The powder was recovered by vacuum filtration to obtain 20.3 g of a crude product.
- Example A-2 6,6′-Methylenediquinaldine obtained by the method described in the literature (Polymer, volume 39, No. 20 (1998), p4949) while charging 55.0 g of concentrated sulfuric acid in a flask and stirring under ice cooling. 00 g (23.5 mmol) were added. While maintaining the temperature at 10 ° C. or lower, 6.1 g of 60% nitric acid was added dropwise, and stirring was continued at 10 to 20 ° C. for 1 hour. The reaction solution was poured into 150 ml of ice water and adjusted to pH 3 using a 20 wt% aqueous sodium hydroxide solution. The precipitated powder was collected by filtration under reduced pressure, and washed with water to neutrality.
- the solid was collected, dried by blowing air at 70 ° C., added to a mixed solvent of 100 ml of dimethyl sulfoxide (DMSO) and 100 ml of N, N-dimethylformamide (DMF), and stirred at 90 ° C. for 1 hour.
- DMSO dimethyl sulfoxide
- DMF N, N-dimethylformamide
- the mixture was filtered under reduced pressure on celite to remove insolubles, and the obtained filtrate was added to 1 L of water with stirring.
- the resulting precipitate was collected by filtration under reduced pressure, washed with water, and then blown dry at 70 ° C. to obtain 3.80 g (11.6 mmol) of the desired alkylene compound.
- Example A-3 Under a nitrogen atmosphere, 10.0 g (25.8 mmol) of intermediate (iii), 1.00 g of 10% Pd—C, 50 ml of ethanol, and 100 ml of tetrahydrofuran (THF) were added to the flask, and the mixture was stirred at room temperature. Next, 12.9 g (257 mmol) of hydrazine monohydrate dissolved in a mixed solution of 20 ml of ethanol and 40 ml of THF was added dropwise. After completion of the dropwise addition, the mixture was stirred at 60 to 65 ° C. for 3 hours.
- Example B-1 Under a nitrogen atmosphere, 14.1 g (116 mmol) of benzoic acid was weighed and melted in a flask at 140 ° C. Thereto, 1.44 g (3.62 mmol) of the alkylene compound obtained in Example (A-1) and 5.53 g (19.3 mmol) of tetrachlorophthalic anhydride were added, and the mixture was stirred at 220 ° C. for 4 hours. After allowing to cool, acetone (300 mL) was added to the reaction solution, and the mixture was stirred for 1 hour, and then filtered under reduced pressure to obtain 4.41 g (3.00 mmol) of quinophthalone compound B-1 as a yellow powder (yield: 83%).
- Example B-2 Under a nitrogen atmosphere, 135 g (1.11 mol) of benzoic acid was weighed and melted in a flask at 140 ° C. Thereto were added 3.80 g (11.6 mmol) of the alkylene compound obtained in Example A-2, 18.0 g (62.9 mmol) of tetrachlorophthalic anhydride, and 0.490 g (3.60 mmol) of anhydrous zinc chloride. At 220 ° C. for 6 hours. After cooling the reaction mixture to 120 ° C., 300 mL of chlorobenzene was added, stirred for 1 hour, and filtered under reduced pressure.
- Example C-1 Under a nitrogen atmosphere, 58.0 g (475 mmol) of benzoic acid was weighed and melted in a flask at 140 ° C. Thereto, 2.00 g (5.03 mmol) of the alkylene compound obtained in Example (A-1) and 5.04 g (17.6 mmol) of tetrachlorophthalic anhydride were added, and the mixture was stirred at 220 ° C. for 4 hours. After allowing to cool, 500 mL of acetone was added to the reaction solution, and the mixture was stirred for 1 hour, and then filtered under reduced pressure to obtain 6.00 g of a quinophthalone compound C-1 as a yellow powder. As a result of MALDI-MS, it was found that the obtained C-1 was a mixture of the compound of the formula (3-1-i) and the compound of the formula (4-1-i).
- Example C-2 Under a nitrogen atmosphere, 58.0 g (475 mmol) of benzoic acid was weighed and melted in a flask at 140 ° C. Thereto were added 2.00 g (6.09 mmol) of the alkylene compound obtained in Example A-2, 6.09 g (21.3 mmol) of tetrachlorophthalic anhydride, and 0.205 g (1.50 mmol) of anhydrous zinc chloride. At 220 ° C. for 6 hours. After cooling the reaction mixture to 120 ° C., 500 mL of chlorobenzene was added, stirred for 1 hour, and filtered under reduced pressure.
- Pigmentation example 1 0.500 parts by mass of the quinophthalone compound represented by the formula (3-1-i) obtained in Example B-1 was ground together with 1.50 parts by mass of sodium chloride and 0.750 parts by mass of diethylene glycol. Thereafter, the mixture was poured into 600 parts by mass of warm water and stirred for 1 hour. After the water-insoluble matter was separated by filtration and washed well with warm water, it was blown and dried at 90 ° C. to perform pigmentation to obtain a quinophthalone pigment. The average aspect ratio of the obtained pigment particles was less than 3.00, and the average primary particle size was 100 nm or less.
- Pigmentation example 2 A quinophthalone compound represented by the formula (3-2-i) obtained in Example B-2 instead of the quinophthalone compound represented by the formula (3-1-i) obtained in Example B-1 Pigmentation was carried out in the same manner as in Pigmentation Example 1 except that quinophthalone pigment was used.
- the average aspect ratio of the obtained pigment particles was less than 3.00, and the average primary particle size was 100 nm or less.
- Example D-1 0.660 parts by mass of the quinophthalone pigment obtained in Pigmentation Example 1 was placed in a glass bottle, and 0.040 parts by mass of a sulfonic acid derivative (5) synthesized by the method described in JP-A-2013-54200, propylene glycol monomethyl ether 12.60 parts by mass of acetate, 1.400 parts by mass of BYK LPN-21116 (manufactured by BYK Chemie), 22.0 parts by mass of 0.3-0.4 mm ⁇ seple beads were added, and the mixture was added to a paint shaker (manufactured by Toyo Seiki Co., Ltd.). After half an hour of dispersion, a pigment dispersion was obtained. Note that the sulfonic acid group in the formula (5) is substituted on any of the hydrogen atoms on the quinoline ring.
- Example D-2 A yellow toning composition was obtained in the same manner as in Example D-1, except that the quinophthalone pigment obtained in Pigmentation Example 2 was used instead of the quinophthalone pigment obtained in Pigmentation Example 1.
- Example E-1 The composition for yellow toning obtained in Example D-1 and the composition for green toning obtained in Production Example 1 were mixed at a ratio of 39:61 to obtain a composition for green toning.
- Example E-1 The composition for yellow toning obtained in Example D-1 and the composition for green toning obtained in Production Example 1 were mixed at a ratio of 39:61 to obtain a composition for green toning.
- Example E-2 The composition for yellow toning obtained in Example D-2 and the composition for green toning obtained in Production Example 1 were mixed at a ratio of 40:60 to obtain a composition for green toning.
- Example E-2 The composition for yellow toning obtained in Example D-2 and the composition for green toning obtained in Production Example 1 were mixed at a ratio of 40:60 to obtain a composition for green toning.
- the luminance Y in the obtained evaluation sample was measured by a spectrophotometer (U3900 / 3900H type manufactured by Hitachi High-Tech Science Corporation). Further, for the obtained evaluation sample, the thickness of the colored film formed on the glass substrate was measured by a film thickness meter (VS1330 scanning white interference microscope manufactured by Hitachi High-Tech Science Corporation). It can be said that the thinner the film thickness, the higher the coloring power. Table 1 shows the results.
- the quinaldine compound according to the present invention is useful as a raw material compound for producing a quinophthalone compound having excellent coloring power as a pigment.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Quinoline Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Provided is an alkylene compound represented by formula (1). [Chemical formula 1] (In formula (1), X1 and X2 each independently represent a hydrogen atom or a halogen atom, and Z represents and alkylene group having 1-3 carbon atoms.)
Description
本発明は、アルキレン化合物、キノフタロン化合物の製造方法、キノフタロン化合物及びキノフタロン混合物に関する。
The present invention relates to an alkylene compound, a method for producing a quinophthalone compound, a quinophthalone compound, and a quinophthalone mixture.
現在、着色組成物は様々な分野に用いられており、着色組成物の具体的な用途としては、印刷インキ、塗料、樹脂用着色剤、繊維用着色剤、IT情報記録用色材(カラーフィルタ、トナー、インクジェット)などが挙げられる。着色組成物に用いられる色素には、色特性(着色力、鮮明性)、耐性(耐候性、耐光性、耐熱性、耐溶剤性)などが求められる。色素は、主に顔料と染料とに大別されるが、顔料は、分子状態で発色する染料とは異なり、粒子状態(一次粒子の凝集体)での発色となる。そのため、一般的に、顔料は、染料に比べて、耐性においては優位であるものの、着色力や彩度(鮮明性)では劣っている。
At present, coloring compositions are used in various fields. Specific uses of the coloring compositions include printing inks, paints, coloring agents for resins, coloring agents for fibers, coloring materials for IT information recording (color filters). , Toner, and inkjet). Dyes used in the coloring composition are required to have color characteristics (coloring power, sharpness), resistance (weather resistance, light resistance, heat resistance, solvent resistance) and the like. Dyes are mainly classified into pigments and dyes, but pigments are different from dyes that develop color in a molecular state, and develop color in a particle state (aggregates of primary particles). For this reason, pigments are generally superior to dyes in terms of resistance, but are inferior in coloring power and chroma (clearness).
このような背景から、高着色力及び高彩度な顔料が求められており、着色力の点において優勢とされている有機顔料にとりわけ注目が集まっている。例えば特許文献1には、所定のキノフタロン化合物を含有する着色組成物が開示されている。
顔料 Against this background, pigments having high coloring power and high chroma have been demanded, and organic pigments, which are dominant in coloring power, have received particular attention. For example, Patent Document 1 discloses a coloring composition containing a predetermined quinophthalone compound.
しかし、従来のキノフタロン化合物を含有する着色組成物は、必ずしも着色力に優れたものではなく、特にカラーフィルタのような高色再現性が求められる用途で用いるには、決して十分とはいえない。そして、キノフタロン化合物は、キナルジン(2-メチルキノリン)化合物とフタル酸無水物との縮合反応によって得られるため、着色力に優れたキノフタロン化合物を見出すためには、新規なキナルジン化合物の開発が重要となる。
However, the conventional coloring composition containing a quinophthalone compound is not always excellent in coloring power, and is not always sufficient for use in applications requiring high color reproducibility such as color filters. Since a quinophthalone compound is obtained by a condensation reaction between a quinaldine (2-methylquinoline) compound and phthalic anhydride, it is important to develop a novel quinalazine compound in order to find a quinophthalone compound having excellent coloring power. Become.
そこで、本発明は、顔料として優れた着色力を有するキノフタロン化合物を製造するための、新規なキナルジン化合物を提供することを目的とする。また、本発明は、顔料として優れた着色力を有するキノフタロン化合物の製造方法を提供することを目的とする。また、本発明は、新規なキノフタロン化合物、及び、当該キノフタロン化合物を含有するキノフタロン混合物を提供することを目的とする。
Accordingly, an object of the present invention is to provide a novel quinaldine compound for producing a quinophthalone compound having excellent coloring power as a pigment. Another object of the present invention is to provide a method for producing a quinophthalone compound having excellent coloring power as a pigment. Another object of the present invention is to provide a novel quinophthalone compound and a quinophthalone mixture containing the quinophthalone compound.
本発明の一側面は、式(1)で表されるアルキレン化合物である。
[式(1)中、X1及びX2は各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1~3のアルキレン基を示す。]
One aspect of the present invention is an alkylene compound represented by the formula (1).
[In the formula (1), X 1 and X 2 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]
上記Zはメチレン基であってよい。
Z may be a methylene group.
本発明の他の一側面は、式(1)で表されるアルキレン化合物と式(2)で表される酸無水物とを縮合させて、式(3)で表される第一のキノフタロン化合物及び式(4)で表される第二のキノフタロン化合物から群より選択される少なくとも一種を得る工程を備える、キノフタロン化合物の製造方法である。
[式(1)中、X1及びX2は各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1~3のアルキレン基を示す。]
[式(2)中、X3、X4、X5及びX6は各々独立に水素原子又はハロゲン原子を示す。]
[式(3)中、X1、X2、X3、X4、X5及びX6は各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1~3のアルキレン基を示す。]
[式(4)中、X1、X2、X3、X4、X5及びX6は各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1~3のアルキレン基を示す。]
Another aspect of the present invention relates to a first quinophthalone compound represented by the formula (3) obtained by condensing an alkylene compound represented by the formula (1) with an acid anhydride represented by the formula (2). And a step of obtaining at least one selected from the group consisting of a second quinophthalone compound represented by formula (4) and a second quinophthalone compound.
[In the formula (1), X 1 and X 2 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]
[In the formula (2), X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom. ]
[In the formula (3), X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]
[In the formula (4), X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]
一態様において、上記工程は、上記アルキレン化合物と上記酸無水物とを酸触媒の存在下で縮合させる工程であってよい。
In one embodiment, the step may be a step of condensing the alkylene compound and the acid anhydride in the presence of an acid catalyst.
本発明の更に他の一側面は、式(4)で表されるキノフタロン化合物である。
更 に Still another aspect of the present invention is a quinophthalone compound represented by the formula (4).
本発明の更に他の一側面は式(3)で表される第一のキノフタロン化合物と式(4)で表される第二のキノフタロン化合物とを含有する、キノフタロン混合物である。
更 に Still another aspect of the present invention is a quinophthalone mixture containing a first quinophthalone compound represented by the formula (3) and a second quinophthalone compound represented by the formula (4).
本発明によれば、顔料として優れた着色力を有するキノフタロン化合物を製造するための、新規なキナルジン化合物が提供される。また、本発明によれば、顔料として優れた着色力を有するキノフタロン化合物の製造方法が提供される。また、本発明によれば、新規なキノフタロン化合物、及び、当該キノフタロン化合物を含有するキノフタロン混合物が提供される。
According to the present invention, there is provided a novel quinaldine compound for producing a quinophthalone compound having excellent coloring power as a pigment. Further, according to the present invention, a method for producing a quinophthalone compound having excellent coloring power as a pigment is provided. Further, according to the present invention, a novel quinophthalone compound and a quinophthalone mixture containing the quinophthalone compound are provided.
以下、本発明の好適な実施形態について説明する。ただし、本発明は下記の実施形態に何ら限定されるものではない。
Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments.
(アルキレン化合物)
本実施形態に係るアルキレン化合物は、下記式(1)で表される化合物である。
(Alkylene compound)
The alkylene compound according to the present embodiment is a compound represented by the following formula (1).
本実施形態に係るアルキレン化合物は、下記式(1)で表される化合物である。
The alkylene compound according to the present embodiment is a compound represented by the following formula (1).
式(1)中、X1及びX2は各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1~3のアルキレン基を示す。
In the formula (1), X 1 and X 2 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms.
式(1)中のハロゲン原子は、フッ素原子、塩素原子、臭素原子又はヨウ素原子であってよく、フッ素原子、塩素原子又は臭素原子であることが好ましく、塩素原子であることがより好ましい。
ハ ロ ゲ ン The halogen atom in the formula (1) may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a chlorine atom.
式(1)中の炭素数1~3のアルキレン基の具体例としては、例えば、メチレン基、エチレン基(1,1-エタンジイル基又は1,2-エタンジイル基)、プロピレン基(1,1-プロパンジイル基、2,2-プロパンジイル基、1,2-プロパンジイル基又は1,3-プロパンジイル基)が好ましく、メチレン基、1,1-エタンジイル基、1,1-プロパンジイル基、2,2-プロパンジイル基がより好ましく、メチレン基が更に好ましい。
Specific examples of the alkylene group having 1 to 3 carbon atoms in the formula (1) include, for example, a methylene group, an ethylene group (1,1-ethanediyl group or 1,2-ethanediyl group), a propylene group (1,1-ethanediyl group). A propanediyl group, a 2,2-propanediyl group, a 1,2-propanediyl group or a 1,3-propanediyl group), and a methylene group, a 1,1-ethanediyl group, a 1,1-propanediyl group, , 2-propanediyl group is more preferred, and methylene group is even more preferred.
以下、上記アルキレン化合物の製造方法の一態様を記載するが、製造方法はこれに限定されるものではない。
Hereinafter, one embodiment of the method for producing the alkylene compound will be described, but the production method is not limited thereto.
本実施形態に係るアルキレン化合物は、例えば以下の工程I、工程II及び工程IIIを含む方法により得ることができる。なお、式(1-i)及び式(1-ii)中の複数のX1同士及び複数のX2同士は、それぞれ同じでも異なっていてもよい。
The alkylene compound according to the present embodiment can be obtained, for example, by a method including the following Step I, Step II, and Step III. Incidentally, the formula (1-i) and the formula (1-ii) a plurality of X 1 and between the plurality of X 2 each other in may be the same or different.
<工程I>
まず、J.Heterocyclic,Chem,30,17(1993)に記載の方法などにより、ビスアニリン類を1当量に対し、クロトンアルデヒドを2~3当量加え、酸化剤存在下、強酸中において反応させ、後記する式(1-i)の化合物を合成する。 <Step I>
First, J. According to the method described in Heterocyclic, Chem, 30, 17, (1993), 2 to 3 equivalents of crotonaldehyde are added to 1 equivalent of bisaniline, and the reaction is carried out in a strong acid in the presence of an oxidizing agent. Synthesizing the compound of i).
まず、J.Heterocyclic,Chem,30,17(1993)に記載の方法などにより、ビスアニリン類を1当量に対し、クロトンアルデヒドを2~3当量加え、酸化剤存在下、強酸中において反応させ、後記する式(1-i)の化合物を合成する。 <Step I>
First, J. According to the method described in Heterocyclic, Chem, 30, 17, (1993), 2 to 3 equivalents of crotonaldehyde are added to 1 equivalent of bisaniline, and the reaction is carried out in a strong acid in the presence of an oxidizing agent. Synthesizing the compound of i).
式(1-i)中、X1、X2及びZは上述の通りである。
In the formula (1-i), X 1 , X 2 and Z are as described above.
ここで、強酸としては、塩酸、硫酸、硝酸などが挙げられる。酸化剤としては、ヨウ化ナトリウム、p-クロラニル、ニトロベンゼンなどが挙げられる。
Here, examples of the strong acid include hydrochloric acid, sulfuric acid, nitric acid and the like. Examples of the oxidizing agent include sodium iodide, p-chloranil, nitrobenzene, and the like.
工程Iに関し、反応温度は、80℃~100℃、好ましくは90℃~100℃であってよく、反応時間は、1時間~6時間、好ましくは3時間~6時間であってよい。
{Regarding Step I, the reaction temperature may be from 80 ° C to 100 ° C, preferably from 90 ° C to 100 ° C, and the reaction time may be from 1 hour to 6 hours, preferably from 3 hours to 6 hours.
<工程II>
さらに、得られた式(1-i)の化合物と硝酸又は発煙硝酸を濃硫酸存在下において反応させることで、式(1-ii)の化合物を得ることができる。
<Step II>
Further, the compound of the formula (1-ii) can be obtained by reacting the obtained compound of the formula (1-i) with nitric acid or fuming nitric acid in the presence of concentrated sulfuric acid.
さらに、得られた式(1-i)の化合物と硝酸又は発煙硝酸を濃硫酸存在下において反応させることで、式(1-ii)の化合物を得ることができる。
Further, the compound of the formula (1-ii) can be obtained by reacting the obtained compound of the formula (1-i) with nitric acid or fuming nitric acid in the presence of concentrated sulfuric acid.
式(1-ii)中、X1、X2及びZは上述の通りである。
In the formula (1-ii), X 1 , X 2 and Z are as described above.
工程IIに関し、反応温度は、-20℃~70℃、好ましくは0℃~50℃であってよく、反応時間は、1時間~4時間、好ましくは1時間~3時間であってよい。
{Regarding Step II, the reaction temperature may be -20 ° C to 70 ° C, preferably 0 ° C to 50 ° C, and the reaction time may be 1 hour to 4 hours, preferably 1 hour to 3 hours.
<工程III>
さらに、得られた式(1-ii)の化合物の還元によって、ニトロ基(-NO2)をアミノ基(-NH2)に変換することで、上記式(1)で表されるアルキレン化合物を得ることができる。 <Step III>
Further, the alkylene compound represented by the above formula (1) is converted by converting the nitro group (—NO 2 ) into an amino group (—NH 2 ) by reducing the obtained compound of the formula (1-ii). Obtainable.
さらに、得られた式(1-ii)の化合物の還元によって、ニトロ基(-NO2)をアミノ基(-NH2)に変換することで、上記式(1)で表されるアルキレン化合物を得ることができる。 <Step III>
Further, the alkylene compound represented by the above formula (1) is converted by converting the nitro group (—NO 2 ) into an amino group (—NH 2 ) by reducing the obtained compound of the formula (1-ii). Obtainable.
工程(III)では、例えば、式(1-ii)の化合物を還元鉄によって還元処理することで、式(1)で表されるアルキレン化合物を得ることができる。このとき、還元鉄の量は、式(1-ii)の化合物1当量に対して6~8当量であってよく、反応温度は、60℃~80℃、好ましくは70℃~80℃であってよく、反応時間は、1時間~3時間、好ましくは2時間~3時間であってよい。
In the step (III), for example, the compound of the formula (1-ii) is reduced with reduced iron to obtain the alkylene compound represented by the formula (1). At this time, the amount of reduced iron may be from 6 to 8 equivalents to 1 equivalent of the compound of the formula (1-ii), and the reaction temperature is from 60 ° C to 80 ° C, preferably from 70 ° C to 80 ° C. The reaction time may be from 1 hour to 3 hours, preferably from 2 hours to 3 hours.
また、工程(III)では、式(1-ii)の化合物をパラジウム-炭素(Pd-C)、白金-炭素(Pt-C)、ラネーニッケル等の金属触媒を用いて還元処理することで、式(1)で表されるアルキレン化合物を得ることもできる。このとき、金属触媒の量は、例えば、金属量として式(1-ii)の化合物の0.4質量%~5質量%であってよく、反応温度は、例えば30℃~100℃であってよく、反応時間は、例えば1時間~10時間であってよい。反応の水素源としては、水素ガス、ヒドラジン、ギ酸アンモニウム等が使用できる。
In the step (III), the compound of the formula (1-ii) is subjected to a reduction treatment using a metal catalyst such as palladium-carbon (Pd-C), platinum-carbon (Pt-C), Raney nickel, etc. The alkylene compound represented by (1) can also be obtained. At this time, the amount of the metal catalyst may be, for example, 0.4 to 5% by mass of the compound of the formula (1-ii) in terms of the amount of metal, and the reaction temperature is, for example, 30 to 100 ° C. Well, the reaction time may be, for example, from 1 hour to 10 hours. As a hydrogen source for the reaction, hydrogen gas, hydrazine, ammonium formate and the like can be used.
(キノフタロン化合物の製造方法)
本実施形態に係るキノフタロン化合物の製造方法は、下記式(1)で表されるアルキレン化合物と下記式(2)で表される酸無水物とを縮合させて、下記式(3)で表される第一のキノフタロン化合物及び下記式(4)で表される第二のキノフタロン化合物から群より選択される少なくとも一種を得る工程(以下、工程IVと称する。)を備えている。なお、式(3)及び式(4)中の複数のX3同士、複数のX4同士、複数のX5同士及び複数のX6同士は、それぞれ同じでも異なっていてもよい。
(Method for producing quinophthalone compound)
In the method for producing a quinophthalone compound according to the present embodiment, an alkylene compound represented by the following formula (1) is condensed with an acid anhydride represented by the following formula (2), and the condensation is represented by the following formula (3). A step of obtaining at least one selected from the group consisting of a first quinophthalone compound and a second quinophthalone compound represented by the following formula (4) (hereinafter, referred to as step IV). Incidentally, equations (3) and (4) a plurality of X 3 together, a plurality of X 4 each other, a plurality of X 5 and between the plurality of X 6 each other in may the same as or different from each other.
本実施形態に係るキノフタロン化合物の製造方法は、下記式(1)で表されるアルキレン化合物と下記式(2)で表される酸無水物とを縮合させて、下記式(3)で表される第一のキノフタロン化合物及び下記式(4)で表される第二のキノフタロン化合物から群より選択される少なくとも一種を得る工程(以下、工程IVと称する。)を備えている。なお、式(3)及び式(4)中の複数のX3同士、複数のX4同士、複数のX5同士及び複数のX6同士は、それぞれ同じでも異なっていてもよい。
In the method for producing a quinophthalone compound according to the present embodiment, an alkylene compound represented by the following formula (1) is condensed with an acid anhydride represented by the following formula (2), and the condensation is represented by the following formula (3). A step of obtaining at least one selected from the group consisting of a first quinophthalone compound and a second quinophthalone compound represented by the following formula (4) (hereinafter, referred to as step IV). Incidentally, equations (3) and (4) a plurality of X 3 together, a plurality of X 4 each other, a plurality of X 5 and between the plurality of X 6 each other in may the same as or different from each other.
式(1)中、X1、X2及びZは上述の通りである。
In the formula (1), X 1 , X 2 and Z are as described above.
式(2)中、X3、X4、X5及びX6は各々独立に水素原子又はハロゲン原子を示す。式(2)中のハロゲン原子は、フッ素原子、塩素原子、臭素原子又はヨウ素原子であってよく、フッ素原子、塩素原子又は臭素原子であることが好ましく、塩素原子であることがより好ましい。
In the formula (2), X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom. The halogen atom in the formula (2) may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom, a chlorine atom or a bromine atom, more preferably a chlorine atom.
式(2)で表される酸無水物では、X3、X4、X5及びX6のうち、少なくとも1つがハロゲン原子であることが好ましく、2つ以上がハロゲン原子であることがより好ましい。また、X4及びX5のうち少なくとも1つがハロゲン原子であることが好ましく、X4及びX5がいずれもハロゲン原子であることがより好ましい。X3、X4、X5又はX6にハロゲン原子が導入されることで、上記無水物を用いて製造されたキノフタロン化合物の分散性及び耐久性が一層向上し、上述の効果がより顕著に得られる傾向がある。
In the acid anhydride represented by the formula (2), at least one of X 3 , X 4 , X 5 and X 6 is preferably a halogen atom, and more preferably two or more are halogen atoms. . Further, it is preferable that at least one of X 4 and X 5 is a halogen atom, more preferably X 4 and X 5 are each a halogen atom. By introducing a halogen atom into X 3 , X 4 , X 5 or X 6 , the dispersibility and durability of the quinophthalone compound produced using the above anhydride are further improved, and the above-mentioned effects are more remarkably obtained. Tend to be obtained.
式(2)で表される酸無水物としては、例えば、無水フタル酸及びハロゲン置換フタル酸無水物が挙げられ、ハロゲン置換フタル酸無水物の具体例としては、テトラフルオロフタル酸無水物、テトラクロロフタル酸無水物、テトラブロモフタル酸無水物、4,5-ジクロロフタル酸無水物、4-クロロフタル酸無水物、4,5-ジブロモフタル酸無水物等が挙げられる。
Examples of the acid anhydride represented by the formula (2) include phthalic anhydride and halogen-substituted phthalic anhydride. Specific examples of the halogen-substituted phthalic anhydride include tetrafluorophthalic anhydride and tetrafluorophthalic anhydride. Examples thereof include chlorophthalic anhydride, tetrabromophthalic anhydride, 4,5-dichlorophthalic anhydride, 4-chlorophthalic anhydride, and 4,5-dibromophthalic anhydride.
式(2)で表される酸無水物は、一種を単独で用いてよく、二種以上を組み合わせてもよい。式(2)で表される酸無水物を二種以上用いることで、複数のX3同士、複数のX4同士、複数のX5同士及び複数のX6同士がそれぞれ異なる上記キノフタロン化合物を得ることができる。
As the acid anhydride represented by the formula (2), one type may be used alone, or two or more types may be used in combination. By using two or more kinds of the acid anhydrides represented by the formula (2), the quinophthalone compound is obtained in which a plurality of X 3 , a plurality of X 4 , a plurality of X 5, and a plurality of X 6 are different from each other. be able to.
式(3)及び式(4)中、X1、X2、X3、X4、X5及びX6は各々独立に水素原子又はハロゲン原子を示す。式(3)及び式(4)中のハロゲン原子は、フッ素原子、塩素原子、臭素原子又はヨウ素原子であってよく、フッ素原子、塩素原子又は臭素原子であることが好ましく、塩素原子であることがより好ましい。
In the formulas (3) and (4), X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom. The halogen atom in the formulas (3) and (4) may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a chlorine atom. Is more preferred.
式(3)及び式(4)で表されるキノフタロン化合物では、X3、X4、X5及びX6のうち、少なくとも1つがハロゲン原子であることが好ましく、2つ以上がハロゲン原子であることがより好ましい。また、X4及びX5のうち少なくとも1つがハロゲン原子であることが好ましく、X4及びX5がいずれもハロゲン原子であることがより好ましい。X1、X2、X3、X4、X5又はX6にハロゲン原子が導入されることで、上記キノフタロン化合物の分散性及び耐久性が一層向上し、上述の効果がより顕著に得られる傾向がある。
In the quinophthalone compounds represented by the formulas (3) and (4), at least one of X 3 , X 4 , X 5 and X 6 is preferably a halogen atom, and two or more are halogen atoms. Is more preferable. Further, it is preferable that at least one of X 4 and X 5 is a halogen atom, more preferably X 4 and X 5 are each a halogen atom. When a halogen atom is introduced into X 1 , X 2 , X 3 , X 4 , X 5 or X 6 , the dispersibility and durability of the quinophthalone compound are further improved, and the above-mentioned effects are more remarkably obtained. Tend.
なお、式(3)の構造には、下記式(3-i)及び式(3-ii)等の構造の互変異性体が存在するが、上記キノフタロン化合物は、これらのいずれの構造であってもよい。また、式(4)の構造にも、同様に複数の互変異性体が存在するが、上記キノフタロン化合物は、これらのいずれの構造であってもよい。
In the structure of the formula (3), there are tautomers of the structures of the following formulas (3-i) and (3-ii), and the quinophthalone compound has any of these structures. You may. Similarly, a plurality of tautomers exist in the structure of the formula (4), and the quinophthalone compound may have any of these structures.
式(3-i)及び式(3-ii)中、X1、X2、X3、X4、X5、X6及びZは上述の通りである。
In the formulas (3-i) and (3-ii), X 1 , X 2 , X 3 , X 4 , X 5 , X 6 and Z are as described above.
上記キノフタロン化合物の具体例を以下に挙げるが、上記キノフタロン化合物はこれらに限定されるものではない。
具体 Specific examples of the quinophthalone compound are described below, but the quinophthalone compound is not limited thereto.
上記キノフタロン化合物は、キノリン環を中心とする複素環骨格の二量化により、選択的な吸収・透過を示す。また、上記キノフタロン化合物は、連結基であるアルキレン基をスペーサーとして複素環骨格を二量化しており、これにより共役が切断され、過剰な赤味化が抑制されている。更に、上記キノフタロン化合物は、イミド構造の導入により分散性が向上されている。これらのことから、上記キノフタロン化合物によれば、優れた輝度と着色力とを有する顔料が得られる。具体的には、例えば、上記キノフタロン化合物から構成される黄色顔料は、現在一般的に使用される黄色顔料(C.I.ピグメント イエロー150)より良好な輝度を有し、かつ、これを超える優れた着色力を有する。
The quinophthalone compound exhibits selective absorption and transmission due to dimerization of a heterocyclic skeleton centering on a quinoline ring. In the quinophthalone compound, the heterocyclic skeleton is dimerized using the alkylene group, which is a linking group, as a spacer, whereby the conjugation is cut and excessive redness is suppressed. Further, the quinophthalone compound has improved dispersibility by introducing an imide structure. From these facts, according to the quinophthalone compound, a pigment having excellent luminance and coloring power can be obtained. Specifically, for example, a yellow pigment composed of the above quinophthalone compound has a better luminance than a currently commonly used yellow pigment (CI Pigment Yellow 150), and has an excellent luminance exceeding this. Coloring power.
工程IVは、例えば特開2013-61622号公報に記載の方法等により、式(1)で表されるアルキレン化合物1当量に対して、式(2)で表される酸無水物3~6当量を酸触媒存在下に反応させて、式(1)で表されるアルキレン化合物と式(2)で表される酸無水物とを縮合させる工程であってよい。
In the step IV, 3 to 6 equivalents of the acid anhydride represented by the formula (2) is used for 1 equivalent of the alkylene compound represented by the formula (1), for example, by the method described in JP-A-2013-61622. In the presence of an acid catalyst to condense the alkylene compound represented by the formula (1) with the acid anhydride represented by the formula (2).
縮合の反応温度は、180℃~250℃、好ましくは200℃~250℃であってよい。また、縮合の反応時間は、1時間~8時間、好ましくは3時間~8時間であってよい。
反 応 The reaction temperature of the condensation may be from 180 ° C to 250 ° C, preferably from 200 ° C to 250 ° C. The condensation reaction time may be 1 hour to 8 hours, preferably 3 hours to 8 hours.
酸触媒としては、例えば、安息香酸、p-トルエンスルホン酸、塩化亜鉛、塩化鉄等のブレンステッド酸又はルイス酸が挙げられる。
Examples of the acid catalyst include Bronsted acids or Lewis acids such as benzoic acid, p-toluenesulfonic acid, zinc chloride and iron chloride.
工程IVは、式(3)で表される第一のキノフタロン化合物又は式(4)で表される第二のキノフタロン化合物を得る工程であってよく、第一のキノフタロン化合物及び第二のキノフタロン化合物の混合物(キノフタロン混合物)を得る工程であってもよい。
Step IV may be a step of obtaining a first quinophthalone compound represented by the formula (3) or a second quinophthalone compound represented by the formula (4), wherein the first quinophthalone compound and the second quinophthalone compound (A quinophthalone mixture) may be obtained.
本実施形態に係る製造方法によって得られたキノフタロン化合物(又は、キノフタロン混合物)は、顔料として優れた着色力を有する。上記キノフタロン化合物の顔料化は、公知慣用の方法で行えばよい。
キ The quinophthalone compound (or quinophthalone mixture) obtained by the production method according to the present embodiment has excellent coloring power as a pigment. The quinophthalone compound may be converted into a pigment by a known and commonly used method.
上記キノフタロン化合物から構成された顔料(黄色顔料)は、例えば、ソルトミリング処理等により微細化されていてもよい。また、当該黄色顔料は、ロジン処理、界面活性剤処理、溶剤処理、樹脂処理等の方法で表面処理されていてもよい。
顔料 The pigment (yellow pigment) composed of the quinophthalone compound may be finely divided by, for example, a salt milling treatment. In addition, the yellow pigment may be surface-treated by a method such as rosin treatment, surfactant treatment, solvent treatment, and resin treatment.
(実施例A-1)
フラスコ中に4,4’-メチレンビス(2-クロロアニリン)5.00g(56.1mmol)、p-クロラニル27.6g(112mmol)、水150ml、濃塩酸150ml、n-ブタノール100mlを添加して95℃で30分間攪拌した。この混合物に、n-ブタノール12mlに溶解したクロトンアルデヒド11.8g(168mmol)を滴下して、さらに1時間攪拌した。温度を80℃に下げ、塩化亜鉛15.3g(112mmol)を少量ずつ加えた後、THF200mlを添加して80℃を保ったまま1時間攪拌した。室温まで放冷した後、減圧ろ過にて黄土色粉末を回収した。得られた黄土色粉末をTHF200mlで洗浄し、再び減圧ろ過にて黄土色粉末を回収した。さらに、得られた黄土色粉末をフラスコに移し、水200mlと28%アンモニア水40mlを加え、室温で2時間攪拌した。減圧ろ過にて粉末を回収し、20.3gの粗生成物を得た。得られた粗生成物をトルエンに溶解し不溶物をろ過により除いた後に再結晶して中間体(i)12.6gを得た。(収率:61%)
1H-NMR(CDCl3)δppm:2.81(s,6H),4.24(s,2H),7.34(d,J=8.0Hz,2H),7.49(s,2H),7.67(s,2H),7.99(d,J=8.8Hz,2H)
13C-NMR(CDCl3)δppm:25.8,41.1,123.2,126.2,127.8,130.9,133.1,136.3,137.6,143.1,160.0
FT-IR cm-1:3054,3030,2915,1603,1487,1206
FD-MS:366M+ (Example A-1)
5.00 g (56.1 mmol) of 4,4′-methylenebis (2-chloroaniline), 27.6 g (112 mmol) of p-chloranil, 150 ml of water, 150 ml of concentrated hydrochloric acid and 100 ml of n-butanol were added to the flask, and the mixture was added to the flask. Stirred at C for 30 minutes. To this mixture was added dropwise 11.8 g (168 mmol) of crotonaldehyde dissolved in 12 ml of n-butanol, and the mixture was further stirred for 1 hour. The temperature was lowered to 80 ° C., and 15.3 g (112 mmol) of zinc chloride was added little by little. Then, 200 ml of THF was added, and the mixture was stirred for 1 hour while maintaining the temperature at 80 ° C. After allowing to cool to room temperature, ocher powder was recovered by vacuum filtration. The obtained ocher powder was washed with 200 ml of THF, and the ocher powder was recovered by vacuum filtration again. Further, the obtained ocher powder was transferred to a flask, 200 ml of water and 40 ml of 28% aqueous ammonia were added, and the mixture was stirred at room temperature for 2 hours. The powder was recovered by vacuum filtration to obtain 20.3 g of a crude product. The obtained crude product was dissolved in toluene, insolubles were removed by filtration, and then recrystallized to obtain 12.6 g of Intermediate (i). (Yield: 61%)
1 H-NMR (CDCl 3 ) δ ppm: 2.81 (s, 6H), 4.24 (s, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.49 (s, 2H) ), 7.67 (s, 2H), 7.99 (d, J = 8.8 Hz, 2H)
13 C-NMR (CDCl 3 ) δ ppm: 25.8, 41.1, 123.2, 126.2, 127.8, 130.9, 133.1, 136.3, 137.6, 133.1, 143.1. 160.0
FT-IR cm -1 : 3054, 3030, 2915, 1603, 1487, 1206
FD-MS: 366M +
フラスコ中に4,4’-メチレンビス(2-クロロアニリン)5.00g(56.1mmol)、p-クロラニル27.6g(112mmol)、水150ml、濃塩酸150ml、n-ブタノール100mlを添加して95℃で30分間攪拌した。この混合物に、n-ブタノール12mlに溶解したクロトンアルデヒド11.8g(168mmol)を滴下して、さらに1時間攪拌した。温度を80℃に下げ、塩化亜鉛15.3g(112mmol)を少量ずつ加えた後、THF200mlを添加して80℃を保ったまま1時間攪拌した。室温まで放冷した後、減圧ろ過にて黄土色粉末を回収した。得られた黄土色粉末をTHF200mlで洗浄し、再び減圧ろ過にて黄土色粉末を回収した。さらに、得られた黄土色粉末をフラスコに移し、水200mlと28%アンモニア水40mlを加え、室温で2時間攪拌した。減圧ろ過にて粉末を回収し、20.3gの粗生成物を得た。得られた粗生成物をトルエンに溶解し不溶物をろ過により除いた後に再結晶して中間体(i)12.6gを得た。(収率:61%)
13C-NMR(CDCl3)δppm:25.8,41.1,123.2,126.2,127.8,130.9,133.1,136.3,137.6,143.1,160.0
FT-IR cm-1:3054,3030,2915,1603,1487,1206
FD-MS:366M+ (Example A-1)
5.00 g (56.1 mmol) of 4,4′-methylenebis (2-chloroaniline), 27.6 g (112 mmol) of p-chloranil, 150 ml of water, 150 ml of concentrated hydrochloric acid and 100 ml of n-butanol were added to the flask, and the mixture was added to the flask. Stirred at C for 30 minutes. To this mixture was added dropwise 11.8 g (168 mmol) of crotonaldehyde dissolved in 12 ml of n-butanol, and the mixture was further stirred for 1 hour. The temperature was lowered to 80 ° C., and 15.3 g (112 mmol) of zinc chloride was added little by little. Then, 200 ml of THF was added, and the mixture was stirred for 1 hour while maintaining the temperature at 80 ° C. After allowing to cool to room temperature, ocher powder was recovered by vacuum filtration. The obtained ocher powder was washed with 200 ml of THF, and the ocher powder was recovered by vacuum filtration again. Further, the obtained ocher powder was transferred to a flask, 200 ml of water and 40 ml of 28% aqueous ammonia were added, and the mixture was stirred at room temperature for 2 hours. The powder was recovered by vacuum filtration to obtain 20.3 g of a crude product. The obtained crude product was dissolved in toluene, insolubles were removed by filtration, and then recrystallized to obtain 12.6 g of Intermediate (i). (Yield: 61%)
13 C-NMR (CDCl 3 ) δ ppm: 25.8, 41.1, 123.2, 126.2, 127.8, 130.9, 133.1, 136.3, 137.6, 133.1, 143.1. 160.0
FT-IR cm -1 : 3054, 3030, 2915, 1603, 1487, 1206
FD-MS: 366M +
次いで、フラスコ中に中間体(i)4.15g(11.3mmol)と濃硫酸7.55mLを加え、45℃で20分間攪拌した。その後、発煙硝酸1.62mLを滴下し、温度を保持し1時間攪拌を続けた。放冷後、氷水250mLを系中にゆっくりと注いだ。さらに、10wt%水酸化ナトリウム水溶液を用いて、pHを8~9に調整した。析出した粉末を減圧ろ過で回収し、蒸留水200mL、エタノール100mLで洗浄することで、中間体(ii)4.86g(10.6mmol)を得た(収率:94%)。
1H-NMR(CDCl3)δppm:2.86(s,6H),4.27(s,2H),7.56(d,J=8.8Hz,2H),7.62(s,2H),8.08(d,J=8.8Hz,2H)
13C-NMR(CDCl3)δppm:25.7,32.4,119.9,125.6,127.5,130.1,131.1,137.3,143.1,145.9,162.2
FT-IR cm-1:1604,1530,1487,1362
LC-MS:457[MH]+ Next, 4.15 g (11.3 mmol) of the intermediate (i) and 7.55 mL of concentrated sulfuric acid were added to the flask, and the mixture was stirred at 45 ° C for 20 minutes. Thereafter, 1.62 mL of fuming nitric acid was added dropwise, and the temperature was maintained and stirring was continued for 1 hour. After cooling, 250 mL of ice water was slowly poured into the system. Further, the pH was adjusted to 8 to 9 using a 10 wt% aqueous sodium hydroxide solution. The precipitated powder was collected by filtration under reduced pressure, and washed with 200 mL of distilled water and 100 mL of ethanol to obtain 4.86 g (10.6 mmol) of the intermediate (ii) (yield: 94%).
1 H-NMR (CDCl 3 ) δ ppm: 2.86 (s, 6H), 4.27 (s, 2H), 7.56 (d, J = 8.8 Hz, 2H), 7.62 (s, 2H) ), 8.08 (d, J = 8.8 Hz, 2H)
13 C-NMR (CDCl 3 ) δ ppm: 25.7, 32.4, 119.9, 125.6, 127.5, 130.1, 131.1, 137.3, 143.1, 145.9, 162.2
FT-IR cm -1 : 1604, 1530, 1487, 1362
LC-MS: 457 [MH] +
13C-NMR(CDCl3)δppm:25.7,32.4,119.9,125.6,127.5,130.1,131.1,137.3,143.1,145.9,162.2
FT-IR cm-1:1604,1530,1487,1362
LC-MS:457[MH]+ Next, 4.15 g (11.3 mmol) of the intermediate (i) and 7.55 mL of concentrated sulfuric acid were added to the flask, and the mixture was stirred at 45 ° C for 20 minutes. Thereafter, 1.62 mL of fuming nitric acid was added dropwise, and the temperature was maintained and stirring was continued for 1 hour. After cooling, 250 mL of ice water was slowly poured into the system. Further, the pH was adjusted to 8 to 9 using a 10 wt% aqueous sodium hydroxide solution. The precipitated powder was collected by filtration under reduced pressure, and washed with 200 mL of distilled water and 100 mL of ethanol to obtain 4.86 g (10.6 mmol) of the intermediate (ii) (yield: 94%).
13 C-NMR (CDCl 3 ) δ ppm: 25.7, 32.4, 119.9, 125.6, 127.5, 130.1, 131.1, 137.3, 143.1, 145.9, 162.2
FT-IR cm -1 : 1604, 1530, 1487, 1362
LC-MS: 457 [MH] +
フラスコ中に還元鉄7.36g(132mmol)、酢酸125mlを加えて攪拌しながら60℃に加熱した。次いで中間体(ii)7.36g(16.1mmol)を数回に分けて添加し、60~70℃で1時間攪拌した。反応液を35℃以下に冷却後、氷水500mlに注ぎ20%NaOH水でpH9に調整した。生成した沈殿物を濾過し水で洗浄した。得られた固体は70℃で送風乾燥後、N,N-ジメチルホルムアミド(DMF)200mlに加えて30℃で2時間攪拌し、不溶物を濾過して除いて得られた濾液を水1.2Lに滴下して室温で40分間攪拌した。生成した沈殿物を濾過し水で洗浄後、70℃で送風乾燥して目的のアルキレン化合物5.52g(13.9mmol)を得た。(収率86%)
1H-NMR(CDCl3)δppm:2.65(s,6H),3.97(s,2H),5.91(s,4H),7.32(s,2H),7.37(d,J=8.8Hz,2H),8.58(d,J=8.8Hz,2H)
13C-NMR(CDCl3)δppm:24.8,31.3,116.2,117.1,117.4,120.4,131.3,131.7,141.5,142.6,158.3
FT-IR cm-1:3476,3373,1627,1605,1409,1359,1250
LC-MS:397[MH]+
分析の結果は得られた化合物が式(1-1)の構造であることを示した。
7.36 g (132 mmol) of reduced iron and 125 ml of acetic acid were added to the flask and heated to 60 ° C. with stirring. Then, 7.36 g (16.1 mmol) of the intermediate (ii) was added in several portions, and the mixture was stirred at 60 to 70 ° C. for 1 hour. The reaction solution was cooled to 35 ° C. or lower, poured into 500 ml of ice water, and adjusted to pH 9 with 20% aqueous NaOH. The precipitate formed was filtered and washed with water. The obtained solid was blow-dried at 70 ° C., added to 200 ml of N, N-dimethylformamide (DMF), stirred at 30 ° C. for 2 hours, filtered to remove insolubles, and filtered the obtained filtrate into 1.2 L of water. And stirred at room temperature for 40 minutes. The resulting precipitate was filtered, washed with water, and blown dry at 70 ° C. to obtain 5.52 g (13.9 mmol) of the desired alkylene compound. (86% yield)
1 H-NMR (CDCl 3 ) δ ppm: 2.65 (s, 6H), 3.97 (s, 2H), 5.91 (s, 4H), 7.32 (s, 2H), 7.37 ( d, J = 8.8 Hz, 2H), 8.58 (d, J = 8.8 Hz, 2H)
13 C-NMR (CDCl 3 ) δ ppm: 24.8, 31.3, 116.2, 117.1, 117.4, 120.4, 131.3, 131.7, 141.5, 142.6, 158.3
FT-IR cm -1 : 3476, 3373, 1627, 1605, 1409, 1359, 1250
LC-MS: 397 [MH] +
The result of the analysis showed that the obtained compound had a structure of the formula (1-1).
1H-NMR(CDCl3)δppm:2.65(s,6H),3.97(s,2H),5.91(s,4H),7.32(s,2H),7.37(d,J=8.8Hz,2H),8.58(d,J=8.8Hz,2H)
13C-NMR(CDCl3)δppm:24.8,31.3,116.2,117.1,117.4,120.4,131.3,131.7,141.5,142.6,158.3
FT-IR cm-1:3476,3373,1627,1605,1409,1359,1250
LC-MS:397[MH]+
分析の結果は得られた化合物が式(1-1)の構造であることを示した。
1 H-NMR (CDCl 3 ) δ ppm: 2.65 (s, 6H), 3.97 (s, 2H), 5.91 (s, 4H), 7.32 (s, 2H), 7.37 ( d, J = 8.8 Hz, 2H), 8.58 (d, J = 8.8 Hz, 2H)
13 C-NMR (CDCl 3 ) δ ppm: 24.8, 31.3, 116.2, 117.1, 117.4, 120.4, 131.3, 131.7, 141.5, 142.6, 158.3
FT-IR cm -1 : 3476, 3373, 1627, 1605, 1409, 1359, 1250
LC-MS: 397 [MH] +
The result of the analysis showed that the obtained compound had a structure of the formula (1-1).
(実施例A-2)
フラスコ中に濃硫酸55.0gを仕込み、氷冷下に攪拌しながら文献(Polymer,volume39,No.20(1998),p4949)記載の方法で得られる6,6’-メチレンジキナルジン7.00g(23.5mmol)を添加した。10℃以下を保ちながら60%硝酸6.1gを滴下し、10℃から20℃で1時間攪拌を続けた。反応液を氷水150mlに注ぎ、20wt%水酸化ナトリウム水溶液を用いてpH3に調整した。析出した粉末を減圧濾過で回収し、水で中性まで洗浄した。得られた固体を70℃で送風乾燥した後、粗生成物を熱酢酸エチル100ml、次いで熱トルエン60mlで洗浄濾過し、中間体(iii)6.52g(16.8mmol)を得た。(収率:72%)
1H-NMR(DMSO-d6)δppm:2.70(s,6H),4.42(s,2H),7.58(d,J=8.8Hz,2H),7.63(d,J=8.8Hz,2H),8.09(d,J=8.8Hz,2H),8.13(d,J=8.8Hz,2H)
13C-NMR(DMSO-d6)δppm:24.5,32.0,117.7,124.8,127.5,129.8,130.5,131.9,145.8,146.2,160.7
FT-IR(KBr disk)cm-1:3048,1602,1520,1494,1363
LC-MS:389[MH]+ (Example A-2)
6,6′-Methylenediquinaldine obtained by the method described in the literature (Polymer, volume 39, No. 20 (1998), p4949) while charging 55.0 g of concentrated sulfuric acid in a flask and stirring under ice cooling. 00 g (23.5 mmol) were added. While maintaining the temperature at 10 ° C. or lower, 6.1 g of 60% nitric acid was added dropwise, and stirring was continued at 10 to 20 ° C. for 1 hour. The reaction solution was poured into 150 ml of ice water and adjusted to pH 3 using a 20 wt% aqueous sodium hydroxide solution. The precipitated powder was collected by filtration under reduced pressure, and washed with water to neutrality. After the obtained solid was blow-dried at 70 ° C., the crude product was washed and filtered with 100 ml of hot ethyl acetate and then with 60 ml of hot toluene to obtain 6.52 g (16.8 mmol) of an intermediate (iii). (Yield: 72%)
1 H-NMR (DMSO-d6) δ ppm: 2.70 (s, 6H), 4.42 (s, 2H), 7.58 (d, J = 8.8 Hz, 2H), 7.63 (d, J = 8.8 Hz, 2H), 8.09 (d, J = 8.8 Hz, 2H), 8.13 (d, J = 8.8 Hz, 2H)
13 C-NMR (DMSO-d6) δ ppm: 24.5, 32.0, 117.7, 124.8, 127.5, 129.8, 130.5, 131.9, 145.8, 146.2 , 160.7
FT-IR (KBr disk) cm -1 : 3048, 1602, 1520, 1494, 1363
LC-MS: 389 [MH] +
フラスコ中に濃硫酸55.0gを仕込み、氷冷下に攪拌しながら文献(Polymer,volume39,No.20(1998),p4949)記載の方法で得られる6,6’-メチレンジキナルジン7.00g(23.5mmol)を添加した。10℃以下を保ちながら60%硝酸6.1gを滴下し、10℃から20℃で1時間攪拌を続けた。反応液を氷水150mlに注ぎ、20wt%水酸化ナトリウム水溶液を用いてpH3に調整した。析出した粉末を減圧濾過で回収し、水で中性まで洗浄した。得られた固体を70℃で送風乾燥した後、粗生成物を熱酢酸エチル100ml、次いで熱トルエン60mlで洗浄濾過し、中間体(iii)6.52g(16.8mmol)を得た。(収率:72%)
13C-NMR(DMSO-d6)δppm:24.5,32.0,117.7,124.8,127.5,129.8,130.5,131.9,145.8,146.2,160.7
FT-IR(KBr disk)cm-1:3048,1602,1520,1494,1363
LC-MS:389[MH]+ (Example A-2)
6,6′-Methylenediquinaldine obtained by the method described in the literature (Polymer, volume 39, No. 20 (1998), p4949) while charging 55.0 g of concentrated sulfuric acid in a flask and stirring under ice cooling. 00 g (23.5 mmol) were added. While maintaining the temperature at 10 ° C. or lower, 6.1 g of 60% nitric acid was added dropwise, and stirring was continued at 10 to 20 ° C. for 1 hour. The reaction solution was poured into 150 ml of ice water and adjusted to pH 3 using a 20 wt% aqueous sodium hydroxide solution. The precipitated powder was collected by filtration under reduced pressure, and washed with water to neutrality. After the obtained solid was blow-dried at 70 ° C., the crude product was washed and filtered with 100 ml of hot ethyl acetate and then with 60 ml of hot toluene to obtain 6.52 g (16.8 mmol) of an intermediate (iii). (Yield: 72%)
13 C-NMR (DMSO-d6) δ ppm: 24.5, 32.0, 117.7, 124.8, 127.5, 129.8, 130.5, 131.9, 145.8, 146.2 , 160.7
FT-IR (KBr disk) cm -1 : 3048, 1602, 1520, 1494, 1363
LC-MS: 389 [MH] +
フラスコ中に還元鉄5.30g、酢酸135mlを仕込み攪拌しながら50℃に加熱した。次いで中間体(iii)4.50g(11.6mmol)を70℃以下に保つように添加した。添加終了後60℃で1hr攪拌を続けた後、反応液を35℃以下に冷却し、氷水500mlに注ぎ、20%NaOH水でpH9に調製した。生成した沈殿をセライト上で減圧濾過した。固形物を回収し、70℃で送風乾燥後、ジメチルスルホキシド(DMSO)100mlとN,N-ジメチルホルムアミド(DMF)100mlの混合溶媒に加え、90℃で1hr攪拌した。混合物をセライト上で減圧濾過して不溶物を除き、得られた濾液を水1Lに攪拌しながら加えた。生成した沈殿物を減圧濾過で回収して水洗した後、70℃で送風乾燥して目的のアルキレン化合物3.80g(11.6mmol)を得た。(収率100%)
1H-NMR(DMSO-d6)δppm:2.57(s,6H),3.95(s, 2H),5.66(s,4H),7.06(d,J=8.2Hz,2H),7.16(d,J=8.2Hz,2H),7.23(d,J=8.2Hz,2H),8.49(d,J=8.2Hz,2H)
13C-NMR(DMSO-d6)δppm:24.6,32.1,115.8,116.2,119.5,130.9,131.8,141.5,147.4,157.0
FT-IR(KBr disk)cm-1:3464,3363,3315,3192,1640,1591,1573,1415,1365,801
LC-MS:329[MH]+
分析の結果は得られた化合物が式(1-2)の構造であることを示した。
5.30 g of reduced iron and 135 ml of acetic acid were charged into a flask and heated to 50 ° C. with stirring. Then, 4.50 g (11.6 mmol) of the intermediate (iii) was added so as to keep the temperature at 70 ° C or lower. After completion of the addition, stirring was continued at 60 ° C. for 1 hour, and then the reaction solution was cooled to 35 ° C. or lower, poured into 500 ml of ice water, and adjusted to pH 9 with 20% aqueous NaOH. The resulting precipitate was filtered under reduced pressure over Celite. The solid was collected, dried by blowing air at 70 ° C., added to a mixed solvent of 100 ml of dimethyl sulfoxide (DMSO) and 100 ml of N, N-dimethylformamide (DMF), and stirred at 90 ° C. for 1 hour. The mixture was filtered under reduced pressure on celite to remove insolubles, and the obtained filtrate was added to 1 L of water with stirring. The resulting precipitate was collected by filtration under reduced pressure, washed with water, and then blown dry at 70 ° C. to obtain 3.80 g (11.6 mmol) of the desired alkylene compound. (100% yield)
1 H-NMR (DMSO-d6) δ ppm: 2.57 (s, 6H), 3.95 (s, 2H), 5.66 (s, 4H), 7.06 (d, J = 8.2 Hz, 2H), 7.16 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 8.2 Hz, 2H), 8.49 (d, J = 8.2 Hz, 2H)
13 C-NMR (DMSO-d6) δ ppm: 24.6, 32.1, 115.8, 116.2, 119.5, 130.9, 131.8, 141.5, 147.4, 157.0
FT-IR (KBr disk) cm -1 : 3464, 3363, 3315, 3192, 1640, 1591, 1573, 1415, 1365, 801
LC-MS: 329 [MH] +
The result of the analysis showed that the obtained compound had a structure of the formula (1-2).
1H-NMR(DMSO-d6)δppm:2.57(s,6H),3.95(s, 2H),5.66(s,4H),7.06(d,J=8.2Hz,2H),7.16(d,J=8.2Hz,2H),7.23(d,J=8.2Hz,2H),8.49(d,J=8.2Hz,2H)
13C-NMR(DMSO-d6)δppm:24.6,32.1,115.8,116.2,119.5,130.9,131.8,141.5,147.4,157.0
FT-IR(KBr disk)cm-1:3464,3363,3315,3192,1640,1591,1573,1415,1365,801
LC-MS:329[MH]+
分析の結果は得られた化合物が式(1-2)の構造であることを示した。
1 H-NMR (DMSO-d6) δ ppm: 2.57 (s, 6H), 3.95 (s, 2H), 5.66 (s, 4H), 7.06 (d, J = 8.2 Hz, 2H), 7.16 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 8.2 Hz, 2H), 8.49 (d, J = 8.2 Hz, 2H)
13 C-NMR (DMSO-d6) δ ppm: 24.6, 32.1, 115.8, 116.2, 119.5, 130.9, 131.8, 141.5, 147.4, 157.0
FT-IR (KBr disk) cm -1 : 3464, 3363, 3315, 3192, 1640, 1591, 1573, 1415, 1365, 801
LC-MS: 329 [MH] +
The result of the analysis showed that the obtained compound had a structure of the formula (1-2).
(実施例A-3)
フラスコ中に窒素雰囲気下、中間体(iii)10.0g(25.8mmol)、10%Pd-C1.00g、エタノール50ml、テトラヒドロフラン(THF)100mlを添加して室温で攪拌した。次いでエタノール20ml、THF40mlの混合溶液に溶解したヒドラジン一水和物12.9g(257mmol)を滴下した。滴下終了後、60~65℃で3hr攪拌した。反応混合物にN-メチルピロリドン(NMP)140mlを添加して析出物を溶解した後、濾過によりPd-Cを除去して得られた濾液を10%NaCl水1800gに注ぎ、室温で1hr攪拌した。生成した沈殿物を減圧濾過で回収して水洗した後、70℃で送風乾燥して目的のアルキレン化合物8.40g(25.6mmol)を得た。(収率99%)
1H-NMR、13C-NMR、FT-IR、LC-MSの結果は実施例A-2と一致した。すなわち、分析の結果は得られた化合物が式(1-2)の構造であることを示した。
(Example A-3)
Under a nitrogen atmosphere, 10.0 g (25.8 mmol) of intermediate (iii), 1.00 g of 10% Pd—C, 50 ml of ethanol, and 100 ml of tetrahydrofuran (THF) were added to the flask, and the mixture was stirred at room temperature. Next, 12.9 g (257 mmol) of hydrazine monohydrate dissolved in a mixed solution of 20 ml of ethanol and 40 ml of THF was added dropwise. After completion of the dropwise addition, the mixture was stirred at 60 to 65 ° C. for 3 hours. After adding 140 ml of N-methylpyrrolidone (NMP) to the reaction mixture to dissolve the precipitate, the filtrate obtained by removing Pd-C by filtration was poured into 1800 g of 10% aqueous NaCl solution and stirred at room temperature for 1 hr. The resulting precipitate was collected by filtration under reduced pressure, washed with water, and then blown dry at 70 ° C. to obtain 8.40 g (25.6 mmol) of the target alkylene compound. (99% yield)
The results of 1 H-NMR, 13 C-NMR, FT-IR, and LC-MS were consistent with those of Example A-2. That is, the result of the analysis showed that the obtained compound had the structure of the formula (1-2).
フラスコ中に窒素雰囲気下、中間体(iii)10.0g(25.8mmol)、10%Pd-C1.00g、エタノール50ml、テトラヒドロフラン(THF)100mlを添加して室温で攪拌した。次いでエタノール20ml、THF40mlの混合溶液に溶解したヒドラジン一水和物12.9g(257mmol)を滴下した。滴下終了後、60~65℃で3hr攪拌した。反応混合物にN-メチルピロリドン(NMP)140mlを添加して析出物を溶解した後、濾過によりPd-Cを除去して得られた濾液を10%NaCl水1800gに注ぎ、室温で1hr攪拌した。生成した沈殿物を減圧濾過で回収して水洗した後、70℃で送風乾燥して目的のアルキレン化合物8.40g(25.6mmol)を得た。(収率99%)
1H-NMR、13C-NMR、FT-IR、LC-MSの結果は実施例A-2と一致した。すなわち、分析の結果は得られた化合物が式(1-2)の構造であることを示した。
Under a nitrogen atmosphere, 10.0 g (25.8 mmol) of intermediate (iii), 1.00 g of 10% Pd—C, 50 ml of ethanol, and 100 ml of tetrahydrofuran (THF) were added to the flask, and the mixture was stirred at room temperature. Next, 12.9 g (257 mmol) of hydrazine monohydrate dissolved in a mixed solution of 20 ml of ethanol and 40 ml of THF was added dropwise. After completion of the dropwise addition, the mixture was stirred at 60 to 65 ° C. for 3 hours. After adding 140 ml of N-methylpyrrolidone (NMP) to the reaction mixture to dissolve the precipitate, the filtrate obtained by removing Pd-C by filtration was poured into 1800 g of 10% aqueous NaCl solution and stirred at room temperature for 1 hr. The resulting precipitate was collected by filtration under reduced pressure, washed with water, and then blown dry at 70 ° C. to obtain 8.40 g (25.6 mmol) of the target alkylene compound. (99% yield)
The results of 1 H-NMR, 13 C-NMR, FT-IR, and LC-MS were consistent with those of Example A-2. That is, the result of the analysis showed that the obtained compound had the structure of the formula (1-2).
(実施例B-1)
窒素雰囲気下、フラスコ中に安息香酸14.1g(116mmol)を量りとり、140℃にて溶融させた。そこに、実施例(A-1)で得たアルキレン化合物1.44g(3.62mmol)とテトラクロロフタル酸無水物5.53g(19.3mmol)を加え、220℃にて4時間攪拌した。放冷後、反応溶液にアセトン300mLを加え、1時間攪拌した後、減圧ろ過にて黄色粉末であるキノフタロン化合物B-1を4.41g(3.00mmol)得た(収率:83%)。
FT-IR cm-1:3449,1727,1622,1536,1410,1363,1308,1192,1112,737
FD-MS:1467M+
分析の結果は得られた化合物が式(3-1-i)の構造であることを示した。
(Example B-1)
Under a nitrogen atmosphere, 14.1 g (116 mmol) of benzoic acid was weighed and melted in a flask at 140 ° C. Thereto, 1.44 g (3.62 mmol) of the alkylene compound obtained in Example (A-1) and 5.53 g (19.3 mmol) of tetrachlorophthalic anhydride were added, and the mixture was stirred at 220 ° C. for 4 hours. After allowing to cool, acetone (300 mL) was added to the reaction solution, and the mixture was stirred for 1 hour, and then filtered under reduced pressure to obtain 4.41 g (3.00 mmol) of quinophthalone compound B-1 as a yellow powder (yield: 83%).
FT-IR cm -1 : 3449, 1727, 1622, 1536, 1410, 1363, 1308, 1192, 1112, 737
FD-MS: 1467M +
The result of the analysis showed that the obtained compound had a structure of the formula (3-1-i).
窒素雰囲気下、フラスコ中に安息香酸14.1g(116mmol)を量りとり、140℃にて溶融させた。そこに、実施例(A-1)で得たアルキレン化合物1.44g(3.62mmol)とテトラクロロフタル酸無水物5.53g(19.3mmol)を加え、220℃にて4時間攪拌した。放冷後、反応溶液にアセトン300mLを加え、1時間攪拌した後、減圧ろ過にて黄色粉末であるキノフタロン化合物B-1を4.41g(3.00mmol)得た(収率:83%)。
FT-IR cm-1:3449,1727,1622,1536,1410,1363,1308,1192,1112,737
FD-MS:1467M+
分析の結果は得られた化合物が式(3-1-i)の構造であることを示した。
Under a nitrogen atmosphere, 14.1 g (116 mmol) of benzoic acid was weighed and melted in a flask at 140 ° C. Thereto, 1.44 g (3.62 mmol) of the alkylene compound obtained in Example (A-1) and 5.53 g (19.3 mmol) of tetrachlorophthalic anhydride were added, and the mixture was stirred at 220 ° C. for 4 hours. After allowing to cool, acetone (300 mL) was added to the reaction solution, and the mixture was stirred for 1 hour, and then filtered under reduced pressure to obtain 4.41 g (3.00 mmol) of quinophthalone compound B-1 as a yellow powder (yield: 83%).
FT-IR cm -1 : 3449, 1727, 1622, 1536, 1410, 1363, 1308, 1192, 1112, 737
FD-MS: 1467M +
The result of the analysis showed that the obtained compound had a structure of the formula (3-1-i).
(実施例B-2)
窒素雰囲気下、フラスコ中に安息香酸135g(1.11mol)を量りとり、140℃にて溶融させた。そこに、実施例A-2で得たアルキレン化合物3.80g(11.6mmol)とテトラクロロフタル酸無水物18.0g(62.9mmol)、無水塩化亜鉛0.490g(3.60mmol)を加え、220℃にて6時間攪拌した。反応混合物を120℃に冷却後、クロロベンゼン300mLを加えて1時間攪拌し、減圧ろ過した。得られた固体をクロロベンゼン、アセトン、メタノールで順次洗浄し、黄色粉末であるキノフタロン化合物B-2を10.5g(7.5mmol)得た。(収率:65%)
FT-IR cm-1:1788,1729,1688,1638,1607,1537,1420,1310,732
FD-MS:1400M+
分析の結果は得られた化合物が式(3-2-i)の構造であることを示した。
(Example B-2)
Under a nitrogen atmosphere, 135 g (1.11 mol) of benzoic acid was weighed and melted in a flask at 140 ° C. Thereto were added 3.80 g (11.6 mmol) of the alkylene compound obtained in Example A-2, 18.0 g (62.9 mmol) of tetrachlorophthalic anhydride, and 0.490 g (3.60 mmol) of anhydrous zinc chloride. At 220 ° C. for 6 hours. After cooling the reaction mixture to 120 ° C., 300 mL of chlorobenzene was added, stirred for 1 hour, and filtered under reduced pressure. The obtained solid was washed sequentially with chlorobenzene, acetone and methanol to obtain 10.5 g (7.5 mmol) of a quinophthalone compound B-2 as a yellow powder. (Yield: 65%)
FT-IR cm -1 : 1788, 1729, 1688, 1638, 1607, 1537, 1420, 1310, 732
FD-MS: 1400M +
The result of analysis showed that the obtained compound had the structure of formula (3-2-i).
窒素雰囲気下、フラスコ中に安息香酸135g(1.11mol)を量りとり、140℃にて溶融させた。そこに、実施例A-2で得たアルキレン化合物3.80g(11.6mmol)とテトラクロロフタル酸無水物18.0g(62.9mmol)、無水塩化亜鉛0.490g(3.60mmol)を加え、220℃にて6時間攪拌した。反応混合物を120℃に冷却後、クロロベンゼン300mLを加えて1時間攪拌し、減圧ろ過した。得られた固体をクロロベンゼン、アセトン、メタノールで順次洗浄し、黄色粉末であるキノフタロン化合物B-2を10.5g(7.5mmol)得た。(収率:65%)
FT-IR cm-1:1788,1729,1688,1638,1607,1537,1420,1310,732
FD-MS:1400M+
分析の結果は得られた化合物が式(3-2-i)の構造であることを示した。
Under a nitrogen atmosphere, 135 g (1.11 mol) of benzoic acid was weighed and melted in a flask at 140 ° C. Thereto were added 3.80 g (11.6 mmol) of the alkylene compound obtained in Example A-2, 18.0 g (62.9 mmol) of tetrachlorophthalic anhydride, and 0.490 g (3.60 mmol) of anhydrous zinc chloride. At 220 ° C. for 6 hours. After cooling the reaction mixture to 120 ° C., 300 mL of chlorobenzene was added, stirred for 1 hour, and filtered under reduced pressure. The obtained solid was washed sequentially with chlorobenzene, acetone and methanol to obtain 10.5 g (7.5 mmol) of a quinophthalone compound B-2 as a yellow powder. (Yield: 65%)
FT-IR cm -1 : 1788, 1729, 1688, 1638, 1607, 1537, 1420, 1310, 732
FD-MS: 1400M +
The result of analysis showed that the obtained compound had the structure of formula (3-2-i).
(実施例C-1)
窒素雰囲気下、フラスコ中に安息香酸58.0g(475mmol)を量りとり、140℃にて溶融させた。そこに、実施例(A-1)で得たアルキレン化合物2.00g(5.03mmol)とテトラクロロフタル酸無水物5.04g(17.6mmol)を加え、220℃にて4時間攪拌した。放冷後、反応溶液にアセトン500mLを加え、1時間攪拌した後、減圧ろ過にて黄色粉末であるキノフタロン化合物C-1を6.00g得た。
MALDI-MSの結果、得られたC-1は上記式(3-1-i)の化合物と式(4-1-i)の化合物の混合物であることが分かった。
(Example C-1)
Under a nitrogen atmosphere, 58.0 g (475 mmol) of benzoic acid was weighed and melted in a flask at 140 ° C. Thereto, 2.00 g (5.03 mmol) of the alkylene compound obtained in Example (A-1) and 5.04 g (17.6 mmol) of tetrachlorophthalic anhydride were added, and the mixture was stirred at 220 ° C. for 4 hours. After allowing to cool, 500 mL of acetone was added to the reaction solution, and the mixture was stirred for 1 hour, and then filtered under reduced pressure to obtain 6.00 g of a quinophthalone compound C-1 as a yellow powder.
As a result of MALDI-MS, it was found that the obtained C-1 was a mixture of the compound of the formula (3-1-i) and the compound of the formula (4-1-i).
窒素雰囲気下、フラスコ中に安息香酸58.0g(475mmol)を量りとり、140℃にて溶融させた。そこに、実施例(A-1)で得たアルキレン化合物2.00g(5.03mmol)とテトラクロロフタル酸無水物5.04g(17.6mmol)を加え、220℃にて4時間攪拌した。放冷後、反応溶液にアセトン500mLを加え、1時間攪拌した後、減圧ろ過にて黄色粉末であるキノフタロン化合物C-1を6.00g得た。
MALDI-MSの結果、得られたC-1は上記式(3-1-i)の化合物と式(4-1-i)の化合物の混合物であることが分かった。
Under a nitrogen atmosphere, 58.0 g (475 mmol) of benzoic acid was weighed and melted in a flask at 140 ° C. Thereto, 2.00 g (5.03 mmol) of the alkylene compound obtained in Example (A-1) and 5.04 g (17.6 mmol) of tetrachlorophthalic anhydride were added, and the mixture was stirred at 220 ° C. for 4 hours. After allowing to cool, 500 mL of acetone was added to the reaction solution, and the mixture was stirred for 1 hour, and then filtered under reduced pressure to obtain 6.00 g of a quinophthalone compound C-1 as a yellow powder.
As a result of MALDI-MS, it was found that the obtained C-1 was a mixture of the compound of the formula (3-1-i) and the compound of the formula (4-1-i).
(実施例C-2)
窒素雰囲気下、フラスコ中に安息香酸58.0g(475mmol)を量りとり、140℃にて溶融させた。そこに、実施例A-2で得たアルキレン化合物2.00g(6.09mmol)とテトラクロロフタル酸無水物6.09g(21.3mmol)、無水塩化亜鉛0.205g(1.50mmol)を加え、220℃にて6時間攪拌した。反応混合物を120℃に冷却後、クロロベンゼン500mLを加えて1時間攪拌し、減圧ろ過した。得られた固体をクロロベンゼン、アセトン、メタノールで順次洗浄し、黄色粉末であるキノフタロン化合物C-2を7.00g得た。
MALDI-MSの結果、得られたC-2は上記式(3-2-i)の化合物と式(4-2-i)の化合物の混合物であることが分かった。
(Example C-2)
Under a nitrogen atmosphere, 58.0 g (475 mmol) of benzoic acid was weighed and melted in a flask at 140 ° C. Thereto were added 2.00 g (6.09 mmol) of the alkylene compound obtained in Example A-2, 6.09 g (21.3 mmol) of tetrachlorophthalic anhydride, and 0.205 g (1.50 mmol) of anhydrous zinc chloride. At 220 ° C. for 6 hours. After cooling the reaction mixture to 120 ° C., 500 mL of chlorobenzene was added, stirred for 1 hour, and filtered under reduced pressure. The obtained solid was washed sequentially with chlorobenzene, acetone and methanol to obtain 7.00 g of a quinophthalone compound C-2 as a yellow powder.
As a result of MALDI-MS, it was found that the obtained C-2 was a mixture of the compound of the formula (3-2-i) and the compound of the formula (4-2-i).
窒素雰囲気下、フラスコ中に安息香酸58.0g(475mmol)を量りとり、140℃にて溶融させた。そこに、実施例A-2で得たアルキレン化合物2.00g(6.09mmol)とテトラクロロフタル酸無水物6.09g(21.3mmol)、無水塩化亜鉛0.205g(1.50mmol)を加え、220℃にて6時間攪拌した。反応混合物を120℃に冷却後、クロロベンゼン500mLを加えて1時間攪拌し、減圧ろ過した。得られた固体をクロロベンゼン、アセトン、メタノールで順次洗浄し、黄色粉末であるキノフタロン化合物C-2を7.00g得た。
MALDI-MSの結果、得られたC-2は上記式(3-2-i)の化合物と式(4-2-i)の化合物の混合物であることが分かった。
Under a nitrogen atmosphere, 58.0 g (475 mmol) of benzoic acid was weighed and melted in a flask at 140 ° C. Thereto were added 2.00 g (6.09 mmol) of the alkylene compound obtained in Example A-2, 6.09 g (21.3 mmol) of tetrachlorophthalic anhydride, and 0.205 g (1.50 mmol) of anhydrous zinc chloride. At 220 ° C. for 6 hours. After cooling the reaction mixture to 120 ° C., 500 mL of chlorobenzene was added, stirred for 1 hour, and filtered under reduced pressure. The obtained solid was washed sequentially with chlorobenzene, acetone and methanol to obtain 7.00 g of a quinophthalone compound C-2 as a yellow powder.
As a result of MALDI-MS, it was found that the obtained C-2 was a mixture of the compound of the formula (3-2-i) and the compound of the formula (4-2-i).
(顔料化例1)
実施例B-1で得られた式(3-1-i)で表されるキノフタロン化合物0.500質量部を塩化ナトリウム1.50質量部、ジエチレングリコール0.750質量部とともに磨砕した。その後、この混合物を600質量部の温水に投じ、1時間攪拌した。水不溶分をろ過分離して温水でよく洗浄した後、90℃で送風乾燥して顔料化を行い、キノフタロン顔料を得た。得られた顔料粒子の平均アスペクト比は3.00未満であり、平均一次粒子径は100nm以下であった。 (Pigmentation example 1)
0.500 parts by mass of the quinophthalone compound represented by the formula (3-1-i) obtained in Example B-1 was ground together with 1.50 parts by mass of sodium chloride and 0.750 parts by mass of diethylene glycol. Thereafter, the mixture was poured into 600 parts by mass of warm water and stirred for 1 hour. After the water-insoluble matter was separated by filtration and washed well with warm water, it was blown and dried at 90 ° C. to perform pigmentation to obtain a quinophthalone pigment. The average aspect ratio of the obtained pigment particles was less than 3.00, and the average primary particle size was 100 nm or less.
実施例B-1で得られた式(3-1-i)で表されるキノフタロン化合物0.500質量部を塩化ナトリウム1.50質量部、ジエチレングリコール0.750質量部とともに磨砕した。その後、この混合物を600質量部の温水に投じ、1時間攪拌した。水不溶分をろ過分離して温水でよく洗浄した後、90℃で送風乾燥して顔料化を行い、キノフタロン顔料を得た。得られた顔料粒子の平均アスペクト比は3.00未満であり、平均一次粒子径は100nm以下であった。 (Pigmentation example 1)
0.500 parts by mass of the quinophthalone compound represented by the formula (3-1-i) obtained in Example B-1 was ground together with 1.50 parts by mass of sodium chloride and 0.750 parts by mass of diethylene glycol. Thereafter, the mixture was poured into 600 parts by mass of warm water and stirred for 1 hour. After the water-insoluble matter was separated by filtration and washed well with warm water, it was blown and dried at 90 ° C. to perform pigmentation to obtain a quinophthalone pigment. The average aspect ratio of the obtained pigment particles was less than 3.00, and the average primary particle size was 100 nm or less.
(顔料化例2)
実施例B-1で得られた式(3-1-i)で表されるキノフタロン化合物に代えて、実施例B-2で得られた式(3-2-i)で表されるキノフタロン化合物を用いた以外は、顔料化例1と同様の方法で顔料化を行い、キノフタロン顔料を得た。得られた顔料粒子の平均アスペクト比は3.00未満であり、平均一次粒子径は100nm以下であった。 (Pigmentation example 2)
A quinophthalone compound represented by the formula (3-2-i) obtained in Example B-2 instead of the quinophthalone compound represented by the formula (3-1-i) obtained in Example B-1 Pigmentation was carried out in the same manner as in Pigmentation Example 1 except that quinophthalone pigment was used. The average aspect ratio of the obtained pigment particles was less than 3.00, and the average primary particle size was 100 nm or less.
実施例B-1で得られた式(3-1-i)で表されるキノフタロン化合物に代えて、実施例B-2で得られた式(3-2-i)で表されるキノフタロン化合物を用いた以外は、顔料化例1と同様の方法で顔料化を行い、キノフタロン顔料を得た。得られた顔料粒子の平均アスペクト比は3.00未満であり、平均一次粒子径は100nm以下であった。 (Pigmentation example 2)
A quinophthalone compound represented by the formula (3-2-i) obtained in Example B-2 instead of the quinophthalone compound represented by the formula (3-1-i) obtained in Example B-1 Pigmentation was carried out in the same manner as in Pigmentation Example 1 except that quinophthalone pigment was used. The average aspect ratio of the obtained pigment particles was less than 3.00, and the average primary particle size was 100 nm or less.
(実施例D-1)
顔料化例1で得たキノフタロン顔料0.660質量部をガラス瓶に入れ、特開2013-54200号公報に記載の方法で合成したスルホン酸系誘導体(5)0.040質量部、プロピレングリコールモノメチルエーテルアセテート12.60質量部、BYK LPN-21116(ビックケミー株式会社製)1.400質量部、0.3-0.4mmφセプルビーズ22.0質量部を加え、ペイントシェーカー(東洋精機株式会社製)で2時間半分散し、顔料分散体を得た。なお、式(5)中のスルホン酸基は、キノリン環上の水素原子のいずれかに置換していることを示す。
(Example D-1)
0.660 parts by mass of the quinophthalone pigment obtained in Pigmentation Example 1 was placed in a glass bottle, and 0.040 parts by mass of a sulfonic acid derivative (5) synthesized by the method described in JP-A-2013-54200, propylene glycol monomethyl ether 12.60 parts by mass of acetate, 1.400 parts by mass of BYK LPN-21116 (manufactured by BYK Chemie), 22.0 parts by mass of 0.3-0.4 mmφ seple beads were added, and the mixture was added to a paint shaker (manufactured by Toyo Seiki Co., Ltd.). After half an hour of dispersion, a pigment dispersion was obtained. Note that the sulfonic acid group in the formula (5) is substituted on any of the hydrogen atoms on the quinoline ring.
顔料化例1で得たキノフタロン顔料0.660質量部をガラス瓶に入れ、特開2013-54200号公報に記載の方法で合成したスルホン酸系誘導体(5)0.040質量部、プロピレングリコールモノメチルエーテルアセテート12.60質量部、BYK LPN-21116(ビックケミー株式会社製)1.400質量部、0.3-0.4mmφセプルビーズ22.0質量部を加え、ペイントシェーカー(東洋精機株式会社製)で2時間半分散し、顔料分散体を得た。なお、式(5)中のスルホン酸基は、キノリン環上の水素原子のいずれかに置換していることを示す。
0.660 parts by mass of the quinophthalone pigment obtained in Pigmentation Example 1 was placed in a glass bottle, and 0.040 parts by mass of a sulfonic acid derivative (5) synthesized by the method described in JP-A-2013-54200, propylene glycol monomethyl ether 12.60 parts by mass of acetate, 1.400 parts by mass of BYK LPN-21116 (manufactured by BYK Chemie), 22.0 parts by mass of 0.3-0.4 mmφ seple beads were added, and the mixture was added to a paint shaker (manufactured by Toyo Seiki Co., Ltd.). After half an hour of dispersion, a pigment dispersion was obtained. Note that the sulfonic acid group in the formula (5) is substituted on any of the hydrogen atoms on the quinoline ring.
次いで、顔料分散体4.00質量部、アクリル樹脂溶液ユニディック(登録商標)ZL-295(DIC株式会社製)0.600質量部、プロピレングリコールモノメチルエーテルアセテート0.220質量部をガラス瓶に入れ、振とうさせることで黄色調色用組成物を作製した。
Next, 4.00 parts by mass of a pigment dispersion, 0.600 parts by mass of an acrylic resin solution Unidick (registered trademark) ZL-295 (manufactured by DIC Corporation), and 0.220 parts by mass of propylene glycol monomethyl ether acetate were put in a glass bottle. The composition for yellow toning was produced by shaking.
(実施例D-2)
顔料化例1で得たキノフタロン顔料に代えて、顔料化例2で得たキノフタロン顔料を用いた以外は、実施例D-1と同様の方法で黄色調色用組成物を得た。 (Example D-2)
A yellow toning composition was obtained in the same manner as in Example D-1, except that the quinophthalone pigment obtained in Pigmentation Example 2 was used instead of the quinophthalone pigment obtained in Pigmentation Example 1.
顔料化例1で得たキノフタロン顔料に代えて、顔料化例2で得たキノフタロン顔料を用いた以外は、実施例D-1と同様の方法で黄色調色用組成物を得た。 (Example D-2)
A yellow toning composition was obtained in the same manner as in Example D-1, except that the quinophthalone pigment obtained in Pigmentation Example 2 was used instead of the quinophthalone pigment obtained in Pigmentation Example 1.
(比較例d-1)
C.I.ピグメント イエロー150(山陽色素社製)1.14質量部をポリ瓶に入れ、プロピレングリコールモノメチルエーテルアセテート12.0質量部、BYK LPN-21116(ビックケミー株式会社社製)2.84質量部、0.3-0.4mmφセプルビーズ38.0質量部を加え、ペイントコンディショナー(東洋精機株式会社製)で4時間分散し、顔料分散体を得た。さらに、得られた顔料分散体2.00質量部、アクリル樹脂溶液ユニディック(登録商標名)ZL-295(DIC株式会社製)0.490質量部、プロピレングリコールモノメチルエーテルアセテート0.110質量部をガラス瓶に入れ、振とうさせることで黄色調色用組成物を作製した。 (Comparative Example d-1)
C. I. Pigment Yellow 150 (manufactured by Sanyo Pigment Co., Ltd.) in a plastic bottle was charged with 1.14 parts by mass, and 12.0 parts by mass of propylene glycol monomethyl ether acetate, 2.84 parts by mass of BYK LPN-21116 (manufactured by Big Chemie Co., Ltd.) were added. 38.0 parts by mass of 3-0.4 mmφ seple beads were added, and the mixture was dispersed for 4 hours with a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) to obtain a pigment dispersion. Further, 2.00 parts by mass of the obtained pigment dispersion, 0.490 parts by mass of acrylic resin solution Unidick (registered trademark) ZL-295 (manufactured by DIC Corporation), and 0.110 parts by mass of propylene glycol monomethyl ether acetate were added. The composition was placed in a glass bottle and shaken to prepare a composition for yellow toning.
C.I.ピグメント イエロー150(山陽色素社製)1.14質量部をポリ瓶に入れ、プロピレングリコールモノメチルエーテルアセテート12.0質量部、BYK LPN-21116(ビックケミー株式会社社製)2.84質量部、0.3-0.4mmφセプルビーズ38.0質量部を加え、ペイントコンディショナー(東洋精機株式会社製)で4時間分散し、顔料分散体を得た。さらに、得られた顔料分散体2.00質量部、アクリル樹脂溶液ユニディック(登録商標名)ZL-295(DIC株式会社製)0.490質量部、プロピレングリコールモノメチルエーテルアセテート0.110質量部をガラス瓶に入れ、振とうさせることで黄色調色用組成物を作製した。 (Comparative Example d-1)
C. I. Pigment Yellow 150 (manufactured by Sanyo Pigment Co., Ltd.) in a plastic bottle was charged with 1.14 parts by mass, and 12.0 parts by mass of propylene glycol monomethyl ether acetate, 2.84 parts by mass of BYK LPN-21116 (manufactured by Big Chemie Co., Ltd.) were added. 38.0 parts by mass of 3-0.4 mmφ seple beads were added, and the mixture was dispersed for 4 hours with a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) to obtain a pigment dispersion. Further, 2.00 parts by mass of the obtained pigment dispersion, 0.490 parts by mass of acrylic resin solution Unidick (registered trademark) ZL-295 (manufactured by DIC Corporation), and 0.110 parts by mass of propylene glycol monomethyl ether acetate were added. The composition was placed in a glass bottle and shaken to prepare a composition for yellow toning.
(製造例1)
C.I.ピグメント グリーン59(DIC株式会社製)2.48質量部をガラス瓶に入れ、プロピレングリコールモノメチルエーテルアセテート10.9量部、BYK LPN-6919(ビックケミー株式会社製)1.24質量部、アクリル樹脂溶液ユニディック(登録商標)ZL-295(DIC株式会社製)1.86質量部、0.3-0.4mmφセプルビーズを加え、ペイントシェーカー(東洋精機株式会社製)で2時間分散し、顔料分散体を得た。さらに、得られた顔料分散体4.00質量部、アクリル樹脂溶液ユニディック(登録商標)ZL-295(DIC株式会社製)0.980質量部、プロピレングリコールモノメチルエーテルアセテート0.220質量部をガラス瓶に入れ、振とうさせることで緑色調色用組成物を作製した。 (Production Example 1)
C. I. Pigment Green 59 (manufactured by DIC Corporation) (2.48 parts by mass) was placed in a glass bottle, 10.9 parts by mass of propylene glycol monomethyl ether acetate, BYK LPN-6919 (manufactured by BYK Chemie KK) 1.24 parts by mass, acrylic resin solution unit 1.86 parts by mass of Dick (registered trademark) ZL-295 (manufactured by DIC) and 0.3-0.4 mmφ sepul beads were added, and the mixture was dispersed for 2 hours with a paint shaker (manufactured by Toyo Seiki Co., Ltd.) to obtain a pigment dispersion. Obtained. Further, 4.00 parts by mass of the obtained pigment dispersion, 0.980 parts by mass of acrylic resin solution Unidick (registered trademark) ZL-295 (manufactured by DIC Corporation), and 0.220 parts by mass of propylene glycol monomethyl ether acetate were placed in a glass bottle. And shaking to prepare a composition for green toning.
C.I.ピグメント グリーン59(DIC株式会社製)2.48質量部をガラス瓶に入れ、プロピレングリコールモノメチルエーテルアセテート10.9量部、BYK LPN-6919(ビックケミー株式会社製)1.24質量部、アクリル樹脂溶液ユニディック(登録商標)ZL-295(DIC株式会社製)1.86質量部、0.3-0.4mmφセプルビーズを加え、ペイントシェーカー(東洋精機株式会社製)で2時間分散し、顔料分散体を得た。さらに、得られた顔料分散体4.00質量部、アクリル樹脂溶液ユニディック(登録商標)ZL-295(DIC株式会社製)0.980質量部、プロピレングリコールモノメチルエーテルアセテート0.220質量部をガラス瓶に入れ、振とうさせることで緑色調色用組成物を作製した。 (Production Example 1)
C. I. Pigment Green 59 (manufactured by DIC Corporation) (2.48 parts by mass) was placed in a glass bottle, 10.9 parts by mass of propylene glycol monomethyl ether acetate, BYK LPN-6919 (manufactured by BYK Chemie KK) 1.24 parts by mass, acrylic resin solution unit 1.86 parts by mass of Dick (registered trademark) ZL-295 (manufactured by DIC) and 0.3-0.4 mmφ sepul beads were added, and the mixture was dispersed for 2 hours with a paint shaker (manufactured by Toyo Seiki Co., Ltd.) to obtain a pigment dispersion. Obtained. Further, 4.00 parts by mass of the obtained pigment dispersion, 0.980 parts by mass of acrylic resin solution Unidick (registered trademark) ZL-295 (manufactured by DIC Corporation), and 0.220 parts by mass of propylene glycol monomethyl ether acetate were placed in a glass bottle. And shaking to prepare a composition for green toning.
(実施例E-1)
実施例D-1で得られた黄色調色用組成物と製造例1で得られた緑色調色用組成物とを、39:61の割合で混合して、緑色調色用組成物を得た。 (Example E-1)
The composition for yellow toning obtained in Example D-1 and the composition for green toning obtained in Production Example 1 were mixed at a ratio of 39:61 to obtain a composition for green toning. Was.
実施例D-1で得られた黄色調色用組成物と製造例1で得られた緑色調色用組成物とを、39:61の割合で混合して、緑色調色用組成物を得た。 (Example E-1)
The composition for yellow toning obtained in Example D-1 and the composition for green toning obtained in Production Example 1 were mixed at a ratio of 39:61 to obtain a composition for green toning. Was.
(実施例E-2)
実施例D-2で得られた黄色調色用組成物と製造例1で得られた緑色調色用組成物とを、40:60の割合で混合して、緑色調色用組成物を得た。 (Example E-2)
The composition for yellow toning obtained in Example D-2 and the composition for green toning obtained in Production Example 1 were mixed at a ratio of 40:60 to obtain a composition for green toning. Was.
実施例D-2で得られた黄色調色用組成物と製造例1で得られた緑色調色用組成物とを、40:60の割合で混合して、緑色調色用組成物を得た。 (Example E-2)
The composition for yellow toning obtained in Example D-2 and the composition for green toning obtained in Production Example 1 were mixed at a ratio of 40:60 to obtain a composition for green toning. Was.
(比較例e-1)
比較例d-1で得られた黄色調色用組成物と製造例1で得られた緑色調色用組成物とを、66:34の割合で混合して、緑色調色用組成物を得た。 (Comparative Example e-1)
The composition for yellow toning obtained in Comparative Example d-1 and the composition for green toning obtained in Production Example 1 were mixed at a ratio of 66:34 to obtain a composition for green toning. Was.
比較例d-1で得られた黄色調色用組成物と製造例1で得られた緑色調色用組成物とを、66:34の割合で混合して、緑色調色用組成物を得た。 (Comparative Example e-1)
The composition for yellow toning obtained in Comparative Example d-1 and the composition for green toning obtained in Production Example 1 were mixed at a ratio of 66:34 to obtain a composition for green toning. Was.
実施例E-1及び実施例E-2並びに比較例e-1で得られた緑色調色用組成物から形成されるカラーフィルタの特性を、以下の方法で測定した。結果を表1に示す。
特性 The characteristics of the color filters formed from the green toning compositions obtained in Examples E-1 and E-2 and Comparative Example e-1 were measured by the following methods. Table 1 shows the results.
<カラーフィルタ特性試験>
実施例及び比較例で得られた緑色調色用組成物をそれぞれスピンコーターによりガラス基板上に塗布した後、乾燥させ、230℃で1時間加熱して、C光源を用いた場合ときに所定の緑色色度を示す評価用サンプルを得た。なお、評価用サンプルの色度は分光光度計(株式会社日立ハイテクサイエンス製 U3900/3900H形)によって求められる値であり、緑色色度としては特開2015-191208号公報で使用されている(0.224,0.669)を用いた。得られた評価用サンプルにおける輝度Yを、分光光度計(株式会社日立ハイテクサイエンス製 U3900/3900H形)によって測定した。また、得られた評価用サンプルについて、ガラス基板上に形成された着色膜の厚さを、膜厚計(株式会社日立ハイテクサイエンス製 VS1330 走査型白色干渉顕微鏡)によって測定した。なお、膜厚が薄いほど高着色力であるといえる。結果を表1に示す。 <Color filter characteristic test>
Each of the green toning compositions obtained in Examples and Comparative Examples was applied on a glass substrate by a spin coater, dried, heated at 230 ° C. for 1 hour, and given a predetermined value when a C light source was used. An evaluation sample showing green chromaticity was obtained. The chromaticity of the evaluation sample is a value obtained by a spectrophotometer (U3900 / 3900H type manufactured by Hitachi High-Tech Science Co., Ltd.), and the green chromaticity is used in Japanese Patent Application Laid-Open No. 2015-191208. .224, 0.669). The luminance Y in the obtained evaluation sample was measured by a spectrophotometer (U3900 / 3900H type manufactured by Hitachi High-Tech Science Corporation). Further, for the obtained evaluation sample, the thickness of the colored film formed on the glass substrate was measured by a film thickness meter (VS1330 scanning white interference microscope manufactured by Hitachi High-Tech Science Corporation). It can be said that the thinner the film thickness, the higher the coloring power. Table 1 shows the results.
実施例及び比較例で得られた緑色調色用組成物をそれぞれスピンコーターによりガラス基板上に塗布した後、乾燥させ、230℃で1時間加熱して、C光源を用いた場合ときに所定の緑色色度を示す評価用サンプルを得た。なお、評価用サンプルの色度は分光光度計(株式会社日立ハイテクサイエンス製 U3900/3900H形)によって求められる値であり、緑色色度としては特開2015-191208号公報で使用されている(0.224,0.669)を用いた。得られた評価用サンプルにおける輝度Yを、分光光度計(株式会社日立ハイテクサイエンス製 U3900/3900H形)によって測定した。また、得られた評価用サンプルについて、ガラス基板上に形成された着色膜の厚さを、膜厚計(株式会社日立ハイテクサイエンス製 VS1330 走査型白色干渉顕微鏡)によって測定した。なお、膜厚が薄いほど高着色力であるといえる。結果を表1に示す。 <Color filter characteristic test>
Each of the green toning compositions obtained in Examples and Comparative Examples was applied on a glass substrate by a spin coater, dried, heated at 230 ° C. for 1 hour, and given a predetermined value when a C light source was used. An evaluation sample showing green chromaticity was obtained. The chromaticity of the evaluation sample is a value obtained by a spectrophotometer (U3900 / 3900H type manufactured by Hitachi High-Tech Science Co., Ltd.), and the green chromaticity is used in Japanese Patent Application Laid-Open No. 2015-191208. .224, 0.669). The luminance Y in the obtained evaluation sample was measured by a spectrophotometer (U3900 / 3900H type manufactured by Hitachi High-Tech Science Corporation). Further, for the obtained evaluation sample, the thickness of the colored film formed on the glass substrate was measured by a film thickness meter (VS1330 scanning white interference microscope manufactured by Hitachi High-Tech Science Corporation). It can be said that the thinner the film thickness, the higher the coloring power. Table 1 shows the results.
本発明に係るキナルジン化合物は、顔料として優れた着色力を有するキノフタロン化合物を製造するための原料化合物として有用である。
キ The quinaldine compound according to the present invention is useful as a raw material compound for producing a quinophthalone compound having excellent coloring power as a pigment.
Claims (6)
- 下記式(1)で表されるアルキレン化合物。
- 前記Zがメチレン基である、請求項1に記載のアルキレン化合物。 ア ル キ レ ン The alkylene compound according to claim 1, wherein Z is a methylene group.
- 下記式(1)で表されるアルキレン化合物と下記式(2)で表される酸無水物とを縮合させて、下記式(3)で表される第一のキノフタロン化合物及び下記式(4)で表される第二のキノフタロン化合物から群より選択される少なくとも一種を得る工程を備える、キノフタロン化合物の製造方法。
- 前記アルキレン化合物と前記酸無水物とを酸触媒の存在下で縮合させる、請求項3に記載の製造方法。 The method according to claim 3, wherein the alkylene compound and the acid anhydride are condensed in the presence of an acid catalyst.
- 下記式(4)で表されるキノフタロン化合物。
- 下記式(3)で表される第一のキノフタロン化合物と下記式(4)で表される第二のキノフタロン化合物とを含有する、キノフタロン混合物。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980055609.XA CN112638882A (en) | 2018-08-31 | 2019-08-21 | Alkylene compounds, quinophthalone compounds and quinophthalone mixtures |
JP2019569845A JP6677365B1 (en) | 2018-08-31 | 2019-08-21 | Alkylene compounds, quinophthalone compounds and quinophthalone mixtures |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-163802 | 2018-08-31 | ||
JP2018163802 | 2018-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020045200A1 true WO2020045200A1 (en) | 2020-03-05 |
Family
ID=69644528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/032705 WO2020045200A1 (en) | 2018-08-31 | 2019-08-21 | Alkylene compound, quinophthalone compound, and quinophthalone mixture |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6677365B1 (en) |
CN (1) | CN112638882A (en) |
WO (1) | WO2020045200A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022130773A1 (en) | 2020-12-17 | 2022-06-23 | 富士フイルム株式会社 | Composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor |
WO2022131191A1 (en) | 2020-12-16 | 2022-06-23 | 富士フイルム株式会社 | Composition, membrane, optical filter, solid image pickup element, image display apparatus, and infrared ray sensor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4832765B1 (en) * | 1970-12-29 | 1973-10-09 | ||
WO2013098837A2 (en) * | 2011-10-24 | 2013-07-04 | Keki Hormusji Gharda | A bis-quinaldine compound and a process for preparing the same |
WO2013098836A1 (en) * | 2011-10-24 | 2013-07-04 | Keki Hormusji Gharda | A bis-quinophthalome pigment and a process for preparing the same |
JP2018062578A (en) * | 2016-10-13 | 2018-04-19 | Dic株式会社 | Novel quinophthalone compound |
WO2018159372A1 (en) * | 2017-03-01 | 2018-09-07 | Dic株式会社 | Quinophthalone compound |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001335711A (en) * | 2000-05-29 | 2001-12-04 | Fuji Photo Film Co Ltd | Quinophthalone compound, pigment dispersant containing the same, pigment dispersion composition, and colored photosensitive composition |
JP4398753B2 (en) * | 2004-02-23 | 2010-01-13 | 東洋インキ製造株式会社 | Coloring composition for color filter and color filter |
JP6463624B2 (en) * | 2014-12-08 | 2019-02-06 | 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. | Compound |
-
2019
- 2019-08-21 WO PCT/JP2019/032705 patent/WO2020045200A1/en active Application Filing
- 2019-08-21 JP JP2019569845A patent/JP6677365B1/en active Active
- 2019-08-21 CN CN201980055609.XA patent/CN112638882A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4832765B1 (en) * | 1970-12-29 | 1973-10-09 | ||
WO2013098837A2 (en) * | 2011-10-24 | 2013-07-04 | Keki Hormusji Gharda | A bis-quinaldine compound and a process for preparing the same |
WO2013098836A1 (en) * | 2011-10-24 | 2013-07-04 | Keki Hormusji Gharda | A bis-quinophthalome pigment and a process for preparing the same |
JP2018062578A (en) * | 2016-10-13 | 2018-04-19 | Dic株式会社 | Novel quinophthalone compound |
WO2018159372A1 (en) * | 2017-03-01 | 2018-09-07 | Dic株式会社 | Quinophthalone compound |
Non-Patent Citations (1)
Title |
---|
DATABASE REGISTRY [online] CAS; 18 April 2018 (2018-04-18), retrieved from STN Database accession no. RN-2215034-17-4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022131191A1 (en) | 2020-12-16 | 2022-06-23 | 富士フイルム株式会社 | Composition, membrane, optical filter, solid image pickup element, image display apparatus, and infrared ray sensor |
WO2022130773A1 (en) | 2020-12-17 | 2022-06-23 | 富士フイルム株式会社 | Composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor |
Also Published As
Publication number | Publication date |
---|---|
JP6677365B1 (en) | 2020-04-08 |
JPWO2020045200A1 (en) | 2020-09-03 |
CN112638882A (en) | 2021-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6677365B1 (en) | Alkylene compounds, quinophthalone compounds and quinophthalone mixtures | |
TWI741152B (en) | Quinoline Yellow Compound | |
JP6705571B1 (en) | Pigment composition, coloring composition and color filter | |
US8809427B2 (en) | Phthalocyanine compound and production method therefor, and coloring composition containing the phthalocyanine compound | |
JP2020033523A (en) | Pigment composition, coloring composition, and color filter | |
US4785091A (en) | Process for producing copper phthalocyanine pigment | |
JPH10204076A (en) | Production of perylene-3,4-dicarboxylic anhydride | |
JP2020033522A (en) | Pigment composition, coloring composition, and color filter | |
JP2020033521A (en) | Pigment composition, coloring composition, and color filter | |
JP6992931B2 (en) | Kinoftalone compounds, pigment compositions and color filters | |
JP4517543B2 (en) | Quinonoquinolone-isoindolinone solid solution and pigment | |
JP6607427B1 (en) | Quinophthalone compounds | |
TWI812745B (en) | quinophthalone compounds | |
JPH09137075A (en) | Pigment dispersant and pigment composition using the same | |
JP3000110B2 (en) | Tetrahydroquinacridine derivative and method for producing the same | |
JP4239089B2 (en) | Novel benzimidazolone compounds and colorants | |
JP3642428B1 (en) | Benzimidazolone compounds | |
JP2016089109A (en) | Naphthodipyrrolinone colorant | |
JPS5853669B2 (en) | Purification method for isoindolinone pigments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019569845 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19853659 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19853659 Country of ref document: EP Kind code of ref document: A1 |