JPWO2020045200A1 - Alkylene compound, quinophthalone compound and quinophthalone mixture - Google Patents

Alkylene compound, quinophthalone compound and quinophthalone mixture Download PDF

Info

Publication number
JPWO2020045200A1
JPWO2020045200A1 JP2019569845A JP2019569845A JPWO2020045200A1 JP WO2020045200 A1 JPWO2020045200 A1 JP WO2020045200A1 JP 2019569845 A JP2019569845 A JP 2019569845A JP 2019569845 A JP2019569845 A JP 2019569845A JP WO2020045200 A1 JPWO2020045200 A1 JP WO2020045200A1
Authority
JP
Japan
Prior art keywords
formula
compound
quinophthalone
alkylene
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019569845A
Other languages
Japanese (ja)
Other versions
JP6677365B1 (en
Inventor
龍矢 重廣
龍矢 重廣
竜史 山崎
竜史 山崎
近藤 仁
仁 近藤
安井 健悟
健悟 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Application granted granted Critical
Publication of JP6677365B1 publication Critical patent/JP6677365B1/en
Publication of JPWO2020045200A1 publication Critical patent/JPWO2020045200A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B25/00Quinophthalones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Quinoline Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

下記式(1)で表されるアルキレン化合物。
【化1】

Figure 2020045200

[式(1)中、X及びXは各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1〜3のアルキレン基を示す。]An alkylene compound represented by the following formula (1).
[Chemical 1]
Figure 2020045200

[In the formula (1), X 1 and X 2 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]

Description

本発明は、アルキレン化合物、キノフタロン化合物の製造方法、キノフタロン化合物及びキノフタロン混合物に関する。 The present invention relates to a method for producing an alkylene compound and a quinophthalone compound, a quinophthalone compound and a quinophthalone mixture.

現在、着色組成物は様々な分野に用いられており、着色組成物の具体的な用途としては、印刷インキ、塗料、樹脂用着色剤、繊維用着色剤、IT情報記録用色材(カラーフィルタ、トナー、インクジェット)などが挙げられる。着色組成物に用いられる色素には、色特性(着色力、鮮明性)、耐性(耐候性、耐光性、耐熱性、耐溶剤性)などが求められる。色素は、主に顔料と染料とに大別されるが、顔料は、分子状態で発色する染料とは異なり、粒子状態(一次粒子の凝集体)での発色となる。そのため、一般的に、顔料は、染料に比べて、耐性においては優位であるものの、着色力や彩度(鮮明性)では劣っている。 Currently, coloring compositions are used in various fields, and specific applications of coloring compositions include printing inks, paints, colorants for resins, colorants for fibers, and color materials for IT information recording (color filters). , Toner, inkjet) and the like. The dye used in the coloring composition is required to have color characteristics (coloring power, sharpness), resistance (weather resistance, light resistance, heat resistance, solvent resistance) and the like. Dyes are mainly classified into pigments and dyes. Pigments, unlike dyes that develop color in the molecular state, develop color in the particle state (aggregates of primary particles). Therefore, in general, pigments are superior to dyes in resistance, but inferior in coloring power and saturation (sharpness).

このような背景から、高着色力及び高彩度な顔料が求められており、着色力の点において優勢とされている有機顔料にとりわけ注目が集まっている。例えば特許文献1には、所定のキノフタロン化合物を含有する着色組成物が開示されている。 Against this background, pigments with high coloring power and high saturation are required, and organic pigments, which are considered to be superior in terms of coloring power, are attracting particular attention. For example, Patent Document 1 discloses a coloring composition containing a predetermined quinophthalone compound.

特開2012−247587号公報Japanese Unexamined Patent Publication No. 2012-247587

しかし、従来のキノフタロン化合物を含有する着色組成物は、必ずしも着色力に優れたものではなく、特にカラーフィルタのような高色再現性が求められる用途で用いるには、決して十分とはいえない。そして、キノフタロン化合物は、キナルジン(2−メチルキノリン)化合物とフタル酸無水物との縮合反応によって得られるため、着色力に優れたキノフタロン化合物を見出すためには、新規なキナルジン化合物の開発が重要となる。 However, the conventional coloring composition containing a quinophthalone compound is not always excellent in coloring power, and is by no means sufficient for use in applications requiring high color reproducibility such as a color filter. Since the quinophthalone compound is obtained by the condensation reaction of the quinaldine (2-methylquinolin) compound and the phthalic anhydride, it is important to develop a new quinalzine compound in order to find the quinophthalone compound having excellent coloring power. Become.

そこで、本発明は、顔料として優れた着色力を有するキノフタロン化合物を製造するための、新規なキナルジン化合物を提供することを目的とする。また、本発明は、顔料として優れた着色力を有するキノフタロン化合物の製造方法を提供することを目的とする。また、本発明は、新規なキノフタロン化合物、及び、当該キノフタロン化合物を含有するキノフタロン混合物を提供することを目的とする。 Therefore, an object of the present invention is to provide a novel quinaldine compound for producing a quinophthalone compound having excellent coloring power as a pigment. Another object of the present invention is to provide a method for producing a quinophthalone compound having excellent coloring power as a pigment. Another object of the present invention is to provide a novel quinophthalone compound and a quinophthalone mixture containing the quinophthalone compound.

本発明の一側面は、式(1)で表されるアルキレン化合物である。

Figure 2020045200
[式(1)中、X及びXは各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1〜3のアルキレン基を示す。]One aspect of the present invention is an alkylene compound represented by the formula (1).
Figure 2020045200
[In the formula (1), X 1 and X 2 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]

上記Zはメチレン基であってよい。 The Z may be a methylene group.

本発明の他の一側面は、式(1)で表されるアルキレン化合物と式(2)で表される酸無水物とを縮合させて、式(3)で表される第一のキノフタロン化合物及び式(4)で表される第二のキノフタロン化合物から群より選択される少なくとも一種を得る工程を備える、キノフタロン化合物の製造方法である。

Figure 2020045200
[式(1)中、X及びXは各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1〜3のアルキレン基を示す。]
Figure 2020045200
[式(2)中、X、X、X及びXは各々独立に水素原子又はハロゲン原子を示す。]
Figure 2020045200
[式(3)中、X、X、X、X、X及びXは各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1〜3のアルキレン基を示す。]
Figure 2020045200
[式(4)中、X、X、X、X、X及びXは各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1〜3のアルキレン基を示す。]Another aspect of the present invention is the first quinophthalone compound represented by the formula (3) by condensing the alkylene compound represented by the formula (1) and the acid anhydride represented by the formula (2). A method for producing a quinophthalone compound, which comprises a step of obtaining at least one selected from the group from the second quinophthalone compound represented by the formula (4).
Figure 2020045200
[In the formula (1), X 1 and X 2 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]
Figure 2020045200
[In formula (2), X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom. ]
Figure 2020045200
[In formula (3), X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]
Figure 2020045200
[In formula (4), X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]

一態様において、上記工程は、上記アルキレン化合物と上記酸無水物とを酸触媒の存在下で縮合させる工程であってよい。 In one aspect, the step may be a step of condensing the alkylene compound and the acid anhydride in the presence of an acid catalyst.

本発明の更に他の一側面は、式(4)で表されるキノフタロン化合物である。 Yet another aspect of the present invention is the quinophthalone compound represented by the formula (4).

本発明の更に他の一側面は式(3)で表される第一のキノフタロン化合物と式(4)で表される第二のキノフタロン化合物とを含有する、キノフタロン混合物である。 Yet another aspect of the present invention is a quinophthalone mixture containing a first quinophthalone compound represented by the formula (3) and a second quinophthalone compound represented by the formula (4).

本発明によれば、顔料として優れた着色力を有するキノフタロン化合物を製造するための、新規なキナルジン化合物が提供される。また、本発明によれば、顔料として優れた着色力を有するキノフタロン化合物の製造方法が提供される。また、本発明によれば、新規なキノフタロン化合物、及び、当該キノフタロン化合物を含有するキノフタロン混合物が提供される。 According to the present invention, a novel quinaldine compound for producing a quinophthalone compound having excellent coloring power as a pigment is provided. Further, according to the present invention, there is provided a method for producing a quinophthalone compound having excellent coloring power as a pigment. Further, according to the present invention, a novel quinophthalone compound and a quinophthalone mixture containing the quinophthalone compound are provided.

以下、本発明の好適な実施形態について説明する。ただし、本発明は下記の実施形態に何ら限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments.

(アルキレン化合物)
本実施形態に係るアルキレン化合物は、下記式(1)で表される化合物である。

Figure 2020045200
(Alkylene compound)
The alkylene compound according to this embodiment is a compound represented by the following formula (1).
Figure 2020045200

式(1)中、X及びXは各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1〜3のアルキレン基を示す。In formula (1), X 1 and X 2 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms.

式(1)中のハロゲン原子は、フッ素原子、塩素原子、臭素原子又はヨウ素原子であってよく、フッ素原子、塩素原子又は臭素原子であることが好ましく、塩素原子であることがより好ましい。 The halogen atom in the formula (1) may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a chlorine atom.

式(1)中の炭素数1〜3のアルキレン基の具体例としては、例えば、メチレン基、エチレン基(1,1−エタンジイル基又は1,2−エタンジイル基)、プロピレン基(1,1−プロパンジイル基、2,2−プロパンジイル基、1,2−プロパンジイル基又は1,3−プロパンジイル基)が好ましく、メチレン基、1,1−エタンジイル基、1,1−プロパンジイル基、2,2−プロパンジイル基がより好ましく、メチレン基が更に好ましい。 Specific examples of the alkylene group having 1 to 3 carbon atoms in the formula (1) include a methylene group, an ethylene group (1,1-ethanediyl group or 1,2-ethanediyl group), and a propylene group (1,1-). Propanediyl group, 2,2-propanediyl group, 1,2-propanediyl group or 1,3-propanediyl group) is preferable, methylene group, 1,1-ethanediyl group, 1,1-propanediyl group, 2 , 2-Propanediyl group is more preferable, and methylene group is more preferable.

以下、上記アルキレン化合物の製造方法の一態様を記載するが、製造方法はこれに限定されるものではない。 Hereinafter, one aspect of the method for producing the above-mentioned alkylene compound will be described, but the production method is not limited thereto.

本実施形態に係るアルキレン化合物は、例えば以下の工程I、工程II及び工程IIIを含む方法により得ることができる。なお、式(1−i)及び式(1−ii)中の複数のX同士及び複数のX同士は、それぞれ同じでも異なっていてもよい。The alkylene compound according to the present embodiment can be obtained, for example, by a method including the following steps I, II and III. Incidentally, the formula (1-i) and the formula (1-ii) a plurality of X 1 and between the plurality of X 2 each other in may be the same or different.

<工程I>
まず、J.Heterocyclic,Chem,30,17(1993)に記載の方法などにより、ビスアニリン類を1当量に対し、クロトンアルデヒドを2〜3当量加え、酸化剤存在下、強酸中において反応させ、後記する式(1−i)の化合物を合成する。
<Step I>
First, J. According to the method described in Heterocyclic, Chem, 30, 17 (1993) or the like, 2-3 equivalents of crotonaldehyde are added to 1 equivalent of bisanilins, and the mixture is reacted in a strong acid in the presence of an oxidizing agent, and the following formula (1) -I) Synthesize the compound.

Figure 2020045200
Figure 2020045200

式(1−i)中、X、X及びZは上述の通りである。In formula (1-i), X 1 , X 2 and Z are as described above.

ここで、強酸としては、塩酸、硫酸、硝酸などが挙げられる。酸化剤としては、ヨウ化ナトリウム、p−クロラニル、ニトロベンゼンなどが挙げられる。 Here, examples of the strong acid include hydrochloric acid, sulfuric acid, nitric acid and the like. Examples of the oxidizing agent include sodium iodide, p-chloranil, nitrobenzene and the like.

工程Iに関し、反応温度は、80℃〜100℃、好ましくは90℃〜100℃であってよく、反応時間は、1時間〜6時間、好ましくは3時間〜6時間であってよい。 With respect to step I, the reaction temperature may be 80 ° C. to 100 ° C., preferably 90 ° C. to 100 ° C., and the reaction time may be 1 hour to 6 hours, preferably 3 hours to 6 hours.

<工程II>
さらに、得られた式(1−i)の化合物と硝酸又は発煙硝酸を濃硫酸存在下において反応させることで、式(1−ii)の化合物を得ることができる。

Figure 2020045200
<Step II>
Further, the compound of the formula (1-ii) can be obtained by reacting the obtained compound of the formula (1-i) with nitric acid or fuming nitric acid in the presence of concentrated sulfuric acid.
Figure 2020045200

式(1−ii)中、X、X及びZは上述の通りである。In formula (1-ii), X 1 , X 2 and Z are as described above.

工程IIに関し、反応温度は、−20℃〜70℃、好ましくは0℃〜50℃であってよく、反応時間は、1時間〜4時間、好ましくは1時間〜3時間であってよい。 With respect to Step II, the reaction temperature may be −20 ° C. to 70 ° C., preferably 0 ° C. to 50 ° C., and the reaction time may be 1 hour to 4 hours, preferably 1 hour to 3 hours.

<工程III>
さらに、得られた式(1−ii)の化合物の還元によって、ニトロ基(−NO)をアミノ基(−NH)に変換することで、上記式(1)で表されるアルキレン化合物を得ることができる。
<Step III>
Further, by reducing the obtained compound of the formula (1-ii) to convert the nitro group (-NO 2 ) into the amino group (-NH 2 ), the alkylene compound represented by the above formula (1) can be obtained. Obtainable.

工程(III)では、例えば、式(1−ii)の化合物を還元鉄によって還元処理することで、式(1)で表されるアルキレン化合物を得ることができる。このとき、還元鉄の量は、式(1−ii)の化合物1当量に対して6〜8当量であってよく、反応温度は、60℃〜80℃、好ましくは70℃〜80℃であってよく、反応時間は、1時間〜3時間、好ましくは2時間〜3時間であってよい。 In the step (III), for example, the alkylene compound represented by the formula (1) can be obtained by reducing the compound of the formula (1-ii) with reduced iron. At this time, the amount of reduced iron may be 6 to 8 equivalents with respect to 1 equivalent of the compound of the formula (1-ii), and the reaction temperature is 60 ° C to 80 ° C, preferably 70 ° C to 80 ° C. The reaction time may be 1 hour to 3 hours, preferably 2 hours to 3 hours.

また、工程(III)では、式(1−ii)の化合物をパラジウム−炭素(Pd−C)、白金−炭素(Pt−C)、ラネーニッケル等の金属触媒を用いて還元処理することで、式(1)で表されるアルキレン化合物を得ることもできる。このとき、金属触媒の量は、例えば、金属量として式(1−ii)の化合物の0.4質量%〜5質量%であってよく、反応温度は、例えば30℃〜100℃であってよく、反応時間は、例えば1時間〜10時間であってよい。反応の水素源としては、水素ガス、ヒドラジン、ギ酸アンモニウム等が使用できる。 Further, in the step (III), the compound of the formula (1-ii) is reduced by using a metal catalyst such as palladium-carbon (Pd-C), platinum-carbon (Pt-C), Raney nickel or the like to carry out the reduction treatment. The alkylene compound represented by (1) can also be obtained. At this time, the amount of the metal catalyst may be, for example, 0.4% by mass to 5% by mass of the compound of the formula (1-ii) as the metal amount, and the reaction temperature may be, for example, 30 ° C. to 100 ° C. Well, the reaction time may be, for example, 1 hour to 10 hours. As the hydrogen source for the reaction, hydrogen gas, hydrazine, ammonium formate and the like can be used.

(キノフタロン化合物の製造方法)
本実施形態に係るキノフタロン化合物の製造方法は、下記式(1)で表されるアルキレン化合物と下記式(2)で表される酸無水物とを縮合させて、下記式(3)で表される第一のキノフタロン化合物及び下記式(4)で表される第二のキノフタロン化合物から群より選択される少なくとも一種を得る工程(以下、工程IVと称する。)を備えている。なお、式(3)及び式(4)中の複数のX同士、複数のX同士、複数のX同士及び複数のX同士は、それぞれ同じでも異なっていてもよい。

Figure 2020045200
Figure 2020045200
Figure 2020045200
Figure 2020045200
(Manufacturing method of quinophthalone compound)
The method for producing a quinophthalone compound according to the present embodiment is represented by the following formula (3) by condensing an alkylene compound represented by the following formula (1) and an acid anhydride represented by the following formula (2). The present invention comprises a step of obtaining at least one selected from the group from the first quinophthalone compound and the second quinophthalone compound represented by the following formula (4) (hereinafter, referred to as step IV). Incidentally, equations (3) and (4) a plurality of X 3 together, a plurality of X 4 each other, a plurality of X 5 and between the plurality of X 6 each other in may the same as or different from each other.
Figure 2020045200
Figure 2020045200
Figure 2020045200
Figure 2020045200

式(1)中、X、X及びZは上述の通りである。In formula (1), X 1 , X 2 and Z are as described above.

式(2)中、X、X、X及びXは各々独立に水素原子又はハロゲン原子を示す。式(2)中のハロゲン原子は、フッ素原子、塩素原子、臭素原子又はヨウ素原子であってよく、フッ素原子、塩素原子又は臭素原子であることが好ましく、塩素原子であることがより好ましい。In formula (2), X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom. The halogen atom in the formula (2) may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a chlorine atom.

式(2)で表される酸無水物では、X、X、X及びXのうち、少なくとも1つがハロゲン原子であることが好ましく、2つ以上がハロゲン原子であることがより好ましい。また、X及びXのうち少なくとも1つがハロゲン原子であることが好ましく、X及びXがいずれもハロゲン原子であることがより好ましい。X、X、X又はXにハロゲン原子が導入されることで、上記無水物を用いて製造されたキノフタロン化合物の分散性及び耐久性が一層向上し、上述の効果がより顕著に得られる傾向がある。In the acid anhydride represented by the formula (2), at least one of X 3 , X 4 , X 5 and X 6 is preferably a halogen atom, and more preferably two or more are halogen atoms. .. Further, it is preferable that at least one of X 4 and X 5 is a halogen atom, more preferably X 4 and X 5 are each a halogen atom. By introducing a halogen atom into X 3 , X 4 , X 5 or X 6 , the dispersibility and durability of the quinophthalone compound produced using the above-mentioned anhydride are further improved, and the above-mentioned effect becomes more remarkable. Tends to be obtained.

式(2)で表される酸無水物としては、例えば、無水フタル酸及びハロゲン置換フタル酸無水物が挙げられ、ハロゲン置換フタル酸無水物の具体例としては、テトラフルオロフタル酸無水物、テトラクロロフタル酸無水物、テトラブロモフタル酸無水物、4,5−ジクロロフタル酸無水物、4−クロロフタル酸無水物、4,5−ジブロモフタル酸無水物等が挙げられる。 Examples of the acid anhydride represented by the formula (2) include phthalic anhydride and halogen-substituted phthalic anhydride, and specific examples of the halogen-substituted phthalic anhydride include tetrafluorophthalic anhydride and tetra. Examples thereof include chlorophthalic anhydride, tetrabromophthalic anhydride, 4,5-dichlorophthalic anhydride, 4-chlorophthalic anhydride, 4,5-dibromophthalic anhydride and the like.

式(2)で表される酸無水物は、一種を単独で用いてよく、二種以上を組み合わせてもよい。式(2)で表される酸無水物を二種以上用いることで、複数のX同士、複数のX同士、複数のX同士及び複数のX同士がそれぞれ異なる上記キノフタロン化合物を得ることができる。As the acid anhydride represented by the formula (2), one kind may be used alone, or two or more kinds may be combined. By using an acid anhydride represented by the formula (2) two or more, to obtain a plurality of X 3 together, a plurality of X 4 each other, a plurality of X 5 and between the plurality of X 6 each other different said quinophthalone compound be able to.

式(3)及び式(4)中、X、X、X、X、X及びXは各々独立に水素原子又はハロゲン原子を示す。式(3)及び式(4)中のハロゲン原子は、フッ素原子、塩素原子、臭素原子又はヨウ素原子であってよく、フッ素原子、塩素原子又は臭素原子であることが好ましく、塩素原子であることがより好ましい。In formulas (3) and (4), X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom. The halogen atom in the formula (3) and the formula (4) may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom, a chlorine atom or a bromine atom, and is a chlorine atom. Is more preferable.

式(3)及び式(4)で表されるキノフタロン化合物では、X、X、X及びXのうち、少なくとも1つがハロゲン原子であることが好ましく、2つ以上がハロゲン原子であることがより好ましい。また、X及びXのうち少なくとも1つがハロゲン原子であることが好ましく、X及びXがいずれもハロゲン原子であることがより好ましい。X、X、X、X、X又はXにハロゲン原子が導入されることで、上記キノフタロン化合物の分散性及び耐久性が一層向上し、上述の効果がより顕著に得られる傾向がある。In the quinophthalone compounds represented by the formulas (3) and (4), at least one of X 3 , X 4 , X 5 and X 6 is preferably a halogen atom, and two or more are halogen atoms. Is more preferable. Further, it is preferable that at least one of X 4 and X 5 is a halogen atom, more preferably X 4 and X 5 are each a halogen atom. By introducing a halogen atom into X 1 , X 2 , X 3 , X 4 , X 5 or X 6 , the dispersibility and durability of the quinophthalone compound are further improved, and the above-mentioned effects can be obtained more remarkably. Tend.

なお、式(3)の構造には、下記式(3−i)及び式(3−ii)等の構造の互変異性体が存在するが、上記キノフタロン化合物は、これらのいずれの構造であってもよい。また、式(4)の構造にも、同様に複数の互変異性体が存在するが、上記キノフタロン化合物は、これらのいずれの構造であってもよい。

Figure 2020045200
The structure of the formula (3) includes tautomers having the following formulas (3-i) and formula (3-ii), and the quinophthalone compound has any of these structures. You may. Further, the structure of the formula (4) also has a plurality of tautomers, and the quinophthalone compound may have any of these structures.
Figure 2020045200

式(3−i)及び式(3−ii)中、X、X、X、X、X、X及びZは上述の通りである。In formula (3-i) and formula (3-ii), X 1 , X 2 , X 3 , X 4 , X 5 , X 6 and Z are as described above.

上記キノフタロン化合物の具体例を以下に挙げるが、上記キノフタロン化合物はこれらに限定されるものではない。 Specific examples of the quinophthalone compound are given below, but the quinophthalone compound is not limited thereto.

Figure 2020045200
Figure 2020045200

Figure 2020045200
Figure 2020045200

Figure 2020045200
Figure 2020045200

Figure 2020045200
Figure 2020045200

Figure 2020045200
Figure 2020045200

Figure 2020045200
Figure 2020045200

上記キノフタロン化合物は、キノリン環を中心とする複素環骨格の二量化により、選択的な吸収・透過を示す。また、上記キノフタロン化合物は、連結基であるアルキレン基をスペーサーとして複素環骨格を二量化しており、これにより共役が切断され、過剰な赤味化が抑制されている。更に、上記キノフタロン化合物は、イミド構造の導入により分散性が向上されている。これらのことから、上記キノフタロン化合物によれば、優れた輝度と着色力とを有する顔料が得られる。具体的には、例えば、上記キノフタロン化合物から構成される黄色顔料は、現在一般的に使用される黄色顔料(C.I.ピグメント イエロー150)より良好な輝度を有し、かつ、これを超える優れた着色力を有する。 The quinophthalone compound exhibits selective absorption and permeation by dimerizing the heterocyclic skeleton centered on the quinoline ring. In addition, the quinophthalone compound dimerizes the heterocyclic skeleton using an alkylene group as a linking group as a spacer, whereby the conjugation is cleaved and excessive redness is suppressed. Further, the dispersibility of the quinophthalone compound is improved by introducing an imide structure. From these facts, according to the above-mentioned quinophthalone compound, a pigment having excellent brightness and coloring power can be obtained. Specifically, for example, the yellow pigment composed of the above quinophthalone compound has better brightness than the commonly used yellow pigment (CI Pigment Yellow 150) at present, and is superior to this. Has coloring power.

工程IVは、例えば特開2013−61622号公報に記載の方法等により、式(1)で表されるアルキレン化合物1当量に対して、式(2)で表される酸無水物3〜6当量を酸触媒存在下に反応させて、式(1)で表されるアルキレン化合物と式(2)で表される酸無水物とを縮合させる工程であってよい。 In step IV, for example, by the method described in JP2013-61622A, 3 to 6 equivalents of the acid anhydride represented by the formula (2) with respect to 1 equivalent of the alkylene compound represented by the formula (1). May be a step of condensing the alkylene compound represented by the formula (1) and the acid anhydride represented by the formula (2) by reacting the compound in the presence of an acid catalyst.

縮合の反応温度は、180℃〜250℃、好ましくは200℃〜250℃であってよい。また、縮合の反応時間は、1時間〜8時間、好ましくは3時間〜8時間であってよい。 The reaction temperature of the condensation may be 180 ° C. to 250 ° C., preferably 200 ° C. to 250 ° C. The reaction time for condensation may be 1 hour to 8 hours, preferably 3 hours to 8 hours.

酸触媒としては、例えば、安息香酸、p−トルエンスルホン酸、塩化亜鉛、塩化鉄等のブレンステッド酸又はルイス酸が挙げられる。 Examples of the acid catalyst include Bronsted acids such as benzoic acid, p-toluenesulfonic acid, zinc chloride and iron chloride, or Lewis acids.

工程IVは、式(3)で表される第一のキノフタロン化合物又は式(4)で表される第二のキノフタロン化合物を得る工程であってよく、第一のキノフタロン化合物及び第二のキノフタロン化合物の混合物(キノフタロン混合物)を得る工程であってもよい。 Step IV may be a step of obtaining a first quinophthalone compound represented by the formula (3) or a second quinophthalone compound represented by the formula (4), and the first quinophthalone compound and the second quinophthalone compound may be obtained. May be a step of obtaining a mixture of (quinophthalone mixture).

本実施形態に係る製造方法によって得られたキノフタロン化合物(又は、キノフタロン混合物)は、顔料として優れた着色力を有する。上記キノフタロン化合物の顔料化は、公知慣用の方法で行えばよい。 The quinophthalone compound (or quinophthalone mixture) obtained by the production method according to the present embodiment has excellent coloring power as a pigment. The pigmentation of the quinophthalone compound may be carried out by a known and commonly used method.

上記キノフタロン化合物から構成された顔料(黄色顔料)は、例えば、ソルトミリング処理等により微細化されていてもよい。また、当該黄色顔料は、ロジン処理、界面活性剤処理、溶剤処理、樹脂処理等の方法で表面処理されていてもよい。 The pigment (yellow pigment) composed of the quinophthalone compound may be refined by, for example, a salt milling treatment or the like. Further, the yellow pigment may be surface-treated by a method such as rosin treatment, surfactant treatment, solvent treatment, or resin treatment.

(実施例A−1)
フラスコ中に4,4’−メチレンビス(2−クロロアニリン)5.00g(56.1mmol)、p−クロラニル27.6g(112mmol)、水150ml、濃塩酸150ml、n−ブタノール100mlを添加して95℃で30分間攪拌した。この混合物に、n−ブタノール12mlに溶解したクロトンアルデヒド11.8g(168mmol)を滴下して、さらに1時間攪拌した。温度を80℃に下げ、塩化亜鉛15.3g(112mmol)を少量ずつ加えた後、THF200mlを添加して80℃を保ったまま1時間攪拌した。室温まで放冷した後、減圧ろ過にて黄土色粉末を回収した。得られた黄土色粉末をTHF200mlで洗浄し、再び減圧ろ過にて黄土色粉末を回収した。さらに、得られた黄土色粉末をフラスコに移し、水200mlと28%アンモニア水40mlを加え、室温で2時間攪拌した。減圧ろ過にて粉末を回収し、20.3gの粗生成物を得た。得られた粗生成物をトルエンに溶解し不溶物をろ過により除いた後に再結晶して中間体(i)12.6gを得た。(収率:61%)

Figure 2020045200
H−NMR(CDCl)δppm:2.81(s,6H),4.24(s,2H),7.34(d,J=8.0Hz,2H),7.49(s,2H),7.67(s,2H),7.99(d,J=8.8Hz,2H)
13C−NMR(CDCl)δppm:25.8,41.1,123.2,126.2,127.8,130.9,133.1,136.3,137.6,143.1,160.0
FT−IR cm−1:3054,3030,2915,1603,1487,1206
FD−MS:366M+(Example A-1)
5.00 g (56.1 mmol) of 4,4'-methylenebis (2-chloroaniline), 27.6 g (112 mmol) of p-chloranil, 150 ml of water, 150 ml of concentrated hydrochloric acid, and 100 ml of n-butanol were added to the flask. The mixture was stirred at ° C. for 30 minutes. To this mixture was added dropwise 11.8 g (168 mmol) of crotonaldehyde dissolved in 12 ml of n-butanol, and the mixture was further stirred for 1 hour. The temperature was lowered to 80 ° C., 15.3 g (112 mmol) of zinc chloride was added little by little, 200 ml of THF was added, and the mixture was stirred for 1 hour while maintaining 80 ° C. After allowing to cool to room temperature, the ocher powder was recovered by vacuum filtration. The obtained ocher powder was washed with 200 ml of THF, and the ocher powder was recovered by vacuum filtration again. Further, the obtained ocher powder was transferred to a flask, 200 ml of water and 40 ml of 28% aqueous ammonia were added, and the mixture was stirred at room temperature for 2 hours. The powder was recovered by vacuum filtration to obtain 20.3 g of a crude product. The obtained crude product was dissolved in toluene, the insoluble material was removed by filtration, and then recrystallized to obtain 12.6 g of intermediate (i). (Yield: 61%)
Figure 2020045200
1 1 H-NMR (CDCl 3 ) δppm: 2.81 (s, 6H), 4.24 (s, 2H), 7.34 (d, J = 8.0Hz, 2H), 7.49 (s, 2H) ), 7.67 (s, 2H), 7.99 (d, J = 8.8Hz, 2H)
13 C-NMR (CDCl 3 ) δppm: 25.8, 41.1, 123.2, 126.2, 127.8, 130.9, 133.1, 136.3, 137.6, 143.1, 160.0
FT-IR cm -1 : 3054, 3030, 2915, 1603, 1487, 1206
FD-MS: 366M +

次いで、フラスコ中に中間体(i)4.15g(11.3mmol)と濃硫酸7.55mLを加え、45℃で20分間攪拌した。その後、発煙硝酸1.62mLを滴下し、温度を保持し1時間攪拌を続けた。放冷後、氷水250mLを系中にゆっくりと注いだ。さらに、10wt%水酸化ナトリウム水溶液を用いて、pHを8〜9に調整した。析出した粉末を減圧ろ過で回収し、蒸留水200mL、エタノール100mLで洗浄することで、中間体(ii)4.86g(10.6mmol)を得た(収率:94%)。

Figure 2020045200
H−NMR(CDCl)δppm:2.86(s,6H),4.27(s,2H),7.56(d,J=8.8Hz,2H),7.62(s,2H),8.08(d,J=8.8Hz,2H)
13C−NMR(CDCl)δppm:25.7,32.4,119.9,125.6,127.5,130.1,131.1,137.3,143.1,145.9,162.2
FT−IR cm−1:1604,1530,1487,1362
LC−MS:457[MH]+Next, 4.15 g (11.3 mmol) of intermediate (i) and 7.55 mL of concentrated sulfuric acid were added to the flask, and the mixture was stirred at 45 ° C. for 20 minutes. Then, 1.62 mL of fuming nitric acid was added dropwise, the temperature was maintained, and stirring was continued for 1 hour. After allowing to cool, 250 mL of ice water was slowly poured into the system. Further, the pH was adjusted to 8 to 9 using a 10 wt% sodium hydroxide aqueous solution. The precipitated powder was collected by vacuum filtration and washed with 200 mL of distilled water and 100 mL of ethanol to obtain 4.86 g (10.6 mmol) of the intermediate (ii) (yield: 94%).
Figure 2020045200
1 1 H-NMR (CDCl 3 ) δppm: 2.86 (s, 6H), 4.27 (s, 2H), 7.56 (d, J = 8.8Hz, 2H), 7.62 (s, 2H) ), 8.08 (d, J = 8.8Hz, 2H)
13 C-NMR (CDCl 3 ) δppm: 25.7, 32.4, 119.9, 125.6, 127.5, 130.1, 131.1, 137.3, 143.1, 145.9, 162.2
FT-IR cm -1 : 1604, 1530, 1487, 1362
LC-MS: 457 [MH] +

フラスコ中に還元鉄7.36g(132mmol)、酢酸125mlを加えて攪拌しながら60℃に加熱した。次いで中間体(ii)7.36g(16.1mmol)を数回に分けて添加し、60〜70℃で1時間攪拌した。反応液を35℃以下に冷却後、氷水500mlに注ぎ20%NaOH水でpH9に調整した。生成した沈殿物を濾過し水で洗浄した。得られた固体は70℃で送風乾燥後、N,N−ジメチルホルムアミド(DMF)200mlに加えて30℃で2時間攪拌し、不溶物を濾過して除いて得られた濾液を水1.2Lに滴下して室温で40分間攪拌した。生成した沈殿物を濾過し水で洗浄後、70℃で送風乾燥して目的のアルキレン化合物5.52g(13.9mmol)を得た。(収率86%)
H−NMR(CDCl)δppm:2.65(s,6H),3.97(s,2H),5.91(s,4H),7.32(s,2H),7.37(d,J=8.8Hz,2H),8.58(d,J=8.8Hz,2H)
13C−NMR(CDCl)δppm:24.8,31.3,116.2,117.1,117.4,120.4,131.3,131.7,141.5,142.6,158.3
FT−IR cm−1:3476,3373,1627,1605,1409,1359,1250
LC−MS:397[MH]+
分析の結果は得られた化合物が式(1−1)の構造であることを示した。

Figure 2020045200
7.36 g (132 mmol) of reduced iron and 125 ml of acetic acid were added to the flask and heated to 60 ° C. with stirring. Next, 7.36 g (16.1 mmol) of the intermediate (ii) was added in several portions, and the mixture was stirred at 60 to 70 ° C. for 1 hour. After cooling the reaction solution to 35 ° C. or lower, it was poured into 500 ml of ice water and adjusted to pH 9 with 20% NaOH water. The resulting precipitate was filtered and washed with water. The obtained solid is air-dried at 70 ° C., added to 200 ml of N, N-dimethylformamide (DMF), stirred at 30 ° C. for 2 hours, and the insoluble material is filtered off to remove the obtained filtrate with 1.2 L of water. And stirred at room temperature for 40 minutes. The resulting precipitate was filtered, washed with water, and air-dried at 70 ° C. to obtain 5.52 g (13.9 mmol) of the target alkylene compound. (Yield 86%)
1 1 H-NMR (CDCl 3 ) δppm: 2.65 (s, 6H), 3.97 (s, 2H), 5.91 (s, 4H), 7.32 (s, 2H), 7.37 ( d, J = 8.8Hz, 2H), 8.58 (d, J = 8.8Hz, 2H)
13 C-NMR (CDCl 3 ) δppm: 24.8, 31.3, 116.2, 117.1, 117.4, 120.4, 131.3, 131.7, 141.5, 142.6 158.3
FT-IR cm -1 : 3476, 3373, 1627, 1605, 1409, 1359, 1250
LC-MS: 397 [MH] +
The results of the analysis showed that the obtained compound had the structure of formula (1-1).
Figure 2020045200

(実施例A−2)
フラスコ中に濃硫酸55.0gを仕込み、氷冷下に攪拌しながら文献(Polymer,volume39,No.20(1998),p4949)記載の方法で得られる6,6’−メチレンジキナルジン7.00g(23.5mmol)を添加した。10℃以下を保ちながら60%硝酸6.1gを滴下し、10℃から20℃で1時間攪拌を続けた。反応液を氷水150mlに注ぎ、20wt%水酸化ナトリウム水溶液を用いてpH3に調整した。析出した粉末を減圧濾過で回収し、水で中性まで洗浄した。得られた固体を70℃で送風乾燥した後、粗生成物を熱酢酸エチル100ml、次いで熱トルエン60mlで洗浄濾過し、中間体(iii)6.52g(16.8mmol)を得た。(収率:72%)

Figure 2020045200
H−NMR(DMSO-d6)δppm:2.70(s,6H),4.42(s,2H),7.58(d,J=8.8Hz,2H),7.63(d,J=8.8Hz,2H),8.09(d,J=8.8Hz,2H),8.13(d,J=8.8Hz,2H)
13C−NMR(DMSO−d6)δppm:24.5,32.0,117.7,124.8,127.5,129.8,130.5,131.9,145.8,146.2,160.7
FT−IR(KBr disk)cm−1:3048,1602,1520,1494,1363
LC−MS:389[MH]+(Example A-2)
6. 6'-methylenediquinalgin obtained by the method described in the literature (Polymer, volume39, No. 20 (1998), p4949) while charging 55.0 g of concentrated sulfuric acid in a flask and stirring under ice-cooling. 00 g (23.5 mmol) was added. 6.1 g of 60% nitric acid was added dropwise while maintaining 10 ° C. or lower, and stirring was continued at 10 ° C. to 20 ° C. for 1 hour. The reaction solution was poured into 150 ml of ice water, and the pH was adjusted to 3 with a 20 wt% sodium hydroxide aqueous solution. The precipitated powder was collected by vacuum filtration and washed with water to neutrality. The obtained solid was air-dried at 70 ° C., and then the crude product was washed and filtered with 100 ml of hot ethyl acetate and then 60 ml of hot toluene to obtain 6.52 g (16.8 mmol) of the intermediate (iii). (Yield: 72%)
Figure 2020045200
1 1 H-NMR (DMSO-d6) δppm: 2.70 (s, 6H), 4.42 (s, 2H), 7.58 (d, J = 8.8Hz, 2H), 7.63 (d, J = 8.8Hz, 2H), 8.09 (d, J = 8.8Hz, 2H), 8.13 (d, J = 8.8Hz, 2H)
13 C-NMR (DMSO-d6) δppm: 24.5, 32.0, 117.7, 124.8, 127.5, 129.8, 130.5, 131.9, 145.8, 146.2 , 160.7
FT-IR (KBr disk) cm -1 : 3048, 1602, 1520, 1494, 1363
LC-MS: 389 [MH] +

フラスコ中に還元鉄5.30g、酢酸135mlを仕込み攪拌しながら50℃に加熱した。次いで中間体(iii)4.50g(11.6mmol)を70℃以下に保つように添加した。添加終了後60℃で1hr攪拌を続けた後、反応液を35℃以下に冷却し、氷水500mlに注ぎ、20%NaOH水でpH9に調製した。生成した沈殿をセライト上で減圧濾過した。固形物を回収し、70℃で送風乾燥後、ジメチルスルホキシド(DMSO)100mlとN,N−ジメチルホルムアミド(DMF)100mlの混合溶媒に加え、90℃で1hr攪拌した。混合物をセライト上で減圧濾過して不溶物を除き、得られた濾液を水1Lに攪拌しながら加えた。生成した沈殿物を減圧濾過で回収して水洗した後、70℃で送風乾燥して目的のアルキレン化合物3.80g(11.6mmol)を得た。(収率100%)
H−NMR(DMSO-d6)δppm:2.57(s,6H),3.95(s, 2H),5.66(s,4H),7.06(d,J=8.2Hz,2H),7.16(d,J=8.2Hz,2H),7.23(d,J=8.2Hz,2H),8.49(d,J=8.2Hz,2H)
13C−NMR(DMSO−d6)δppm:24.6,32.1,115.8,116.2,119.5,130.9,131.8,141.5,147.4,157.0
FT−IR(KBr disk)cm−1:3464,3363,3315,3192,1640,1591,1573,1415,1365,801
LC−MS:329[MH]+
分析の結果は得られた化合物が式(1−2)の構造であることを示した。

Figure 2020045200
5.30 g of reduced iron and 135 ml of acetic acid were placed in a flask and heated to 50 ° C. with stirring. Next, 4.50 g (11.6 mmol) of the intermediate (iii) was added so as to keep the temperature below 70 ° C. After completion of the addition, stirring was continued at 60 ° C. for 1 hr, the reaction solution was cooled to 35 ° C. or lower, poured into 500 ml of ice water, and adjusted to pH 9 with 20% NaOH water. The resulting precipitate was filtered under reduced pressure over Celite. The solid was collected, air-dried at 70 ° C., added to a mixed solvent of 100 ml of dimethyl sulfoxide (DMSO) and 100 ml of N, N-dimethylformamide (DMF), and stirred at 90 ° C. for 1 hr. The mixture was filtered under reduced pressure over Celite to remove insoluble material, and the obtained filtrate was added to 1 L of water with stirring. The produced precipitate was collected by vacuum filtration, washed with water, and then air-dried at 70 ° C. to obtain 3.80 g (11.6 mmol) of the target alkylene compound. (Yield 100%)
1 1 H-NMR (DMSO-d6) δppm: 2.57 (s, 6H), 3.95 (s, 2H), 5.66 (s, 4H), 7.06 (d, J = 8.2Hz, 2H), 7.16 (d, J = 8.2Hz, 2H), 7.23 (d, J = 8.2Hz, 2H), 8.49 (d, J = 8.2Hz, 2H)
13 C-NMR (DMSO-d6) δppm: 24.6, 32.1, 115.8, 116.2, 119.5, 130.9, 131.8, 141.5, 147.4, 157.0
FT-IR (KBr disk) cm -1 : 3464, 3363, 3315, 3192, 1640, 1591, 1573, 1415, 1365, 801
LC-MS: 329 [MH] +
The results of the analysis showed that the obtained compound had the structure of formula (1-2).
Figure 2020045200

(実施例A−3)
フラスコ中に窒素雰囲気下、中間体(iii)10.0g(25.8mmol)、10%Pd−C1.00g、エタノール50ml、テトラヒドロフラン(THF)100mlを添加して室温で攪拌した。次いでエタノール20ml、THF40mlの混合溶液に溶解したヒドラジン一水和物12.9g(257mmol)を滴下した。滴下終了後、60〜65℃で3hr攪拌した。反応混合物にN−メチルピロリドン(NMP)140mlを添加して析出物を溶解した後、濾過によりPd−Cを除去して得られた濾液を10%NaCl水1800gに注ぎ、室温で1hr攪拌した。生成した沈殿物を減圧濾過で回収して水洗した後、70℃で送風乾燥して目的のアルキレン化合物8.40g(25.6mmol)を得た。(収率99%)
H−NMR、13C−NMR、FT−IR、LC−MSの結果は実施例A−2と一致した。すなわち、分析の結果は得られた化合物が式(1−2)の構造であることを示した。

Figure 2020045200
(Example A-3)
Under a nitrogen atmosphere, 10.0 g (25.8 mmol) of the intermediate (iii), 10% Pd-C 1.00 g, 50 ml of ethanol, and 100 ml of tetrahydrofuran (THF) were added to the flask and stirred at room temperature. Then, 12.9 g (257 mmol) of hydrazine monohydrate dissolved in a mixed solution of 20 ml of ethanol and 40 ml of THF was added dropwise. After completion of the dropping, the mixture was stirred at 60 to 65 ° C. for 3 hr. 140 ml of N-methylpyrrolidone (NMP) was added to the reaction mixture to dissolve the precipitate, and then the filtrate obtained by removing Pd-C by filtration was poured into 1800 g of 10% NaCl water and stirred at room temperature for 1 hr. The produced precipitate was collected by vacuum filtration, washed with water, and then air-dried at 70 ° C. to obtain 8.40 g (25.6 mmol) of the target alkylene compound. (Yield 99%)
The results of 1 H-NMR, 13 C-NMR, FT-IR, and LC-MS were in agreement with Example A-2. That is, the result of the analysis showed that the obtained compound had the structure of the formula (1-2).
Figure 2020045200

(実施例B−1)
窒素雰囲気下、フラスコ中に安息香酸14.1g(116mmol)を量りとり、140℃にて溶融させた。そこに、実施例(A−1)で得たアルキレン化合物1.44g(3.62mmol)とテトラクロロフタル酸無水物5.53g(19.3mmol)を加え、220℃にて4時間攪拌した。放冷後、反応溶液にアセトン300mLを加え、1時間攪拌した後、減圧ろ過にて黄色粉末であるキノフタロン化合物B−1を4.41g(3.00mmol)得た(収率:83%)。
FT−IR cm−1:3449,1727,1622,1536,1410,1363,1308,1192,1112,737
FD−MS:1467M+
分析の結果は得られた化合物が式(3−1−i)の構造であることを示した。

Figure 2020045200
(Example B-1)
14.1 g (116 mmol) of benzoic acid was weighed in a flask under a nitrogen atmosphere and melted at 140 ° C. To this, 1.44 g (3.62 mmol) of the alkylene compound obtained in Example (A-1) and 5.53 g (19.3 mmol) of tetrachlorphthalic anhydride were added, and the mixture was stirred at 220 ° C. for 4 hours. After allowing to cool, 300 mL of acetone was added to the reaction solution, and the mixture was stirred for 1 hour, and then 4.41 g (3.00 mmol) of quinophthalone compound B-1 as a yellow powder was obtained by vacuum filtration (yield: 83%).
FT-IR cm -1 : 3449, 1727, 1622, 1536, 1410, 1363, 1308, 1192, 1112, 737
FD-MS: 1467M +
The results of the analysis showed that the obtained compound had a structure of formula (3-1-i).
Figure 2020045200

(実施例B−2)
窒素雰囲気下、フラスコ中に安息香酸135g(1.11mol)を量りとり、140℃にて溶融させた。そこに、実施例A−2で得たアルキレン化合物3.80g(11.6mmol)とテトラクロロフタル酸無水物18.0g(62.9mmol)、無水塩化亜鉛0.490g(3.60mmol)を加え、220℃にて6時間攪拌した。反応混合物を120℃に冷却後、クロロベンゼン300mLを加えて1時間攪拌し、減圧ろ過した。得られた固体をクロロベンゼン、アセトン、メタノールで順次洗浄し、黄色粉末であるキノフタロン化合物B−2を10.5g(7.5mmol)得た。(収率:65%)
FT−IR cm−1:1788,1729,1688,1638,1607,1537,1420,1310,732
FD−MS:1400M+
分析の結果は得られた化合物が式(3−2−i)の構造であることを示した。

Figure 2020045200
(Example B-2)
In a nitrogen atmosphere, 135 g (1.11 mol) of benzoic acid was weighed in a flask and melted at 140 ° C. To this, 3.80 g (11.6 mmol) of the alkylene compound obtained in Example A-2, 18.0 g (62.9 mmol) of tetrachlorphthalic anhydride, and 0.490 g (3.60 mmol) of anhydrous zinc chloride were added. , 220 ° C. for 6 hours. The reaction mixture was cooled to 120 ° C., 300 mL of chlorobenzene was added, the mixture was stirred for 1 hour, and the mixture was filtered under reduced pressure. The obtained solid was washed successively with chlorobenzene, acetone and methanol to obtain 10.5 g (7.5 mmol) of quinophthalone compound B-2 as a yellow powder. (Yield: 65%)
FT-IR cm- 1 : 1788, 1729, 1688, 1638, 1607, 1537, 1420, 1310, 732
FD-MS: 1400M +
The results of the analysis showed that the obtained compound had the structure of formula (3-2-i).
Figure 2020045200

(実施例C−1)
窒素雰囲気下、フラスコ中に安息香酸58.0g(475mmol)を量りとり、140℃にて溶融させた。そこに、実施例(A−1)で得たアルキレン化合物2.00g(5.03mmol)とテトラクロロフタル酸無水物5.04g(17.6mmol)を加え、220℃にて4時間攪拌した。放冷後、反応溶液にアセトン500mLを加え、1時間攪拌した後、減圧ろ過にて黄色粉末であるキノフタロン化合物C−1を6.00g得た。
MALDI−MSの結果、得られたC−1は上記式(3−1−i)の化合物と式(4−1−i)の化合物の混合物であることが分かった。

Figure 2020045200
(Example C-1)
Under a nitrogen atmosphere, 58.0 g (475 mmol) of benzoic acid was weighed in a flask and melted at 140 ° C. To this, 2.00 g (5.03 mmol) of the alkylene compound obtained in Example (A-1) and 5.04 g (17.6 mmol) of tetrachlorphthalic anhydride were added, and the mixture was stirred at 220 ° C. for 4 hours. After allowing to cool, 500 mL of acetone was added to the reaction solution, and after stirring for 1 hour, 6.00 g of quinophthalone compound C-1 as a yellow powder was obtained by vacuum filtration.
As a result of MALDI-MS, it was found that the obtained C-1 was a mixture of the compound of the above formula (3-1-i) and the compound of the above formula (4-1-i).
Figure 2020045200

(実施例C−2)
窒素雰囲気下、フラスコ中に安息香酸58.0g(475mmol)を量りとり、140℃にて溶融させた。そこに、実施例A−2で得たアルキレン化合物2.00g(6.09mmol)とテトラクロロフタル酸無水物6.09g(21.3mmol)、無水塩化亜鉛0.205g(1.50mmol)を加え、220℃にて6時間攪拌した。反応混合物を120℃に冷却後、クロロベンゼン500mLを加えて1時間攪拌し、減圧ろ過した。得られた固体をクロロベンゼン、アセトン、メタノールで順次洗浄し、黄色粉末であるキノフタロン化合物C−2を7.00g得た。
MALDI−MSの結果、得られたC−2は上記式(3−2−i)の化合物と式(4−2−i)の化合物の混合物であることが分かった。

Figure 2020045200
(Example C-2)
Under a nitrogen atmosphere, 58.0 g (475 mmol) of benzoic acid was weighed in a flask and melted at 140 ° C. To this, 2.00 g (6.09 mmol) of the alkylene compound obtained in Example A-2, 6.09 g (21.3 mmol) of tetrachlorphthalic anhydride, and 0.205 g (1.50 mmol) of anhydrous zinc chloride were added. , 220 ° C. for 6 hours. The reaction mixture was cooled to 120 ° C., 500 mL of chlorobenzene was added, the mixture was stirred for 1 hour, and the mixture was filtered under reduced pressure. The obtained solid was washed successively with chlorobenzene, acetone and methanol to obtain 7.00 g of quinophthalone compound C-2 as a yellow powder.
As a result of MALDI-MS, it was found that the obtained C-2 was a mixture of the compound of the above formula (3-2-i) and the compound of the above formula (4-2-i).
Figure 2020045200

(顔料化例1)
実施例B−1で得られた式(3−1−i)で表されるキノフタロン化合物0.500質量部を塩化ナトリウム1.50質量部、ジエチレングリコール0.750質量部とともに磨砕した。その後、この混合物を600質量部の温水に投じ、1時間攪拌した。水不溶分をろ過分離して温水でよく洗浄した後、90℃で送風乾燥して顔料化を行い、キノフタロン顔料を得た。得られた顔料粒子の平均アスペクト比は3.00未満であり、平均一次粒子径は100nm以下であった。
(Pigmentation example 1)
0.500 parts by mass of the quinophthalone compound represented by the formula (3-1-i) obtained in Example B-1 was ground together with 1.50 parts by mass of sodium chloride and 0.750 parts by mass of diethylene glycol. Then, this mixture was poured into 600 parts by mass of warm water and stirred for 1 hour. The water-insoluble matter was separated by filtration, washed well with warm water, and then air-dried at 90 ° C. for pigmentation to obtain a quinophthalone pigment. The average aspect ratio of the obtained pigment particles was less than 3.00, and the average primary particle diameter was 100 nm or less.

(顔料化例2)
実施例B−1で得られた式(3−1−i)で表されるキノフタロン化合物に代えて、実施例B−2で得られた式(3−2−i)で表されるキノフタロン化合物を用いた以外は、顔料化例1と同様の方法で顔料化を行い、キノフタロン顔料を得た。得られた顔料粒子の平均アスペクト比は3.00未満であり、平均一次粒子径は100nm以下であった。
(Pigmentation example 2)
Instead of the quinophthalone compound represented by the formula (3-1-i) obtained in Example B-1, the quinophthalone compound represented by the formula (3-2-i) obtained in Example B-2 Pigmentation was carried out in the same manner as in Pigmenting Example 1 except that the above was used to obtain a quinophthalone pigment. The average aspect ratio of the obtained pigment particles was less than 3.00, and the average primary particle diameter was 100 nm or less.

(実施例D−1)
顔料化例1で得たキノフタロン顔料0.660質量部をガラス瓶に入れ、特開2013−54200号公報に記載の方法で合成したスルホン酸系誘導体(5)0.040質量部、プロピレングリコールモノメチルエーテルアセテート12.60質量部、BYK LPN−21116(ビックケミー株式会社製)1.400質量部、0.3−0.4mmφセプルビーズ22.0質量部を加え、ペイントシェーカー(東洋精機株式会社製)で2時間半分散し、顔料分散体を得た。なお、式(5)中のスルホン酸基は、キノリン環上の水素原子のいずれかに置換していることを示す。

Figure 2020045200
(Example D-1)
0.660 parts by mass of the quinophthalone pigment obtained in Pigmenting Example 1 was placed in a glass bottle, and 0.040 parts by mass of a sulfonic acid derivative (5) synthesized by the method described in JP2013-54200A, propylene glycol monomethyl ether. Add 12.60 parts by mass of acetate, 1.400 parts by mass of BYK LPN-21116 (manufactured by Big Chemie Co., Ltd.), 22.0 parts by mass of 0.3-0.4 mmφ seple beads, and use a paint shaker (manufactured by Toyo Seiki Co., Ltd.) for 2 It was dispersed for half an hour to obtain a pigment dispersion. It is shown that the sulfonic acid group in the formula (5) is substituted with any of the hydrogen atoms on the quinoline ring.
Figure 2020045200

次いで、顔料分散体4.00質量部、アクリル樹脂溶液ユニディック(登録商標)ZL−295(DIC株式会社製)0.600質量部、プロピレングリコールモノメチルエーテルアセテート0.220質量部をガラス瓶に入れ、振とうさせることで黄色調色用組成物を作製した。 Next, 4.00 parts by mass of the pigment dispersion, 0.600 parts by mass of acrylic resin solution Unidic (registered trademark) ZL-295 (manufactured by DIC Corporation), and 0.220 parts by mass of propylene glycol monomethyl ether acetate were placed in a glass bottle. A composition for yellow toning was prepared by shaking.

(実施例D−2)
顔料化例1で得たキノフタロン顔料に代えて、顔料化例2で得たキノフタロン顔料を用いた以外は、実施例D−1と同様の方法で黄色調色用組成物を得た。
(Example D-2)
A composition for yellow toning was obtained in the same manner as in Example D-1 except that the quinophthalone pigment obtained in Pigmentization Example 2 was used instead of the quinophthalone pigment obtained in Pigmentization Example 1.

(比較例d−1)
C.I.ピグメント イエロー150(山陽色素社製)1.14質量部をポリ瓶に入れ、プロピレングリコールモノメチルエーテルアセテート12.0質量部、BYK LPN−21116(ビックケミー株式会社社製)2.84質量部、0.3−0.4mmφセプルビーズ38.0質量部を加え、ペイントコンディショナー(東洋精機株式会社製)で4時間分散し、顔料分散体を得た。さらに、得られた顔料分散体2.00質量部、アクリル樹脂溶液ユニディック(登録商標名)ZL−295(DIC株式会社製)0.490質量部、プロピレングリコールモノメチルエーテルアセテート0.110質量部をガラス瓶に入れ、振とうさせることで黄色調色用組成物を作製した。
(Comparative Example d-1)
C. I. Pigment Yellow 150 (manufactured by Sanyo Dye Co., Ltd.) 1.14 parts by mass in a poly bottle, propylene glycol monomethyl ether acetate 12.0 parts by mass, BYK LPN-21116 (manufactured by Big Chemie Co., Ltd.) 2.84 parts by mass, 0. 38.0 parts by mass of 3-0.4 mmφ Sepul beads was added and dispersed with a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) for 4 hours to obtain a pigment dispersion. Further, 2.00 parts by mass of the obtained pigment dispersion, 0.490 parts by mass of acrylic resin solution Unidic (registered brand name) ZL-295 (manufactured by DIC Corporation), and 0.110 parts by mass of propylene glycol monomethyl ether acetate were added. A composition for yellow toning was prepared by putting it in a glass bottle and shaking it.

(製造例1)
C.I.ピグメント グリーン59(DIC株式会社製)2.48質量部をガラス瓶に入れ、プロピレングリコールモノメチルエーテルアセテート10.9量部、BYK LPN−6919(ビックケミー株式会社製)1.24質量部、アクリル樹脂溶液ユニディック(登録商標)ZL−295(DIC株式会社製)1.86質量部、0.3−0.4mmφセプルビーズを加え、ペイントシェーカー(東洋精機株式会社製)で2時間分散し、顔料分散体を得た。さらに、得られた顔料分散体4.00質量部、アクリル樹脂溶液ユニディック(登録商標)ZL−295(DIC株式会社製)0.980質量部、プロピレングリコールモノメチルエーテルアセテート0.220質量部をガラス瓶に入れ、振とうさせることで緑色調色用組成物を作製した。
(Manufacturing Example 1)
C. I. Pigment Green 59 (manufactured by DIC Corporation) 2.48 parts by mass in a glass bottle, propylene glycol monomethyl ether acetate 10.9 parts by mass, BYK LPN-6919 (manufactured by Big Chemie Co., Ltd.) 1.24 parts by mass, acrylic resin solution Uni Dick (registered trademark) ZL-295 (manufactured by DIC Corporation) 1.86 parts by mass, 0.3-0.4 mmφ Sepul beads were added and dispersed with a paint shaker (manufactured by Toyo Seiki Co., Ltd.) for 2 hours to obtain a pigment dispersion. Obtained. Further, 4.00 parts by mass of the obtained pigment dispersion, 0.980 parts by mass of acrylic resin solution Unidic (registered trademark) ZL-295 (manufactured by DIC Corporation), and 0.220 parts by mass of propylene glycol monomethyl ether acetate are placed in a glass bottle. A composition for green toning was prepared by putting it in a container and shaking it.

(実施例E−1)
実施例D−1で得られた黄色調色用組成物と製造例1で得られた緑色調色用組成物とを、39:61の割合で混合して、緑色調色用組成物を得た。
(Example E-1)
The yellow toning composition obtained in Example D-1 and the green toning composition obtained in Production Example 1 are mixed at a ratio of 39:61 to obtain a green toning composition. It was.

(実施例E−2)
実施例D−2で得られた黄色調色用組成物と製造例1で得られた緑色調色用組成物とを、40:60の割合で混合して、緑色調色用組成物を得た。
(Example E-2)
The yellow toning composition obtained in Example D-2 and the green toning composition obtained in Production Example 1 are mixed at a ratio of 40:60 to obtain a green toning composition. It was.

(比較例e−1)
比較例d−1で得られた黄色調色用組成物と製造例1で得られた緑色調色用組成物とを、66:34の割合で混合して、緑色調色用組成物を得た。
(Comparative Example e-1)
The yellow toning composition obtained in Comparative Example d-1 and the green toning composition obtained in Production Example 1 are mixed at a ratio of 66:34 to obtain a green toning composition. It was.

実施例E−1及び実施例E−2並びに比較例e−1で得られた緑色調色用組成物から形成されるカラーフィルタの特性を、以下の方法で測定した。結果を表1に示す。 The characteristics of the color filter formed from the green toning compositions obtained in Example E-1 and Example E-2 and Comparative Example e-1 were measured by the following methods. The results are shown in Table 1.

<カラーフィルタ特性試験>
実施例及び比較例で得られた緑色調色用組成物をそれぞれスピンコーターによりガラス基板上に塗布した後、乾燥させ、230℃で1時間加熱して、C光源を用いた場合ときに所定の緑色色度を示す評価用サンプルを得た。なお、評価用サンプルの色度は分光光度計(株式会社日立ハイテクサイエンス製 U3900/3900H形)によって求められる値であり、緑色色度としては特開2015−191208号公報で使用されている(0.224,0.669)を用いた。得られた評価用サンプルにおける輝度Yを、分光光度計(株式会社日立ハイテクサイエンス製 U3900/3900H形)によって測定した。また、得られた評価用サンプルについて、ガラス基板上に形成された着色膜の厚さを、膜厚計(株式会社日立ハイテクサイエンス製 VS1330 走査型白色干渉顕微鏡)によって測定した。なお、膜厚が薄いほど高着色力であるといえる。結果を表1に示す。
<Color filter characteristic test>
The green toning compositions obtained in Examples and Comparative Examples were each applied on a glass substrate by a spin coater, dried, heated at 230 ° C. for 1 hour, and predetermined when a C light source was used. An evaluation sample showing green chromaticity was obtained. The chromaticity of the evaluation sample is a value obtained by a spectrophotometer (U3900 / 3900H type manufactured by Hitachi High-Tech Science Corporation), and the green chromaticity is used in Japanese Patent Application Laid-Open No. 2015-191208 (0). .224,0.669) was used. The brightness Y of the obtained evaluation sample was measured by a spectrophotometer (U3900 / 3900H type manufactured by Hitachi High-Tech Science Corporation). Further, with respect to the obtained evaluation sample, the thickness of the colored film formed on the glass substrate was measured by a film thickness meter (VS1330 scanning white interference microscope manufactured by Hitachi High-Tech Science Corporation). It can be said that the thinner the film thickness, the higher the coloring power. The results are shown in Table 1.

Figure 2020045200
Figure 2020045200

本発明に係るキナルジン化合物は、顔料として優れた着色力を有するキノフタロン化合物を製造するための原料化合物として有用である。 The quinaldine compound according to the present invention is useful as a raw material compound for producing a quinophthalone compound having excellent coloring power as a pigment.

Claims (6)

下記式(1)で表されるアルキレン化合物。
Figure 2020045200
[式(1)中、X及びXは各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1〜3のアルキレン基を示す。]
An alkylene compound represented by the following formula (1).
Figure 2020045200
[In the formula (1), X 1 and X 2 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]
前記Zがメチレン基である、請求項1に記載のアルキレン化合物。 The alkylene compound according to claim 1, wherein Z is a methylene group. 下記式(1)で表されるアルキレン化合物と下記式(2)で表される酸無水物とを縮合させて、下記式(3)で表される第一のキノフタロン化合物及び下記式(4)で表される第二のキノフタロン化合物から群より選択される少なくとも一種を得る工程を備える、キノフタロン化合物の製造方法。
Figure 2020045200
[式(1)中、X及びXは各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1〜3のアルキレン基を示す。]
Figure 2020045200
[式(2)中、X、X、X及びXは各々独立に水素原子又はハロゲン原子を示す。]
Figure 2020045200
[式(3)中、X、X、X、X、X及びXは各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1〜3のアルキレン基を示す。]
Figure 2020045200
[式(4)中、X、X、X、X、X及びXは各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1〜3のアルキレン基を示す。]
The alkylene compound represented by the following formula (1) and the acid anhydride represented by the following formula (2) are condensed to form the first quinophthalone compound represented by the following formula (3) and the following formula (4). A method for producing a quinophthalone compound, comprising a step of obtaining at least one selected from the group from the second quinophthalone compound represented by.
Figure 2020045200
[In the formula (1), X 1 and X 2 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]
Figure 2020045200
[In formula (2), X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom. ]
Figure 2020045200
[In formula (3), X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]
Figure 2020045200
[In formula (4), X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]
前記アルキレン化合物と前記酸無水物とを酸触媒の存在下で縮合させる、請求項3に記載の製造方法。 The production method according to claim 3, wherein the alkylene compound and the acid anhydride are condensed in the presence of an acid catalyst. 下記式(4)で表されるキノフタロン化合物。
Figure 2020045200
[式(4)中、X、X、X、X、X及びXは各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1〜3のアルキレン基を示す。]
A quinophthalone compound represented by the following formula (4).
Figure 2020045200
[In formula (4), X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]
下記式(3)で表される第一のキノフタロン化合物と下記式(4)で表される第二のキノフタロン化合物とを含有する、キノフタロン混合物。
Figure 2020045200
[式(3)中、X、X、X、X、X及びXは各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1〜3のアルキレン基を示す。]
Figure 2020045200
[式(4)中、X、X、X、X、X及びXは各々独立に水素原子又はハロゲン原子を示し、Zは炭素数1〜3のアルキレン基を示す。]
A quinophthalone mixture containing a first quinophthalone compound represented by the following formula (3) and a second quinophthalone compound represented by the following formula (4).
Figure 2020045200
[In formula (3), X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]
Figure 2020045200
[In formula (4), X 1 , X 2 , X 3 , X 4 , X 5 and X 6 each independently represent a hydrogen atom or a halogen atom, and Z represents an alkylene group having 1 to 3 carbon atoms. ]
JP2019569845A 2018-08-31 2019-08-21 Alkylene compounds, quinophthalone compounds and quinophthalone mixtures Active JP6677365B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018163802 2018-08-31
JP2018163802 2018-08-31
PCT/JP2019/032705 WO2020045200A1 (en) 2018-08-31 2019-08-21 Alkylene compound, quinophthalone compound, and quinophthalone mixture

Publications (2)

Publication Number Publication Date
JP6677365B1 JP6677365B1 (en) 2020-04-08
JPWO2020045200A1 true JPWO2020045200A1 (en) 2020-09-03

Family

ID=69644528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019569845A Active JP6677365B1 (en) 2018-08-31 2019-08-21 Alkylene compounds, quinophthalone compounds and quinophthalone mixtures

Country Status (3)

Country Link
JP (1) JP6677365B1 (en)
CN (1) CN112638882A (en)
WO (1) WO2020045200A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4266094A4 (en) 2020-12-16 2024-08-28 Fujifilm Corp Composition, membrane, optical filter, solid image pickup element, image display apparatus, and infrared ray sensor
EP4266093A4 (en) 2020-12-17 2024-08-28 Fujifilm Corp Composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832765B1 (en) * 1970-12-29 1973-10-09
JP2001335711A (en) * 2000-05-29 2001-12-04 Fuji Photo Film Co Ltd Quinophthalone compound, pigment dispersant containing the same, pigment dispersion composition, and colored photosensitive composition
JP4398753B2 (en) * 2004-02-23 2010-01-13 東洋インキ製造株式会社 Coloring composition for color filter and color filter
ES2633795T3 (en) * 2011-10-24 2017-09-25 Keki Hormusji Gharda A bis-quinoftalone pigment and a process to prepare it
WO2013098837A2 (en) * 2011-10-24 2013-07-04 Keki Hormusji Gharda A bis-quinaldine compound and a process for preparing the same
JP6463624B2 (en) * 2014-12-08 2019-02-06 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Compound
JP6891442B2 (en) * 2016-10-13 2021-06-18 Dic株式会社 New quinophthalone compound
JP6501050B2 (en) * 2017-03-01 2019-04-17 Dic株式会社 Quinophthalone compound

Also Published As

Publication number Publication date
WO2020045200A1 (en) 2020-03-05
JP6677365B1 (en) 2020-04-08
CN112638882A (en) 2021-04-09

Similar Documents

Publication Publication Date Title
TWI741152B (en) Quinoline Yellow Compound
JP6677365B1 (en) Alkylene compounds, quinophthalone compounds and quinophthalone mixtures
JP6705571B1 (en) Pigment composition, coloring composition and color filter
US8809427B2 (en) Phthalocyanine compound and production method therefor, and coloring composition containing the phthalocyanine compound
JP2020033523A (en) Pigment composition, coloring composition, and color filter
US4785091A (en) Process for producing copper phthalocyanine pigment
JPH10204076A (en) Production of perylene-3,4-dicarboxylic anhydride
JP2020033521A (en) Pigment composition, coloring composition, and color filter
JP2020033522A (en) Pigment composition, coloring composition, and color filter
JP6992931B2 (en) Kinoftalone compounds, pigment compositions and color filters
JP6607427B1 (en) Quinophthalone compounds
JP2007016203A (en) Phthalocyanine compound, process for producing the same and colored composition containing the phthalocyanine compound
JPH09137075A (en) Pigment dispersant and pigment composition using the same
KR101737001B1 (en) Diketopyrrolopyrrole derivatives, diketopyrrolopyrrole derivatives dye and method thereof
TWI812745B (en) quinophthalone compounds
JP3000110B2 (en) Tetrahydroquinacridine derivative and method for producing the same
US20080234480A1 (en) Triphendioxazine Pigments
JPH1017783A (en) Organic pigment
JP2016089109A (en) Naphthodipyrrolinone colorant

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191216

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R151 Written notification of patent or utility model registration

Ref document number: 6677365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250