WO2020045156A1 - Polyester composition - Google Patents

Polyester composition Download PDF

Info

Publication number
WO2020045156A1
WO2020045156A1 PCT/JP2019/032366 JP2019032366W WO2020045156A1 WO 2020045156 A1 WO2020045156 A1 WO 2020045156A1 JP 2019032366 W JP2019032366 W JP 2019032366W WO 2020045156 A1 WO2020045156 A1 WO 2020045156A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester composition
composition
polyester
polyolefin
fiber
Prior art date
Application number
PCT/JP2019/032366
Other languages
French (fr)
Japanese (ja)
Inventor
拓郎 大久保
田中 陽一郎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2019565588A priority Critical patent/JP7459510B2/en
Priority to CN201980051978.1A priority patent/CN112543790B/en
Publication of WO2020045156A1 publication Critical patent/WO2020045156A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a polyester composition having excellent long-term continuous spinnability and excellent polymer dischargeability during repeated polymerization.
  • Polyethylene fibers and polypropylene fibers which are one type of polyolefin fibers, have a light weight and chemical resistance, but have a drawback that they are difficult to dye because they have no polar functional groups. Therefore, it is not suitable for clothing use, and at present it is limited to interior uses such as tile carpets, household rugs, car mats, and other material uses such as ropes, curing nets, filter cloths, narrow tapes, braids, and upholstery. Used in certain applications.
  • Patent Document 1 discloses a polyester obtained by copolymerizing cyclohexanedimethanol
  • Patent Document 2 discloses a dyeable amorphous polymer obtained by blending a polyester obtained by copolymerizing isophthalic acid and cyclohexanedimethanol with polyolefin as a dyeable amorphous polymer.
  • Polyolefin fibers have been proposed.
  • Patent Document 3 proposes a dyeable polyolefin fiber using a copolymerized polyester obtained by copolymerizing cyclohexanedicarboxylic acid as a dyeable polymer. This document describes that by controlling the dispersion diameter of the copolymerized polyester blended with the polyolefin to a specific range, a dyeable polyolefin fiber exhibiting higher color developability can be obtained.
  • Patent Document 3 Although the method described in Patent Document 3 is excellent in that the coloring property is improved, the pack pressure increases when spinning is continuously performed for a long time, and it is necessary to change the pack during the spinning. Therefore, there was a problem that productivity was insufficient.
  • An object of the present invention is to provide a polyester composition to be blended with a polyolefin, which can solve the above-mentioned problems of the prior art and can obtain a dyeable polyolefin composition having excellent coloring properties and excellent long-term continuous spinnability. Is to do.
  • the polyester composition when the polyester composition is repeatedly polycondensed two or more times using the same polycondensation apparatus, the oxidatively degraded polyester composition adhering to the vicinity of the discharge port of the polycondensation apparatus is mixed into the discharged polyester composition, This causes an increase in pack pressure during long-term continuous spinning.
  • a copolymerized polyester obtained by copolymerizing ethylene glycol with a dicarboxylic acid component containing terephthalic acid and / or an ester-forming derivative thereof, cyclohexanedicarboxylic acid and / or an ester-forming derivative thereof, and the following (I) A polyester composition characterized by satisfying the following.
  • the polyester composition contains 1 to 35 mmol / kg of a phenol residue.
  • the polyolefin composition blended with the polyester composition of the present invention can provide a dyeable polyolefin fiber with high productivity while suppressing an increase in pack pressure during long-term spinning.
  • the polyester composition of the present invention is a polyester composition containing terephthalic acid and / or an ester-forming derivative thereof, cyclohexanedicarboxylic acid and / or an ester-forming derivative thereof, and ethylene glycol as main raw materials.
  • examples of terephthalic acid and / or its ester-forming derivative include terephthalic acid, dimethyl terephthalate and diethyl terephthalate, and any one of these may be used alone, or two or more thereof may be used. You may use together.
  • examples of the cyclohexanedicarboxylic acid include 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and ester-forming derivatives of cyclohexanedicarboxylic acid such as 1,2 cyclohexanedicarboxylic acid.
  • 1,4-cyclohexanedicarboxylic acid can be suitably employed from the viewpoint of heat resistance and mechanical properties.
  • the polyester composition of the present invention contains a phenol residue in an amount of 1 mmol / kg or more and 35 mmol / kg or less.
  • the polyester composition contains 1 mmol / kg or more of phenol residues
  • an oxidized product of the polyester composition is generated near the discharge port of the polycondensation apparatus. This makes it possible to suppress the increase in pack pressure during long-term continuous spinning of the dyeable polyolefin fiber and the occurrence of thick discharge at the time of polycondensation discharge of the polyester composition.
  • the phenol residue is more preferably at least 3 mmol / kg, particularly preferably at least 5 mmol / kg. Further, by setting the phenol residue to 35 mmol / kg or less, it is possible to suppress gelation generated when an excessive amount of a phenolic antioxidant is added. It is possible to suppress the rise in pressure and the occurrence of thick discharge at the time of discharging polycondensation of the polyester composition.
  • the phenol residue content is more preferably 30 mmol / kg or less, particularly preferably 25 mmol / kg or less. The measurement of the phenol residue will be described in Examples described later.
  • the majority of the phenol residues contained in the polyester composition of the present invention are derived from phenolic antioxidants added during the polycondensation reaction of the polyester composition.
  • the amount of phenol residues excluding those derived from phenolic antioxidants is extremely small.
  • the phenolic antioxidant in the present invention is a radical chain reaction inhibitor having a phenol structure, and may be used alone or in combination of two or more.
  • pentaerythritol-tetrakis (3- (3,5-di-t-butyl-4-hydroxyphenol) propionate) (for example, Irganox 1010 manufactured by BASF), 2,4,6-tris (3 ′, 5′-) Di-t-butyl-4'-hydroxybenzyl) mesitylene (for example, Adekastab AO-330 manufactured by ADEKA), 3,9-bis [1,1-dimethyl-2- [ ⁇ - (3-t-butyl-4- Hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxaspiro [5,5] -undecane (eg, Sumitomo Chemical Sumilizer GA-80, ADEKA Adekastab AO-80
  • Cyanox 1790 has a high oxidative decomposition inhibiting effect, it can be suitably employed.
  • pentaerythritol-tetrakis (3- (3,5-di-t-butyl-4-hydroxyphenol) propionate) eg, Irganox 1010 manufactured by BASF
  • 3,9-bis [1,1-dimethyl-2- [ ⁇ - (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxaspiro [5,5] -undecane for example, Sumiremo Chemical Sumilizer GA-80 and ADK STAB AO-80 manufactured by ADEKA are less likely to be scattered even at the polycondensation temperature of the polyester composition and can be used particularly preferably.
  • the polyester composition of the present invention can suppress an increase in pack pressure during long-term continuous spinning of dyeable polyolefin fibers by setting the filtration pressure difference ⁇ P to 2.0 MPa or less.
  • ⁇ P is more preferably 1.8 MPa or less, and particularly preferably 1.6 MPa or less.
  • the filtration pressure difference ⁇ P is such that a polyester composition dried to a water content of less than 500 ppm is passed through a polyester composition temperature of 240 ° C., a discharge rate of 10 g / min, and a filter area of 24.5 ⁇ with a filter opening of 5 ⁇ m sintered fiber filter for 4 hours.
  • the difference between the filtration pressure after 4 hours and the filtration pressure after 1 hour (the filtration pressure after 4 hours-1 the filtration pressure after 1 hour) when flowing.
  • the polyester composition is prepared before the polycondensation reaction starts. Dispersion of the phenolic antioxidant in the polyester composition before the start of the discharge may be mentioned.
  • a method of dispersing the phenolic antioxidant in the polyester composition before the start of the discharge a method of adding a phenolic antioxidant in an optional process shown in a method for producing a polyester composition described later is exemplified. Among them, it is preferable to add the phenolic antioxidant before the start of the polycondensation reaction of the low polymer of the polyester composition from the viewpoint of improving the dispersibility of the phenolic antioxidant and increasing the efficiency of the antioxidant ability.
  • the polyester composition of the present invention preferably has a heat of fusion ( ⁇ Hm) of 0.1 J / g or more and 30 J / g or less.
  • ⁇ Hm heat of fusion
  • ⁇ Hm is more preferably 1 J / g or more, and particularly preferably 5 J / g or more.
  • the refractive index of the polyester composition decreases and approaches the refractive index of the polyolefin, so that the color developability of the fiber using the dyeable polyolefin composition can be improved.
  • the dye absorption rate is high, and the color developability is good. Therefore, it is more preferably 29 J / g or less, and particularly preferably 27 J / g or less.
  • the ⁇ Hm of the polyester composition can be measured by the following method.
  • the composition pellets are vacuum dried in a vacuum oven at 130 ° C. for 12 hours.
  • Approximately 5 mg of the polymer after vacuum drying was weighed, and the temperature was raised from 0 ° C. to 280 ° C. at a rate of 16 ° C./min, using a differential scanning calorimeter (DSC) model Q2000 manufactured by TA Instruments. Perform the DSC measurement with a program that holds for 5 minutes.
  • the heat of fusion ( ⁇ Hm) is calculated from the melting peak observed during the heating process. When a plurality of melting peaks are observed, the sum of continuous heats of fusion including the top of the highest melting peak is defined as ⁇ Hm.
  • the method for adjusting the ⁇ Hm of the polyester composition of the present invention to the above range is not particularly limited.
  • the blending amount of cyclohexanedicarboxylic acid is 35 parts by weight or more and 90 parts by weight with respect to 100 parts by weight of terephthalic acid as a raw material.
  • the following adjustment methods are available.
  • the polyester composition of the present invention preferably has an intrinsic viscosity (IV) of 0.60 or more and 0.70 or less.
  • IV intrinsic viscosity
  • the amount of the polyester composition deposited can be reduced.
  • IV is more preferably 0.61 or more, and particularly preferably 0.62 or more.
  • the IV is preferably 0.69 or less, particularly preferably 0.68 or less.
  • the polyester composition of the present invention is usually produced by any one of the following processes (1) to (3). That is, (1) a process of using a terephthalic acid, cyclohexanedicarboxylic acid and ethylene glycol as raw materials to obtain a low polymer by a direct esterification reaction and further obtain a high molecular weight polyester composition by a subsequent polycondensation reaction.
  • a low-polymer polyethylene terephthalate is obtained by a transesterification reaction.
  • terephthalic acid, cyclohexanedicarboxylic acid, and ethylene glycol are added, a low polymer is obtained by an esterification reaction, and a high molecular weight polyester composition is obtained by a subsequent polycondensation reaction.
  • the reaction temperature is preferably 250 ° C. or less and the pressure is preferably 1.2 ⁇ 100,000 Pa or more in order to suppress the by-product of diethylene glycol.
  • the lower the reaction temperature is 290 ° C. and the lower the pressure, the shorter the polymerization time, which is preferable.
  • the reaction temperature is preferably 230 ° C. or less, and the pressure is preferably atmospheric pressure or more.
  • the pressure is preferably atmospheric pressure or more.
  • the esterification reaction proceeds without a catalyst, but the transesterification reaction uses a compound such as magnesium, manganese, calcium, cobalt, lithium, or titanium as a catalyst. You may.
  • a titanium compound, an aluminum compound, a tin compound, an antimony compound, a germanium compound and the like are used. These metal compounds may be hydrates.
  • magnesium compound used in this case examples include magnesium oxide, magnesium hydroxide, magnesium alkoxide, magnesium acetate, magnesium carbonate and the like.
  • manganese compound examples include manganese chloride, manganese bromide, manganese nitrate, manganese carbonate, manganese acetylacetonate, and manganese acetate.
  • the calcium compound examples include calcium oxide, calcium hydroxide, calcium alkoxide, calcium acetate, calcium carbonate and the like.
  • cobalt compound examples include cobalt chloride, cobalt nitrate, cobalt carbonate, cobalt acetylacetonate, cobalt naphthenate, and cobalt acetate.
  • lithium compound examples include lithium oxide, lithium hydroxide, lithium alkoxide, lithium acetate, lithium carbonate and the like.
  • titanium compound examples include titanium complexes, titanium alkoxides such as tetra-i-propyl titanate, tetra-n-butyl titanate and tetra-n-butyl titanate tetramer, titanium oxides obtained by hydrolysis of titanium alkoxides, titanium acetylacetonate And the like.
  • a titanium complex using a polycarboxylic acid and / or a hydroxycarboxylic acid and / or a polyhydric alcohol as a chelating agent is preferable from the viewpoint of the thermal stability of the polymer, the color tone, and the amount of deposits around the base.
  • the chelating agent for the titanium compound include lactic acid, citric acid, mannitol, and tripentaerythritol.
  • Examples of the aluminum compound include aluminum carboxylate, aluminum alkoxide, aluminum chelate compound, and basic aluminum compound. Specific examples include aluminum acetate, aluminum hydroxide, aluminum carbonate, aluminum ethoxide, aluminum isopropoxide, and aluminum acetyl. Examples include acetonate and basic aluminum acetate.
  • Tin compounds include monobutyltin oxide, tin acetate, tin octylate, tin alkoxide and the like.
  • Antimony compounds include antimony alkoxide, antimony glycolate and antimony trioxide.
  • germanium compound examples include germanium alkoxide and germanium oxide.
  • the polyester composition of the present invention preferably contains a phosphorus compound as a stabilizer.
  • a phosphorus compound as a stabilizer.
  • phosphoric acid, trimethyl phosphate, ethyl diethylphosphonoacetate and the like are preferable, and 3,9-bis (2,6-di-t-butyl-4-methylphenoxy) -2,4,8,10- 3 such as tetraoxa-3,9-diphosphaspiro [5,5] undecane (PEP-36: manufactured by Asahi Denka) or tris (2,4-di-tert-butylphenyl) phosphite (IRGAFOS168: manufactured by BASF) Phosphorus compounds are more preferred from the viewpoint of improving color tone and heat resistance.
  • an antioxidant an ultraviolet absorber, a flame retardant, a fluorescent whitening agent, a matting agent, a plasticizer or an antifoaming agent or other additives may be added as required.
  • the polyester composition of the present invention can be produced by batch polymerization or semi-continuous polymerization.
  • the dyeable polyolefin composition obtained by blending the polyester composition of the present invention is a polymer alloy composition having a sea-island structure in which the polyolefin is a sea component and the polyester composition is an island component.
  • the polyester composition of the present invention in a polyolefin as a dyeable polymer in an island, it is possible to impart color development to the polyolefin.
  • the polymer capable of dyeing the island component is exposed on the surface in the polymer alloy composition.
  • the above-mentioned polymer alloy composition means that the island component is present in a discontinuously dispersed state.
  • the island component is discontinuous, for example, in the case of a fiber made of a polymer alloy composition, the island component has an appropriate length in the fiber axis direction, and a cross section perpendicular to the fiber axis, that is, the fiber The shape of the sea-island structure in the cross section is different.
  • the island components are discontinuously dispersed, since the island components are spindle-shaped, the coloring efficiency by the light transmitted to the island components is improved, the sharpness is improved, and deep coloring is obtained.
  • fibers made of the polymer alloy composition blended with the polyester composition of the present invention include core-sheath conjugate fibers in which one island is formed continuously and in the same shape in the fiber axis direction, and a plurality of islands are formed in the fiber axis direction. It is essentially different from sea-island composite fibers formed continuously and in the same shape.
  • a polymer alloy composition can be obtained, for example, by melt-kneading a polyolefin, the polyester composition of the present invention and a compatibilizer.
  • the raw materials used are as follows. 1.
  • Dimethyl terephthalate manufactured by SK Chemical Company
  • Terephthalic acid High-purity terephthalic acid manufactured by Mitsui Chemicals, Inc.
  • 1,4-cyclohexanedicarboxylic acid manufactured by Shin Nippon Rika Co., Ltd.
  • Ethylene glycol manufactured by Mitsubishi Chemical Corporation 5.
  • IRGANOX1010 manufactured by BASF 6.
  • ADK STAB PEP-8 manufactured by ADEKA Sumilizer TP-D: manufactured by Sumitomo Chemical Co., Ltd.
  • the physical properties in the examples were measured by the methods described below.
  • Phenol residue content 0.01 g of the polyester composition was decomposed at 4O 0 C with 4 mL of 10% methanolic hydrochloric acid. After cooling, 1 mL of methanolic hydrochloric acid was added, and the precipitate was filtered. The filtrate was measured by high performance liquid chromatography (LC-20A, manufactured by Shimadzu Corporation), and the content of phenol residues contained in the polyester compositions of the following Examples and Comparative Examples was calculated.
  • LC-20A high performance liquid chromatography
  • the standard solution for high performance liquid chromatography is IRGANOX1010, methyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate and 3- (3,5-di-tert-butyl-4-hydroxy-4-hydroxyphenyl).
  • (Phenyl) propionic acid was prepared by dissolving each in a chloroform / acetonitrile solvent to prepare a calibration curve.
  • the measurement conditions are as follows. Column bath: 50 ° C Eluent: A. 0.1 vol% formic acid aqueous solution; Acetonitrile program: 0.0 minutes ⁇ 10.0 minutes B25% ⁇ 100% 10.0 minutes ⁇ 20 minutes B100% Flow rate: 0.8 mL / min Sample injection volume: 20 ⁇ l Detection wavelength: 260-280 nm.
  • Intrinsic viscosity The obtained polyester composition was dissolved in an o-chlorophenol solvent to prepare solutions having concentrations of 0.5 g / dL, 0.2 g / dL, and 0.1 g / dL. Thereafter, the relative viscosity ( ⁇ r) at 25 ° C. of the obtained solution having the concentration C was measured by an Ubbelohde viscometer, and ( ⁇ r-1) / C was plotted against C. The intrinsic viscosity was determined by extrapolating the obtained results to a concentration of 0.
  • IV intrinsic viscosity
  • FIG. Filtration pressure difference ⁇ P The filtration pressure difference ⁇ P was measured using a Fuji Melt Spinning Tester (MST-C400) manufactured by Fuji Filter.
  • MST-C400 Fuji Melt Spinning Tester
  • the polyester composition dried to a water content of less than 500 ppm was flowed at a polyester composition temperature of 240 ° C. through a sintered fiber filter having a filter area of 24.5 ⁇ and a filter opening of 5 ⁇ m at a discharge rate of 10 g / min for 4 hours
  • the difference between the filtration pressure after 4 hours and the filtration pressure after 1 hour was defined as the filtration pressure difference ⁇ P.
  • FIG. Melt viscosity ratio
  • the polyester composition dried to a water content of less than 500 ppm was measured in a nitrogen atmosphere at 290 ° C. using Capillograph 1B (manufactured by Toyo Seiki Seisaku-sho, Ltd.) according to JIS 7199: 1999.
  • the capillary die used had an inner diameter of 1 mm and a length of 40 mm.
  • L. Fiber color tone after dyeing (L * value) Using the fiber obtained in the example or the comparative example as a sample, about 2 g of tubular knitting was prepared using a circular knitting machine NCR-BL (3 inch and a half (8.9 cm), 27 gauge) manufactured by Eiko Sangyo. In an aqueous solution containing 1.5 g / L of sodium carbonate and 0.5 g / L of surfactant Granup US-20 manufactured by Meisei Chemical Co., Ltd., scoured at 80 ° C. for 20 minutes, washed with running water for 30 minutes, and dried with hot air at 60 ° C. Dried in the machine for 60 minutes. The scoured knitted fabric after scouring was dry-heat set at 135 ° C.
  • the knitted tube was placed in an aqueous solution containing 2 g / L of sodium hydroxide, 2 g / L of sodium dithionite, and 0.5 g / L of surfactant Granup US-20 manufactured by Meisei Chemical Co., Ltd., at a bath ratio of 1: 100. After reducing and washing at 80 ° C. for 20 minutes, it was washed with running water for 30 minutes and dried in a 60 ° C. hot air drier for 60 minutes. The tubular knit after the reduction washing was dry-heat set at 135 ° C. for 1 minute, and a finishing set was performed.
  • the L * value was measured using a spectrophotometer CM-3700d manufactured by Minolta, using a D65 light source, a viewing angle of 10 °, and optical conditions of SCE (specular reflection light removal method). The measurement was performed three times for one sample, and the average value was defined as L * value.
  • Example 1 Transesterification reaction
  • 100 kg of dimethyl terephthalate and 56 kg of ethylene glycol were melted at 150 ° C. under a nitrogen atmosphere, and the temperature was raised to 230 ° C. over 3 hours with stirring, Methanol was distilled off and transesterification was performed to obtain bis (hydroxyethyl) terephthalate.
  • the reaction system After reaching a predetermined stirring torque, the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, and retention before discharge was carried out for 30 minutes. After the retention before discharge, the liquid was discharged in a strand shape, cooled, and immediately cut. The time from the start of the pressure reduction to the arrival of the predetermined stirring torque was 2 hours and 00 minutes.
  • the obtained pellets were vacuum-dried at 95 ° C. for 12 hours, then supplied to an extruder-type melt spinning machine to be melted, and then spun at a spinning temperature of 250 ° C. and a discharge rate of 31.5 g / min (a discharge hole diameter of 0.18 mm, (A discharge hole length of 0.23 mm, 36 holes, and a round hole) to obtain a spun yarn.
  • the spun yarn is cooled by a cooling air having a wind temperature of 20 ° C. and a wind speed of 25 m / min, and an oil agent is applied and converged by a lubricating device and taken up by a first godet roller rotating at 3000 m / min.
  • the obtained undrawn yarn is drawn under the conditions of a first hot roller temperature of 90 ° C., a second hot roller temperature of 130 ° C., a draw ratio of 2.1 times, and a draw speed of 500 m / min to obtain a dyeable polyolefin fiber of 50 dtex-36f. Obtained.
  • Table 1 shows the fiber properties, fabric properties, and the amount of the composition deposited and deposited on the first and second hot rollers during stretching of the obtained dyeable polyolefin fiber.
  • Examples 2 to 15 [Comparative Examples 1 to 4]
  • Dyeable polyolefin fibers were obtained in the same manner as in Example 1, except that the raw materials and the intrinsic viscosity IV of the polyester composition were changed as shown in Tables 1 and 2.
  • Tables 1 and 2 show the fiber properties, cloth properties, and the amount of the composition deposited and deposited on the first and second hot rollers during stretching of the obtained dyeable polyolefin fiber.
  • the dyeable polyolefin composition containing the polyester composition of the present invention has excellent long-term continuous spinnability, and has a vivid and deep coloring property, and is preferably used as a fiber or a fiber structure. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The present invention provides a polyester composition which is blended into a polyolefin so as to obtain a dyeable polyolefin composition that has excellent dyeability and excellent long-term continuous spinnability. A polyester composition which mainly contains a copolymerized polyester that is obtained by polycondensing ethylene glycol and a dicarboxylic acid component that contains terephthalic acid and/or an ester-forming derivative thereof, and a cyclohexane dicarboxylic acid and/or an ester-forming derivative thereof. This polyester composition is configured such that 1-35 mmol/kg of a phenolic residue is contained relative to the polyester composition.

Description

ポリエステル組成物Polyester composition
 本発明は、長期連続紡糸性に優れ、繰り返し重合時のポリマー吐出性に優れるポリエステル組成物に関するものである。 The present invention relates to a polyester composition having excellent long-term continuous spinnability and excellent polymer dischargeability during repeated polymerization.
 ポリオレフィン系繊維の一種であるポリエチレン繊維やポリプロピレン繊維は、軽量性や耐薬品性に優れるものの、極性官能基を有さないため染色することが困難であるという欠点を有している。そのため、衣料用途には適さず、現状ではタイルカーペット、家庭用敷物、自動車用マットなどのインテリア用途や、ロープ、養生ネット、ろ過布、細幅テープ、組紐、椅子張りなどの資材用途などの限られた用途において利用されている。 ポ リ エ チ レ ン Polyethylene fibers and polypropylene fibers, which are one type of polyolefin fibers, have a light weight and chemical resistance, but have a drawback that they are difficult to dye because they have no polar functional groups. Therefore, it is not suitable for clothing use, and at present it is limited to interior uses such as tile carpets, household rugs, car mats, and other material uses such as ropes, curing nets, filter cloths, narrow tapes, braids, and upholstery. Used in certain applications.
 このような状況の中、ポリオレフィン系繊維の簡便な染色方法として、染色性の低いポリオレフィンに対して、染色可能なポリマーを複合化する技術が提案されている(例えば、特許文献1)。具体的には、特許文献1ではシクロヘキサンジメタノールを共重合したポリエステル、特許文献2ではイソフタル酸とシクロヘキサンジメタノールを共重合したポリエステルを染色可能な非晶性ポリマーとして、ポリオレフィンへブレンドした可染性ポリオレフィン繊維が提案されている。 In such a situation, as a simple dyeing method for polyolefin-based fibers, a technique of compounding a dyeable polymer with a polyolefin having low dyeability has been proposed (for example, Patent Document 1). Specifically, Patent Document 1 discloses a polyester obtained by copolymerizing cyclohexanedimethanol, and Patent Document 2 discloses a dyeable amorphous polymer obtained by blending a polyester obtained by copolymerizing isophthalic acid and cyclohexanedimethanol with polyolefin as a dyeable amorphous polymer. Polyolefin fibers have been proposed.
 さらに、特許文献3では、染色可能なポリマーとして、シクロヘキサンジカルボン酸を共重合した共重合ポリエステルを用いてなる可染性ポリオレフィン繊維が提案されている。本文献では、ポリオレフィンへブレンドした、共重合ポリエステルの分散径を特定範囲に制御することで、より高い発色性を示す可染性ポリオレフィン繊維が得られることが記載されている。 Furthermore, Patent Document 3 proposes a dyeable polyolefin fiber using a copolymerized polyester obtained by copolymerizing cyclohexanedicarboxylic acid as a dyeable polymer. This document describes that by controlling the dispersion diameter of the copolymerized polyester blended with the polyolefin to a specific range, a dyeable polyolefin fiber exhibiting higher color developability can be obtained.
 上記特許文献1、2記載の方法では、染色可能なポリマーを非晶性にすることにより、発色性は向上するものの、鮮やかさや深みは未だ不十分であった。 In the methods described in Patent Documents 1 and 2, the coloring properties are improved by making the dyeable polymer amorphous, but the vividness and depth are still insufficient.
 また、特許文献3記載の方法では、発色性が向上している点で優れているものの、長期に亘って連続して紡糸した際にパック圧が上昇し、紡糸の途中でパックを交換する必要があるため、生産性が不十分となる問題があった。 Further, although the method described in Patent Document 3 is excellent in that the coloring property is improved, the pack pressure increases when spinning is continuously performed for a long time, and it is necessary to change the pack during the spinning. Therefore, there was a problem that productivity was insufficient.
特表2008-533315号公報JP 2008-533315 A 特表2001-522947号公報JP 2001-522947 A 国際公開WO2017/154665号パンフレットInternational Publication WO2017 / 154665 pamphlet
 本発明の目的は、上記従来技術の問題点を解決し、発色性に優れ、かつ長期連続紡糸性に優れた可染性ポリオレフィン組成物を得ることができる、ポリオレフィンにブレンドするポリエステル組成物を提供することにある。 An object of the present invention is to provide a polyester composition to be blended with a polyolefin, which can solve the above-mentioned problems of the prior art and can obtain a dyeable polyolefin composition having excellent coloring properties and excellent long-term continuous spinnability. Is to do.
 本発明では、上記課題に向けて鋭意検討を重ねた結果、長期連続紡糸におけるパック圧の上昇が、ポリオレフィンにブレンドされたポリエステル組成物中に含まれる酸化劣化物に起因することを見出した。 According to the present invention, as a result of intensive studies on the above-mentioned problems, it has been found that an increase in pack pressure in long-term continuous spinning is caused by oxidatively degraded substances contained in a polyester composition blended with polyolefin.
 すなわち、同じ重縮合装置を用いて2回以上繰り返しポリエステル組成物を重縮合した際、重縮合装置の吐出口付近に付着したポリエステル組成物の酸化劣化物が吐出されたポリエステル組成物に混入し、長期連続紡糸におけるパック圧の上昇を引き起こす。 That is, when the polyester composition is repeatedly polycondensed two or more times using the same polycondensation apparatus, the oxidatively degraded polyester composition adhering to the vicinity of the discharge port of the polycondensation apparatus is mixed into the discharged polyester composition, This causes an increase in pack pressure during long-term continuous spinning.
 そこで、さらなる検討を重ねた結果、ポリエステル組成物の重縮合開始時にフェノール系酸化防止剤を添加することにより、上記ポリエステル組成物の酸化劣化物を効率的に抑制できることを見出した。さらには、酸化劣化物を抑制することにより、ポリエステル組成物重縮合吐出時のガット吐出太細発生が解消され、吐出工程の安定化にも寄与することを見出した。 Therefore, as a result of further study, it was found that by adding a phenolic antioxidant at the start of the polycondensation of the polyester composition, it is possible to efficiently suppress the oxidatively degraded products of the polyester composition. Furthermore, it has been found that, by suppressing the oxidatively degraded products, the occurrence of gut discharge thickening during polycondensation discharge of the polyester composition is eliminated, which contributes to stabilization of the discharge process.
 すなわち、ポリオレフィンにブレンドするポリエステル組成物として、以下の条件を満たすポリエステル組成物を用いることにより、可染性ポリオレフィン組成物の紡糸時のパック圧上昇が著しく抑制され、上記目的が達成される。 That is, by using a polyester composition satisfying the following conditions as a polyester composition to be blended with the polyolefin, an increase in pack pressure during spinning of the dyeable polyolefin composition is remarkably suppressed, and the above object is achieved.
 テレフタル酸および/またはそのエステル形成性誘導体と、シクロヘキサンジカルボン酸および/またはそのエステル形成性誘導体とを含むジカルボン酸成分と、エチレングリコールとを共重合した共重合ポリエステルを主成分とし、下記(I)を満足することを特徴とするポリエステル組成物。
(I)ポリエステル組成物に対して、フェノール残基を1~35mmol/kg含有する。
A copolymerized polyester obtained by copolymerizing ethylene glycol with a dicarboxylic acid component containing terephthalic acid and / or an ester-forming derivative thereof, cyclohexanedicarboxylic acid and / or an ester-forming derivative thereof, and the following (I) A polyester composition characterized by satisfying the following.
(I) The polyester composition contains 1 to 35 mmol / kg of a phenol residue.
 本発明のポリエステル組成物をブレンドしたポリオレフィン組成物は、長期紡糸時パック圧上昇が抑制され、高い生産性で可染性ポリオレフィン繊維を提供することができる。 ポ リ The polyolefin composition blended with the polyester composition of the present invention can provide a dyeable polyolefin fiber with high productivity while suppressing an increase in pack pressure during long-term spinning.
 以下、本発明を詳細に説明する。
本発明のポリエステル組成物は、テレフタル酸および/またはそのエステル形成性誘導体、シクロヘキサンジカルボン酸および/またはそのエステル形成性誘導体、エチレングリコールを主たる原料とするポリエステル組成物である。
Hereinafter, the present invention will be described in detail.
The polyester composition of the present invention is a polyester composition containing terephthalic acid and / or an ester-forming derivative thereof, cyclohexanedicarboxylic acid and / or an ester-forming derivative thereof, and ethylene glycol as main raw materials.
 本発明において、テレフタル酸および/またはそのエステル形成性誘導体としては、例えばテレフタル酸、テレフタル酸ジメチル、テレフタル酸ジエチルが挙げられ、これらのいずれか1種のみを使用してもよく、2種以上を併用してもよい。 In the present invention, examples of terephthalic acid and / or its ester-forming derivative include terephthalic acid, dimethyl terephthalate and diethyl terephthalate, and any one of these may be used alone, or two or more thereof may be used. You may use together.
 本発明において、シクロヘキサンジカルボン酸としては、例えば1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、シクロヘキサンジカルボン酸のエステル形成性誘導体としては、例えば1,2-シクロヘキサンジカルボン酸ジメチル、1,2-シクロヘキサンジカルボン酸ジエチル、1,3-シクロヘキサンジカルボン酸ジメチル、1,3-シクロヘキサンジカルボン酸ジエチル、1,4-シクロヘキサンジカルボン酸ジメチル、1,4-シクロヘキサンジカルボン酸ジエチルが挙げられ、これらのいずれか1種のみを使用してもよく、2種以上を併用してもよい。なかでも、1,4-シクロヘキサンジカルボン酸は、耐熱性および機械的
特性の観点より好適に採用できる。
In the present invention, examples of the cyclohexanedicarboxylic acid include 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and ester-forming derivatives of cyclohexanedicarboxylic acid such as 1,2 cyclohexanedicarboxylic acid. -Dimethyl cyclohexanedicarboxylate, diethyl 1,2-cyclohexanedicarboxylate, dimethyl 1,3-cyclohexanedicarboxylate, diethyl 1,3-cyclohexanedicarboxylate, dimethyl 1,4-cyclohexanedicarboxylate, diethyl 1,4-cyclohexanedicarboxylate And any one of these may be used alone or two or more of them may be used in combination. Among them, 1,4-cyclohexanedicarboxylic acid can be suitably employed from the viewpoint of heat resistance and mechanical properties.
 本発明のポリエステル組成物は、フェノール残基を1mmol/kg以上、35mmol/kg以下含有している。フェノール残基を1mmol/kg以上含有することにより、同じ重縮合装置を用いて2回以上繰り返しポリエステル組成物を重縮合した際、重縮合装置の吐出口付近にポリエステル組成物の酸化劣化物が発生し難くなり、可染性ポリオレフィン繊維の長期連続紡糸時のパック圧上昇およびポリエステル組成物の重縮合吐出時の吐出太細発生を抑制することができる。フェノール残基は3mmol/kg以上であることがより好ましく、5mmol/kg以上であることが特に好ましい。また、フェノール残基を35mmol/kg以下とすることで、フェノール系酸化防止剤を過剰に添加した際に発生するゲル化物を抑制することができ、可染性ポリオレフィン繊維の長期連続紡糸時のパック圧上昇およびポリエステル組成物の重縮合吐出時の吐出太細発生を抑制することができる。フェノール残基は30mmol/kg以下であることがより好ましく、25mmol/kg以下であることが特に好ましい。なお、フェノール残基の測定は後述の実施例に記載する。 ポ リ エ ス テ ル The polyester composition of the present invention contains a phenol residue in an amount of 1 mmol / kg or more and 35 mmol / kg or less. When the polyester composition contains 1 mmol / kg or more of phenol residues, when the polyester composition is polycondensed twice or more using the same polycondensation apparatus, an oxidized product of the polyester composition is generated near the discharge port of the polycondensation apparatus. This makes it possible to suppress the increase in pack pressure during long-term continuous spinning of the dyeable polyolefin fiber and the occurrence of thick discharge at the time of polycondensation discharge of the polyester composition. The phenol residue is more preferably at least 3 mmol / kg, particularly preferably at least 5 mmol / kg. Further, by setting the phenol residue to 35 mmol / kg or less, it is possible to suppress gelation generated when an excessive amount of a phenolic antioxidant is added. It is possible to suppress the rise in pressure and the occurrence of thick discharge at the time of discharging polycondensation of the polyester composition. The phenol residue content is more preferably 30 mmol / kg or less, particularly preferably 25 mmol / kg or less. The measurement of the phenol residue will be described in Examples described later.
 なお、本発明のポリエステル組成物に含有されるフェノール残基は、ポリエステル組成物の重縮合反応時に添加するフェノール系酸化防止剤由来のものが大部分を占めている。フェノール系酸化防止剤由来を除くフェノール残基は極微量である。 The majority of the phenol residues contained in the polyester composition of the present invention are derived from phenolic antioxidants added during the polycondensation reaction of the polyester composition. The amount of phenol residues excluding those derived from phenolic antioxidants is extremely small.
 本発明におけるフェノール系酸化防止剤は、フェノール構造を有したラジカル連鎖反応禁止剤であり、1種のみを使用してもよく、2種以上を併用してもよい。なかでも、ペンタエリスリトール-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)プロピオネート)(例えば、BASF製Irganox1010)、2,4,6-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)メシチレン(例えば、ADEKA製アデカスタブAO-330)、3,9-ビス[1,1-ジメチル-2-[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]-2,4,8,10-テトラオキサスピロ[5,5]-ウンデカン(例えば、住友化学製スミライザーGA-80、ADEKA製アデカスタブAO-80)、1,3,5-トリス[[4-(1,1-ジメチルエチル)-3-ヒドロキシ-2,6-ジメチルフェニル]メチル]-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(例えば、東京化成工業製THANOX1790、CYTEC製CYANOX1790)は、酸化分解抑制効果が高いため、好適に採用できる。なかでも、ペンタエリスリトール-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)プロピオネート)(例えば、BASF製Irganox1010)、3,9-ビス[1,1-ジメチル-2-[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]-2,4,8,10-テトラオキサスピロ[5,5]-ウンデカン(例えば、住友化学製スミライザーGA-80、ADEKA製アデカスタブAO-80)は、ポリエステル組成物の重縮合温度においても飛散が少なく、特に好適に採用できる。 フ ェ ノ ー ル The phenolic antioxidant in the present invention is a radical chain reaction inhibitor having a phenol structure, and may be used alone or in combination of two or more. Among them, pentaerythritol-tetrakis (3- (3,5-di-t-butyl-4-hydroxyphenol) propionate) (for example, Irganox 1010 manufactured by BASF), 2,4,6-tris (3 ′, 5′-) Di-t-butyl-4'-hydroxybenzyl) mesitylene (for example, Adekastab AO-330 manufactured by ADEKA), 3,9-bis [1,1-dimethyl-2- [β- (3-t-butyl-4- Hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxaspiro [5,5] -undecane (eg, Sumitomo Chemical Sumilizer GA-80, ADEKA Adekastab AO-80), 1,3,5-tris [[4- (1,1-dimethylethyl) -3-hydroxy-2,6-dimethylphenyl] methyl] 1,3,5-triazine -2,4,6 (1H, 3H, 5H) - trione (e.g., manufactured by Tokyo Kasei Kogyo THANOX1790, CYTEC Ltd. Cyanox 1790) has a high oxidative decomposition inhibiting effect, it can be suitably employed. Among them, pentaerythritol-tetrakis (3- (3,5-di-t-butyl-4-hydroxyphenol) propionate) (eg, Irganox 1010 manufactured by BASF), 3,9-bis [1,1-dimethyl-2- [Β- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxaspiro [5,5] -undecane (for example, Sumiremo Chemical Sumilizer GA-80 and ADK STAB AO-80 manufactured by ADEKA are less likely to be scattered even at the polycondensation temperature of the polyester composition and can be used particularly preferably.
 本発明のポリエステル組成物は、ろ過圧力差ΔPを2.0MPa以下とすることで、可染性ポリオレフィン繊維の長期連続紡糸時のパック圧上昇を抑制することができる。ΔPは1.8MPa以下であることがより好ましく、1.6MPa以下であることが特に好ましい。ろ過圧力差ΔPは、水分含有量500ppm未満に乾燥したポリエステル組成物を、ポリエステル組成物温度240℃、吐出量10g/分で、ろ過面積24.5φのフィルター目開き5μm焼結繊維フィルターに4時間流した際の、4時間後ろ過圧力と1時間後ろ過圧力の差(4時間後ろ過圧力-1時間後ろ過圧力)である。 ポ リ エ ス テ ル The polyester composition of the present invention can suppress an increase in pack pressure during long-term continuous spinning of dyeable polyolefin fibers by setting the filtration pressure difference ΔP to 2.0 MPa or less. ΔP is more preferably 1.8 MPa or less, and particularly preferably 1.6 MPa or less. The filtration pressure difference ΔP is such that a polyester composition dried to a water content of less than 500 ppm is passed through a polyester composition temperature of 240 ° C., a discharge rate of 10 g / min, and a filter area of 24.5φ with a filter opening of 5 μm sintered fiber filter for 4 hours. The difference between the filtration pressure after 4 hours and the filtration pressure after 1 hour (the filtration pressure after 4 hours-1 the filtration pressure after 1 hour) when flowing.
 ポリエステル組成物に含有されるフェノール残基を1~35mmol/kgに制御し、かつポリエステル組成物のろ過圧力差ΔP≦2.0MPaに制御する手法としては、ポリエステル組成物の重縮合反応開始前から吐出開始前までの間にフェノール系酸化防止剤をポリエステル組成物に分散させることが挙げられる。吐出開始前までにフェノール系酸化防止剤をポリエステル組成物に分散させる手法としては、後述するポリエステル組成物の製造方法に示す任意のプロセスにおいて、フェノール系酸化防止剤を添加する方法が挙げられる。その中でも、フェノール系酸化防止剤の分散性向上および酸化防止能の効率化の観点から、ポリエステル組成物低重合体の重縮合反応開始前に添加するのが好ましい。 As a method of controlling the phenol residue contained in the polyester composition to 1 to 35 mmol / kg and controlling the filtration pressure difference ΔP ≦ 2.0 MPa of the polyester composition, the polyester composition is prepared before the polycondensation reaction starts. Dispersion of the phenolic antioxidant in the polyester composition before the start of the discharge may be mentioned. As a method of dispersing the phenolic antioxidant in the polyester composition before the start of the discharge, a method of adding a phenolic antioxidant in an optional process shown in a method for producing a polyester composition described later is exemplified. Among them, it is preferable to add the phenolic antioxidant before the start of the polycondensation reaction of the low polymer of the polyester composition from the viewpoint of improving the dispersibility of the phenolic antioxidant and increasing the efficiency of the antioxidant ability.
 本発明のポリエステル組成物は、融解熱量(ΔHm)が0.1J/g以上、30J/g以下であることが好ましい。ΔHmを0.1J/g以上とすることで、ポリエステル組成物に結晶性が付与され、紡糸時に可染性ポリオレフィン組成物から剥がれ落ち難くなり、ホットローラーへのポリエステル組成物の堆積量を低減させることができる。ΔHmは1J/g以上であることがより好ましく、5J/g以上が特に好ましい。また、ΔHmを30J/g以下とすることで、ポリエステル組成物の屈折率が低下し、ポリオレフィンの屈折率に近づくため、可染性ポリオレフィン組成物を用いた繊維の発色性を向上させることができる。染料吸塵率が高くなり、発色性が良好となるため、29J/g以下であることがより好ましく、27J/g以下であることが特に好ましい。 ポ リ エ ス テ ル The polyester composition of the present invention preferably has a heat of fusion (ΔHm) of 0.1 J / g or more and 30 J / g or less. By setting ΔHm to 0.1 J / g or more, crystallinity is imparted to the polyester composition, it becomes difficult to peel off from the dyeable polyolefin composition during spinning, and the amount of the polyester composition deposited on the hot roller is reduced. be able to. ΔHm is more preferably 1 J / g or more, and particularly preferably 5 J / g or more. Further, by setting ΔHm to 30 J / g or less, the refractive index of the polyester composition decreases and approaches the refractive index of the polyolefin, so that the color developability of the fiber using the dyeable polyolefin composition can be improved. . The dye absorption rate is high, and the color developability is good. Therefore, it is more preferably 29 J / g or less, and particularly preferably 27 J / g or less.
 なお、ポリエステル組成物のΔHmは以下の方法で測定することができる。組成物ペレットを、130℃の真空乾燥機中で12時間真空乾燥させる。真空乾燥後のポリマー約5mgを秤量し、TAインスツルメント製示差走査熱量計(DSC)Q2000型を用いて、0℃から280℃まで昇温速度16℃/分で昇温後、280℃で5分間保持するプログラムでDSC測定を行う。昇温過程中に観測された融解ピークより融解熱量(ΔHm)を算出する。なお、融解ピークが複数観測された場合には、最も高温側の融解ピークトップを含む一続きの融解熱量の合計をΔHmとする。 The ΔHm of the polyester composition can be measured by the following method. The composition pellets are vacuum dried in a vacuum oven at 130 ° C. for 12 hours. Approximately 5 mg of the polymer after vacuum drying was weighed, and the temperature was raised from 0 ° C. to 280 ° C. at a rate of 16 ° C./min, using a differential scanning calorimeter (DSC) model Q2000 manufactured by TA Instruments. Perform the DSC measurement with a program that holds for 5 minutes. The heat of fusion (ΔHm) is calculated from the melting peak observed during the heating process. When a plurality of melting peaks are observed, the sum of continuous heats of fusion including the top of the highest melting peak is defined as ΔHm.
 本発明のポリエステル組成物のΔHmを前記範囲にする手法としては、特に限定されないが、例えば、原料であるテレフタル酸100重量部に対してシクロヘキサンジカルボン酸の配合量を35重量部以上、90重量部以下に調整する方法が挙げられる。 The method for adjusting the ΔHm of the polyester composition of the present invention to the above range is not particularly limited. For example, the blending amount of cyclohexanedicarboxylic acid is 35 parts by weight or more and 90 parts by weight with respect to 100 parts by weight of terephthalic acid as a raw material. The following adjustment methods are available.
 本発明のポリエステル組成物は、固有粘度(IV)が0.60以上、0.70以下であることが好ましい。IVを0.60以上とすることで、ポリエステル組成物の自由体積が減少し、ガラス転移温度が高まるため、可染性ポリオレフィン組成物の構成成分として、繊維を製造する際にはホットローラーへのポリエステル組成物の堆積量を減少させることができる。IVは0.61以上がより好ましく、0.62以上であることが特に好ましい。また、IVを0.70以下とすることで、非晶部の存在割合が高まるため、染料を吸収し易くなり、可染性ポリオレフィン組成物に用いた繊維の発色性を高めることができる。IVは0.69以下であることが好ましく、0.68以下であることが特に好ましい。 ポ リ エ ス テ ル The polyester composition of the present invention preferably has an intrinsic viscosity (IV) of 0.60 or more and 0.70 or less. By setting the IV to 0.60 or more, the free volume of the polyester composition is reduced and the glass transition temperature is increased. Therefore, as a component of the dyeable polyolefin composition, when producing a fiber, The amount of the polyester composition deposited can be reduced. IV is more preferably 0.61 or more, and particularly preferably 0.62 or more. Further, by setting the IV to 0.70 or less, the ratio of the amorphous portion is increased, so that the dye is easily absorbed, and the coloring property of the fiber used in the dyeable polyolefin composition can be enhanced. The IV is preferably 0.69 or less, particularly preferably 0.68 or less.
 次に本発明のポリエステル組成物の製造方法を以下に示す。
本発明のポリエステル組成物は通常、次の(1)~(3)のいずれかのプロセスで製造される。
すなわち、(1)テレフタル酸、シクロヘキサンジカルボン酸およびエチレングリコールを原料とし、直接エステル化反応によって低重合体を得、さらにその後の重縮合反応によって高分子量ポリエステル組成物を得るプロセス。(2)テレフタル酸ジメチル、シクロヘキサンジカルボン酸ジメチルおよびエチレングリコールを原料とし、エステル交換反応によってポリエチレンテレフタレート低重合体を得、さらにその後の重縮合反応によって高分子量ポリエステル組成物を得るプロセス。(3)テレフタル酸ジメチルとエチレングリコールを原料とし、エステル交換反応によってポリエチレンテレフタレート低重合体を得る。続いて、テレフタル酸、シクロヘキサンジカルボン酸およびエチレングリコールを添加し、エステル化反応によって低重合体を得、その後の重縮合反応によって高分子量ポリエステル組成物を得るプロセスである。
Next, a method for producing the polyester composition of the present invention will be described below.
The polyester composition of the present invention is usually produced by any one of the following processes (1) to (3).
That is, (1) a process of using a terephthalic acid, cyclohexanedicarboxylic acid and ethylene glycol as raw materials to obtain a low polymer by a direct esterification reaction and further obtain a high molecular weight polyester composition by a subsequent polycondensation reaction. (2) A process in which a low-polymer of polyethylene terephthalate is obtained by transesterification using dimethyl terephthalate, dimethyl cyclohexanedicarboxylate, and ethylene glycol as raw materials, and a high-molecular-weight polyester composition is obtained by a subsequent polycondensation reaction. (3) Using dimethyl terephthalate and ethylene glycol as raw materials, a low-polymer polyethylene terephthalate is obtained by a transesterification reaction. Subsequently, terephthalic acid, cyclohexanedicarboxylic acid, and ethylene glycol are added, a low polymer is obtained by an esterification reaction, and a high molecular weight polyester composition is obtained by a subsequent polycondensation reaction.
 (1)のプロセスの直接エステル化反応の際、ジエチレングリコールの副生を抑制するため反応温度を250℃以下、圧力を1.2×100,000Pa以上とするのが好ましい。さらに続く重縮合反応では、反応温度を290℃以下、圧力は減圧にすればするほど重合時間が短くなり好ましい。 In the direct esterification reaction of the process (1), the reaction temperature is preferably 250 ° C. or less and the pressure is preferably 1.2 × 100,000 Pa or more in order to suppress the by-product of diethylene glycol. In the subsequent polycondensation reaction, the lower the reaction temperature is 290 ° C. and the lower the pressure, the shorter the polymerization time, which is preferable.
 (2)および(3)のプロセスのエステル交換反応の際、反応温度を230℃以下、圧力を大気圧以上とするのが好ましい。エステル化反応に続く重縮合反応では、反応温度を290℃以下、圧力は減圧にすればするほど重合時間が短くなり好ましい。 In the transesterification in the processes (2) and (3), the reaction temperature is preferably 230 ° C. or less, and the pressure is preferably atmospheric pressure or more. In the polycondensation reaction subsequent to the esterification reaction, the lower the reaction temperature is 290 ° C. and the pressure is reduced, the shorter the polymerization time is, the more preferable.
 また、これら(2)および(3)の両プロセスにおいて、エステル化反応は無触媒でも反応は進行するが、エステル交換反応はマグネシウム、マンガン、カルシウム、コバルト、リチウム、チタン等の化合物を触媒として用いてもよい。また重縮合の際に用いられる触媒としては、チタン化合物、アルミニウム化合物、スズ化合物、アンチモン化合物、ゲルマニウム化合物などが用いられる。これら金属化合物は、水和物であってもよい。 In both processes (2) and (3), the esterification reaction proceeds without a catalyst, but the transesterification reaction uses a compound such as magnesium, manganese, calcium, cobalt, lithium, or titanium as a catalyst. You may. As the catalyst used in the polycondensation, a titanium compound, an aluminum compound, a tin compound, an antimony compound, a germanium compound and the like are used. These metal compounds may be hydrates.
 この場合に用いるマグネシウム化合物としては、具体的には、酸化マグネシウム、水酸化マグネシウム、マグネシウムアルコキシド、酢酸マグネシウム、炭酸マグネシウム等が挙げられる。 マ グ ネ シ ウ ム Specific examples of the magnesium compound used in this case include magnesium oxide, magnesium hydroxide, magnesium alkoxide, magnesium acetate, magnesium carbonate and the like.
 マンガン化合物としては、具体的には、塩化マンガン、臭化マンガン、硝酸マンガン、炭酸マンガン、マンガンアセチルアセトネート、酢酸マンガン等が挙げられる。 Specific examples of the manganese compound include manganese chloride, manganese bromide, manganese nitrate, manganese carbonate, manganese acetylacetonate, and manganese acetate.
 カルシウム化合物としては、具体的には、酸化カルシウム、水酸化カルシウム、カルシウムアルコキシド、酢酸カルシウム、炭酸カルシウム等が挙げられる。 Specific examples of the calcium compound include calcium oxide, calcium hydroxide, calcium alkoxide, calcium acetate, calcium carbonate and the like.
 コバルト化合物としては、具体的には、塩化コバルト、硝酸コバルト、炭酸コバルト、コバルトアセチルアセトネート、ナフテン酸コバルト、酢酸コバルト等が挙げられる。 Specific examples of the cobalt compound include cobalt chloride, cobalt nitrate, cobalt carbonate, cobalt acetylacetonate, cobalt naphthenate, and cobalt acetate.
 リチウム化合物としては、具体的には、酸化リチウム、水酸化リチウム、リチウムアルコキシド、酢酸リチウム、炭酸リチウム等が挙げられる。 Specific examples of the lithium compound include lithium oxide, lithium hydroxide, lithium alkoxide, lithium acetate, lithium carbonate and the like.
 チタン化合物としては、チタン錯体、テトラ-i-プロピルチタネート、テトラ-n-ブチルチタネート、テトラ-n-ブチルチタネートテトラマーなどのチタンアルコキシド、チタンアルコキシドの加水分解により得られるチタン酸化物、チタンアセチルアセトナートなどが挙げられる。中でも多価カルボン酸および/またはヒドロキシカルボン酸および/または多価アルコールをキレート剤とするチタン錯体であることが、ポリマーの熱安定性、色調および口金まわりの堆積物の少なさの観点から好ましい。チタン化合物のキレート剤としては、乳酸、クエン酸、マンニトール、トリペンタエリスリトール等が挙げられる。 Examples of the titanium compound include titanium complexes, titanium alkoxides such as tetra-i-propyl titanate, tetra-n-butyl titanate and tetra-n-butyl titanate tetramer, titanium oxides obtained by hydrolysis of titanium alkoxides, titanium acetylacetonate And the like. Among them, a titanium complex using a polycarboxylic acid and / or a hydroxycarboxylic acid and / or a polyhydric alcohol as a chelating agent is preferable from the viewpoint of the thermal stability of the polymer, the color tone, and the amount of deposits around the base. Examples of the chelating agent for the titanium compound include lactic acid, citric acid, mannitol, and tripentaerythritol.
 アルミニウム化合物としては、カルボン酸アルミニウム、アルミニウムアルコキシド、アルミニウムキレート化合物、塩基性アルミニウム化合物などが挙げられ、具体的には酢酸アルミニウム、水酸化アルミニウム、炭酸アルミニウム、アルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウムアセチルアセトナート、塩基性酢酸アルミニウムなどが挙げられる。 Examples of the aluminum compound include aluminum carboxylate, aluminum alkoxide, aluminum chelate compound, and basic aluminum compound. Specific examples include aluminum acetate, aluminum hydroxide, aluminum carbonate, aluminum ethoxide, aluminum isopropoxide, and aluminum acetyl. Examples include acetonate and basic aluminum acetate.
 スズ化合物としてはモノブチルスズオキシド、酢酸スズ、オクチル酸スズやスズアルコキシドなどが挙げられる。 Tin compounds include monobutyltin oxide, tin acetate, tin octylate, tin alkoxide and the like.
 アンチモン化合物としてはアンチモンアルコキシド、アンチモングリコラートや三酸化アンチモンが挙げられる。 Antimony compounds include antimony alkoxide, antimony glycolate and antimony trioxide.
 ゲルマニウム化合物としては、ゲルマニウムアルコキシドや酸化ゲルマニウム等が挙げられる。 Examples of the germanium compound include germanium alkoxide and germanium oxide.
 本発明のポリエステル組成物は、安定剤としてリン化合物が添加されていることが好ましい。具体的にはリン酸、リン酸トリメチル、ジエチルホスホノ酢酸エチル等が好ましく、3,9-ビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン(PEP-36:旭電化社製)や亜りん酸トリス(2,4-ジ-tert-ブチルフェニル)(IRGAFOS168:BASF社製)などの3価リン化合物が色調や耐熱性改善の面からより好ましい。 ポ リ エ ス テ ル The polyester composition of the present invention preferably contains a phosphorus compound as a stabilizer. Specifically, phosphoric acid, trimethyl phosphate, ethyl diethylphosphonoacetate and the like are preferable, and 3,9-bis (2,6-di-t-butyl-4-methylphenoxy) -2,4,8,10- 3 such as tetraoxa-3,9-diphosphaspiro [5,5] undecane (PEP-36: manufactured by Asahi Denka) or tris (2,4-di-tert-butylphenyl) phosphite (IRGAFOS168: manufactured by BASF) Phosphorus compounds are more preferred from the viewpoint of improving color tone and heat resistance.
 さらに酸化防止剤、紫外線吸収剤、難燃剤、蛍光増白剤、艶消剤、可塑剤もしくは消泡剤又はその他の添加剤等を必要に応じて配合してもよい。 Further, an antioxidant, an ultraviolet absorber, a flame retardant, a fluorescent whitening agent, a matting agent, a plasticizer or an antifoaming agent or other additives may be added as required.
 本発明のポリエステル組成物はバッチ重合、半連続重合で生産することができる。 ポ リ エ ス テ ル The polyester composition of the present invention can be produced by batch polymerization or semi-continuous polymerization.
 本発明のポリエステル組成物をブレンドしてなる可染性ポリオレフィン組成物は、ポリオレフィンが海成分、ポリエステル組成物が島成分である海島構造からなるポリマーアロイ組成物である。 The dyeable polyolefin composition obtained by blending the polyester composition of the present invention is a polymer alloy composition having a sea-island structure in which the polyolefin is a sea component and the polyester composition is an island component.
 ポリオレフィン中に、本発明のポリエステル組成物を染色可能なポリマーとして島に配置することで、ポリオレフィンに発色性を付与することができる。また、染色可能なポリマーを芯鞘複合繊維の芯に配置した場合や、海島複合繊維の島に配置した場合と異なり、ポリマーアロイ組成物では、島成分の染色可能なポリマーが表面に露出するため、より高い発色性を発現し得ることができ、さらには、島成分へ透過した光による発色効率が向上し、鮮やかで深みのある発色を実現することができる。 色 By disposing the polyester composition of the present invention in a polyolefin as a dyeable polymer in an island, it is possible to impart color development to the polyolefin. In addition, unlike the case where the dyeable polymer is disposed on the core of the sheath-core composite fiber or the case where the polymer is disposed on the island of the sea-island composite fiber, the polymer capable of dyeing the island component is exposed on the surface in the polymer alloy composition. In addition, it is possible to exhibit higher coloring properties, and furthermore, the coloring efficiency due to the light transmitted to the island component is improved, and bright and deep coloring can be realized.
 上記のポリマーアロイ組成物とは、島成分が不連続に分散して存在することである。ここで、島成分が不連続とは、例えばポリマーアロイ組成物からなる繊維の場合、繊維軸方向に島成分が適度な長さを有しており、繊維軸に対して垂直な断面、すなわち繊維横断面における海島構造の形状が異なる状態である。島成分が不連続に分散して存在する場合、島成分は紡錘形であるため、島成分へ透過した光による発色効率が向上し、鮮明性が向上し、深みのある発色が得られる。以上より、本発明のポリエステル組成物をブレンドしたポリマーアロイ組成物からなる繊維は、1つの島が繊維軸方向に連続かつ同一形状に形成される芯鞘複合繊維や、複数の島が繊維軸方向に連続かつ同一形状に形成される海島複合繊維とは本質的に異なる。かかるポリマーアロイ組成物は、例えば、ポリオレフィンと、本発明のポリエステル組成物および相溶化剤を溶融混練することで得ることができる。 ポ リ マ ー The above-mentioned polymer alloy composition means that the island component is present in a discontinuously dispersed state. Here, the island component is discontinuous, for example, in the case of a fiber made of a polymer alloy composition, the island component has an appropriate length in the fiber axis direction, and a cross section perpendicular to the fiber axis, that is, the fiber The shape of the sea-island structure in the cross section is different. When the island components are discontinuously dispersed, since the island components are spindle-shaped, the coloring efficiency by the light transmitted to the island components is improved, the sharpness is improved, and deep coloring is obtained. As described above, fibers made of the polymer alloy composition blended with the polyester composition of the present invention include core-sheath conjugate fibers in which one island is formed continuously and in the same shape in the fiber axis direction, and a plurality of islands are formed in the fiber axis direction. It is essentially different from sea-island composite fibers formed continuously and in the same shape. Such a polymer alloy composition can be obtained, for example, by melt-kneading a polyolefin, the polyester composition of the present invention and a compatibilizer.
 以下実施例により本発明をさらに詳細に説明する。
用いた原料は以下のとおりである。
1.テレフタル酸ジメチル:SKケミカル社製
2.テレフタル酸:三井化学社製高純度テレフタル酸。
3.1,4-シクロヘキサンジカルボン酸:新日本理化株式会社製。
4.エチレングリコール:三菱化学社製
5.IRGANOX1010:BASF社製
6.アデカスタブPEP-8:ADEKA社製
7.スミライザーTP-D:住友化学社製
 なお、実施例中の物性値は以下に述べる方法で測定した。
Hereinafter, the present invention will be described in more detail by way of examples.
The raw materials used are as follows.
1. 1. Dimethyl terephthalate: manufactured by SK Chemical Company Terephthalic acid: High-purity terephthalic acid manufactured by Mitsui Chemicals, Inc.
3. 1,4-cyclohexanedicarboxylic acid: manufactured by Shin Nippon Rika Co., Ltd.
4. Ethylene glycol: manufactured by Mitsubishi Chemical Corporation 5. IRGANOX1010: manufactured by BASF 6. ADK STAB PEP-8: manufactured by ADEKA Sumilizer TP-D: manufactured by Sumitomo Chemical Co., Ltd. The physical properties in the examples were measured by the methods described below.
 A.フェノール残基の含有量
 ポリエステル組成物0.01gを、10%塩酸メタノール4mLにて80℃で分解した。冷却後、塩酸メタノールを1mL加え、析出物をろ過した。ろ液を高速液体クロマトグラフィ(島津製作所社製LC-20A)にて測定し、下記実施例および比較例のポリエステル組成物に含まれるフェノール残基の含有量を算出した。
A. Phenol residue content 0.01 g of the polyester composition was decomposed at 4O 0 C with 4 mL of 10% methanolic hydrochloric acid. After cooling, 1 mL of methanolic hydrochloric acid was added, and the precipitate was filtered. The filtrate was measured by high performance liquid chromatography (LC-20A, manufactured by Shimadzu Corporation), and the content of phenol residues contained in the polyester compositions of the following Examples and Comparative Examples was calculated.
 また、高速液体クロマトグラフィの標準溶液は、IRGANOX1010、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸メチルおよび3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸をそれぞれクロロホルム/アセトニトリル溶媒に溶解させることで調製し、検量線を作成した。 The standard solution for high performance liquid chromatography is IRGANOX1010, methyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate and 3- (3,5-di-tert-butyl-4-hydroxy-4-hydroxyphenyl). (Phenyl) propionic acid was prepared by dissolving each in a chloroform / acetonitrile solvent to prepare a calibration curve.
 なお、測定条件は以下の通りである。
カラム恒温槽 :50℃
溶 離 液  :A.0.1vol%ギ酸水溶液、B.アセトニトリル
プログラム  :0.0分→10.0分  B25%→100%
        10.0分→20分   B100%
流  量   :0.8mL/分
サンプル注入量:20μl
検 出 波 長:260~280nm  。
The measurement conditions are as follows.
Column bath: 50 ° C
Eluent: A. 0.1 vol% formic acid aqueous solution; Acetonitrile program: 0.0 minutes → 10.0 minutes B25% → 100%
10.0 minutes → 20 minutes B100%
Flow rate: 0.8 mL / min Sample injection volume: 20 μl
Detection wavelength: 260-280 nm.
 B.固有粘度(IV)
 得られたポリエステル組成物を、o-クロロフェノール溶媒に溶解し、0.5g/dL、0.2g/dL、0.1g/dLの濃度の溶液を調整した。その後、得られた濃度Cの溶液の25℃における相対粘度(ηr)を、ウベローデ粘度計により測定し、(ηr-1)/CをCに対してプロットした。得られた結果を濃度0に外挿することにより、固有粘度を求めた。
B. Intrinsic viscosity (IV)
The obtained polyester composition was dissolved in an o-chlorophenol solvent to prepare solutions having concentrations of 0.5 g / dL, 0.2 g / dL, and 0.1 g / dL. Thereafter, the relative viscosity (ηr) at 25 ° C. of the obtained solution having the concentration C was measured by an Ubbelohde viscometer, and (ηr-1) / C was plotted against C. The intrinsic viscosity was determined by extrapolating the obtained results to a concentration of 0.
 C.融解熱量(ΔHm)
 ポリエステル組成物を130℃の真空乾燥機中で12時間真空乾燥させ、真空乾燥後のポリマー約5mgを秤量し、TAインスツルメント製示差走査熱量計(DSC)Q2000型を用いて、0℃から280℃まで昇温速度16℃/分で昇温後、280℃で5分間保持してDSC測定を行った。昇温過程中に観測された融解ピークより融解熱量(ΔHm)を算出した。測定は1試料につき3回行い、その平均値を融解熱量とした。なお、融解ピークが複数観測された場合には、最も高温側の融解ピークトップを含む一続きの融解熱量の合計をΔHmとした。
C. Heat of fusion (ΔHm)
The polyester composition is vacuum-dried in a vacuum dryer at 130 ° C. for 12 hours, about 5 mg of the polymer after vacuum drying is weighed, and the temperature is reduced from 0 ° C. using a differential scanning calorimeter (DSC) model Q2000 manufactured by TA Instruments. After the temperature was raised to 280 ° C. at a rate of 16 ° C./min, the temperature was kept at 280 ° C. for 5 minutes to perform DSC measurement. The heat of fusion (ΔHm) was calculated from the melting peak observed during the heating process. The measurement was performed three times for each sample, and the average value was defined as the heat of fusion. When a plurality of melting peaks were observed, the total of the continuous heat of fusion including the top of the highest melting peak was defined as ΔHm.
 D.吐出時ガット太細発生頻度(回/10分)
 重縮合により、所定の固有粘度(IV)までポリエステル組成物を高分子量化した後、孔径18mm×21mmの吐出口金より400g/分にて吐出し、吐出太細の発生回数を測定した。
D. Occurrence frequency of gut thick and thin during discharge (times / 10 minutes)
After increasing the molecular weight of the polyester composition to a predetermined intrinsic viscosity (IV) by polycondensation, the polyester composition was discharged at a rate of 400 g / min from a discharge mouthpiece having a pore size of 18 mm × 21 mm, and the number of times of discharge thickening was measured.
 E.ろ過圧力差ΔP
 富士フィルター製フジメルトスピニングテスター(MST-C400)を用いてろ過圧力差ΔPを測定した。水分含有量500ppm未満に乾燥したポリエステル組成物を、ポリエステル組成物温度240℃で、ろ過面積24.5φのフィルター目開き5μm焼結繊維フィルターに、吐出量10g/分で4時間流した際の、4時間後ろ過圧力と1時間後ろ過圧力の差(4時間後ろ過圧力-1時間後ろ過圧力)をろ過圧力差ΔPとした。
E. FIG. Filtration pressure difference ΔP
The filtration pressure difference ΔP was measured using a Fuji Melt Spinning Tester (MST-C400) manufactured by Fuji Filter. When the polyester composition dried to a water content of less than 500 ppm was flowed at a polyester composition temperature of 240 ° C. through a sintered fiber filter having a filter area of 24.5φ and a filter opening of 5 μm at a discharge rate of 10 g / min for 4 hours, The difference between the filtration pressure after 4 hours and the filtration pressure after 1 hour (the filtration pressure after 4 hours minus the filtration pressure after 1 hour) was defined as the filtration pressure difference ΔP.
 F.長期連続紡糸性
 ポリエステル組成物を含む可染ポリオレフィン組成物の紡糸時パック圧上昇傾向について、S、A、Bの3段階で評価した。評価は、Sが最も良く、A、Bの順に悪くなることを示す。SとAを合格とした。
F. Long-term continuous spinnability The tendency of the pack pressure during spinning of the dyeable polyolefin composition including the polyester composition to rise was evaluated in three stages of S, A, and B. The evaluation shows that S is the best and worsens in the order of A and B. S and A were accepted.
 G.溶融粘度比
 水分含有量500ppm未満に乾燥させたポリエステル組成物を、窒素雰囲気下、290℃で、キャピログラフ1B((株)東洋精機製作所社製)を用いてJIS7199:1999に準じて測定した。キャピラリーダイは内経1mm、長さ40mmを用いた。
G. FIG. Melt viscosity ratio The polyester composition dried to a water content of less than 500 ppm was measured in a nitrogen atmosphere at 290 ° C. using Capillograph 1B (manufactured by Toyo Seiki Seisaku-sho, Ltd.) according to JIS 7199: 1999. The capillary die used had an inner diameter of 1 mm and a length of 40 mm.
 予熱時間4分におけるせん断速度243.2sec-1での溶融粘度(4分後溶融粘度)と予熱時間20分におけるせん断速度243.2sec-1での溶融粘度(20分後溶融粘度)を求め、下記式(3)にて算出した。
溶融粘度比=(20分後溶融粘度/4分後溶融粘度)  ・・・(3)  。
The melt viscosity at a shear rate of 243.2 sec -1 at a preheating time of 4 minutes (melt viscosity after 4 minutes) and the melt viscosity at a shear rate of 243.2 sec -1 at a preheat time of 20 minutes (melt viscosity after 20 minutes) were determined. It was calculated by the following equation (3).
Melt viscosity ratio = (melt viscosity after 20 minutes / 4 melt viscosity after 4 minutes) (3).
 H.繊度
 温度20℃、湿度65%RHの環境下において、INTEC製電動検尺機を用いて、実施例によって得られた繊維100mをかせ取りした。得られたかせの重量を測定し、下記式(4)を用いて繊度(dtex)を算出した。なお、測定は1試料につき5回行い、その平均値を繊度とした。
繊度(dtex)=繊維100mの重量(g)×100 ・・・(4)  。
H. Fineness In an environment of a temperature of 20 ° C. and a humidity of 65% RH, 100 m of the fiber obtained in the example was skeined using an electric measuring machine manufactured by INTEC. The weight of the obtained skein was measured, and the fineness (dtex) was calculated using the following equation (4). The measurement was performed five times for one sample, and the average value was defined as fineness.
Fineness (dtex) = weight (g) of 100 m of fiber × 100 (4).
 I.伸度
 伸度は、実施例および比較例によって得られた繊維を試料とし、JIS L1013:2010(化学繊維フィラメント糸試験方法)8.5.1に準じて算出した。温度20℃、湿度65%RHの環境下において、オリエンテック社製テンシロンUTM-III-100型を用いて、初期試料長20cm、引張速度20cm/分の条件で引張試験を行った。最大荷重を示す点の伸び(L1)と初期試料長(L0)を用いて下記式(5)によって伸度(%)を算出した。なお、測定は1試料につき10回行い、その平均値を強度および伸度とした。
伸度(%)={(L1-L0)/L0}×100  ・・・(5)  。
I. Elongation The elongation was calculated according to JIS L1013: 2010 (Test method for chemical fiber filament yarn) 8.5.1, using the fibers obtained in Examples and Comparative Examples as samples. In an environment of a temperature of 20 ° C. and a humidity of 65% RH, a tensile test was performed using an Orientec Corp. Tensilon UTM-III-100 under the conditions of an initial sample length of 20 cm and a tensile speed of 20 cm / min. Using the elongation (L1) at the point indicating the maximum load and the initial sample length (L0), the elongation (%) was calculated by the following equation (5). The measurement was performed 10 times for each sample, and the average value was defined as the strength and elongation.
Elongation (%) = {(L1-L0) / L0} × 100 (5).
 J.ホットローラーへの組成物堆積量(mg/kg-繊維)
 実施例または比較例において、未延伸糸を延伸後、第1および第2ホットローラーに付着した組成物を剃刀にて剥離、回収し、重量を測定した。
J. Deposition amount of composition on hot roller (mg / kg-fiber)
In Examples and Comparative Examples, after the undrawn yarn was drawn, the compositions adhered to the first and second hot rollers were peeled off with a razor, collected, and measured for weight.
 K.ホットローラーへの組成物堆積量の判定
 上記Jにて測定した組成物堆積量をホットローラー連続稼動期間の指標として、S、A、Bの3段階で評価した。評価は、Sが最も良く、A、Bの順に悪くなることを示す。ホットローラーへの組成物堆積量がSとAを合格とした。
S;「45mg未満/kg-繊維」
A;「45mg以上/kg-繊維、55mg未満/kg-繊維」
B;「55mg以上/kg-繊維」  。
K. Judgment of Composition Deposition Amount on Hot Roller The composition deposition amount measured in J above was evaluated in three stages of S, A, and B as an index of the hot roller continuous operation period. The evaluation shows that S is the best and worsens in the order of A and B. The deposition amount of the composition on the hot roller was regarded as S and A.
S: "Less than 45 mg / kg-fiber"
A: "45 mg or more / kg-fiber, less than 55 mg / kg-fiber"
B: “55 mg or more / kg-fiber”.
 L.染色後の繊維色調(L*値)
 実施例または比較例によって得られた繊維を試料とし、英光産業製丸編機NCR-BL(釜径3インチ半(8.9cm)、27ゲージ)を用いて筒編み約2gを作製した後、炭酸ナトリウム1.5g/L、明成化学工業製界面活性剤グランアップUS-20 0.5g/Lを含む水溶液中、80℃で20分間精練後、流水で30分水洗し、60℃の熱風乾燥機内で60分間乾燥した。精練後の筒編みを135℃で1分間乾熱セットし、乾熱セット後の筒編みに対して、分散染料として日本化薬製Kayalon Polyester Blue UT-YAを1.3重量%加え、pHを5.0に調整した染色液中、浴比1:100、130℃で45分間染色後、流水で30分水洗し、60℃の熱風乾燥機内で60分間乾燥した。染色後の筒編みを、水酸化ナトリウム2g/L、亜ジチオン酸ナトリウム2g/L、明成化学工業製界面活性剤グランアップUS-20 0.5g/Lを含む水溶液中、浴比1:100、80℃で20分間還元洗浄後、流水で30分水洗し、60℃の熱風乾燥機内で60分間乾燥した。還元洗浄後の筒編みを135℃で1分間乾熱セットし、仕上げセットを行った。仕上げセット後の筒編みを試料とし、ミノルタ製分光測色計CM-3700d型を用いてD65光源、視野角度10°、光学条件をSCE(正反射光除去法)としてL*値を測定した。なお、測定は1試料につき3回行い、その平均値をL*値とした。
L. Fiber color tone after dyeing (L * value)
Using the fiber obtained in the example or the comparative example as a sample, about 2 g of tubular knitting was prepared using a circular knitting machine NCR-BL (3 inch and a half (8.9 cm), 27 gauge) manufactured by Eiko Sangyo. In an aqueous solution containing 1.5 g / L of sodium carbonate and 0.5 g / L of surfactant Granup US-20 manufactured by Meisei Chemical Co., Ltd., scoured at 80 ° C. for 20 minutes, washed with running water for 30 minutes, and dried with hot air at 60 ° C. Dried in the machine for 60 minutes. The scoured knitted fabric after scouring was dry-heat set at 135 ° C. for 1 minute, and 1.3% by weight of Nippon Kayaku Kayalon Polyester Blue UT-YA was added as a disperse dye to the tubular knitted fabric after the dry heat setting to adjust the pH. After dyeing in a dyeing solution adjusted to 5.0 at a bath ratio of 1: 100 and 130 ° C. for 45 minutes, it was washed with running water for 30 minutes and dried in a hot air dryer at 60 ° C. for 60 minutes. After the dyeing, the knitted tube was placed in an aqueous solution containing 2 g / L of sodium hydroxide, 2 g / L of sodium dithionite, and 0.5 g / L of surfactant Granup US-20 manufactured by Meisei Chemical Co., Ltd., at a bath ratio of 1: 100. After reducing and washing at 80 ° C. for 20 minutes, it was washed with running water for 30 minutes and dried in a 60 ° C. hot air drier for 60 minutes. The tubular knit after the reduction washing was dry-heat set at 135 ° C. for 1 minute, and a finishing set was performed. Using the tube knit after the finish setting as a sample, the L * value was measured using a spectrophotometer CM-3700d manufactured by Minolta, using a D65 light source, a viewing angle of 10 °, and optical conditions of SCE (specular reflection light removal method). The measurement was performed three times for one sample, and the average value was defined as L * value.
 M.発色性
 上記Lで測定したL*値を発色性の指標として、S、A、Bの3段階で評価した。L*値は数値が小さいほど、発色性に優れる。評価は、Sが最も良く、A、Bの順に悪くなることを示す。L*値がSとAを合格とした。
S;「30未満」
A;「30以上35未満」
B;「35以上」  。
M. Chromogenicity The L * value measured in the above L was evaluated as an index of chromogenicity in three stages of S, A and B. The smaller the L * value, the better the color developability. The evaluation shows that S is the best and worsens in the order of A and B. The L * value passed S and A.
S; "less than 30"
A: "30 or more and less than 35"
B: "35 or more".
 N.均染性
 上記Lで作製した仕上げセット後の筒編みについて、5年以上の品位判定の経験を有する検査員5名の合議によってS、A、Bの3段階で評価した。評価は、Sが最も良く、A、Bの順に悪くなることを示す。SとAを合格とした。
S;「非常に均一に染色されており、全く染め斑が認められない」
A;「ほぼ均一に染色されており、ほとんど染め斑が認められない」
B;「ほとんど均一に染色されておらず、うっすらと染め斑が認められる」  。
N. Leveling properties The tubular knitted fabric after finishing set prepared in the above L was evaluated in three stages of S, A, and B by discussion of five inspectors having five years or more of experience in quality evaluation. The evaluation shows that S is the best and worsens in the order of A and B. S and A were accepted.
S: "Very uniform dyeing, no dyeing spots observed"
A: "Stained almost uniformly, and almost no spots are observed"
B: "It is almost not uniformly stained, and slightly stained spots are observed."
 O.品位
 上記Lで作製した仕上げセット後の筒編みについて、5年以上の品位判定の経験を有する検査員5名の合議によって、S、A、Bの3段階で評価した。評価は、Sが最も良く、A、Bの順に悪くなることを示す。SとAを合格とした。
S;「鮮やかで深みのある発色が十分であり、品位に極めて優れる」
A;「鮮やかで深みのある発色が概ね十分であり、品位に優れる」
B;「鮮やかで深みのある発色がほとんどなく、品位に劣る」  。
O. Quality The tubular knitting after finishing set prepared in the above L was evaluated in three stages of S, A, and B by a consultation of five inspectors having 5 years or more of experience in quality judgment. The evaluation shows that S is the best and worsens in the order of A and B. S and A were accepted.
S; "Vivid and deep coloration is sufficient and extremely excellent in quality"
A: "Vivid and deep coloration is generally sufficient and excellent in quality."
B: "There is almost no vivid and deep coloring, and the quality is inferior."
 [実施例1]
(エステル交換反応)
 得られるポリマーに対してマグネシウム原子換算で600ppm相当の酢酸マグネシウムとテレフタル酸ジメチル100kgとエチレングリコール56kgを、150℃、窒素雰囲気下で溶融後、攪拌しながら230℃まで3時間かけて昇温し、メタノールを留出させ、エステル交換反応をおこない、ビス(ヒドロキシエチル)テレフタレートを得た。
[Example 1]
(Transesterification reaction)
To the obtained polymer, magnesium acetate equivalent to 600 ppm in terms of magnesium atom, 100 kg of dimethyl terephthalate and 56 kg of ethylene glycol were melted at 150 ° C. under a nitrogen atmosphere, and the temperature was raised to 230 ° C. over 3 hours with stirring, Methanol was distilled off and transesterification was performed to obtain bis (hydroxyethyl) terephthalate.
 (エステル化反応1回目)
 続いて、温度250℃、圧力1.2×100,000Paに保持されたエステル化反応槽に、テレフタル酸31kg、1,4-シクロヘキサンジカルボン酸57kgおよびエチレングリコール38kgのスラリーを4時間かけて順次供給し、水を留出させ、供給終了後もさらに1時間かけてエステル化反応を行い、得られたエステル化反応生成物101.5kgを重縮合槽に移送した。
(1st esterification reaction)
Subsequently, a slurry of 31 kg of terephthalic acid, 57 kg of 1,4-cyclohexanedicarboxylic acid and 38 kg of ethylene glycol was sequentially supplied to the esterification reaction tank maintained at a temperature of 250 ° C. and a pressure of 1.2 × 100,000 Pa over 4 hours. Then, water was distilled off, an esterification reaction was carried out for another 1 hour after the completion of the supply, and 101.5 kg of the obtained esterification reaction product was transferred to a polycondensation tank.
 (重縮合1回目)
 移送後、エステル化反応生成物に、得られるポリマーに対してアンチモン原子換算で300ppm相当の三酸化アンチモン、リン原子換算で40ppm相当のリン酸をエチレングリコール溶液として添加し、フェノール系酸化防止剤としてIRGANOX1010を150g添加した。その後、30rpmで撹拌しながら反応系を減圧して反応を開始した。反応器内を250℃から290℃まで徐々に昇温するとともに、圧力を110Paまで下げた。最終温度、最終圧力到達までの時間はともに60分とした。所定の攪拌トルクに到達した後、反応系を窒素パージして常圧に戻して重縮合反応を停止させ、30分間吐出前滞留を実施した。吐出前滞留実施後、ストランド状に吐出して冷却し、直ちにカッティングした。なお、減圧開始から所定の撹拌トルク到達までの時間は2時間00分であった。
(1st polycondensation)
After the transfer, to the esterification reaction product, 300 ppm equivalent of antimony trioxide in terms of antimony atom and 40 ppm equivalent of phosphorus atom in terms of phosphorus atom are added to the obtained polymer as an ethylene glycol solution, and as a phenolic antioxidant 150 g of IRGANOX1010 was added. Thereafter, the reaction system was depressurized while stirring at 30 rpm to start the reaction. The temperature inside the reactor was gradually raised from 250 ° C. to 290 ° C., and the pressure was lowered to 110 Pa. The time required to reach the final temperature and the final pressure was 60 minutes. After reaching a predetermined stirring torque, the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, and retention before discharge was carried out for 30 minutes. After the retention before discharge, the liquid was discharged in a strand shape, cooled, and immediately cut. The time from the start of the pressure reduction to the arrival of the predetermined stirring torque was 2 hours and 00 minutes.
 (エステル化反応2回目)
 続いて、エステル化反応1回目で使用し、温度250℃、圧力1.2×100,000Paに保持された、エステル化反応物が残留しているエステル化反応槽に、テレフタル酸31kg、1,4-シクロヘキサンジカルボン酸57kgおよびエチレングリコール38kgのスラリーを再び4時間かけて順次供給し、水を留出させ、供給終了後もさらに1時間かけてエステル化反応を行い、得られたエステル化反応生成物101.5kgを重縮合槽に移送した。
(2nd esterification reaction)
Subsequently, 31 kg of terephthalic acid, 1, 1 were used in an esterification reaction tank which was used in the first esterification reaction and was kept at a temperature of 250 ° C. and a pressure of 1.2 × 100,000 Pa and in which an esterification reaction product remained. A slurry of 57 kg of 4-cyclohexanedicarboxylic acid and 38 kg of ethylene glycol was again supplied sequentially over 4 hours to distill water, and after the supply was completed, the esterification reaction was carried out for another 1 hour. 101.5 kg of the product was transferred to a polycondensation tank.
 (重縮合2回目)
 移送後、エステル化反応生成物に、得られるポリマーに対してアンチモン原子換算で300ppm相当の三酸化アンチモン、リン原子換算で40ppm相当のリン酸をエチレングリコール溶液として添加し、フェノール系酸化防止剤としてIRGANOX1010を150g添加した。その後、30rpmで撹拌しながら反応系を減圧して反応を開始した。反応器内を250℃から290℃まで徐々に昇温するとともに、圧力を110Paまで下げた。最終温度、最終圧力到達までの時間はともに60分とした。所定の攪拌トルクに到達した後、反応系を窒素パージして常圧に戻して重縮合反応を停止させ、30分間吐出前滞留を実施した。吐出前滞留実施後、ストランド状に吐出して冷却し、直ちにカッティングしてポリエステル組成物のペレットを得た。なお、減圧開始から所定の撹拌トルク到達までの時間は2時間00分であった。ポリマー物性を表1にまとめた。
(2nd polycondensation)
After the transfer, to the esterification reaction product, 300 ppm equivalent of antimony trioxide in terms of antimony atom and 40 ppm equivalent of phosphorus atom in terms of phosphorus atom are added to the obtained polymer as an ethylene glycol solution, and as a phenolic antioxidant 150 g of IRGANOX1010 was added. Thereafter, the reaction system was depressurized while stirring at 30 rpm to start the reaction. The temperature inside the reactor was gradually raised from 250 ° C. to 290 ° C., and the pressure was lowered to 110 Pa. The time required to reach the final temperature and the final pressure was 60 minutes. After reaching a predetermined stirring torque, the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, and retention before discharge was carried out for 30 minutes. After the stagnation before discharge was performed, the mixture was discharged in a strand shape, cooled, and immediately cut to obtain pellets of the polyester composition. The time from the start of the pressure reduction to the arrival of the predetermined stirring torque was 2 hours and 00 minutes. Table 1 summarizes the polymer physical properties.
 (可染性ポリオレフィン組成物の紡糸)
 続いて、ポリプロピレン(PP)(日本ポリプロ製ノバテックMA2)を87.5重量%、ポリエステル組成物を10重量%、相溶化剤としてアミン変性スチレン-エチレン-ブチレン-スチレン共重合体(JSR製ダイナロン8660P)を2重量%用い、酸化防止剤として、フェノール系化合物である1,3,5-トリス[[4-(1,1-ジメチルエチル)-3-ヒドロキシ-2,6-ジメチルフェニル]メチル]-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(CYTEC製CYANOX1790)を0.05重量部添加して、二軸エクストルーダーを用いて混練温度230℃で混練を行った。二軸エクストルーダーより吐出されたストランドを水冷した後、ペレタイザーにて5mm長程度にカットして、ペレットを得た。得られたペレットを95℃で12時間真空乾燥した後、エクストルーダー型溶融紡糸機へ供給して溶融させ、紡糸温度250℃、吐出量31.5g/分で紡糸口金(吐出孔径0.18mm、吐出孔長0.23mm、孔数36、丸孔)から吐出させて紡出糸条を得た。この紡出糸条を風温20℃、風速25m/分の冷却風で冷却し、給油装置で油剤を付与して収束させ、3000m/分で回転する第1ゴデットローラーで引き取り、第1ゴデットローラーと同じ速度で回転する第2ゴデットローラーを介して、ワインダーで巻き取って105dtex-36fの未延伸糸を得た。得られた未延伸糸を第1ホットローラー温度90℃、第2ホットローラー温度130℃、延伸倍率2.1倍、延伸速度500m/分の条件で延伸し、50dtex-36fの可染ポリオレフィン繊維を得た。
(Spinning of dyeable polyolefin composition)
Subsequently, 87.5% by weight of polypropylene (PP) (Novatec MA2 manufactured by Nippon Polypropylene), 10% by weight of a polyester composition, and an amine-modified styrene-ethylene-butylene-styrene copolymer (Dinalon 8660P manufactured by JSR) as a compatibilizer. ) And 2,3,5-tris [[4- (1,1-dimethylethyl) -3-hydroxy-2,6-dimethylphenyl] methyl], a phenolic compound, as an antioxidant 0.05 parts by weight of -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione (CYANOX1790 manufactured by CYTEC) was added, and the mixture was kneaded at 230 ° C. using a twin-screw extruder. Kneading was performed. After the strand discharged from the twin-screw extruder was water-cooled, it was cut into a length of about 5 mm with a pelletizer to obtain a pellet. The obtained pellets were vacuum-dried at 95 ° C. for 12 hours, then supplied to an extruder-type melt spinning machine to be melted, and then spun at a spinning temperature of 250 ° C. and a discharge rate of 31.5 g / min (a discharge hole diameter of 0.18 mm, (A discharge hole length of 0.23 mm, 36 holes, and a round hole) to obtain a spun yarn. The spun yarn is cooled by a cooling air having a wind temperature of 20 ° C. and a wind speed of 25 m / min, and an oil agent is applied and converged by a lubricating device and taken up by a first godet roller rotating at 3000 m / min. It was wound by a winder through a second godet roller rotating at the same speed as the dead roller, to obtain a 105 dtex-36f undrawn yarn. The obtained undrawn yarn is drawn under the conditions of a first hot roller temperature of 90 ° C., a second hot roller temperature of 130 ° C., a draw ratio of 2.1 times, and a draw speed of 500 m / min to obtain a dyeable polyolefin fiber of 50 dtex-36f. Obtained.
 得られた可染ポリオレフィン繊維の繊維特性、布帛特性および延伸時に第1および第2ホットローラーに付着、堆積した組成物堆積量を表1に示す。 Table 1 shows the fiber properties, fabric properties, and the amount of the composition deposited and deposited on the first and second hot rollers during stretching of the obtained dyeable polyolefin fiber.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実施例2~15]、[比較例1~4]
 ポリエステル組成物の原料および固有粘度IVを表1、表2のように変更した以外は、実施例1と同様にして可染性ポリオレフィン繊維を得た。得られた可染ポリオレフィン繊維の繊維特性、布帛特性および延伸時に第1および第2ホットローラーに付着、堆積した組成物堆積量を表1、表2に示す。
[Examples 2 to 15], [Comparative Examples 1 to 4]
Dyeable polyolefin fibers were obtained in the same manner as in Example 1, except that the raw materials and the intrinsic viscosity IV of the polyester composition were changed as shown in Tables 1 and 2. Tables 1 and 2 show the fiber properties, cloth properties, and the amount of the composition deposited and deposited on the first and second hot rollers during stretching of the obtained dyeable polyolefin fiber.
 表1、2の結果より、本発明のポリエステル組成物はΔPが低く、長期連続紡糸性に優れることがわかる。また、フェノール系ではない酸化防止剤を用いても、長期連続紡糸性の改善効果が小さいことがわかる。 結果 The results in Tables 1 and 2 show that the polyester composition of the present invention has a low ΔP and is excellent in long-term continuous spinnability. In addition, it can be seen that even when an antioxidant other than phenol is used, the effect of improving long-term continuous spinnability is small.
 本発明のポリエステル組成物を含む可染性ポリオレフィン組成物は、長期連続紡糸性に優れ、かつ鮮やかで深みのある発色性が付与されたものであり、繊維および繊維構造体として好適に用いることができる。 The dyeable polyolefin composition containing the polyester composition of the present invention has excellent long-term continuous spinnability, and has a vivid and deep coloring property, and is preferably used as a fiber or a fiber structure. it can.

Claims (3)

  1.  テレフタル酸および/またはそのエステル形成性誘導体と、シクロヘキサンジカルボン酸および/またはそのエステル形成性誘導体とを含むジカルボン酸成分と、エチレングリコールとを重縮合した共重合ポリエステルを主成分とし、下記(I)を満足するポリエステル組成物。
    (I)ポリエステル組成物に対して、フェノール残基を1~35mmol/kg含有する。
    A copolymer polyester obtained by polycondensing terephthalic acid and / or an ester-forming derivative thereof, a dicarboxylic acid component containing cyclohexanedicarboxylic acid and / or an ester-forming derivative thereof, and ethylene glycol as a main component; A polyester composition that satisfies the following.
    (I) The polyester composition contains 1 to 35 mmol / kg of a phenol residue.
  2.  下記(II)を満足することを特徴とする請求項1記載のポリエステル組成物。
    (II)ろ過面積24.5φのフィルター目開き5μm焼結繊維フィルターに、水分含有量500ppm未満に乾燥したポリエステル組成物を、ポリエステル組成物温度240℃、吐出量10g/分で4時間流した際の、4時間後ろ過圧力と1時間後ろ過圧力の差をろ過圧力差ΔPとしたとき、ΔPが下記式(1)を満足する。
     ΔP≦2.0MPa ・・・(1)
    The polyester composition according to claim 1, which satisfies the following (II).
    (II) When a polyester composition dried to a water content of less than 500 ppm is passed through a sintered fiber filter with a filter area of 24.5φ and a pore size of 5 μm at a polyester composition temperature of 240 ° C. and a discharge rate of 10 g / min for 4 hours. When the difference between the filtration pressure after 4 hours and the filtration pressure after 1 hour is defined as the filtration pressure difference ΔP, ΔP satisfies the following expression (1).
    ΔP ≦ 2.0MPa (1)
  3.  下記(III)および(IV)の全てを満足することを特徴とする請求項1または2記載のポリエステル組成物。
    (III)融解熱量ΔHmが、0.1~30J/gである。
    (IV)固有粘度IVが、0.60~0.70である。
    3. The polyester composition according to claim 1, which satisfies all of the following (III) and (IV).
    (III) The heat of fusion ΔHm is 0.1 to 30 J / g.
    (IV) The intrinsic viscosity IV is 0.60 to 0.70.
PCT/JP2019/032366 2018-08-28 2019-08-20 Polyester composition WO2020045156A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019565588A JP7459510B2 (en) 2018-08-28 2019-08-20 Polyester Composition
CN201980051978.1A CN112543790B (en) 2018-08-28 2019-08-20 Polyester composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-159490 2018-08-28
JP2018159490 2018-08-28

Publications (1)

Publication Number Publication Date
WO2020045156A1 true WO2020045156A1 (en) 2020-03-05

Family

ID=69644520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032366 WO2020045156A1 (en) 2018-08-28 2019-08-20 Polyester composition

Country Status (4)

Country Link
JP (1) JP7459510B2 (en)
CN (1) CN112543790B (en)
TW (1) TWI805829B (en)
WO (1) WO2020045156A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309934A (en) * 1994-05-17 1995-11-28 Nippon Ester Co Ltd Elastic copolyester
JP2001522947A (en) * 1997-11-06 2001-11-20 イーストマン ケミカル カンパニー Copolyester binder fiber
JP2010121080A (en) * 2008-11-21 2010-06-03 Toray Ind Inc Method for producing polyester and film using the same
JP2011052190A (en) * 2009-09-04 2011-03-17 Toray Ind Inc Method for producing polyester and film using the same
JP2014133781A (en) * 2013-01-08 2014-07-24 Nippon Ester Co Ltd Polyester resin composition and direct blow molded article comprising the same
JP2015042710A (en) * 2013-08-26 2015-03-05 日本エステル株式会社 Polyester resin composition and direct blow-molded article consisting thereof
JP2015147895A (en) * 2014-02-07 2015-08-20 ユニチカ株式会社 Polyester resin composition, and injection-molded article and blow-molded article composed of the polyester resin composition
JP2016084401A (en) * 2014-10-24 2016-05-19 帝人株式会社 Copolymerized polyester and polyester composition
JP2017186562A (en) * 2016-04-05 2017-10-12 ユニチカ株式会社 Polyester resin composition and molded body consisting of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443876B (en) * 2011-09-19 2013-04-17 江苏国望高科纤维有限公司 Preparation method for polyester fiber with compound ultraviolet ray resisting, aging resisting, moisture absorbing and quick drying functions

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309934A (en) * 1994-05-17 1995-11-28 Nippon Ester Co Ltd Elastic copolyester
JP2001522947A (en) * 1997-11-06 2001-11-20 イーストマン ケミカル カンパニー Copolyester binder fiber
JP2010121080A (en) * 2008-11-21 2010-06-03 Toray Ind Inc Method for producing polyester and film using the same
JP2011052190A (en) * 2009-09-04 2011-03-17 Toray Ind Inc Method for producing polyester and film using the same
JP2014133781A (en) * 2013-01-08 2014-07-24 Nippon Ester Co Ltd Polyester resin composition and direct blow molded article comprising the same
JP2015042710A (en) * 2013-08-26 2015-03-05 日本エステル株式会社 Polyester resin composition and direct blow-molded article consisting thereof
JP2015147895A (en) * 2014-02-07 2015-08-20 ユニチカ株式会社 Polyester resin composition, and injection-molded article and blow-molded article composed of the polyester resin composition
JP2016084401A (en) * 2014-10-24 2016-05-19 帝人株式会社 Copolymerized polyester and polyester composition
JP2017186562A (en) * 2016-04-05 2017-10-12 ユニチカ株式会社 Polyester resin composition and molded body consisting of the same

Also Published As

Publication number Publication date
TWI805829B (en) 2023-06-21
JP7459510B2 (en) 2024-04-02
JPWO2020045156A1 (en) 2021-08-10
CN112543790B (en) 2023-08-01
TW202020011A (en) 2020-06-01
CN112543790A (en) 2021-03-23

Similar Documents

Publication Publication Date Title
KR101858294B1 (en) Cationic-dyeable polyester fiber and conjugated fiber
KR20160094836A (en) Bicomponent conjugate fibers, complex yarns and fabrics having high crimping property
KR20070039494A (en) Polytrimethylene terephthalate
JP2007063714A (en) Ultrafine polyester fiber and cloth
JP4677726B2 (en) Polyester composition and fibers comprising the same
JP7251260B2 (en) Cationic dyeable polyester and method for producing the same
JP5336310B2 (en) Method for producing polyester composition for producing high-definition polyester fiber with alkali weight loss
JP2013064156A (en) Method of manufacturing polyester and polyester fiber by using the polyester
WO2017022569A1 (en) Poly(ethylene terephthalate) fiber and polyester resin
WO2020045156A1 (en) Polyester composition
JP2019147927A (en) Copolyester resin composition, and dyeable polyolefin resin composition having the same, and fiber including dyeable polyolefin resin composition
JP5245630B2 (en) Polyester production method and polyester fiber using the polyester
CN103467930B (en) Polyester composition and manufacture method thereof and purposes
KR102274289B1 (en) Polyester composition for manufacturing composite fiber with deep coloration, composite fiber manufactured including the same composition and manufacturing method of the same fiber
JP2005273059A (en) Hygroscopic polyester fiber and method for producing the same
JP2009221412A (en) Process of manufacturing modified polyester
JP2007009376A (en) Specific polyester multi-hollow fiber
JP4370955B2 (en) Core-sheath type polyester fiber excellent in hygroscopicity, method for producing the same, and hygroscopic fabric
JP2023001047A (en) Method for producing polyester composition
JP2002179893A (en) Modified polyester resin
JP3858530B2 (en) Polyester composition for melt spinning, polyester highly oriented undrawn yarn and method for producing the same
JP2022100197A (en) Copolyester
JP2014105397A (en) High-deep-colored polyester fiber
JP2009144293A (en) Method for producing cation-dyeable polyester fiber
JP2019059853A (en) Moisture absorbing and releasing polyester composition and filament

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019565588

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853553

Country of ref document: EP

Kind code of ref document: A1