WO2020045082A1 - Thermoplastic elastomer composition and production method therefor - Google Patents

Thermoplastic elastomer composition and production method therefor Download PDF

Info

Publication number
WO2020045082A1
WO2020045082A1 PCT/JP2019/031875 JP2019031875W WO2020045082A1 WO 2020045082 A1 WO2020045082 A1 WO 2020045082A1 JP 2019031875 W JP2019031875 W JP 2019031875W WO 2020045082 A1 WO2020045082 A1 WO 2020045082A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
thermoplastic elastomer
aromatic vinyl
aromatic
vinyl compound
Prior art date
Application number
PCT/JP2019/031875
Other languages
French (fr)
Japanese (ja)
Inventor
亘佑 中村
雄志 熊谷
勝 長谷川
哲央 野口
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2020539323A priority Critical patent/JP7348191B2/en
Publication of WO2020045082A1 publication Critical patent/WO2020045082A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/02Internal Trim mouldings ; Internal Ledges; Wall liners for passenger compartments; Roof liners
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Definitions

  • the present invention relates to a thermoplastic elastomer composition having excellent heat resistance, oil resistance, and scratch resistance, and a molded article, a sheet, and a skin material using the same, and a method for producing the same.
  • Skin materials covering the surface of various hard machines such as passenger cars and various automobiles, furniture and indoor interiors, and robots are required to have various functions in addition to various levels of softness.
  • interior skin materials for automobiles heat resistance, weather resistance, cold resistance, creasing retention including heat history during molding, scratch resistance to human contact (scratch wear resistance), accompanying humans
  • scratch resistance to human contact scratch wear resistance
  • Oil resistance and chemical resistance to chemical substances are required.
  • a skin material sheet made of soft vinyl chloride (soft PVC) to which a plasticizer is added has been used.
  • Soft PVC has excellent softness, oil resistance, and scratch resistance, and is a material that is advantageous in cost.
  • soft PVC contains problems of management during incineration, that is, volatile organic compounds (VOCs) due to plasticizers contained in large quantities in recent years, concerns that some plasticizers may become environmental hormones, and heavy metal stabilizers. Therefore, there is a demand for materials having better environmental properties. Therefore, skin material sheets made of TPO (thermoplastic olefin resin) or TPS (thermoplastic styrene resin) have been receiving attention. TPO and TPS are characterized by heat resistance, softness, recyclability, and environmental friendliness, and have been widely used.
  • These materials are compounds composed of a soft component and a heat-resistant component, but have the problem that the scratch resistance is reduced to an insufficient level by the PP (isotactic polypropylene) component used as the heat-resistant component.
  • the PP isotactic polypropylene
  • the crosslinked ethylene-propylene rubber or the crosslinked or non-crosslinked styrene-based hydrogenated block copolymer used as a soft component does not have sufficient oil resistance, and may swell or deform in a severe environment. Even if an attempt is made to improve the scratch resistance by reducing the amount of PP added, there is a problem that the heat resistance, in particular, the surface grain retention at the time of sheet molding is reduced and the grain disappears.
  • Patent Literatures 1 and 2 disclose a so-called “method” obtained by a method of copolymerizing a small amount of divinylbenzene with a styrene-ethylene copolymer and introducing a polystyrene chain (cross chain) via a vinyl group of the divinylbenzene unit.
  • Cross copolymers have been proposed.
  • the cross copolymer obtained by this method is a block copolymer having a branched structure having a styrene-ethylene copolymer chain as a soft segment and polystyrene as a hard segment.
  • JP 2009-102515 A International Publication No. 2007/139116 International Publication No. 2009/128444 JP 2010-24215 A
  • Cloth copolymers are thermoplastic elastomers that have excellent properties such as scratch resistance, softness, transparency, and moldability, but depending on the application, heat resistance and oil resistance may be insufficient. However, there is a problem that it is difficult to improve heat resistance and oil resistance while maintaining such characteristics. In order to cope with such a problem, if PP is added to increase the heat resistance, the abrasion resistance with scratches is reduced as in the case of TPO and TPS. Therefore, the addition of PPE (polyphenylene ether) resin (Patent Document 3) and the addition of TPEE (Polyester soft resin) (Patent Document 4) improve the heat resistance.
  • PPE polyphenylene ether
  • TPEE Polyyester soft resin
  • Patent Literature 1 describes in particular a tape base material, an electric wire covering material, and a foamed material using an electron beam crosslinked body of a cross copolymer.
  • Patent Document 2 describes a composition obtained by dynamically cross-linking a cross-copolymer with another polymer, particularly a crystalline polypropylene.
  • thermoplastic elastomer composition using the above-mentioned cross-copolymer according to the conventional technique still cannot be said to have sufficient heat resistance and oil resistance, and does not have sufficient scratch resistance.
  • interior skin materials for automobiles and the like are required to have high heat resistance, oil resistance, and scratch resistance, and are also required to have high-temperature oil resistance, so that a higher-performance thermoplastic elastomer composition has been required. .
  • the present invention can provide a thermoplastic elastomer composition having excellent heat resistance, oil resistance, and scratch resistance, and a molded article, a sheet, and a skin material using the same.
  • the storage elastic modulus E ′ can be measured at 150 ° C. and 190 ° C., and the ratio of the storage elastic modulus E ′ between 190 ° C. and 150 ° C. (E ′ ( 190) / E ′ (150)) is 0.3 or more, the thermoplastic elastomer composition according to [1] or [2].
  • the cross copolymer (A) has a structure in which an olefin-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit.
  • the thermoplastic elastomer composition according to any one of [1] to [3], which is a copolymer satisfying at least one of the following conditions (1) to (3).
  • the content of the aromatic vinyl compound monomer unit of the olefin-aromatic vinyl compound-aromatic polyene copolymer is 10 to 30 mol%, and the content of the aromatic polyene monomer unit is 0.01 mol% or more. 0.5 mol% or less, the balance being the content of olefin monomer units.
  • the olefin-aromatic vinyl compound-aromatic polyene copolymer has a weight average molecular weight of 50,000 or more and 300,000 or less, and a molecular weight distribution (Mw / Mn) of 1.8 or more and 6 or less.
  • the content of the olefin-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is in the range of 60 to 95% by mass.
  • the cross copolymer (A) has a structure in which an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit.
  • the thermoplastic elastomer composition according to any one of [1] to [4], which is a copolymer satisfying at least one of the following conditions (1) to (3).
  • the content of the aromatic vinyl compound monomer unit of the ethylene-aromatic vinyl compound-aromatic polyene copolymer is 10 to 30 mol%, and the content of the aromatic polyene monomer unit is 0.01 mol% or more. 0.5 mol% or less, with the balance being the ethylene monomer unit content.
  • the ethylene-aromatic vinyl compound-aromatic polyene copolymer has a weight average molecular weight of 50,000 or more and 300,000 or less, and a molecular weight distribution (Mw / Mn) of 1.8 or more and 6 or less.
  • the content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is in the range of 70 to 95% by mass.
  • the cross copolymer (A) is composed of 70 to 95% by mass of an olefin-aromatic vinyl-aromatic polyene copolymer having an aromatic vinyl monomer unit content of 10 to 30% by mole, and aromatic vinyl monomer. 5 to 30% by mass of an aromatic vinyl polymer comprising monomer units, and the olefin-aromatic vinyl-aromatic polyene copolymer and the aromatic vinyl polymer cannot be substantially separated by solvent separation.
  • the thermoplastic elastomer composition according to any one of [1] to [5].
  • thermoplastic elastomer composition according to any one of [1] to [6], wherein the polyethylene resin (B) is high density polyethylene (HDPE).
  • B polyethylene resin
  • HDPE high density polyethylene
  • thermoplastic elastomer composition further comprising 1 to 40 parts by mass of a polypropylene resin (C) based on 100 parts by mass of the thermoplastic elastomer composition according to any one of [1] to [7].
  • thermoplastic elastomer composition blended by mass.
  • thermoplastic elastomer composition according to any one of [1] to [9].
  • a multilayer sheet including the sheet according to [11].
  • a skin material comprising the sheet according to [11] or the multilayer sheet according to [12].
  • thermoplastic elastomer composition comprising a step of mixing a cross-copolymer (A), a polyethylene-based resin (B), and a crosslinking agent under shear and crosslinking.
  • An aromatic vinyl compound monomer and an anionic polymerization initiator are added to the obtained olefin-aromatic vinyl compound-aromatic polyene copolymer, and anion polymerization is performed to obtain the cross copolymer (A).
  • thermoplastic elastomer composition obtained in [16] or [17].
  • a method for producing a thermoplastic elastomer composition further comprising:
  • thermoplastic elastomer composition having excellent heat resistance, oil resistance, and scratch resistance, and a molded article, a sheet, and a skin material using the same.
  • thermoplastic elastomer composition which concerns on an Example and a comparative example.
  • thermoplastic elastomer composition of the present invention will be described in detail.
  • the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within a range that does not impair the effects of the present invention.
  • a numerical range includes a lower limit value and an upper limit value unless otherwise specified.
  • thermoplastic elastomer composition contains the cross copolymer (A) and the polyethylene resin (B).
  • Cross-copolymer (A) any one can be used as long as the polymer main chain and another polymer chain are cross-linked.
  • the cross copolymer (A) may have a structure in which an olefin-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded.
  • the cross-copolymer (A) is composed of an olefin-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain via an aromatic polyene monomer unit. May have a combined structure.
  • the cross copolymer (A) may be a copolymer satisfying at least one, more preferably at least two, and more preferably all of the following conditions (1) to (3).
  • the content of the aromatic vinyl compound monomer unit of the olefin-aromatic vinyl compound-aromatic polyene copolymer is 10 to 30 mol%, more preferably 12 to 28 mol%, and further preferably 15 to 25 mol. %,
  • the content of the aromatic polyene monomer unit is 0.01 mol% or more and 0.5 mol% or less, more preferably 0.01 mol% or more and 0.4 mol% or less, further preferably 0.02 mol% or more.
  • the weight average molecular weight of the olefin-aromatic vinyl compound-aromatic polyene copolymer is from 50,000 to 300,000, and the molecular weight distribution (Mw / Mn) is from 1.8 to 6, more preferably 1.8 or more. 5 or less, more preferably 1.8 or more and 4 or less.
  • the content of the olefin-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is 60 to 95% by mass, more preferably 65 to 90% by mass, and further preferably 70 to 95% by mass. In the range.
  • the olefin monomer unit examples include ⁇ -olefins having 3 to 20 carbon atoms, such as propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, vinylcyclohexane, and cyclic olefins, ie, cyclopentene.
  • ⁇ -olefins and cyclic olefins for example, and norbornene.
  • the olefin may include an ethylene monomer, and most preferably is an ethylene monomer.
  • the ethylene monomer unit is preferably used alone.
  • a relatively small amount of an ⁇ -olefin having 3 to 20 carbon atoms is used as long as the effect of the present invention is not impaired.
  • ⁇ -olefin-based monomers and cyclic olefin-based monomers such as propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, vinylcyclohexane, and cyclic olefins such as cyclopentene and norbornene May be copolymerized.
  • aromatic vinyl compound monomer unit examples include styrene and various substituted styrenes such as p-methylstyrene, m-methylstyrene, o-methylstyrene, ot-butylstyrene, mt-butylstyrene, and p-methylstyrene.
  • styrene and various substituted styrenes such as p-methylstyrene, m-methylstyrene, o-methylstyrene, ot-butylstyrene, mt-butylstyrene, and p-methylstyrene.
  • units derived from each styrene monomer such as t-butylstyrene, p-chlorostyrene, and o-chlorostyrene.
  • a styrene unit a p-methylstyrene unit and a p-chlorostyrene unit are preferred, and a styrene unit is particularly preferred.
  • aromatic vinyl compound monomer units may be used alone, or two or more of them may be used in combination.
  • aromatic polyene monomer unit for example, an aromatic polyene having 10 to 30 carbon atoms and having a plurality of double bonds (vinyl groups) and one or more aromatic groups can be used.
  • aromatic polyene monomers such as 1,3-divinyl-4,5,8-tributylnaphthalene, and preferably any one of an orthodivinylbenzene unit, a paradivinylbenzene unit and a metadivinylbenzene unit.
  • One type or a mixture of two or more types is suitably used.
  • the content ratio in the olefin-aromatic vinyl compound-aromatic polyene copolymer is in the range of 10 to 30 mol% of the monomer unit of the aromatic vinyl compound from the viewpoint of improving softness and scratch resistance. Is preferred.
  • the amount of the aromatic vinyl compound monomer unit is 10 mol% or more, sufficient softness and scratch resistance can be obtained.
  • the amount of the aromatic vinyl compound monomer unit is 30 mol% or less, sufficient flexibility at low temperatures is obtained, and the scratch resistance is improved.
  • the content of the aromatic polyene monomer unit may be 0.01 to 0.5 mol%, preferably 0.02 to 0.1 mol%.
  • the aromatic polyene monomer unit is at least 0.01 mol%, the mechanical properties will be improved, and when it is at most 0.5 mol%, the moldability will be improved.
  • the content ratio of the olefin-aromatic vinyl compound-aromatic polyene copolymer chain and the aromatic vinyl compound polymer chain is preferably from the viewpoint of improvement in softness.
  • the amount of the aromatic vinyl compound-aromatic polyene copolymer chain may be 70 to 95% by mass, and the amount of the aromatic vinyl compound polymer chain may be 5 to 30% by mass. Further, from the viewpoint of improving the physical properties of the thermoplastic elastomer composition, from 82 to 92% by mass of the olefin-aromatic vinyl compound-based copolymer, and from 8 to 18% by mass of the polymer comprising the aromatic vinyl compound monomer unit. %.
  • the cross copolymer (A) is obtained by copolymerizing ethylene, an aromatic vinyl compound, and an aromatic polyene monomer using a coordination polymerization catalyst to form an ethylene-aromatic vinyl compound-aromatic
  • a polyene copolymer is synthesized, and in an anion polymerization step, a polymerization method is carried out using an anion polymerization initiator in the coexistence of an ethylene-aromatic vinyl compound-aromatic polyene copolymer and an aromatic vinyl compound monomer.
  • the obtained copolymer may further satisfy all of the following conditions (1) to (3).
  • the content of the aromatic vinyl compound monomer unit of the ethylene-aromatic vinyl compound-aromatic polyene copolymer is 10 to 30 mol%, and the content of the aromatic polyene monomer unit is 0.01 mol% or more. 0.5 mol% or less, with the balance being the ethylene monomer unit content.
  • the ethylene-aromatic vinyl compound-aromatic polyene copolymer has a weight average molecular weight of 50,000 or more and 300,000 or less, and a molecular weight distribution (Mw / Mn) of 1.8 or more and 6 or less.
  • the content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is in the range of 60 to 95% by mass.
  • the olefin-aromatic vinyl compound-aromatic polyene copolymer chain and the aromatic vinyl compound polymer chain may be bonded via an aromatic polyene monomer unit.
  • the formation of the bond mediated by the aromatic polyene monomer unit can be proved by the following observable phenomenon.
  • an ethylene-styrene (aromatic vinyl compound) -divinylbenzene (aromatic polyene) copolymer chain and a polystyrene (aromatic vinyl compound) chain are linked via a divinylbenzene unit. The case where they are combined is shown.
  • the peak intensity (area) of the vinyl group hydrogen (proton) of the divinylbenzene unit is ethylene-styrene-
  • the peak intensity is less than 50%, preferably less than 20%.
  • the divinylbenzene unit is copolymerized simultaneously with the polymerization of the styrene unit, and the ethylene-styrene-divinylbenzene copolymer chain and the polystyrene chain are bonded via the divinylbenzene unit. Therefore, in the cross-copolymer after anionic polymerization, the peak intensity of hydrogen (proton) of the vinyl group of the divinylbenzene unit is greatly reduced. Actually, the peak of hydrogen (proton) of the vinyl group of the divinylbenzene unit has substantially disappeared in the cross copolymer after anionic polymerization.
  • an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit.
  • an ethylene-styrene-divinylbenzene copolymer chain and a polystyrene chain are bonded via a divinylbenzene unit
  • the cross-copolymer having a bond in which an aromatic polyene monomer unit is interposed therein contains ethylene-styrene- Divinylbenzene copolymer chains and polystyrene chains cannot be separated.
  • Ethylene-styrene-divinylbenzene copolymer and polystyrene having the same composition as the ethylene-styrene-divinylbenzene copolymer chain contained in the ordinary cross-copolymer are subjected to Soxhlet extraction with boiling acetone to form acetone-insoluble parts. Usually, it can be separated into polystyrene as an acetone-soluble part in an ethylene-styrene-divinylbenzene copolymer.
  • the cross copolymer (A) has an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain, and is an ethylene-aromatic vinyl compound.
  • substantially as used herein means that the present cross-copolymer may contain a relatively small amount of an aromatic vinyl compound (polystyrene) homopolymer that does not impair the effects of the present invention. I do.
  • the weight average molecular weight Mw of the aromatic vinyl compound polymer chain contained in the cross copolymer (A) is arbitrary, but is generally in the range of 10,000 to 80,000. In the cross copolymer, the molecular weight of the aromatic vinyl compound polymer chain bonded to the main chain olefin-aromatic vinyl compound-aromatic polyene copolymer cannot be determined.
  • the weight average molecular weight Mw of the aromatic vinyl compound polymer homopolymer contained in the copolymer in a relatively small amount is defined as the weight average molecular weight Mw of the aromatic vinyl compound polymer chain contained in the cross copolymer. I have.
  • the amount of the aromatic polyene (eg, divinylbenzene) unit contained was significantly smaller than that of the aromatic vinyl compound (eg, styrene) unit. Since the position overlaps with the aromatic vinyl compound (for example, styrene) unit, the peak cannot be directly confirmed.
  • the peak derived from the olefin-aromatic vinyl compound-aromatic polyene copolymer (ethylene-styrene-divinylbenzene copolymer) and the aromatic A peak derived from a vinyl compound polymer (polystyrene) was observed, and an olefin unit derived from an olefin-aromatic vinyl compound-aromatic polyene copolymer (ethylene-styrene-divinylbenzene copolymer) of a cross-copolymer was observed.
  • aromatic vinyl compound (styrene) unit content aromatic vinyl compound polymer (polystyrene) content.
  • the olefin-aromatic vinyl compound-aromatic polyene copolymer ethylene-styrene-divinylbenzene copolymer
  • the polyene (divinylbenzene) content is determined by including the aromatic vinyl compound (styrene) unit content in which the peak positions overlap with each other.
  • the above-mentioned acetone-insoluble portion which occupies most of the cross-copolymer includes an ethylene-aromatic vinyl compound-aromatic polyene copolymer (ethylene-styrene-divinylbenzene copolymer) and an aromatic vinyl compound polymer ( Polystyrene), which cannot be separated by further fractionation. Therefore, in a preferred cross copolymer, the ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and the aromatic vinyl compound polymer chain have a bond (for example, ethylene-styrene-divinylbenzene copolymer). (A polymer chain and a polystyrene chain have a bond).
  • the cross-copolymer has substantially no gel component despite the bond between the ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and the aromatic vinyl compound polymer chain. And a practical molding processability as a thermoplastic resin, that is, a specific MFR value.
  • the cross copolymer (A) according to a preferred embodiment comprises 70 to 95% by mass of an olefin-aromatic vinyl compound-aromatic polyene copolymer having an aromatic vinyl monomer unit content of 10 to 30 mol%. And 5 to 30% by mass of an aromatic vinyl polymer comprising an aromatic vinyl monomer unit, and the two may be substantially inseparable by solvent separation.
  • the polyethylene resin (B) in which the thermoplastic elastomer composition of the present invention can be used may be a resin containing 50% by mass or more of an ethylene monomer unit.
  • the polyethylene resin (B) may be an ethylene homopolymer, and ethylene and another ⁇ -olefin, for example, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, or a mixture thereof. It may be a copolymer with the above mixture.
  • the polyethylene resin (B) may be high-density polyethylene (hereinafter “HDPE”), low-density polyethylene (hereinafter “LDPE”), linear low-density polyethylene (hereinafter “LLDPE”), or a mixture thereof.
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • HDPE has a density of 0.940 g / cm 3 or more, preferably 0.940 to 0.970 g / cm 3 , more preferably 0.950 to 0.970 g / cm 3 .
  • the melting point thereof is preferably 126 to 136 ° C. as measured by a DSC method (differential scanning calorimeter), the melt flow rate (MFR) is 190 ° C. specified by JIS K-6922-2: 2010, and the load is 2.16 kg. Under the measurement conditions, it is preferably 0 (substantially no flow) to 30 g / 10 min, more preferably 0.05 to 10 g / 10 min.
  • thermoplastic elastomer composition Those having an MFR of 0.05 g / 10 min or more have excellent processability of the thermoplastic elastomer composition, and those having an MFR of 10 g / 10 min or less have high mechanical properties of the obtained thermoplastic elastomer composition. Also, a so-called ultrahigh molecular weight polyethylene having a number average molecular weight of 1,000,000 or more can be suitably used.
  • LDPE and LLDPE preferably have a melting point of 60 to 125 ° C. measured by a DSC method (differential scanning calorimeter), a melt flow rate (MFR) of 190 ° C. specified in JIS @ K-6922-2: 2010, and a load. Under the measurement conditions of 2.16 kg, it is preferably 0.05 to 30 g / 10 min, and more preferably 0.05 to 10 g / 10 min. If the MFR is 0.05 g / 10 min or more, the thermoplastic elastomer composition has excellent processability, and if the MFR is 30 g / 10 min or less, the obtained thermoplastic elastomer composition has high mechanical properties.
  • LDPE is usually produced by a known high-pressure radical polymerization method, and may be produced by any of a tubular method and an autoclave method.
  • LLDPE can be produced by coordination polymerization using a Ziegler-Natta catalyst or a metallocene catalyst, by copolymerizing ethylene and an ⁇ -olefin as a comonomer.
  • HDPE is preferred as the polyethylene resin (B) to be used.
  • thermoplastic elastomer composition contains 50 to 85% by mass of the cross copolymer (A) and 15 to 50% by mass of the polyethylene resin (B). If the cross copolymer (A) is less than 50% by mass, the resulting composition may have insufficient flexibility, and if it is more than 85% by mass, heat resistance and oil resistance may be insufficient.
  • thermoplastic elastomer composition according to the embodiment of the present invention has a gel content of 1.0% by mass or more.
  • the gel fraction can be measured in boiling xylene (140 ° C.) after 8 hours. If the gel content is less than 1.0% by mass, crosslinking is insufficient, and heat resistance and oil resistance may be insufficient.
  • the gel content is from 3.0% by mass to 60% by mass. If it is at most 60% by mass, thermoplasticity and moldability will be good.
  • the MFR (measured based on JIS K7210-1: 2014) of the thermoplastic elastomer composition according to the embodiment of the present invention is preferably 0.3 g / 10 min or more and 10 g / 10 min or less. More preferably, the storage elastic modulus E ′ measured under the conditions of 150 ° C., a frequency of 1 Hz, and a temperature rise of 4 ° C./min is in the range of 1 ⁇ 10 5 to 5 ⁇ 10 6 Pa, and more preferably 1 ⁇ 10 5 to 2 Pa. ⁇ 10 6 Pa, and the gel content after 8 hours in boiling xylene (140 ° C.) is 1.0% by mass or more.
  • the ratio of the storage modulus E ′ (E ′ (190) / E ′ (150)) of the thermoplastic elastomer composition at 190 ° C. and 150 ° C., respectively, may be 0.3 or more. , More preferably 0.3 or more and 1 or less.
  • thermoplastic elastomer composition according to the embodiment of the present invention preferably has an A hardness (measured based on JIS K-6253-3: 2012) of 95 or less, more preferably 90 or less, and 70 or more.
  • a hardness measured based on JIS K-6253-3: 2012
  • the A hardness is in this range, even if a polypropylene-based resin is further compounded as shown below, it is possible to have appropriate softness as a skin material.
  • thermoplastic elastomer composition When the MFR (JIS # K7210: 2014) of the thermoplastic elastomer composition is less than 0.3 g / 10 minutes, there is a possibility that the moldability may be insufficient and economical efficiency may be lost during the production, and if it is higher than 10 g / 10 minutes. , Heat resistance and oil resistance may be reduced.
  • the storage modulus E ′ of the thermoplastic elastomer composition measured at 150 ° C., a frequency of 1 Hz and a temperature rise of 4 ° C./min is less than 1 ⁇ 10 5 , the heat resistance may be reduced.
  • the storage elastic modulus of the thermoplastic elastomer composition according to the embodiment of the present invention can be measured at 150 ° C. and 190 ° C., and even in a temperature range not lower than the melting point (about 130 ° C.) of the polyethylene resin (B). There is no significant drop.
  • the ratio of storage elastic modulus E ′ between 190 ° C. and 150 ° C. is 0.3 or more, more preferably 0.3 or more and 1 or less. This is considered to indicate the presence of a typical crosslinked structure.
  • thermoplastic elastomer composition of the present invention can exhibit good oil resistance. Specifically, the swelling ratio after immersion in liquid paraffin or oleic acid at 70 ° C. for 24 hours can be 120% by mass or less.
  • thermoplastic elastomer composition of the present invention shows good heat resistance.
  • the press sheet with the grain was allowed to stand at 110 ° C. for 24 hours, and then the 60 ° gloss value (gloss value at an incident angle of 60 °) of the grain of the press sheet was measured and compared with the gloss value before the test.
  • the amount is 1.00% or less.
  • the heat resistance is low, the grain changes due to heat, so that the rate of change in gloss becomes a larger value.
  • the thermoplastic elastomer composition of the present invention has good scratch resistance. Specifically, a scratch of 3 cm or more was applied to the mirror surface of the mirror press sheet by using a scratch type hardness meter “318S” manufactured by Eriksen and having a ball tip (ultra-hardness) of 1.0 mm in diameter at a load of 3N. In this case, it is preferable that the scratch depth is 15 ⁇ m or less.
  • the thermoplastic elastomer composition of the present invention can be obtained by a so-called dynamic crosslinking method.
  • Dynamic cross-linking (dynamic vulcanization) is a method in which shearing, dispersion and cross-linking are simultaneously caused by strongly kneading various compounds in a molten state under a temperature condition at which a cross-linking agent reacts.
  • Such a dynamic crosslinking treatment is described, for example, in Reference A. Y. See Coran et al., Rub. Chem. and @Technol. vol. 53.141 to (1980), JSR TECHNICAL REVIEW, No. 112/20050, P20-24.
  • the kneading machine at the time of dynamic crosslinking is usually performed using a closed kneading machine such as a Banbury mixer or a pressure kneader, a single-screw or twin-screw extruder, or the like.
  • the kneading temperature is usually from 130 to 300 ° C, preferably from 150 to 200 ° C.
  • the kneading time is usually 1 to 30 minutes.
  • the crosslinking agent in the case of dynamic crosslinking may include an organic peroxide (F).
  • organic peroxide (F) examples include a phenol resin crosslinking agent, dicumyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) -hexane, and 2,5-dimethyl- 2,5-di (tert-butylperoxy) -hexyne-3, di-tert-butyl peroxide and the like.
  • a crosslinking aid a polyfunctional monomer such as a maleimide compound, divinylbenzene, TAIC (trimethallyl isocyanurate), or trimethylolpropane trimethacrylate can also be used.
  • 1 to 40 parts by mass of the polypropylene resin (C) may be further added to 100 parts by mass of the thermoplastic elastomer composition.
  • 1 part by mass or more of the polypropylene resin it becomes possible to further improve oil resistance and heat resistance.
  • the softness can be maintained by blending the polypropylene resin in an amount of 40% by mass or less.
  • the thermoplastic resin composition is based on 100 parts by mass of the thermoplastic elastomer composition containing the cross copolymer (A) and the polyethylene resin (B), or further blended with the polypropylene resin (C). Further, 1 to 50 parts by mass of a plasticizer (D) and / or 1 to 25 parts by mass of a styrene-based thermoplastic elastomer (E) may be further blended with 100 parts by mass.
  • a plasticizer and a styrene-based thermoplastic elastomer in combination, the softness can be improved while preventing the bleed-out of the plasticizer (such as oil).
  • plasticizer (D) examples include paraffin-based (liquid paraffin, etc.), naphthene-based, aroma-based process oil, mineral oil-based softeners such as liquid paraffin, castor oil, linseed oil, olefin-based wax, mineral-based wax, various types Known compounds such as esters can be used.
  • thermoplastic elastomer (E) for example, a thermoplastic elastomer containing a styrene portion can be used.
  • a thermoplastic elastomer containing a styrene portion can be used.
  • the “Septon” series (SEP, SEPS, SEEPS, SEBS, SEEPS-OH) sold by Kuraray can be used.
  • thermoplastic elastomer composition obtained by blending these polypropylene resin (C), plasticizer (D), and / or styrene thermoplastic elastomer (E) also exhibits excellent A hardness and scratch resistance. And exhibit more excellent oil resistance and heat resistance.
  • a method of blending the polypropylene resin (C), the plasticizer (D), and / or the styrene thermoplastic elastomer (E) is optional.
  • a polypropylene resin (C) and a plasticizer (D) are separately added to the thermoplastic elastomer composition containing the cross copolymer (A) and the polyethylene resin (B) obtained by the dynamic crosslinking method.
  • / or a styrene-based thermoplastic elastomer (E) is blended and kneaded by a known method.
  • the same dynamic vulcanization may be performed by using a crosslinking agent or a crosslinking assistant, or the composition may be produced by simply kneading without using these.
  • a crosslinking agent or a crosslinking assistant in particular, in the case of using a polypropylene resin (C), it is finally possible to simply knead the composition without using a cross-linking agent or a cross-linking aid to avoid breaking of the polypropylene chain due to radicals. It is preferable from the viewpoint of heat resistance and oil resistance of the resulting composition.
  • the polypropylene resin (C), the plasticizer (D), and / or the styrene thermoplastic elastomer (E) use one twin feed extruder with side feed economically.
  • the main raw materials including the cross-copolymer (A), the polyethylene resin (B), the cross-linking agent, and the like are charged from the raw material inlet, and the cross-linking agent substantially completes the reaction in the extruder region. Dynamic crosslinking is performed, and when the crosslinking agent has substantially completed the reaction, the polypropylene-based resin (C), the plasticizer (D), and / or the styrene-based thermoplastic elastomer (E) are blended from the side feed.
  • thermoplastic elastomer composition (dynamic vulcanizate) containing the cross copolymer (A) and the polyethylene resin (B) is continuously added to the polypropylene resin (C) and the plasticizer (D). And / or a thermoplastic elastomer composition containing a styrene-based thermoplastic elastomer (E).
  • thermoplastic elastomer composition which comprises a step of mixing at least a cross-copolymer (A), a polyethylene-based resin (B), and a cross-linking agent under shear and further cross-linking the mixture. it can.
  • the thermoplastic elastomer composition obtained above is further blended with a polypropylene resin (C), a plasticizer (D), and / or a styrene thermoplastic elastomer (E),
  • a method for producing a thermoplastic elastomer composition including a step of kneading can also be provided.
  • a molded article using the thermoplastic elastomer composition can be provided.
  • a molded article include synthetic leathers and skin materials described in JP-A-2009-102515, WO09 / 128444, WO13 / 018171, or JP-A-2011-153214. It is suitably used for grips or exterior members, foams, skin materials, tape base materials, wire covering materials, gaskets, sheets, or conductive sheets.
  • the sheet using the thermoplastic elastomer composition according to the embodiment of the present invention may be a single layer or a multilayer. In the case of a multilayer, it may be a multilayer further having a layer composed of another resin component, or a multilayer composed only of a layer composed of the present thermoplastic elastomer composition.
  • a skin material for example, a skin material sheet for an automobile interior having a single-layer or multi-layer sheet containing the thermoplastic elastomer composition
  • a skin material sheet for an automobile interior having a single-layer or multi-layer sheet containing the thermoplastic elastomer composition
  • a sheet of a thermoplastic elastomer composition can be used for a surface layer, and a foamed polypropylene sheet can be used as a base (base) layer.
  • base base
  • thermal adhesiveness to the expanded polypropylene sheet is required.
  • the thermoplastic elastomer composition according to the embodiment of the present invention has thermal adhesion to the expanded polypropylene sheet. The properties are good and suitable.
  • an automobile interior member including the skin material can be provided.
  • thermoplastic elastomer Due to the characteristics of the thermoplastic elastomer according to the embodiment of the present invention, there is little odor to humans and low gloss, so that driving is not hindered by the reflection of light incident from outside the window, and the human feel is comfortable. Therefore, an extremely advantageous effect can be obtained as an automobile interior member.
  • the surface of the single-layer or multi-layer sheet according to the embodiment of the present invention can be subjected to a known surface coating agent treatment in order to further impart texture, scratch resistance, and oil resistance.
  • a known surface coating agent treatment in order to further impart texture, scratch resistance, and oil resistance.
  • Such surface coats include, for example, urethane surface coat agents.
  • Cross copolymer (A) The cross copolymers 1 to 3 shown in Table 1 were used. These cross-copolymers were produced by the production methods of Examples or Comparative Examples described in WO2000 / 37517, WO2007 / 139116 and JP-A-2009-120792. Was similarly determined by the method described in these publications. That is, the composition in the cross-copolymer or ethylene-aromatic vinyl compound-aromatic polyene copolymer, that is, the content of ethylene and aromatic vinyl compound and the content of aromatic vinyl compound polymer are determined by 1 H-NMR (proton NMR).
  • the content of the aromatic polyene in the ethylene-aromatic vinyl compound-aromatic polyene copolymer was determined from the amount of the aromatic polyene charged during the polymerization and gas chromatographic analysis of the polymerization solution sampled after the completion of the coordination polymerization.
  • the amount of the aromatic polyene used in the polymerization was determined from the difference in the amount of the unreacted aromatic polyene, and the amount was calculated by comparing with the amount of the copolymer obtained by the polymerization.
  • the molecular weight in the polymerization solution was determined by GPC measurement.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polystyrene chain were determined by GPC measurement of an aromatic vinyl compound polymer separated by solvent fractionation.
  • the vinyl group hydrogen (proton) peak intensity (area) of the divinylbenzene unit is the same as that of the divinylbenzene unit of the ethylene-styrene-divinylbenzene copolymer obtained in the coordination polymerization step.
  • the strength (area) was less than 20%.
  • the hydrogen (proton) peak of the vinyl group of the divinylbenzene unit had substantially disappeared in the cross-copolymer after anionic polymerization.
  • the cross copolymer was subjected to Soxhlet extraction using boiling acetone, and the ethylene-styrene-divinylbenzene copolymer chain (essentially, ethylene-styrene copolymer chain) and polystyrene chain included were extracted.
  • the styrene content, divinylbenzene content, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), cross copolymer of the ethylene-styrene-divinylbenzene copolymer used are specified.
  • the content of the ethylene-styrene-divinylbenzene copolymer, the weight average molecular weight (Mw) of the polystyrene chain, the molecular weight distribution (Mw / Mn), and the MFR (JIS # K7210-1, 200 ° C., 49N) are shown.
  • the gel content measured by ASTM-D2765-84 was less than 0.1% by mass (lower detection limit or less) in any of the cross copolymers.
  • GPC gel permeation chromatography
  • Polyethylene resin (B) and other raw materials are as shown in Table 2.
  • thermoplastic elastomer compositions of Examples 1 to 9 were obtained.
  • the evaluation results are shown in Tables 3a and 3b.
  • the cross copolymer (A), the polyethylene resin (B), and the organic peroxide (F) were mixed with a Henschel mixer for 1 minute.
  • the obtained mixture was kneaded using a twin-screw extruder (TEM35B manufactured by Toshiba Machine Co., Ltd.) at a resin temperature of 220 ° C., a screw rotation speed of 170 rpm, and a residence time of 120 seconds, and was extruded into a strand from a die, cut and heated.
  • a plastic elastomer composition was obtained.
  • the sheet was prepared according to the following.
  • a sample for physical property evaluation was a square mirror-surface pressed sheet having a thickness of 1 mm and 0.3 mm formed by a heat press method (200 ° C., time: 5 minutes, pressure: 50 kg / cm 2 ) using a mirror surface mold (manufactured by STAVAX).
  • a press sheet with a single-sided grain a grain mold was used, and a press sheet with a single-sided grain having a thickness of 0.6 mm, in which a crimp pattern was applied to one side of the sheet by the same heating press method, was used.
  • a mirror-finished press sheet with a single-sided grain having a thickness of 0.6 mm and a side of 20 mm is placed in a 60 mL plastic bottle containing 4 g of liquid paraffin, (Hi-Kol K-350 manufactured by Kaneda) or oleic acid (first grade manufactured by Junsei Chemical Co., Ltd.). After being immersed above and left at 70 ° C. for 24 hours, the press sheet was taken out and weighed, and the swelling ratio of the press sheet was calculated by comparing with the weight before the test. In addition, the swelling rate of 120 wt% or less was regarded as a pass level.
  • a scratch-type hardness meter “318S” manufactured by Ericssen having a 1.0 mm-diameter ball tip (ultra-hardness) is used on the specular side. Scratches of 3 cm or more. The depth of the groove at the center of the scratch (the portion intersecting with the center line of the press sheet) was measured using a surface roughness measuring device (Surfcoder ET4000AK manufactured by Kosaka Laboratory Co., Ltd.). In addition, 15 micrometers or less of damage depths were set as the pass level.
  • MFR MFR It measured at 230 degreeC and 10 kg of load based on JIS7210. In addition, 0.3 g / 10 min or more and 10 g / 10 min or less were regarded as acceptable levels.
  • thermoplastic elastomer compositions according to the examples including the cross copolymer (A) and the polyethylene resin (B), and dynamically crosslinked in the presence of a peroxide, has a suitable MFR value and storage elasticity. It shows that the resin composition has good softness and good high-temperature oil resistance, heat resistance, and scratch resistance.
  • the polyethylene-based resin (B) is not used, in the viscoelastic spectrum measurement, the resin melts before reaching the measurement temperature of 150 ° C., and the storage elastic modulus becomes lower than the lower limit of measurement, Heat resistance and high temperature oil resistance were also insufficient (Comparative Example 1).
  • FIG. 1 shows a graph of the temperature change of the storage elastic modulus for Examples 1 to 3 and Comparative Example 3 as typical examples of the examples.
  • the storage elastic modulus of the thermoplastic elastomer composition according to the present example which contains the cross copolymer (A) and the polyethylene resin (B) and is dynamically crosslinked in the presence of a peroxide, is determined by the polyethylene resin ( There is no significant decrease in the temperature range above the melting point of B) (about 130 ° C.).
  • the ratio of storage elastic modulus E ′ between 190 ° C. and 150 ° C. is 0.3 or more, more preferably 0.3 or more and 1 or less.
  • the thermal cross-link according to Comparative Example 3 which included the cross-copolymer (A) and the polypropylene-based resin (C) but did not include the polyethylene-based resin (B), and was dynamically crosslinked in the presence of a peroxide.
  • the plastic elastomer composition melts at a temperature equal to or higher than the melting point (approximately 170 ° C.) of the polypropylene resin (C), and the storage elastic modulus E ′ sharply decreases. At 190 ° C., it is below the lower limit of measurement (1 ⁇ 10 4 Pa). Specifically, the ratio of storage elastic modulus between 190 ° C. and 150 ° C. (E ′ (190) / E ′ (150)) is 0.
  • the cross-linked structure related to the polypropylene-based resin (C) is substantially small. It is considered to indicate.
  • thermoplastic elastomer composition obtained in Example 2 a polypropylene resin, a plasticizer, and a styrene thermoplastic elastomer shown in Table 4 were blended and kneaded, whereby the thermoplastic elastomers of Examples 10 to 14 were mixed. A composition was obtained. Evaluation results of commercially available TPV-based skin materials, TPS-based skin materials, and PVC-based skin materials are also described as Comparative Examples 5 to 7. Table 5 shows the blending of the raw materials and the evaluation results.
  • the thermoplastic elastomer composition of the example exhibited excellent scratch resistance while having the same level of heat resistance and oil resistance as compared with the commercially available TPV and TPS skin materials of the comparative example.
  • the thermoplastic elastomer compositions of the examples exhibited excellent oil resistance and heat resistance as compared with the PVC skin material.
  • thermoplastic elastomer composition obtained in Example 12 was extruded by an extrusion sheet molding machine with a T-die set at a die temperature of 200 ° C., and simultaneously extruded, and a 1.0 mm-thick foamed PP sheet (Toray Pef # 10010AP67 manufactured by Toray Industries, Inc.) ) And a grain roll immediately after the die were subjected to heat fusion to obtain a grained multilayer sheet according to Example 15. The thickness of this multilayer sheet was 1.5 mm.
  • the obtained multilayer sheet was subjected to vacuum forming using an instrument panel mold made of a polypropylene resin at a sheet surface temperature of 110 ° C. to obtain an instrument panel-type automobile interior member. Table 6 shows the evaluation criteria and results.
  • Heat cycle test With respect to the instrument panel-type automobile interior member, a heat cycle test of 10 cycles was carried out with 80 ° C. for 4 hours to ⁇ 30 ° C. for 2 hours as one cycle. After the test, the instrument panel-type automobile interior member was left at room temperature for 1 hour or more, and then, at a part designated at five places at random, L * was measured using a colorimetric colorimeter (ZE-2000 manufactured by Nippon Denshoku Industries Co., Ltd.). , A *, and b * were measured, and the average value was used as a reference value. The color difference ⁇ E was calculated by comparing the average value of L *, a *, and b * before the test. The color difference ⁇ E 2.0 or less was regarded as a pass level.
  • a glass cleaner (HONDA's genuine product number 08CBC-B010L1) was spread on the surface of the instrument panel-type automobile interior member so as to have an application amount of about 0.4 g / 100 cm 2 . After being left at 80 ° C. for 48 hours, the appearance of the instrument panel-type automobile interior member was visually checked, and it was confirmed that there was no deformation, crack, or peeling.
  • the instrument panel-type automobile interior member was left at room temperature for 1 hour or more, and then, at a part designated at five places at random, L * was measured using a colorimetric colorimeter (ZE-2000 manufactured by Nippon Denshoku Industries Co., Ltd.). , A *, and b * were measured, and the average value was used as a reference value.
  • the color difference ⁇ E was calculated by comparing the average value of L *, a *, and b * before the test. The color difference ⁇ E 2.0 or less was regarded as a pass level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A thermoplastic elastomer composition which comprises 50-85 mass% cross copolymer (A) and 15-50 mass% polyethylene-based resin (B) and which has an MFR (230°C, 10-kg load) of 0.3-10 g/10 min and a gel content of 1.0 mass% or higher.

Description

熱可塑性エラストマー組成物およびその製造方法Thermoplastic elastomer composition and method for producing the same
 本発明は、耐熱性、耐油性、耐傷付性に優れる熱可塑性エラストマー組成物、及びそれを用いた成形体、シート、および表皮材、ならびにその製造方法に関する。 The present invention relates to a thermoplastic elastomer composition having excellent heat resistance, oil resistance, and scratch resistance, and a molded article, a sheet, and a skin material using the same, and a method for producing the same.
 乗用車をはじめとする各種自動車、家具や屋内内装、さらにはロボット等、硬質な各種機械の表面を覆う表皮材には、種々のレベルの軟質性に加え各種の機能性が求められる。例えば、自動車の内装表皮材としては、耐熱性、耐候性、耐寒性、成形加工時の熱履歴も含めたシボ保持性、人間の接触に対する耐傷付性(耐傷付摩耗性)、人間に同伴する化学物質に対する耐油性、耐薬品性が求められる。従来、この様な分野には可塑剤を添加した軟質性塩化ビニル(軟質塩ビ)からなる表皮材シートが用いられてきた。軟質塩ビは軟質性と耐油性、耐傷付性に優れ、価格的に有利な材料である。しかし、軟質塩ビは、焼却時の管理の問題、すなわち、近年大量に含まれる可塑剤による揮発性有機化合物(VOC)や、一部の可塑剤が環境ホルモンとなる懸念、及び重金属安定剤が含まれる等の問題があることから、より環境性に優れる材料が求められている。そこで、TPO(熱可塑性オレフィン系樹脂)やTPS(熱可塑性スチレン系樹脂)からなる表皮材シートが注目されている。TPOやTPSは、耐熱性と軟質性、リサイクル性、環境性が特徴であり、広く用いられるようになってきた。これら材料は軟質成分と耐熱成分とからなるコンパウンドであるが、耐熱成分として用いられるPP(アイソタクティックポリプロピレン)成分により、耐傷付性が十分ではないレベルまで低下してしまうという課題を有している。また、軟質成分として用いられる架橋エチレン-プロピレン系ゴムや架橋または非架橋スチレン系水添ブロック共重合体の耐油性が十分ではなく、過酷な環境下では膨潤、変形を起こす場合がある。PPの添加量を減らすなどして耐傷付性を向上させようとしても、今度は耐熱性、特にシート成形時の表面シボ保持性が低下しシボが消失してしまう課題がある。 表 Skin materials covering the surface of various hard machines such as passenger cars and various automobiles, furniture and indoor interiors, and robots are required to have various functions in addition to various levels of softness. For example, as interior skin materials for automobiles, heat resistance, weather resistance, cold resistance, creasing retention including heat history during molding, scratch resistance to human contact (scratch wear resistance), accompanying humans Oil resistance and chemical resistance to chemical substances are required. Conventionally, in such a field, a skin material sheet made of soft vinyl chloride (soft PVC) to which a plasticizer is added has been used. Soft PVC has excellent softness, oil resistance, and scratch resistance, and is a material that is advantageous in cost. However, soft PVC contains problems of management during incineration, that is, volatile organic compounds (VOCs) due to plasticizers contained in large quantities in recent years, concerns that some plasticizers may become environmental hormones, and heavy metal stabilizers. Therefore, there is a demand for materials having better environmental properties. Therefore, skin material sheets made of TPO (thermoplastic olefin resin) or TPS (thermoplastic styrene resin) have been receiving attention. TPO and TPS are characterized by heat resistance, softness, recyclability, and environmental friendliness, and have been widely used. These materials are compounds composed of a soft component and a heat-resistant component, but have the problem that the scratch resistance is reduced to an insufficient level by the PP (isotactic polypropylene) component used as the heat-resistant component. I have. Further, the crosslinked ethylene-propylene rubber or the crosslinked or non-crosslinked styrene-based hydrogenated block copolymer used as a soft component does not have sufficient oil resistance, and may swell or deform in a severe environment. Even if an attempt is made to improve the scratch resistance by reducing the amount of PP added, there is a problem that the heat resistance, in particular, the surface grain retention at the time of sheet molding is reduced and the grain disappears.
 上記状況を踏まえて、各種用途に応じた要求特性を有する新規熱可塑性エラストマーが数多く提案されている。例えば、特許文献1、2には、スチレン-エチレン共重合体に少量のジビニルベンゼンを共重合し、ジビニルベンゼンユニットのビニル基を介してポリスチレン鎖(クロス鎖)を導入する方法によって得られる、いわゆるクロス共重合体が提案されている。この方法により得られるクロス共重合体は、スチレン-エチレン共重合体鎖をソフトセグメントとし、ポリスチレンをハードセグメントとして有する分岐型構造のブロック共重合体である。 数 多 く Based on the above situation, many new thermoplastic elastomers having the required characteristics according to various applications have been proposed. For example, Patent Literatures 1 and 2 disclose a so-called “method” obtained by a method of copolymerizing a small amount of divinylbenzene with a styrene-ethylene copolymer and introducing a polystyrene chain (cross chain) via a vinyl group of the divinylbenzene unit. Cross copolymers have been proposed. The cross copolymer obtained by this method is a block copolymer having a branched structure having a styrene-ethylene copolymer chain as a soft segment and polystyrene as a hard segment.
特開2009-102515号公報JP 2009-102515 A 国際公開第2007/139116号International Publication No. 2007/139116 国際公開第2009/128444号International Publication No. 2009/128444 特開2010-242015号公報JP 2010-24215 A
 クロス共重合体は、耐傷付性、軟質性、透明性、成形加工性など優れた特性を有する熱可塑性エラストマーであるが、用途によっては耐熱性や耐油性が不足する場合があり、耐傷付性等の特徴を保持したまま、耐熱性や耐油性を向上させることが難しいという課題がある。この様な課題に対処するため、耐熱性を高めようとPPを添加するとTPOやTPSと同様、耐傷付摩耗性が低下してしまう。そこでPPE(ポリフェニレンエーテル)樹脂の添加(特許文献3)やTPEE(ポリエステル系軟質樹脂)の添加(特許文献4)により耐熱性の向上が図られている。電子線架橋によりスチレン-エチレン系クロス共重合体シートの耐熱性を向上させることが可能である。クロス共重合体の電子線架橋体を用いた、特にテープ基材や電線被覆材、発泡材については特許文献1に記載がある。例えば、特許文献2にはクロス共重合体と他のポリマー、特に結晶性ポリプロピレンとを動的架橋して得られる組成物が記載されている。 Cloth copolymers are thermoplastic elastomers that have excellent properties such as scratch resistance, softness, transparency, and moldability, but depending on the application, heat resistance and oil resistance may be insufficient. However, there is a problem that it is difficult to improve heat resistance and oil resistance while maintaining such characteristics. In order to cope with such a problem, if PP is added to increase the heat resistance, the abrasion resistance with scratches is reduced as in the case of TPO and TPS. Therefore, the addition of PPE (polyphenylene ether) resin (Patent Document 3) and the addition of TPEE (Polyester soft resin) (Patent Document 4) improve the heat resistance. The heat resistance of the styrene-ethylene cross copolymer sheet can be improved by electron beam crosslinking. Patent Literature 1 describes in particular a tape base material, an electric wire covering material, and a foamed material using an electron beam crosslinked body of a cross copolymer. For example, Patent Document 2 describes a composition obtained by dynamically cross-linking a cross-copolymer with another polymer, particularly a crystalline polypropylene.
 しかし、上記の従来技術に係るクロス共重合体を用いた熱可塑性エラストマー組成物では、依然として耐熱性や耐油性が十分であるとは言えないし、耐傷付性も十分には得られていない。特に、自動車等の内装表皮材には、高度な耐熱性、耐油性、耐傷付性が求められ、しかも高温耐油性も求められるため、さらに高性能な熱可塑性エラストマー組成物が求められてきている。 However, the thermoplastic elastomer composition using the above-mentioned cross-copolymer according to the conventional technique still cannot be said to have sufficient heat resistance and oil resistance, and does not have sufficient scratch resistance. In particular, interior skin materials for automobiles and the like are required to have high heat resistance, oil resistance, and scratch resistance, and are also required to have high-temperature oil resistance, so that a higher-performance thermoplastic elastomer composition has been required. .
 本発明は、耐熱性、耐油性、耐傷付性に優れる熱可塑性エラストマー組成物、及びそれを用いた成形体、シート、表皮材を提供できる。 The present invention can provide a thermoplastic elastomer composition having excellent heat resistance, oil resistance, and scratch resistance, and a molded article, a sheet, and a skin material using the same.
 すなわち本発明の実施形態では以下を提供できる。 That is, the following can be provided in the embodiment of the present invention.
[1]
 クロス共重合体(A)50~85質量%と、ポリエチレン系樹脂(B)15~50質量%とを含み、
 MFR(230℃、10kg荷重)が0.3g/10分以上、10g/10分以下であり、かつ
 1.0質量%以上のゲル分を含む、
熱可塑性エラストマー組成物。
[1]
A cross-copolymer (A) containing 50 to 85% by mass and a polyethylene resin (B) 15 to 50% by mass,
MFR (230 ° C., 10 kg load) is 0.3 g / 10 min or more and 10 g / 10 min or less, and contains a gel content of 1.0 mass% or more;
Thermoplastic elastomer composition.
[2]
 150℃、周波数1Hz、昇温4℃/分の条件下で測定した貯蔵弾性率E’が1×105~5×106Paの範囲である、[1]に記載の熱可塑性エラストマー組成物。
[2]
The thermoplastic elastomer composition according to [1], wherein the storage elastic modulus E ′ measured at 150 ° C., a frequency of 1 Hz, and a temperature rise of 4 ° C./min is in a range of 1 × 10 5 to 5 × 10 6 Pa. .
[3]
 150℃、周波数1Hz、昇温4℃/分の条件下、貯蔵弾性率E’が150℃および190℃で測定可能であり、190℃と150℃の貯蔵弾性率E’の比(E’(190)/E’(150))は、0.3以上である、[1]または[2]に記載の熱可塑性エラストマー組成物。
[3]
Under the conditions of 150 ° C., a frequency of 1 Hz, and a temperature rise of 4 ° C./min, the storage elastic modulus E ′ can be measured at 150 ° C. and 190 ° C., and the ratio of the storage elastic modulus E ′ between 190 ° C. and 150 ° C. (E ′ ( 190) / E ′ (150)) is 0.3 or more, the thermoplastic elastomer composition according to [1] or [2].
[4]
 前記クロス共重合体(A)が、オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖が芳香族ポリエン単量体単位を介して結合する構造を有しており、さらに以下の(1)~(3)の条件を一種以上満足する共重合体である、[1]~[3]のいずれか一項に記載の熱可塑性エラストマー組成物。
(1)オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物単量体単位の含量が10~30モル%、芳香族ポリエン単量体単位の含量が0.01モル%以上0.5モル%以下、残部がオレフィン単量体単位の含量である。
(2)オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、分子量分布(Mw/Mn)が1.8以上6以下である。
(3)クロス共重合体中に含まれるオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体の含量が60~95質量%の範囲にある。
[4]
The cross copolymer (A) has a structure in which an olefin-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit. The thermoplastic elastomer composition according to any one of [1] to [3], which is a copolymer satisfying at least one of the following conditions (1) to (3).
(1) The content of the aromatic vinyl compound monomer unit of the olefin-aromatic vinyl compound-aromatic polyene copolymer is 10 to 30 mol%, and the content of the aromatic polyene monomer unit is 0.01 mol% or more. 0.5 mol% or less, the balance being the content of olefin monomer units.
(2) The olefin-aromatic vinyl compound-aromatic polyene copolymer has a weight average molecular weight of 50,000 or more and 300,000 or less, and a molecular weight distribution (Mw / Mn) of 1.8 or more and 6 or less.
(3) The content of the olefin-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is in the range of 60 to 95% by mass.
[5]
 前記クロス共重合体(A)が、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖が芳香族ポリエン単量体単位を介して結合する構造を有しており、さらに以下の(1)~(3)の条件を一種以上満足する共重合体であることを特徴とする[1]~[4]のいずれか一項に記載の熱可塑性エラストマー組成物。
(1)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物単量体単位の含量が10~30モル%、芳香族ポリエン単量体単位の含量が0.01モル%以上0.5モル%以下、残部がエチレン単量体単位の含量である。
(2)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、分子量分布(Mw/Mn)が1.8以上6以下である。
(3)クロス共重合体中に含まれるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の含量が70~95質量%の範囲にある。
[5]
The cross copolymer (A) has a structure in which an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit. The thermoplastic elastomer composition according to any one of [1] to [4], which is a copolymer satisfying at least one of the following conditions (1) to (3).
(1) The content of the aromatic vinyl compound monomer unit of the ethylene-aromatic vinyl compound-aromatic polyene copolymer is 10 to 30 mol%, and the content of the aromatic polyene monomer unit is 0.01 mol% or more. 0.5 mol% or less, with the balance being the ethylene monomer unit content.
(2) The ethylene-aromatic vinyl compound-aromatic polyene copolymer has a weight average molecular weight of 50,000 or more and 300,000 or less, and a molecular weight distribution (Mw / Mn) of 1.8 or more and 6 or less.
(3) The content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is in the range of 70 to 95% by mass.
[6]
 前記クロス共重合体(A)が、芳香族ビニル単量体単位の含量が10~30モル%であるオレフィン-芳香族ビニル-芳香族ポリエン共重合体70~95質量%と、芳香族ビニル単量体単位からなる芳香族ビニル重合体を5~30質量%とを含み、前記オレフィン-芳香族ビニル-芳香族ポリエン共重合体と前記芳香族ビニル重合体とが実質的に溶媒分別で分離できない、[1]~[5]のいずれか一項に記載の熱可塑性エラストマー組成物。
[6]
The cross copolymer (A) is composed of 70 to 95% by mass of an olefin-aromatic vinyl-aromatic polyene copolymer having an aromatic vinyl monomer unit content of 10 to 30% by mole, and aromatic vinyl monomer. 5 to 30% by mass of an aromatic vinyl polymer comprising monomer units, and the olefin-aromatic vinyl-aromatic polyene copolymer and the aromatic vinyl polymer cannot be substantially separated by solvent separation. The thermoplastic elastomer composition according to any one of [1] to [5].
[7]
 ポリエチレン系樹脂(B)が高密度ポリエチレン(HDPE)である[1]~[6]のいずれか一項に記載の熱可塑性エラストマー組成物。
[7]
The thermoplastic elastomer composition according to any one of [1] to [6], wherein the polyethylene resin (B) is high density polyethylene (HDPE).
[8]
 [1]~[7]のいずれか一項に記載の熱可塑性エラストマー組成物100質量部に対してさらに、ポリプロピレン系樹脂(C)を1~40質量部配合してなる熱可塑性エラストマー組成物。
[8]
A thermoplastic elastomer composition further comprising 1 to 40 parts by mass of a polypropylene resin (C) based on 100 parts by mass of the thermoplastic elastomer composition according to any one of [1] to [7].
[9]
 [1]または[8]に記載の熱可塑性エラストマー組成物100質量部に対してさらに、 可塑剤(D)を1~50質量部、及び/またはスチレン系熱可塑性エラストマー(E)を1~25質量部配合してなる熱可塑性エラストマー組成物。
[9]
Further, 1 to 50 parts by mass of a plasticizer (D) and / or 1 to 25 parts by mass of a styrene-based thermoplastic elastomer (E) based on 100 parts by mass of the thermoplastic elastomer composition according to [1] or [8]. A thermoplastic elastomer composition blended by mass.
[10]
 [1]~[9]のいずれか一項に記載の熱可塑性エラストマー組成物からなる成形体。
[10]
A molded article comprising the thermoplastic elastomer composition according to any one of [1] to [9].
[11]
 シートである[10]に記載の成形体。
[11]
The molded article according to [10], which is a sheet.
[12]
 [11]に記載のシートを含む多層シート。
[12]
A multilayer sheet including the sheet according to [11].
[13]
 入射角60°で測定する鏡面光沢度の、110℃環境下に24時間曝した後の変化が1.0%以下である、[10]に記載の成形体。
[13]
The molded article according to [10], wherein a change in specular gloss measured at an incident angle of 60 ° after exposure to a 110 ° C environment for 24 hours is 1.0% or less.
[14]
 [11]に記載のシートまたは[12]に記載の多層シートを含む表皮材。
[14]
A skin material comprising the sheet according to [11] or the multilayer sheet according to [12].
[15]
 [14]に記載の表皮材を含む自動車内装部材。
[15]
An automobile interior member including the skin material according to [14].
[16]
 クロス共重合体(A)、ポリエチレン系樹脂(B)、架橋剤を剪断下で混合し、架橋させる工程を含む、熱可塑性エラストマー組成物の製造方法。 
[16]
A method for producing a thermoplastic elastomer composition, comprising a step of mixing a cross-copolymer (A), a polyethylene-based resin (B), and a crosslinking agent under shear and crosslinking.
[17]
 オレフィン、芳香族ビニル化合物、および芳香族ポリエンの各単量体から配位重合触媒を用いて共重合しオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体を合成する工程と、
 得られたオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体に、芳香族ビニル化合物単量体およびアニオン重合開始剤を添加し、アニオン重合することで、前記クロス共重合体(A)を得る工程と
をさらに含む、[16]に記載の製造方法。
[17]
A step of synthesizing an olefin, an aromatic vinyl compound, and an aromatic polyene monomer from each monomer using a coordination polymerization catalyst to synthesize an olefin-aromatic vinyl compound-aromatic polyene copolymer;
An aromatic vinyl compound monomer and an anionic polymerization initiator are added to the obtained olefin-aromatic vinyl compound-aromatic polyene copolymer, and anion polymerization is performed to obtain the cross copolymer (A). The production method according to [16], further comprising:
[18]
 [16]または[17]で得られた熱可塑性エラストマー組成物に対して、ポリプロピレン系樹脂(C)、可塑剤(D)、及びまたはスチレン系熱可塑性エラストマー(E)を配合し、混練する工程をさらに含む、熱可塑性エラストマー組成物の製造方法。
[18]
A step of blending and kneading the polypropylene-based resin (C), the plasticizer (D), and / or the styrene-based thermoplastic elastomer (E) with the thermoplastic elastomer composition obtained in [16] or [17]. A method for producing a thermoplastic elastomer composition, further comprising:
 本発明によれば、耐熱性、耐油性、耐傷付性に優れる熱可塑性エラストマー組成物、及びそれを用いた成形体、シート、表皮材を提供することができる。 According to the present invention, it is possible to provide a thermoplastic elastomer composition having excellent heat resistance, oil resistance, and scratch resistance, and a molded article, a sheet, and a skin material using the same.
実施例および比較例に係る熱可塑性エラストマー組成物の貯蔵弾性率を示すグラフである。It is a graph which shows the storage elastic modulus of the thermoplastic elastomer composition which concerns on an Example and a comparative example.
 以下、本発明の熱可塑性エラストマー組成物を詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。なお、本明細書及び特許請求の範囲において、数値範囲は、別段の定めがない限りはその下限値および上限値を含むものとする。 Hereinafter, the thermoplastic elastomer composition of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within a range that does not impair the effects of the present invention. In the present specification and claims, a numerical range includes a lower limit value and an upper limit value unless otherwise specified.
 熱可塑性エラストマー組成物は、クロス共重合体(A)と、ポリエチレン系樹脂(B)とを含む。 The thermoplastic elastomer composition contains the cross copolymer (A) and the polyethylene resin (B).
[クロス共重合体(A)]
 クロス共重合体(A)としては、ポリマー主鎖と他のポリマー鎖がクロス結合したものであれば任意に使用できる。好ましい実施形態においては、クロス共重合体(A)が、オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖とが結合した構造を有してよい。さらに好ましい実施形態においては、クロス共重合体(A)が、オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖とが、芳香族ポリエン単量体単位を介して結合した構造を有してよい。
[Cross copolymer (A)]
As the cross-copolymer (A), any one can be used as long as the polymer main chain and another polymer chain are cross-linked. In a preferred embodiment, the cross copolymer (A) may have a structure in which an olefin-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded. In a further preferred embodiment, the cross-copolymer (A) is composed of an olefin-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain via an aromatic polyene monomer unit. May have a combined structure.
 好ましい実施形態においては、クロス共重合体(A)が下記(1)~(3)の条件を一種以上、より好ましくは二種以上、さらに好ましくはすべて満足する共重合体であってよい。
(1)オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物単量体単位の含量が10~30モル%、より好ましくは12~28モル%、さらに好ましくは15~25モル%、芳香族ポリエン単量体単位の含量が0.01モル%以上0.5モル%以下、より好ましくは0.01モル%以上0.4モル%以下、さらに好ましくは0.02モル%以上0.1モル%以下、残部がオレフィン単量体単位の含量である。
(2)オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、分子量分布(Mw/Mn)が1.8以上6以下、より好ましくは1.8以上5以下、さらに好ましくは1.8以上4以下である。
(3)クロス共重合体中に含まれるオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体の含量が60~95質量%、より好ましくは65~90質量%、さらに好ましくは70~95質量%の範囲にある。
In a preferred embodiment, the cross copolymer (A) may be a copolymer satisfying at least one, more preferably at least two, and more preferably all of the following conditions (1) to (3).
(1) The content of the aromatic vinyl compound monomer unit of the olefin-aromatic vinyl compound-aromatic polyene copolymer is 10 to 30 mol%, more preferably 12 to 28 mol%, and further preferably 15 to 25 mol. %, The content of the aromatic polyene monomer unit is 0.01 mol% or more and 0.5 mol% or less, more preferably 0.01 mol% or more and 0.4 mol% or less, further preferably 0.02 mol% or more. 0.1 mol% or less, the balance being the content of olefin monomer units.
(2) The weight average molecular weight of the olefin-aromatic vinyl compound-aromatic polyene copolymer is from 50,000 to 300,000, and the molecular weight distribution (Mw / Mn) is from 1.8 to 6, more preferably 1.8 or more. 5 or less, more preferably 1.8 or more and 4 or less.
(3) The content of the olefin-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is 60 to 95% by mass, more preferably 65 to 90% by mass, and further preferably 70 to 95% by mass. In the range.
 当該オレフィン単量体単位としては、炭素数3~20のα-オレフィン、例えばプロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、ビニルシクロヘキサンや、環状オレフィンすなわちシクロペンテン、ノルボルネン等、各α-オレフィン及び環状オレフィンを使用できる。好ましくは、オレフィンはエチレン単量体を含んでよく、最も好ましくはエチレン単量体である。 Examples of the olefin monomer unit include α-olefins having 3 to 20 carbon atoms, such as propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, vinylcyclohexane, and cyclic olefins, ie, cyclopentene. Α-olefins and cyclic olefins, for example, and norbornene. Preferably, the olefin may include an ethylene monomer, and most preferably is an ethylene monomer.
 エチレン単量体単位を使用する場合、好ましくはエチレン単量体単独で用いられるが、エチレンに加えて本発明の効果を阻害しない範囲で、比較的少量の炭素数3~20のα-オレフィン、例えばプロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、ビニルシクロヘキサンや、環状オレフィンすなわちシクロペンテン、ノルボルネン等、各α-オレフィン系単量体及び環状オレフィン系単量体に由来する単量体単位を共重合してもよい。 When an ethylene monomer unit is used, the ethylene monomer unit is preferably used alone. In addition to ethylene, a relatively small amount of an α-olefin having 3 to 20 carbon atoms is used as long as the effect of the present invention is not impaired. Α-olefin-based monomers and cyclic olefin-based monomers such as propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, vinylcyclohexane, and cyclic olefins such as cyclopentene and norbornene May be copolymerized.
 芳香族ビニル化合物単量体単位としては、スチレン及び各種の置換スチレン、例えばp-メチルスチレン、m-メチルスチレン、o-メチルスチレン、o-t-ブチルスチレン、m-t-ブチルスチレン、p-t-ブチルスチレン、p-クロロスチレン、o-クロロスチレン等の各スチレン系単量体に由来する単位が挙げられる。これらの中でも好ましくはスチレン単位、p-メチルスチレン単位、p-クロロスチレン単位であり、特に好ましくはスチレン単位である。これら芳香族ビニル化合物単量体単位は、1種類でもよく、2種類以上の併用であってもよい。 Examples of the aromatic vinyl compound monomer unit include styrene and various substituted styrenes such as p-methylstyrene, m-methylstyrene, o-methylstyrene, ot-butylstyrene, mt-butylstyrene, and p-methylstyrene. Examples include units derived from each styrene monomer such as t-butylstyrene, p-chlorostyrene, and o-chlorostyrene. Among these, a styrene unit, a p-methylstyrene unit and a p-chlorostyrene unit are preferred, and a styrene unit is particularly preferred. One of these aromatic vinyl compound monomer units may be used alone, or two or more of them may be used in combination.
 芳香族ポリエン単量体単位としては例えば、10以上30以下の炭素数を持ち、複数の二重結合(ビニル基)と単数又は複数の芳香族基を有した芳香族ポリエンを使用できる。例えば、o-ジビニルベンゼン、p-ジビニルベンゼン、m-ジビニルベンゼン、1,4-ジビニルナフタレン、3,4-ジビニルナフタレン、2,6-ジビニルナフタレン、1,2-ジビニル-3,4-ジメチルベンゼン、1,3-ジビニル-4,5,8-トリブチルナフタレン等、芳香族ポリエン単量体に由来する単位が挙げられ、好ましくはオルトジビニルベンゼン単位、パラジビニルベンゼン単位及びメタジビニルベンゼン単位のいずれか1種又は2種以上の混合物が好適に用いられる。 と し て As the aromatic polyene monomer unit, for example, an aromatic polyene having 10 to 30 carbon atoms and having a plurality of double bonds (vinyl groups) and one or more aromatic groups can be used. For example, o-divinylbenzene, p-divinylbenzene, m-divinylbenzene, 1,4-divinylnaphthalene, 3,4-divinylnaphthalene, 2,6-divinylnaphthalene, 1,2-divinyl-3,4-dimethylbenzene And units derived from aromatic polyene monomers such as 1,3-divinyl-4,5,8-tributylnaphthalene, and preferably any one of an orthodivinylbenzene unit, a paradivinylbenzene unit and a metadivinylbenzene unit. One type or a mixture of two or more types is suitably used.
 オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体中の含有割合としては、軟質性や耐傷付性を向上する観点から、芳香族ビニル化合物単量体単位が10~30モル%の範囲であるのが好ましい。芳香族ビニル化合物単量体単位が10モル%以上であると、軟質性と耐傷付性が十分に得られる。芳香族ビニル化合物単量体単位が30モル%以下であると、低温での軟質性が十分に得られ、また耐傷付性が向上する。 The content ratio in the olefin-aromatic vinyl compound-aromatic polyene copolymer is in the range of 10 to 30 mol% of the monomer unit of the aromatic vinyl compound from the viewpoint of improving softness and scratch resistance. Is preferred. When the amount of the aromatic vinyl compound monomer unit is 10 mol% or more, sufficient softness and scratch resistance can be obtained. When the amount of the aromatic vinyl compound monomer unit is 30 mol% or less, sufficient flexibility at low temperatures is obtained, and the scratch resistance is improved.
 芳香族ポリエン単量体単位の含有割合は0.01~0.5モル%、好ましくは0.02~0.1モル%であってよい。芳香族ポリエン単量体単位が0.01モル%以上であると、力学物性が向上し、0.5モル%以下であると成形加工性が向上する。 含有 The content of the aromatic polyene monomer unit may be 0.01 to 0.5 mol%, preferably 0.02 to 0.1 mol%. When the aromatic polyene monomer unit is at least 0.01 mol%, the mechanical properties will be improved, and when it is at most 0.5 mol%, the moldability will be improved.
 クロス共重合体(A)中における、オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と、芳香族ビニル化合物重合体鎖との含有割合は、軟質性向上の観点から、好ましくはオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖が70~95質量%、芳香族ビニル化合物重合体鎖が5~30質量%としてよい。さらに熱可塑性エラストマー組成物としての物性を向上させる観点からは、オレフィン-芳香族ビニル化合物系共重合体が82~92質量%、芳香族ビニル化合物単量体単位からなる重合体が8~18質量%である。 In the cross copolymer (A), the content ratio of the olefin-aromatic vinyl compound-aromatic polyene copolymer chain and the aromatic vinyl compound polymer chain is preferably from the viewpoint of improvement in softness. The amount of the aromatic vinyl compound-aromatic polyene copolymer chain may be 70 to 95% by mass, and the amount of the aromatic vinyl compound polymer chain may be 5 to 30% by mass. Further, from the viewpoint of improving the physical properties of the thermoplastic elastomer composition, from 82 to 92% by mass of the olefin-aromatic vinyl compound-based copolymer, and from 8 to 18% by mass of the polymer comprising the aromatic vinyl compound monomer unit. %.
 本クロス共重合体及びその製造方法の詳細は、その全体の記載をそれぞれ出典明示によりここに援用する、国際公開第2000/37517号、国際公開第2007/139116号、または特開2009-120792号公報に記載されている。 For details of the present cross-copolymer and a method for producing the same, WO2000 / 37517, WO2007 / 139116, or JP2009-120792, the entire description of which is incorporated herein by reference. It is described in the gazette.
 好ましい実施形態では、クロス共重合体(A)が、エチレン、芳香族ビニル化合物、および芳香族ポリエンの各単量体から配位重合触媒を用いて共重合しエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体を合成し、アニオン重合行程において、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体と芳香族ビニル化合物単量体の共存下、アニオン重合開始剤を用いて重合する製造方法により得られ、さらに以下の(1)~(3)の条件をすべて満足する共重合体であってよい。
(1)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物単量体単位の含量が10~30モル%、芳香族ポリエン単量体単位の含量が0.01モル%以上0.5モル%以下、残部がエチレン単量体単位の含量である。
(2)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、分子量分布(Mw/Mn)が1.8以上6以下である。
(3)クロス共重合体中に含まれるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の含量が60~95質量%の範囲にある。
In a preferred embodiment, the cross copolymer (A) is obtained by copolymerizing ethylene, an aromatic vinyl compound, and an aromatic polyene monomer using a coordination polymerization catalyst to form an ethylene-aromatic vinyl compound-aromatic A polyene copolymer is synthesized, and in an anion polymerization step, a polymerization method is carried out using an anion polymerization initiator in the coexistence of an ethylene-aromatic vinyl compound-aromatic polyene copolymer and an aromatic vinyl compound monomer. The obtained copolymer may further satisfy all of the following conditions (1) to (3).
(1) The content of the aromatic vinyl compound monomer unit of the ethylene-aromatic vinyl compound-aromatic polyene copolymer is 10 to 30 mol%, and the content of the aromatic polyene monomer unit is 0.01 mol% or more. 0.5 mol% or less, with the balance being the ethylene monomer unit content.
(2) The ethylene-aromatic vinyl compound-aromatic polyene copolymer has a weight average molecular weight of 50,000 or more and 300,000 or less, and a molecular weight distribution (Mw / Mn) of 1.8 or more and 6 or less.
(3) The content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is in the range of 60 to 95% by mass.
 好ましい実施形態においては、オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖とが、芳香族ポリエン単量体単位を介して結合していてよい。このように芳香族ポリエン単量体単位が介在した結合が形成されることは、以下の観察可能な現象で証明できる。以下の説明では、あくまで好ましい一例として、エチレン-スチレン(芳香族ビニル化合物)-ジビニルベンゼン(芳香族ポリエン)共重合体鎖と、ポリスチレン(芳香族ビニル化合物)鎖とが、ジビニルベンゼン単位を介して結合している場合について示す。 In a preferred embodiment, the olefin-aromatic vinyl compound-aromatic polyene copolymer chain and the aromatic vinyl compound polymer chain may be bonded via an aromatic polyene monomer unit. The formation of the bond mediated by the aromatic polyene monomer unit can be proved by the following observable phenomenon. In the following description, as a preferable example, an ethylene-styrene (aromatic vinyl compound) -divinylbenzene (aromatic polyene) copolymer chain and a polystyrene (aromatic vinyl compound) chain are linked via a divinylbenzene unit. The case where they are combined is shown.
 配位重合工程で得られたエチレン-スチレン-ジビニルベンゼン共重合体マクロモノマーと、本共重合体とスチレン単位の存在下でのアニオン重合を経て得られるクロス共重合体との1H-NMR(プロトンNMR)を測定し、両者のジビニルベンゼン単位のビニル基水素(プロトン)のピーク強度を適当な内部標準ピーク(エチレン-スチレン-ジビニルベンゼン共重合体に由来する適当なピーク)を用いて比較する。ここで、上記したように芳香族ポリエン単量体単位が介在した結合を有するクロス共重合体の場合、そのジビニルベンゼン単位のビニル基水素(プロトン)のピーク強度(面積)が、エチレン-スチレン-ジビニルベンゼン共重合体マクロモノマーのジビニルベンゼン単位の同ピーク強度(面積)と比較して50%未満、好ましくは20%未満となる。これは、アニオン重合(クロス化工程)の際にスチレン単位の重合と同時にジビニルベンゼン単位も共重合し、エチレン-スチレン-ジビニルベンゼン共重合体鎖とポリスチレン鎖がジビニルベンゼン単位を介して結合されるために、アニオン重合後のクロス共重合体ではジビニルベンゼン単位のビニル基の水素(プロトン)のピーク強度は大きく減少する。実際にはジビニルベンゼン単位のビニル基の水素(プロトン)のピークはアニオン重合後のクロス共重合体では実質的に消失している。なお上記手法の詳細は公知文献「ジビニルベンゼンユニットを含有するオレフィン系共重合体を用いた分岐型共重合体の合成」、荒井亨、長谷川勝、日本ゴム協会誌、p382、vol.82(2009)に記載されている。 1 H-NMR of the ethylene-styrene-divinylbenzene copolymer macromonomer obtained in the coordination polymerization step, and the cross-copolymer obtained through anionic polymerization in the presence of the copolymer and the styrene unit ( Proton NMR) is measured, and the peak intensity of the vinyl group hydrogen (proton) of both divinylbenzene units is compared using an appropriate internal standard peak (an appropriate peak derived from an ethylene-styrene-divinylbenzene copolymer). . Here, as described above, in the case of a cross copolymer having a bond in which an aromatic polyene monomer unit is interposed, the peak intensity (area) of the vinyl group hydrogen (proton) of the divinylbenzene unit is ethylene-styrene- Compared with the same peak intensity (area) of the divinylbenzene unit of the divinylbenzene copolymer macromonomer, the peak intensity is less than 50%, preferably less than 20%. This is because during the anionic polymerization (cross-forming step), the divinylbenzene unit is copolymerized simultaneously with the polymerization of the styrene unit, and the ethylene-styrene-divinylbenzene copolymer chain and the polystyrene chain are bonded via the divinylbenzene unit. Therefore, in the cross-copolymer after anionic polymerization, the peak intensity of hydrogen (proton) of the vinyl group of the divinylbenzene unit is greatly reduced. Actually, the peak of hydrogen (proton) of the vinyl group of the divinylbenzene unit has substantially disappeared in the cross copolymer after anionic polymerization. The details of the above method are described in a known document "Synthesis of a branched copolymer using an olefin-based copolymer containing a divinylbenzene unit", Toru Arai, Masaru Hasegawa, Journal of the Rubber Society of Japan, p382, vol. 82 (2009).
 別な観点から、クロス共重合体(A)において、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖とが芳香族ポリエン単量体単位を介して結合している(一例としてエチレン-スチレン-ジビニルベンゼン共重合体鎖とポリスチレン鎖がジビニルベンゼン単位を介して結合している)ことは、以下の観察可能な現象でも証明できる。すなわち上記したように芳香族ポリエン単量体単位が介在した結合を有するクロス共重合体に対しては、適当な溶媒を用いソックスレー抽出を十分な回数行った後においても、含まれるエチレン-スチレン-ジビニルベンゼン共重合体鎖とポリスチレン鎖を分別することができない。通常のクロス共重合体に含まれるエチレン-スチレン-ジビニルベンゼン共重合体鎖と同一組成のエチレン-スチレン-ジビニルベンゼン共重合体とポリスチレンは、沸騰アセトンによるソックスレー抽出を行うことで、アセトン不溶部としてエチレン-スチレン-ジビニルベンゼン共重合体に、アセトン可溶部としてポリスチレンに分別できるのが普通である。しかし、芳香族ポリエン単量体単位が介在した結合を有するクロス共重合体に対して同様のソックスレー抽出を行った場合、アセトン可溶部として本クロス共重合体に含まれる比較的少量のポリスチレンホモポリマーが得られるが、大部分の量を占めるアセトン不溶部には、NMR測定を行うことでエチレン-スチレン-ジビニルベンゼン共重合体鎖とポリスチレン鎖が共に含まれていることが示され、これらはソックスレー抽出で分別することができないことがわかる。なおこの手法についてもその詳細は上記公知文献「ジビニルベンゼンユニットを含有するオレフィン系共重合体を用いた分岐型共重合体の合成」、荒井亨、長谷川勝、日本ゴム協会誌、p382、vol.82(2009)に記載されている。 From another viewpoint, in the cross copolymer (A), an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit. (For example, an ethylene-styrene-divinylbenzene copolymer chain and a polystyrene chain are bonded via a divinylbenzene unit) can be proved by the following observable phenomenon. That is, as described above, the cross-copolymer having a bond in which an aromatic polyene monomer unit is interposed therein contains ethylene-styrene- Divinylbenzene copolymer chains and polystyrene chains cannot be separated. Ethylene-styrene-divinylbenzene copolymer and polystyrene having the same composition as the ethylene-styrene-divinylbenzene copolymer chain contained in the ordinary cross-copolymer are subjected to Soxhlet extraction with boiling acetone to form acetone-insoluble parts. Usually, it can be separated into polystyrene as an acetone-soluble part in an ethylene-styrene-divinylbenzene copolymer. However, when the same Soxhlet extraction was performed on a cross copolymer having an aromatic polyene monomer unit interposed bond, a relatively small amount of polystyrene homogen contained in the present cross copolymer as an acetone-soluble portion was obtained. Although a polymer is obtained, the acetone-insoluble portion occupying most of the amount is shown by NMR measurement to contain both the ethylene-styrene-divinylbenzene copolymer chain and the polystyrene chain. It can be seen that it cannot be separated by Soxhlet extraction. The details of this method are also described in the above-mentioned known document "Synthesis of branched copolymers using olefin-based copolymers containing divinylbenzene units", Toru Arai, Masaru Hasegawa, Journal of the Rubber Society of Japan, p382, vol. 82 (2009).
 以上から好ましい実施形態に係るクロス共重合体(A)としては、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖とを有し、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖とが芳香族ポリエン単量体単位を介して結合している構造を有し、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖とが実質的に溶媒分別で分離できない共重合体であってよい。ここで言う「実質的に」とは、本クロス共重合体に、本発明の効果を阻害しない程度の比較的少量の芳香族ビニル化合物(ポリスチレン)ホモポリマーが含まれていても良いことを意味する。 From the above, the cross copolymer (A) according to a preferred embodiment has an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain, and is an ethylene-aromatic vinyl compound. An ethylene-aromatic vinyl compound-aromatic polyene copolymer having a structure in which an aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit It may be a copolymer in which the chain and the aromatic vinyl compound polymer chain cannot be separated substantially by solvent separation. The term "substantially" as used herein means that the present cross-copolymer may contain a relatively small amount of an aromatic vinyl compound (polystyrene) homopolymer that does not impair the effects of the present invention. I do.
 クロス共重合体(A)に含まれる芳香族ビニル化合物重合体鎖の重量平均分子量Mwは任意であるが、一般的には1万~8万の範囲である。クロス共重合体においては主鎖であるオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体と結合している芳香族ビニル化合物重合体鎖の分子量は求めることができないので、本明細書では、クロス共重合体の中に比較的少量含まれる、芳香族ビニル化合物重合体ホモポリマーの重量平均分子量Mwをもって、クロス共重合体に含まれる芳香族ビニル化合物重合体鎖の重量平均分子量Mwと定義している。 (4) The weight average molecular weight Mw of the aromatic vinyl compound polymer chain contained in the cross copolymer (A) is arbitrary, but is generally in the range of 10,000 to 80,000. In the cross copolymer, the molecular weight of the aromatic vinyl compound polymer chain bonded to the main chain olefin-aromatic vinyl compound-aromatic polyene copolymer cannot be determined. The weight average molecular weight Mw of the aromatic vinyl compound polymer homopolymer contained in the copolymer in a relatively small amount is defined as the weight average molecular weight Mw of the aromatic vinyl compound polymer chain contained in the cross copolymer. I have.
 なお、クロス共重合体(A)を1H-NMR測定すると、含まれる芳香族ポリエン(例えばジビニルベンゼン)ユニットは、芳香族ビニル化合物(例えばスチレン)ユニットと比較し著しくその量が少なく、さらにピーク位置が芳香族ビニル化合物(例えばスチレン)ユニットと重なることから、そのピークを直接確認することはできない。そのため、好ましい実施形態に係るクロス共重合体の1H-NMR測定では、オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体(エチレン-スチレン-ジビニルベンゼン共重合体)に由来するピークと芳香族ビニル化合物重合体(ポリスチレン)に由来するピークが観察され、これからクロス共重合体のオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体(エチレン-スチレン-ジビニルベンゼン共重合体)に由来するオレフィン単位含量、芳香族ビニル化合物(スチレン)単位含量、及び芳香族ビニル化合物重合体(ポリスチレン)の含量を求めることができる。なおここでは、オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体(エチレン-スチレン-ジビニルベンゼン共重合体)中に、0.01モル%以上0.5モル%以下含まれていてよい芳香族ポリエン(ジビニルベンゼン)の含量は、ピーク位置が重なる芳香族ビニル化合物(スチレン)ユニット含量に含めて、前記各含量を求めている。また、クロス共重合体の大部分を占める上記アセトン不溶部には、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体(エチレン-スチレン-ジビニルベンゼン共重合体)と芳香族ビニル化合物重合体(ポリスチレン)が共に含まれ、これをさらなる分別操作によって分離することができない。それ故、好ましいクロス共重合体において、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖とが結合を有している(一例としてエチレン-スチレン-ジビニルベンゼン共重合体鎖とポリスチレン鎖とが結合を有している)ことを立証することができる。本クロス共重合体は、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖とが結合を有しているにも関わらず、ゲル分が実質的に含まれず、かつ熱可塑性樹脂としての実用的な成形加工性、すなわち特定のMFR値を示すことができる。 When the cross copolymer (A) was subjected to 1 H-NMR measurement, the amount of the aromatic polyene (eg, divinylbenzene) unit contained was significantly smaller than that of the aromatic vinyl compound (eg, styrene) unit. Since the position overlaps with the aromatic vinyl compound (for example, styrene) unit, the peak cannot be directly confirmed. Therefore, in the 1 H-NMR measurement of the cross copolymer according to the preferred embodiment, the peak derived from the olefin-aromatic vinyl compound-aromatic polyene copolymer (ethylene-styrene-divinylbenzene copolymer) and the aromatic A peak derived from a vinyl compound polymer (polystyrene) was observed, and an olefin unit derived from an olefin-aromatic vinyl compound-aromatic polyene copolymer (ethylene-styrene-divinylbenzene copolymer) of a cross-copolymer was observed. Content, aromatic vinyl compound (styrene) unit content, and aromatic vinyl compound polymer (polystyrene) content. Note that, here, the olefin-aromatic vinyl compound-aromatic polyene copolymer (ethylene-styrene-divinylbenzene copolymer) may contain from 0.01 mol% to 0.5 mol% of the aromatic compound. The polyene (divinylbenzene) content is determined by including the aromatic vinyl compound (styrene) unit content in which the peak positions overlap with each other. In addition, the above-mentioned acetone-insoluble portion which occupies most of the cross-copolymer includes an ethylene-aromatic vinyl compound-aromatic polyene copolymer (ethylene-styrene-divinylbenzene copolymer) and an aromatic vinyl compound polymer ( Polystyrene), which cannot be separated by further fractionation. Therefore, in a preferred cross copolymer, the ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and the aromatic vinyl compound polymer chain have a bond (for example, ethylene-styrene-divinylbenzene copolymer). (A polymer chain and a polystyrene chain have a bond). The cross-copolymer has substantially no gel component despite the bond between the ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and the aromatic vinyl compound polymer chain. And a practical molding processability as a thermoplastic resin, that is, a specific MFR value.
 好ましい実施形態に係るクロス共重合体(A)は、芳香族ビニル単量体単位の含量が10~30モル%であるオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体70~95質量%と、芳香族ビニル単量体単位からなる芳香族ビニル重合体5~30質量%とを含み、両者が実質的に溶媒分別で分離できない共重合体であってよい。 The cross copolymer (A) according to a preferred embodiment comprises 70 to 95% by mass of an olefin-aromatic vinyl compound-aromatic polyene copolymer having an aromatic vinyl monomer unit content of 10 to 30 mol%. And 5 to 30% by mass of an aromatic vinyl polymer comprising an aromatic vinyl monomer unit, and the two may be substantially inseparable by solvent separation.
[ポリエチレン系樹脂(B)]
 本発明の熱可塑性エラストマー組成物が使用できるポリエチレン系樹脂(B)とは、エチレン単量体単位を50質量%以上含む樹脂であってよい。ポリエチレン系樹脂(B)は、エチレン単独重合体でもよく、エチレンと他のα-オレフィン、例えば、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、もしくはこれらの2種以上の混合物との共重合体であってもよい。ポリエチレン系樹脂(B)は、高密度ポリエチレン(以下「HDPE」)、低密度ポリエチレン(以下「LDPE」)、直鎖状低密度ポリエチレン(以下「LLDPE」)、又はその混合物でもよい。
[Polyethylene resin (B)]
The polyethylene resin (B) in which the thermoplastic elastomer composition of the present invention can be used may be a resin containing 50% by mass or more of an ethylene monomer unit. The polyethylene resin (B) may be an ethylene homopolymer, and ethylene and another α-olefin, for example, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, or a mixture thereof. It may be a copolymer with the above mixture. The polyethylene resin (B) may be high-density polyethylene (hereinafter “HDPE”), low-density polyethylene (hereinafter “LDPE”), linear low-density polyethylene (hereinafter “LLDPE”), or a mixture thereof.
 HDPEの有する密度は0.940g/cm3以上であり、好ましくは0.940~0.970g/cm3、さらに好ましくは0.950~0.970g/cm3である。その融点は、好ましくはDSC法(示差走査熱量計)の測定で126~136℃、メルトフローレート(MFR)がJIS K-6922-2:2010に規定される温度190℃、荷重2.16kgの測定条件下において、好ましくは0(実質流れない)~30g/10分であり、さらに好ましくは0.05~10g/10分であってよい。MFRが0.05g/10分以上のものは熱可塑性エラストマー組成物の加工性が優れており、10g/10分以下のものは得られる熱可塑性エラストマー組成物の力学物性が高い。また、数平均分子量が100万以上の、いわゆる超高分子量ポリエチレンも好適に用いることができる。 HDPE has a density of 0.940 g / cm 3 or more, preferably 0.940 to 0.970 g / cm 3 , more preferably 0.950 to 0.970 g / cm 3 . The melting point thereof is preferably 126 to 136 ° C. as measured by a DSC method (differential scanning calorimeter), the melt flow rate (MFR) is 190 ° C. specified by JIS K-6922-2: 2010, and the load is 2.16 kg. Under the measurement conditions, it is preferably 0 (substantially no flow) to 30 g / 10 min, more preferably 0.05 to 10 g / 10 min. Those having an MFR of 0.05 g / 10 min or more have excellent processability of the thermoplastic elastomer composition, and those having an MFR of 10 g / 10 min or less have high mechanical properties of the obtained thermoplastic elastomer composition. Also, a so-called ultrahigh molecular weight polyethylene having a number average molecular weight of 1,000,000 or more can be suitably used.
 LDPEやLLDPEは、好ましくは、融点がDSC法(示差走査熱量計)の測定で60~125℃、メルトフローレート(MFR)がJIS K-6922-2:2010に規定される温度190℃、荷重2.16kgの測定条件下において、好ましくは0.05~30g/10分であり、さらに好ましくは0.05~10g/10分であってよい。MFRが0.05g/10分以上のものは熱可塑性エラストマー組成物の加工性が優れており、30g/10分以下のものは得られる熱可塑性エラストマー組成物の力学物性が高い。LDPEは、通常は公知の高圧ラジカル重合法により製造され、チューブラー法、オートクレーブ法の何れで製造されたものもよい。LLDPEは、チーグラーナッタ触媒またはメタロセン触媒を用いた配位重合法により、エチレンとコモノマーであるαオレフィンの共重合によって製造可能である。 LDPE and LLDPE preferably have a melting point of 60 to 125 ° C. measured by a DSC method (differential scanning calorimeter), a melt flow rate (MFR) of 190 ° C. specified in JIS @ K-6922-2: 2010, and a load. Under the measurement conditions of 2.16 kg, it is preferably 0.05 to 30 g / 10 min, and more preferably 0.05 to 10 g / 10 min. If the MFR is 0.05 g / 10 min or more, the thermoplastic elastomer composition has excellent processability, and if the MFR is 30 g / 10 min or less, the obtained thermoplastic elastomer composition has high mechanical properties. LDPE is usually produced by a known high-pressure radical polymerization method, and may be produced by any of a tubular method and an autoclave method. LLDPE can be produced by coordination polymerization using a Ziegler-Natta catalyst or a metallocene catalyst, by copolymerizing ethylene and an α-olefin as a comonomer.
 得られる熱可塑性エラストマー組成物の耐熱性の観点からは、用いるポリエチレン系樹脂(B)としては、HDPEが好ましい。 HD From the viewpoint of the heat resistance of the obtained thermoplastic elastomer composition, HDPE is preferred as the polyethylene resin (B) to be used.
[熱可塑性エラストマー組成物]
 本実施形態の熱可塑性エラストマー組成物は、クロス共重合体(A)50~85質量%と、ポリエチレン系樹脂(B)15~50質量%とを含む。クロス共重合体(A)が50質量%未満では、得られる組成物の軟質性が不足する場合があり、85質量%より多い場合は、耐熱性や耐油性が不足する場合がある。
[Thermoplastic elastomer composition]
The thermoplastic elastomer composition of the present embodiment contains 50 to 85% by mass of the cross copolymer (A) and 15 to 50% by mass of the polyethylene resin (B). If the cross copolymer (A) is less than 50% by mass, the resulting composition may have insufficient flexibility, and if it is more than 85% by mass, heat resistance and oil resistance may be insufficient.
 本発明の実施形態に係る熱可塑性エラストマー組成物は、ゲル分が1.0質量%以上である。好ましい実施形態では、ゲル分を沸騰キシレン(140℃)中、8時間後に測定できる。ゲル分が1.0質量%未満では、架橋が不十分であり、耐熱性や耐油性が不足してしまう場合がある。好ましくは同ゲル分は3.0質量%以上60質量%以下である。60質量%以下であると熱可塑性と成形加工性が良好である。 ゲ ル The thermoplastic elastomer composition according to the embodiment of the present invention has a gel content of 1.0% by mass or more. In a preferred embodiment, the gel fraction can be measured in boiling xylene (140 ° C.) after 8 hours. If the gel content is less than 1.0% by mass, crosslinking is insufficient, and heat resistance and oil resistance may be insufficient. Preferably, the gel content is from 3.0% by mass to 60% by mass. If it is at most 60% by mass, thermoplasticity and moldability will be good.
 本発明の実施形態に係る熱可塑性エラストマー組成物は、そのMFR(JIS K 7210-1:2014に基づき測定)は、0.3g/10分以上、10g/10分以下であるのが好ましい。さらに好ましくは、150℃、周波数1Hz、昇温4℃/分の条件下で測定した貯蔵弾性率E’が1×105~5×106Paの範囲、より好ましくは1×105~2×106Paの範囲であり、かつ沸騰キシレン(140℃)中、8時間後のゲル分が1.0質量%以上である。特に好ましい実施形態では、熱可塑性エラストマー組成物が190℃と150℃でそれぞれ示す貯蔵弾性率E’の比(E’(190)/E’(150))が、0.3以上であってよく、より好ましくは0.3以上1以下であってよい。 The MFR (measured based on JIS K7210-1: 2014) of the thermoplastic elastomer composition according to the embodiment of the present invention is preferably 0.3 g / 10 min or more and 10 g / 10 min or less. More preferably, the storage elastic modulus E ′ measured under the conditions of 150 ° C., a frequency of 1 Hz, and a temperature rise of 4 ° C./min is in the range of 1 × 10 5 to 5 × 10 6 Pa, and more preferably 1 × 10 5 to 2 Pa. × 10 6 Pa, and the gel content after 8 hours in boiling xylene (140 ° C.) is 1.0% by mass or more. In a particularly preferred embodiment, the ratio of the storage modulus E ′ (E ′ (190) / E ′ (150)) of the thermoplastic elastomer composition at 190 ° C. and 150 ° C., respectively, may be 0.3 or more. , More preferably 0.3 or more and 1 or less.
 本発明の実施形態に係る熱可塑性エラストマー組成物のA硬度(JIS K-6253-3:2012に基づき測定)は、好ましくは95以下であり、さらに好ましくは90以下、70以上であってよい。A硬度がこの範囲であることで、以下に示す、さらにポリプロピレン系樹脂を配合した場合であっても、表皮材として適当な軟質性を有することができる。 A The thermoplastic elastomer composition according to the embodiment of the present invention preferably has an A hardness (measured based on JIS K-6253-3: 2012) of 95 or less, more preferably 90 or less, and 70 or more. When the A hardness is in this range, even if a polypropylene-based resin is further compounded as shown below, it is possible to have appropriate softness as a skin material.
 熱可塑性エラストマー組成物のMFR(JIS K7210:2014)は、0.3g/10分未満では、成形加工性が不足し製造に際し経済性が失われてしまう恐れがあり、10g/10分より高いと、耐熱性や耐油性が低下してしまう恐れがある。 When the MFR (JIS # K7210: 2014) of the thermoplastic elastomer composition is less than 0.3 g / 10 minutes, there is a possibility that the moldability may be insufficient and economical efficiency may be lost during the production, and if it is higher than 10 g / 10 minutes. , Heat resistance and oil resistance may be reduced.
 熱可塑性エラストマー組成物の150℃、周波数1Hz、昇温4℃/分の条件下で測定した貯蔵弾性率E’が1×105未満では、耐熱性が低下してしまう恐れがある。一方、5×106Paより高い場合、熱可塑性が相対的に低下し、成形加工性が悪化してしまう場合がある。また、本発明の実施形態に係る熱可塑性エラストマー組成物の貯蔵弾性率は、150℃および190℃で測定可能であり、かつポリエチレン系樹脂(B)の融点(およそ130℃)以上の温度域でも大きな低下はない。具体的には、190℃と150℃の貯蔵弾性率E’の比(E’(190)/E’(150))は、0.3以上、より好ましくは0.3以上1以下である。これは、典型的な架橋構造の存在を示していると考えられる。 If the storage modulus E ′ of the thermoplastic elastomer composition measured at 150 ° C., a frequency of 1 Hz and a temperature rise of 4 ° C./min is less than 1 × 10 5 , the heat resistance may be reduced. On the other hand, when it is higher than 5 × 10 6 Pa, the thermoplasticity is relatively reduced, and the moldability may be deteriorated. Further, the storage elastic modulus of the thermoplastic elastomer composition according to the embodiment of the present invention can be measured at 150 ° C. and 190 ° C., and even in a temperature range not lower than the melting point (about 130 ° C.) of the polyethylene resin (B). There is no significant drop. Specifically, the ratio of storage elastic modulus E ′ between 190 ° C. and 150 ° C. (E ′ (190) / E ′ (150)) is 0.3 or more, more preferably 0.3 or more and 1 or less. This is considered to indicate the presence of a typical crosslinked structure.
 本発明の熱可塑性エラストマー組成物は、良好な耐油性を示すことができる。具体的には、流動パラフィン、またはオレイン酸に70℃で24時間浸漬させた後の膨潤率が120質量%以下となり得る。 熱 The thermoplastic elastomer composition of the present invention can exhibit good oil resistance. Specifically, the swelling ratio after immersion in liquid paraffin or oleic acid at 70 ° C. for 24 hours can be 120% by mass or less.
 本発明の熱可塑性エラストマー組成物は、良好な耐熱性を示す。具体的には、シボ付きプレスシートを、110℃で24時間放置後、プレスシートシボ面の60°光沢値(入射角60°での光沢値)を測定し、試験前光沢値と比較した変化量が1.00%以下であるのが好ましい。耐熱性が低い場合、熱によりシボがだれるために、光沢の変化率がより大きな値になってしまう。 熱 The thermoplastic elastomer composition of the present invention shows good heat resistance. Specifically, the press sheet with the grain was allowed to stand at 110 ° C. for 24 hours, and then the 60 ° gloss value (gloss value at an incident angle of 60 °) of the grain of the press sheet was measured and compared with the gloss value before the test. Preferably, the amount is 1.00% or less. In the case where the heat resistance is low, the grain changes due to heat, so that the rate of change in gloss becomes a larger value.
 本発明の熱可塑性エラストマー組成物は良好な耐傷付性を有する。具体的には、鏡面プレスシートの鏡面側に、直径1.0mmボールチップ(超硬性)を有するエリクセン社製引掻き式硬度計「318S」型を使用し、荷重3Nにて3cm以上の傷を引いた際の、傷深さが15μm以下であるのが好ましい。 熱 The thermoplastic elastomer composition of the present invention has good scratch resistance. Specifically, a scratch of 3 cm or more was applied to the mirror surface of the mirror press sheet by using a scratch type hardness meter “318S” manufactured by Eriksen and having a ball tip (ultra-hardness) of 1.0 mm in diameter at a load of 3N. In this case, it is preferable that the scratch depth is 15 μm or less.
 このような本発明の熱可塑性エラストマー組成物は、いわゆる動的架橋法により得ることができる。動的架橋(動的加硫)とは、各種配合物を溶融状態で架橋剤が反応する温度条件下で強力に混練させる事により剪断、分散と架橋を同時に起こさせる手法である。このような動的架橋処理は、例えば文献A.Y.Coranら、Rub.Chem.and Technol.vol.53.141~(1980)、JSR TECHNICAL REVIEW、No.112/20050、P20-24等に記載がある。動的架橋時の混練機は通常バンバリーミキサー、加圧式ニーダーのような密閉式混練機、一軸や二軸押出機等を用いて行われる。混練温度は通常130~300℃、好ましくは150~200℃である。混練時間は通常1~30分である。 The thermoplastic elastomer composition of the present invention can be obtained by a so-called dynamic crosslinking method. Dynamic cross-linking (dynamic vulcanization) is a method in which shearing, dispersion and cross-linking are simultaneously caused by strongly kneading various compounds in a molten state under a temperature condition at which a cross-linking agent reacts. Such a dynamic crosslinking treatment is described, for example, in Reference A. Y. See Coran et al., Rub. Chem. and @Technol. vol. 53.141 to (1980), JSR TECHNICAL REVIEW, No. 112/20050, P20-24. The kneading machine at the time of dynamic crosslinking is usually performed using a closed kneading machine such as a Banbury mixer or a pressure kneader, a single-screw or twin-screw extruder, or the like. The kneading temperature is usually from 130 to 300 ° C, preferably from 150 to 200 ° C. The kneading time is usually 1 to 30 minutes.
 動的架橋の際の架橋剤には、有機過酸化物(F)を含めてよい。そうした有機過酸化物(F)としては例えば、フェノール樹脂架橋剤、ジキュミルパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)-ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)-ヘキシン-3、ジ-tert-ブチルパーオキサイド等が挙げられる。又架橋助剤としてマレイミド化合物や、ジビニルベンゼン、TAIC(トリメタリルイソシアヌレート)、トリメチロールプロパントリメタクリレートの様な多官能性モノマーを用いることも出来る。 架橋 The crosslinking agent in the case of dynamic crosslinking may include an organic peroxide (F). Examples of such an organic peroxide (F) include a phenol resin crosslinking agent, dicumyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) -hexane, and 2,5-dimethyl- 2,5-di (tert-butylperoxy) -hexyne-3, di-tert-butyl peroxide and the like. As a crosslinking aid, a polyfunctional monomer such as a maleimide compound, divinylbenzene, TAIC (trimethallyl isocyanurate), or trimethylolpropane trimethacrylate can also be used.
 或る実施形態では、熱可塑性エラストマー組成物100質量部に対してさらに、ポリプロピレン系樹脂(C)を1~40質量部配合してもよい。ポリプロピレン系樹脂を1質量部以上配合することで、さらに耐油性や耐熱性を向上させることが可能となる。またポリプロピレン系樹脂を40質量%以下配合することで軟質性を維持できる。 In one embodiment, 1 to 40 parts by mass of the polypropylene resin (C) may be further added to 100 parts by mass of the thermoplastic elastomer composition. By blending 1 part by mass or more of the polypropylene resin, it becomes possible to further improve oil resistance and heat resistance. The softness can be maintained by blending the polypropylene resin in an amount of 40% by mass or less.
 或る実施形態では、クロス共重合体(A)とポリエチレン系樹脂(B)を含む熱可塑性エラストマー組成物100質量部に対してかまたはポリプロピレン系樹脂(C)をさらに配合した熱可塑性樹脂組成物100質量部に対してさらに、可塑剤(D)を1~50質量部、及び/またはスチレン系熱可塑性エラストマー(E)を1~25質量部配合してもよい。可塑剤とスチレン系熱可塑性エラストマーを併用することで、可塑剤(オイルなど)のブリードアウトを防ぎながら軟質性を向上させることができる。 In one embodiment, the thermoplastic resin composition is based on 100 parts by mass of the thermoplastic elastomer composition containing the cross copolymer (A) and the polyethylene resin (B), or further blended with the polypropylene resin (C). Further, 1 to 50 parts by mass of a plasticizer (D) and / or 1 to 25 parts by mass of a styrene-based thermoplastic elastomer (E) may be further blended with 100 parts by mass. By using a plasticizer and a styrene-based thermoplastic elastomer in combination, the softness can be improved while preventing the bleed-out of the plasticizer (such as oil).
 可塑剤(D)としては例えば、パラフィン系(流動パラフィンなど)、ナフテン系、アロマ系プロセスオイル、流動パラフィン等の鉱物油系軟化剤、ヒマシ油、アマニ油、オレフィン系ワックス、鉱物系ワックス、各種エステル類等公知のものを使用可能である。 Examples of the plasticizer (D) include paraffin-based (liquid paraffin, etc.), naphthene-based, aroma-based process oil, mineral oil-based softeners such as liquid paraffin, castor oil, linseed oil, olefin-based wax, mineral-based wax, various types Known compounds such as esters can be used.
 スチレン系熱可塑性エラストマー(E)としては例えば、スチレン部分を含んだ熱可塑性エラストマーを使用できる。一例として、クラレ社から販売されている「セプトン」シリーズ(SEP、SEPS、SEEPS、SEBS、SEEPS-OH)などを使用可能である。 As the styrene-based thermoplastic elastomer (E), for example, a thermoplastic elastomer containing a styrene portion can be used. As an example, the “Septon” series (SEP, SEPS, SEEPS, SEBS, SEEPS-OH) sold by Kuraray can be used.
 これらのポリプロピレン系樹脂(C)、可塑剤(D)、及び/またはスチレン系熱可塑性エラストマー(E)を配合して得られる熱可塑性エラストマー組成物もまた、優れたA硬度、耐傷付性を示すことができ、より優れた耐油性や耐熱性を示すことができる。 The thermoplastic elastomer composition obtained by blending these polypropylene resin (C), plasticizer (D), and / or styrene thermoplastic elastomer (E) also exhibits excellent A hardness and scratch resistance. And exhibit more excellent oil resistance and heat resistance.
 ポリプロピレン系樹脂(C)、可塑剤(D)、及び/またはスチレン系熱可塑性エラストマー(E)を配合する方法は任意である。好ましくは、前記動的架橋方法により得られたクロス共重合体(A)とポリエチレン系樹脂(B)を含む熱可塑性エラストマー組成物に対し、別途、ポリプロピレン系樹脂(C)、可塑剤(D)、及び/またはスチレン系熱可塑性エラストマー(E)を配合して公知の方法で混練して製造する。この際に、架橋剤や架橋助剤を使用し、同様の動的加硫を行っても良いし、これらを用いずに単に混練して組成物を製造しても良い。特にポリプロピレン系樹脂(C)を用いる場合には、ラジカルによるポリプロピレン鎖の切断を避けるために、架橋剤や架橋助剤を用いずに単に混練して組成物を製造することが、最終的に得られる組成物の耐熱性、耐油性の観点からは好ましい。 方法 A method of blending the polypropylene resin (C), the plasticizer (D), and / or the styrene thermoplastic elastomer (E) is optional. Preferably, a polypropylene resin (C) and a plasticizer (D) are separately added to the thermoplastic elastomer composition containing the cross copolymer (A) and the polyethylene resin (B) obtained by the dynamic crosslinking method. And / or a styrene-based thermoplastic elastomer (E) is blended and kneaded by a known method. At this time, the same dynamic vulcanization may be performed by using a crosslinking agent or a crosslinking assistant, or the composition may be produced by simply kneading without using these. In particular, in the case of using a polypropylene resin (C), it is finally possible to simply knead the composition without using a cross-linking agent or a cross-linking aid to avoid breaking of the polypropylene chain due to radicals. It is preferable from the viewpoint of heat resistance and oil resistance of the resulting composition.
 ポリプロピレン系樹脂(C)、可塑剤(D)、及び/またはスチレン系熱可塑性エラストマー(E)を配合するにあたっては、経済的には一台の、サイドフィード付き、二軸押し出し機を使用することもできる。具体的には、クロス共重合体(A)とポリエチレン系樹脂(B)、架橋剤、その他を含む主原料を原料投入口から投入し、実質的に架橋剤が反応を完了する押し出し機領域で動的架橋を行い、実質的に架橋剤が反応を終了した段階でサイドフィードよりポリプロピレン系樹脂(C)、可塑剤(D)、及び/またはスチレン系熱可塑性エラストマー(E)を配合し、以降混練することで、連続的にクロス共重合体(A)とポリエチレン系樹脂(B)を含む熱可塑性エラストマー組成物(動的加硫物)に、ポリプロピレン系樹脂(C)、可塑剤(D)、及び/またはスチレン系熱可塑性エラストマー(E)が配合された、熱可塑性エラストマー組成物を製造することができる。 When compounding the polypropylene resin (C), the plasticizer (D), and / or the styrene thermoplastic elastomer (E), use one twin feed extruder with side feed economically. Can also. Specifically, the main raw materials including the cross-copolymer (A), the polyethylene resin (B), the cross-linking agent, and the like are charged from the raw material inlet, and the cross-linking agent substantially completes the reaction in the extruder region. Dynamic crosslinking is performed, and when the crosslinking agent has substantially completed the reaction, the polypropylene-based resin (C), the plasticizer (D), and / or the styrene-based thermoplastic elastomer (E) are blended from the side feed. By kneading, the thermoplastic elastomer composition (dynamic vulcanizate) containing the cross copolymer (A) and the polyethylene resin (B) is continuously added to the polypropylene resin (C) and the plasticizer (D). And / or a thermoplastic elastomer composition containing a styrene-based thermoplastic elastomer (E).
 すなわち或る実施形態では、少なくともクロス共重合体(A)、ポリエチレン系樹脂(B)、および架橋剤を剪断下で混合し、さらに架橋する工程を含む、熱可塑性エラストマー組成物の製造方法を提供できる。また或る実施形態では、上記で得られた熱可塑性エラストマー組成物に対して、さらにポリプロピレン系樹脂(C)、可塑剤(D)、及び/またはスチレン系熱可塑性エラストマー(E)を配合し、混練する工程を含む、熱可塑性エラストマー組成物の製造方法も提供できる。 That is, in one embodiment, there is provided a method for producing a thermoplastic elastomer composition, which comprises a step of mixing at least a cross-copolymer (A), a polyethylene-based resin (B), and a cross-linking agent under shear and further cross-linking the mixture. it can. In one embodiment, the thermoplastic elastomer composition obtained above is further blended with a polypropylene resin (C), a plasticizer (D), and / or a styrene thermoplastic elastomer (E), A method for producing a thermoplastic elastomer composition including a step of kneading can also be provided.
 また或る実施形態では、熱可塑性エラストマー組成物を用いた成形体を提供できる。そうした成形体としては例えば、特開2009-102515号公報、国際公開第09/128444号、国際公開第13/018171号、または特開2011-153214号公報に記載されている合成皮革、表皮材、グリップまたは外装部材、発泡体、表皮材、テープ基材、電線被覆材、ガスケット、シート、または導電性シートに好適に用いられる。本発明の実施形態に係る熱可塑性エラストマー組成物を用いたシートは単層であっても良く、あるいは多層であっても良い。多層の場合は、他の樹脂成分からなる層をさらに有する多層であってもよいし、あるいは本熱可塑性エラストマー組成物からなる層のみからなる多層であってもよい。 In one embodiment, a molded article using the thermoplastic elastomer composition can be provided. Examples of such a molded article include synthetic leathers and skin materials described in JP-A-2009-102515, WO09 / 128444, WO13 / 018171, or JP-A-2011-153214. It is suitably used for grips or exterior members, foams, skin materials, tape base materials, wire covering materials, gaskets, sheets, or conductive sheets. The sheet using the thermoplastic elastomer composition according to the embodiment of the present invention may be a single layer or a multilayer. In the case of a multilayer, it may be a multilayer further having a layer composed of another resin component, or a multilayer composed only of a layer composed of the present thermoplastic elastomer composition.
 或る実施形態では、熱可塑性エラストマー組成物を含んだ単層または多層シートを有する自動車内装用の表皮材(例えば表皮材シート)が好適に提供できる。そうした表皮材としては、表層に熱可塑性エラストマー組成物のシートを用い、下地(基材)層として発泡ポリプロピレンシートを有するようにできる。この場合、優れた耐熱性、耐油性、耐傷付性に加え、発泡ポリプロピレンシートとの熱接着性が求められるが、本発明の実施形態に係る熱可塑性エラストマー組成物は発泡ポリプロピレンシートとの熱接着性が良好であり好適である。或る実施形態では、上記表皮材を含んだ自動車内装部材も提供できる。本発明の実施形態に係る熱可塑性エラストマーの特性により、人間にとっての異臭が少なく、低光沢であるので窓外から入射する光の反射により運転が妨げられず、かつ人間にとっての触感が快適であるという特徴が得られるため、自動車内装部材としてきわめて有益な効果が得られる。 In one embodiment, a skin material (for example, a skin material sheet) for an automobile interior having a single-layer or multi-layer sheet containing the thermoplastic elastomer composition can be suitably provided. As such a skin material, a sheet of a thermoplastic elastomer composition can be used for a surface layer, and a foamed polypropylene sheet can be used as a base (base) layer. In this case, in addition to excellent heat resistance, oil resistance, and scratch resistance, thermal adhesiveness to the expanded polypropylene sheet is required. However, the thermoplastic elastomer composition according to the embodiment of the present invention has thermal adhesion to the expanded polypropylene sheet. The properties are good and suitable. In one embodiment, an automobile interior member including the skin material can be provided. Due to the characteristics of the thermoplastic elastomer according to the embodiment of the present invention, there is little odor to humans and low gloss, so that driving is not hindered by the reflection of light incident from outside the window, and the human feel is comfortable. Therefore, an extremely advantageous effect can be obtained as an automobile interior member.
 本発明の実施形態に係る単層または多層シートの表面には、さらに風合い、耐傷付性、耐油性を付与するために、公知の表面コート剤処理を行うことができる。このような表面コートには、例えばウレタン表面コート剤がある。 表面 The surface of the single-layer or multi-layer sheet according to the embodiment of the present invention can be subjected to a known surface coating agent treatment in order to further impart texture, scratch resistance, and oil resistance. Such surface coats include, for example, urethane surface coat agents.
 以下、実施例及び比較例をあげて本発明を説明するが、これらは何れも例示的なものであって本発明の内容を限定するものではない。実施例、比較例に用いた原料、製法は以下の通りである。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but these are only examples and do not limit the content of the present invention. The raw materials and production methods used in Examples and Comparative Examples are as follows.
クロス共重合体(A)
 表1に記載のクロス共重合体1~3を使用した。これらのクロス共重合体は、国際公開第2000/37517号、国際公開第2007/139116号、特開2009-120792号公報に記載の実施例あるいは比較例の製造方法で製造したもので、下記組成は、同様にこれら公報記載の方法で求めた。つまり、クロス共重合体やエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体中の組成、すなわちエチレン、芳香族ビニル化合物の含量や芳香族ビニル化合物重合体の含量は、1H-NMR(プロトンNMR)により求めた。また、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体中の芳香族ポリエンの含量は、重合時に仕込んだ芳香族ポリエン量と、配位重合終了後にサンプリングした重合液のガスクロマトグラフ分析から求めた未反応芳香族ポリエン量の差から重合に使用された芳香族ポリエン量を求め、重合により得られた共重合体の量と比較することで算出した。重合液中の分子量はGPC測定により求めた。ポリスチレン鎖の重量平均分子量(Mw)、分子量分布(Mw/Mn)は、溶媒分別により分離された、芳香族ビニル化合物重合体のGPC測定により求めた。
Cross copolymer (A)
The cross copolymers 1 to 3 shown in Table 1 were used. These cross-copolymers were produced by the production methods of Examples or Comparative Examples described in WO2000 / 37517, WO2007 / 139116 and JP-A-2009-120792. Was similarly determined by the method described in these publications. That is, the composition in the cross-copolymer or ethylene-aromatic vinyl compound-aromatic polyene copolymer, that is, the content of ethylene and aromatic vinyl compound and the content of aromatic vinyl compound polymer are determined by 1 H-NMR (proton NMR). The content of the aromatic polyene in the ethylene-aromatic vinyl compound-aromatic polyene copolymer was determined from the amount of the aromatic polyene charged during the polymerization and gas chromatographic analysis of the polymerization solution sampled after the completion of the coordination polymerization. The amount of the aromatic polyene used in the polymerization was determined from the difference in the amount of the unreacted aromatic polyene, and the amount was calculated by comparing with the amount of the copolymer obtained by the polymerization. The molecular weight in the polymerization solution was determined by GPC measurement. The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polystyrene chain were determined by GPC measurement of an aromatic vinyl compound polymer separated by solvent fractionation.
 これらのクロス共重合体においては、ジビニルベンゼン単位のビニル基水素(プロトン)ピーク強度(面積)が、配位重合工程で得られたエチレン-スチレン-ジビニルベンゼン共重合体のジビニルベンゼン単位の同ピーク強度(面積)と比較して20%未満であった。実際にはジビニルベンゼン単位のビニル基の水素(プロトン)ピークはアニオン重合後のクロス共重合体では実質的に消失していた。また、本クロス共重合体に対し、沸騰アセトンを用いソックスレー抽出を行ったが、含まれるエチレン-スチレン-ジビニルベンゼン共重合体鎖(実質的にはエチレン-スチレン共重合体鎖)とポリスチレン鎖を分別することができなかった。なお、クロス共重合体を規定するために、用いられるエチレン-スチレン-ジビニルベンゼン共重合体のスチレン含量、ジビニルベンゼン含量、重量平均分子量(Mw)、分子量分布(Mw/Mn)、クロス共重合体中のエチレン-スチレン-ジビニルベンゼン共重合体の含量、ポリスチレン鎖の重量平均分子量(Mw)、分子量分布(Mw/Mn)、及びMFR(JIS K7210-1、200℃、49N)を示す。ASTM-D2765-84で測定したゲル分は、何れのクロス共重合体においても0.1質量%未満(検出下限以下)であった。 In these cross copolymers, the vinyl group hydrogen (proton) peak intensity (area) of the divinylbenzene unit is the same as that of the divinylbenzene unit of the ethylene-styrene-divinylbenzene copolymer obtained in the coordination polymerization step. The strength (area) was less than 20%. In fact, the hydrogen (proton) peak of the vinyl group of the divinylbenzene unit had substantially disappeared in the cross-copolymer after anionic polymerization. The cross copolymer was subjected to Soxhlet extraction using boiling acetone, and the ethylene-styrene-divinylbenzene copolymer chain (essentially, ethylene-styrene copolymer chain) and polystyrene chain included were extracted. Could not be separated. In order to define the cross copolymer, the styrene content, divinylbenzene content, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), cross copolymer of the ethylene-styrene-divinylbenzene copolymer used are specified. The content of the ethylene-styrene-divinylbenzene copolymer, the weight average molecular weight (Mw) of the polystyrene chain, the molecular weight distribution (Mw / Mn), and the MFR (JIS # K7210-1, 200 ° C., 49N) are shown. The gel content measured by ASTM-D2765-84 was less than 0.1% by mass (lower detection limit or less) in any of the cross copolymers.
 なお、GPC(ゲル浸透クロマトグラフ)の測定条件は以下のとおりであった。
<GPC測定条件>
  装置名:HLC-8220(東ソー社製)
  カラム:Shodex GPC KF-404HQを4本直列
  温度:40℃
  検出:示差屈折率
  溶媒:テトラヒドロフラン
  検量線:標準ポリスチレン(PS)を用いて作製した。
The measurement conditions of GPC (gel permeation chromatography) were as follows.
<GPC measurement conditions>
Equipment name: HLC-8220 (manufactured by Tosoh Corporation)
Column: 4 Shodex GPC KF-404HQ in series Temperature: 40 ° C
Detection: Differential refractive index Solvent: Tetrahydrofuran Calibration curve: Prepared using standard polystyrene (PS).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ポリエチレン系樹脂(B)や、その他の原料は表2に示したとおりである。 Polyethylene resin (B) and other raw materials are as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1~2の原料を、表3に示す配合で、以下の条件により動的加硫を行い、実施例1~9の熱可塑性エラストマー組成物を得た。また同様にして、比較例1~4の熱可塑性エラストマー組成物を得た。評価結果を表3a、3bに示す。 (4) The raw materials shown in Tables 1 and 2 were dynamically vulcanized under the following conditions with the compositions shown in Table 3 to obtain the thermoplastic elastomer compositions of Examples 1 to 9. Similarly, thermoplastic elastomer compositions of Comparative Examples 1 to 4 were obtained. The evaluation results are shown in Tables 3a and 3b.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(動的架橋)
 クロス共重合体(A)とポリエチレン系樹脂(B)と有機過酸化物(F)をヘンシェルミキサーにて1分間混合した。得られた混合物を、二軸押出機(東芝機械社製TEM35B)を用いて、樹脂温度220℃、スクリュー回転数170rpm、滞留時間120秒で混練し、ダイよりストランド状に押し出し、カッティングして熱可塑性エラストマー組成物を得た。
(Dynamic crosslinking)
The cross copolymer (A), the polyethylene resin (B), and the organic peroxide (F) were mixed with a Henschel mixer for 1 minute. The obtained mixture was kneaded using a twin-screw extruder (TEM35B manufactured by Toshiba Machine Co., Ltd.) at a resin temperature of 220 ° C., a screw rotation speed of 170 rpm, and a residence time of 120 seconds, and was extruded into a strand from a die, cut and heated. A plastic elastomer composition was obtained.
(試験片の作成)
 シート作製は以下に従った。物性評価用の試料は、鏡面金型(STAVAX製)を用いて、加熱プレス法(200℃、時間5分、圧力50kg/cm2)により成形した厚さ1mm、0.3mmの正方形鏡面プレスシートを用いた。また、片面シボ付きプレスシートとしては、シボ金型を用い、シート片面に同様の加熱プレス法によりシボ模様を付与した、厚さ0.6mmの片面シボ付きプレスシートを用いた。
(Preparation of test pieces)
The sheet was prepared according to the following. A sample for physical property evaluation was a square mirror-surface pressed sheet having a thickness of 1 mm and 0.3 mm formed by a heat press method (200 ° C., time: 5 minutes, pressure: 50 kg / cm 2 ) using a mirror surface mold (manufactured by STAVAX). Was used. As the press sheet with a single-sided grain, a grain mold was used, and a press sheet with a single-sided grain having a thickness of 0.6 mm, in which a crimp pattern was applied to one side of the sheet by the same heating press method, was used.
(軟質性)
 JIS K6253-3:2012に準拠して、タイプAのデュロメータ硬度を用いて瞬間値の硬度を求めた。試験片として1mm厚正方形鏡面プレスシートを6枚重ねて使用した。なお、A硬度95以下を好ましいレベルとした。
(Soft)
In accordance with JIS K6253-3: 2012, the instantaneous hardness was determined using a type A durometer hardness. Six 1 mm-thick square mirror-finished press sheets were used as test pieces. In addition, A hardness 95 or less was set to a preferable level.
(高温耐油性)
 厚さ0.6mm、一辺20mmの片面シボ付き鏡面プレスシートを、流動パラフィン、(カネダ社製ハイコールK-350)もしくはオレイン酸(純正化学社製一級)が4g入った60mLプラスチック瓶にシボ面を上にして浸漬させ、70℃で24時間放置後、プレスシートを取り出して重量をはかり、試験前重量と比較してプレスシートの膨潤率を算出した。なお、膨潤率120wt%以下を合格レベルとした。
(High temperature oil resistance)
A mirror-finished press sheet with a single-sided grain having a thickness of 0.6 mm and a side of 20 mm is placed in a 60 mL plastic bottle containing 4 g of liquid paraffin, (Hi-Kol K-350 manufactured by Kaneda) or oleic acid (first grade manufactured by Junsei Chemical Co., Ltd.). After being immersed above and left at 70 ° C. for 24 hours, the press sheet was taken out and weighed, and the swelling ratio of the press sheet was calculated by comparing with the weight before the test. In addition, the swelling rate of 120 wt% or less was regarded as a pass level.
(耐熱性)
 厚さ0.6mm、一辺50mmの片面シボ付き鏡面プレスシートを、110℃で24時間放置後、プレスシートシボ面の60°光沢値を測定し、試験前光沢値と比較してプレスシートシボ面の光沢変化値を算出した。なお、光沢変化値1.00%以下を合格レベルとした。
(Heat-resistant)
After leaving a mirror-finished pressed sheet with a thickness of 0.6 mm and one side of 50 mm on each side at 110 ° C. for 24 hours, measure the 60 ° gloss value of the pressed sheet textured surface and compare it with the gloss value before the test to obtain a pressed sheet textured surface. Was calculated. A gloss change value of 1.00% or less was regarded as a pass level.
(耐傷付性)
 厚さ0.6mm、一辺50mmの片面シボ付き鏡面プレスシートの鏡面側に、直径1.0mmボールチップ(超硬性)を有するエリクセン社製引掻き式硬度計「318S」型を使用し、荷重3Nにて3cm以上の傷を引いた。傷の中央部分(プレスシートの中央線と交わる部分)の溝の深さを、表面粗さ測定器(小阪研究所社製サーフコーダET4000AK)を用いて測定した。なお、傷深さ15μm以下を合格レベルとした。
(Scratch resistance)
On a specular side of a specular press sheet with a thickness of 0.6 mm and a side of 50 mm on each side, a scratch-type hardness meter “318S” manufactured by Ericssen having a 1.0 mm-diameter ball tip (ultra-hardness) is used on the specular side. Scratches of 3 cm or more. The depth of the groove at the center of the scratch (the portion intersecting with the center line of the press sheet) was measured using a surface roughness measuring device (Surfcoder ET4000AK manufactured by Kosaka Laboratory Co., Ltd.). In addition, 15 micrometers or less of damage depths were set as the pass level.
(MFR)
 JIS7210に準拠して、230℃、荷重10kgにて測定した。なお、0.3g/10分以上、10g/10分以下を合格レベルとした。
(MFR)
It measured at 230 degreeC and 10 kg of load based on JIS7210. In addition, 0.3 g / 10 min or more and 10 g / 10 min or less were regarded as acceptable levels.
(ゲル分率)
 厚さ0.6mmの片面シボ付き鏡面プレスシートを、幅1mm長さ3mmに裁断し、0.2g分を140℃のキシレン中8時間浸漬し、不溶分を200メッシュ金属網フィルターで濾別し、その乾燥重量から、キシレン不溶ゲル分を質量%として算出した。なお、ゲル分率1.0質量%以上を合格レベル、3.0質量%以上60質量%以下を特に好ましいレベルとした。
(Gel fraction)
A mirror pressed sheet with a single-sided grain having a thickness of 0.6 mm was cut into a width of 1 mm and a length of 3 mm, and 0.2 g of the sheet was immersed in xylene at 140 ° C. for 8 hours, and the insoluble matter was filtered off with a 200-mesh metal mesh filter. From the dry weight, the xylene-insoluble gel content was calculated as mass%. The gel fraction of 1.0% by mass or more was regarded as an acceptable level, and the range of 3.0% by mass to 60% by mass was particularly preferred.
(貯蔵弾性率E’)
 厚さ0.3mmの正方形鏡面プレスシートから測定用サンプル(8mm×50mm)を切り出し、動的粘弾性測定装置(レオメトリックス社製RSA-III)を使用し、周波数1Hz、昇温4℃/分、温度領域30℃~200℃の範囲で測定し、貯蔵弾性率E’を求めた。なお、150℃での貯蔵弾性率E’ 1×105Pa以上、5×106Pa以下を合格レベルとし、1×105Pa以上、2×106Pa以下を優秀レベルとした。また190℃と150℃の貯蔵弾性率E’の比(E’(190)/E’(150))は、0.3以上であれば、典型的な架橋構造の存在を示していると考えられるため、合格レベルとした。
(Storage modulus E ')
A measurement sample (8 mm × 50 mm) was cut out from a 0.3 mm-thick square mirror-finished press sheet, and a dynamic viscoelasticity measuring device (RSA-III manufactured by Rheometrics) was used at a frequency of 1 Hz and a temperature rise of 4 ° C./min. The storage elastic modulus E ′ was determined in the temperature range of 30 ° C. to 200 ° C. The storage elastic modulus E ′ at 150 ° C. was 1 × 10 5 Pa or more and 5 × 10 6 Pa or less, and the acceptable level was 1 × 10 5 Pa or more and 2 × 10 6 Pa or less. When the ratio of storage modulus E ′ at 190 ° C. and 150 ° C. (E ′ (190) / E ′ (150)) is 0.3 or more, it is considered that a typical crosslinked structure is present. Therefore, the pass level was set.
 クロス共重合体(A)とポリエチレン系樹脂(B)を含み、過酸化物の存在下動的架橋を行った、実施例に係る熱可塑性エラストマー組成物は、いずれも好適なMFR値、貯蔵弾性率、ゲル分を示し、しかも好ましい軟質性を有し、さらに良好な高温耐油性、耐熱性、耐傷付性を示すことがわかる。一方、ポリエチレン系樹脂(B)を使用しない場合は、粘弾性スペクトル測定において、測定温度である150℃に達する前に溶融するなどしてしまい、貯蔵弾性率の測定下限値以下となってしまい、耐熱性、高温耐油性も不足していた(比較例1)。ポリエチレン系樹脂(B)の配合量が多すぎる場合は、軟質性が失われてしまう(比較例2)。ポリエチレン系樹脂(B)の代わりにポリプロピレン系樹脂(C)のみを用い動的架橋を行った場合、得られる組成物はMFR値が大きくなりすぎ、特に高温耐油性が未達である(比較例3)。ポリエチレン系樹脂(B)を用い、架橋剤を用いず動的架橋を行わなかった組成物では、粘弾性スペクトル測定において、測定温度である150℃に達する前に溶融するなどしてしまい、貯蔵弾性率の測定下限値以下となってしまい、ゲル分も小さく、耐熱性、高温耐油性も不足していた(比較例4)。 Each of the thermoplastic elastomer compositions according to the examples, including the cross copolymer (A) and the polyethylene resin (B), and dynamically crosslinked in the presence of a peroxide, has a suitable MFR value and storage elasticity. It shows that the resin composition has good softness and good high-temperature oil resistance, heat resistance, and scratch resistance. On the other hand, when the polyethylene-based resin (B) is not used, in the viscoelastic spectrum measurement, the resin melts before reaching the measurement temperature of 150 ° C., and the storage elastic modulus becomes lower than the lower limit of measurement, Heat resistance and high temperature oil resistance were also insufficient (Comparative Example 1). If the blending amount of the polyethylene resin (B) is too large, the softness is lost (Comparative Example 2). When dynamic crosslinking is performed using only the polypropylene-based resin (C) instead of the polyethylene-based resin (B), the resulting composition has an excessively high MFR value, and particularly has not achieved high-temperature oil resistance (Comparative Example). 3). In the case of the composition using the polyethylene resin (B) and not performing the dynamic crosslinking without using the crosslinking agent, in the viscoelastic spectrum measurement, the composition melts before reaching the measurement temperature of 150 ° C., and the storage elasticity is increased. The ratio was below the lower limit of the measurement, the gel content was small, and the heat resistance and oil resistance at high temperatures were insufficient (Comparative Example 4).
 実施例の典型例として実施例1~3と、比較例3とについての貯蔵弾性率の温度変化のグラフを図1に示した。クロス共重合体(A)とポリエチレン系樹脂(B)を含み、過酸化物の存在下動的架橋を行った、本実施例に係る熱可塑性エラストマー組成物の貯蔵弾性率は、ポリエチレン系樹脂(B)の融点(およそ130℃)以上の温度域でも大きな低下はない。具体的には、190℃と150℃の貯蔵弾性率E’の比(E’(190)/E’(150))は、0.3以上、より好ましくは0.3以上1以下である。これは、典型的な架橋構造の存在を示していると考えられる。なお、図1中、縦軸の単位はPaであり、横軸は温度を表し単位は℃である。また、例えば1.E+07と示されているのは、1.0×107という意味である。 FIG. 1 shows a graph of the temperature change of the storage elastic modulus for Examples 1 to 3 and Comparative Example 3 as typical examples of the examples. The storage elastic modulus of the thermoplastic elastomer composition according to the present example, which contains the cross copolymer (A) and the polyethylene resin (B) and is dynamically crosslinked in the presence of a peroxide, is determined by the polyethylene resin ( There is no significant decrease in the temperature range above the melting point of B) (about 130 ° C.). Specifically, the ratio of storage elastic modulus E ′ between 190 ° C. and 150 ° C. (E ′ (190) / E ′ (150)) is 0.3 or more, more preferably 0.3 or more and 1 or less. This is considered to indicate the presence of a typical crosslinked structure. In FIG. 1, the unit on the vertical axis is Pa, the horizontal axis is temperature, and the unit is ° C. For example, 1. What is indicated as E + 07 means 1.0 × 10 7 .
 これに対し、クロス共重合体(A)とポリプロピレン系樹脂(C)を含むがポリエチレン系樹脂(B)は含まず、過酸化物の存在下動的架橋を行った、比較例3に係る熱可塑性エラストマー組成物は、ポリプロピレン系樹脂(C)の融点(およそ170℃)以上の温度で溶融し、貯蔵弾性率E’は急激に低下する。190℃では、測定下限(1×104Pa)以下であり、具体的には、190℃と150℃の貯蔵弾性率の比(E’(190)/E’(150))は、0.01以下であると推定できる。クロス共重合体(A)とポリプロピレン系樹脂(C)のみを含み、過酸化物の存在下動的架橋を行った場合には、ポリプロピレン系樹脂(C)に関わる架橋構造は実質的に少ないことを示していると考えられる。 On the other hand, the thermal cross-link according to Comparative Example 3, which included the cross-copolymer (A) and the polypropylene-based resin (C) but did not include the polyethylene-based resin (B), and was dynamically crosslinked in the presence of a peroxide. The plastic elastomer composition melts at a temperature equal to or higher than the melting point (approximately 170 ° C.) of the polypropylene resin (C), and the storage elastic modulus E ′ sharply decreases. At 190 ° C., it is below the lower limit of measurement (1 × 10 4 Pa). Specifically, the ratio of storage elastic modulus between 190 ° C. and 150 ° C. (E ′ (190) / E ′ (150)) is 0. 01 or less. When only the cross-copolymer (A) and the polypropylene-based resin (C) are included and the dynamic cross-linking is performed in the presence of a peroxide, the cross-linked structure related to the polypropylene-based resin (C) is substantially small. It is considered to indicate.
 さらに、実施例2で得られた熱可塑性エラストマー組成物を用い、表4に示すポリプロピレン系樹脂、可塑剤、スチレン系熱可塑性エラストマーを配合し混練することで、実施例10~14の熱可塑性エラストマー組成物を得た。また市販のTPV系表皮材、TPS系表皮材、PVC系表皮材の評価結果も比較例5~7として記載した。原料の配合、および評価結果を表5に示す。実施例の熱可塑性エラストマー組成物は、比較例の市販のTPV、TPS表皮材と比較し、同等レベルの耐熱性、耐油性を有しつつ、優れた耐傷付性を示した。実施例の熱可塑性エラストマー組成物は、PVC表皮材と比較し、優れた耐油性と耐熱性を示した。 Further, using the thermoplastic elastomer composition obtained in Example 2, a polypropylene resin, a plasticizer, and a styrene thermoplastic elastomer shown in Table 4 were blended and kneaded, whereby the thermoplastic elastomers of Examples 10 to 14 were mixed. A composition was obtained. Evaluation results of commercially available TPV-based skin materials, TPS-based skin materials, and PVC-based skin materials are also described as Comparative Examples 5 to 7. Table 5 shows the blending of the raw materials and the evaluation results. The thermoplastic elastomer composition of the example exhibited excellent scratch resistance while having the same level of heat resistance and oil resistance as compared with the commercially available TPV and TPS skin materials of the comparative example. The thermoplastic elastomer compositions of the examples exhibited excellent oil resistance and heat resistance as compared with the PVC skin material.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 さらに、実施例12で得られた熱可塑性エラストマー組成物を、ダイス温度200℃に設定したTダイ付き押出シート成形機で押出し、同時に繰り出した厚み1.0mmの発泡PPシート(トーレペフ 10010AP67東レ社製)とダイス直後のシボロールで熱融着を行い、実施例15に係るシボ付きの多層シートを得た。この多層シートの厚みは1.5mmであった。得られた多層シートを、ポリプロピレン系樹脂を材料とするインパネ型を用いて、シート表面の温度が110℃の条件で真空成形を行い、インパネ型の自動車内装部材を得た。その評価基準、結果を表6に示す。 Further, the thermoplastic elastomer composition obtained in Example 12 was extruded by an extrusion sheet molding machine with a T-die set at a die temperature of 200 ° C., and simultaneously extruded, and a 1.0 mm-thick foamed PP sheet (Toray Pef # 10010AP67 manufactured by Toray Industries, Inc.) ) And a grain roll immediately after the die were subjected to heat fusion to obtain a grained multilayer sheet according to Example 15. The thickness of this multilayer sheet was 1.5 mm. The obtained multilayer sheet was subjected to vacuum forming using an instrument panel mold made of a polypropylene resin at a sheet surface temperature of 110 ° C. to obtain an instrument panel-type automobile interior member. Table 6 shows the evaluation criteria and results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(ヒートサイクル試験)
 インパネ型の自動車内装部材について、80℃4時間~-30℃2時間を1サイクルとして、10サイクルのヒートサイクル試験を実施した。試験後、インパネ型の自動車内装部材を常温で1時間以上放置した後に、無作為に5箇所指定した部分について、測色色差計(日本電色工業社製ZE-2000)を使用してL*、a*、b*を測定して平均値を基準値とした。試験前L*、a*、b*の平均値と比較して色差ΔEを算出した。なお、色差ΔE2.0以下を合格レベルとした。
(Heat cycle test)
With respect to the instrument panel-type automobile interior member, a heat cycle test of 10 cycles was carried out with 80 ° C. for 4 hours to −30 ° C. for 2 hours as one cycle. After the test, the instrument panel-type automobile interior member was left at room temperature for 1 hour or more, and then, at a part designated at five places at random, L * was measured using a colorimetric colorimeter (ZE-2000 manufactured by Nippon Denshoku Industries Co., Ltd.). , A *, and b * were measured, and the average value was used as a reference value. The color difference ΔE was calculated by comparing the average value of L *, a *, and b * before the test. The color difference ΔE 2.0 or less was regarded as a pass level.
 また、ヒートサイクル試験後のインパネ型の自動車内装部材の外観を目視確認し、変形、クラック、剥がれのないことを確認した。 In addition, the appearance of the instrument panel-type automobile interior member after the heat cycle test was visually confirmed, and it was confirmed that there was no deformation, crack, or peeling.
(耐薬品性)
 インパネ型の自動車内装部材の表面に、ガラスクリーナー(HONDA社製純正品番08CBC-B010L1)を約0.4g/100cm2の塗布量となるように塗り伸ばした。80℃で48時間放置後、インパネ型の自動車内装部材の外観を目視確認し、変形、クラック、剥がれのないことを確認した。
(chemical resistance)
A glass cleaner (HONDA's genuine product number 08CBC-B010L1) was spread on the surface of the instrument panel-type automobile interior member so as to have an application amount of about 0.4 g / 100 cm 2 . After being left at 80 ° C. for 48 hours, the appearance of the instrument panel-type automobile interior member was visually checked, and it was confirmed that there was no deformation, crack, or peeling.
(耐傷付性)
 インパネ型の自動車内装部材から直径約120mmの試験片を切り出し、その中央部に直径約6mmの穴を開け、テーバー式スクラッチテスター(テスター産業社製HA-201)を使用して、タングステンカーバイド製のカッターを取り付けて、回転数0.5rpm、荷重3Nの条件で3cm以上の傷を引いた。試験後の試験片について目視確認を行い、以下の評価基準で分類した。なお、4級以上を合格とした。
5級:まったく認められない
4級:わずかに認められるがほとんど目立たない
3級:わずかではあるが明らかに認められる
2級:やや著しい
1級:かなり著しい
(Scratch resistance)
A test piece having a diameter of about 120 mm was cut out from an instrument panel-type automobile interior member, a hole having a diameter of about 6 mm was formed in the center thereof, and a tungsten carbide test piece (HA-201 manufactured by Tester Sangyo Co., Ltd.) was used. A cutter was attached, and a scratch of 3 cm or more was drawn under the conditions of a rotation speed of 0.5 rpm and a load of 3 N. The test pieces after the test were visually checked and classified according to the following evaluation criteria. In addition, grade 4 or higher was considered as a pass.
5th grade: not recognized at all 4th grade: slightly recognized but hardly noticeable 3rd grade: slightly but clearly recognized 2nd grade: somewhat remarkable 1st grade: considerably remarkable
(耐光性)
 インパネ型の自動車内装部材について、JIS B7754に準拠して、キセノン耐候性試験機(東洋精機製作所社製アトラスCi4000)を使用して、ブラックパネル温度89℃、湿度50%RH、放射照度100W/m2、放射露光量75MJ/m2の条件で耐光試験を行った。試験後、インパネ型の自動車内装部材を常温で1時間以上放置した後に、無作為に5箇所指定した部分について、測色色差計(日本電色工業社製ZE-2000)を使用してL*、a*、b*を測定して平均値を基準値とした。試験前L*、a*、b*の平均値と比較して色差ΔEを算出した。なお、色差ΔE2.0以下を合格レベルとした。
(Light fastness)
Regarding the instrument panel-type automobile interior member, a black panel temperature of 89 ° C., a humidity of 50% RH, and an irradiance of 100 W / m were applied using a xenon weathering tester (Atlas Ci4000 manufactured by Toyo Seiki Seisaku-Sho, Ltd.) in accordance with JIS B7754. 2. A light resistance test was performed under the condition of a radiation exposure amount of 75 MJ / m 2 . After the test, the instrument panel-type automobile interior member was left at room temperature for 1 hour or more, and then, at a part designated at five places at random, L * was measured using a colorimetric colorimeter (ZE-2000 manufactured by Nippon Denshoku Industries Co., Ltd.). , A *, and b * were measured, and the average value was used as a reference value. The color difference ΔE was calculated by comparing the average value of L *, a *, and b * before the test. The color difference ΔE 2.0 or less was regarded as a pass level.

Claims (18)

  1.  クロス共重合体(A)50~85質量%と、ポリエチレン系樹脂(B)15~50質量%とを含み、
     MFR(230℃、10kg荷重)が0.3g/10分以上、10g/10分以下であり、かつ
     1.0質量%以上のゲル分を含む、
    熱可塑性エラストマー組成物。
    A cross-copolymer (A) containing 50 to 85% by mass and a polyethylene resin (B) 15 to 50% by mass,
    MFR (230 ° C., 10 kg load) is 0.3 g / 10 min or more and 10 g / 10 min or less, and contains a gel content of 1.0 mass% or more;
    Thermoplastic elastomer composition.
  2.  150℃、周波数1Hz、昇温4℃/分の条件下で測定した貯蔵弾性率E’が1×105~5×106Paの範囲である、請求項1に記載の熱可塑性エラストマー組成物。 2. The thermoplastic elastomer composition according to claim 1, wherein the storage elastic modulus E ′ measured at 150 ° C., a frequency of 1 Hz, and a temperature rise of 4 ° C./min is in a range of 1 × 10 5 to 5 × 10 6 Pa. .
  3.  150℃、周波数1Hz、昇温4℃/分の条件下、貯蔵弾性率E’が150℃および190℃で測定可能であり、190℃と150℃の貯蔵弾性率E’の比(E’(190)/E’(150))は、0.3以上である、請求項1または2に記載の熱可塑性エラストマー組成物。 Under the conditions of 150 ° C., a frequency of 1 Hz, and a temperature rise of 4 ° C./min, the storage elastic modulus E ′ can be measured at 150 ° C. and 190 ° C., and the ratio of the storage elastic modulus E ′ between 190 ° C. and 150 ° C. (E ′ ( The thermoplastic elastomer composition according to claim 1, wherein (190) / E '(150)) is 0.3 or more.
  4.  前記クロス共重合体(A)が、オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖が芳香族ポリエン単量体単位を介して結合する構造を有しており、さらに以下の(1)~(3)の条件を一種以上満足する共重合体である、請求項1~3のいずれか一項に記載の熱可塑性エラストマー組成物。
    (1)オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物単量体単位の含量が10~30モル%、芳香族ポリエン単量体単位の含量が0.01モル%以上0.5モル%以下、残部がオレフィン単量体単位の含量である。
    (2)オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、分子量分布(Mw/Mn)が1.8以上6以下である。
    (3)クロス共重合体中に含まれるオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体の含量が60~95質量%の範囲にある。
    The cross copolymer (A) has a structure in which an olefin-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit. 4. The thermoplastic elastomer composition according to claim 1, which is a copolymer satisfying at least one of the following conditions (1) to (3).
    (1) The content of the aromatic vinyl compound monomer unit of the olefin-aromatic vinyl compound-aromatic polyene copolymer is 10 to 30 mol%, and the content of the aromatic polyene monomer unit is 0.01 mol% or more. 0.5 mol% or less, the balance being the content of olefin monomer units.
    (2) The olefin-aromatic vinyl compound-aromatic polyene copolymer has a weight average molecular weight of 50,000 or more and 300,000 or less, and a molecular weight distribution (Mw / Mn) of 1.8 or more and 6 or less.
    (3) The content of the olefin-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is in the range of 60 to 95% by mass.
  5.  前記クロス共重合体(A)が、エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体鎖と芳香族ビニル化合物重合体鎖が芳香族ポリエン単量体単位を介して結合する構造を有しており、さらに以下の(1)~(3)の条件を一種以上満足する共重合体であることを特徴とする請求項1~4のいずれか一項に記載の熱可塑性エラストマー組成物。
    (1)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の芳香族ビニル化合物単量体単位の含量が10~30モル%、芳香族ポリエン単量体単位の含量が0.01モル%以上0.5モル%以下、残部がエチレン単量体単位の含量である。
    (2)エチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の重量平均分子量が5万以上30万以下、分子量分布(Mw/Mn)が1.8以上6以下である。
    (3)クロス共重合体中に含まれるエチレン-芳香族ビニル化合物-芳香族ポリエン共重合体の含量が70~95質量%の範囲にある。
    The cross copolymer (A) has a structure in which an ethylene-aromatic vinyl compound-aromatic polyene copolymer chain and an aromatic vinyl compound polymer chain are bonded via an aromatic polyene monomer unit. The thermoplastic elastomer composition according to any one of claims 1 to 4, wherein the copolymer satisfies at least one of the following conditions (1) to (3).
    (1) The content of the aromatic vinyl compound monomer unit of the ethylene-aromatic vinyl compound-aromatic polyene copolymer is 10 to 30 mol%, and the content of the aromatic polyene monomer unit is 0.01 mol% or more. 0.5 mol% or less, with the balance being the ethylene monomer unit content.
    (2) The ethylene-aromatic vinyl compound-aromatic polyene copolymer has a weight average molecular weight of 50,000 or more and 300,000 or less, and a molecular weight distribution (Mw / Mn) of 1.8 or more and 6 or less.
    (3) The content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer contained in the cross copolymer is in the range of 70 to 95% by mass.
  6.  前記クロス共重合体(A)が、芳香族ビニル単量体単位の含量が10~30モル%であるオレフィン-芳香族ビニル-芳香族ポリエン共重合体70~95質量%と、芳香族ビニル単量体単位からなる芳香族ビニル重合体を5~30質量%とを含み、前記オレフィン-芳香族ビニル-芳香族ポリエン共重合体と前記芳香族ビニル重合体とが実質的に溶媒分別で分離できない、請求項1~5のいずれか一項に記載の熱可塑性エラストマー組成物。 The cross copolymer (A) is composed of 70 to 95% by mass of an olefin-aromatic vinyl-aromatic polyene copolymer having an aromatic vinyl monomer unit content of 10 to 30% by mole, and aromatic vinyl monomer. 5 to 30% by mass of an aromatic vinyl polymer comprising monomer units, and the olefin-aromatic vinyl-aromatic polyene copolymer and the aromatic vinyl polymer cannot be substantially separated by solvent separation. The thermoplastic elastomer composition according to any one of claims 1 to 5.
  7.  ポリエチレン系樹脂(B)が高密度ポリエチレン(HDPE)である請求項1~6のいずれか一項に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to any one of claims 1 to 6, wherein the polyethylene resin (B) is a high-density polyethylene (HDPE).
  8.  請求項1~7のいずれか一項に記載の熱可塑性エラストマー組成物100質量部に対してさらに、ポリプロピレン系樹脂(C)を1~40質量部配合してなる熱可塑性エラストマー組成物。 A thermoplastic elastomer composition further comprising 1 to 40 parts by mass of a polypropylene resin (C) based on 100 parts by mass of the thermoplastic elastomer composition according to any one of claims 1 to 7.
  9.  請求項1または8に記載の熱可塑性エラストマー組成物100質量部に対してさらに、 可塑剤(D)を1~50質量部、及び/またはスチレン系熱可塑性エラストマー(E)を1~25質量部配合してなる熱可塑性エラストマー組成物。 9. The thermoplastic elastomer composition according to claim 1 or 8, further comprising 1 to 50 parts by mass of a plasticizer (D) and / or 1 to 25 parts by mass of a styrene-based thermoplastic elastomer (E). A thermoplastic elastomer composition that is blended.
  10.  請求項1~9のいずれか一項に記載の熱可塑性エラストマー組成物からなる成形体。 成形 A molded article comprising the thermoplastic elastomer composition according to any one of claims 1 to 9.
  11.  シートである請求項10に記載の成形体。 The molded article according to claim 10, which is a sheet.
  12.  請求項11に記載のシートを含む多層シート。 A multilayer sheet comprising the sheet according to claim 11.
  13.  入射角60°で測定する鏡面光沢度の、110℃環境下に24時間曝した後の変化が1.0%以下である、請求項10に記載の成形体。 The molded article according to claim 10, wherein a change in specular gloss measured at an incident angle of 60 ° after exposure to a 110 ° C environment for 24 hours is 1.0% or less.
  14.  請求項11に記載のシートまたは請求項12に記載の多層シートを含む表皮材。 表 A skin material comprising the sheet according to claim 11 or the multilayer sheet according to claim 12.
  15.  請求項14に記載の表皮材を含む自動車内装部材。 An automobile interior member including the skin material according to claim 14.
  16.  クロス共重合体(A)、ポリエチレン系樹脂(B)、架橋剤を剪断下で混合し、架橋させる工程を含む、熱可塑性エラストマー組成物の製造方法。  (4) A method for producing a thermoplastic elastomer composition, comprising a step of mixing a cross-copolymer (A), a polyethylene-based resin (B), and a crosslinking agent under shear and crosslinking.
  17.  オレフィン、芳香族ビニル化合物、および芳香族ポリエンの各単量体から配位重合触媒を用いて共重合しオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体を合成する工程と、
     得られたオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体に、芳香族ビニル化合物単量体およびアニオン重合開始剤を添加し、アニオン重合することで、前記クロス共重合体(A)を得る工程と
    をさらに含む、請求項16に記載の製造方法。
    Synthesizing an olefin, an aromatic vinyl compound, and an aromatic polyene monomer using a coordination polymerization catalyst to synthesize an olefin-aromatic vinyl compound-aromatic polyene copolymer;
    An aromatic vinyl compound monomer and an anionic polymerization initiator are added to the obtained olefin-aromatic vinyl compound-aromatic polyene copolymer, and anion polymerization is performed to obtain the cross copolymer (A). 17. The method according to claim 16, further comprising the steps of:
  18.  請求項16または17で得られた熱可塑性エラストマー組成物に対して、ポリプロピレン系樹脂(C)、可塑剤(D)、及びまたはスチレン系熱可塑性エラストマー(E)を配合し、混練する工程をさらに含む、熱可塑性エラストマー組成物の製造方法。 A step of blending and kneading a polypropylene-based resin (C), a plasticizer (D), and / or a styrene-based thermoplastic elastomer (E) with the thermoplastic elastomer composition obtained in claim 16 or 17. A method for producing a thermoplastic elastomer composition, comprising:
PCT/JP2019/031875 2018-08-30 2019-08-13 Thermoplastic elastomer composition and production method therefor WO2020045082A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020539323A JP7348191B2 (en) 2018-08-30 2019-08-13 Thermoplastic elastomer composition and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018161947 2018-08-30
JP2018-161947 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020045082A1 true WO2020045082A1 (en) 2020-03-05

Family

ID=69644929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031875 WO2020045082A1 (en) 2018-08-30 2019-08-13 Thermoplastic elastomer composition and production method therefor

Country Status (2)

Country Link
JP (1) JP7348191B2 (en)
WO (1) WO2020045082A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071314A1 (en) * 2020-09-29 2022-04-07 クラレプラスチックス株式会社 Resin composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019881A1 (en) * 1999-09-13 2001-03-22 Denki Kagaku Kogyo Kabushiki Kaisha Cross-copolymerized olefin/aromatic vinyl/diene copolymer and process for producing the same
JP2008544066A (en) * 2005-06-22 2008-12-04 エクソンモービル・ケミカル・パテンツ・インク Homogeneous polymer blends and processes for producing homogeneous polymer blends
JP2009102515A (en) * 2007-10-23 2009-05-14 Denki Kagaku Kogyo Kk Anti-scratch abrasive elastomer
JP2009120792A (en) * 2007-10-23 2009-06-04 Denki Kagaku Kogyo Kk Process for producing cross-copolymer, cross-copolymer produced by the process and its use
JP2009185208A (en) * 2008-02-07 2009-08-20 Denki Kagaku Kogyo Kk Wire coating material using resin composition containing olefin-aromatic vinyl compound-based cross copolymer
JP2011074187A (en) * 2009-09-30 2011-04-14 Denki Kagaku Kogyo Kk Easily cross-linkable thermoplastic resin
WO2013018171A1 (en) * 2011-07-29 2013-02-07 電気化学工業株式会社 Skin material sheet
WO2016136534A1 (en) * 2015-02-25 2016-09-01 デンカ株式会社 Polypropylene-based resin composition and molded object obtained therefrom
JP2018083885A (en) * 2016-11-22 2018-05-31 アロン化成株式会社 Thermoplastic elastomer composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019881A1 (en) * 1999-09-13 2001-03-22 Denki Kagaku Kogyo Kabushiki Kaisha Cross-copolymerized olefin/aromatic vinyl/diene copolymer and process for producing the same
JP2008544066A (en) * 2005-06-22 2008-12-04 エクソンモービル・ケミカル・パテンツ・インク Homogeneous polymer blends and processes for producing homogeneous polymer blends
JP2009102515A (en) * 2007-10-23 2009-05-14 Denki Kagaku Kogyo Kk Anti-scratch abrasive elastomer
JP2009120792A (en) * 2007-10-23 2009-06-04 Denki Kagaku Kogyo Kk Process for producing cross-copolymer, cross-copolymer produced by the process and its use
JP2009185208A (en) * 2008-02-07 2009-08-20 Denki Kagaku Kogyo Kk Wire coating material using resin composition containing olefin-aromatic vinyl compound-based cross copolymer
JP2011074187A (en) * 2009-09-30 2011-04-14 Denki Kagaku Kogyo Kk Easily cross-linkable thermoplastic resin
WO2013018171A1 (en) * 2011-07-29 2013-02-07 電気化学工業株式会社 Skin material sheet
WO2016136534A1 (en) * 2015-02-25 2016-09-01 デンカ株式会社 Polypropylene-based resin composition and molded object obtained therefrom
JP2018083885A (en) * 2016-11-22 2018-05-31 アロン化成株式会社 Thermoplastic elastomer composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071314A1 (en) * 2020-09-29 2022-04-07 クラレプラスチックス株式会社 Resin composition
CN116234870A (en) * 2020-09-29 2023-06-06 可乐丽塑料株式会社 Resin composition

Also Published As

Publication number Publication date
JPWO2020045082A1 (en) 2021-08-26
JP7348191B2 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
EP2757131B1 (en) Cross-linked composition, method for producing cross-linked composition, and molding
TWI612068B (en) Hydrogenated block copolymer, polypropylene resin composition, and shaped body
NO322848B1 (en) Coupled polymer, method of preparation and use thereof.
CN108026201B (en) Pipe using hydrogenated block copolymer
KR20130020898A (en) Thermoplastic elastomer composition and molded articles thereof
EP3070123B1 (en) Thermoplastic elastomer resin composition
JPWO2018143373A1 (en) Multi-layer sheet for skin material
JP3612374B2 (en) Polyolefin resin composition
JPWO2016136534A1 (en) Polypropylene resin composition and molded body using the same
JP2007091974A (en) Thermoplastic foaming resin composition
WO2020045082A1 (en) Thermoplastic elastomer composition and production method therefor
JP6930288B2 (en) Thermoplastic Elastomer Composition, Molds and Airbag Storage Covers
JP2009132765A (en) Resin composition for seamless instrument panel and its use
CN101085848A (en) Thermoplastic elastomer composition and laminated material
JP2008169316A (en) Propylene polymer composition, pellet made from the composition, modifier for resin, method for producing thermoplastic resin composition, method for producing molding of propylene-based polymer composition, and molding comprising propylenic polymer composition
JP6835069B2 (en) Thermoplastic resin composition and its molded article
JP4732749B2 (en) Thermoplastic resin composition, molded article and use thereof
JP7166433B2 (en) Hydrogenated block copolymer
JP6666115B2 (en) Resin composition and molded article comprising the same
JP4615232B2 (en) Polypropylene resin composition
JP4048595B2 (en) Polypropylene resin skin material
JP7571559B2 (en) Airbag storage cover
JP2006176708A (en) Resin composition
JP2024118177A (en) Thermoplastic elastomer composition and airbag storage cover
JPH10279738A (en) Thermoplastic elastomer composition, thermoplastic elastomer composition powder and skin material composed thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539323

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854429

Country of ref document: EP

Kind code of ref document: A1