WO2020044677A1 - Photosensitive resin composition, black column spacer and image display device - Google Patents

Photosensitive resin composition, black column spacer and image display device Download PDF

Info

Publication number
WO2020044677A1
WO2020044677A1 PCT/JP2019/020494 JP2019020494W WO2020044677A1 WO 2020044677 A1 WO2020044677 A1 WO 2020044677A1 JP 2019020494 W JP2019020494 W JP 2019020494W WO 2020044677 A1 WO2020044677 A1 WO 2020044677A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polymer
resin composition
unit derived
photosensitive resin
Prior art date
Application number
PCT/JP2019/020494
Other languages
French (fr)
Japanese (ja)
Inventor
健宏 木下
正義 柳
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2020044677A1 publication Critical patent/WO2020044677A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Definitions

  • the present invention relates to a photosensitive resin composition, a black column spacer, and an image display device.
  • a substrate such as a TFT substrate in which elements are formed on the substrate is often used.
  • a black column spacer on an element formed on the substrate or on a portion of the substrate that is paired with the element on which the element is formed, facing the element.
  • the amount of exposure can be changed according to the location where the black column spacer is formed, and black column spacers having different heights can be formed at once.
  • the photosensitive resin composition for forming the black column spacer has a high optical density (OD)
  • OD optical density
  • patterning is performed by performing exposure and development to form a step of the black column spacer, and then thermosetting in a subsequent post-baking step.
  • the step forming margin of the black column spacer becomes very narrow, and there is a problem that the height of each step cannot be maintained uniformly (obtain an excellent developing margin) over the entire surface of the substrate.
  • the lower part of the resin layer is mainly cured by thermal curing, there is a problem that necessary chemical resistance cannot be sufficiently obtained.
  • an organic black pigment is used as a light-shielding agent, compared to a case where an inorganic black pigment such as carbon black is used, for a solvent used in a subsequent manufacturing process, metal ions and an organic black pigment contained in a spacer pattern are used. There is a problem of solvent resistance that elution occurs easily. Therefore, there is a problem that the reliability of the black column spacer in contact with the liquid crystal is reduced.
  • the present invention has been made to solve the above-described problems, and has an object to provide a photosensitive resin composition having excellent colorant dispersibility, development margin, solvent resistance and elastic recovery. I do.
  • the present invention is represented by the following [1] to [17].
  • a polymer containing a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton, a structural unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester, and a structural unit derived from a polybasic anhydride A photosensitive resin composition containing A), a solvent (B), and a photopolymerization initiator (C).
  • a photosensitive resin composition according to [1] wherein the polymer (A) further contains a structural unit derived from a dibasic acid.
  • the photosensitive resin composition according to item 1 is composed of 30 to 80% by mass of a structural unit derived from the bifunctional epoxy resin having the biphenyl skeleton and a structural unit derived from the unsaturated monobasic acid or the unsaturated dibasic acid monoester.
  • the photosensitive resin composition according to [1] comprising 10 to 40% by mass and 10 to 40% by mass of a structural unit derived from the polybasic acid anhydride.
  • the polymer (A) is composed of 30 to 80% by mass of a structural unit derived from the bifunctional epoxy resin having the biphenyl skeleton and a structural unit derived from the unsaturated monobasic acid or the unsaturated dibasic acid monoester.
  • the polymer (A) comprises 30 to 80% by mass of a structural unit derived from the bifunctional epoxy resin having the biphenyl skeleton and a structural unit derived from the unsaturated monobasic acid or the unsaturated dibasic acid monoester.
  • the polymer (A) is 1 to 20% by mass
  • the solvent (B) is 50 to 94% by mass
  • the photopolymerization initiator (C) is 0.01 to 5% by mass
  • the reactive diluent is used.
  • the photosensitive resin composition according to [10] containing 1 to 20% by mass of (D).
  • the photosensitive resin composition according to [10] further comprising a coloring agent (E).
  • the polymer (A) is 1 to 20% by mass
  • the solvent (B) is 50 to 94% by mass
  • the photopolymerization initiator (C) is 0.01 to 5% by mass
  • the reactive diluent is The photosensitive resin composition according to any one of [12] to [14], which contains 1 to 20% by mass of (D) and 3 to 30% by mass of the colorant (E) and is used for forming a black column spacer. .
  • An image display device comprising the black column spacer according to [17] or [16].
  • a photosensitive resin composition having excellent colorant dispersibility, development margin, solvent resistance and elastic recovery can be provided.
  • the photosensitive resin composition of the present invention can be used for forming a color filter, a photo spacer, a black matrix, a black column spacer, etc., and can be particularly suitably used for forming a black column spacer.
  • the photosensitive resin composition of the present invention has a constitutional unit derived from a bifunctional epoxy resin having a biphenyl skeleton and a constitutional unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester and a constitution derived from a polybasic anhydride. It contains a polymer (A) containing a unit, a solvent (B), and a photopolymerization initiator (C).
  • (meth) acryloyloxy group means at least one selected from acryloyloxy group and methacryloyloxy group
  • (meth) acrylic acid means acrylic acid and methacrylic acid
  • (Meth) acrylate means at least one selected from acrylates and methacrylates.
  • bifunctional of a bifunctional epoxy resin means having two epoxy groups.
  • the polymer (A) used in the present invention comprises a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton, a structural unit derived from an unsaturated monobasic acid or a monoester derived from an unsaturated dibasic acid, and a polybasic acid anhydride. At least a structural unit.
  • the polymer (A) is obtained by reacting a bifunctional epoxy resin having a biphenyl skeleton reacted with an unsaturated monobasic acid or unsaturated dibasic acid monoester with a polybasic acid anhydride in the presence of a reaction catalyst. It can be manufactured by the following.
  • the bifunctional epoxy resin having a biphenyl skeleton is not particularly limited as long as it has a biphenyl skeleton in the molecule and has two epoxy groups.
  • Examples of the biphenyl skeleton include those represented by the following formula.
  • R represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • * represents a divalent linking group
  • bifunctional epoxy resin having a biphenyl skeleton examples include YX4000 (in the following formula, R ′ is CH 3 ) and YX4000K (in the following formula, R ′ is CH 3 ) manufactured by Mitsubishi Chemical Corporation.
  • YX4000H in the following formula, R 'is CH 3
  • YL6121HA in the following formula, a mixture of a compound in which R' is H and a compound in which R 'is CH 3 ).
  • An unsaturated monobasic acid or unsaturated dibasic acid monoester is added to the epoxy group of the bifunctional epoxy resin having a biphenyl skeleton to introduce an unsaturated group into the polymer (A).
  • the unsaturated monobasic acid include (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, ⁇ -bromo (meth) acrylic acid, ⁇ -Unsaturated carboxylic acids such as furyl (meth) acrylic acid, crotonic acid, propiolic acid, cinnamic acid and ⁇ -cyanocinnamic acid.
  • unsaturated dibasic acid monoester examples include monomethyl maleate, monoethyl maleate, monoisopropyl maleate, monomethyl fumarate, monoethyl itaconate, and the like. These unsaturated monobasic acid or unsaturated dibasic acid monoesters may be used alone or in combination of two or more. Among these, (meth) acrylic acid is preferable from the viewpoint of availability and reactivity.
  • the polybasic acid anhydride is an epoxy group of the bifunctional epoxy resin having a biphenyl skeleton by an addition reaction between the unsaturated monobasic acid or unsaturated dibasic acid monoester and the bifunctional epoxy resin having a biphenyl skeleton. Ring opening is added to the hydroxy group generated by ring opening to introduce a carboxy group into the polymer (A).
  • Polybasic acid anhydrides include maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, succinic anhydride, butanetetracarboxylic anhydride, pentanetetracarboxylic anhydride, hexane
  • Examples thereof include tetracarboxylic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, and cyclohexanetricarboxylic anhydride.
  • biphenyltetracarboxylic dianhydride, tetrahydrophthalic anhydride and succinic anhydride are preferable from the viewpoint of availability and reactivity.
  • the polymer (A) may further contain a structural unit derived from a dibasic acid.
  • the polymer (A) can be made high molecular weight by a polycondensation reaction between the carboxy group of the dibasic acid and the epoxy group of the bifunctional epoxy resin having the biphenyl skeleton.
  • Adipic acid, itaconic acid, succinic acid, oxalic acid, malonic acid, phthalic acid, fumaric acid, maleic acid, glutaric acid, tartaric acid, glutamic acid, sebacic acid, etc. are mentioned.
  • the dibasic acids may be used alone or in combination of two or more. Among these, adipic acid and itaconic acid are preferred from the viewpoint of reactivity.
  • the polymer (A) further contains a structural unit derived from a dibasic acid, the flexibility is improved.
  • the polymer (A) may further contain not only a constitutional unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester but also a constitutional unit derived from a saturated monobasic acid, if necessary.
  • the saturated monobasic acid can be introduced into the polymer (A) by adding the unsaturated monobasic acid or unsaturated dibasic acid monoester to the epoxy group of the bifunctional epoxy resin having the biphenyl skeleton. it can.
  • a saturated monobasic acid Formic acid, acetic acid, propionic acid, butyric acid, lauric acid, tridecylic acid, palmitic acid, stearic acid, etc. are mentioned.
  • the saturated monobasic acids may be used alone or in combination of two or more. Among these, acetic acid and propionic acid are preferred from the viewpoint of boiling point and reactivity.
  • the polymer (A) further contains a structural unit derived from a saturated monobasic acid, flexibility is improved.
  • the polymer (A) further containing a constitutional unit derived from a dibasic acid and / or a constitutional unit derived from a saturated monobasic acid can be used in combination with a bifunctional epoxy resin having a biphenyl skeleton and optionally a dibasic acid in the presence of a polymerization catalyst. And a polycondensation reaction with an unsaturated monobasic acid or an unsaturated dibasic acid monoester, a polybasic acid anhydride, and a optionally used saturated monobasic acid in the presence of a reaction catalyst. Can be manufactured. The order of the polycondensation reaction and the addition reaction may be appropriately changed.
  • the polymer (A) contains 30 to 80% by mass of a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton, and 10 to 40% by mass of a structural unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester. And a structural unit derived from a polybasic acid anhydride in an amount of 10 to 40% by mass, a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton in an amount of 40 to 70% by mass, and an unsaturated monobasic acid-derived or unsaturated unit.
  • it contains 15 to 30% by mass of a structural unit derived from a dibasic acid monoester and 15 to 30% by mass of a structural unit derived from a polybasic acid anhydride.
  • the mass ratio of the structural unit derived from the bifunctional epoxy resin having the biphenyl skeleton, the structural unit derived from the unsaturated monobasic acid or the unsaturated dibasic acid monoester, and the structural unit derived from the polybasic anhydride is within the above range. It is preferable to balance the elastic recovery rate, developability, and solvent resistance.
  • the molar ratio of the structural unit derived from the unsaturated monobasic acid or the unsaturated dibasic acid monoester to the structural unit derived from the bifunctional epoxy resin having a biphenyl skeleton in the polymer (A) is 1.8.
  • the molar ratio of the structural units derived from polybasic acid anhydride is preferably from 0.1 to 1.3, more preferably from 0.2 to 1.2.
  • the ratio of these constituent units can be calculated from the amount of raw materials charged when producing the polymer (A), in addition to being calculated by NMR analysis.
  • the polymer (A) further containing a structural unit derived from a dibasic acid 30 to 80% by mass of a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton is combined with an unsaturated monobasic acid-derived or unsaturated dibasic acid monoester. It preferably contains 5 to 40% by mass of a structural unit derived from a polybasic acid anhydride, 5 to 40% by mass of a structural unit derived from a polybasic acid anhydride, and more than 0 to 20% by mass of a structural unit derived from a dibasic acid.
  • a structural unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester 10 to 25% by mass, a structural unit derived from a polybasic acid anhydride, 15 to 30% by mass, and a structural unit derived from a dibasic acid. More preferably, it contains 5 to 15% by mass of a structural unit.
  • the molar ratio of the structural unit derived from the unsaturated monobasic acid or unsaturated dibasic acid monoester to the structural unit derived from the bifunctional epoxy resin having a biphenyl skeleton in the polymer (A) is 0.3.
  • the molar ratio of the structural unit derived from a dibasic acid is preferably from 0.1 to 0.8, and from 0.1 to 0.8. It is more preferably from 15 to 0.7, and the molar ratio of the structural unit derived from polybasic acid anhydride is preferably from 0.1 to 1.3, more preferably from 0.2 to 1.2. preferable.
  • the polymer (A) further containing a structural unit derived from a saturated monobasic acid, 30 to 80% by mass of a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton and an unsaturated monobasic acid-derived or unsaturated dibasic acid It preferably contains 5 to 40% by mass of a structural unit derived from an ester, 5 to 40% by mass of a structural unit derived from a polybasic anhydride, and more than 0 to 20% by mass of a structural unit derived from a saturated monobasic acid.
  • a structural unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester 15 to 30% by mass of a structural unit derived from a polybasic anhydride, More preferably, it contains 5 to 15% by mass of a structural unit derived from a monobasic acid.
  • the total molar ratio of the structural units is preferably 1.8 to 2.0
  • the molar ratio of the structural units derived from polybasic acid anhydride is preferably 0.1 to 1.3, and 0.2 More preferably, it is ⁇ 1.2.
  • the polymer (A) further containing a constitutional unit derived from a dibasic acid and a constitutional unit derived from a saturated monobasic acid, 30 to 80% by mass of a constitutional unit derived from a bifunctional epoxy resin having a biphenyl skeleton is added to the unsaturated monobasic acid.
  • 10 to 40% by mass of a structural unit derived from a monobasic or unsaturated dibasic acid monoester 10 to 40% by mass of a structural unit derived from a polybasic anhydride, and more than 0 to 20% by mass of a structural unit derived from a dibasic acid % And saturation More preferably, it contains more than 0 to 20% by mass of a structural unit derived from a basic acid, and 40 to 64% by mass of a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton and an unsaturated monobasic acid-derived or unsaturated unit.
  • a structural unit derived from a dibasic acid monoester 10 to 25% by mass of a structural unit derived from a dibasic acid monoester, 15 to 30% by mass of a structural unit derived from a polybasic anhydride, 5 to 15% by mass of a structural unit derived from a dibasic acid, and a saturated monobasic acid More preferably, it contains 5 to 15% by mass of a structural unit derived therefrom.
  • a structural unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester and a structural unit derived from a saturated monobasic acid are used with respect to the structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton in the polymer (A).
  • the total molar ratio of the structural units is preferably from 0.3 to 1.6, more preferably from 0.5 to 1.0, and the molar ratio of the dibasic acid-derived structural units is from 0.1 to 1.0. It is preferably 0.8, more preferably 0.15 to 0.7, and the molar ratio of the structural unit derived from polybasic acid anhydride is preferably 0.1 to 1.3. It is more preferable that the ratio be from 2 to 1.2.
  • An epoxy group-containing unsaturated compound may be added to at least a part of the carboxy group generated from the polybasic acid anhydride in the above addition reaction.
  • the epoxy group-containing unsaturated compound include glycidyl (meth) acrylate, 2-glycidyloxyethyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate having an alicyclic epoxy, and a lactone adduct thereof ( For example, Cyclomer (registered trademark) A200, M100 manufactured by Daicel Chemical Industries, Ltd., mono (meth) acrylate of 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, dicyclopentenyl Epoxidized (meth) acrylate, epoxidized dicyclopentenyloxyethyl (meth) acrylate and the like can be mentioned.
  • These unsaturated compounds containing an epoxy group may
  • the addition amount of the epoxy group-containing unsaturated compound is preferably more than 0% by mass to 10% by mass, more preferably more than 0% by mass to 5% by mass, based on the polymer (A). It is preferable that the addition amount of the epoxy group-containing unsaturated compound exceeds 0% by mass because sensitivity can be increased. On the other hand, when the addition amount of the epoxy group-containing unsaturated compound is 10% by mass or less, the elastic recovery rate and the developability are preferably maintained.
  • the molar ratio of the added epoxy group-containing unsaturated compound to the structural unit derived from the bifunctional epoxy resin having a biphenyl skeleton in the polymer (A) is preferably 0.05 to 0.3.
  • the molar ratio of the epoxy group-containing unsaturated compound added to the structural unit derived from the polybasic acid anhydride of the polymer (A) is preferably 0.1 to 0.5.
  • An epoxy resin may be added to at least a part of the carboxy groups generated from the polybasic acid anhydride in the above reaction.
  • the epoxy resin include, but are not particularly limited to, a novolak epoxy resin, a bisphenol epoxy resin, and a biphenyl epoxy resin. From the viewpoint of preventing an increase in molecular weight, it is preferable to use a bifunctional epoxy resin.
  • the added amount of the epoxy resin is preferably more than 0% by mass to 20% by mass based on the polymer (A).
  • the molar ratio of the epoxy resin added to the structural unit derived from the bifunctional epoxy resin having a biphenyl skeleton in the polymer (A) is preferably 0.05 to 0.3.
  • the epoxy resin to be added preferably has a weight average molecular weight of 150 to 350.
  • a bifunctional epoxy resin having a biphenyl skeleton is used as the epoxy resin, when calculating the ratio of each structural unit, the epoxy resin used for the main skeleton of the polymer (A) is distinguished from the epoxy resin to be added later. Without considering them.
  • each raw material and a polymerization catalyst are added to a solvent, preferably in an atmosphere having an oxygen gas concentration of 5 to 7% by volume, preferably at 50 to 150 ° C, more preferably at 60 to 140 ° C for 1 to 1%. All you have to do is 12 hours.
  • the addition reaction is performed by adding each raw material and an addition reaction catalyst to a solvent, preferably in an atmosphere having an oxygen gas concentration of 5 to 7% by volume, preferably at 50 to 150 ° C, more preferably at 80 to 130 ° C for 3 to 12 hours. Just do it. In these reactions, there is no problem even if the solvent used for obtaining the precursor of the polymer (A) is directly contained as a solvent used in the next reaction.
  • the solvent that can be used in the above-mentioned polycondensation reaction and addition reaction is not particularly limited, and a known solvent can be appropriately used.
  • Specific examples of the solvent include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-propyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol monomethyl ether, and triethylene glycol.
  • Glycol monoethyl ether propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene glycol mono-n-butyl ether, tripropylene Glycol monomethyl ether, tri (Poly) alkylene glycol monoalkyl ethers such as propylene glycol monoethyl ether; (poly) alkylene glycol monoalkyls such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate Ether acetate; other ether compounds such as diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, and
  • (poly) alkylene glycol monoalkyl ethers such as propylene glycol monomethyl ether and (poly) alkylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate, that is, glycol ether solvents are preferable.
  • the amount of the solvent used is not particularly limited, but generally 10 to 300 parts by mass, preferably 100 to 300 parts by mass, based on 100 parts by mass of the raw materials of the polymer (A) or the precursor of the polymer (A). Is from 20 to 100 parts by mass.
  • the amount of the solvent used is 300 parts by mass or less, it is preferable because the reaction can be performed in an appropriate time and the viscosity of the polymer (A) can be controlled in an appropriate range.
  • the amount of the solvent used is 10 parts by mass or more, the reaction can be stably performed, which is preferable. Further, coloring and gelling of the polymer (A) can also be prevented.
  • the types of the polymerization catalyst and the addition reaction catalyst used in the above-mentioned polymerization reaction and addition reaction are not particularly limited, and are selected as necessary.
  • these catalysts include tertiary amines such as triethylamine, quaternary ammonium salts such as triethylbenzylammonium chloride, phosphorus compounds such as triphenylphosphine, chromium chelate compounds and the like. These catalysts may be used alone or in combination of two or more.
  • the amount of the catalyst to be used is not particularly limited, but is generally 0.01 to 5 parts by mass based on 100 parts by mass of each raw material of the polymer (A) or the precursor of the polymer (A). , Preferably 0.05 to 2 parts by mass, more preferably 0.1 to 1 part by mass.
  • an unsaturated group-containing compound unsaturated monobasic acid or unsaturated dibasic acid monoester, epoxy group-containing unsaturated compound
  • a polymerization inhibitor to prevent gelation.
  • the type of the polymerization inhibitor is not particularly limited, and is selected as needed. Examples of the polymerization inhibitor include hydroquinone, methylhydroquinone, hydroquinone monomethyl ether, butylhydroxytoluene, and the like. These polymerization inhibitors may be used alone or in combination of two or more.
  • the amount of the polymerization inhibitor used is not particularly limited, it is generally 0.01 to 5 parts by mass based on 100 parts by mass of each raw material of the polymer (A) or the precursor of the polymer (A). Parts by mass, preferably 0.02 to 2 parts by mass, more preferably 0.04 to 0.5 parts by mass.
  • the polymer (A) used in the present invention has a weight average molecular weight of preferably from 1,000 to 50,000, more preferably from 3,000 to 40,000, as calculated as polystyrene by gel permeation chromatography (GPC). It is preferable that the weight average molecular weight of the polymer (A) is 1,000 or more, since pattern chipping does not occur after alkali development. On the other hand, when the weight average molecular weight of the polymer (A) is 50,000 or less, the development time becomes an appropriate time and it is practical in use, and thus it is preferable.
  • the weight average molecular weight of the polymer (A) obtained by adding a bifunctional epoxy resin to the precursor of the polymer (A) to increase the molecular weight is preferably from 3,000 to 40,000.
  • the acid value (JIS K6901 5.3) of the polymer (A) used in the present invention is not limited as long as the desired effect of the present invention is exhibited, but is usually 20 to 300 KOH mg / g, preferably 30 to 200 KOH mg / g. is there. It is preferable that the acid value of the polymer (A) is 20 KOHmg / g or more, since the developability becomes good. On the other hand, when the acid value of the polymer (A) is 300 KOH mg / g or less, the exposed portion (photocured portion) is less likely to be dissolved in the alkali developing solution, so that it is preferable.
  • the unsaturated group equivalent of the polymer (A) used in the present invention is not limited as long as the desired effect of the present invention is obtained, but is usually 100 to 4000 g / mol, preferably 200 to 2000 g / mol. Preferably it is 250 to 500 g / mol.
  • the unsaturated group equivalent of the polymer (A) is at least 100 g / mol, it is effective in enhancing the properties of the coating film and the alkali developability, so that it is preferable.
  • the unsaturated group equivalent of the polymer (A) is 4000 g / mol or less, it is effective in further increasing the sensitivity, and thus it is preferable.
  • the unsaturated group equivalent is the mass of the polymer (A) per mole of the unsaturated bond (ethylenic carbon-carbon double bond) in the polymer (A).
  • the unsaturated group equivalent can be determined by dividing the mass of the polymer (A) by the number of unsaturated groups in the polymer (A) (g / mol).
  • the unsaturated group equivalent is a theoretical value calculated from a charged amount of a raw material used for introducing an unsaturated group.
  • the solvent (B) used in the photosensitive resin composition of the present invention is not particularly limited as long as it is an inert solvent that can dissolve the polymer (A) and does not react with the polymer (A). You can choose.
  • the solvent (B) preferably has compatibility with the reactive diluent described below.
  • the same solvent as used in producing the polymer (A) can be used.
  • (poly) alkylene glycol monoalkyl ether such as propylene glycol monomethyl ether
  • (poly) alkylene glycol monoalkyl ether acetate such as propylene glycol monomethyl ether acetate are preferable.
  • the solvent (B) can be used to isolate the desired polymer (A) from the solution of the polymer (A) after the reaction, and to appropriately add the isolated polymer (A). However, it is not always necessary to isolate the target polymer (A) from the polymer (A) solution.
  • the solvent contained at the end of the reaction can be used as the solvent (B) without separating the solvent contained in the polymer (A) solution. If necessary, another solvent may be added to the polymer (A) solution. Further, a solvent contained in another component used when preparing the photosensitive resin composition may be used as it is as the solvent (B).
  • the photopolymerization initiator (C) is not particularly limited.
  • Examples of the photopolymerization initiator (C) include 1,2-octanedione, 1- [4- (phenylthio)-, 2- (o-benzoyloxime)], ethanone, and 1- [9-ethyl-6- Oxime esters such as (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (o-acetyloxime); benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether and benzoin butyl ether; acetophenone; 2,2-dimethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 4- (1-t-butyldioxy-1-methylethyl) acetophenone, 2-methyl-1- [4- (methylthio) phenyl] -2 -Morpholino
  • 2-methyl-1- (4) is particularly preferred because of its high sensitivity to i-line (365 nm) and little yellowing of the cured product during curing and baking.
  • Acetophenones such as -methylthiophenyl) -2-morpholinopropan-1-one, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (o-benzoyloxime)], ethanone, 1- It is preferable to use an oxime ester type such as [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (o-acetyloxime).
  • These photopolymerization initiators may be used alone or in combination of two or more, depending on, for example, the intended sensitivity.
  • Preferred amounts of the polymer (A), the solvent (B) and the photopolymerization initiator (C) in the photosensitive resin composition of the present invention are as follows.
  • the compounding amount of the polymer (A) is preferably from 1 to 20% by mass, more preferably from 5 to 15% by mass, based on the whole photosensitive resin composition.
  • the blending amount of the polymer (A) is 1% by mass or more, it is preferable because it has good photocurability.
  • the blending amount of the polymer (A) is 20% by mass or less, it is preferable because it has good coatability.
  • the compounding amount of the solvent (B) is preferably from 50 to 94% by mass, more preferably from 60 to 87.9% by mass, based on the entire photosensitive resin composition. It is preferable that the amount of the solvent (B) is 50% by mass or more, since good coating properties are obtained. On the other hand, when the blending amount of the solvent (B) is 94% by mass or less, it is preferable because the coating film can have a sufficient film thickness.
  • the compounding amount of the photopolymerization initiator (C) is preferably from 0.01 to 5% by mass, more preferably from 0.1 to 2% by mass, based on the whole photosensitive resin composition.
  • the blending amount of the photopolymerization initiator (C) is 0.01% by mass or more, it is preferable since the resist can have curability. On the other hand, when the blending amount of the photopolymerization initiator (C) is 5% by mass or less, a residue after development hardly occurs, which is preferable.
  • the photosensitive resin composition of the present invention can further contain a reactive diluent (D).
  • a reactive diluent D
  • the workability is improved by adjusting the viscosity of the photosensitive resin composition, and the strength of the cured product of the photosensitive resin composition and / or the adhesion to the substrate are improved. Can be improved.
  • the reactive diluent (D) a compound having at least one polymerizable ethylenically unsaturated group as a polymerizable functional group in a molecule is used, and it is particularly preferable to use a compound having a plurality of polymerizable functional groups. Specifically, as the reactive diluent (D), the following monofunctional monomers and / or polyfunctional monomers can be used.
  • Monofunctional monomers include (meth) acrylamide, methylol (meth) acrylamide, methoxymethyl (meth) acrylamide, ethoxymethyl (meth) acrylamide, propoxymethyl (meth) acrylamide, butoxymethoxymethyl (meth) acrylamide, methyl (meth) Acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate , 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, glycerin mono (meth) acrylate, tetra Drofurfuryl (meth) acrylate, glycidyl (meth) acrylate, 2,2,2-
  • polyfunctional monomer examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and butylene glycol di ( (Meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexane glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) acrylate, Pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 2, -Bis (4- (meth) acryloxydiethoxy
  • 2-vidroxyethyl (meth) acrylate (Meth) acrylates such as tri (meth) acrylate of tris (hydroxyethyl) isocyanurate; aromatic vinyl compounds such as divinylbenzene, diallyl phthalate and diallylbenzene phosphonate; dicarboxylic acid esters such as divinyl adipate; Examples include allyl cyanurate, methylene bis (meth) acrylamide, (meth) acrylamide methylene ether, and condensates of polyhydric alcohol with N-methylol (meth) acrylamide. These polyfunctional monomers may be used alone or in combination of two or more.
  • any one of trimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate is preferable to include
  • the blending amount is preferably 1 to 20% by mass, more preferably 2 to 10% by mass, based on the whole photosensitive resin composition. It is preferable that the content of the reactive diluent (D) is 1% by mass or more, since it has good curability. On the other hand, when the content of the reactive diluent (D) is 20% by mass or less, it is preferable because residues after development are less likely to be generated.
  • the photosensitive resin composition of the present invention may further contain a colorant (E).
  • the colorant (E) is not particularly limited, and examples thereof include dyes and pigments.
  • the dye and the pigment may be used alone, two or more of them may be used, or the dye and the pigment may be used in combination.
  • the photosensitive resin composition of the present invention is used.
  • the conductive resin composition preferably contains a black pigment as the colorant (E).
  • the black pigment examples include an inorganic black pigment and an organic black pigment, and specific examples include aniline black, perylene black, titanium black, cyanine black, lignin black, lactam organic black, RGB black, and carbon black. These black pigments may be used alone or in combination of two or more. From the viewpoint of optical density, it is preferable to use an inorganic black pigment and an organic black pigment in combination, and it is more preferable to use carbon black and a lactam organic black in combination. It is also preferable to mix three types of RGB black, which is a mixture of carbon black, lactam-based organic black, Red, Green, and Blue.
  • the pigments usable for RGB black are not particularly limited, but C.I. I. Pigment Red 9, 97, 105, 122, 123, 144, 149, 154, 166, 168, 176, 177, 180, 192, 209, 215, 216, 224, 242, 254, 255, 264, 265, etc. Pigments; C.I. I. Green pigments such as CI Pigment Green 7, 36, 58, 59, 62; I. And blue pigments such as CI Pigment Blue 15, 15: 3, 15: 4, 15: 6, and 60. In addition, complementary colors of yellow, orange, violet and brown can also be used together. I.
  • Orange pigments such as CI Pigment Orange 13, 31, 36, 38, 40, 42, 43, 51, 55, 59, 61, 64, 65, 71, 73;
  • Violet color pigments such as CI Pigment Violet 1, 19, 23, 29, 32, 36, 38; I. And brown pigments such as CI Pigment Brown 23 and 25. These pigments may be used alone or in combination of two or more depending on, for example, the color of a target pixel.
  • a known dispersant may be added to the photosensitive resin composition from the viewpoint of improving the dispersibility of the pigment.
  • a polymer dispersant is preferably used because of its excellent dispersion stability over time.
  • the polymer dispersant can be arbitrarily selected, for example, a urethane dispersant, a polyethyleneimine dispersant, a polyoxyethylene alkyl ether dispersant, a polyoxyethylene glycol diester dispersant, a sorbitan aliphatic ester dispersant, Examples include aliphatic modified ester dispersants.
  • EFKA registered trademark, manufactured by BASF Japan
  • Disperbyk registered trademark, manufactured by Big Chemie
  • Disparon registered trademark, manufactured by Kusumoto Kasei Co., Ltd.
  • SOLSPERSE registered trademark, manufactured by Zeneca Corporation
  • the compounding amount of the dispersant may be appropriately set according to the type of the pigment or the like used.
  • the compounding amount is preferably 3 to 30% by mass, more preferably 5 to 20% by mass, based on the whole photosensitive resin composition.
  • the blending amount of the coloring agent (E) is 3% by mass or more, it is preferable since it has light-shielding properties.
  • the blending amount of the coloring agent (E) is 30% by mass or less, a residue after development hardly occurs, which is preferable.
  • the photosensitive resin composition of the present invention may contain known additives such as a coupling agent, a leveling agent, and a thermal polymerization inhibitor as long as the effects of the present invention are not impaired.
  • additives such as a coupling agent, a leveling agent, and a thermal polymerization inhibitor as long as the effects of the present invention are not impaired.
  • the amounts of these additives are not particularly limited as long as the effects of the present invention are not impaired.
  • the photosensitive resin composition of the present invention can be produced by mixing the above components (A) to (E) using a known mixing device. If desired, a composition containing the polymer (A) and the solvent (B) is prepared in advance, and then the photopolymerization initiator (C), a reactive diluent (D) as an optional component, and a colorant (E) Can also be added and mixed for production.
  • the black column spacer is obtained by curing the photosensitive resin composition for forming a black column spacer containing the above components (A) to (D) and a black pigment as a coloring agent (E). Specifically, first, a photosensitive resin composition for forming a black column spacer is applied on a substrate to form a resin layer (coating film). Thereafter, the resin layer is exposed to light through a halftone mask having a predetermined pattern, and the exposed portions are light-cured. Then, the unexposed portion and the semi-exposed portion are developed with an alkali developer to form a black column spacer. Thereafter, the black column spacer is post-baked as necessary.
  • the material of the substrate is not particularly limited, and examples thereof include a glass substrate, a silicon substrate, a polycarbonate substrate, a polyester substrate, a polyamide substrate, a polyamideimide substrate, a polyimide substrate, an aluminum substrate, a printed wiring substrate, and an array substrate.
  • the method of applying the photosensitive resin composition for forming a black column spacer is not particularly limited, and examples thereof include a screen printing method, a roll coating method, a curtain coating method, a spray coating method, and a spin coating method. Further, after the photosensitive resin composition for forming a black column spacer is applied, if necessary, the solvent (B) contained in the resin layer is heated by using a heating means such as a circulation oven, an infrared heater and a hot plate. ) May be volatilized.
  • the heating conditions are not particularly limited, and may be appropriately set according to the composition of the photosensitive resin composition for forming a black column spacer to be used. Generally, it is preferable to heat at a temperature of 50 ° C to 120 ° C for 30 seconds to 30 minutes.
  • the method of exposing the resin layer is not particularly limited, and examples thereof include irradiation with active energy rays such as ultraviolet rays and excimer laser light.
  • the irradiation energy dose may be appropriately set according to the composition of the photosensitive resin composition for forming a black column spacer. For example, it is preferably 30 to 2000 mJ / cm 2 , but is not limited to this range.
  • the light source used for the exposure is not particularly limited, but a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, a xenon lamp, a metal halide lamp, or the like can be arbitrarily selected and used.
  • the alkali developer used for development is not particularly limited, and examples thereof include aqueous solutions of sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide, potassium hydroxide, and the like; aqueous solutions of amine compounds such as ethylamine, diethylamine, and dimethylethanolamine.
  • Tetramethylammonium 3-methyl-4-amino-N, N-diethylaniline, 3-methyl-4-amino-N-ethyl-N- ⁇ -hydroxyethylaniline, 3-methyl-4-amino-N- Ethyl-N- ⁇ -methanesulfonamidoethylaniline, 3-methyl-4-amino-N-ethyl-N- ⁇ -methoxyethylaniline and their sulfates, hydrochlorides or p-toluenes such as p-toluenesulfonate
  • An aqueous solution of a phenylenediamine compound is exemplified.
  • an antifoaming agent, a surfactant and the like may be added to these alkali developing solutions as needed. After development with an alkali developer, it is preferable to wash with water and dry.
  • the post-baking conditions are not particularly limited and can be arbitrarily selected.
  • Heat treatment may be performed under suitable conditions according to the composition of the photosensitive resin composition for forming a black column spacer. For example, heating may be performed at a temperature of 130 ° C. to 250 ° C., preferably for 10 minutes to 4 hours, more preferably for 20 minutes to 2 hours.
  • the black column spacer thus produced is excellent in colorant dispersibility, solvent resistance and elastic recovery.
  • An image display device is an image display device including the above-described black column spacer.
  • Specific examples of the image display device include a liquid crystal display device and an organic EL display device.
  • the image display device there is no limitation except that the above-described black column spacer is formed, and the image display device can be manufactured according to a conventional method.
  • the acid value, unsaturated group equivalent and weight average molecular weight described in the synthesis examples are values obtained by the methods described below.
  • Acid value An acid value of a polymer measured using a mixed indicator of bromothymol blue and phenol red according to JIS K6901 5.3.2. It means the number of mg of potassium hydroxide required to neutralize the acidic component contained in 1 g of the polymer.
  • Unsaturated group equivalent the mass of the polymer per mole of polymerizable unsaturated bonds, and is a calculated value calculated based on the amount of the monomer used.
  • Weight average molecular weight means the weight average molecular weight measured by gel permeation chromatography (GPC) under the following conditions and converted into standard polystyrene.
  • GPC gel permeation chromatography
  • ⁇ Synthesis example 1> In a flask equipped with a stirrer, a dropping funnel, a condenser, a thermometer and a gas introduction tube, 126.4 g of propylene glycol monomethyl ether acetate as a solvent and YX4000K 186. manufactured by Mitsubishi Chemical Corporation as a bifunctional epoxy resin having a biphenyl skeleton were used. Then, the flask was stirred while replacing the inside of the flask with a nitrogen gas / air mixed gas having an oxygen gas concentration of 5 to 7% by volume, and the temperature was raised to 120 ° C.
  • Propylene glycol monomethyl ether acetate was further added to the polymer (A1) solution to prepare a polymer (A1) solution of Synthesis Example 1 (solid content concentration: 40% by mass).
  • the solid content means a heating residue when the polymer (A1) solution is heated at 130 ° C. for 2 hours, and the polymer (A1) is a main component.
  • the acid value of the polymer (A1) contained in the polymer (A1) solution was 95 KOH mg / g, the weight average molecular weight was 8,000, and the equivalent of unsaturated group was 340 g / mol.
  • the acid value of the polymer (A2) contained in this polymer (A2) solution was 65 KOH mg / g, the weight average molecular weight was 30,000, and the unsaturated group equivalent was 370 g / mol.
  • Propylene glycol monomethyl ether acetate was further added to the polymer (A4) solution to prepare a polymer (A4) solution of Synthesis Example 4 (solid content concentration: 40% by mass).
  • the acid value of the polymer (A4) contained in this polymer (A4) solution was 93 KOH mg / g, the weight average molecular weight was 8,000, and the unsaturated group equivalent was 770 g / mol.
  • the mixture of the monomer and the polymerization initiator was dropped into the flask from the dropping funnel over 2 hours. After completion of the dropwise addition, the mixture was further stirred at 120 ° C. for 2 hours to carry out a reaction, thereby producing a polymer precursor. Then, the inside of the flask was replaced with a nitrogen gas / air mixed gas having an oxygen gas concentration of 5 to 7% by volume, and 42.6 g of glycidyl methacrylate, 0.5 g of triphenylphosphine (catalyst) and 0.5 g of methoquinone (polymerization inhibitor) were used. Was added. Thereafter, the reaction was continued at 120 ° C.
  • Examples 1 to 5 and Comparative Examples 1 and 2 Using the polymer solutions of Synthesis Examples 1 to 5 and Comparative Synthesis Examples 1 and 2, the photosensitive resin compositions of Examples 1 to 5 and Comparative Examples 1 and 2 were prepared according to the formulation (% by mass) shown in Table 1 below. Prepared. In the following composition, the amount of the polymer (A) does not include the solvent used in the preparation. The amount of the solvent contained in the solution of the polymer (A) is added to the amount of the solvent (B) as a compounding component.
  • the colorant dispersibility was evaluated by the following method. First, the photosensitive resin compositions of Examples 1 to 5 and Comparative Examples 1 and 2 were spin-coated on a 5 cm ⁇ 5 cm glass substrate so that the thickness of the coating film after post-baking was 1 ⁇ m. Thereafter, the solvent was volatilized by heating at 90 ° C. for 3 minutes. Next, the entire surface of the coating film was exposed to light (exposure amount 50 mJ / cm 2 ) using Multilight ML-251D / B manufactured by Ushio Inc. and an irradiation optical unit PM25C-100, and was light-cured. Further, post-baking was performed at 230 ° C.
  • optical density Optical Density: OD
  • a transmission densitometer 361T, X-lite
  • Table 2 shows the results. It can be said that the higher the optical density, the better the colorant dispersibility.
  • a photosensitive resin composition is spin-coated on a glass substrate in the same manner as in the optical density, baked at 100 ° C. for 3 minutes to evaporate the solvent, and a line-and-space or dot-pattern photomask is installed and exposed.
  • a coating film having a thickness of 2.5 ⁇ m after curing was produced.
  • the film was developed with a 0.2% by mass aqueous solution of potassium hydroxide, and the rate of decrease in the thickness of the coating film during a development time of 100 seconds to 150 seconds was measured using a fine shape measuring device ET4000M manufactured by Kosaka Laboratory Co., Ltd. Table 2 shows the results. It can be said that the larger the rate of decrease in the thickness of the coating film, the better the development margin.
  • a photosensitive resin composition is spin-coated on a glass substrate in the same manner as in the optical density, baked at 100 ° C. for 3 minutes to evaporate the solvent, and a line-and-space or dot-pattern photomask is installed and exposed.
  • a coating film having a thickness of 2.5 ⁇ m after curing was produced.
  • Each glass substrate was placed in a 500-mL glass bottle with a cap containing 200 mL of N-methyl-2-pyrrolidone, allowed to stand in an oven at 100 ° C. for 15 minutes, and the presence or absence of color loss was evaluated according to the following criteria. Table 2 shows the results. :: No color loss at the time of observation with the naked eye ⁇ : Very large color loss at the time of observation with the naked eye
  • a coating film having a thickness of 4.0 ⁇ m after post-baking was prepared on a glass substrate in the same manner as in the optical density, and the compression displacement and the elastic recovery were measured at 25 ° C. using an elasticity measuring device (DUH-211, stock). (Shimadzu Corporation) according to the following measurement conditions.
  • a pressing body for pressing the pattern a flat pressing body having a diameter of 50 ⁇ m was used in a load-unloading method.
  • the elastic recovery was measured by a test in which a load of 50 mN was applied. A loading speed of 3 mN / s and a holding time of 10 seconds were kept constant.
  • the elastic recovery ratio means a ratio of a distance recovered after a recovery time of 15 seconds to a distance (compression displacement) compressed when a constant force is applied, and is expressed by the following equation.
  • Elastic recovery rate (%) [(recovery distance / compression displacement) ⁇ 100] Table 2 shows the results.
  • the photosensitive resin compositions of Examples 1 to 5 are excellent in colorant dispersibility, development margin, solvent resistance and elastic recovery.
  • the photosensitive resin compositions of Comparative Examples 1 and 2 were low in optical density and inferior in physical properties as a black matrix, or in an elastic recovery test, inferior in physical properties as a spacer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a photosensitive resin composition comprising: a polymer (A) which contains structural units derived from a difunctional epoxy resin having a biphenyl skeleton, structural units derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester, and structural units derived from a polybasic acid anhydride; a solvent (B); and a photopolymerization initiator (C).

Description

感光性樹脂組成物、ブラックカラムスペーサー及び画像表示装置Photosensitive resin composition, black column spacer, and image display device
 本発明は、感光性樹脂組成物、ブラックカラムスペーサー及び画像表示装置に関する。 << The present invention relates to a photosensitive resin composition, a black column spacer, and an image display device.
 液晶表示装置、有機EL表示装置等の画像表示装置では、2枚の基板間の間隔(セルギャップ)を一定に保つためにスペーサーが利用されている。近年、スペーサーを感光性樹脂組成物により形成する方法が種々提案されている。この方法は、感光性樹脂組成物を基板上に塗布し、樹脂層を形成し、その樹脂層を所定のマスクを介して露光した後、現像して、カラム状等のスペーサーを形成する。この方法では、画素表示部分以外の所定の部分にのみスペーサーを形成することができる。更に、有機黒色顔料等の遮光剤を添加した感光性樹脂組成物を用いることによって、遮光性を有するブラックカラムスペーサーを形成することも提案されている(特許文献1及び2を参照)。 (2) In image display devices such as liquid crystal display devices and organic EL display devices, spacers are used to keep the distance (cell gap) between two substrates constant. In recent years, various methods for forming a spacer from a photosensitive resin composition have been proposed. In this method, a photosensitive resin composition is applied on a substrate, a resin layer is formed, the resin layer is exposed through a predetermined mask, and then developed to form a columnar spacer or the like. According to this method, the spacer can be formed only in a predetermined portion other than the pixel display portion. Further, it has been proposed to form a black column spacer having a light-shielding property by using a photosensitive resin composition to which a light-shielding agent such as an organic black pigment is added (see Patent Documents 1 and 2).
 特に、ブラックカラムスペーサーには高さについて高い寸法精度が求められる。また、液晶表示装置等の画像表示装置では、基板上に素子が形成されたTFT基板等の基板が使用されることも多い。そのような基板を使用する場合、基板に形成された素子上、又は素子が形成された基板と対になる基板の素子と対向する個所にブラックカラムスペーサーを形成する必要がある場合がある。このような場合、素子の高さを考慮して、素子が形成された個所と、その他の個所とで、ブラックカラムスペーサーの高さを変える必要がある。ハーフトーンマスクを介して露光を行うことによって、ブラックカラムスペーサーが形成される場所に応じて露光量を変化させ、異なる高さのブラックカラムスペーサーを一度に形成することができる。 In particular, high dimensional accuracy is required for the height of the black column spacer. In an image display device such as a liquid crystal display device, a substrate such as a TFT substrate in which elements are formed on the substrate is often used. When such a substrate is used, it may be necessary to form a black column spacer on an element formed on the substrate or on a portion of the substrate that is paired with the element on which the element is formed, facing the element. In such a case, it is necessary to change the height of the black column spacer between the place where the element is formed and the other places in consideration of the height of the element. By performing exposure through a halftone mask, the amount of exposure can be changed according to the location where the black column spacer is formed, and black column spacers having different heights can be formed at once.
特開2015-191234号公報JP 2015-191234 A 特開2014-146029号公報JP-A-2014-146029
 しかし、ブラックカラムスペーサーを形成するための感光性樹脂組成物は、高い光学密度(Optical Density:OD)を有するため、露光段階において樹脂層の下部まで光が到達できず硬化が進みにくい。そのため、従来技術では、露光、現像を行ってブラックカラムスペーサーの段差を形成した後、続くポストベーク段階で熱硬化してパターニングを形成することになる。この場合、ブラックカラムスペーサーの段差形成マージンは、非常に狭くなり、基板全面で段差ごとの高さを均一に維持すること(優れた現像マージンを得ること)ができないという問題がある。また、樹脂層の下部は主に熱硬化により硬化が進むため、必要な耐薬品性が十分に得られないという問題がある。更には、遮光剤として有機黒色顔料を用いる場合、カーボンブラック等の無機黒色顔料を用いる場合に比べて、続く製造過程において使用される溶媒に対し、スペーサーパターンに含まれる金属イオン及び有機黒色顔料の溶出が起こりやすいという耐溶剤性の問題がある。そのため、液晶と接するブラックカラムスペーサーの信頼性が低くなるという問題がある。 However, since the photosensitive resin composition for forming the black column spacer has a high optical density (OD), light cannot reach the lower portion of the resin layer in the exposure step, and thus hardening hardly proceeds. Therefore, in the related art, patterning is performed by performing exposure and development to form a step of the black column spacer, and then thermosetting in a subsequent post-baking step. In this case, the step forming margin of the black column spacer becomes very narrow, and there is a problem that the height of each step cannot be maintained uniformly (obtain an excellent developing margin) over the entire surface of the substrate. In addition, since the lower part of the resin layer is mainly cured by thermal curing, there is a problem that necessary chemical resistance cannot be sufficiently obtained. Furthermore, when an organic black pigment is used as a light-shielding agent, compared to a case where an inorganic black pigment such as carbon black is used, for a solvent used in a subsequent manufacturing process, metal ions and an organic black pigment contained in a spacer pattern are used. There is a problem of solvent resistance that elution occurs easily. Therefore, there is a problem that the reliability of the black column spacer in contact with the liquid crystal is reduced.
 本発明は、上記のような課題を解決するためになされたものであり、着色剤分散性、現像マージン、耐溶剤性及び弾性回復率に優れた感光性樹脂組成物を提供することを目的とする。 The present invention has been made to solve the above-described problems, and has an object to provide a photosensitive resin composition having excellent colorant dispersibility, development margin, solvent resistance and elastic recovery. I do.
 即ち、本発明は、以下の[1]~[17]で示される。
 [1]ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位と不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位と多塩基酸無水物由来の構成単位とを含む重合体(A)と、溶剤(B)と、光重合開始剤(C)とを含有する感光性樹脂組成物。
 [2]前記重合体(A)が、二塩基酸由来の構成単位を更に含む[1]に記載の感光性樹脂組成物。
 [3]前記重合体(A)が、飽和一塩基酸由来の構成単位を更に含む[1]又は[2]に記載の感光性樹脂組成物。
 [4]前記重合体(A)が、前記多塩基酸無水物由来の構成単位中のカルボキシ基の少なくとも一部にエポキシ基含有不飽和化合物を付加したものである[1]~[3]のいずれかに記載の感光性樹脂組成物。
 [5]前記重合体(A)が、前記多塩基酸無水物由来の構成単位中のカルボキシ基の少なくとも一部に2官能エポキシ樹脂を付加したものである[1]~[4]のいずれかに記載の感光性樹脂組成物。
 [6]前記重合体(A)が、前記ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位30~80質量%と前記不飽和一塩基酸由来もしくは前記不飽和二塩基酸モノエステル由来の構成単位10~40質量%と前記多塩基酸無水物由来の構成単位10~40質量%とを含むものである[1]に記載の感光性樹脂組成物。
 [7]前記重合体(A)が、前記ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位30~80質量%と前記不飽和一塩基酸由来もしくは前記不飽和二塩基酸モノエステル由来の構成単位5~40質量%と前記多塩基酸無水物由来の構成単位5~40質量%と前記二塩基酸由来の構成単位0質量%超~20質量%とを含むものである[2]に記載の感光性樹脂組成物。
 [8]前記重合体(A)が、前記ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位30~80質量%と前記不飽和一塩基酸由来もしくは前記不飽和二塩基酸モノエステル由来の構成単位5~40質量%と前記多塩基酸無水物由来の構成単位5~40質量%と前記飽和一塩基酸由来の構成単位0質量%超~20質量%とを含むものである[3]に記載の感光性樹脂組成物。
 [9]前記エポキシ基含有不飽和化合物の付加量が、前記重合体(A)に対して0質量%超~10質量%である[4]に記載の感光性樹脂組成物。
 [10]反応性希釈剤(D)を更に含有する[1]~[9]のいずれかに記載の感光性樹脂組成物。
 [11]前記重合体(A)を1~20質量%、前記溶剤(B)を50~94質量%、前記光重合開始剤(C)を0.01~5質量%及び前記反応性希釈剤(D)を1~20質量%含有する[10]に記載の感光性樹脂組成物。
 [12]着色剤(E)を更に含有する[10]に記載の感光性樹脂組成物。
 [13]前記着色剤(E)が、有機黒色顔料を含む[12]に記載の感光性樹脂組成物。
 [14]前記着色剤(E)が、無機黒色顔料を更に含む[13]に記載の感光性樹脂組成物。
 [15]前記重合体(A)を1~20質量%、前記溶剤(B)を50~94質量%、前記光重合開始剤(C)を0.01~5質量%、前記反応性希釈剤(D)を1~20質量%及び前記着色剤(E)を3~30質量%含有し、ブラックカラムスペーサー形成用である[12]~[14]のいずれかに記載の感光性樹脂組成物。
That is, the present invention is represented by the following [1] to [17].
[1] A polymer containing a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton, a structural unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester, and a structural unit derived from a polybasic anhydride ( A photosensitive resin composition containing A), a solvent (B), and a photopolymerization initiator (C).
[2] The photosensitive resin composition according to [1], wherein the polymer (A) further contains a structural unit derived from a dibasic acid.
[3] The photosensitive resin composition according to [1] or [2], wherein the polymer (A) further contains a structural unit derived from a saturated monobasic acid.
[4] The polymer (A) according to any of [1] to [3], wherein the polymer (A) is obtained by adding an epoxy group-containing unsaturated compound to at least a part of the carboxy groups in the structural unit derived from the polybasic acid anhydride. The photosensitive resin composition according to any one of the above.
[5] The polymer according to any one of [1] to [4], wherein the polymer (A) is obtained by adding a bifunctional epoxy resin to at least a part of the carboxy groups in the structural unit derived from the polybasic acid anhydride. 3. The photosensitive resin composition according to item 1.
[6] The polymer (A) is composed of 30 to 80% by mass of a structural unit derived from the bifunctional epoxy resin having the biphenyl skeleton and a structural unit derived from the unsaturated monobasic acid or the unsaturated dibasic acid monoester. The photosensitive resin composition according to [1], comprising 10 to 40% by mass and 10 to 40% by mass of a structural unit derived from the polybasic acid anhydride.
[7] The polymer (A) is composed of 30 to 80% by mass of a structural unit derived from the bifunctional epoxy resin having the biphenyl skeleton and a structural unit derived from the unsaturated monobasic acid or the unsaturated dibasic acid monoester. The photosensitive composition according to [2], comprising 5 to 40% by mass, 5 to 40% by mass of the structural unit derived from the polybasic anhydride, and more than 0 to 20% by mass of the structural unit derived from the dibasic acid. Resin composition.
[8] The polymer (A) comprises 30 to 80% by mass of a structural unit derived from the bifunctional epoxy resin having the biphenyl skeleton and a structural unit derived from the unsaturated monobasic acid or the unsaturated dibasic acid monoester. The photosensitive material according to [3], comprising 5 to 40% by mass, 5 to 40% by mass of the structural unit derived from the polybasic acid anhydride, and more than 0% to 20% by mass of the structural unit derived from the saturated monobasic acid. Resin composition.
[9] The photosensitive resin composition according to [4], wherein an addition amount of the epoxy group-containing unsaturated compound is more than 0% by mass to 10% by mass with respect to the polymer (A).
[10] The photosensitive resin composition according to any one of [1] to [9], further comprising a reactive diluent (D).
[11] The polymer (A) is 1 to 20% by mass, the solvent (B) is 50 to 94% by mass, the photopolymerization initiator (C) is 0.01 to 5% by mass, and the reactive diluent is used. The photosensitive resin composition according to [10], containing 1 to 20% by mass of (D).
[12] The photosensitive resin composition according to [10], further comprising a coloring agent (E).
[13] The photosensitive resin composition according to [12], wherein the colorant (E) contains an organic black pigment.
[14] The photosensitive resin composition according to [13], wherein the colorant (E) further contains an inorganic black pigment.
[15] The polymer (A) is 1 to 20% by mass, the solvent (B) is 50 to 94% by mass, the photopolymerization initiator (C) is 0.01 to 5% by mass, and the reactive diluent is The photosensitive resin composition according to any one of [12] to [14], which contains 1 to 20% by mass of (D) and 3 to 30% by mass of the colorant (E) and is used for forming a black column spacer. .
 [16][15]に記載の感光性樹脂組成物を硬化したブラックカラムスペーサー。 {16} A black column spacer obtained by curing the photosensitive resin composition according to [15].
 [17][16]に記載のブラックカラムスペーサーを備える画像表示装置。 画像 An image display device comprising the black column spacer according to [17] or [16].
 本発明によれば、着色剤分散性、現像マージン、耐溶剤性及び弾性回復率に優れた感光性樹脂組成物を提供することができる。本発明の感光性樹脂組成物は、カラーフィルター、フォトスペーサー、ブラックマトリックス、ブラックカラムスペーサーなどの形成に用いることができ、特にブラックカラムスペーサーの形成に好適に用いることができる。 According to the present invention, a photosensitive resin composition having excellent colorant dispersibility, development margin, solvent resistance and elastic recovery can be provided. The photosensitive resin composition of the present invention can be used for forming a color filter, a photo spacer, a black matrix, a black column spacer, etc., and can be particularly suitably used for forming a black column spacer.
<感光性樹脂組成物>
 以下、本発明の感光性樹脂組成物について詳細に説明する。
 本発明の感光性樹脂組成物は、ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位と不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位と多塩基酸無水物由来の構成単位とを含む重合体(A)と、溶剤(B)と、光重合開始剤(C)とを含有する。
<Photosensitive resin composition>
Hereinafter, the photosensitive resin composition of the present invention will be described in detail.
The photosensitive resin composition of the present invention has a constitutional unit derived from a bifunctional epoxy resin having a biphenyl skeleton and a constitutional unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester and a constitution derived from a polybasic anhydride. It contains a polymer (A) containing a unit, a solvent (B), and a photopolymerization initiator (C).
 なお、本明細書において、「(メタ)アクリロイルオキシ基」とは、アクリロイルオキシ基及びメタクリロイルオキシ基から選択される少なくとも1種を意味し、「(メタ)アクリル酸」とは、アクリル酸及びメタクリル酸から選択される少なくとも1種を意味し、「(メタ)アクリレート」とは、アクリレート及びメタクリレートから選択される少なくとも1種を意味する。また、2官能エポキシ樹脂の「2官能」とは、2個のエポキシ基を有することを意味する。 In this specification, “(meth) acryloyloxy group” means at least one selected from acryloyloxy group and methacryloyloxy group, and “(meth) acrylic acid” means acrylic acid and methacrylic acid. "(Meth) acrylate" means at least one selected from acrylates and methacrylates. Further, “bifunctional” of a bifunctional epoxy resin means having two epoxy groups.
<重合体(A)>
 本発明で用いる重合体(A)は、ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位と不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位と多塩基酸無水物由来の構成単位とを少なくとも含む。
<Polymer (A)>
The polymer (A) used in the present invention comprises a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton, a structural unit derived from an unsaturated monobasic acid or a monoester derived from an unsaturated dibasic acid, and a polybasic acid anhydride. At least a structural unit.
 重合体(A)は、反応触媒の存在下で、不飽和一塩基酸もしくは不飽和二塩基酸モノエステルと反応させたビフェニル骨格を有する2官能エポキシ樹脂と、多塩基酸無水物とを反応させることにより製造することができる。 The polymer (A) is obtained by reacting a bifunctional epoxy resin having a biphenyl skeleton reacted with an unsaturated monobasic acid or unsaturated dibasic acid monoester with a polybasic acid anhydride in the presence of a reaction catalyst. It can be manufactured by the following.
 ビフェニル骨格を有する2官能エポキシ樹脂としては、分子中にビフェニル骨格を有し且つ2個のエポキシ基を有するものであれば特に限定されない。ビフェニル骨格の例としては下記式で表されるものが挙げられる。 The bifunctional epoxy resin having a biphenyl skeleton is not particularly limited as long as it has a biphenyl skeleton in the molecule and has two epoxy groups. Examples of the biphenyl skeleton include those represented by the following formula.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式中、Rは、水素原子又は炭素原子数1~3のアルキル基を表し、*は、2価の連結基を表す。 RIn the above formula, R represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and * represents a divalent linking group.
 ビフェニル骨格を有する2官能エポキシ樹脂の具体例としては、三菱ケミカル株式会社製のYX4000(下記式中、R’がCH3である)、YX4000K(下記式中、R’がCH3である)、YX4000H(下記式中、R’がCH3である)、YL6121HA(下記式中、R’がHである化合物とR’がCH3である化合物との混合物)等が挙げられる。 Specific examples of the bifunctional epoxy resin having a biphenyl skeleton include YX4000 (in the following formula, R ′ is CH 3 ) and YX4000K (in the following formula, R ′ is CH 3 ) manufactured by Mitsubishi Chemical Corporation. YX4000H (in the following formula, R 'is CH 3 ), and YL6121HA (in the following formula, a mixture of a compound in which R' is H and a compound in which R 'is CH 3 ).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 不飽和一塩基酸もしくは不飽和二塩基酸モノエステルは、前記ビフェニル骨格を有する2官能エポキシ樹脂のエポキシ基に付加し、重合体(A)中に不飽和基を導入する。
 不飽和一塩基酸としては、例えば、(メタ)アクリル酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、α-ブロモ(メタ)アクリル酸、β-フリル(メタ)アクリル酸、クロトン酸、プロピオール酸、桂皮酸、α-シアノ桂皮酸等の不飽和カルボン酸等が挙げられる。不飽和二塩基酸モノエステルとしては、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノイソプロピル、フマル酸モノメチル、イタコン酸モノエチル等が挙げられる。これらの不飽和一塩基酸もしくは不飽和二塩基酸モノエステルは、単独で用いてもよいし、又は2種以上を用いてもよい。これらの中でも、入手のし易さ及び反応性の観点から、(メタ)アクリル酸が好ましい。
An unsaturated monobasic acid or unsaturated dibasic acid monoester is added to the epoxy group of the bifunctional epoxy resin having a biphenyl skeleton to introduce an unsaturated group into the polymer (A).
Examples of the unsaturated monobasic acid include (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, α-bromo (meth) acrylic acid, β -Unsaturated carboxylic acids such as furyl (meth) acrylic acid, crotonic acid, propiolic acid, cinnamic acid and α-cyanocinnamic acid. Examples of the unsaturated dibasic acid monoester include monomethyl maleate, monoethyl maleate, monoisopropyl maleate, monomethyl fumarate, monoethyl itaconate, and the like. These unsaturated monobasic acid or unsaturated dibasic acid monoesters may be used alone or in combination of two or more. Among these, (meth) acrylic acid is preferable from the viewpoint of availability and reactivity.
 多塩基酸無水物は、前記不飽和一塩基酸もしくは不飽和二塩基酸モノエステルと前記ビフェニル骨格を有する2官能エポキシ樹脂との付加反応により、前記ビフェニル骨格を有する2官能エポキシ樹脂のエポキシ基が開環して生じたヒドロキシ基に対して開環付加し、重合体(A)中にカルボキシ基を導入する。
 多塩基酸無水物としては、無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、無水コハク酸、ブタンテトラカルボン酸無水物、ペンタンテトラカルボン酸無水物、ヘキサンテトラカルボン酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、シクロヘキサントリカルボン酸無水物等が挙げられる。これらの中でも、入手のし易さ及び反応性の観点から、ビフェニルテトラカルボン酸二無水物、テトラヒドロ無水フタル酸及び無水コハク酸が好ましい。
The polybasic acid anhydride is an epoxy group of the bifunctional epoxy resin having a biphenyl skeleton by an addition reaction between the unsaturated monobasic acid or unsaturated dibasic acid monoester and the bifunctional epoxy resin having a biphenyl skeleton. Ring opening is added to the hydroxy group generated by ring opening to introduce a carboxy group into the polymer (A).
Polybasic acid anhydrides include maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, succinic anhydride, butanetetracarboxylic anhydride, pentanetetracarboxylic anhydride, hexane Examples thereof include tetracarboxylic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, and cyclohexanetricarboxylic anhydride. Among these, biphenyltetracarboxylic dianhydride, tetrahydrophthalic anhydride and succinic anhydride are preferable from the viewpoint of availability and reactivity.
 重合体(A)は、二塩基酸由来の構成単位を更に含んでもよい。二塩基酸のカルボキシ基と前記ビフェニル骨格を有する2官能エポキシ樹脂のエポキシ基とが重縮合反応することにより、重合体(A)を高分子量化することができる。二塩基酸としては、特に限定されないが、アジピン酸、イタコン酸、コハク酸、シュウ酸、マロン酸、フタル酸、フマル酸、マレイン酸、グルタル酸、酒石酸、グルタミン酸、セバシン酸等が挙げられる。二塩基酸は、単独で用いてもよいし、又は2種以上を用いてもよい。これらの中でも、反応性の観点から、アジピン酸及びイタコン酸が好ましい。重合体(A)が、二塩基酸由来の構成単位を更に含むことにより、柔軟性が向上する。 The polymer (A) may further contain a structural unit derived from a dibasic acid. The polymer (A) can be made high molecular weight by a polycondensation reaction between the carboxy group of the dibasic acid and the epoxy group of the bifunctional epoxy resin having the biphenyl skeleton. Although it does not specifically limit as a dibasic acid, Adipic acid, itaconic acid, succinic acid, oxalic acid, malonic acid, phthalic acid, fumaric acid, maleic acid, glutaric acid, tartaric acid, glutamic acid, sebacic acid, etc. are mentioned. The dibasic acids may be used alone or in combination of two or more. Among these, adipic acid and itaconic acid are preferred from the viewpoint of reactivity. When the polymer (A) further contains a structural unit derived from a dibasic acid, the flexibility is improved.
 重合体(A)は、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位だけでなく必要に応じて飽和一塩基酸由来の構成単位を更に含んでもよい。飽和一塩基酸は、前記不飽和一塩基酸もしくは不飽和二塩基酸モノエステルと共に前記ビフェニル骨格を有する2官能エポキシ樹脂のエポキシ基に付加させることにより、重合体(A)中に導入することができる。飽和一塩基酸としては、特に限定されないが、ギ酸、酢酸、プロピオン酸、酪酸、ラウリン酸、トリデシル酸、パルミチン酸、ステアリン酸等が挙げられる。飽和一塩基酸は、単独で用いてもよいし、又は2種以上を用いてもよい。これらの中でも、沸点及び反応性の観点から、酢酸及びプロピオン酸が好ましい。重合体(A)が、飽和一塩基酸由来の構成単位を更に含むことにより、柔軟性が向上する。 The polymer (A) may further contain not only a constitutional unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester but also a constitutional unit derived from a saturated monobasic acid, if necessary. The saturated monobasic acid can be introduced into the polymer (A) by adding the unsaturated monobasic acid or unsaturated dibasic acid monoester to the epoxy group of the bifunctional epoxy resin having the biphenyl skeleton. it can. Although it does not specifically limit as a saturated monobasic acid, Formic acid, acetic acid, propionic acid, butyric acid, lauric acid, tridecylic acid, palmitic acid, stearic acid, etc. are mentioned. The saturated monobasic acids may be used alone or in combination of two or more. Among these, acetic acid and propionic acid are preferred from the viewpoint of boiling point and reactivity. When the polymer (A) further contains a structural unit derived from a saturated monobasic acid, flexibility is improved.
 二塩基酸由来の構成単位及び/又は飽和一塩基酸由来の構成単位を更に含む重合体(A)は、重合触媒の存在下で、ビフェニル骨格を有する2官能エポキシ樹脂と任意に用いる二塩基酸とを重縮合反応させ、さらに反応触媒の存在下で、不飽和一塩基酸もしくは不飽和二塩基酸モノエステルと、多塩基酸無水物と、任意に用いる飽和一塩基酸とを反応させることにより製造することができる。重縮合反応と付加反応の順は適宜入れ替えてもよい。 The polymer (A) further containing a constitutional unit derived from a dibasic acid and / or a constitutional unit derived from a saturated monobasic acid can be used in combination with a bifunctional epoxy resin having a biphenyl skeleton and optionally a dibasic acid in the presence of a polymerization catalyst. And a polycondensation reaction with an unsaturated monobasic acid or an unsaturated dibasic acid monoester, a polybasic acid anhydride, and a optionally used saturated monobasic acid in the presence of a reaction catalyst. Can be manufactured. The order of the polycondensation reaction and the addition reaction may be appropriately changed.
 重合体(A)は、ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位30~80質量%と、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位10~40質量%と、多塩基酸無水物由来の構成単位10~40質量%とを含むことが好ましく、ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位40~70質量%と、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位15~30質量%と、多塩基酸無水物由来の構成単位15~30質量%とを含むことがより好ましい。ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位及び多塩基酸無水物由来の構成単位の質量割合が上記範囲内であれば、弾性回復率や現像性、耐溶剤性のバランスが取れるため好ましい。ここで、重合体(A)中のビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位に対し、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位のモル比は1.8~2.0であることが好ましく、多塩基酸無水物由来の構成単位のモル比は0.1~1.3であることが好ましく、0.2~1.2であることがより好ましい。これらの構成単位の割合は、NMR分析により算出するほか、重合体(A)を製造する際の原料の仕込み量から算出することができる。 The polymer (A) contains 30 to 80% by mass of a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton, and 10 to 40% by mass of a structural unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester. And a structural unit derived from a polybasic acid anhydride in an amount of 10 to 40% by mass, a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton in an amount of 40 to 70% by mass, and an unsaturated monobasic acid-derived or unsaturated unit. More preferably, it contains 15 to 30% by mass of a structural unit derived from a dibasic acid monoester and 15 to 30% by mass of a structural unit derived from a polybasic acid anhydride. The mass ratio of the structural unit derived from the bifunctional epoxy resin having the biphenyl skeleton, the structural unit derived from the unsaturated monobasic acid or the unsaturated dibasic acid monoester, and the structural unit derived from the polybasic anhydride is within the above range. It is preferable to balance the elastic recovery rate, developability, and solvent resistance. Here, the molar ratio of the structural unit derived from the unsaturated monobasic acid or the unsaturated dibasic acid monoester to the structural unit derived from the bifunctional epoxy resin having a biphenyl skeleton in the polymer (A) is 1.8. The molar ratio of the structural units derived from polybasic acid anhydride is preferably from 0.1 to 1.3, more preferably from 0.2 to 1.2. The ratio of these constituent units can be calculated from the amount of raw materials charged when producing the polymer (A), in addition to being calculated by NMR analysis.
 二塩基酸由来の構成単位を更に含む重合体(A)では、ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位30~80質量%と、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位5~40質量%と、多塩基酸無水物由来の構成単位5~40質量%と、二塩基酸由来の構成単位0質量%超~20質量%とを含むことが好ましく、ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位40~70質量%と、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位10~40質量%と、多塩基酸無水物由来の構成単位10~40質量%と、二塩基酸由来の構成単位0質量%超~20質量%とを含むことがより好ましく、ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位40~64質量%と、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位10~25質量%と、多塩基酸無水物由来の構成単位15~30質量%と、二塩基酸由来の構成単位5~15質量%とを含むことがさらに好ましい。ここで、重合体(A)中のビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位に対し、不飽和一塩基酸もしくは不飽和二塩基酸モノエステル由来由来の構成単位のモル比は0.3~1.6であることが好ましく、0.5~1.0であることがより好ましく、二塩基酸由来の構成単位のモル比は0.1~0.8であることが好ましく、0.15~0.7であることがより好ましく、多塩基酸無水物由来の構成単位のモル比は0.1~1.3であることが好ましく、0.2~1.2であることがより好ましい。 In the polymer (A) further containing a structural unit derived from a dibasic acid, 30 to 80% by mass of a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton is combined with an unsaturated monobasic acid-derived or unsaturated dibasic acid monoester. It preferably contains 5 to 40% by mass of a structural unit derived from a polybasic acid anhydride, 5 to 40% by mass of a structural unit derived from a polybasic acid anhydride, and more than 0 to 20% by mass of a structural unit derived from a dibasic acid. A structural unit derived from a bifunctional epoxy resin having a skeleton of 40 to 70% by mass, a structural unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester from 10 to 40% by mass, and a polybasic acid anhydride derived More preferably, it contains 10 to 40% by mass of the structural unit and more than 0% to 20% by mass of the structural unit derived from a dibasic acid, and the structural unit 40 to 6 derived from a bifunctional epoxy resin having a biphenyl skeleton. %, A structural unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester, 10 to 25% by mass, a structural unit derived from a polybasic acid anhydride, 15 to 30% by mass, and a structural unit derived from a dibasic acid. More preferably, it contains 5 to 15% by mass of a structural unit. Here, the molar ratio of the structural unit derived from the unsaturated monobasic acid or unsaturated dibasic acid monoester to the structural unit derived from the bifunctional epoxy resin having a biphenyl skeleton in the polymer (A) is 0.3. It is preferably from 1.6 to 1.6, more preferably from 0.5 to 1.0, and the molar ratio of the structural unit derived from a dibasic acid is preferably from 0.1 to 0.8, and from 0.1 to 0.8. It is more preferably from 15 to 0.7, and the molar ratio of the structural unit derived from polybasic acid anhydride is preferably from 0.1 to 1.3, more preferably from 0.2 to 1.2. preferable.
 飽和一塩基酸由来の構成単位を更に含む重合体(A)では、ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位30~80質量%と、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位5~40質量%と、多塩基酸無水物由来の構成単位5~40質量%と、飽和一塩基酸由来の構成単位0質量%超~20質量%とを含むことが好ましく、ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位40~70質量%と、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位10~40質量%と、多塩基酸無水物由来の構成単位10~40質量%と、飽和一塩基酸由来の構成単位0質量%超~20質量%とを含むことがより好ましく、ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位40~64質量%と、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位10~25質量%と、多塩基酸無水物由来の構成単位15~30質量%と、飽和一塩基酸由来の構成単位5~15質量%とを含むことがさらに好ましい。ここで、重合体(A)中のビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位に対し、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位及び飽和一塩基酸由来の構成単位の合計のモル比は1.8~2.0であることが好ましく、多塩基酸無水物由来の構成単位のモル比は0.1~1.3であることが好ましく、0.2~1.2であることがより好ましい。 In the polymer (A) further containing a structural unit derived from a saturated monobasic acid, 30 to 80% by mass of a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton and an unsaturated monobasic acid-derived or unsaturated dibasic acid It preferably contains 5 to 40% by mass of a structural unit derived from an ester, 5 to 40% by mass of a structural unit derived from a polybasic anhydride, and more than 0 to 20% by mass of a structural unit derived from a saturated monobasic acid. A structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton, from 40 to 70% by mass, a structural unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester from 10 to 40% by mass, and a polybasic anhydride. More preferably, the composition contains 10 to 40% by mass of a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton, and more than 0% to 20% by mass of a structural unit derived from a saturated monobasic acid. 40 to 64% by mass, 10 to 25% by mass of a structural unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester, 15 to 30% by mass of a structural unit derived from a polybasic anhydride, More preferably, it contains 5 to 15% by mass of a structural unit derived from a monobasic acid. Here, a structural unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester and a structural unit derived from a saturated monobasic acid with respect to the structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton in the polymer (A). The total molar ratio of the structural units is preferably 1.8 to 2.0, and the molar ratio of the structural units derived from polybasic acid anhydride is preferably 0.1 to 1.3, and 0.2 More preferably, it is ~ 1.2.
 二塩基酸由来の構成単位及び飽和一塩基酸由来の構成単位を更に含む重合体(A)では、ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位30~80質量%と、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位5~40質量%と、多塩基酸無水物由来の構成単位5~40質量%と、二塩基酸由来の構成単位0質量%超~20質量%と、飽和一塩基酸由来の構成単位0質量%超~20質量%とを含むことが好ましく、ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位40~70質量%と、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位10~40質量%と、多塩基酸無水物由来の構成単位10~40質量%と、二塩基酸由来の構成単位0質量%超~20質量%と、飽和一塩基酸由来の構成単位0質量%超~20質量%とを含むことがより好ましく、ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位40~64質量%と、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位10~25質量%と、多塩基酸無水物由来の構成単位15~30質量%と、二塩基酸由来の構成単位5~15質量%と、飽和一塩基酸由来の構成単位5~15質量%とを含むことがさらに好ましい。ここで、重合体(A)中のビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位に対し、不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位及び飽和一塩基酸由来の構成単位の合計のモル比は0.3~1.6であることが好ましく、0.5~1.0であることがより好ましく、二塩基酸由来の構成単位のモル比は0.1~0.8であることが好ましく、0.15~0.7であることがより好ましく、多塩基酸無水物由来の構成単位のモル比は0.1~1.3であることが好ましく、0.2~1.2であることがより好ましい。 In the polymer (A) further containing a constitutional unit derived from a dibasic acid and a constitutional unit derived from a saturated monobasic acid, 30 to 80% by mass of a constitutional unit derived from a bifunctional epoxy resin having a biphenyl skeleton is added to the unsaturated monobasic acid. 5 to 40% by weight of a structural unit derived from a monobasic or unsaturated dibasic acid monoester, 5 to 40% by weight of a structural unit derived from a polybasic anhydride, and more than 0 to 20% by weight of a structural unit derived from a dibasic acid % And more than 0% by mass to 20% by mass of a structural unit derived from a saturated monobasic acid, and 40 to 70% by mass of a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton, and an unsaturated monobasic acid. 10 to 40% by mass of a structural unit derived from a monobasic or unsaturated dibasic acid monoester, 10 to 40% by mass of a structural unit derived from a polybasic anhydride, and more than 0 to 20% by mass of a structural unit derived from a dibasic acid % And saturation More preferably, it contains more than 0 to 20% by mass of a structural unit derived from a basic acid, and 40 to 64% by mass of a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton and an unsaturated monobasic acid-derived or unsaturated unit. 10 to 25% by mass of a structural unit derived from a dibasic acid monoester, 15 to 30% by mass of a structural unit derived from a polybasic anhydride, 5 to 15% by mass of a structural unit derived from a dibasic acid, and a saturated monobasic acid More preferably, it contains 5 to 15% by mass of a structural unit derived therefrom. Here, a structural unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester and a structural unit derived from a saturated monobasic acid are used with respect to the structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton in the polymer (A). The total molar ratio of the structural units is preferably from 0.3 to 1.6, more preferably from 0.5 to 1.0, and the molar ratio of the dibasic acid-derived structural units is from 0.1 to 1.0. It is preferably 0.8, more preferably 0.15 to 0.7, and the molar ratio of the structural unit derived from polybasic acid anhydride is preferably 0.1 to 1.3. It is more preferable that the ratio be from 2 to 1.2.
 上記した付加反応で多塩基酸無水物から生成したカルボキシ基の少なくとも一部にエポキシ基含有不飽和化合物を付加させてもよい。エポキシ基含有不飽和化合物としては、例えば、グリシジル(メタ)アクリレート、2-グリシジルオキシエチル(メタ)アクリレート、脂環式エポキシを有する3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、そのラクトン付加物(例えば、ダイセル化学工業(株)製サイクロマー(登録商標)A200、M100)、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレートのモノ(メタ)アクリル酸エステル、ジシクロペンテニル(メタ)アクリレートのエポキシ化物、ジシクロペンテニルオキシエチル(メタ)アクリレートのエポキシ化物等が挙げられる。これらのエポキシ基含有不飽和化合物は、単独で用いてもよいし、又は2種以上を用いてもよい。これらの中でも、入手のし易さ及び反応性の観点から、グリシジル(メタ)アクリレートが好ましい。 (4) An epoxy group-containing unsaturated compound may be added to at least a part of the carboxy group generated from the polybasic acid anhydride in the above addition reaction. Examples of the epoxy group-containing unsaturated compound include glycidyl (meth) acrylate, 2-glycidyloxyethyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate having an alicyclic epoxy, and a lactone adduct thereof ( For example, Cyclomer (registered trademark) A200, M100 manufactured by Daicel Chemical Industries, Ltd., mono (meth) acrylate of 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, dicyclopentenyl Epoxidized (meth) acrylate, epoxidized dicyclopentenyloxyethyl (meth) acrylate and the like can be mentioned. These unsaturated compounds containing an epoxy group may be used alone or in combination of two or more. Among these, glycidyl (meth) acrylate is preferred from the viewpoint of availability and reactivity.
 エポキシ基含有不飽和化合物の付加量は、重合体(A)に対して、0質量%超~10質量%であることが好ましく、0質量%超~5質量%であることがより好ましい。エポキシ基含有不飽和化合物の付加量が0質量%超であれば、感度を高めることができるため好ましい。一方、エポキシ基含有不飽和化合物の付加量が10質量%以下であれば、弾性回復率や現像性を維持できるため好ましい。
 重合体(A)中のビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位に対し、付加したエポキシ基含有不飽和化合物のモル比は0.05~0.3であることが好ましい。重合体(A)の多塩基酸無水物由来の構成単位に対し、付加したエポキシ基含有不飽和化合物のモル比は0.1~0.5であることが好ましい。
The addition amount of the epoxy group-containing unsaturated compound is preferably more than 0% by mass to 10% by mass, more preferably more than 0% by mass to 5% by mass, based on the polymer (A). It is preferable that the addition amount of the epoxy group-containing unsaturated compound exceeds 0% by mass because sensitivity can be increased. On the other hand, when the addition amount of the epoxy group-containing unsaturated compound is 10% by mass or less, the elastic recovery rate and the developability are preferably maintained.
The molar ratio of the added epoxy group-containing unsaturated compound to the structural unit derived from the bifunctional epoxy resin having a biphenyl skeleton in the polymer (A) is preferably 0.05 to 0.3. The molar ratio of the epoxy group-containing unsaturated compound added to the structural unit derived from the polybasic acid anhydride of the polymer (A) is preferably 0.1 to 0.5.
 上記した反応で多塩基酸無水物から生成したカルボキシ基の少なくとも一部にエポキシ樹脂を付加させてもよい。エポキシ樹脂としては、特に限定されないが、ノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂等が挙げられる。分子量の増大を防ぐという観点から、2官能エポキシ樹脂を用いることが好ましい。エポキシ樹脂の付加量は、重合体(A)に対して、0質量%超~20質量%であることが好ましい。重合体(A)中のビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位に対し、付加したエポキシ樹脂のモル比は0.05~0.3であることが好ましい。付加するエポキシ樹脂の重量平均分子量は150~350であることが好ましい。エポキシ樹脂として、ビフェニル骨格を有する2官能エポキシ樹脂を用いる場合には、各構成単位の割合を算出する際に、重合体(A)の主骨格に用いるエポキシ樹脂と後から付加させるエポキシ樹脂を区別せずに合算して考慮する。 (4) An epoxy resin may be added to at least a part of the carboxy groups generated from the polybasic acid anhydride in the above reaction. Examples of the epoxy resin include, but are not particularly limited to, a novolak epoxy resin, a bisphenol epoxy resin, and a biphenyl epoxy resin. From the viewpoint of preventing an increase in molecular weight, it is preferable to use a bifunctional epoxy resin. The added amount of the epoxy resin is preferably more than 0% by mass to 20% by mass based on the polymer (A). The molar ratio of the epoxy resin added to the structural unit derived from the bifunctional epoxy resin having a biphenyl skeleton in the polymer (A) is preferably 0.05 to 0.3. The epoxy resin to be added preferably has a weight average molecular weight of 150 to 350. When a bifunctional epoxy resin having a biphenyl skeleton is used as the epoxy resin, when calculating the ratio of each structural unit, the epoxy resin used for the main skeleton of the polymer (A) is distinguished from the epoxy resin to be added later. Without considering them.
 本発明で用いる重合体(A)又は重合体(A)の前駆体を得るための付加反応及び重縮合反応の条件は、常法に従って適宜設定すればよい。重縮合反応は、例えば、溶媒に各原料と重合触媒とを添加し、好ましくは酸素ガス濃度5~7体積%の雰囲気で、好ましくは50~150℃、より好ましくは60~140℃で1~12時間行えばよい。
 付加反応は、溶媒に各原料と付加反応触媒とを添加し、好ましくは酸素ガス濃度5~7体積%の雰囲気で、好ましくは50~150℃、より好ましくは80~130℃で3~12時間行えばよい。なお、これらの反応では、重合体(A)の前駆体を得るために用いた溶媒がそのまま次の反応に用いる溶媒として含まれていても問題は無い。
The conditions of the addition reaction and the polycondensation reaction for obtaining the polymer (A) or the precursor of the polymer (A) used in the present invention may be appropriately set according to a conventional method. In the polycondensation reaction, for example, each raw material and a polymerization catalyst are added to a solvent, preferably in an atmosphere having an oxygen gas concentration of 5 to 7% by volume, preferably at 50 to 150 ° C, more preferably at 60 to 140 ° C for 1 to 1%. All you have to do is 12 hours.
The addition reaction is performed by adding each raw material and an addition reaction catalyst to a solvent, preferably in an atmosphere having an oxygen gas concentration of 5 to 7% by volume, preferably at 50 to 150 ° C, more preferably at 80 to 130 ° C for 3 to 12 hours. Just do it. In these reactions, there is no problem even if the solvent used for obtaining the precursor of the polymer (A) is directly contained as a solvent used in the next reaction.
 上記した重縮合反応及び付加反応に用いることができる溶媒としては、特に限定されず、公知のものを適宜使用することができる。溶媒の具体例としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等の(ポリ)アルキレングリコールモノアルキルエーテルアセテート;ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、テトラヒドロフラン等の他のエーテル化合物;メチルエチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン等のケトン化合物;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチル酪酸メチル、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、酢酸エチル、酢酸n-ブチル、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸n-アミル、酢酸i-アミル、プロピオン酸n-ブチル、酪酸エチル、酪酸n-プロピル、酪酸i-プロピル、酪酸n-ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸n-プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソ酪酸エチル等のエステル化合物;トルエン、キシレン等の芳香族炭化水素化合物;N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のカルボン酸アミド化合物等を挙げることができる。これらの溶媒は、単独で用いてもよいし、又は2種以上を用いてもよい。 溶媒 The solvent that can be used in the above-mentioned polycondensation reaction and addition reaction is not particularly limited, and a known solvent can be appropriately used. Specific examples of the solvent include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-propyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol monomethyl ether, and triethylene glycol. Glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene glycol mono-n-butyl ether, tripropylene Glycol monomethyl ether, tri (Poly) alkylene glycol monoalkyl ethers such as propylene glycol monoethyl ether; (poly) alkylene glycol monoalkyls such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate Ether acetate; other ether compounds such as diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, and tetrahydrofuran; ketone compounds such as methyl ethyl ketone, cyclohexanone, 2-heptanone and 3-heptanone; methyl 2-hydroxypropionate and 2-hydroxypropion Ethyl acid, 2 Methyl hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethoxyacetic acid Ethyl, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutyrate, 3-methyl-3-methoxybutyl acetate, 3-methyl-3-methoxybutyl propionate, ethyl acetate, n-butyl acetate, n-propyl acetate I-propyl acetate, n-butyl acetate, i-butyl acetate, n-amyl acetate, i-amyl acetate, n-butyl propionate, ethyl butyrate, n-propyl butyrate, i-propyl butyrate, n-butyl butyrate, Methyl pyruvate, ethyl pyruvate, n-propyl pyruvate, aceto Ester compounds such as methyl acetate, ethyl acetoacetate and ethyl 2-oxobutyrate; aromatic hydrocarbon compounds such as toluene and xylene; carboxylic acids such as N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide Amide compounds and the like can be mentioned. These solvents may be used alone or in combination of two or more.
 これらの中でも、プロピレングリコールモノメチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル及びプロピレングリコールモノメチルエーテルアセテート等の(ポリ)アルキレングリコールモノアルキルエーテルアセテート、すなわち、グリコールエーテル系溶媒が好ましい。 Among them, (poly) alkylene glycol monoalkyl ethers such as propylene glycol monomethyl ether and (poly) alkylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate, that is, glycol ether solvents are preferable.
 溶媒の使用量は、特に限定されないが、重合体(A)又は重合体(A)の前駆体の各原料の合計を100質量部とした場合に、一般的には10~300質量部、好ましくは20~100質量部である。溶媒の使用量が300質量部以下であれば、適切な時間で反応することができ、且つ重合体(A)の粘度を適切な範囲に制御することができるため好ましい。一方、溶媒の使用量が10質量部以上であれば、反応を安定して行うことができるため好ましい。また、重合体(A)の着色やゲル化も防止することができる。 The amount of the solvent used is not particularly limited, but generally 10 to 300 parts by mass, preferably 100 to 300 parts by mass, based on 100 parts by mass of the raw materials of the polymer (A) or the precursor of the polymer (A). Is from 20 to 100 parts by mass. When the amount of the solvent used is 300 parts by mass or less, it is preferable because the reaction can be performed in an appropriate time and the viscosity of the polymer (A) can be controlled in an appropriate range. On the other hand, when the amount of the solvent used is 10 parts by mass or more, the reaction can be stably performed, which is preferable. Further, coloring and gelling of the polymer (A) can also be prevented.
 上記した重合反応及び付加反応に用いる重合触媒及び付加反応触媒の種類は特に限定されず、必要に応じて選択される。これらの触媒としては、例えば、トリエチルアミンのような第3級アミン、トリエチルベンジルアンモニウムクロライドのような第4級アンモニウム塩、トリフェニルホスフィンのようなリン化合物、クロムのキレート化合物等が挙げられる。これらの触媒は、単独で用いてもよいし、又は2種以上を用いてもよい。触媒の使用量は、特に限定されないが、重合体(A)又は重合体(A)の前駆体の各原料の合計を100質量部とした場合に、一般的には0.01~5質量部であり、好ましくは0.05~2質量部であり、より好ましくは0.1~1質量部である。 種類 The types of the polymerization catalyst and the addition reaction catalyst used in the above-mentioned polymerization reaction and addition reaction are not particularly limited, and are selected as necessary. Examples of these catalysts include tertiary amines such as triethylamine, quaternary ammonium salts such as triethylbenzylammonium chloride, phosphorus compounds such as triphenylphosphine, chromium chelate compounds and the like. These catalysts may be used alone or in combination of two or more. The amount of the catalyst to be used is not particularly limited, but is generally 0.01 to 5 parts by mass based on 100 parts by mass of each raw material of the polymer (A) or the precursor of the polymer (A). , Preferably 0.05 to 2 parts by mass, more preferably 0.1 to 1 part by mass.
 不飽和基含有化合物(不飽和一塩基酸もしくは不飽和二塩基酸モノエステル、エポキシ基含有不飽和化合物)を原料として用いる場合には、ゲル化防止のために重合禁止剤を添加することが好ましい。重合禁止剤の種類は、特に限定されず、必要に応じて選択される。重合禁止剤としては、例えば、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、ブチルヒドロキシトルエン等が挙げられる。これらの重合禁止剤は、単独で用いてもよいし、又は2種以上を用いてもよい。重合禁止剤の使用量は、特に限定されないが、重合体(A)又は重合体(A)の前駆体の各原料の合計を100質量部とした場合に、一般的には0.01~5質量部であり、好ましくは0.02~2質量部であり、より好ましくは0.04~0.5質量部である。 When using an unsaturated group-containing compound (unsaturated monobasic acid or unsaturated dibasic acid monoester, epoxy group-containing unsaturated compound) as a raw material, it is preferable to add a polymerization inhibitor to prevent gelation. . The type of the polymerization inhibitor is not particularly limited, and is selected as needed. Examples of the polymerization inhibitor include hydroquinone, methylhydroquinone, hydroquinone monomethyl ether, butylhydroxytoluene, and the like. These polymerization inhibitors may be used alone or in combination of two or more. Although the amount of the polymerization inhibitor used is not particularly limited, it is generally 0.01 to 5 parts by mass based on 100 parts by mass of each raw material of the polymer (A) or the precursor of the polymer (A). Parts by mass, preferably 0.02 to 2 parts by mass, more preferably 0.04 to 0.5 parts by mass.
 本発明で用いる重合体(A)は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算で得られる重量平均分子量が、1000~50000であることが好ましく、3000~40000であることがより好ましい。重合体(A)の重量平均分子量が1000以上であれば、アルカリ現像後にパターンの欠けが発生しないため好ましい。一方、重合体(A)の重量平均分子量が50000以下であれば、現像時間が適度な時間となり、使用上実用的であるため好ましい。特に、重合体(A)の前駆体に2官能エポキシ樹脂を付加させて高分子量化した重合体(A)では、重量平均分子量が3000~40000であることが好ましい。 重合 The polymer (A) used in the present invention has a weight average molecular weight of preferably from 1,000 to 50,000, more preferably from 3,000 to 40,000, as calculated as polystyrene by gel permeation chromatography (GPC). It is preferable that the weight average molecular weight of the polymer (A) is 1,000 or more, since pattern chipping does not occur after alkali development. On the other hand, when the weight average molecular weight of the polymer (A) is 50,000 or less, the development time becomes an appropriate time and it is practical in use, and thus it is preferable. In particular, the weight average molecular weight of the polymer (A) obtained by adding a bifunctional epoxy resin to the precursor of the polymer (A) to increase the molecular weight is preferably from 3,000 to 40,000.
 本発明で用いる重合体(A)の酸価(JIS K6901 5.3)は、本発明の所望の効果を奏する限り制限されないが、通常、20~300KOHmg/g、好ましくは30~200KOHmg/gである。重合体(A)の酸価が20KOHmg/g以上であれば、現像性が良好となるため好ましい。一方、重合体(A)の酸価が300KOHmg/g以下であれば、露光部分(光硬化部分)がアルカリ現像液に対して溶解しにくくなるため好ましい。 The acid value (JIS K6901 5.3) of the polymer (A) used in the present invention is not limited as long as the desired effect of the present invention is exhibited, but is usually 20 to 300 KOH mg / g, preferably 30 to 200 KOH mg / g. is there. It is preferable that the acid value of the polymer (A) is 20 KOHmg / g or more, since the developability becomes good. On the other hand, when the acid value of the polymer (A) is 300 KOH mg / g or less, the exposed portion (photocured portion) is less likely to be dissolved in the alkali developing solution, so that it is preferable.
 本発明で用いる重合体(A)の不飽和基当量は、本発明の所望の効果を奏する限り制限されないが、通常、100~4000g/モルであり、好ましくは200~2000g/モルであり、より好ましくは250~500g/モルである。重合体(A)の不飽和基当量が100g/モル以上であれば、塗膜物性及びアルカリ現像性を高めるうえで効果的であるため好ましい。一方、重合体(A)の不飽和基当量が4000g/モル以下であれば、感度をより高めるうえで効果的であるため好ましい。なお、不飽和基当量とは、重合体(A)の中の不飽和結合(エチレン性炭素-炭素二重結合)1モル当たりの重合体(A)の質量である。不飽和基当量は、重合体(A)の質量を重合体(A)中の不飽和基数で除することにより求めることができる(g/モル)。なお、本明細書において、不飽和基当量は、不飽和基を導入するために用いられる原料の仕込み量から計算した理論値である。 The unsaturated group equivalent of the polymer (A) used in the present invention is not limited as long as the desired effect of the present invention is obtained, but is usually 100 to 4000 g / mol, preferably 200 to 2000 g / mol. Preferably it is 250 to 500 g / mol. When the unsaturated group equivalent of the polymer (A) is at least 100 g / mol, it is effective in enhancing the properties of the coating film and the alkali developability, so that it is preferable. On the other hand, when the unsaturated group equivalent of the polymer (A) is 4000 g / mol or less, it is effective in further increasing the sensitivity, and thus it is preferable. Note that the unsaturated group equivalent is the mass of the polymer (A) per mole of the unsaturated bond (ethylenic carbon-carbon double bond) in the polymer (A). The unsaturated group equivalent can be determined by dividing the mass of the polymer (A) by the number of unsaturated groups in the polymer (A) (g / mol). In the present specification, the unsaturated group equivalent is a theoretical value calculated from a charged amount of a raw material used for introducing an unsaturated group.
<溶剤(B)>
 本発明の感光性樹脂組成物に用いる溶剤(B)は、重合体(A)を溶解することができ且つ重合体(A)と反応しない不活性な溶剤であれば特に限定されず、任意に選択することができる。また、溶剤(B)は、後述の反応性希釈剤と相溶性を有することが好ましい。溶剤(B)としては、重合体(A)を製造する際に用いた溶媒と同じものを用いることができる。溶剤(B)としては、プロピレングリコールモノメチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル及びプロピレングリコールモノメチルエーテルアセテート等の(ポリ)アルキレングリコールモノアルキルエーテルアセテートが好ましい。
<Solvent (B)>
The solvent (B) used in the photosensitive resin composition of the present invention is not particularly limited as long as it is an inert solvent that can dissolve the polymer (A) and does not react with the polymer (A). You can choose. The solvent (B) preferably has compatibility with the reactive diluent described below. As the solvent (B), the same solvent as used in producing the polymer (A) can be used. As the solvent (B), (poly) alkylene glycol monoalkyl ether such as propylene glycol monomethyl ether and (poly) alkylene glycol monoalkyl ether acetate such as propylene glycol monomethyl ether acetate are preferable.
 溶剤(B)は、反応を終えた重合体(A)溶液から目的の重合体(A)を単離し、単離された重合体(A)に適宜添加することができる。しかしながら、必ずしも重合体(A)溶液から目的の重合体(A)を単離する必要はない。反応終了時に含まれている溶媒を重合体(A)溶液から分離せず、溶媒を溶剤(B)としてそのまま用いることもできる。必要に応じて、他の溶剤を重合体(A)溶液に添加してもよい。また、感光性樹脂組成物を調製する際に用いる他の成分に含まれている溶剤を溶剤(B)としてそのまま用いてもよい。 The solvent (B) can be used to isolate the desired polymer (A) from the solution of the polymer (A) after the reaction, and to appropriately add the isolated polymer (A). However, it is not always necessary to isolate the target polymer (A) from the polymer (A) solution. The solvent contained at the end of the reaction can be used as the solvent (B) without separating the solvent contained in the polymer (A) solution. If necessary, another solvent may be added to the polymer (A) solution. Further, a solvent contained in another component used when preparing the photosensitive resin composition may be used as it is as the solvent (B).
<光重合開始剤(C)>
 光重合開始剤(C)は、特に限定されない。光重合開始剤(C)としては、例えば、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(o-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)等のオキシムエステル系;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインブチルエーテル等のベンゾイン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、4-(1-t-ブチルジオキシ-1-メチルエチル)アセトフェノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン-1等のアセトフェノン類;2-メチルアントラキノン、2-アミルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等のアントラキノン類;キサントン、チオキサントン、2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-クロロチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、4-(1-t-ブチルジオキシ-1-メチルエチル)ベンゾフェノン、3,3’,4,4’-テトラキス(t-ブチルジオキシカルボニル)ベンゾフェノン等のベンゾフェノン類;アシルホスフィンオキサイド類;等が挙げられる。これらの光重合開始剤(C)は、単独で用いてもよいし、又は2種以上を用いてもよい。
<Photopolymerization initiator (C)>
The photopolymerization initiator (C) is not particularly limited. Examples of the photopolymerization initiator (C) include 1,2-octanedione, 1- [4- (phenylthio)-, 2- (o-benzoyloxime)], ethanone, and 1- [9-ethyl-6- Oxime esters such as (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (o-acetyloxime); benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether and benzoin butyl ether; acetophenone; 2,2-dimethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 4- (1-t-butyldioxy-1-methylethyl) acetophenone, 2-methyl-1- [4- (methylthio) phenyl] -2 -Morpholino-propan-1-one, 2-benzyl-2-dimethylamino-1- (4-mo Acetophenones such as (holinophenyl) butanone-1; anthraquinones such as 2-methylanthraquinone, 2-amylanthraquinone, 2-t-butylanthraquinone and 1-chloroanthraquinone; xanthone, thioxanthone, 2,4-dimethylthioxanthone and 2,4 Thioxanthones such as -diisopropylthioxanthone and 2-chlorothioxanthone; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenone, 4- (1-t-butyldioxy-1-methylethyl) benzophenone, 3,3 ', 4 Benzophenones such as 4′-tetrakis (t-butyldioxycarbonyl) benzophenone; acylphosphine oxides; These photopolymerization initiators (C) may be used alone or in combination of two or more.
 光重合開始剤(C)としては、上記の化合物の中でも特に、i線(365nm)の感度が高く、硬化時及びベーク時の硬化物の黄変が少ないため、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン等のアセトフェノン系、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(o-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)等のオキシムエステル系のものを用いることが好ましい。これらの光重合開始剤は、例えば、目的とする感度等に応じて、単独で用いてもよいし、又は2種以上を用いてもよい。 As the photopolymerization initiator (C), among the above compounds, 2-methyl-1- (4) is particularly preferred because of its high sensitivity to i-line (365 nm) and little yellowing of the cured product during curing and baking. Acetophenones such as -methylthiophenyl) -2-morpholinopropan-1-one, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (o-benzoyloxime)], ethanone, 1- It is preferable to use an oxime ester type such as [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (o-acetyloxime). These photopolymerization initiators may be used alone or in combination of two or more, depending on, for example, the intended sensitivity.
 本発明の感光性樹脂組成物における重合体(A)、溶剤(B)及び光重合開始剤(C)の好ましい配合量は以下のようになる。
 重合体(A)の配合量は、感光性樹脂組成物全体に対して、1~20質量%であることが好ましく、5~15質量%であることがより好ましい。重合体(A)の配合量が1質量%以上であれば、良好な光硬化性を有するため好ましい。一方、重合体(A)の配合量が20質量%以下であれば、良好な塗布性を有するため好ましい。
 溶剤(B)の配合量は、感光性樹脂組成物全体に対して、50~94質量%であることが好ましく、60~87.9質量%であることがより好ましい。溶剤(B)の配合量が50質量%以上であれば、良好な塗布性を有するため好ましい。一方、溶剤(B)の配合量が94質量%以下であれば、塗膜に十分な膜厚を持たせられるため好ましい。
 光重合開始剤(C)の配合量は、感光性樹脂組成物全体に対して、0.01~5質量%であることが好ましく、0.1~2質量%であることがより好ましい。光重合開始剤(C)の配合量が0.01質量%以上であれば、レジストに硬化性を持たせられるため好ましい。一方、光重合開始剤(C)の配合量が5質量%以下であれば、現像後の残渣が生じにくいため好ましい。
Preferred amounts of the polymer (A), the solvent (B) and the photopolymerization initiator (C) in the photosensitive resin composition of the present invention are as follows.
The compounding amount of the polymer (A) is preferably from 1 to 20% by mass, more preferably from 5 to 15% by mass, based on the whole photosensitive resin composition. When the blending amount of the polymer (A) is 1% by mass or more, it is preferable because it has good photocurability. On the other hand, when the blending amount of the polymer (A) is 20% by mass or less, it is preferable because it has good coatability.
The compounding amount of the solvent (B) is preferably from 50 to 94% by mass, more preferably from 60 to 87.9% by mass, based on the entire photosensitive resin composition. It is preferable that the amount of the solvent (B) is 50% by mass or more, since good coating properties are obtained. On the other hand, when the blending amount of the solvent (B) is 94% by mass or less, it is preferable because the coating film can have a sufficient film thickness.
The compounding amount of the photopolymerization initiator (C) is preferably from 0.01 to 5% by mass, more preferably from 0.1 to 2% by mass, based on the whole photosensitive resin composition. When the blending amount of the photopolymerization initiator (C) is 0.01% by mass or more, it is preferable since the resist can have curability. On the other hand, when the blending amount of the photopolymerization initiator (C) is 5% by mass or less, a residue after development hardly occurs, which is preferable.
<反応性希釈剤(D)>
 本発明の感光性樹脂組成物は、反応性希釈剤(D)を更に含有することができる。反応性希釈剤(D)を含有することにより、感光性樹脂組成物の粘度を調整して加工性を向上させたり、感光性樹脂組成物の硬化物の強度及び/又は基材に対する密着性を向上させたりすることができる。
<Reactive diluent (D)>
The photosensitive resin composition of the present invention can further contain a reactive diluent (D). By containing the reactive diluent (D), the workability is improved by adjusting the viscosity of the photosensitive resin composition, and the strength of the cured product of the photosensitive resin composition and / or the adhesion to the substrate are improved. Can be improved.
 反応性希釈剤(D)としては、分子内に重合性官能基として少なくとも一つの重合可能なエチレン性不飽和基を有する化合物が用いられ、特に重合性官能基を複数有する化合物を用いることが好ましい。具体的には、反応性希釈剤(D)として、以下に示す単官能モノマー及び/又は多官能モノマーを用いることができる。 As the reactive diluent (D), a compound having at least one polymerizable ethylenically unsaturated group as a polymerizable functional group in a molecule is used, and it is particularly preferable to use a compound having a plurality of polymerizable functional groups. . Specifically, as the reactive diluent (D), the following monofunctional monomers and / or polyfunctional monomers can be used.
 単官能モノマーとしては、(メタ)アクリルアミド、メチロール(メタ)アクリルアミド、メトキシメチル(メタ)アクリルアミド、エトキシメチル(メタ)アクリルアミド、プロポキシメチル(メタ)アクリルアミド、ブトキシメトキシメチル(メタ)アクリルアミド、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、グリセリンモノ(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、グリシジル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、フタル酸誘導体のハーフ(メタ)アクリレート等の(メタ)アクリレート類;スチレン、α-メチルスチレン、α-クロロメチルスチレン、ビニルトルエン等の芳香族ビニル化合物類;酢酸ビニル、プロピオン酸ビニル等のカルボン酸エステル類等が挙げられる。これらの単官能モノマーは、単独で用いてもよいし、又は2種以上を用いてもよい。 Monofunctional monomers include (meth) acrylamide, methylol (meth) acrylamide, methoxymethyl (meth) acrylamide, ethoxymethyl (meth) acrylamide, propoxymethyl (meth) acrylamide, butoxymethoxymethyl (meth) acrylamide, methyl (meth) Acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate , 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, glycerin mono (meth) acrylate, tetra Drofurfuryl (meth) acrylate, glycidyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, half (meth) of phthalic acid derivative (Meth) acrylates such as acrylate; aromatic vinyl compounds such as styrene, α-methylstyrene, α-chloromethylstyrene, and vinyltoluene; and carboxylic acid esters such as vinyl acetate and vinyl propionate. These monofunctional monomers may be used alone or in combination of two or more.
 多官能モノマーとしては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-へキサングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、グリセリントリアクリレート、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、ウレタン(メタ)アクリレート(すなわち、トリレンジイソシアネート)、トリメチルヘキサメチレンジイソシアネートとヘキサメチレンジイソシアネート等と2-ビドロキシエチル(メタ)アクリレートとの反応物、トリス(ヒドロキシエチル)イソシアヌレートのトリ(メタ)アクリレート等の(メタ)アクリレート類;ジビニルベンゼン、ジアリルフタレート、ジアリルベンゼンホスホネート等の芳香族ビニル化合物類;アジピン酸ジビニル等のジカルボン酸エステル類;トリアリルシアヌレート、メチレンビス(メタ)アクリルアミド、(メタ)アクリルアミドメチレンエーテル、多価アルコールとN-メチロール(メタ)アクリルアミドとの縮合物等が挙げられる。これらの多官能モノマーは、単独で用いてもよいし、又は2種以上を用いてもよい。 Examples of the polyfunctional monomer include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and butylene glycol di ( (Meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexane glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) acrylate, Pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 2, -Bis (4- (meth) acryloxydiethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) Acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, phthalic acid diglycidyl ester di (meth) acrylate, glycerin triacrylate, glycerin polyglycidyl ether poly (meth) acrylate, urethane ( Reaction of (meth) acrylate (ie, tolylene diisocyanate), trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, etc. with 2-vidroxyethyl (meth) acrylate (Meth) acrylates such as tri (meth) acrylate of tris (hydroxyethyl) isocyanurate; aromatic vinyl compounds such as divinylbenzene, diallyl phthalate and diallylbenzene phosphonate; dicarboxylic acid esters such as divinyl adipate; Examples include allyl cyanurate, methylene bis (meth) acrylamide, (meth) acrylamide methylene ether, and condensates of polyhydric alcohol with N-methylol (meth) acrylamide. These polyfunctional monomers may be used alone or in combination of two or more.
 反応性希釈剤(D)としては、上記のモノマーの中でも特に、トリメチロールプロパントリ(メタ)アクリレートと、ジペンタエリスリトールペンタ(メタ)アクリレートと、ジペンタエリスリトールヘキサ(メタ)アクリレートのうちのいずれかを含むことが好ましい。 As the reactive diluent (D), among the above monomers, any one of trimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate It is preferable to include
 反応性希釈剤(D)を配合する場合、その配合量は、感光性樹脂組成物全体に対して、1~20質量%であることが好ましく、2~10質量%であることがより好ましい。反応性希釈剤(D)の配合量が1質量%以上であれば、良好な硬化性を有するため好ましい。一方、反応性希釈剤(D)の配合量が20質量%以下であれば、現像後の残渣が生じにくいため好ましい。 (4) When the reactive diluent (D) is blended, the blending amount is preferably 1 to 20% by mass, more preferably 2 to 10% by mass, based on the whole photosensitive resin composition. It is preferable that the content of the reactive diluent (D) is 1% by mass or more, since it has good curability. On the other hand, when the content of the reactive diluent (D) is 20% by mass or less, it is preferable because residues after development are less likely to be generated.
<着色剤(E)>
 本発明の感光性樹脂組成物を硬化させて着色パターンを形成する場合、本発明の感光性樹脂組成物は、着色剤(E)を更に含有することができる。
<Colorant (E)>
When a colored pattern is formed by curing the photosensitive resin composition of the present invention, the photosensitive resin composition of the present invention may further contain a colorant (E).
 着色剤(E)としては、特に限定されないが、例えば、染料及び顔料が挙げられる。染料及び顔料は、単独で用いてもよいし、2種以上を用いてもよいし、又は染料と顔料とを組み合わせて用いてもよい。本発明の感光性樹脂組成物を硬化させてブラックカラムスペーサーを形成する場合、溶剤(B)及びアルカリ現像液に対する溶解性、他の成分との相互作用並びに遮光性の観点から、本発明の感光性樹脂組成物は、黒色顔料を着色剤(E)として含むことが好ましい。 The colorant (E) is not particularly limited, and examples thereof include dyes and pigments. The dye and the pigment may be used alone, two or more of them may be used, or the dye and the pigment may be used in combination. When the photosensitive resin composition of the present invention is cured to form a black column spacer, from the viewpoint of solubility in the solvent (B) and the alkaline developer, interaction with other components, and light-shielding properties, the photosensitive resin composition of the present invention is used. The conductive resin composition preferably contains a black pigment as the colorant (E).
 黒色顔料としては、無機黒色顔料及び有機黒色顔料が挙げられ、具体的には、アニリンブラック、ペリレンブラック、チタンブラック、シアニンブラック、リグニンブラック、ラクタム系有機ブラック、RGBブラック、カーボンブラックが挙げられる。これらの黒色顔料は、単独で用いてもよいし、又は2種以上を用いてもよい。光学密度の観点から、無機黒色顔料と有機黒色顔料とを併用することが好ましく、カーボンブラックとラクタム系有機ブラックとを併用することがより好ましい。またカーボンブラックとラクタム系有機ブラックとRed、Green、Blueを混合したRGBブラックの3種類を混ぜることも好ましい。 Examples of the black pigment include an inorganic black pigment and an organic black pigment, and specific examples include aniline black, perylene black, titanium black, cyanine black, lignin black, lactam organic black, RGB black, and carbon black. These black pigments may be used alone or in combination of two or more. From the viewpoint of optical density, it is preferable to use an inorganic black pigment and an organic black pigment in combination, and it is more preferable to use carbon black and a lactam organic black in combination. It is also preferable to mix three types of RGB black, which is a mixture of carbon black, lactam-based organic black, Red, Green, and Blue.
 RGBブラックに使用可能な顔料としては特に限定されないが、C.I.ピグメントレッド9、97、105、122、123、144、149、154、166、168、176、177、180、192、209、215、216、224、242、254、255、264、265等の赤色顔料;C.I.ピグメントグリーン7、36、58、59、62等の緑色顔料;C.I.ピグメントブルー15、15:3、15:4、15:6、60等の青色顔料等が挙げられる。また、補色のイエロー、オレンジ、バイオレット、茶色も併せて用いることができ、例えば、C.I.ピグメントイエロー1、3、12、13、14、15、16、17、20、24、31、53、83、86、93、94、109、110、117、125、128、137、138、139、147、148、150、153、154、166、173、194、214等の黄色顔料;C.I.ピグメントオレンジ13、31、36、38、40、42、43、51、55、59、61、64、65、71、73等の橙色顔料;C.I.ピグメントバイオレット1、19、23、29、32、36、38等のバイオレット色顔料;C.I.ピグメントブラウン23、25等の茶色顔料等が挙げられる。これらの顔料は、例えば、目的とする画素の色等に応じて、単独で用いてもよいし、又は2種以上を用いてもよい。 The pigments usable for RGB black are not particularly limited, but C.I. I. Pigment Red 9, 97, 105, 122, 123, 144, 149, 154, 166, 168, 176, 177, 180, 192, 209, 215, 216, 224, 242, 254, 255, 264, 265, etc. Pigments; C.I. I. Green pigments such as CI Pigment Green 7, 36, 58, 59, 62; I. And blue pigments such as CI Pigment Blue 15, 15: 3, 15: 4, 15: 6, and 60. In addition, complementary colors of yellow, orange, violet and brown can also be used together. I. Pigment Yellow 1, 3, 12, 13, 14, 15, 16, 17, 20, 24, 31, 53, 83, 86, 93, 94, 109, 110, 117, 125, 128, 137, 138, 139, Yellow pigments such as 147, 148, 150, 153, 154, 166, 173, 194, 214; I. Orange pigments such as CI Pigment Orange 13, 31, 36, 38, 40, 42, 43, 51, 55, 59, 61, 64, 65, 71, 73; I. Violet color pigments such as CI Pigment Violet 1, 19, 23, 29, 32, 36, 38; I. And brown pigments such as CI Pigment Brown 23 and 25. These pigments may be used alone or in combination of two or more depending on, for example, the color of a target pixel.
 着色剤(E)として顔料を用いる場合、顔料の分散性を向上させる観点から、公知の分散剤を感光性樹脂組成物に配合してもよい。分散剤としては、経時の分散安定性に優れることから高分子分散剤を用いることが好ましい。高分子分散剤は任意に選択できるが、例えば、ウレタン系分散剤、ポリエチレンイミン系分散剤、ポリオキシエチレンアルキルエーテル系分散剤、ポリオキシエチレングリコールジエステル系分散剤、ソルビタン脂肪族エステル系分散剤、脂肪族変性エステル系分散剤等が挙げられる。このような高分子分散剤として、EFKA(登録商標、BASFジャパン社製)、Disperbyk(登録商標、ビックケミー社製)、ディスパロン(登録商標、楠本化成株式会社製)、SOLSPERSE(登録商標、ゼネカ社製)等の商品名で市販されているものを用いてもよい。分散剤の配合量は、使用する顔料等の種類に応じて適宜設定すればよい。 場合 When a pigment is used as the colorant (E), a known dispersant may be added to the photosensitive resin composition from the viewpoint of improving the dispersibility of the pigment. As the dispersant, a polymer dispersant is preferably used because of its excellent dispersion stability over time. The polymer dispersant can be arbitrarily selected, for example, a urethane dispersant, a polyethyleneimine dispersant, a polyoxyethylene alkyl ether dispersant, a polyoxyethylene glycol diester dispersant, a sorbitan aliphatic ester dispersant, Examples include aliphatic modified ester dispersants. As such a polymer dispersant, EFKA (registered trademark, manufactured by BASF Japan), Disperbyk (registered trademark, manufactured by Big Chemie), Disparon (registered trademark, manufactured by Kusumoto Kasei Co., Ltd.), SOLSPERSE (registered trademark, manufactured by Zeneca Corporation) ) May be used. The compounding amount of the dispersant may be appropriately set according to the type of the pigment or the like used.
 着色剤(E)を配合する場合、その配合量は、感光性樹脂組成物全体に対して、3~30質量%であることが好ましく、5~20質量%であることがより好ましい。着色剤(E)の配合量が3質量%以上であれば、遮光性を有するため好ましい。一方、着色剤(E)の配合量が30質量%以下であれば、現像後の残渣が生じにくいため好ましい。 (4) When the colorant (E) is compounded, the compounding amount is preferably 3 to 30% by mass, more preferably 5 to 20% by mass, based on the whole photosensitive resin composition. When the blending amount of the coloring agent (E) is 3% by mass or more, it is preferable since it has light-shielding properties. On the other hand, when the blending amount of the coloring agent (E) is 30% by mass or less, a residue after development hardly occurs, which is preferable.
 更に、本発明の感光性樹脂組成物は、本発明の効果を損なわない範囲で、カップリング剤、レベリング剤、熱重合禁止剤等の公知の添加剤を含有してもよい。これらの添加剤の配合量は、本発明の効果を損なわない範囲であれば、特に限定されない。 Further, the photosensitive resin composition of the present invention may contain known additives such as a coupling agent, a leveling agent, and a thermal polymerization inhibitor as long as the effects of the present invention are not impaired. The amounts of these additives are not particularly limited as long as the effects of the present invention are not impaired.
 本発明の感光性樹脂組成物は、公知の混合装置を用いて、上述の成分(A)~(E)を混合することによって製造することができる。また、所望により、重合体(A)及び溶剤(B)を含む組成物を予め調製した後、光重合開始剤(C)及び任意成分である反応性希釈剤(D)、着色剤(E)を更に加え、混合して製造することも可能である。 感光 The photosensitive resin composition of the present invention can be produced by mixing the above components (A) to (E) using a known mixing device. If desired, a composition containing the polymer (A) and the solvent (B) is prepared in advance, and then the photopolymerization initiator (C), a reactive diluent (D) as an optional component, and a colorant (E) Can also be added and mixed for production.
<ブラックカラムスペーサー>
 次に、ブラックカラムスペーサーについて詳細に説明する。
 ブラックカラムスペーサーは、上述の成分(A)~(D)及び黒色顔料を着色剤(E)として含むブラックカラムスペーサー形成用感光性樹脂組成物を硬化したものである。具体的には、まず、ブラックカラムスペーサー形成用感光性樹脂組成物を基板上に塗布して樹脂層(塗布膜)を形成する。その後、所定のパターンのハーフトーンマスクを介して、樹脂層を露光して、露光部分を光硬化させる。そして、未露光部分及び半露光部をアルカリ現像液で現像してブラックカラムスペーサーを形成する。その後、必要に応じて、ブラックカラムスペーサーをポストベークする。
<Black column spacer>
Next, the black column spacer will be described in detail.
The black column spacer is obtained by curing the photosensitive resin composition for forming a black column spacer containing the above components (A) to (D) and a black pigment as a coloring agent (E). Specifically, first, a photosensitive resin composition for forming a black column spacer is applied on a substrate to form a resin layer (coating film). Thereafter, the resin layer is exposed to light through a halftone mask having a predetermined pattern, and the exposed portions are light-cured. Then, the unexposed portion and the semi-exposed portion are developed with an alkali developer to form a black column spacer. Thereafter, the black column spacer is post-baked as necessary.
 基板の材質は、特に限定されないが、例えば、ガラス基板、シリコン基板、ポリカーボネート基板、ポリエステル基板、ポリアミド基板、ポリアミドイミド基板、ポリイミド基板、アルミニウム基板、プリント配線基板、アレイ基板等が挙げられる。 材質 The material of the substrate is not particularly limited, and examples thereof include a glass substrate, a silicon substrate, a polycarbonate substrate, a polyester substrate, a polyamide substrate, a polyamideimide substrate, a polyimide substrate, an aluminum substrate, a printed wiring substrate, and an array substrate.
 ブラックカラムスペーサー形成用感光性樹脂組成物の塗布方法は、特に限定されないが、例えば、スクリーン印刷法、ロールコート法、カーテンコート法、スプレーコート法、スピンコート法等が挙げられる。また、ブラックカラムスペーサー形成用感光性樹脂組成物の塗布後、必要に応じて、循環式オーブン、赤外線ヒーター、ホットプレート等の加熱手段を用いて加熱することにより、樹脂層に含まれる溶剤(B)を揮発させてもよい。加熱条件は、特に限定されず、使用するブラックカラムスペーサー形成用感光性樹脂組成物の組成に応じて適宜設定すればよい。一般には、50℃~120℃の温度で、30秒~30分加熱することが好ましい。 The method of applying the photosensitive resin composition for forming a black column spacer is not particularly limited, and examples thereof include a screen printing method, a roll coating method, a curtain coating method, a spray coating method, and a spin coating method. Further, after the photosensitive resin composition for forming a black column spacer is applied, if necessary, the solvent (B) contained in the resin layer is heated by using a heating means such as a circulation oven, an infrared heater and a hot plate. ) May be volatilized. The heating conditions are not particularly limited, and may be appropriately set according to the composition of the photosensitive resin composition for forming a black column spacer to be used. Generally, it is preferable to heat at a temperature of 50 ° C to 120 ° C for 30 seconds to 30 minutes.
 樹脂層の露光方法は、特に限定されないが、例えば、紫外線、エキシマレーザー光等の活性エネルギー線の照射が挙げられる。照射するエネルギー線量は、ブラックカラムスペーサー形成用感光性樹脂組成物の組成に応じて適宜設定すればよい。例えば、30~2000mJ/cm2であることが好ましいが、この範囲に限定されない。露光に用いられる光源としては、特に限定されないが、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、キセノンランプ、メタルハライドランプ等を任意に選択して用いることができる。 The method of exposing the resin layer is not particularly limited, and examples thereof include irradiation with active energy rays such as ultraviolet rays and excimer laser light. The irradiation energy dose may be appropriately set according to the composition of the photosensitive resin composition for forming a black column spacer. For example, it is preferably 30 to 2000 mJ / cm 2 , but is not limited to this range. The light source used for the exposure is not particularly limited, but a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, a xenon lamp, a metal halide lamp, or the like can be arbitrarily selected and used.
 現像に用いられるアルカリ現像液は、特に限定されず、例えば、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、水酸化ナトリウム、水酸化カリウム等の水溶液;エチルアミン、ジエチルアミン、ジメチルエタノールアミン等のアミン系化合物の水溶液;テトラメチルアンモニウム、3-メチル-4-アミノ-N,N-ジエチルアニリン、3-メチル-4-アミノ-N-エチル-N-β-ヒドロキシエチルアニリン、3-メチル-4-アミノ-N-エチル-N-β-メタンスルホンアミドエチルアニリン、3-メチル-4-アミノ-N-エチル-N-β-メトキシエチルアニリン及びこれらの硫酸塩、塩酸塩又はp-トルエンスルホン酸塩等のp-フェニレンジアミン系化合物の水溶液等が挙げられる。なお、これらのアルカリ現像液には、必要に応じて、消泡剤、界面活性剤等を添加してもよい。また、アルカリ現像液による現像の後、水洗して乾燥させることが好ましい。 The alkali developer used for development is not particularly limited, and examples thereof include aqueous solutions of sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide, potassium hydroxide, and the like; aqueous solutions of amine compounds such as ethylamine, diethylamine, and dimethylethanolamine. Tetramethylammonium, 3-methyl-4-amino-N, N-diethylaniline, 3-methyl-4-amino-N-ethyl-N-β-hydroxyethylaniline, 3-methyl-4-amino-N- Ethyl-N-β-methanesulfonamidoethylaniline, 3-methyl-4-amino-N-ethyl-N-β-methoxyethylaniline and their sulfates, hydrochlorides or p-toluenes such as p-toluenesulfonate An aqueous solution of a phenylenediamine compound is exemplified. Incidentally, an antifoaming agent, a surfactant and the like may be added to these alkali developing solutions as needed. After development with an alkali developer, it is preferable to wash with water and dry.
 アルカリ現像により形成されたブラックカラムスペーサーをポストベークすることにより、樹脂の硬化をより進めることができる。ポストベークの条件は、特に限定されず任意に選択できる。ブラックカラムスペーサー形成用感光性樹脂組成物の組成に応じて、好ましい条件を選択して加熱処理を行えばよい。例えば、130℃~250℃の温度で、好ましくは10分~4時間、より好ましくは20分~2時間の加熱を行えばよい。 ポ ス ト By post-baking the black column spacer formed by alkali development, the curing of the resin can be further promoted. The post-baking conditions are not particularly limited and can be arbitrarily selected. Heat treatment may be performed under suitable conditions according to the composition of the photosensitive resin composition for forming a black column spacer. For example, heating may be performed at a temperature of 130 ° C. to 250 ° C., preferably for 10 minutes to 4 hours, more preferably for 20 minutes to 2 hours.
 このようにして製造されるブラックカラムスペーサーは、着色剤分散性、耐溶剤性及び弾性回復率に優れている。 ブ ラ ッ ク The black column spacer thus produced is excellent in colorant dispersibility, solvent resistance and elastic recovery.
<画像表示装置>
 本発明の画像表示装置は、上述のブラックカラムスペーサーを備える画像表示装置である。画像表示装置の具体例としては、液晶表示装置、有機EL表示装置等が挙げられる。画像表示装置を製造するにあたっては、上述のブラックカラムスペーサーを形成すること以外は制限はなく、常法に従って製造を行うことができる。
<Image display device>
An image display device according to the present invention is an image display device including the above-described black column spacer. Specific examples of the image display device include a liquid crystal display device and an organic EL display device. In manufacturing the image display device, there is no limitation except that the above-described black column spacer is formed, and the image display device can be manufactured according to a conventional method.
 以下、実施例を参照して本発明を詳細に説明するが、本発明はこれらの実施例により限定されない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
<物性値の測定法>
 合成例に記載された、酸価、不飽和基当量及び重量平均分子量は、以下に記載する方法によって得られた値である。
 (1)酸価:JIS K6901 5.3.2に従ってブロモチモールブルーとフェノールレッドの混合指示薬を用いて測定された重合体の酸価である。重合体1g中に含まれる酸性成分を中和するのに要する水酸化カリウムのmg数を意味する。
 (2)不飽和基当量:重合性不飽和結合のモル数当たりの重合体の質量であり、モノマーの使用量に基づいて算出した計算値である。
 (3)重量平均分子量(Mw):ゲルパーミエーションクロマトグラフィー(GPC)を用いて、下記条件にて測定した標準ポリスチレン換算した重量平均分子量を意味する。
 カラム:ショウデックス(登録商標) LF-804+LF-804(昭和電工株式会社製)
 カラム温度:40℃
 試料:重合体の0.2%テトラヒドロフラン溶液
 展開溶媒:テトラヒドロフラン
 検出器:示差屈折計(ショウデックス(登録商標) RI-71S)(昭和電工株式会社製)
 流速:1mL/min
<Measurement of physical properties>
The acid value, unsaturated group equivalent and weight average molecular weight described in the synthesis examples are values obtained by the methods described below.
(1) Acid value: An acid value of a polymer measured using a mixed indicator of bromothymol blue and phenol red according to JIS K6901 5.3.2. It means the number of mg of potassium hydroxide required to neutralize the acidic component contained in 1 g of the polymer.
(2) Unsaturated group equivalent: the mass of the polymer per mole of polymerizable unsaturated bonds, and is a calculated value calculated based on the amount of the monomer used.
(3) Weight average molecular weight (Mw): means the weight average molecular weight measured by gel permeation chromatography (GPC) under the following conditions and converted into standard polystyrene.
Column: Showdex (registered trademark) LF-804 + LF-804 (manufactured by Showa Denko KK)
Column temperature: 40 ° C
Specimen: 0.2% tetrahydrofuran solution of polymer Developing solvent: tetrahydrofuran Detector: Differential refractometer (Showdex (registered trademark) RI-71S) (manufactured by Showa Denko KK)
Flow rate: 1 mL / min
<合成例1>
 攪拌装置、滴下ロート、コンデンサー、温度計及びガス導入管を備えたフラスコに、溶媒としてのプロピレングリコールモノメチルエーテルアセテート 126.4g及びビフェニル骨格を有する2官能エポキシ樹脂としての三菱ケミカル株式会社製YX4000K 186.0gを加え、フラスコ内を酸素ガス濃度5~7体積%の窒素ガス/空気混合ガスに置換しながら攪拌し、120℃に昇温させた。
 次いで、アクリル酸 72.0g、トリフェニルホスフィン(触媒) 0.8g及びメトキノン(重合禁止剤) 0.8gをフラスコに加えた。その後、120℃で10時間にわたり反応を続けて、ビフェニル骨格を有するエポキシアクリレートを得た。
 更に、ビフェニルテトラカルボン酸二無水物 73.5g及びテトラヒドロ無水フタル酸 12.2gをフラスコに加え、120℃で6時間にわたり反応を続けて重合体(A1)の溶液を得た。この重合体(A1)の溶液にプロピレングリコールモノメチルエーテルアセテートを更に添加して、合成例1の重合体(A1)溶液(固形分濃度40質量%)を調製した。なお、固形分とは、重合体(A1)溶液を130℃で2時間加熱したときの加熱残分を意味し、重合体(A1)が主成分となる。この重合体(A1)溶液中に含まれる重合体(A1)の酸価は95KOHmg/gであり、重量平均分子量は8000であり、不飽和基当量は340g/molであった。
<Synthesis example 1>
In a flask equipped with a stirrer, a dropping funnel, a condenser, a thermometer and a gas introduction tube, 126.4 g of propylene glycol monomethyl ether acetate as a solvent and YX4000K 186. manufactured by Mitsubishi Chemical Corporation as a bifunctional epoxy resin having a biphenyl skeleton were used. Then, the flask was stirred while replacing the inside of the flask with a nitrogen gas / air mixed gas having an oxygen gas concentration of 5 to 7% by volume, and the temperature was raised to 120 ° C.
Next, 72.0 g of acrylic acid, 0.8 g of triphenylphosphine (catalyst) and 0.8 g of methoquinone (polymerization inhibitor) were added to the flask. Thereafter, the reaction was continued at 120 ° C. for 10 hours to obtain an epoxy acrylate having a biphenyl skeleton.
Further, 73.5 g of biphenyltetracarboxylic dianhydride and 12.2 g of tetrahydrophthalic anhydride were added to the flask, and the reaction was continued at 120 ° C. for 6 hours to obtain a solution of the polymer (A1). Propylene glycol monomethyl ether acetate was further added to the polymer (A1) solution to prepare a polymer (A1) solution of Synthesis Example 1 (solid content concentration: 40% by mass). In addition, the solid content means a heating residue when the polymer (A1) solution is heated at 130 ° C. for 2 hours, and the polymer (A1) is a main component. The acid value of the polymer (A1) contained in the polymer (A1) solution was 95 KOH mg / g, the weight average molecular weight was 8,000, and the equivalent of unsaturated group was 340 g / mol.
<合成例2>
 フラスコ内の合成例1の重合体(A1)溶液に三菱ケミカル株式会社製YX4000K 27.9gを加え、120℃で3時間にわたり反応を続けて重合体(A2)の溶液を得た。この重合体(A2)の溶液にプロピレングリコールモノメチルエーテルアセテートを更に添加して、合成例2の重合体(A2)溶液(固形分濃度40質量%)を調製した。この重合体(A2)溶液中に含まれる重合体(A2)の酸価は65KOHmg/gであり、重量平均分子量は30000であり、不飽和基当量は370g/molであった。
<Synthesis Example 2>
27.9 g of YX4000K manufactured by Mitsubishi Chemical Corporation was added to the polymer (A1) solution of Synthesis Example 1 in the flask, and the reaction was continued at 120 ° C. for 3 hours to obtain a solution of the polymer (A2). Propylene glycol monomethyl ether acetate was further added to the polymer (A2) solution to prepare a polymer (A2) solution (solid content concentration: 40% by mass) of Synthesis Example 2. The acid value of the polymer (A2) contained in this polymer (A2) solution was 65 KOH mg / g, the weight average molecular weight was 30,000, and the unsaturated group equivalent was 370 g / mol.
<合成例3>
 フラスコ内の合成例2の重合体(A2)溶液にグリシジルメタクリレート 14.2gを加え、120℃で6時間にわたり反応を続けて重合体(A3)の溶液を得た。この重合体(A3)溶液にプロピレングリコールモノメチルエーテルアセテートを更に添加して、合成例3の重合体(A3)溶液(固形分濃度40質量%)を調製した。この重合体(A3)溶液中に含まれる重合体(A3)の酸価は48KOHmg/gであり、重量平均分子量は34000であり、不飽和基当量は350g/molであった。
<Synthesis Example 3>
14.2 g of glycidyl methacrylate was added to the polymer (A2) solution of Synthesis Example 2 in the flask, and the reaction was continued at 120 ° C. for 6 hours to obtain a solution of the polymer (A3). Propylene glycol monomethyl ether acetate was further added to the polymer (A3) solution to prepare a polymer (A3) solution of Synthesis Example 3 (solid content concentration: 40% by mass). The acid value of the polymer (A3) contained in the polymer (A3) solution was 48 KOH mg / g, the weight average molecular weight was 34,000, and the equivalent of the unsaturated group was 350 g / mol.
<合成例4>
 攪拌装置、滴下ロート、コンデンサー、温度計及びガス導入管を備えたフラスコに、溶媒としてのプロピレングリコールモノメチルエーテルアセテート 84.2g及びビフェニル骨格を有する2官能エポキシ樹脂としての三菱ケミカル株式会社製YX4000K 186.0gを加え、フラスコ内を酸素ガス濃度5~7体積%の窒素ガス/空気混合ガスに置換しながら攪拌し、120℃に昇温させた。
 次いで、イタコン酸6.5g、アジピン酸36.5g、トリフェニルホスフィン(触媒) 0.8g及びメトキノン(重合禁止剤) 0.8gをフラスコに加えて120℃で10時間にわたり反応を続けた。その後、アクリル酸 28.1gを加えて更に120℃で10時間にわたり反応を続け、ビフェニル骨格を有するエポキシアクリレートを得た。
 更に、テトラヒドロ無水フタル酸 86.6gをフラスコに加え、120℃で6時間にわたり反応を続けて重合体(A4)の溶液を得た。この重合体(A4)の溶液にプロピレングリコールモノメチルエーテルアセテートを更に添加して、合成例4の重合体(A4)溶液(固形分濃度40質量%)を調製した。この重合体(A4)溶液中に含まれる重合体(A4)の酸価は93KOHmg/gであり、重量平均分子量は8000であり、不飽和基当量は770g/molであった。
<Synthesis example 4>
A flask equipped with a stirrer, a dropping funnel, a condenser, a thermometer and a gas inlet tube was charged with 84.2 g of propylene glycol monomethyl ether acetate as a solvent and YX4000K 186. manufactured by Mitsubishi Chemical Corporation as a bifunctional epoxy resin having a biphenyl skeleton. Then, the flask was stirred while replacing the inside of the flask with a nitrogen gas / air mixed gas having an oxygen gas concentration of 5 to 7% by volume, and the temperature was raised to 120 ° C.
Next, 6.5 g of itaconic acid, 36.5 g of adipic acid, 0.8 g of triphenylphosphine (catalyst) and 0.8 g of methoquinone (polymerization inhibitor) were added to the flask, and the reaction was continued at 120 ° C. for 10 hours. Thereafter, 28.1 g of acrylic acid was added and the reaction was further continued at 120 ° C. for 10 hours to obtain an epoxy acrylate having a biphenyl skeleton.
Further, 86.6 g of tetrahydrophthalic anhydride was added to the flask, and the reaction was continued at 120 ° C. for 6 hours to obtain a solution of the polymer (A4). Propylene glycol monomethyl ether acetate was further added to the polymer (A4) solution to prepare a polymer (A4) solution of Synthesis Example 4 (solid content concentration: 40% by mass). The acid value of the polymer (A4) contained in this polymer (A4) solution was 93 KOH mg / g, the weight average molecular weight was 8,000, and the unsaturated group equivalent was 770 g / mol.
<合成例5>
 攪拌装置、滴下ロート、コンデンサー、温度計及びガス導入管を備えたフラスコに、溶媒としてのプロピレングリコールモノメチルエーテルアセテート 126.4g及びビフェニル骨格を有する2官能エポキシ樹脂としての三菱ケミカル株式会社製YX4000K 186.0gを加え、フラスコ内を酸素ガス濃度5~7体積%の窒素ガス/空気混合ガスに置換しながら攪拌し、120℃に昇温させた。
 次いで、アクリル酸 31.7g、酢酸 33.6g、トリフェニルホスフィン(触媒) 0.8g及びメトキノン(重合禁止剤) 0.8gをフラスコに加えた。その後、120℃で10時間にわたり反応を続けて、ビフェニル骨格を有するエポキシアクリレートを得た。
 更に、ビフェニルテトラカルボン酸二無水物 73.5g及びテトラヒドロ無水フタル酸 12.2gをフラスコに加え、120℃で6時間にわたり反応を続けて重合体の溶液を得た。この重合体溶液に三菱ケミカル株式会社製YX4000K 27.9gを加え、120℃で3時間にわたり反応を続けて重合体(A5)の溶液を得た。この重合体(A5)の溶液にプロピレングリコールモノメチルエーテルアセテートを更に添加して、合成例5の重合体(A5)溶液(固形分濃度40質量%)を調製した。この重合体(A5)溶液中に含まれる重合体(A5)の酸価は66KOHmg/gであり、重量平均分子量は29000であり、不飽和基当量は830g/molであった。
<Synthesis example 5>
In a flask equipped with a stirrer, a dropping funnel, a condenser, a thermometer and a gas introduction tube, 126.4 g of propylene glycol monomethyl ether acetate as a solvent and YX4000K 186. manufactured by Mitsubishi Chemical Corporation as a bifunctional epoxy resin having a biphenyl skeleton were used. Then, the flask was stirred while replacing the inside of the flask with a nitrogen gas / air mixed gas having an oxygen gas concentration of 5 to 7% by volume, and the temperature was raised to 120 ° C.
Next, 31.7 g of acrylic acid, 33.6 g of acetic acid, 0.8 g of triphenylphosphine (catalyst) and 0.8 g of methoquinone (polymerization inhibitor) were added to the flask. Thereafter, the reaction was continued at 120 ° C. for 10 hours to obtain an epoxy acrylate having a biphenyl skeleton.
Further, 73.5 g of biphenyltetracarboxylic dianhydride and 12.2 g of tetrahydrophthalic anhydride were added to the flask, and the reaction was continued at 120 ° C. for 6 hours to obtain a polymer solution. 27.9 g of YX4000K manufactured by Mitsubishi Chemical Corporation was added to this polymer solution, and the reaction was continued at 120 ° C. for 3 hours to obtain a solution of the polymer (A5). Propylene glycol monomethyl ether acetate was further added to the polymer (A5) solution to prepare a polymer (A5) solution of Synthesis Example 5 (solid content concentration: 40% by mass). The acid value of the polymer (A5) contained in the polymer (A5) solution was 66 KOH mg / g, the weight average molecular weight was 29000, and the unsaturated group equivalent was 830 g / mol.
<比較合成例1>
 攪拌装置、滴下ロート、コンデンサー、温度計及びガス導入管を備えたフラスコに、溶媒としてのプロピレングリコールモノメチルエーテルアセテート 194.9gを加え、フラスコ内を窒素ガス置換しながら攪拌し、100℃に昇温させた。
 次いで、ベンジルメタクリレート 88.0g及びメタクリル酸 43.0gからなるモノマー混合物に、アゾビスイソブチロニトリル(重合開始剤) 12.6gを添加したものを別途用意した。このモノマー及び重合開始剤の混合物を、滴下ロートから2時間にわたってフラスコ中に滴下した。滴下終了後、120℃で更に2時間攪拌して反応を行い、重合体前駆体を生成させた。その後、フラスコ内を酸素ガス濃度5~7体積%の窒素ガス/空気混合ガスに置換して、グリシジルメタクリレート 42.6g、トリフェニルホスフィン(触媒) 0.5g及びメトキノン(重合禁止剤) 0.5gを加えた。その後、120℃で6時間にわたり反応を続けて重合体(A6)の溶液を得た。この重合体(A6)の溶液にプロピレングリコールモノメチルエーテルアセテートを更に添加して、比較合成例1の重合体(A6)溶液(固形分濃度40質量%)を調製した。この重合体(A6)溶液中に含まれる重合体(A6)の酸価は63KOHmg/gであり、重量平均分子量は10000であり、不飽和基当量は600であった。
<Comparative Synthesis Example 1>
194.9 g of propylene glycol monomethyl ether acetate as a solvent was added to a flask equipped with a stirrer, a dropping funnel, a condenser, a thermometer and a gas inlet tube, and the flask was stirred while replacing the inside of the flask with nitrogen gas, and the temperature was raised to 100 ° C. I let it.
Then, 12.6 g of azobisisobutyronitrile (polymerization initiator) was added to a monomer mixture consisting of 88.0 g of benzyl methacrylate and 43.0 g of methacrylic acid to prepare separately. The mixture of the monomer and the polymerization initiator was dropped into the flask from the dropping funnel over 2 hours. After completion of the dropwise addition, the mixture was further stirred at 120 ° C. for 2 hours to carry out a reaction, thereby producing a polymer precursor. Then, the inside of the flask was replaced with a nitrogen gas / air mixed gas having an oxygen gas concentration of 5 to 7% by volume, and 42.6 g of glycidyl methacrylate, 0.5 g of triphenylphosphine (catalyst) and 0.5 g of methoquinone (polymerization inhibitor) were used. Was added. Thereafter, the reaction was continued at 120 ° C. for 6 hours to obtain a solution of the polymer (A6). Propylene glycol monomethyl ether acetate was further added to the polymer (A6) solution to prepare a polymer (A6) solution (solid content concentration: 40% by mass) of Comparative Synthesis Example 1. The acid value of the polymer (A6) contained in the polymer (A6) solution was 63 KOH mg / g, the weight average molecular weight was 10,000, and the unsaturated group equivalent was 600.
<比較合成例2>
 攪拌装置、滴下ロート、コンデンサー、温度計及びガス導入管を備えたフラスコに、溶媒としてのプロピレングリコールモノメチルエーテルアセテート 165.4g及びフルオレン型エポキシ樹脂 254.0gを加え、フラスコ内を酸素ガス濃度5~7体積%の窒素ガス/空気混合ガスに置換しながら攪拌し、120℃に昇温させた。
 次いで、アクリル酸 72.0g、トリフェニルホスフィン(触媒) 0.8g及びメトキノン(重合禁止剤) 0.8gをフラスコに加えた。その後、120℃で10時間にわたり反応を続けた。
 更に、ビフェニルテトラカルボン酸二無水物 75.0g及びテトラヒドロ無水フタル酸 38.0gをフラスコに加え、120℃で6時間にわたり反応を続けて重合体(A7)の溶液を得た。この重合体(A7)の溶液にプロピレングリコールモノメチルエーテルアセテートを更に添加して、比較合成例2の重合体(A7)溶液(固形分濃度40質量%)を調製した。この重合体(A7)溶液中に含まれる重合体(A7)の酸価は97KOHmg/gであり、重量平均分子量は5000であり、不飽和基当量は440g/molであった。
<Comparative Synthesis Example 2>
To a flask equipped with a stirrer, a dropping funnel, a condenser, a thermometer and a gas inlet tube, 165.4 g of propylene glycol monomethyl ether acetate and 254.0 g of a fluorene-type epoxy resin as a solvent were added, and the oxygen gas concentration in the flask was 5 to 5. The mixture was stirred while being replaced with a nitrogen gas / air mixed gas of 7% by volume, and heated to 120 ° C.
Next, 72.0 g of acrylic acid, 0.8 g of triphenylphosphine (catalyst) and 0.8 g of methoquinone (polymerization inhibitor) were added to the flask. Thereafter, the reaction was continued at 120 ° C. for 10 hours.
Further, 75.0 g of biphenyltetracarboxylic dianhydride and 38.0 g of tetrahydrophthalic anhydride were added to the flask, and the reaction was continued at 120 ° C. for 6 hours to obtain a solution of the polymer (A7). Propylene glycol monomethyl ether acetate was further added to the polymer (A7) solution to prepare a polymer (A7) solution (solid content concentration: 40% by mass) of Comparative Synthesis Example 2. The acid value of the polymer (A7) contained in the polymer (A7) solution was 97 KOH mg / g, the weight average molecular weight was 5000, and the equivalent of unsaturated group was 440 g / mol.
<実施例1~5及び比較例1~2>
 合成例1~5及び比較合成例1~2の重合体溶液を用いて、下記表1の配合(質量%基準)により、実施例1~5及び比較例1~2の感光性樹脂組成物を調製した。なお、下記配合において、重合体(A)の量には、調製時に用いた溶剤は含まれない。重合体(A)の溶液に含まれていた溶剤の量は、配合成分としての溶剤(B)の中に合算されている。
<Examples 1 to 5 and Comparative Examples 1 and 2>
Using the polymer solutions of Synthesis Examples 1 to 5 and Comparative Synthesis Examples 1 and 2, the photosensitive resin compositions of Examples 1 to 5 and Comparative Examples 1 and 2 were prepared according to the formulation (% by mass) shown in Table 1 below. Prepared. In the following composition, the amount of the polymer (A) does not include the solvent used in the preparation. The amount of the solvent contained in the solution of the polymer (A) is added to the amount of the solvent (B) as a compounding component.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<着色剤分散性の評価>
 以下に示す方法により着色剤分散性を評価した。
 まず、実施例1~5及び比較例1~2の感光性樹脂組成物を5cm×5cmのガラス基板上に、ポストベーク後の塗膜の厚さが1μmとなるようにスピンコートした。この後、90℃で3分間加熱することにより溶剤を揮発させた。次に、塗膜の全面をウシオ電機株式会社製マルチライトML-251D/Bと照射光学ユニットPM25C-100を用いて露光(露光量50mJ/cm2)し、光硬化させた。更に230℃で30分間ポストベークすることで、目的とする硬化塗膜を得た。透過濃度計(361T、X-lite社)を用いることにより、厚さ1μmの硬化塗膜についての光学密度(Optical Density:OD)を測定した。結果を表2に示す。光学密度が高いほど着色剤分散性に優れているといえる。
<Evaluation of dispersibility of colorant>
The colorant dispersibility was evaluated by the following method.
First, the photosensitive resin compositions of Examples 1 to 5 and Comparative Examples 1 and 2 were spin-coated on a 5 cm × 5 cm glass substrate so that the thickness of the coating film after post-baking was 1 μm. Thereafter, the solvent was volatilized by heating at 90 ° C. for 3 minutes. Next, the entire surface of the coating film was exposed to light (exposure amount 50 mJ / cm 2 ) using Multilight ML-251D / B manufactured by Ushio Inc. and an irradiation optical unit PM25C-100, and was light-cured. Further, post-baking was performed at 230 ° C. for 30 minutes to obtain a target cured coating film. The optical density (Optical Density: OD) of the cured coating film having a thickness of 1 μm was measured by using a transmission densitometer (361T, X-lite). Table 2 shows the results. It can be said that the higher the optical density, the better the colorant dispersibility.
<現像マージンの評価>
 光学密度と同様の方法でガラス基板上に感光性樹脂組成物をスピンコートし、100℃で3分間ベークし溶剤を揮発させ、ラインアンドスペースやドットパターンのフォトマスクを設置して露光し、光硬化後の厚さが2.5μmである塗膜を作製した。0.2質量%の水酸化カリウム水溶液で現像し、現像時間100秒から150秒の間の塗膜の厚さの減少率を株式会社小坂研究所製微細形状測定機ET4000Mを用いて測定した。結果を表2に示す。塗膜の厚さの減少率が大きいほど優れた現像マージンを有しているといえる。
<Evaluation of development margin>
A photosensitive resin composition is spin-coated on a glass substrate in the same manner as in the optical density, baked at 100 ° C. for 3 minutes to evaporate the solvent, and a line-and-space or dot-pattern photomask is installed and exposed. A coating film having a thickness of 2.5 μm after curing was produced. The film was developed with a 0.2% by mass aqueous solution of potassium hydroxide, and the rate of decrease in the thickness of the coating film during a development time of 100 seconds to 150 seconds was measured using a fine shape measuring device ET4000M manufactured by Kosaka Laboratory Co., Ltd. Table 2 shows the results. It can be said that the larger the rate of decrease in the thickness of the coating film, the better the development margin.
<耐溶剤性の評価>
 光学密度と同様の方法でガラス基板上に感光性樹脂組成物をスピンコートし、100℃で3分間ベークし溶剤を揮発させ、ラインアンドスペースやドットパターンのフォトマスクを設置して露光し、光硬化後の厚さが2.5μmである塗膜を作製した。ガラス基板ごと200mLのN-メチル-2-ピロリドンが入った容量500mLの蓋付きガラス瓶に入れ、100℃のオーブン中で15分間放置した後、色抜けの有無を下記基準に従って評価した。結果を表2に示す。
 ○:肉眼で観察時、色抜けが全くない
 ×:肉眼で観察時、色抜けが非常に多い
<Evaluation of solvent resistance>
A photosensitive resin composition is spin-coated on a glass substrate in the same manner as in the optical density, baked at 100 ° C. for 3 minutes to evaporate the solvent, and a line-and-space or dot-pattern photomask is installed and exposed. A coating film having a thickness of 2.5 μm after curing was produced. Each glass substrate was placed in a 500-mL glass bottle with a cap containing 200 mL of N-methyl-2-pyrrolidone, allowed to stand in an oven at 100 ° C. for 15 minutes, and the presence or absence of color loss was evaluated according to the following criteria. Table 2 shows the results.
:: No color loss at the time of observation with the naked eye ×: Very large color loss at the time of observation with the naked eye
<弾性回復率の評価>
 光学密度と同様の方法でガラス基板上にポストベーク後の厚さが4.0μmである塗膜を作製し、25℃において、圧縮変位及び弾性回復率を、弾性測定装置(DUH-211、株式会社島津製作所)を用いて、以下の測定条件に従って測定した。
 パターンを押す押圧体として、50μmの直径を有する平らな押圧体を、荷重を負荷-除荷する方法で用いた。弾性回復率は、50mNの荷重を加える試験で測定した。3mN/秒の荷重速度及び10秒の保持時間を一定に維持した。弾性回復率は、15秒の回復時間の経過後に回復した距離の、一定の力を加えた際に圧縮された距離(圧縮変位)に対する比を意味し、それは次式で表される。
  弾性回復率(%)=[(回復距離/圧縮変位)×100]
 結果を表2に示す。
<Evaluation of elastic recovery>
A coating film having a thickness of 4.0 μm after post-baking was prepared on a glass substrate in the same manner as in the optical density, and the compression displacement and the elastic recovery were measured at 25 ° C. using an elasticity measuring device (DUH-211, stock). (Shimadzu Corporation) according to the following measurement conditions.
As a pressing body for pressing the pattern, a flat pressing body having a diameter of 50 μm was used in a load-unloading method. The elastic recovery was measured by a test in which a load of 50 mN was applied. A loading speed of 3 mN / s and a holding time of 10 seconds were kept constant. The elastic recovery ratio means a ratio of a distance recovered after a recovery time of 15 seconds to a distance (compression displacement) compressed when a constant force is applied, and is expressed by the following equation.
Elastic recovery rate (%) = [(recovery distance / compression displacement) × 100]
Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記結果から、実施例1~5の感光性樹脂組成物は、着色剤分散性、現像マージン、耐溶剤性及び弾性回復率に優れている。一方、比較例1及び2の感光性樹脂組成物は、光学密度が低くブラックマトリックスとしての物性に劣るか、又は弾性回復率試験においてスペーサーとしての物性に劣る結果となった。 From the above results, the photosensitive resin compositions of Examples 1 to 5 are excellent in colorant dispersibility, development margin, solvent resistance and elastic recovery. On the other hand, the photosensitive resin compositions of Comparative Examples 1 and 2 were low in optical density and inferior in physical properties as a black matrix, or in an elastic recovery test, inferior in physical properties as a spacer.

Claims (17)

  1.  ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位と不飽和一塩基酸由来もしくは不飽和二塩基酸モノエステル由来の構成単位と多塩基酸無水物由来の構成単位とを含む重合体(A)と、溶剤(B)と、光重合開始剤(C)とを含有する感光性樹脂組成物。 A polymer (A) containing a structural unit derived from a bifunctional epoxy resin having a biphenyl skeleton, a structural unit derived from an unsaturated monobasic acid or an unsaturated dibasic acid monoester, and a structural unit derived from a polybasic anhydride; , A photosensitive resin composition containing a solvent (B) and a photopolymerization initiator (C).
  2.  前記重合体(A)が、二塩基酸由来の構成単位を更に含む請求項1に記載の感光性樹脂組成物。 感光 The photosensitive resin composition according to claim 1, wherein the polymer (A) further contains a structural unit derived from a dibasic acid.
  3.  前記重合体(A)が、飽和一塩基酸由来の構成単位を更に含む請求項1又は2に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1 or 2, wherein the polymer (A) further contains a constituent unit derived from a saturated monobasic acid.
  4.  前記重合体(A)が、前記多塩基酸無水物由来の構成単位中のカルボキシ基の少なくとも一部にエポキシ基含有不飽和化合物を付加したものである請求項1~3のいずれか一項に記載の感光性樹脂組成物。 The polymer (A) according to any one of claims 1 to 3, wherein the polymer (A) is obtained by adding an epoxy group-containing unsaturated compound to at least a part of the carboxy groups in the structural unit derived from the polybasic acid anhydride. The photosensitive resin composition as described in the above.
  5.  前記重合体(A)が、前記多塩基酸無水物由来の構成単位中のカルボキシ基の少なくとも一部に2官能エポキシ樹脂を付加したものである請求項1~4のいずれか一項に記載の感光性樹脂組成物。 5. The polymer according to claim 1, wherein the polymer (A) is obtained by adding a bifunctional epoxy resin to at least a part of carboxy groups in the structural unit derived from the polybasic acid anhydride. Photosensitive resin composition.
  6.  前記重合体(A)が、前記ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位30~80質量%と前記不飽和一塩基酸由来もしくは前記不飽和二塩基酸モノエステル由来の構成単位10~40質量%と前記多塩基酸無水物由来の構成単位10~40質量%とを含むものである請求項1に記載の感光性樹脂組成物。 The polymer (A) is composed of 30 to 80% by mass of a structural unit derived from the bifunctional epoxy resin having a biphenyl skeleton and 10 to 40 structural units derived from the unsaturated monobasic acid or the unsaturated dibasic acid monoester. 2. The photosensitive resin composition according to claim 1, wherein the composition comprises 10% by mass and 10 to 40% by mass of a structural unit derived from the polybasic anhydride.
  7.  前記重合体(A)が、前記ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位30~80質量%と前記不飽和一塩基酸由来もしくは前記不飽和二塩基酸モノエステル由来の構成単位5~40質量%と前記多塩基酸無水物由来の構成単位5~40質量%と前記二塩基酸由来の構成単位0質量%超~20質量%とを含むものである請求項2に記載の感光性樹脂組成物。 The polymer (A) comprises 30 to 80% by mass of a structural unit derived from the bifunctional epoxy resin having a biphenyl skeleton and 5 to 40 structural units derived from the unsaturated monobasic acid or the unsaturated dibasic acid monoester. 3. The photosensitive resin composition according to claim 2, wherein the photosensitive resin composition comprises 5% by mass, 5 to 40% by mass of the structural unit derived from the polybasic acid anhydride, and more than 0% to 20% by mass of the structural unit derived from the dibasic acid. .
  8.  前記重合体(A)が、前記ビフェニル骨格を有する2官能エポキシ樹脂由来の構成単位30~80質量%と前記不飽和一塩基酸由来もしくは前記不飽和二塩基酸モノエステル由来の構成単位5~40質量%と前記多塩基酸無水物由来の構成単位5~40質量%と前記飽和一塩基酸由来の構成単位0質量%超~20質量%とを含むものである請求項3に記載の感光性樹脂組成物。 The polymer (A) comprises 30 to 80% by mass of a structural unit derived from the bifunctional epoxy resin having a biphenyl skeleton and 5 to 40 structural units derived from the unsaturated monobasic acid or the unsaturated dibasic acid monoester. The photosensitive resin composition according to claim 3, wherein the photosensitive resin composition comprises 5% by mass, 5 to 40% by mass of the structural unit derived from the polybasic acid anhydride, and more than 0% to 20% by mass of the structural unit derived from the saturated monobasic acid. object.
  9.  前記エポキシ基含有不飽和化合物の付加量が、前記重合体(A)に対して0質量%超~10質量%である請求項4に記載の感光性樹脂組成物。 5. The photosensitive resin composition according to claim 4, wherein the addition amount of the epoxy group-containing unsaturated compound is more than 0% by mass to 10% by mass based on the polymer (A).
  10.  反応性希釈剤(D)を更に含有する請求項1~9のいずれか一項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 9, further comprising a reactive diluent (D).
  11.  前記重合体(A)を1~20質量%、前記溶剤(B)を50~94質量%、前記光重合開始剤(C)を0.01~5質量%及び前記反応性希釈剤(D)を1~20質量%含有する請求項10に記載の感光性樹脂組成物。 1 to 20% by weight of the polymer (A), 50 to 94% by weight of the solvent (B), 0.01 to 5% by weight of the photopolymerization initiator (C), and the reactive diluent (D) 11. The photosensitive resin composition according to claim 10, comprising 1 to 20% by mass.
  12.  着色剤(E)を更に含有する請求項10に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 10, further comprising a coloring agent (E).
  13.  前記着色剤(E)が、有機黒色顔料を含む請求項12に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 12, wherein the colorant (E) contains an organic black pigment.
  14.  前記着色剤(E)が、無機黒色顔料を更に含む請求項13に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 13, wherein the colorant (E) further contains an inorganic black pigment.
  15.  前記重合体(A)を1~20質量%、前記溶剤(B)を50~94質量%、前記光重合開始剤(C)を0.01~5質量%、前記反応性希釈剤(D)を1~20質量%及び前記着色剤(E)を3~30質量%含有し、ブラックカラムスペーサー形成用である請求項12~14のいずれか一項に記載の感光性樹脂組成物。 1 to 20% by weight of the polymer (A), 50 to 94% by weight of the solvent (B), 0.01 to 5% by weight of the photopolymerization initiator (C), and the reactive diluent (D) The photosensitive resin composition according to any one of claims 12 to 14, which comprises 1 to 20% by mass of the coloring agent (E) and 3 to 30% by mass of the colorant (E) and is used for forming a black column spacer.
  16.  請求項15に記載の感光性樹脂組成物を硬化したブラックカラムスペーサー。 A black column spacer obtained by curing the photosensitive resin composition according to claim 15.
  17.  請求項16に記載のブラックカラムスペーサーを備える画像表示装置。 An image display device comprising the black column spacer according to claim 16.
PCT/JP2019/020494 2018-08-30 2019-05-23 Photosensitive resin composition, black column spacer and image display device WO2020044677A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-161421 2018-08-30
JP2018161421A JP2021192068A (en) 2018-08-30 2018-08-30 Photosensitive resin composition, black column spacer and image display device

Publications (1)

Publication Number Publication Date
WO2020044677A1 true WO2020044677A1 (en) 2020-03-05

Family

ID=69645066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020494 WO2020044677A1 (en) 2018-08-30 2019-05-23 Photosensitive resin composition, black column spacer and image display device

Country Status (3)

Country Link
JP (1) JP2021192068A (en)
TW (1) TW202020559A (en)
WO (1) WO2020044677A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206370A (en) * 2006-02-01 2007-08-16 Toppan Printing Co Ltd Colored alkali developable photosensitive resin composition and color filter obtained by using the same
JP2008003299A (en) * 2006-06-22 2008-01-10 Tokyo Ohka Kogyo Co Ltd Colored photosensitive resin composition
JP2008242089A (en) * 2007-03-27 2008-10-09 Tokyo Ohka Kogyo Co Ltd Photosensitive composition
WO2013187209A1 (en) * 2012-06-12 2013-12-19 株式会社Adeka Photosensitive composition
KR20140103372A (en) * 2013-02-15 2014-08-27 롬엔드하스전자재료코리아유한회사 Colored photosensitive resin composition and light shielding spacer prepared therefrom
JP2017068247A (en) * 2015-09-29 2017-04-06 株式会社タムラ製作所 Photosensitive resin composition
JP2017071750A (en) * 2015-10-06 2017-04-13 株式会社日本触媒 Curable resin and curable resin composition
JP6374595B1 (en) * 2017-09-26 2018-08-15 東京応化工業株式会社 Photosensitive resin composition, cured film, display device, and pattern forming method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206370A (en) * 2006-02-01 2007-08-16 Toppan Printing Co Ltd Colored alkali developable photosensitive resin composition and color filter obtained by using the same
JP2008003299A (en) * 2006-06-22 2008-01-10 Tokyo Ohka Kogyo Co Ltd Colored photosensitive resin composition
JP2008242089A (en) * 2007-03-27 2008-10-09 Tokyo Ohka Kogyo Co Ltd Photosensitive composition
WO2013187209A1 (en) * 2012-06-12 2013-12-19 株式会社Adeka Photosensitive composition
KR20140103372A (en) * 2013-02-15 2014-08-27 롬엔드하스전자재료코리아유한회사 Colored photosensitive resin composition and light shielding spacer prepared therefrom
JP2017068247A (en) * 2015-09-29 2017-04-06 株式会社タムラ製作所 Photosensitive resin composition
JP2017071750A (en) * 2015-10-06 2017-04-13 株式会社日本触媒 Curable resin and curable resin composition
JP6374595B1 (en) * 2017-09-26 2018-08-15 東京応化工業株式会社 Photosensitive resin composition, cured film, display device, and pattern forming method

Also Published As

Publication number Publication date
TW202020559A (en) 2020-06-01
JP2021192068A (en) 2021-12-16

Similar Documents

Publication Publication Date Title
TWI643022B (en) Photosensitive resin composition for forming black column spacer, black column spacer and image display device
JP6890613B2 (en) Resin composition for color filter, its manufacturing method and color filter
JP7342705B2 (en) Resin, photosensitive resin composition, cured resin film, and image display device
CN109471331B (en) Resin composition, photosensitive resin composition, resin cured film, and image display element
JP6259240B2 (en) Photosensitive resin manufacturing method and color filter manufacturing method
TWI794313B (en) Photosensitive resin composition for color filter, color filter, image display element and method for producing color filter
KR102594321B1 (en) Photosensitive resin composition and image display device
WO2022124052A1 (en) Photosensitive resin composition, and method for producing photosensitive resin composition
JP2019031627A (en) Alkali-soluble resin, photosensitive resin composition for color filter containing the same, and color filter
WO2020044677A1 (en) Photosensitive resin composition, black column spacer and image display device
JP2011093970A (en) Photosensitive resin
WO2020044678A1 (en) Photosensitive resin composition for forming black column spacers, black column spacer and image display device
JP2020084089A (en) Manufacturing method of ethylenic unsaturated resin, and manufacturing method of ethylenic unsaturated resin composition
JP7392719B2 (en) Photosensitive resin composition, cured resin film, and image display element
WO2023119900A1 (en) Photosensitive resin composition and color filter
JP2011099034A (en) Polycarboxylic acid resin and polycarboxylic acid resin composition
JP2022062515A (en) Phenolic hydroxy group-containing resin, photosensitive resin composition, cured resin film, and image display device
JP2023060757A (en) Resin composition, photosensitive resin composition, resin cured film, color filter, and image display element
WO2020111022A1 (en) Ethylenic unsaturated resin composition and photosensitive resin composition
TW202215158A (en) Photosensitive resin composition and cured resin film obtained therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP