WO2020044577A1 - Stoker furnace - Google Patents

Stoker furnace Download PDF

Info

Publication number
WO2020044577A1
WO2020044577A1 PCT/JP2018/039867 JP2018039867W WO2020044577A1 WO 2020044577 A1 WO2020044577 A1 WO 2020044577A1 JP 2018039867 W JP2018039867 W JP 2018039867W WO 2020044577 A1 WO2020044577 A1 WO 2020044577A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion stage
stage
grate
burn
combustion
Prior art date
Application number
PCT/JP2018/039867
Other languages
French (fr)
Japanese (ja)
Inventor
嘉正 澤本
匡之 馬渡
Original Assignee
三菱重工環境・化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工環境・化学エンジニアリング株式会社 filed Critical 三菱重工環境・化学エンジニアリング株式会社
Priority to EP18931954.4A priority Critical patent/EP3845806B1/en
Priority to BR112020008004-7A priority patent/BR112020008004B1/en
Priority to SG11202003129PA priority patent/SG11202003129PA/en
Priority to CN201880002956.1A priority patent/CN111133251B/en
Priority to KR1020217008829A priority patent/KR102318973B1/en
Priority to RU2020114364A priority patent/RU2731612C1/en
Publication of WO2020044577A1 publication Critical patent/WO2020044577A1/en
Priority to PH12020550227A priority patent/PH12020550227A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/04Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment drying
    • F23G5/05Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment drying using drying grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/002Incineration of waste; Incinerator constructions; Details, accessories or control therefor characterised by their grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H7/00Inclined or stepped grates
    • F23H7/06Inclined or stepped grates with movable bars disposed parallel to direction of fuel feeding
    • F23H7/08Inclined or stepped grates with movable bars disposed parallel to direction of fuel feeding reciprocating along their axes

Definitions

  • the present invention relates to a stoker furnace.
  • Priority is claimed on Japanese Patent Application No. 2018-161817, filed on August 30, 2018, the content of which is incorporated herein by reference.
  • a stoker furnace that can efficiently incinerate a large amount of incinerated materials without sorting them.
  • a stoker furnace there is known a stoker furnace in which a stoker is configured in a stepwise manner and provided with a drying stage, a combustion stage, and a post-combustion stage so as to perform drying, combustion, and post-combustion functions.
  • the inclination of the stoker is being studied.
  • the inclination angle of the stalker is such that the downstream side in the transport direction of the installation surface of all of the drying stage, the combustion stage, and the post-combustion stage faces downward. Something you are doing.
  • the drying stage is simply referred to as downward (the same applies to the combustion stage and the post-combustion stage).
  • a drying stage is inclined downward, and a combustion stage and a post-combustion stage are horizontally arranged.
  • the combustion stage is inclined downward and the downstream side of the installation surface of the post-combustion stage is inclined upward in the transport direction, all stages as described in Patent Document 5 are inclined upward. There is something.
  • the combustion stage is simply referred to as upward (the same applies to the drying stage and the post-combustion stage).
  • Patent Document 6 in a stoker in which all stages are inclined upward, moving grate of a drying stage, a combustion stage, and a post-combustion stage are controlled in order to control a combustion completion position of an incineration object. Techniques for driving with different driving devices are described.
  • JP-A-6-265125 JP-A-59-86814 Japanese Utility Model Publication No. 6-84140 JP-B-57-12053 Japanese Utility Model Publication No. 57-127129 JP-A-3-28618
  • incinerated materials having various properties material, shape, and moisture content
  • the incinerated material having a slippery material or a spherical shape such as a spherical shape, or a material having a high moisture content (moisture content).
  • moisture content moisture content
  • the burn-out point may exceed the target burn-off point set by the stoker furnace. There is a problem that the incineration material is liable to remain unburned.
  • Patent Literature 1 In the stoker furnaces described in Patent Literature 1, Patent Literature 2, Patent Literature 3, and Patent Literature 4, the drying stage is inclined downward and the combustion stage is inclined downward or horizontal.
  • the incinerated material having a slippery material or a shape that easily rolls is conveyed to the post-combustion stage earlier than other incinerated materials, so that the incinerated material is discharged without being incinerated sufficiently.
  • the incinerated material having a slippery material or an easily rolling shape is used.
  • the incinerated material with high water content and high moisture content accumulates at the bottom of the step (fall wall) located between the feeder and the drying stage, making it difficult to be transported to the combustion stage. There is a problem that it may be necessary to stop at a certain time.
  • An object of the present invention is to provide a stoker furnace capable of continuously charging incinerated materials regardless of the properties of the incinerated materials and eliminating unburned unburned materials.
  • the stoker furnace supplies the incineration material from the feeder, and includes a plurality of fixed grate and a plurality of moving grate in the drying stage, the combustion stage, and the post-combustion stage, and the incineration material is provided.
  • a burn-off point detection device that obtains a detection signal corresponding to the position of a burn-off point of the incineration object, and the movement of the drying stage.
  • the post-combustion stage is continuously connected to the combustion stage without any step, and is arranged so as to be inclined so that the downstream side in the transport direction is upward
  • the control device is configured to perform the detection Receiving the signal, if the position of the burn-off point corresponding to the detection signal obtained by the burn-off point detection device does not exceed the target burn-off point, the moving grate of the combustion stage and the post-combustion stage Without changing the drive speed of the moving grate, if the position of the burn-off point corresponding to the detection signal is located downstream of the target burn-off
  • the incineration of any property can be conveyed to the combustion stage without any delay, and the upward direction of the combustion stage and the post-combustion stage Due to the inclination, the incinerated material is sufficiently burned and conveyed without easily sliding down or rolling down after the combustion stage.
  • the incinerated material can be continuously charged irrespective of the properties of the incinerated material, and the unburned residue of the incinerated material can be eliminated.
  • the burn-off point is located downstream of the target burn-off point in the transport direction, the driving speed of the moving grate in the post-combustion stage is reduced, so that the layer of the incineration material is kept on the combustion stage side.
  • the incineration material can be incinerated more continuously. That is, the incinerated material can be incinerated by the step without giving an impact to the incinerated material.
  • the fixed grate and the moving grate are arranged so as to be inclined such that the downstream side in the transport direction faces upward with respect to an installation surface of the drying stage, the combustion stage, and the post-combustion stage. May be.
  • at least a part of the plurality of moving grate of the combustion stage may be a grate with a protrusion having a protrusion at a tip.
  • the burn-off point detection device may be a thermocouple installed on a grate surface of at least one of the combustion stage and the post-combustion stage.
  • the position of the burn-off point can be set with a cheaper configuration by employing a thermocouple as the burn-off point detection device that acquires a detection signal corresponding to the burn-off point.
  • the burn-off point detection device may be an imaging device that detects a temperature distribution in the combustion stage or the post-combustion stage.
  • the position of the burn-off point can be set more accurately by adopting the imaging device as the burn-off point detection device that acquires the detection signal corresponding to the burn-off point.
  • a first wind box arranged corresponding to the drying stage, a first pressure measuring device that outputs a first pressure signal corresponding to a pressure or a pressure change of the first wind box, and the combustion
  • a second wind box arranged in accordance with the stage, a second pressure measuring device that outputs a second pressure signal corresponding to the pressure or pressure change of the second wind box, and the drying stage is installed in the drying stage;
  • a drying stage temperature measuring device that outputs a temperature signal corresponding to a temperature or a temperature change of the stage, further comprising: the control device receives the temperature signal, the first pressure signal, and the second pressure signal, The pressure or the pressure change corresponding to the first pressure signal is equal to or greater than a first threshold, and the pressure or the pressure change corresponding to the second pressure signal is less than a second threshold, and corresponds to the temperature signal.
  • the temperature or the temperature change If not less than a third threshold, increase the driving speed of the moving grate of the drying stage, the pressure or the pressure change corresponding to the first pressure signal is less than the first threshold, and the second pressure When the pressure or the pressure change corresponding to the signal is equal to or more than the second threshold, and the temperature or the temperature change corresponding to the temperature signal is less than the third threshold, the moving grate of the drying stage is The drive speed may be controlled to be slow.
  • the incinerated material can be continuously charged regardless of the property of the incinerated material, and the unburned material of the incinerated material can be eliminated.
  • the stoker furnace of the present embodiment is a stoker furnace for burning incinerators such as refuse, and as shown in FIG. 1, a hopper 2 for temporarily storing incinerators B and an incinerator for burning the incinerators B.
  • the feeder 4 continuously extrudes the incinerated material B supplied onto the feed table 7 via the hopper 2 into the incinerator 3.
  • the feeder 4 reciprocates on the feed table 7 with a predetermined stroke by the feeder driving device 8.
  • the incinerator 3 is provided above the stoker 5 and has a combustion chamber 9 composed of a primary combustion chamber and a secondary combustion chamber.
  • a secondary air supply nozzle 10 that supplies secondary air to the combustion chamber 9 is connected to the incinerator 3.
  • the stalker 5 is a combustion device in which grate 15 and 16 are arranged in a stepwise manner.
  • the incineration material B burns on the stoker 5.
  • the direction in which the incinerated material B is transported is referred to as a transport direction D.
  • the incinerated material B is transported on the stoker 5 in the transport direction D. 1, 2 and 3, the right side is the downstream side D1 in the transport direction.
  • the surface on which the grate 15 or 16 is attached is referred to as an installation surface, and is installed on a horizontal plane with the upstream end (11b, 12b, 13b) of the drying stage 11, the combustion stage 12, or the post-combustion stage 13 as a center.
  • the angle formed on the side in the transport direction D formed by the surface is referred to as a stalker inclination angle (installation angle).
  • installation angle When the downstream direction D1 of the installation surface in the transport direction is upward from the horizontal plane, the stoker inclination angle is a positive value.
  • the stoker inclination angle is a negative value. This will be described here.
  • the stoker 5 includes a drying stage 11 for drying the incinerated material B, a combustion stage 12 for incinerating the incinerated material B, and a complete incineration of unburned matter (post-combustion) from the upstream side in the conveying direction of the incinerated material B. )), And a post-combustion stage 13.
  • the stoker 5 performs drying, combustion, and post-combustion in the drying stage 11, the combustion stage 12, and the post-combustion stage 13 while sequentially transporting the incinerated material B.
  • the stoker furnace 1 supplies the first air box 6a for supplying the primary air blown by the blower (not shown) to the drying stage 11, the second air box 6b for supplying the combustion stage 12, and the post-combustion stage 13.
  • the drying stage 11, the combustion stage 12, and the post-combustion stage 13 have a plurality of fixed grate 15 and a plurality of moving grate 16.
  • the fixed grate 15 and the moving grate 16 are alternately arranged in the transport direction D.
  • the moving grate 16 reciprocates in the transport direction D of the incinerated material B.
  • the object B on the stoker 5 is transported and agitated by the reciprocating motion of the moving grate 16. That is, the lower part of the incinerated material B is moved and replaced with the upper part.
  • the drying stage 11 receives the incinerated material B pushed out by the feeder 4 and dropped into the incinerator 3, evaporates the moisture of the incinerated material B, and partially decomposes it.
  • the combustion stage 12 ignites the incinerated material B dried in the drying stage 11 by the primary air supplied from the second wind box 6b, and burns volatiles and fixed carbon.
  • the post-combustion stage 13 burns unburned components such as fixed carbon which have passed through without being burned in the combustion stage 12 until they become completely ash.
  • An ash outlet 17 is provided at the outlet of the post-combustion stage 13. The ash is discharged from the incinerator 3 through the ash outlet 17.
  • the stoker furnace 1 includes a first driving device 18 a for driving the moving grate 16 of the drying stage 11, a second driving device 18 b for driving the moving grate 16 of the combustion stage 12, and a moving grate 16 of the post-combustion stage 13. And a third driving device 18c for driving the driving device.
  • the first driving device 18a, the second driving device 18b, and the third driving device 18c are controlled by the control device 30.
  • the driving devices 18a, 18b, 18c are attached to beams 19 provided on the stalker 5.
  • Each of the driving devices 18a, 18b, and 18c has a hydraulic cylinder 20 attached to the beam 19, an arm 21 operated by the hydraulic cylinder 20, and a beam 22 connected to a tip of the arm 21.
  • the beam 22 and the moving grate 16 are connected via a bracket 23.
  • the arm 21 operates by the expansion and contraction of the rod of the hydraulic cylinder 20.
  • the beam 22 configured to move along the installation surfaces 11a, 12a, 13a of the stalker 5 moves, and the moving grate 16 connected to the beam 22 is driven.
  • the drive devices 18a, 18b, and 18c of the present embodiment use the hydraulic cylinder 20, but the present invention is not limited to this.
  • a hydraulic motor, an electric cylinder, a conductive linear motor, or the like can be used.
  • the form of the driving devices 18a, 18b, 18c is not limited to the above-described form, and may be any form as long as the movable grate 16 can be reciprocated.
  • the beam 22 and the hydraulic cylinder 20 may be directly connected and driven without disposing the arm 21.
  • control device 30 sets the driving speed of the moving grate 16 in the drying stage 11, the combustion stage 12, and the post-combustion stage 13 to the same speed or the drying stage 11, the combustion stage 12, And the post-combustion stage 13 can control to different speeds.
  • the fixed grate 15 and the moving grate 16 are located on the downstream side in the transport direction with respect to the installation surfaces 11 a, 12 a, and 13 a of the drying stage 11, the combustion stage 12, and the post-combustion stage 13.
  • D1 is arranged so as to be inclined upward.
  • a part of the moving grate 16 of the drying stage 11 is a grate 16P with projections (the others are normal grate described later).
  • the moving grate 16 in the range R1 of 50% to 80% from the downstream side D1 in the conveyance direction of the length in the conveyance direction D of the drying stage 11 is a grate 16P with projections.
  • the grate with projection 16 ⁇ / b> P has a plate-shaped grate main body 25 and a triangular protrusion 26 provided at the tip of the grate main body 25.
  • the protrusion 26 protrudes upward from the upper surface of the grate main body 25.
  • the shape of the projection 26 is not limited to this, and may be, for example, a trapezoidal shape or a round shape.
  • the fixed grate 15 in FIG. 3 is a grate having no protrusion on the top surface of the tip, and this shape is called a normal grate.
  • the moving grate 16 is a grate with projections 16P.
  • the present invention is not limited to this, and both the moving grate 16 and the fixed grate 15 may be grate with projections.
  • the range in which the grate with projections 16P is provided is not limited to the above-described range.
  • all grate in the drying stage 11 may be the grate with projections 16P.
  • all the grate (fixed grate 15 and moving grate 16) in the drying stage 11 may be a normal grate.
  • a part of the moving grate 16 in the combustion stage 12 is a grate 16P with projections.
  • the moving grate 16 in the range R2 of 50% to 80% from the downstream side in the transport direction is the grate 16P with projections.
  • the other moving grate 16 of the combustion stage 12 is a normal grate.
  • both the moving grate 16 and the fixed grate 15 may be formed as projection grate 16P, or all grate (the fixed grate 15 and the moving The grate 16) may be a normal grate.
  • the moving grate 16 and the fixed grate 15 are all shown as normal grate in FIG. 2, but like the drying stage 11 and the combustion stage 12, the grate with projection 16P is used. May be adopted.
  • the drying stage 11 of the stoker 5 of the present embodiment is arranged downward. That is, the installation surface 11a of the drying stage 11 is inclined so that the downstream side D1 in the transport direction becomes lower.
  • the stoker inclination angle ⁇ 1 of the drying stage 11 which is an angle between the horizontal plane centered on the upstream end 11b of the drying stage 11 and the transport direction side of the installation surface 11a is ⁇ 15 ° ( ⁇ 15 °). The angle is between ⁇ 25 ° (minus 25 °).
  • the combustion stage 12 of the stoker 5 of this embodiment is arranged upward. That is, the installation surface 12a of the combustion stage 12 is inclined such that the downstream side D1 in the transport direction is higher.
  • the stoker inclination angle ⁇ 2 of the combustion stage 12 that is the angle between the horizontal plane centered on the upstream end 12b of the combustion stage 12 and the transport direction side of the installation surface 12a is from + 5 ° (plus 5 degrees). The angle is between + 15 ° (plus 15 degrees), preferably between + 8 ° (plus 8 degrees) and + 12 ° (plus 12 degrees).
  • the post-combustion stage 13 of the stoker 5 of the present embodiment is arranged upward. That is, the installation surface 13a of the post-combustion stage 13 is inclined such that the downstream side D1 in the transport direction becomes higher.
  • the stoker inclination angle ⁇ 3 of the post-combustion stage 13 which is the angle between the horizontal plane around the upstream end 13b of the post-combustion stage 13 and the transport direction side of the installation surface 13a is the same as the stoker inclination angle ⁇ 2 of the combustion stage 12. is there.
  • the stoker inclination angle ⁇ 3 of the post-combustion stage 13 which is the angle between the horizontal plane centered on the upstream end 13b of the post-combustion stage 13 and the transport direction side of the installation surface 13a is + 5 ° (+5 degrees).
  • a step (fall wall) 27 is formed between the drying stage 11 and the combustion stage 12.
  • the downstream end 11c of the drying stage 11 in the transport direction is formed to be vertically higher than the upstream end 12b of the combustion stage 12 in the transport direction.
  • the combustion stage 12 and the post-combustion stage 13 are positioned such that the downstream end 12c of the combustion stage 12 in the transport direction and the upstream end 13b of the post-combustion stage 13 in the transport direction are at the same height. Is formed. Accordingly, the downstream end 13c of the post-combustion stage 13 in the transport direction is disposed above the downstream end 12c of the combustion stage 12 in the transport direction in the vertical direction.
  • the function of the drying stage 11 is to efficiently dry moisture in the incinerator B by radiant heat from the flame above the incinerator B in the combustion stage 12 and sensible heat of the primary air from below the grate.
  • the radiant heat from the flame has a higher contribution to the drying than the sensible heat of the primary air, and the upper layer of the incinerated material B is more likely to be dried.
  • the drying speed is improved by moving the lower part of the incineration object B upward by the stirring operation by the grate and replacing it with the upper part.
  • the absolute value of the stoker inclination angle is larger than the angle of repose of the incinerated material B, it collapses under its own weight, and a layer of the incinerated material B is not formed.
  • the absolute value of the stoker inclination angle is made smaller than the angle of repose of the incineration object B, the stoker is realized, but the movement of the incineration object B by gravity (movement by its own weight) decreases.
  • gravity acts in a direction to push the incinerated material B back from the transport direction. If the transport amount of the incinerated material B by the stalker 5 is smaller than the amount of the incinerated material B, the transport limit is reached and the processing becomes impossible.
  • the optimum stoker inclination angle differs depending on the amount of the incinerator B to be charged and the water content of the incinerator B.
  • description will be made assuming that the amount of the incinerator B to be charged is large and the moisture content is high (the amount of water is large), and the case where the load of the incinerator to be charged is large. Conversely, when the amount of the incinerator B to be charged is small and the moisture content is low, the load of the incinerator to be charged is small.
  • the horizontal axis represents the stoker inclination angle of the drying stage 11
  • the vertical axis represents the required stoker length of the drying stage 11
  • the input incinerator load is the smallest in order from (1) when the input incinerator load is the highest.
  • the required stoker length is a distance at which 95% of the moisture of the to-be-incinerated material B is dried.
  • the “angle of repose” on the horizontal axis indicates the angle of repose of the incinerated material B.
  • the stoker inclination angle of ⁇ 30 ° is the limit for forming the layer of the incineration material B.
  • the required stoker length decreases as the stoker inclination angle decreases, but when the stoker inclination angle turns to a positive value, the required stoker length gradually increases. This is because, when the stoker inclination angle becomes a positive value, the installation surface becomes upward, and the transport speed becomes slow. As a result, the layer of the incinerator B becomes thicker, and the incinerator B in the lower layer hardly dries. Because it becomes.
  • the incinerated material B is in any property and quantity.
  • the optimum stoker inclination angle of the drying stage 11 that can properly process the stoker and minimize the stoker length is ⁇ 15 ° ( ⁇ 15 °) corresponding to the stoker length near the lowest point of the curve of (1). ) To ⁇ 25 ° (minus 25 °) is within an appropriate range. Then, the optimum value is ⁇ 20 ° ( ⁇ 20 °).
  • the stoker inclination angle of the drying stage 11 is in the appropriate range as described above, the stoker inclination angle of the combustion stage 12 is between + 8 ° (plus 8 degrees) to + 12 ° (plus 12 degrees). The reason why the angle is suitable will be described.
  • the function of the combustion stage 12 is to maintain the temperature of the layer of the incinerator B by radiant heat from the flame and self-combustion heat, to promote generation of combustible gas by pyrolysis of volatile matter, and to burn fixed carbon remaining after pyrolysis. Is what you do.
  • the required stoker length of the combustion stage 12 is determined by the time required for burning the fixed carbon.
  • FIG. 5 shows that when the stoker inclination angle of the drying stage 11 is within the appropriate range as described above, the horizontal axis is the stoker inclination angle of the combustion stage, the vertical axis is the required stoker length of the combustion stage, and The relationship between the stoker inclination angle of the combustion stage and the required stoker length of the combustion stage is plotted in order from the case where the load is the largest (1) to the case where the load of the incineration material is the smallest (4).
  • the required stoker length of the combustion stage is a distance at which 95% of the combustible component volatilizes or burns.
  • the stoker inclination angle of ⁇ 30 ° is the limit for forming the layer of the incineration material B.
  • the required stoker length decreases as the angle becomes gentler.
  • the appropriate range of the stoker inclination angle can be a range surrounded by a dashed line shown in FIG.
  • the stoker inclination angle in the drying stage 11 is within an appropriate range, so that the reduction of the moisture content and the volume of the waste are promoted. For this reason, for example, even if the load in the drying stage 11 corresponds to (1), the load changes in the combustion stage 12 to those corresponding to (3) and (4). Stalker inclination angle can be adopted. That is, since the combustion stage can be directed upward, the residence time required for burning the fixed carbon can be secured, and the stoker length can be further reduced.
  • FIG. 6 shows the case where the horizontal axis represents the stoker inclination angle of the combustion stage 12 and the vertical axis represents the stoker length required for both the drying stage 11 and the combustion stage 12, and the load of the incineration material B to be introduced is the largest (1)
  • the plot of the relationship between the stoker inclination angle of the combustion stage 12 and the stoker length required in both the drying stage 11 and the combustion stage 12 until the load on the incinerator B to be introduced is the smallest (4). It is.
  • the stoker inclination angle of the drying stage 11 is set to an optimum value of ⁇ 20 ° ( ⁇ 20 °).
  • the appropriate range of the stoker inclination angle of the combustion stage 12 is approximately an angle between + 5 ° (+5 degrees) to + 15 ° (+15 degrees), more specifically, It can be seen that the angle is between + 8 ° (plus 8 degrees) and + 12 ° (plus 12 degrees).
  • the stoker inclination angle of the drying stage 11 is the optimum value of ⁇ 20 ° ( ⁇ 20 degrees)
  • the optimum value of the stoker inclination angle of the combustion stage 12 is + 10 ° (+10 degrees).
  • the required stoker lengths of the drying stage 11 and the combustion stage 12 can be as short as possible by setting the respective stoker inclination angles within an appropriate range, particularly an optimum value.
  • the burn-off point P is a point at which the burning of the incinerated material B on the stoker 5 with the flame is substantially completed.
  • the driving speed (moving speed) of the moving grate 16 in each stage is adjusted according to the burn-off point P of the incineration material B. Has the ability to change.
  • the target burn-off point Pt which is an ideal burn-off point, is set downstream from the center of the combustion stage 12 when viewed in the transport direction D.
  • the target burn-off point Pt is set on the combustion stage 12. If the position of the burn-off point P is on the upstream side in the transport direction from the target burn-off point Pt, the length of the layer of the incinerated material B in the transport direction D is short, and there is a possibility that combustion may not be efficient.
  • the length of the layer of the incinerated material B in the transport direction D is long, and there is a possibility that the incinerated material B may remain unburned. is there.
  • the thermocouple 31 which is a device for detecting the burn-off point, is installed on the surface of the fixed grate 15 or the movable grate 16 near the target burn-off point Pt among the grate of the combustion stage 12.
  • the thermocouple 31 measures the temperature of the grate that fluctuates when the incinerated material B burns on the stoker 5. The measured temperature becomes a detection signal corresponding to the position of the burn-off point P of the incineration material B.
  • the control device 30 estimates the burn-off point estimator 30a and the burn-off point estimator 30a to estimate the position of the burn-off point P corresponding to the grate temperature T (detection signal) measured by the thermocouple 31.
  • a drive control unit 30b that controls the drives 18a, 18b, 18c based on the position of the burn-off point P.
  • the inventors have found that there is a correlation between the grate temperature T of the combustion stage 12 and the position of the burn-off point P. For example, when the target burn-off point Pt as shown in FIG. 2 is set, when the grate temperature T is T1 ° C., the burn-out point P matches the target burn-off point Pt, and the grate temperature T becomes T1 ° C. If it is lower, the burn-out point P is located upstream of the target burn-off point Pt in the transport direction, and if the grate temperature T is higher than T1 ° C., the burn-out point P is downstream of the target burn-off point Pt in the transport direction. It has been found that it can be determined that it is located on the side.
  • the present inventors set the driving speed of the moving grate 16 of the post-combustion stage 13 to be lower than the driving speed of the moving grate 16 of the combustion stage 12, thereby moving the layer of the incineration B closer to the combustion stage 12 side. It has been found that it can be deposited. That is, it was found that the layer of the incineration object B remained on the combustion stage 12 side with respect to the post-combustion stage 13 by reducing the driving speed of the moving grate 16 in the post-combustion stage 13.
  • the burn-off point estimating unit 30a estimates the position of the burn-off point P based on the grate temperature T of the combustion stage 12 measured by the thermocouple 31.
  • the burn-off point P matches the target burn-off point Pt, and when the grate temperature T is lower than T1 ° C.,
  • the burn-off point P is located downstream of the target burn-off point Pt in the transport direction. judge.
  • the control device 30 drives the moving grate 16 of each of the drying stage 11, the combustion stage 12, and the post-combustion stage 13 at a predetermined driving speed (predetermined speed).
  • the predetermined speed of the moving grate 16 in the drying stage 11 is the first driving speed V1
  • the predetermined speed of the moving grate 16 in the combustion stage 12 is the second driving speed V2
  • the predetermined speed of the moving grate 16 in the post-combustion stage 13 is the first speed.
  • V3 V3 or V1 ⁇ V2 ⁇ V3 depending on the properties of the incinerated material B.
  • V1 ⁇ V2 ⁇ V3 is often set.
  • V2 is a driving speed that makes one round trip in approximately 100 seconds.
  • the driving speed is set according to the property of the incinerated material B, and thus this speed is only an example and is not limited to this.
  • the drive control unit 30b of the control device 30 determines whether or not the moving stage of the combustion stage 12 is moving when the burn-off point P is at the same position as the target burn-off point Pt or is located upstream of the target burn-off point Pt in the transport direction.
  • the second drive device 18b and the third drive device 18c are controlled so as not to change the drive speed of the grate 16 and the moving grate 16 of the post-combustion stage 13. Accordingly, the moving grate 16 of the combustion stage 12 is driven while maintaining the second drive speed V2 which is a predetermined speed, and the moving grate 16 of the post-combustion stage 13 is driven while maintaining the third drive speed V3 which is a predetermined speed. . That is, the moving grate 16 of the combustion stage 12 and the post-combustion stage 13 continue to be driven at the same drive speed as before.
  • the drive control unit 30b determines that the driving speed of the moving grate 16 of the post-combustion stage 13 is The second driving device 18b and the third driving device 18c are controlled to drive at a driving speed lower than the driving speed of the second driving device 18b.
  • the drive control unit 30b For example, the third driving device 18c is controlled so that the driving speed of the moving grate 16 in the post-combustion stage 13 is further reduced than V3. In other words, the drive control unit 30b controls the drive speed of the moving grate 16 in the post-combustion stage 13 to be lower than before.
  • the driving speed of the moving grate 16 in the post-combustion stage 13 can be 30% to 80% of the driving speed of the moving grate 16 in the combustion stage 12.
  • the simulation showed that the layer of the incinerated material B was deposited as indicated by the solid line Ba. Since the layer of the incineration material B is formed as shown by the solid line Ba, the agitation is effectively performed by the grate with projections 16P in the combustion stage 12, and the time for holding the incineration material B on the combustion stage 12 Not only to earn money, but also to result in effective combustion. Therefore, the unburned residue of the incinerated material B discharged from the post-combustion stage 13 can be reduced.
  • the drying stage 11 since the drying stage 11 is inclined downward, the incineration object B of any property can be transported to the combustion stage 12 without any delay, and the combustion stage 12 Since the post-combustion stage 13 is inclined upward, the incinerated material B is sufficiently burned and conveyed without easily sliding down or rolling down the downstream of the combustion stage 12.
  • the incinerated material B having a slippery material or a shape that easily rolls the material is conveyed to the combustion stage 12 early by rolling on the drying stage 11, so that the drying stage 11 may not be sufficiently dried.
  • the combustion stage 12 and the post-combustion stage 13 are inclined upward, the incineration material B that has rolled down the drying stage 11 does not further roll down the combustion stage 12 and the post-combustion stage 13.
  • always dry and incinerated since the incinerated material B having a high moisture content is conveyed to the combustion stage 12 while being dried without staying in the drying stage 11, it is also necessarily sufficiently incinerated in the combustion stage 12. Thereby, the incinerated material B can be continuously charged irrespective of the properties of the incinerated material B, and the unburned material of the incinerated material B can be eliminated.
  • the incinerated material B that has rolled down the drying stage 11 has a strong momentum and passes through the combustion stage 12 at that moment, it is at least stopped in the post-combustion stage 13 and discharged from the post-combustion stage 13. Absent. Since the post-combustion stage 13 and the combustion stage 12 are continuously connected without any level difference, even if the incinerated material B that is not sufficiently burned to the post-combustion stage 13 rolls and advances, for example, the self-weight is reduced. To return to the combustion stage 12 to perform combustion. That is, it is possible to minimize the discharge of the incompletely burned incinerator B.
  • the driving speed of the moving grate 16 of the post-combustion stage 13 should be lower than the driving speed of the moving grate 16 of the combustion stage 12.
  • the layer of the incineration material B can be retained on the combustion stage 12 side.
  • the thickness of the layer of the incineration material B on the combustion stage 12 is maintained, and the grate of the combustion stage 12 can be protected.
  • the grate 15 and 16 can be protected by the layer of the incinerated material B, and the processing can be performed even when a processing object larger than expected is thrown in.
  • An object can be transported in the transport direction D.
  • thermocouple 31 as a burn-off point detecting device for obtaining a detection signal corresponding to the burn-off point P, the position of the burn-off point P can be set with a cheaper configuration.
  • the position of the burn-off point P corresponds to the grate temperature T measured by the thermocouple 31 disposed on the grate of the combustion stage 12, but is not limited thereto.
  • a configuration may be adopted in which the temperature change (change speed) of the grate temperature T measured by the thermocouple 31 is monitored, and the position of the burn-off point P is estimated based on the temperature change of the grate temperature T.
  • the thermocouple 31 is provided in the combustion stage 12.
  • the present invention is not limited to this, and the thermocouple may be provided in at least one of the combustion stage 12 and the post-combustion stage 13. When the thermocouple 31 is installed in the combustion stage 12, the downstream side of the combustion stage 12 is desirable, and when the thermocouple 31 is installed in the post-combustion stage 13, the upstream side of the post-combustion stage 13 is desirable.
  • the burn-off point detection device may be configured to include a plurality of thermocouples. That is, the thermocouples may be arranged, for example, on the upstream side of the combustion stage 12, the downstream side of the combustion stage 12, the upstream side of the post-combustion stage 13, and the downstream side of the post-combustion stage 13, respectively.
  • the number of thermocouples is not limited to this, and can be appropriately changed according to the size of the stoker 5 and the cost.
  • a plurality of thermocouples may be arranged in the depth direction of the paper of FIG.
  • the stoker furnace of the present embodiment measures the grate temperature Td of the drying stage 11 and outputs a temperature signal corresponding thereto to the control device 30B (drying stage temperature measurement device).
  • the apparatus includes, for example, a drying stage thermocouple 32) and measures the pressure PR1 in the first wind box 6a disposed below the drying stage 11 and outputs a corresponding first pressure signal to the control device 30B.
  • a second pressure measurement which measures the pressure PR2 in the first pressure measuring device 33a and the second wind box 6b arranged below the combustion stage 12 and outputs a corresponding second pressure signal to the control device 30B.
  • the drying stage thermocouple 32 is preferably installed on the surface of the fixed grate 15 or the moving grate 16 of the drying stage 11 downstream of the center of the drying stage 11 when viewed in the transport direction D.
  • the control device 30B of the present embodiment adds the driving speed of the moving grate 16 of the combustion stage 12 and the driving speed of the moving grate 16 of the post-combustion stage 13 based on the grate temperatures T and Td and the pressures PR1 and PR2. The driving speed of the moving grate 16 of the drying stage 11 is controlled.
  • the control device 30B of the present embodiment sets a threshold (first threshold corresponding to the first wind box 6a and second threshold corresponding to the second wind box 6b) for the pressure in the wind box.
  • the threshold value is set based on the thickness of the incinerated material B deposited on the stoker on the wind box. Note that the first threshold value and the second threshold value may be set to the same value, or may be set to different values depending on the properties of the incinerated material B. If the pressure in the wind box is equal to or larger than the threshold, the control device 30 determines that the thickness of the layer of the incineration object B is excessive.
  • the pressure PR2 in the second wind box 6b is lower than the threshold value (second threshold value)
  • the threshold value (first threshold value) it is determined that the layer of the incineration object B on the combustion stage 12 is thin and the processing capability of the combustion stage 12 has a margin. can do.
  • the pressure PR1 of the first wind box 6a is equal to or higher than the threshold value (first threshold value) and the grate temperature Td of the drying stage 11 is equal to or higher than a predetermined temperature (third threshold value), Is thick, and it can be determined that the incineration B is being burned in the drying stage 11.
  • the control device 30B first performs control for driving the moving grate of the drying stage 11 at the predetermined speed V1. Then, the control device 30B performs the same control as that of the stoker furnace 1 of the first embodiment, and the pressure PR1 in the first wind box 6a is equal to or more than a threshold (first threshold) and the pressure PR1 in the second wind box 6b.
  • first threshold a threshold
  • second threshold value the threshold value
  • third threshold value a predetermined temperature
  • Control is performed to make the speed higher than the predetermined speed V1.
  • the control device 30 determines that the pressure PR1 in the first wind box 6a is less than the threshold value (first threshold value), the pressure PR2 in the second wind box 6b is not less than the threshold value (second threshold value), and the drying stage 11
  • the grate temperature Td is lower than a predetermined temperature (third threshold value)
  • control is performed to make the driving speed of the moving grate 16 of the drying stage 11 slower than the predetermined speed V1.
  • the control device 30B performs control by comparing the pressures PR1 and PR2 with the corresponding thresholds, but is not limited thereto.
  • the control device 30B may be configured to monitor and control a pressure change (change speed) of the pressures PR1 and PR2.
  • the control device 30B may be configured to monitor and control a temperature change (change speed) of the grate temperature Td of the drying stage 11.
  • the first pressure signal is a signal corresponding to a pressure change of the pressure PR1
  • the second pressure signal is a signal corresponding to a pressure change of the pressure PR2
  • the temperature signal is a signal corresponding to a temperature change of the grate temperature Td.
  • the first threshold value, the second threshold value, and the third threshold value may be set in correspondence with these signals.
  • the stoker furnace 1 ⁇ / b> C of the present embodiment includes, as a burn-off point detection device, an imaging device 34 installed above the post-combustion stage 13, specifically, on the ceiling of the furnace.
  • the imaging device 34 is a camera or a sensor that can detect a temperature distribution.
  • the temperature distribution detected by the imaging device 34 downstream of the combustion stage 12 or upstream of the post-combustion stage 13 is a detection signal corresponding to the position of the burn-off point P of the incineration object B.
  • the burn-off point estimation unit 30a of the control device estimates the position of the burn-off point P based on the temperature distribution detected by the imaging device 34.
  • the driving device control unit 30b sets the drive grate 16 after the moving grate 16 of the combustion stage 12
  • the second driving device 18b and the third driving device 18c are controlled such that the moving grate 16 of the combustion stage 13 is driven at the same driving speed.
  • the drive control unit 30b determines that the driving speed of the moving grate 16 in the post-combustion stage 13 is lower than in the first embodiment.
  • the second driving device 18b and the third driving device 18c are controlled so that the driving speed is lower than the driving speed of the moving grate 16 of the combustion stage 12.
  • the position of the burn-off point P can be more accurately estimated.
  • the embodiments of the present invention have been described in detail with reference to the drawings.
  • the specific configuration is not limited to the embodiments, and includes a design change or the like without departing from the gist of the present invention.
  • tip of the grate 15,16 is arrange
  • tip of the grate 15,16 of the drying stage 11 May be arranged to face the upstream side in the transport direction.
  • thermocouple and the imaging device may be used as the burn-off point detection device, but also the position of the burn-off point P may be estimated using both the thermocouple and the imaging device.
  • the first embodiment or the second embodiment is combined with the third embodiment may be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)

Abstract

Provided is a stoker furnace having: a burn-off-point detection device (31) that acquires a detection signal corresponding to the burn-off-point (P) of an object (B) to be incinerated; a first drive device (18a) that drives moving grates of a drying stage (11); a second drive device (18b) that drives moving grates of a combustion stage (12); a third drive device (18c) that drives moving grates of a post-combustion stage (13); and a control device (30), wherein the drying stage (11) is disposed to be inclined such that a downstream side thereof faces downward, the combustion stage (12) and the post-combustion stage (13) are disposed to be inclined such that downstream sides thereof face upward, and the control device controls the second drive device and the third drive device such that when the position of the burn-off-point (P) does not exceed a target burn-off-point, the moving grates of the combustion stage (12) and the moving grates of the post-combustion stage (13) are not changed, and when the position of the burn-off-point (P) is located downstream of the target burn-off-point, the drive speed of the moving grates of the post-combustion stage (13) is slower than the drive speed of the moving grates of the combustion stage (12).

Description

ストーカ炉Stoker furnace
 本発明は、ストーカ炉に関する。
 本願は、2018年8月30日に日本に出願された特願2018-161817号について優先権を主張し、その内容をここに援用する。
The present invention relates to a stoker furnace.
Priority is claimed on Japanese Patent Application No. 2018-161817, filed on August 30, 2018, the content of which is incorporated herein by reference.
 ごみ等の被焼却物を焼却する焼却炉として、大量の被焼却物を選別することなく効率的に焼却処理することができるストーカ炉が知られている。ストーカ炉としては、ストーカを階段式に構成し、乾燥、燃焼、後燃焼の各機能が果たせるように乾燥段、燃焼段、及び後燃焼段を備えているものが知られている。 ス ト As an incinerator for incinerating incinerated materials such as garbage, a stoker furnace that can efficiently incinerate a large amount of incinerated materials without sorting them is known. As a stoker furnace, there is known a stoker furnace in which a stoker is configured in a stepwise manner and provided with a drying stage, a combustion stage, and a post-combustion stage so as to perform drying, combustion, and post-combustion functions.
 被焼却物を確実に燃焼させるために、ストーカの傾斜角について検討がなされている。ストーカの傾斜角は、例えば、特許文献1及び特許文献2に記載されているように、乾燥段、燃焼段、後燃焼段の全ての段の据付面の搬送方向下流側が下向きとなるように傾斜しているものがある。なお、以下、例えば乾燥段の据付面の搬送方向下流側が下向きである場合、単に、乾燥段が下向きという(燃焼段、後燃焼段の場合も同様である)。 傾斜 In order to ensure that the incinerated material is burned, the inclination of the stoker is being studied. For example, as described in Patent Document 1 and Patent Document 2, the inclination angle of the stalker is such that the downstream side in the transport direction of the installation surface of all of the drying stage, the combustion stage, and the post-combustion stage faces downward. Something you are doing. Hereinafter, for example, when the downstream side in the transport direction of the installation surface of the drying stage is downward, the drying stage is simply referred to as downward (the same applies to the combustion stage and the post-combustion stage).
 また、特許文献3に記載されているように、乾燥段が下向きに傾斜し、燃焼段及び後燃焼段が水平に配置されているもの、特許文献4に記載されているように、乾燥段及び燃焼段が下向きに傾斜し、後燃焼段の据付面の搬送方向下流側が上向きとなるように傾斜しているもの、特許文献5に記載されているような全ての段が上向きに傾斜しているものがある。なお、例えば燃焼段の据付面の搬送方向下流側が上向きである場合、単に、燃焼段が上向きという(乾燥段、後燃焼段の場合も同様である)。 Further, as described in Patent Document 3, a drying stage is inclined downward, and a combustion stage and a post-combustion stage are horizontally arranged. Although the combustion stage is inclined downward and the downstream side of the installation surface of the post-combustion stage is inclined upward in the transport direction, all stages as described in Patent Document 5 are inclined upward. There is something. For example, when the downstream side in the transport direction of the installation surface of the combustion stage is upward, the combustion stage is simply referred to as upward (the same applies to the drying stage and the post-combustion stage).
 また、特許文献6には、全ての段が上向きに傾斜しているストーカにおいて、被焼却物の燃焼完結位置を制御するために乾燥段、燃焼段、後燃焼段の移動火格子を、それぞれを異なる駆動装置で駆動する技術について記載されている。 Further, in Patent Document 6, in a stoker in which all stages are inclined upward, moving grate of a drying stage, a combustion stage, and a post-combustion stage are controlled in order to control a combustion completion position of an incineration object. Techniques for driving with different driving devices are described.
特開平6-265125号公報JP-A-6-265125 特開昭59-86814号公報JP-A-59-86814 実開平6-84140号公報Japanese Utility Model Publication No. 6-84140 特公昭57-12053号公報JP-B-57-12053 実開昭57-127129号公報Japanese Utility Model Publication No. 57-127129 特開平3-28618号公報JP-A-3-28618
 ところで、上記ストーカ炉では、様々な性状(素材、形状、含水率)の被焼却物が投入されるが、滑りやすい素材又は球形などの転がりやすい形状の被焼却物や、含水率の高い(水分量の多い)被焼却物については、いずれのストーカ炉でも、その他の被焼却物と同様の焼却が困難であった。
 また、滑りやすい素材又は球形などの転がりやすい形状の被焼却物や、含水率の高い被焼却物が焼却される場合、燃切点がストーカ炉によって設定されている目標燃切点を越える場合があり、被焼却物の燃え残りが生じやすいという課題があった。
By the way, in the stoker furnace, incinerated materials having various properties (material, shape, and moisture content) are charged. However, the incinerated material having a slippery material or a spherical shape such as a spherical shape, or a material having a high moisture content (moisture content). With respect to the incinerated material (in large quantities), it was difficult to incinerate any of the stoker furnaces in the same way as other incinerated materials.
In addition, when incinerated objects with slippery materials or rolling shapes such as spheres, or incinerated objects with a high water content are incinerated, the burn-out point may exceed the target burn-off point set by the stoker furnace. There is a problem that the incineration material is liable to remain unburned.
 即ち、特許文献1、特許文献2、特許文献3、及び特許文献4に記載されているストーカ炉では、乾燥段が下向きに傾斜、かつ、燃焼段が下向きに傾斜または水平に配置されているため、滑りやすい素材又は転がりやすい形状の被焼却物が、その他の被焼却物に比べ、後燃焼段まで早く搬送されるため、十分に焼却されずに燃え残ったまま排出されるという課題があった。 That is, in the stoker furnaces described in Patent Literature 1, Patent Literature 2, Patent Literature 3, and Patent Literature 4, the drying stage is inclined downward and the combustion stage is inclined downward or horizontal. However, there is a problem that the incinerated material having a slippery material or a shape that easily rolls is conveyed to the post-combustion stage earlier than other incinerated materials, so that the incinerated material is discharged without being incinerated sufficiently. .
 また、特許文献5、及び特許文献6に記載されているストーカ炉では、乾燥段、燃焼段、後燃焼段の全てが上向きに傾斜しているため、滑りやすい素材又は転がりやすい形状の被焼却物や含水率の高い被焼却物が、フィーダと乾燥段の間に配置される段差(落差壁)の底に溜まって燃焼段まで搬送され難くなるため、投入量を制限したり、投入を一時的に停止したりする必要が生じる場合があるという課題があった。 Further, in the stoker furnace described in Patent Documents 5 and 6, since all of the drying stage, the combustion stage, and the post-combustion stage are inclined upward, the incinerated material having a slippery material or an easily rolling shape is used. The incinerated material with high water content and high moisture content accumulates at the bottom of the step (fall wall) located between the feeder and the drying stage, making it difficult to be transported to the combustion stage. There is a problem that it may be necessary to stop at a certain time.
 この発明は、被焼却物の性状によらず被焼却物を連続投入でき、かつ、被焼却物の燃え残りを無くすることができるストーカ炉を提供することを目的とする。 An object of the present invention is to provide a stoker furnace capable of continuously charging incinerated materials regardless of the properties of the incinerated materials and eliminating unburned unburned materials.
 本発明によれば、ストーカ炉は、フィーダから被焼却物を供給し、複数の固定火格子と複数の移動火格子を備えた乾燥段、燃焼段、及び後燃焼段で、前記被焼却物を順次搬送しつつ、それぞれ乾燥、燃焼、及び後燃焼を行うストーカ炉において、前記被焼却物の燃切点の位置に対応する検出信号を取得する燃切点検出装置と、前記乾燥段の前記移動火格子を駆動する第一駆動装置と、前記燃焼段の前記移動火格子を駆動する第二駆動装置と、前記後燃焼段の前記移動火格子を駆動する第三駆動装置と、前記第一駆動装置、前記第二駆動装置、及び前記第三駆動装置を制御する制御装置と、を有し、前記乾燥段は、搬送方向下流側が下向きとなるように傾斜して配置され、前記燃焼段は、前記乾燥段に接続され、前記搬送方向下流側が上向きとなるように傾斜して配置され、前記後燃焼段は、段差なく連続的に前記燃焼段に接続され、前記搬送方向下流側が上向きとなるように傾斜して配置され、前記制御装置は、前記検出信号を受け、前記燃切点検出装置によって取得された前記検出信号に対応する前記燃切点の位置が目標燃切点を越えない場合、前記燃焼段の前記移動火格子と前記後燃焼段の前記移動火格子の駆動速度を変化させず、前記検出信号に対応する前記燃切点の位置が目標燃切点より前記搬送方向下流側に位置する場合、前記後燃焼段の前記移動火格子の駆動速度が、前記燃焼段の前記移動火格子の駆動速度よりも遅くなるよう前記第二駆動装置と前記第三駆動装置とを制御することを特徴とする。 According to the present invention, the stoker furnace supplies the incineration material from the feeder, and includes a plurality of fixed grate and a plurality of moving grate in the drying stage, the combustion stage, and the post-combustion stage, and the incineration material is provided. In a stoker furnace that performs drying, combustion, and post-combustion while sequentially transporting, a burn-off point detection device that obtains a detection signal corresponding to the position of a burn-off point of the incineration object, and the movement of the drying stage. A first drive for driving the grate, a second drive for driving the moving grate of the combustion stage, a third drive for driving the moving grate of the post-combustion stage, and the first drive Device, the second drive device, and a control device for controlling the third drive device, and the drying stage is disposed inclined so that the downstream side in the transport direction is downward, the combustion stage, Connected to the drying stage, the downstream side in the transport direction is upward The post-combustion stage is continuously connected to the combustion stage without any step, and is arranged so as to be inclined so that the downstream side in the transport direction is upward, and the control device is configured to perform the detection Receiving the signal, if the position of the burn-off point corresponding to the detection signal obtained by the burn-off point detection device does not exceed the target burn-off point, the moving grate of the combustion stage and the post-combustion stage Without changing the drive speed of the moving grate, if the position of the burn-off point corresponding to the detection signal is located downstream of the target burn-off point in the transport direction, the moving grate of the post-combustion stage The second driving device and the third driving device are controlled such that a driving speed is lower than a driving speed of the moving grate in the combustion stage.
 このような構成によれば、乾燥段の下向きの傾斜によって、どのような性状の被焼却物であっても燃焼段まで滞りなく搬送することができ、かつ、燃焼段及び後燃焼段の上向きの傾斜によって、燃焼段以降に被焼却物が容易に滑り落ちたり、転がり落ちたりすることなく、十分に燃焼されて搬送される。
 これにより、被焼却物の性状によらず被焼却物を連続投入でき、かつ、被焼却物の燃え残りを無くすることができる。
 また、燃切点が目標燃切点よりも搬送方向下流側に位置する場合に、後燃焼段の移動火格子の駆動速度を遅くすることによって、被焼却物の層を、燃焼段側に留めることができる。これにより、燃焼段上の被焼却物の層の厚さが保たれ、燃焼段の火格子を保護することができる。
 また、燃焼段と後燃焼段とが段差なく連続的に接続されていることにより、被焼却物をより連続的に焼却することができる。即ち、段差によって、被焼却物に衝撃を与えることなく、被焼却物を焼却することができる。
According to such a configuration, due to the downward inclination of the drying stage, the incineration of any property can be conveyed to the combustion stage without any delay, and the upward direction of the combustion stage and the post-combustion stage Due to the inclination, the incinerated material is sufficiently burned and conveyed without easily sliding down or rolling down after the combustion stage.
Thereby, the incinerated material can be continuously charged irrespective of the properties of the incinerated material, and the unburned residue of the incinerated material can be eliminated.
Further, when the burn-off point is located downstream of the target burn-off point in the transport direction, the driving speed of the moving grate in the post-combustion stage is reduced, so that the layer of the incineration material is kept on the combustion stage side. be able to. Thus, the thickness of the layer of the incineration material on the combustion stage is maintained, and the grate of the combustion stage can be protected.
In addition, since the combustion stage and the post-combustion stage are continuously connected without any level difference, the incineration material can be incinerated more continuously. That is, the incinerated material can be incinerated by the step without giving an impact to the incinerated material.
 上記ストーカ炉において、前記固定火格子及び前記移動火格子は、前記乾燥段、前記燃焼段、及び前記後燃焼段の据付面に対して前記搬送方向下流側が上向きとなるように傾斜して配置されてよい。
 また、上記ストーカ炉において、前記燃焼段の前記複数の移動火格子の少なくとも一部は、先端に突起を設けた突起付火格子であってよい。
In the stoker furnace, the fixed grate and the moving grate are arranged so as to be inclined such that the downstream side in the transport direction faces upward with respect to an installation surface of the drying stage, the combustion stage, and the post-combustion stage. May be.
Further, in the stoker furnace, at least a part of the plurality of moving grate of the combustion stage may be a grate with a protrusion having a protrusion at a tip.
 このような構成によれば、移動火格子が往復運動する際の被焼却物の撹拌効果を向上させることができる。 According to such a configuration, it is possible to improve the effect of stirring the incinerated material when the moving grate reciprocates.
 上記ストーカ炉において、前記燃切点検出装置は、前記燃焼段と前記後燃焼段の少なくとも一方の火格子表面に設置された熱電対であってよい。 In the stoker furnace, the burn-off point detection device may be a thermocouple installed on a grate surface of at least one of the combustion stage and the post-combustion stage.
 このような構成によれば、燃切点に対応する検出信号を取得する燃切点検出装置として熱電対を採用したことによって、より安価な構成で燃切点の位置を設定することができる。 According to such a configuration, the position of the burn-off point can be set with a cheaper configuration by employing a thermocouple as the burn-off point detection device that acquires a detection signal corresponding to the burn-off point.
 上記ストーカ炉において、前記燃切点検出装置は、前記燃焼段または後燃焼段の温度分布を検出する撮像装置であってよい。 In the stoker furnace, the burn-off point detection device may be an imaging device that detects a temperature distribution in the combustion stage or the post-combustion stage.
 このような構成によれば、燃切点に対応する検出信号を取得する燃切点検出装置として撮像装置を採用したことによって、より正確に燃切点の位置を設定することができる。 According to such a configuration, the position of the burn-off point can be set more accurately by adopting the imaging device as the burn-off point detection device that acquires the detection signal corresponding to the burn-off point.
 上記ストーカ炉において、前記乾燥段に対応して配置された第一風箱と、前記第一風箱の圧力または圧力変化に対応する第一圧力信号を出力する第一圧力測定装置と、前記燃焼段に対応して配置された第二風箱と、前記第二風箱の圧力または圧力変化に対応する第二圧力信号を出力する第二圧力測定装置と、前記乾燥段に設置され、前記乾燥段の温度または温度変化に対応する温度信号を出力する乾燥段温度測定装置と、をさらに有し、前記制御装置は、前記温度信号、前記第一圧力信号、及び前記第二圧力信号を受け、前記第一圧力信号に対応する前記圧力または前記圧力変化が第一閾値以上、かつ、前記第二圧力信号に対応する前記圧力または前記圧力変化が第二閾値未満、かつ、前記温度信号に対応する前記温度または前記温度変化が第三閾値以上である場合、前記乾燥段の前記移動火格子の駆動速度を速くし、前記第一圧力信号に対応する前記圧力または前記圧力変化が前記第一閾値未満、かつ、前記第二圧力信号に対応する前記圧力または前記圧力変化が前記第二閾値以上、かつ、前記温度信号に対応する前記温度または前記温度変化が前記第三閾値未満である場合、前記乾燥段の前記移動火格子の駆動速度を遅くするよう制御してよい。 In the stoker furnace, a first wind box arranged corresponding to the drying stage, a first pressure measuring device that outputs a first pressure signal corresponding to a pressure or a pressure change of the first wind box, and the combustion A second wind box arranged in accordance with the stage, a second pressure measuring device that outputs a second pressure signal corresponding to the pressure or pressure change of the second wind box, and the drying stage is installed in the drying stage; A drying stage temperature measuring device that outputs a temperature signal corresponding to a temperature or a temperature change of the stage, further comprising: the control device receives the temperature signal, the first pressure signal, and the second pressure signal, The pressure or the pressure change corresponding to the first pressure signal is equal to or greater than a first threshold, and the pressure or the pressure change corresponding to the second pressure signal is less than a second threshold, and corresponds to the temperature signal. The temperature or the temperature change If not less than a third threshold, increase the driving speed of the moving grate of the drying stage, the pressure or the pressure change corresponding to the first pressure signal is less than the first threshold, and the second pressure When the pressure or the pressure change corresponding to the signal is equal to or more than the second threshold, and the temperature or the temperature change corresponding to the temperature signal is less than the third threshold, the moving grate of the drying stage is The drive speed may be controlled to be slow.
 本発明によれば、被焼却物の性状によらず被焼却物を連続投入でき、かつ、被焼却物の燃え残りを無くすることができる。 According to the present invention, the incinerated material can be continuously charged regardless of the property of the incinerated material, and the unburned material of the incinerated material can be eliminated.
本発明の第一実施形態のストーカ炉の概略構成図である。It is a schematic structure figure of a stoker furnace of a first embodiment of the present invention. 本発明の第一実施形態のストーカ炉のストーカ傾斜角を説明する図である。It is a figure explaining a stalker inclination angle of a stoker furnace of a first embodiment of the present invention. 本発明の第一実施形態のストーカ炉の火格子形状を説明する側面図である。It is a side view explaining the shape of the grate of the stoker furnace of the first embodiment of the present invention. 乾燥段のストーカ傾斜角の適正範囲を説明するグラフである。It is a graph explaining the suitable range of the stoker inclination angle of a drying stage. 燃焼段のストーカ傾斜角の適正範囲を説明するグラフである。5 is a graph illustrating an appropriate range of a stoker inclination angle of a combustion stage. 乾燥段と燃焼段の双方を鑑みた場合、燃焼段のストーカ傾斜角の適正範囲を説明するグラフである。6 is a graph illustrating an appropriate range of the stoker inclination angle of the combustion stage when considering both the drying stage and the combustion stage. 後燃焼段の移動火格子の駆動速度を遅くした場合の被焼却物の層の形状について説明する図である。It is a figure explaining the shape of the layer of the thing to be incinerated when the drive speed of the moving grate of the post-combustion stage is reduced. 本発明の第二実施形態のストーカ炉の概略構成図である。It is a schematic structure figure of a stoker furnace of a second embodiment of the present invention. 本発明の第三実施形態のストーカ炉の概略構成図である。It is a schematic structure figure of a stoker furnace of a third embodiment of the present invention.
〔第一実施形態〕
 以下、本発明の第一実施形態のストーカ炉について図面を参照して詳細に説明する。
 本実施形態のストーカ炉は、ごみ等の被焼却物燃焼用ストーカ炉であり、図1に示すように、被焼却物Bを一時的に貯留するホッパ2と、被焼却物Bを燃焼させる焼却炉3と、焼却炉3に被焼却物Bを供給するフィーダ4と、焼却炉3の底部側に設けられたストーカ5(乾燥段11、燃焼段12、及び後燃焼段13の火格子15、16を含む)と、ストーカ5の下方に設けられた風箱6a、6b、6cと、を備えている。
(First embodiment)
Hereinafter, a stoker furnace according to a first embodiment of the present invention will be described in detail with reference to the drawings.
The stoker furnace of the present embodiment is a stoker furnace for burning incinerators such as refuse, and as shown in FIG. 1, a hopper 2 for temporarily storing incinerators B and an incinerator for burning the incinerators B. A furnace 3, a feeder 4 for supplying the incinerator B to the incinerator 3, and a stoker 5 (a grate 15 of a drying stage 11, a combustion stage 12, and a post-combustion stage 13) provided on the bottom side of the incinerator 3. 16) and wind boxes 6a, 6b, 6c provided below the stoker 5.
 フィーダ4は、ホッパ2を介して連続的にフィードテーブル7上に供給された被焼却物Bを焼却炉3内に押し出す。フィーダ4は、フィーダ駆動装置8によってフィードテーブル7上を所定のストロークで往復運動する。
 焼却炉3は、ストーカ5の上方に設けられ、一次燃焼室と二次燃焼室からなる燃焼室9を有している。焼却炉3には、燃焼室9に二次空気を供給する二次空気供給ノズル10が接続されている。
The feeder 4 continuously extrudes the incinerated material B supplied onto the feed table 7 via the hopper 2 into the incinerator 3. The feeder 4 reciprocates on the feed table 7 with a predetermined stroke by the feeder driving device 8.
The incinerator 3 is provided above the stoker 5 and has a combustion chamber 9 composed of a primary combustion chamber and a secondary combustion chamber. A secondary air supply nozzle 10 that supplies secondary air to the combustion chamber 9 is connected to the incinerator 3.
 ストーカ5は、火格子15、16を階段状に並べた燃焼装置である。被焼却物Bは、ストーカ5上で燃焼する。
 以下、被焼却物Bが搬送される方向を搬送方向Dと呼ぶ。被焼却物Bは、ストーカ5上を搬送方向Dに搬送される。図1、図2、及び図3において、右側が搬送方向下流側D1である。また、火格子15、16が取り付けられる面を据付面と呼び、乾燥段11、燃焼段12、又は後燃焼段13の上流側の端部(11b、12b、13b)を中心として、水平面と据付面とによって形成される搬送方向D側の角度をストーカ傾斜角(据付角度)と呼ぶ。据付面の搬送方向下流側D1が水平面より上向きの場合は、ストーカ傾斜角は正の値とし、据付面の搬送方向下流側D1が水平面より下向きの場合は、ストーカ傾斜角は負の値として、ここでは説明する。
The stalker 5 is a combustion device in which grate 15 and 16 are arranged in a stepwise manner. The incineration material B burns on the stoker 5.
Hereinafter, the direction in which the incinerated material B is transported is referred to as a transport direction D. The incinerated material B is transported on the stoker 5 in the transport direction D. 1, 2 and 3, the right side is the downstream side D1 in the transport direction. The surface on which the grate 15 or 16 is attached is referred to as an installation surface, and is installed on a horizontal plane with the upstream end (11b, 12b, 13b) of the drying stage 11, the combustion stage 12, or the post-combustion stage 13 as a center. The angle formed on the side in the transport direction D formed by the surface is referred to as a stalker inclination angle (installation angle). When the downstream direction D1 of the installation surface in the transport direction is upward from the horizontal plane, the stoker inclination angle is a positive value. When the downstream direction D1 of the installation surface in the transport direction is downward from the horizontal surface, the stoker inclination angle is a negative value. This will be described here.
 ストーカ5は、被焼却物Bの搬送方向上流側から順に、被焼却物Bを乾燥させる乾燥段11と、被焼却物Bを焼却する燃焼段12と、未燃分を完全に焼却(後燃焼)する後燃焼段13と、を有している。ストーカ5では、乾燥段11、燃焼段12、及び後燃焼段13で、被焼却物Bを順次搬送しつつ、それぞれ乾燥、燃焼、及び後燃焼を行う。
 ストーカ炉1は、送風機(図示せず)が送風する一次空気を乾燥段11に供給する第一風箱6aと、燃焼段12に供給する第二風箱6bと、後燃焼段13に供給する第三風箱6cと、を有している。
 乾燥段11、燃焼段12、及び後燃焼段13は、複数の固定火格子15と、複数の移動火格子16と、を有している。
The stoker 5 includes a drying stage 11 for drying the incinerated material B, a combustion stage 12 for incinerating the incinerated material B, and a complete incineration of unburned matter (post-combustion) from the upstream side in the conveying direction of the incinerated material B. )), And a post-combustion stage 13. The stoker 5 performs drying, combustion, and post-combustion in the drying stage 11, the combustion stage 12, and the post-combustion stage 13 while sequentially transporting the incinerated material B.
The stoker furnace 1 supplies the first air box 6a for supplying the primary air blown by the blower (not shown) to the drying stage 11, the second air box 6b for supplying the combustion stage 12, and the post-combustion stage 13. A third wind box 6c.
The drying stage 11, the combustion stage 12, and the post-combustion stage 13 have a plurality of fixed grate 15 and a plurality of moving grate 16.
 固定火格子15と移動火格子16とは、搬送方向Dで交互に配置されている。移動火格子16は、被焼却物Bの搬送方向Dに往復運動する。移動火格子16の往復運動によってストーカ5上の被焼却物Bが搬送されるとともに攪拌される。即ち、被焼却物Bの下層部が動かされ、上層部と入れ替えられる。 The fixed grate 15 and the moving grate 16 are alternately arranged in the transport direction D. The moving grate 16 reciprocates in the transport direction D of the incinerated material B. The object B on the stoker 5 is transported and agitated by the reciprocating motion of the moving grate 16. That is, the lower part of the incinerated material B is moved and replaced with the upper part.
 乾燥段11は、フィーダ4によって押し出されて焼却炉3内に落下した被焼却物Bを受け、被焼却物Bの水分を蒸発させるとともに一部熱分解する。燃焼段12は、第二風箱6bから供給される一次空気によって、乾燥段11で乾燥した被焼却物Bに着火させ、揮発分および固定炭素分を燃焼させる。後燃焼段13は、燃焼段12で燃焼されずに通過してきた固定炭素分等の未燃分を完全に灰になるまで燃焼させる。
 後燃焼段13の出口には、灰出し口17が設けられている。灰は、灰出し口17を通じて焼却炉3から排出される。
The drying stage 11 receives the incinerated material B pushed out by the feeder 4 and dropped into the incinerator 3, evaporates the moisture of the incinerated material B, and partially decomposes it. The combustion stage 12 ignites the incinerated material B dried in the drying stage 11 by the primary air supplied from the second wind box 6b, and burns volatiles and fixed carbon. The post-combustion stage 13 burns unburned components such as fixed carbon which have passed through without being burned in the combustion stage 12 until they become completely ash.
An ash outlet 17 is provided at the outlet of the post-combustion stage 13. The ash is discharged from the incinerator 3 through the ash outlet 17.
 ストーカ炉1は、乾燥段11の移動火格子16を駆動する第一駆動装置18aと、燃焼段12の移動火格子16を駆動する第二駆動装置18bと、後燃焼段13の移動火格子16を駆動する第三駆動装置18cと、を備えている。第一駆動装置18a、第二駆動装置18b、第三駆動装置18cは、制御装置30によって制御される。 The stoker furnace 1 includes a first driving device 18 a for driving the moving grate 16 of the drying stage 11, a second driving device 18 b for driving the moving grate 16 of the combustion stage 12, and a moving grate 16 of the post-combustion stage 13. And a third driving device 18c for driving the driving device. The first driving device 18a, the second driving device 18b, and the third driving device 18c are controlled by the control device 30.
 駆動装置18a、18b、18cは、ストーカ5に設けられている梁19に取り付けられている。駆動装置18a、18b、18cは、梁19に取り付けられている油圧シリンダ20と、油圧シリンダ20によって動作するアーム21と、アーム21の先端に接続されているビーム22と、を有している。ビーム22と移動火格子16とは、ブラケット23を介して接続されている。 The driving devices 18a, 18b, 18c are attached to beams 19 provided on the stalker 5. Each of the driving devices 18a, 18b, and 18c has a hydraulic cylinder 20 attached to the beam 19, an arm 21 operated by the hydraulic cylinder 20, and a beam 22 connected to a tip of the arm 21. The beam 22 and the moving grate 16 are connected via a bracket 23.
 本実施形態の駆動装置18a、18b、18cによれば、油圧シリンダ20のロッドの伸縮によって、アーム21が動作する。アーム21の動作に伴いストーカ5の据付面11a、12a、13aに沿って移動するように構成されているビーム22が移動し、ビーム22に接続されている移動火格子16が駆動する。 According to the driving devices 18a, 18b, and 18c of the present embodiment, the arm 21 operates by the expansion and contraction of the rod of the hydraulic cylinder 20. With the operation of the arm 21, the beam 22 configured to move along the installation surfaces 11a, 12a, 13a of the stalker 5 moves, and the moving grate 16 connected to the beam 22 is driven.
 本実施形態の駆動装置18a、18b、18cは、油圧シリンダ20を用いているがこれに限ることはなく、例えば、油圧モータ、電動シリンダ、電導リニアモータ等を採用することができる。また、駆動装置18a、18b、18cの形態は、上記した形態に限らず、移動火格子16を往復運動させることができれば、どのような形態のものでもよい。例えば、アーム21を配置せずに、ビーム22と油圧シリンダ20を直結して駆動してもよい。 The drive devices 18a, 18b, and 18c of the present embodiment use the hydraulic cylinder 20, but the present invention is not limited to this. For example, a hydraulic motor, an electric cylinder, a conductive linear motor, or the like can be used. Further, the form of the driving devices 18a, 18b, 18c is not limited to the above-described form, and may be any form as long as the movable grate 16 can be reciprocated. For example, the beam 22 and the hydraulic cylinder 20 may be directly connected and driven without disposing the arm 21.
 本実施形態のストーカ炉1では、制御装置30が、乾燥段11、燃焼段12、及び後燃焼段13における移動火格子16の駆動の速度を、互いに同じ速度または乾燥段11、燃焼段12、及び後燃焼段13で異なる速度に制御することができる。 In the stoker furnace 1 of the present embodiment, the control device 30 sets the driving speed of the moving grate 16 in the drying stage 11, the combustion stage 12, and the post-combustion stage 13 to the same speed or the drying stage 11, the combustion stage 12, And the post-combustion stage 13 can control to different speeds.
 図2、及び図3に示すように、固定火格子15及び移動火格子16は、乾燥段11、燃焼段12、及び後燃焼段13の据付面11a、12a、13aに対して搬送方向下流側D1が上向きとなるように傾斜して配置されている。 As shown in FIGS. 2 and 3, the fixed grate 15 and the moving grate 16 are located on the downstream side in the transport direction with respect to the installation surfaces 11 a, 12 a, and 13 a of the drying stage 11, the combustion stage 12, and the post-combustion stage 13. D1 is arranged so as to be inclined upward.
 乾燥段11の移動火格子16の一部は、突起付火格子16Pである(他は、後述のノーマル火格子である)。図2に示すように、乾燥段11の搬送方向Dの長さのうち、搬送方向下流側D1から50%乃至80%の範囲R1の移動火格子16が突起付火格子16Pとなっている。突起付火格子16Pを使用することで、撹拌力を向上することができる。 一部 A part of the moving grate 16 of the drying stage 11 is a grate 16P with projections (the others are normal grate described later). As shown in FIG. 2, the moving grate 16 in the range R1 of 50% to 80% from the downstream side D1 in the conveyance direction of the length in the conveyance direction D of the drying stage 11 is a grate 16P with projections. By using the grate with projections 16P, the stirring power can be improved.
 図3に示すように突起付火格子16Pは、板状の火格子本体25と、火格子本体25の先端に設けられた三角形状の突起26とを有している。突起26は、火格子本体25の上面から上方に突出している。突起26の形状は、これに限ることはなく、例えば、台形状や、丸形状とすることもできる。
 ここで、図3の固定火格子15は、先端の上面に突起のない火格子であり、この形状をノーマル火格子という。
As shown in FIG. 3, the grate with projection 16 </ b> P has a plate-shaped grate main body 25 and a triangular protrusion 26 provided at the tip of the grate main body 25. The protrusion 26 protrudes upward from the upper surface of the grate main body 25. The shape of the projection 26 is not limited to this, and may be, for example, a trapezoidal shape or a round shape.
Here, the fixed grate 15 in FIG. 3 is a grate having no protrusion on the top surface of the tip, and this shape is called a normal grate.
 本実施形態では、移動火格子16のみを突起付火格子16Pとしたが、これに限ることはなく、移動火格子16及び固定火格子15の両方を突起付火格子としてもよい。
 また、突起付火格子16Pを設ける範囲も上述した範囲に限ることはなく、例えば、乾燥段11の全ての火格子を突起付火格子16Pとしてもよい。
 さらに、被焼却物Bの性状や種類によっては、乾燥段11におけるすべての火格子(固定火格子15及び移動火格子16)をノーマル火格子としてもよい。
In the present embodiment, only the moving grate 16 is a grate with projections 16P. However, the present invention is not limited to this, and both the moving grate 16 and the fixed grate 15 may be grate with projections.
Further, the range in which the grate with projections 16P is provided is not limited to the above-described range. For example, all grate in the drying stage 11 may be the grate with projections 16P.
Further, depending on the properties and type of the incinerated material B, all the grate (fixed grate 15 and moving grate 16) in the drying stage 11 may be a normal grate.
 乾燥段11と同様に、燃焼段12の移動火格子16のうち、一部は、突起付火格子16Pである。具体的には、燃焼段12の搬送方向の長さのうち、搬送方向下流側から50%乃至80%の範囲R2の移動火格子16が突起付火格子16Pとなっている。燃焼段12のその他の移動火格子16は、ノーマル火格子である。乾燥段11と同様に、被焼却物Bの性状や種類によって、移動火格子16及び固定火格子15の両方を突起付火格子16Pとしてもよいし、すべての火格子(固定火格子15及び移動火格子16)をノーマル火格子としてもよい。
 後燃焼段13の火格子は、図2では移動火格子16及び固定火格子15はいずれも全てノーマル火格子として示しているが、乾燥段11及び燃焼段12と同様に、突起付火格子16Pを採用してもよい。
Similar to the drying stage 11, a part of the moving grate 16 in the combustion stage 12 is a grate 16P with projections. Specifically, of the length of the combustion stage 12 in the transport direction, the moving grate 16 in the range R2 of 50% to 80% from the downstream side in the transport direction is the grate 16P with projections. The other moving grate 16 of the combustion stage 12 is a normal grate. As with the drying stage 11, both the moving grate 16 and the fixed grate 15 may be formed as projection grate 16P, or all grate (the fixed grate 15 and the moving The grate 16) may be a normal grate.
As for the grate of the post-combustion stage 13, the moving grate 16 and the fixed grate 15 are all shown as normal grate in FIG. 2, but like the drying stage 11 and the combustion stage 12, the grate with projection 16P is used. May be adopted.
 次に、乾燥段11、燃焼段12、及び後燃焼段13のストーカ傾斜角(据付角度)について説明する。
 図2に示すように、本実施形態のストーカ5の乾燥段11は下向きに配置されている。すなわち、乾燥段11の据付面11aは、搬送方向下流側D1が低くなるように傾斜している。具体的には、乾燥段11の上流側の端部11bを中心とした水平面と据付面11aの搬送方向側の角度である乾燥段11のストーカ傾斜角θ1は、-15°(マイナス15度)から-25°(マイナス25度)の間の角度である。
Next, the stoker inclination angles (installation angles) of the drying stage 11, the combustion stage 12, and the post-combustion stage 13 will be described.
As shown in FIG. 2, the drying stage 11 of the stoker 5 of the present embodiment is arranged downward. That is, the installation surface 11a of the drying stage 11 is inclined so that the downstream side D1 in the transport direction becomes lower. Specifically, the stoker inclination angle θ1 of the drying stage 11 which is an angle between the horizontal plane centered on the upstream end 11b of the drying stage 11 and the transport direction side of the installation surface 11a is −15 ° (−15 °). The angle is between −25 ° (minus 25 °).
 本実施形態のストーカ5の燃焼段12は上向きに配置されている。すなわち、燃焼段12の据付面12aは、搬送方向下流側D1が高くなるように傾斜している。具体的には、燃焼段12の上流側の端部12bを中心とした水平面と据付面12aの搬送方向側の角度である燃焼段12のストーカ傾斜角θ2は、+5°(プラス5度)から+15°(プラス15度)の間の角度、望ましくは+8°(プラス8度)から+12°(プラス12度)の間の角度である。 燃 焼 The combustion stage 12 of the stoker 5 of this embodiment is arranged upward. That is, the installation surface 12a of the combustion stage 12 is inclined such that the downstream side D1 in the transport direction is higher. Specifically, the stoker inclination angle θ2 of the combustion stage 12 that is the angle between the horizontal plane centered on the upstream end 12b of the combustion stage 12 and the transport direction side of the installation surface 12a is from + 5 ° (plus 5 degrees). The angle is between + 15 ° (plus 15 degrees), preferably between + 8 ° (plus 8 degrees) and + 12 ° (plus 12 degrees).
 本実施形態のストーカ5の後燃焼段13は上向きに配置されている。すなわち後燃焼段13の据付面13aは、搬送方向下流側D1が高くなるように傾斜している。
 後燃焼段13の上流側の端部13bを中心とした水平面と据付面13aの搬送方向側の角度である後燃焼段13のストーカ傾斜角θ3は、燃焼段12のストーカ傾斜角θ2と同じである。具体的には、後燃焼段13の上流側の端部13bを中心とした水平面と据付面13aの搬送方向側の角度である後燃焼段13のストーカ傾斜角θ3は、+5°(プラス5度)から+15°(プラス15度)の間の角度、望ましくは+8°(プラス8度)から+12°(プラス12度)の間の角度である。
 なお、後燃焼段13のストーカ傾斜角θ3は、θ2≠θ3としてもよく、また、θ2=θ3でもよい。
The post-combustion stage 13 of the stoker 5 of the present embodiment is arranged upward. That is, the installation surface 13a of the post-combustion stage 13 is inclined such that the downstream side D1 in the transport direction becomes higher.
The stoker inclination angle θ3 of the post-combustion stage 13 which is the angle between the horizontal plane around the upstream end 13b of the post-combustion stage 13 and the transport direction side of the installation surface 13a is the same as the stoker inclination angle θ2 of the combustion stage 12. is there. Specifically, the stoker inclination angle θ3 of the post-combustion stage 13 which is the angle between the horizontal plane centered on the upstream end 13b of the post-combustion stage 13 and the transport direction side of the installation surface 13a is + 5 ° (+5 degrees). ) To + 15 ° (plus 15 degrees), preferably between + 8 ° (plus 8 degrees) and + 12 ° (plus 12 degrees).
The stoker inclination angle θ3 of the post-combustion stage 13 may be θ2θθ3, or θ2 = θ3.
 乾燥段11と燃焼段12との間には、段差(落差壁)27が形成されている。乾燥段11の搬送方向下流側の端部11cは、燃焼段12の搬送方向上流側の端部12bよりも鉛直方向に高くなるように形成されている。
 燃焼段12と後燃焼段13との間には段差(落差壁)がない。即ち、燃焼段12と後燃焼段13とは、連続的に接続されている。換言すれば、燃焼段12と後燃焼段13とは、燃焼段12の搬送方向下流側の端部12cと後燃焼段13の搬送方向上流側の端部13bとが同じ高さになるように形成されている。従って、後燃焼段13の搬送方向下流側の端部13cは、鉛直方向において、燃焼段12の搬送方向下流側の端部12cよりも上方に配置される。
A step (fall wall) 27 is formed between the drying stage 11 and the combustion stage 12. The downstream end 11c of the drying stage 11 in the transport direction is formed to be vertically higher than the upstream end 12b of the combustion stage 12 in the transport direction.
There is no step (fall wall) between the combustion stage 12 and the post-combustion stage 13. That is, the combustion stage 12 and the post-combustion stage 13 are continuously connected. In other words, the combustion stage 12 and the post-combustion stage 13 are positioned such that the downstream end 12c of the combustion stage 12 in the transport direction and the upstream end 13b of the post-combustion stage 13 in the transport direction are at the same height. Is formed. Accordingly, the downstream end 13c of the post-combustion stage 13 in the transport direction is disposed above the downstream end 12c of the combustion stage 12 in the transport direction in the vertical direction.
 次に、乾燥段11のストーカ傾斜角を-15°(マイナス15度)から-25°(マイナス25度)の間の角度とする理由について説明する。
 乾燥段11の機能は、燃焼段12の被焼却物Bの上方にある火炎からの輻射熱及び火格子下からの一次空気の顕熱により効率良く被焼却物B中の水分を乾燥させることである。
 ここで、火炎からの輻射熱の方が、一次空気の顕熱に比べて乾燥への寄与度が高く、被焼却物Bの上層部の乾燥が進行しやすい。
 このため、火格子による撹拌動作によって、被焼却物Bの下層部を上方へ動かし、上層部と入れ替えることで乾燥速度を向上させている。
 しかし、撹拌動作を行っても、乾燥段11においては基本的に燃焼させるわけではないので、水分蒸発が十分に進むだけの長さの確保は必要となる。長さが長くなればなるほど装置が大型化しコストもかかるので、ストーカ長を可能な限り短くすることが求められる。
Next, the reason why the stoker inclination angle of the drying stage 11 is set to an angle between −15 ° (−15 °) and −25 ° (−25 °) will be described.
The function of the drying stage 11 is to efficiently dry moisture in the incinerator B by radiant heat from the flame above the incinerator B in the combustion stage 12 and sensible heat of the primary air from below the grate. .
Here, the radiant heat from the flame has a higher contribution to the drying than the sensible heat of the primary air, and the upper layer of the incinerated material B is more likely to be dried.
For this reason, the drying speed is improved by moving the lower part of the incineration object B upward by the stirring operation by the grate and replacing it with the upper part.
However, even if the stirring operation is performed, combustion is not basically performed in the drying stage 11, so that it is necessary to secure a length sufficient for water evaporation to sufficiently proceed. The longer the length, the larger the device and the higher the cost, so the stalker length is required to be as short as possible.
 ストーカ傾斜角の絶対値が被焼却物Bの安息角よりも大きいと、自重で崩れ、被焼却物Bの層が形成されないため、ストーカ5として成り立たない。一方、ストーカ傾斜角の絶対値を被焼却物Bの安息角より小さくしていくと、ストーカとして成り立つが、被焼却物Bの重力による移動(自重による移動)が減ってゆく。さらに、据付面が上向き、すなわちストーカ傾斜角が正の値(プラスの値)で傾斜している場合、重力は被焼却物Bを搬送方向から押し戻す方向に働く。
 ストーカ5による被焼却物Bの搬送量が投入された被焼却物Bの量を下回ると、搬送限界となり処理不能となる。
If the absolute value of the stoker inclination angle is larger than the angle of repose of the incinerated material B, it collapses under its own weight, and a layer of the incinerated material B is not formed. On the other hand, when the absolute value of the stoker inclination angle is made smaller than the angle of repose of the incineration object B, the stoker is realized, but the movement of the incineration object B by gravity (movement by its own weight) decreases. Further, when the installation surface is upward, that is, when the stalker inclination angle is inclined at a positive value (positive value), gravity acts in a direction to push the incinerated material B back from the transport direction.
If the transport amount of the incinerated material B by the stalker 5 is smaller than the amount of the incinerated material B, the transport limit is reached and the processing becomes impossible.
 最適なストーカ傾斜角は、投入される被焼却物Bの量と被焼却物Bの含水率により異なる。ここでは、投入される被焼却物Bの量が多くかつ含水率が高い(水分量が多い)場合を、投入被焼却物負荷が大きい場合として説明を進める。逆に、投入される被焼却物Bの量が少なくかつ含水率が低い場合は、投入被焼却物負荷が小さい場合となる。 The optimum stoker inclination angle differs depending on the amount of the incinerator B to be charged and the water content of the incinerator B. Here, description will be made assuming that the amount of the incinerator B to be charged is large and the moisture content is high (the amount of water is large), and the case where the load of the incinerator to be charged is large. Conversely, when the amount of the incinerator B to be charged is small and the moisture content is low, the load of the incinerator to be charged is small.
 図4は、横軸を乾燥段11のストーカ傾斜角、縦軸を乾燥段11の必要ストーカ長とし、投入被焼却物負荷が最も大きい場合(1)から順に、投入被焼却物負荷が最も小さい場合(4)まで、乾燥段11のストーカ傾斜角と乾燥段11の必要ストーカ長との関係をプロットした例を示すものである。
 ここで、必要ストーカ長とは、投入される被焼却物Bの水分の95%が乾燥する距離である。横軸の「安息角」は、被焼却物Bの安息角を示すものである。
In FIG. 4, the horizontal axis represents the stoker inclination angle of the drying stage 11, the vertical axis represents the required stoker length of the drying stage 11, and the input incinerator load is the smallest in order from (1) when the input incinerator load is the highest. Until case (4), an example is shown in which the relationship between the stoker inclination angle of the drying stage 11 and the required stoker length of the drying stage 11 is plotted.
Here, the required stoker length is a distance at which 95% of the moisture of the to-be-incinerated material B is dried. The “angle of repose” on the horizontal axis indicates the angle of repose of the incinerated material B.
 図4のグラフに示すように、ストーカ傾斜角-30°が被焼却物Bの層を形成する限界である。この層形成限界のストーカ傾斜角に対して、ストーカ傾斜角が緩くなるに従って、必要ストーカ長は減少するが、ストーカ傾斜角が正の値に転じると、必要ストーカ長は、徐々に長くなる。これは、ストーカ傾斜角が正の値になると、据付面が上向きになり、搬送速度が遅くなる結果、被焼却物Bの層が厚くなり、下層部の被焼却物Bの乾燥が進行しにくくなるからである。 (4) As shown in the graph of FIG. 4, the stoker inclination angle of −30 ° is the limit for forming the layer of the incineration material B. With respect to the stoker inclination angle at the layer formation limit, the required stoker length decreases as the stoker inclination angle decreases, but when the stoker inclination angle turns to a positive value, the required stoker length gradually increases. This is because, when the stoker inclination angle becomes a positive value, the installation surface becomes upward, and the transport speed becomes slow. As a result, the layer of the incinerator B becomes thicker, and the incinerator B in the lower layer hardly dries. Because it becomes.
 投入される被焼却物Bの負荷が最も大きい場合(1)から投入される被焼却物Bの負荷が最も小さい場合(4)までの4つのケースから、被焼却物Bがいかなる性状、量であっても適正に処理でき、かつ、ストーカ長を最も短くできる最適な乾燥段11のストーカ傾斜角は、(1)の曲線の最下点近傍のストーカ長に対応する-15°(マイナス15度)から-25°(マイナス25度)の間の角度が適正範囲であることが分かる。そして、最適値は-20°(マイナス20度)となる。 From the four cases from the case where the load of the incinerated material B to be charged is the largest (1) to the case where the load of the incinerated material B is the smallest (4), the incinerated material B is in any property and quantity. The optimum stoker inclination angle of the drying stage 11 that can properly process the stoker and minimize the stoker length is −15 ° (−15 °) corresponding to the stoker length near the lowest point of the curve of (1). ) To −25 ° (minus 25 °) is within an appropriate range. Then, the optimum value is −20 ° (−20 °).
 次に、乾燥段11のストーカ傾斜角を上述のように適正範囲のものとした場合において、燃焼段12のストーカ傾斜角を+8°(プラス8度)乃至+12°(プラス12度)の間の角度にすることが適している理由について説明する。
 燃焼段12の機能は、火炎からの輻射熱、自己燃焼熱により被焼却物Bの層の温度を維持し、揮発分の熱分解による可燃ガスの発生促進、熱分解後に残った固定炭素の燃焼を行うものである。
Next, when the stoker inclination angle of the drying stage 11 is in the appropriate range as described above, the stoker inclination angle of the combustion stage 12 is between + 8 ° (plus 8 degrees) to + 12 ° (plus 12 degrees). The reason why the angle is suitable will be described.
The function of the combustion stage 12 is to maintain the temperature of the layer of the incinerator B by radiant heat from the flame and self-combustion heat, to promote generation of combustible gas by pyrolysis of volatile matter, and to burn fixed carbon remaining after pyrolysis. Is what you do.
 ここで、揮発性可燃ガスの揮発に要する時間に比べて固定炭素の燃焼に要する時間の方が長いため、燃焼段12の必要ストーカ長は、固定炭素の燃焼に必要な時間によって決まる。 Here, since the time required for burning the fixed carbon is longer than the time required for volatilizing the volatile combustible gas, the required stoker length of the combustion stage 12 is determined by the time required for burning the fixed carbon.
 図5は、乾燥段11のストーカ傾斜角を上述のように適正範囲のものとした場合において、横軸を燃焼段のストーカ傾斜角、縦軸を燃焼段の必要ストーカ長とし、投入被焼却物負荷が最も大きい場合(1)から順に、投入被焼却物負荷が最も小さい場合(4)まで、燃焼段のストーカ傾斜角と燃焼段の必要ストーカ長との関係をプロットしたものである。ここで、燃焼段の必要ストーカ長とは、可燃分の95%が揮発または燃焼する距離である。 FIG. 5 shows that when the stoker inclination angle of the drying stage 11 is within the appropriate range as described above, the horizontal axis is the stoker inclination angle of the combustion stage, the vertical axis is the required stoker length of the combustion stage, and The relationship between the stoker inclination angle of the combustion stage and the required stoker length of the combustion stage is plotted in order from the case where the load is the largest (1) to the case where the load of the incineration material is the smallest (4). Here, the required stoker length of the combustion stage is a distance at which 95% of the combustible component volatilizes or burns.
 図5に示すように、ストーカ傾斜角-30°が被焼却物Bの層を形成する限界である。この層形成限界のストーカ傾斜角に対して、角度が緩くなるに従って、必要ストーカ長は減少する。搬送限界を考慮すると、ストーカ傾斜角の適正範囲は、図5に示す一点鎖線で囲む範囲とすることができる。 ス ト As shown in FIG. 5, the stoker inclination angle of −30 ° is the limit for forming the layer of the incineration material B. With respect to the stoker inclination angle at the layer formation limit, the required stoker length decreases as the angle becomes gentler. Considering the transport limit, the appropriate range of the stoker inclination angle can be a range surrounded by a dashed line shown in FIG.
 乾燥段11において投入被焼却物負荷が大きい場合であっても、乾燥段11はストーカ傾斜角が適正範囲であるため、ごみの含水率低減及び体積減少が促進される。このため、例えば乾燥段11で負荷が(1)に相当するものであっても燃焼段12では負荷は(3)、(4)に相当するものに変化するので、燃焼段12では、より大きなストーカ傾斜角を採用できるようになる。すなわち、燃焼段を上向きとすることができることで固定炭素の燃焼に必要な滞留時間の確保ができ、さらにストーカ長さを短くできる。 っ て も Even if the load of the incineration material is large in the drying stage 11, the stoker inclination angle in the drying stage 11 is within an appropriate range, so that the reduction of the moisture content and the volume of the waste are promoted. For this reason, for example, even if the load in the drying stage 11 corresponds to (1), the load changes in the combustion stage 12 to those corresponding to (3) and (4). Stalker inclination angle can be adopted. That is, since the combustion stage can be directed upward, the residence time required for burning the fixed carbon can be secured, and the stoker length can be further reduced.
 図6は、横軸を燃焼段12のストーカ傾斜角、縦軸を乾燥段11と燃焼段12の両方で必要なストーカ長とし、投入される被焼却物Bの負荷が最も大きい場合(1)から順に、投入される被焼却物Bの負荷が最も小さい場合(4)まで、燃焼段12のストーカ傾斜角と乾燥段11と燃焼段12の両方で必要なストーカ長との関係をプロットしたものである。ここで、乾燥段11のストーカ傾斜角は最適値の-20°(マイナス20度)としている。 FIG. 6 shows the case where the horizontal axis represents the stoker inclination angle of the combustion stage 12 and the vertical axis represents the stoker length required for both the drying stage 11 and the combustion stage 12, and the load of the incineration material B to be introduced is the largest (1) The plot of the relationship between the stoker inclination angle of the combustion stage 12 and the stoker length required in both the drying stage 11 and the combustion stage 12 until the load on the incinerator B to be introduced is the smallest (4). It is. Here, the stoker inclination angle of the drying stage 11 is set to an optimum value of −20 ° (−20 °).
 図6に示すように、搬送限界を考慮すると、燃焼段12のストーカ傾斜角の適正範囲は、おおよそ+5°(プラス5度)から+15°(プラス15度)の間の角度、より詳細には+8°(プラス8度)乃至+12°(プラス12度)の間の角度であることが分かる。また、乾燥段11のストーカ傾斜角が最適値の-20°(マイナス20度)の場合、燃焼段12のストーカ傾斜角の最適値は+10°(+10度)である。
 乾燥段11と燃焼段12の必要ストーカ長は、各々のストーカ傾斜角を適正範囲、特に最適値とすることで可能な限り短いストーカ長とすることができるので、後燃焼段13まで含めても、比較的小さなサイズかつ低コストなストーカ炉とすることができる。
 なお、後燃焼段13のストーカ傾斜角θ3は、上述の燃焼段12のストーカ傾斜角θ2と同一の角度範囲内でθ2≠θ3としてもよく、また、θ2=θ3でもよい。
As shown in FIG. 6, considering the transport limit, the appropriate range of the stoker inclination angle of the combustion stage 12 is approximately an angle between + 5 ° (+5 degrees) to + 15 ° (+15 degrees), more specifically, It can be seen that the angle is between + 8 ° (plus 8 degrees) and + 12 ° (plus 12 degrees). When the stoker inclination angle of the drying stage 11 is the optimum value of −20 ° (−20 degrees), the optimum value of the stoker inclination angle of the combustion stage 12 is + 10 ° (+10 degrees).
The required stoker lengths of the drying stage 11 and the combustion stage 12 can be as short as possible by setting the respective stoker inclination angles within an appropriate range, particularly an optimum value. Thus, a stoker furnace having a relatively small size and low cost can be provided.
The stoker inclination angle θ3 of the post-combustion stage 13 may be θ2θθ3 within the same angle range as the stoker inclination angle θ2 of the combustion stage 12, or may be θ2 = θ3.
 次に、制御装置30による被焼却物Bの燃切点Pに基づく駆動装置18a、18b、18cの制御について説明する。燃切点Pとは、ストーカ5上の被焼却物Bの火炎を伴う燃焼が実質的に完了する点である。
 本実施形態のストーカ炉1は、被焼却物Bの燃切点Pに応じて各段(乾燥段11、燃焼段12、後燃焼段13)の移動火格子16の駆動速度(移動速度)を変更する機能を有している。
Next, control of the driving devices 18a, 18b, and 18c based on the burn-off point P of the incinerated material B by the control device 30 will be described. The burn-off point P is a point at which the burning of the incinerated material B on the stoker 5 with the flame is substantially completed.
In the stoker furnace 1 of the present embodiment, the driving speed (moving speed) of the moving grate 16 in each stage (the drying stage 11, the combustion stage 12, and the post-combustion stage 13) is adjusted according to the burn-off point P of the incineration material B. Has the ability to change.
 図2に示すように、ストーカ炉1においては、理想的な燃切点である目標燃切点Ptが、搬送方向Dで見て、燃焼段12の中央よりも下流側に設定されている。ここでは、目標燃切点Ptは、燃焼段12上に設定されている。燃切点Pの位置が目標燃切点Ptよりも搬送方向上流側であれば、被焼却物Bの層の搬送方向Dの長さが短く、燃焼が効率的とならない可能性がある。燃切点Pの位置が目標燃切点Ptよりも搬送方向下流側であれば、被焼却物Bの層の搬送方向Dの長さが長く、被焼却物Bの燃え残りが生じる可能性がある。 As shown in FIG. 2, in the stoker furnace 1, the target burn-off point Pt, which is an ideal burn-off point, is set downstream from the center of the combustion stage 12 when viewed in the transport direction D. Here, the target burn-off point Pt is set on the combustion stage 12. If the position of the burn-off point P is on the upstream side in the transport direction from the target burn-off point Pt, the length of the layer of the incinerated material B in the transport direction D is short, and there is a possibility that combustion may not be efficient. If the position of the burn-off point P is downstream of the target burn-off point Pt in the transport direction, the length of the layer of the incinerated material B in the transport direction D is long, and there is a possibility that the incinerated material B may remain unburned. is there.
 燃切点検出装置である熱電対31は、燃焼段12の火格子のうち、目標燃切点Pt近傍の固定火格子15または移動火格子16の表面に設置されている。熱電対31は、ストーカ5上で被焼却物Bが燃焼することによって変動する火格子の温度を測定する。当該測定された温度が、被焼却物Bの燃切点Pの位置に対応する検出信号となる。 The thermocouple 31, which is a device for detecting the burn-off point, is installed on the surface of the fixed grate 15 or the movable grate 16 near the target burn-off point Pt among the grate of the combustion stage 12. The thermocouple 31 measures the temperature of the grate that fluctuates when the incinerated material B burns on the stoker 5. The measured temperature becomes a detection signal corresponding to the position of the burn-off point P of the incineration material B.
 制御装置30は、熱電対31によって測定された火格子温度T(検出信号)に対応する燃切点Pの位置を推定する燃切点推定部30aと、燃切点推定部30aによって推定された燃切点Pの位置に基づいて駆動装置18a、18b、18cを制御する駆動装置制御部30bと、を有している。 The control device 30 estimates the burn-off point estimator 30a and the burn-off point estimator 30a to estimate the position of the burn-off point P corresponding to the grate temperature T (detection signal) measured by the thermocouple 31. A drive control unit 30b that controls the drives 18a, 18b, 18c based on the position of the burn-off point P.
 発明者らは、燃焼段12の火格子温度Tと、燃切点Pの位置との間に相関関係が存在することを見出した。
 例えば、図2に示すような目標燃切点Ptを設定した場合、火格子温度TがT1℃である場合、燃切点Pが目標燃切点Ptに一致し、火格子温度TがT1℃より低い場合、燃切点Pが目標燃切点Ptよりも搬送方向上流側に位置し、火格子温度TがT1℃より高い場合、燃切点Pが目標燃切点Ptよりも搬送方向下流側に位置していると判断することができることを見出した。
The inventors have found that there is a correlation between the grate temperature T of the combustion stage 12 and the position of the burn-off point P.
For example, when the target burn-off point Pt as shown in FIG. 2 is set, when the grate temperature T is T1 ° C., the burn-out point P matches the target burn-off point Pt, and the grate temperature T becomes T1 ° C. If it is lower, the burn-out point P is located upstream of the target burn-off point Pt in the transport direction, and if the grate temperature T is higher than T1 ° C., the burn-out point P is downstream of the target burn-off point Pt in the transport direction. It has been found that it can be determined that it is located on the side.
 また、発明者らは、後燃焼段13の移動火格子16の駆動速度を燃焼段12の移動火格子16の駆動速度より遅くすることによって、被焼却物Bの層をより燃焼段12側に堆積させることができることを見出した。即ち、後燃焼段13の移動火格子16の駆動速度を遅くすることによって、被焼却物Bの層は、後燃焼段13よりも燃焼段12側に留まることがわかった。 In addition, the present inventors set the driving speed of the moving grate 16 of the post-combustion stage 13 to be lower than the driving speed of the moving grate 16 of the combustion stage 12, thereby moving the layer of the incineration B closer to the combustion stage 12 side. It has been found that it can be deposited. That is, it was found that the layer of the incineration object B remained on the combustion stage 12 side with respect to the post-combustion stage 13 by reducing the driving speed of the moving grate 16 in the post-combustion stage 13.
 燃切点推定部30aは、熱電対31によって測定された燃焼段12の火格子温度Tに基づいて、燃切点Pの位置を推定する。燃切点推定部30aは、火格子温度Tが閾値であるT1℃である場合、燃切点Pが目標燃切点Ptに一致し、火格子温度TがT1℃より低い場合、燃切点Pが目標燃切点Ptよりも搬送方向上流側に位置し、火格子温度TがT1℃より高い場合、燃切点Pが目標燃切点Ptよりも搬送方向下流側に位置していると判定する。 The burn-off point estimating unit 30a estimates the position of the burn-off point P based on the grate temperature T of the combustion stage 12 measured by the thermocouple 31. When the grate temperature T is a threshold value T1 ° C., the burn-off point P matches the target burn-off point Pt, and when the grate temperature T is lower than T1 ° C., When P is located upstream of the target burn-off point Pt in the transport direction and the grate temperature T is higher than T1 ° C., the burn-off point P is located downstream of the target burn-off point Pt in the transport direction. judge.
 制御装置30は、まず、乾燥段11、燃焼段12、後燃焼段13のそれぞれの移動火格子16を、それぞれ所定の駆動速度(所定速度)で駆動する。乾燥段11の移動火格子16の所定速度を第一駆動速度V1、燃焼段12の移動火格子16の所定速度を第二駆動速度V2、後燃焼段13の移動火格子16の所定速度を第三駆動速度V3とした場合、被焼却物Bの性状により、V1、V2、V3の値は適宜設定される。従って、被焼却物Bの性状により、V1=V2=V3の場合もあれば、V1≠V2≠V3の場合もありうる。本実施形態では、V1<V2≒V3と設定される場合が多い。また、V2はおおよそ100秒で1往復する程度の駆動速度である。ただし、上述のように被焼却物Bの性状に応じて駆動速度が設定されるため、この速度はあくまで例示であり、これに限定されるものではない。 First, the control device 30 drives the moving grate 16 of each of the drying stage 11, the combustion stage 12, and the post-combustion stage 13 at a predetermined driving speed (predetermined speed). The predetermined speed of the moving grate 16 in the drying stage 11 is the first driving speed V1, the predetermined speed of the moving grate 16 in the combustion stage 12 is the second driving speed V2, and the predetermined speed of the moving grate 16 in the post-combustion stage 13 is the first speed. When the three driving speeds are set to V3, the values of V1, V2, and V3 are appropriately set depending on the properties of the incinerated material B. Therefore, V1 = V2 = V3 or V1 ≠ V2 ≠ V3 depending on the properties of the incinerated material B. In the present embodiment, V1 <V2 ≒ V3 is often set. Further, V2 is a driving speed that makes one round trip in approximately 100 seconds. However, as described above, the driving speed is set according to the property of the incinerated material B, and thus this speed is only an example and is not limited to this.
 制御装置30の駆動装置制御部30bは、燃切点Pが目標燃切点Ptと同位置の場合、または目標燃切点Ptよりも搬送方向上流側に位置する場合、燃焼段12の移動火格子16と後燃焼段13の移動火格子16の駆動速度を変化させないよう第二駆動装置18bと第三駆動装置18cとを制御する。従って、燃焼段12の移動火格子16は所定速度である第二駆動速度V2を維持し、後燃焼段13の移動火格子16は所定速度である第三駆動速度V3を維持して駆動される。すなわち、燃焼段12と後燃焼段13の各移動火格子16は、それぞれ従前と同じ駆動速度で駆動し続けることになる。 The drive control unit 30b of the control device 30 determines whether or not the moving stage of the combustion stage 12 is moving when the burn-off point P is at the same position as the target burn-off point Pt or is located upstream of the target burn-off point Pt in the transport direction. The second drive device 18b and the third drive device 18c are controlled so as not to change the drive speed of the grate 16 and the moving grate 16 of the post-combustion stage 13. Accordingly, the moving grate 16 of the combustion stage 12 is driven while maintaining the second drive speed V2 which is a predetermined speed, and the moving grate 16 of the post-combustion stage 13 is driven while maintaining the third drive speed V3 which is a predetermined speed. . That is, the moving grate 16 of the combustion stage 12 and the post-combustion stage 13 continue to be driven at the same drive speed as before.
 駆動装置制御部30bは、燃切点Pが目標燃切点Ptよりも搬送方向下流側に位置する場合、後燃焼段13の移動火格子16の駆動速度が、燃焼段12の移動火格子16の駆動速度よりも遅い駆動速度で駆動するように第二駆動装置18bと第三駆動装置18cとを制御する。 When the burn-out point P is located downstream of the target burn-off point Pt in the transport direction, the drive control unit 30b determines that the driving speed of the moving grate 16 of the post-combustion stage 13 is The second driving device 18b and the third driving device 18c are controlled to drive at a driving speed lower than the driving speed of the second driving device 18b.
 なお、V2>V3の場合、すなわち、もともと燃焼段12の移動火格子16の駆動速度よりも遅い駆動速度で後燃焼段13の移動火格子16を駆動していた場合、駆動装置制御部30bは、例えば、後燃焼段13の移動火格子16の駆動速度をV3よりもさらに遅くするよう、第三駆動装置18cを制御する。言い換えれば、駆動装置制御部30bは、後燃焼段13の移動火格子16の駆動速度を従前より遅く制御する。 When V2> V3, that is, when the moving grate 16 of the post-combustion stage 13 was originally driven at a drive speed lower than the drive speed of the moving grate 16 of the combustion stage 12, the drive control unit 30b For example, the third driving device 18c is controlled so that the driving speed of the moving grate 16 in the post-combustion stage 13 is further reduced than V3. In other words, the drive control unit 30b controls the drive speed of the moving grate 16 in the post-combustion stage 13 to be lower than before.
 後燃焼段13の移動火格子16の駆動速度は、燃焼段12の移動火格子16の駆動速度の30%~80%とすることができる。 駆 動 The driving speed of the moving grate 16 in the post-combustion stage 13 can be 30% to 80% of the driving speed of the moving grate 16 in the combustion stage 12.
 発明者らによる事前の予想では、後燃焼段13の移動火格子16の駆動速度を燃焼段12の移動火格子16の駆動速度より遅くすることによって、図7の一点鎖線Beで示すように被焼却物Bの層が堆積されると思われたが、シミュレーションによって、被焼却物Bの層が実線Baで示すように堆積することがわかった。
 実線Baで示すように被焼却物Bの層が形成されるため、燃焼段12においては突起付火格子16Pで撹拌が効果的に行われ、燃焼段12上に被焼却物Bを保持する時間を稼ぐのみならず、結果的に燃焼が効果的に行われる。よって、後燃焼段13から排出される被焼却物Bの燃え残りを低減することができる。
According to the predictions made by the inventors in advance, by setting the driving speed of the moving grate 16 of the post-combustion stage 13 to be lower than the driving speed of the moving grate 16 of the combustion stage 12, as shown by the one-dot chain line Be in FIG. Although it was thought that a layer of the incinerated material B was deposited, the simulation showed that the layer of the incinerated material B was deposited as indicated by the solid line Ba.
Since the layer of the incineration material B is formed as shown by the solid line Ba, the agitation is effectively performed by the grate with projections 16P in the combustion stage 12, and the time for holding the incineration material B on the combustion stage 12 Not only to earn money, but also to result in effective combustion. Therefore, the unburned residue of the incinerated material B discharged from the post-combustion stage 13 can be reduced.
 上記実施形態によれば、乾燥段11が下向きに傾斜していることによって、どのような性状の被焼却物Bであっても燃焼段12まで滞りなく搬送することができ、かつ、燃焼段12及び後燃焼段13は上向きに傾斜していることによって、燃焼段12の下流に被焼却物Bが容易に滑り落ちたり、転がり落ちたりすることなく、十分に燃焼されて搬送される。 According to the above embodiment, since the drying stage 11 is inclined downward, the incineration object B of any property can be transported to the combustion stage 12 without any delay, and the combustion stage 12 Since the post-combustion stage 13 is inclined upward, the incinerated material B is sufficiently burned and conveyed without easily sliding down or rolling down the downstream of the combustion stage 12.
 即ち、滑りやすい素材又は転がりやすい形状の被焼却物Bの場合、乾燥段11を転がるなどして燃焼段12まで早期に搬送されるので、乾燥段11では十分に乾燥できない可能性がある。しかしながら、燃焼段12と後燃焼段13とが上向きに傾斜していため、乾燥段11を転がり落ちた被焼却物Bが燃焼段12と後燃焼段13をさらに転がり落ちることはなく、燃焼段12で必ず十分に乾燥、焼却がなされる。含水率が高い被焼却物Bは、乾燥段11に滞留することなく、乾燥されつつ燃焼段12へ搬送されるので、やはり同様に、燃焼段12で必ず十分に焼却される。
 これにより、被焼却物Bの性状によらず被焼却物Bを連続投入でき、かつ、被焼却物Bの燃え残りを無くすることができる。
That is, in the case of the incinerated material B having a slippery material or a shape that easily rolls, the material is conveyed to the combustion stage 12 early by rolling on the drying stage 11, so that the drying stage 11 may not be sufficiently dried. However, since the combustion stage 12 and the post-combustion stage 13 are inclined upward, the incineration material B that has rolled down the drying stage 11 does not further roll down the combustion stage 12 and the post-combustion stage 13. Always dry and incinerated. Since the incinerated material B having a high moisture content is conveyed to the combustion stage 12 while being dried without staying in the drying stage 11, it is also necessarily sufficiently incinerated in the combustion stage 12.
Thereby, the incinerated material B can be continuously charged irrespective of the properties of the incinerated material B, and the unburned material of the incinerated material B can be eliminated.
 また、仮に乾燥段11を転がり落ちた被焼却物Bの勢いが強く、燃焼段12をその勢いで通過したとしても、少なくとも後燃焼段13で停止し、後燃焼段13から排出されることはない。そして、後燃焼段13と燃焼段12が段差なく連続的に接続されていることにより、万一、後燃焼段13まで十分に燃焼されない被焼却物Bが転がる等して進んだとしても、自重により燃焼段12まで戻され、燃焼を行うことができる。すなわち、不完全に燃焼された被焼却物Bの排出を極力低減することができる。 Further, even if the incinerated material B that has rolled down the drying stage 11 has a strong momentum and passes through the combustion stage 12 at that moment, it is at least stopped in the post-combustion stage 13 and discharged from the post-combustion stage 13. Absent. Since the post-combustion stage 13 and the combustion stage 12 are continuously connected without any level difference, even if the incinerated material B that is not sufficiently burned to the post-combustion stage 13 rolls and advances, for example, the self-weight is reduced. To return to the combustion stage 12 to perform combustion. That is, it is possible to minimize the discharge of the incompletely burned incinerator B.
 また、燃切点Pが目標燃切点Ptより搬送方向下流側に位置する場合、後燃焼段13の移動火格子16の駆動速度を燃焼段12の移動火格子16の駆動速度より遅くすることによって、被焼却物Bの層を、燃焼段12側に留めることができる。これにより、燃焼段12上の被焼却物Bの層の厚さが保たれ、燃焼段12の火格子を保護することができる。 When the burn-off point P is located downstream of the target burn-off point Pt in the transport direction, the driving speed of the moving grate 16 of the post-combustion stage 13 should be lower than the driving speed of the moving grate 16 of the combustion stage 12. Thereby, the layer of the incineration material B can be retained on the combustion stage 12 side. Thereby, the thickness of the layer of the incineration material B on the combustion stage 12 is maintained, and the grate of the combustion stage 12 can be protected.
 また、被焼却物Bの層の厚さが保たれることによって、想定より大きな処理物が投入された場合においても、被焼却物Bの層によって火格子15、16が保護されるとともに、処理物を搬送方向Dに搬送することができる。 Further, by maintaining the thickness of the layer of the incinerated material B, the grate 15 and 16 can be protected by the layer of the incinerated material B, and the processing can be performed even when a processing object larger than expected is thrown in. An object can be transported in the transport direction D.
 また、燃切点Pに対応する検出信号を取得する燃切点検出装置として熱電対31を採用したことによって、より安価な構成で燃切点Pの位置を設定することができる。 Also, by employing the thermocouple 31 as a burn-off point detecting device for obtaining a detection signal corresponding to the burn-off point P, the position of the burn-off point P can be set with a cheaper configuration.
 なお、上記実施形態では、燃切点Pの位置を燃焼段12の火格子に配置された熱電対31によって測定された火格子温度Tに対応するものとしたが、これに限ることはない。例えば、熱電対31によって測定された火格子温度Tの温度変化(変化速度)を監視し、燃切点Pの位置を火格子温度Tの温度変化に基づいて推定する構成としてもよい。
 また、上記実施形態では、熱電対31を燃焼段12に設置したが、これに限ることはなく、熱電対を燃焼段12と後燃焼段13の少なくとも一方に設置する構成とすることができる。熱電対31を燃焼段12に設置する場合は、燃焼段12の下流側が望ましく、後燃焼段13に設置する場合は、後燃焼段13の上流側が望ましい。
In the above-described embodiment, the position of the burn-off point P corresponds to the grate temperature T measured by the thermocouple 31 disposed on the grate of the combustion stage 12, but is not limited thereto. For example, a configuration may be adopted in which the temperature change (change speed) of the grate temperature T measured by the thermocouple 31 is monitored, and the position of the burn-off point P is estimated based on the temperature change of the grate temperature T.
Further, in the above-described embodiment, the thermocouple 31 is provided in the combustion stage 12. However, the present invention is not limited to this, and the thermocouple may be provided in at least one of the combustion stage 12 and the post-combustion stage 13. When the thermocouple 31 is installed in the combustion stage 12, the downstream side of the combustion stage 12 is desirable, and when the thermocouple 31 is installed in the post-combustion stage 13, the upstream side of the post-combustion stage 13 is desirable.
 また、燃切点検出装置として、複数の熱電対を備える構成としてもよい。即ち、熱電対を、例えば、燃焼段12の上流側、燃焼段12の下流側、後燃焼段13の上流側、及び後燃焼段13の下流側のそれぞれに配置してもよい。
 このように、複数の熱電対を配置することによって、燃切点Pの位置をより正確に推定することができる。
 なお、熱電対の数はこれに限ることはなく、ストーカ5の大きさやコストに応じて適宜変更することができる。また、図1の紙面奥行き方向に複数の熱電対を配置してもよい。
Further, the burn-off point detection device may be configured to include a plurality of thermocouples. That is, the thermocouples may be arranged, for example, on the upstream side of the combustion stage 12, the downstream side of the combustion stage 12, the upstream side of the post-combustion stage 13, and the downstream side of the post-combustion stage 13, respectively.
Thus, by arranging a plurality of thermocouples, the position of the burn-off point P can be more accurately estimated.
Note that the number of thermocouples is not limited to this, and can be appropriately changed according to the size of the stoker 5 and the cost. Further, a plurality of thermocouples may be arranged in the depth direction of the paper of FIG.
〔第二実施形態〕
 以下、本発明の第二実施形態のストーカ炉について図面を参照して詳細に説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図8に示すように、本実施形態のストーカ炉は、乾燥段11の火格子温度Tdを測定してこれに対応する温度信号を制御装置30Bへ出力する乾燥段温度測定装置(乾燥段温度測定装置は、例えば乾燥段熱電対32を備える)と、乾燥段11の下方に配置された第一風箱6a内の圧力PR1を測定してこれに対応する第一圧力信号を制御装置30Bへ出力する第一圧力測定装置33aと、燃焼段12の下方に配置された第二風箱6b内の圧力PR2を測定してこれに対応する第二圧力信号を制御装置30Bへ出力する第二圧力測定装置33bと、を備えている。乾燥段熱電対32は、搬送方向Dで見て、乾燥段11の中央よりも下流側の乾燥段11の固定火格子15または移動火格子16の表面に設置されるのが望ましい。
 本実施形態の制御装置30Bは、火格子温度T、Td及び圧力PR1、PR2に基づいて、燃焼段12の移動火格子16の駆動速度、後燃焼段13の移動火格子16の駆動速度に加え、乾燥段11の移動火格子16の駆動速度を制御する。
(Second embodiment)
Hereinafter, a stoker furnace according to a second embodiment of the present invention will be described in detail with reference to the drawings. In this embodiment, differences from the above-described first embodiment will be mainly described, and the description of the same parts will be omitted.
As shown in FIG. 8, the stoker furnace of the present embodiment measures the grate temperature Td of the drying stage 11 and outputs a temperature signal corresponding thereto to the control device 30B (drying stage temperature measurement device). The apparatus includes, for example, a drying stage thermocouple 32) and measures the pressure PR1 in the first wind box 6a disposed below the drying stage 11 and outputs a corresponding first pressure signal to the control device 30B. A second pressure measurement which measures the pressure PR2 in the first pressure measuring device 33a and the second wind box 6b arranged below the combustion stage 12 and outputs a corresponding second pressure signal to the control device 30B. Device 33b. The drying stage thermocouple 32 is preferably installed on the surface of the fixed grate 15 or the moving grate 16 of the drying stage 11 downstream of the center of the drying stage 11 when viewed in the transport direction D.
The control device 30B of the present embodiment adds the driving speed of the moving grate 16 of the combustion stage 12 and the driving speed of the moving grate 16 of the post-combustion stage 13 based on the grate temperatures T and Td and the pressures PR1 and PR2. The driving speed of the moving grate 16 of the drying stage 11 is controlled.
 本実施形態の制御装置30Bは、風箱内の圧力について閾値(第一風箱6aに対応して第一閾値、第二風箱6bに対応して第二閾値)を設定している。閾値は、風箱上のストーカに堆積する被焼却物Bの厚さに基づいて設定される。なお、被焼却物Bの性状に応じて、第一閾値と第二閾値は、同一の値に設定される場合もあれば、互いに異なる値に設定される場合もありうる。制御装置30は、風箱内の圧力が閾値以上であれば、被焼却物Bの層の厚さが過剰であると判断する。 制 御 The control device 30B of the present embodiment sets a threshold (first threshold corresponding to the first wind box 6a and second threshold corresponding to the second wind box 6b) for the pressure in the wind box. The threshold value is set based on the thickness of the incinerated material B deposited on the stoker on the wind box. Note that the first threshold value and the second threshold value may be set to the same value, or may be set to different values depending on the properties of the incinerated material B. If the pressure in the wind box is equal to or larger than the threshold, the control device 30 determines that the thickness of the layer of the incineration object B is excessive.
 よって、第二風箱6b内の圧力PR2が、閾値(第二閾値)未満である場合、燃焼段12上の被焼却物Bの層が薄く、燃焼段12の処理能力に余裕があると判断することができる。一方で、第一風箱6aの圧力PR1が閾値(第一閾値)以上であり、かつ、乾燥段11の火格子温度Tdが所定の温度(第三閾値)以上である場合、乾燥段11上の被焼却物Bの層が厚く、乾燥段11で被焼却物Bの燃焼が行われていると判断することができる。 Therefore, when the pressure PR2 in the second wind box 6b is lower than the threshold value (second threshold value), it is determined that the layer of the incineration object B on the combustion stage 12 is thin and the processing capability of the combustion stage 12 has a margin. can do. On the other hand, when the pressure PR1 of the first wind box 6a is equal to or higher than the threshold value (first threshold value) and the grate temperature Td of the drying stage 11 is equal to or higher than a predetermined temperature (third threshold value), Is thick, and it can be determined that the incineration B is being burned in the drying stage 11.
 制御装置30Bは、第一実施形態と同様、まず、乾燥段11の移動火格子を所定速度V1で駆動する制御を行っている。
 そして、制御装置30Bは、第一実施形態のストーカ炉1と同様の制御を行うとともに、第一風箱6a内の圧力PR1が閾値(第一閾値)以上、かつ、第二風箱6b内の圧力PR2が閾値(第二閾値)未満、かつ、乾燥段11の火格子温度Tdが、所定の温度(第三閾値)以上である場合に、乾燥段11の移動火格子16の駆動速度を上記所定速度V1より速くする制御を行う。すなわち、燃焼段12の処理能力に余裕があり、乾燥段11の被焼却物Bの層が厚く、かつ、乾燥段11で被焼却物Bが燃焼している場合、乾燥段11の被焼却物Bを早期に燃焼段12へ移動させる。
 また、制御装置30は、第一風箱6a内の圧力PR1が閾値(第一閾値)未満、かつ、第二風箱6b内の圧力PR2が閾値(第二閾値)以上、かつ、乾燥段11の火格子温度Tdが、所定の温度(第三閾値)未満である場合に、乾燥段11の移動火格子16の駆動速度を上記所定速度V1より遅くする制御を行う。すなわち、燃焼段12に被焼却物Bが多量に溜まっている一方、乾燥段11の被焼却物Bの量が少なく処理能力に余裕がある場合、乾燥段11から燃焼段12への被焼却物Bの移動を遅くする。
As in the first embodiment, the control device 30B first performs control for driving the moving grate of the drying stage 11 at the predetermined speed V1.
Then, the control device 30B performs the same control as that of the stoker furnace 1 of the first embodiment, and the pressure PR1 in the first wind box 6a is equal to or more than a threshold (first threshold) and the pressure PR1 in the second wind box 6b. When the pressure PR2 is less than the threshold value (second threshold value) and the grate temperature Td of the drying stage 11 is equal to or higher than a predetermined temperature (third threshold value), the driving speed of the moving grate 16 of the drying stage 11 is set to the above value. Control is performed to make the speed higher than the predetermined speed V1. That is, if there is a margin in the treatment capacity of the combustion stage 12, the layer of the incineration B in the drying stage 11 is thick, and the incineration B is burning in the drying stage 11, the incineration of the drying stage 11 B is moved to the combustion stage 12 early.
Further, the control device 30 determines that the pressure PR1 in the first wind box 6a is less than the threshold value (first threshold value), the pressure PR2 in the second wind box 6b is not less than the threshold value (second threshold value), and the drying stage 11 When the grate temperature Td is lower than a predetermined temperature (third threshold value), control is performed to make the driving speed of the moving grate 16 of the drying stage 11 slower than the predetermined speed V1. That is, when a large amount of the incineration material B is accumulated in the combustion stage 12, but the amount of the incineration material B in the drying stage 11 is small and the processing capacity has a margin, the incineration material from the drying stage 11 to the combustion stage 12 Slow down the movement of B.
 上記実施形態によれば、被焼却物Bの層の厚さに基づいて乾燥段11の移動火格子16の駆動速度を調整することによって、乾燥段11、燃焼段12、後燃焼段13における被焼却物Bの処理バランスを向上させることができる。
 なお、上記実施形態では、圧力PR1、PR2とそれぞれに対応する閾値とを比較して制御装置30Bが制御したが、これに限ることはない。例えば、制御装置30Bは、圧力PR1、PR2の圧力変化(変化速度)を監視して制御する構成としてもよい。また、制御装置30Bは、乾燥段11の火格子温度Tdの温度変化(変化速度)を監視して制御する構成としてもよい。この場合、第一圧力信号は、圧力PR1の圧力変化に対応する信号とし、第二圧力信号は、圧力PR2の圧力変化に対応する信号とし、温度信号は、火格子温度Tdの温度変化に対応する信号とし、第一閾値、第二閾値、及び第三閾値をこれらに対応して設定すればよい。
According to the above embodiment, by adjusting the driving speed of the moving grate 16 of the drying stage 11 based on the thickness of the layer of the incineration material B, the drying speed of the drying stage 11, the combustion stage 12, and the post-combustion stage 13 is reduced. The treatment balance of the incineration B can be improved.
In the above-described embodiment, the control device 30B performs control by comparing the pressures PR1 and PR2 with the corresponding thresholds, but is not limited thereto. For example, the control device 30B may be configured to monitor and control a pressure change (change speed) of the pressures PR1 and PR2. Further, the control device 30B may be configured to monitor and control a temperature change (change speed) of the grate temperature Td of the drying stage 11. In this case, the first pressure signal is a signal corresponding to a pressure change of the pressure PR1, the second pressure signal is a signal corresponding to a pressure change of the pressure PR2, and the temperature signal is a signal corresponding to a temperature change of the grate temperature Td. The first threshold value, the second threshold value, and the third threshold value may be set in correspondence with these signals.
〔第三実施形態〕
 以下、本発明の第三実施形態のストーカ炉について図面を参照して詳細に説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図9に示すように、本実施形態のストーカ炉1Cは、燃切点検出装置として、後燃焼段13の上方、具体的には炉の天井に設置された撮像装置34を備えている。
 撮像装置34は、温度分布を検出可能なカメラまたはセンサである。
 撮像装置34によって検出される燃焼段12の下流側または後燃焼段13の上流側の温度分布は、被焼却物Bの燃切点Pの位置に対応する検出信号となる。
(Third embodiment)
Hereinafter, a stoker furnace according to a third embodiment of the present invention will be described in detail with reference to the drawings. In this embodiment, differences from the above-described first embodiment will be mainly described, and the description of the same parts will be omitted.
As shown in FIG. 9, the stoker furnace 1 </ b> C of the present embodiment includes, as a burn-off point detection device, an imaging device 34 installed above the post-combustion stage 13, specifically, on the ceiling of the furnace.
The imaging device 34 is a camera or a sensor that can detect a temperature distribution.
The temperature distribution detected by the imaging device 34 downstream of the combustion stage 12 or upstream of the post-combustion stage 13 is a detection signal corresponding to the position of the burn-off point P of the incineration object B.
 制御装置の燃切点推定部30aは、撮像装置34によって検出された温度分布に基づいて、燃切点Pの位置を推定する。
 駆動装置制御部30bは、燃切点Pが目標燃切点Ptと同位置の場合、または目標燃切点Ptよりも搬送方向上流側に位置する場合、燃焼段12の移動火格子16と後燃焼段13の移動火格子16とが同じ駆動速度で駆動するように第二駆動装置18bと第三駆動装置18cとを制御する。
 駆動装置制御部30bは、燃切点Pの位置が目標燃切点Ptよりも搬送方向下流側に位置する場合、第一実施形態と同様、後燃焼段13の移動火格子16の駆動速度が、燃焼段12の移動火格子16の駆動速度よりも遅い駆動速度で駆動するように第二駆動装置18bと第三駆動装置18cとを制御する。
The burn-off point estimation unit 30a of the control device estimates the position of the burn-off point P based on the temperature distribution detected by the imaging device 34.
When the burn-off point P is at the same position as the target burn-off point Pt, or is located upstream of the target burn-off point Pt in the transport direction, the driving device control unit 30b sets the drive grate 16 after the moving grate 16 of the combustion stage 12 The second driving device 18b and the third driving device 18c are controlled such that the moving grate 16 of the combustion stage 13 is driven at the same driving speed.
When the position of the burn-off point P is located downstream of the target burn-off point Pt in the transport direction, the drive control unit 30b determines that the driving speed of the moving grate 16 in the post-combustion stage 13 is lower than in the first embodiment. The second driving device 18b and the third driving device 18c are controlled so that the driving speed is lower than the driving speed of the moving grate 16 of the combustion stage 12.
 上記実施形態によれば、ストーカ5上の温度分布を把握することにより、より正確に燃切点Pの位置を推定することができる。 According to the above embodiment, by grasping the temperature distribution on the stoker 5, the position of the burn-off point P can be more accurately estimated.
 以上、本発明の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 なお、上記実施形態では、火格子15、16の先端が搬送方向下流側D1を向くように配置されているが、これに限ることはなく、例えば、乾燥段11の火格子15、16の先端が搬送方向上流側を向くように配置されてもよい。
 また、燃切点検出装置として熱電対と撮像装置のいずれか一方を使用するのみならず、熱電対と撮像装置の両方を用いて燃切点Pの位置を推定する構成としてよい。例えば、第一実施形態または第二実施形態と第三実施形態とを組み合わせた構成としてもよい。
As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to the embodiments, and includes a design change or the like without departing from the gist of the present invention. .
In addition, in the said embodiment, although the front-end | tip of the grate 15,16 is arrange | positioned so that it may face downstream direction D1 in a conveyance direction, it is not restricted to this, For example, the front-end | tip of the grate 15,16 of the drying stage 11 May be arranged to face the upstream side in the transport direction.
Further, not only one of the thermocouple and the imaging device may be used as the burn-off point detection device, but also the position of the burn-off point P may be estimated using both the thermocouple and the imaging device. For example, a configuration in which the first embodiment or the second embodiment is combined with the third embodiment may be adopted.
 1 ストーカ炉
 2 ホッパ
 3 焼却炉
 4 フィーダ
 5 ストーカ
 6a 第一風箱
 6b 第二風箱
 6c 第三風箱
 7 フィードテーブル
 8 フィーダ駆動装置
 9 燃焼室
 10 二次空気供給ノズル
 11 乾燥段
 11a 乾燥段の据付面
 12 燃焼段
 12a 燃焼段の据付面
 13 後燃焼段
 13a 後燃焼段の据付面
 15 固定火格子
 16 移動火格子
 16P 突起付火格子
 17 灰出し口
 18 駆動装置
 18a 第一駆動装置
 18b 第二駆動装置
 18c 第三駆動装置
 19 梁
 20 油圧シリンダ
 21 アーム
 22 ビーム
 23 ブラケット
 25 火格子本体
 26 突起
 27 段差(落差壁)
 30 制御装置
 31 熱電対(燃切点検出装置)
 32 乾燥段熱電対
 33a 第一圧力測定装置
 33b 第二圧力測定装置
 34 撮像装置(燃切点検出装置)
 B 被焼却物
 D 搬送方向
 D1 搬送方向下流側
 P 燃切点
 θ1、θ2、θ3 ストーカ傾斜角
DESCRIPTION OF SYMBOLS 1 Stalker furnace 2 Hopper 3 Incinerator 4 Feeder 5 Stalker 6a First wind box 6b Second wind box 6c Third wind box 7 Feed table 8 Feeder driving device 9 Combustion chamber 10 Secondary air supply nozzle 11 Drying stage 11a Drying stage Installation surface 12 Combustion stage 12a Combustion stage installation surface 13 Post-combustion stage 13a Post-combustion stage installation surface 15 Fixed grate 16 Moving grate 16P Projection grate 17 Ash outlet 18 Drive 18a First drive 18b Second Drive device 18c Third drive device 19 Beam 20 Hydraulic cylinder 21 Arm 22 Beam 23 Bracket 25 Grate main body 26 Projection 27 Step (drop wall)
30 control device 31 thermocouple (burn-off point detection device)
32 Dry stage thermocouple 33a First pressure measuring device 33b Second pressure measuring device 34 Imaging device (burn-out point detecting device)
B Incinerated material D Transport direction D1 Transport direction downstream side P Burnout point θ1, θ2, θ3 Stalker inclination angle

Claims (6)

  1.  フィーダから被焼却物を供給し、複数の固定火格子と複数の移動火格子を備えた乾燥段、燃焼段、及び後燃焼段で、前記被焼却物を順次搬送しつつ、それぞれ乾燥、燃焼、及び後燃焼を行うストーカ炉において、
     前記被焼却物の燃切点の位置に対応する検出信号を取得する燃切点検出装置と、
     前記乾燥段の前記移動火格子を駆動する第一駆動装置と、
     前記燃焼段の前記移動火格子を駆動する第二駆動装置と、
     前記後燃焼段の前記移動火格子を駆動する第三駆動装置と、
     前記第一駆動装置、前記第二駆動装置、及び前記第三駆動装置を制御する制御装置と、を有し、
     前記乾燥段は、搬送方向下流側が下向きとなるように傾斜して配置され、
     前記燃焼段は、前記乾燥段に接続され、前記搬送方向下流側が上向きとなるように傾斜して配置され、
     前記後燃焼段は、段差なく連続的に前記燃焼段に接続され、前記搬送方向下流側が上向きとなるように傾斜して配置され、
     前記制御装置は、前記検出信号を受け、前記燃切点検出装置によって取得された前記検出信号に対応する前記燃切点の位置が目標燃切点を越えない場合、前記燃焼段の前記移動火格子と前記後燃焼段の前記移動火格子の駆動速度を変化させず、前記検出信号に対応する前記燃切点の位置が前記目標燃切点より前記搬送方向下流側に位置する場合、前記後燃焼段の前記移動火格子の駆動速度が、前記燃焼段の前記移動火格子の駆動速度よりも遅くなるよう前記第二駆動装置と前記第三駆動装置とを制御することを特徴とするストーカ炉。
    The incineration material is supplied from the feeder, and the drying stage, the combustion stage, and the post-combustion stage having a plurality of fixed grate and a plurality of movable grate, while sequentially transporting the incineration material, drying, burning, respectively. And in a stoker furnace performing post-combustion,
    A burn-off point detection device that acquires a detection signal corresponding to the position of the burn-off point of the incinerated material,
    A first driving device for driving the moving grate of the drying stage,
    A second drive for driving the moving grate of the combustion stage,
    A third drive for driving the moving grate of the post-combustion stage;
    The first drive device, the second drive device, and a control device for controlling the third drive device,
    The drying stage is arranged to be inclined such that the downstream side in the transport direction is downward,
    The combustion stage is connected to the drying stage, is disposed so as to be inclined such that the downstream side in the transport direction is upward,
    The post-combustion stage is continuously connected to the combustion stage without any level difference, and is disposed so as to be inclined so that the downstream side in the transport direction is upward,
    The control device receives the detection signal, and when the position of the burn-off point corresponding to the detection signal acquired by the burn-off point detection device does not exceed a target burn-off point, the moving ignition of the combustion stage. The drive speed of the grate and the moving grate of the post-combustion stage is not changed, and the position of the burn-off point corresponding to the detection signal is located downstream of the target burn-off point in the transport direction. A stoker furnace for controlling the second driving device and the third driving device such that a driving speed of the moving grate in a combustion stage is lower than a driving speed of the moving grate in the combustion stage. .
  2.  前記固定火格子及び前記移動火格子は、前記乾燥段、前記燃焼段、及び前記後燃焼段の据付面に対して前記搬送方向下流側が上向きとなるように傾斜して配置されることを特徴とする請求項1に記載のストーカ炉。 The fixed grate and the moving grate are arranged so as to be inclined such that the downstream side in the transport direction is upward with respect to the installation surface of the drying stage, the combustion stage, and the post-combustion stage. The stoker furnace according to claim 1, wherein
  3.  前記燃焼段の前記複数の移動火格子の少なくとも一部は、先端に突起を設けた突起付火格子であることを特徴とする請求項2に記載のストーカ炉。 3. The stoker furnace according to claim 2, wherein at least a part of the plurality of moving grate of the combustion stage is a grate with a protrusion having a protrusion at a tip.
  4.  前記燃切点検出装置は、前記燃焼段と前記後燃焼段の少なくとも一方に設置された熱電対であることを特徴とする請求項1から請求項3のいずれか1項に記載のストーカ炉。 4. The stoker furnace according to claim 1, wherein the burn-off point detection device is a thermocouple installed in at least one of the combustion stage and the post-combustion stage. 5.
  5.  前記燃切点検出装置は、前記燃焼段または前記後燃焼段の温度分布を検出する撮像装置であることを特徴とする請求項1から請求項3のいずれか1項に記載のストーカ炉。 4. The stoker furnace according to claim 1, wherein the burn-off point detection device is an imaging device that detects a temperature distribution of the combustion stage or the post-combustion stage. 5.
  6.  前記乾燥段に対応して配置された第一風箱と、
     前記第一風箱の圧力または圧力変化に対応する第一圧力信号を出力する第一圧力測定装置と、
     前記燃焼段に対応して配置された第二風箱と、
     前記第二風箱の圧力または圧力変化に対応する第二圧力信号を出力する第二圧力測定装置と、
     前記乾燥段に設置され、前記乾燥段の温度または温度変化に対応する温度信号を出力する乾燥段温度測定装置と、をさらに有し、
     前記制御装置は、前記温度信号、前記第一圧力信号、及び前記第二圧力信号を受け、前記第一圧力信号に対応する前記圧力または前記圧力変化が第一閾値以上、かつ、前記第二圧力信号に対応する前記圧力または前記圧力変化が第二閾値未満、かつ、前記温度信号に対応する前記温度または前記温度変化が第三閾値以上である場合、前記乾燥段の前記移動火格子の駆動速度を速くし、前記第一圧力信号に対応する前記圧力または前記圧力変化が前記第一閾値未満、かつ、前記第二圧力信号に対応する前記圧力または前記圧力変化が前記第二閾値以上、かつ、前記温度信号に対応する前記温度または前記温度変化が前記第三閾値未満である場合、前記乾燥段の前記移動火格子の駆動速度を遅くするよう制御することを特徴とする請求項4または請求項5に記載のストーカ炉。
    A first wind box arranged corresponding to the drying stage,
    A first pressure measuring device that outputs a first pressure signal corresponding to the pressure or pressure change of the first wind box,
    A second wind box arranged corresponding to the combustion stage,
    A second pressure measurement device that outputs a second pressure signal corresponding to the pressure or pressure change of the second wind box,
    A drying stage temperature measuring device that is installed in the drying stage and outputs a temperature signal corresponding to a temperature or a temperature change of the drying stage;
    The controller receives the temperature signal, the first pressure signal, and the second pressure signal, and the pressure or the pressure change corresponding to the first pressure signal is greater than or equal to a first threshold, and the second pressure When the pressure or the pressure change corresponding to the signal is less than a second threshold, and the temperature or the temperature change corresponding to the temperature signal is greater than or equal to a third threshold, the driving speed of the moving grate of the drying stage. And the pressure or the pressure change corresponding to the first pressure signal is less than the first threshold, and the pressure or the pressure change corresponding to the second pressure signal is equal to or greater than the second threshold, and If the temperature or the temperature change corresponding to the temperature signal is less than the third threshold, the driving speed of the moving grate in the drying stage is controlled to be reduced. Stoker furnace according to Motomeko 5.
PCT/JP2018/039867 2018-08-30 2018-10-26 Stoker furnace WO2020044577A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP18931954.4A EP3845806B1 (en) 2018-08-30 2018-10-26 Stoker furnace
BR112020008004-7A BR112020008004B1 (en) 2018-08-30 2018-10-26 charger oven
SG11202003129PA SG11202003129PA (en) 2018-08-30 2018-10-26 Stoker furnace
CN201880002956.1A CN111133251B (en) 2018-08-30 2018-10-26 Mechanical grate furnace
KR1020217008829A KR102318973B1 (en) 2018-08-30 2018-10-26 as a stalker
RU2020114364A RU2731612C1 (en) 2018-08-30 2018-10-26 Stoker furnace
PH12020550227A PH12020550227A1 (en) 2018-08-30 2020-04-06 Stoker furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018161817A JP6450987B1 (en) 2018-08-30 2018-08-30 Stalker furnace
JP2018-161817 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020044577A1 true WO2020044577A1 (en) 2020-03-05

Family

ID=65020380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039867 WO2020044577A1 (en) 2018-08-30 2018-10-26 Stoker furnace

Country Status (10)

Country Link
EP (1) EP3845806B1 (en)
JP (1) JP6450987B1 (en)
KR (1) KR102318973B1 (en)
CN (1) CN111133251B (en)
BR (1) BR112020008004B1 (en)
PH (1) PH12020550227A1 (en)
RU (1) RU2731612C1 (en)
SG (1) SG11202003129PA (en)
TW (1) TWI697644B (en)
WO (1) WO2020044577A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102475048B1 (en) * 2020-12-22 2022-12-07 지엔원에너지(주) Stocker type incinerator and control method thereof
KR102574488B1 (en) * 2021-03-23 2023-09-04 재단법인 포항산업과학연구원 Appararus and method of controlling operation of incinerator for combustion stabilizaion
CN114060826B (en) * 2021-11-23 2024-05-28 浦湘生物能源股份有限公司 Automatic incineration control method and control system for incinerator
DE102022107219A1 (en) 2022-03-28 2023-09-28 Hitachi Zosen Inova Steinmüller GmbH Method for operating a moving grate and moving grate

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712053B2 (en) 1973-07-28 1982-03-09
JPS57127129U (en) 1973-10-08 1982-08-07
JPS5986814A (en) 1982-11-10 1984-05-19 Sanki Eng Co Ltd Control method for automatic combustion of refuse incinerator
JPH0328618A (en) 1989-02-23 1991-02-06 Ebara Infilco Co Ltd Incinerator combustion control method
JPH05141640A (en) * 1991-11-19 1993-06-08 Kubota Corp Combustion control device for incinerator
JPH06265125A (en) 1993-03-15 1994-09-20 Unitika Ltd Grid of dust incinerator
JPH0684140U (en) 1993-04-23 1994-12-02 株式会社クボタ Garbage incinerator
JPH06341628A (en) * 1993-06-03 1994-12-13 Kubota Corp Incinerator
JPH1137436A (en) * 1997-07-16 1999-02-12 Sumitomo Heavy Ind Ltd Refuse feed control system for horizontal stoker type refuse incinerator
JP2005214513A (en) * 2004-01-29 2005-08-11 Takuma Co Ltd Refuse combustion method by stoker-type refuse incinerator
JP6397107B1 (en) * 2017-10-17 2018-09-26 三菱重工環境・化学エンジニアリング株式会社 Stoker furnace for burning incinerated materials such as garbage
JP2018161817A (en) 2017-03-27 2018-10-18 セイコーエプソン株式会社 Recording apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU855345A1 (en) * 1979-08-03 1981-08-15 Ордена Трудового Красного Знамени Академия Коммунального Хозяйства Им.К.Д.Памфилова Icinerator
SU1441136A1 (en) * 1986-11-24 1988-11-30 Предприятие П/Я А-3513 Furnace for burning up solid domestic and industrial waste
JPH08285241A (en) * 1995-04-11 1996-11-01 Kubota Corp Incinerator
JP3669779B2 (en) * 1996-08-02 2005-07-13 株式会社クボタ Combustion control device for garbage incinerator
TW200829835A (en) * 2006-09-04 2008-07-16 Mitsubishi Heavy Ind Ltd Stoker type incinerator and its combustion control method
JP5013808B2 (en) * 2006-10-13 2012-08-29 三菱重工環境・化学エンジニアリング株式会社 Combustion control device for stoker-type incinerator
CN101101122B (en) * 2007-08-01 2010-10-13 重庆科技学院 Combined type fire grate incinerator primary air feeding device
CN201096345Y (en) * 2007-08-02 2008-08-06 重庆科技学院 Multiple row sectional drive combined garbage furnace

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712053B2 (en) 1973-07-28 1982-03-09
JPS57127129U (en) 1973-10-08 1982-08-07
JPS5986814A (en) 1982-11-10 1984-05-19 Sanki Eng Co Ltd Control method for automatic combustion of refuse incinerator
JPH0328618A (en) 1989-02-23 1991-02-06 Ebara Infilco Co Ltd Incinerator combustion control method
JPH05141640A (en) * 1991-11-19 1993-06-08 Kubota Corp Combustion control device for incinerator
JPH06265125A (en) 1993-03-15 1994-09-20 Unitika Ltd Grid of dust incinerator
JPH0684140U (en) 1993-04-23 1994-12-02 株式会社クボタ Garbage incinerator
JPH06341628A (en) * 1993-06-03 1994-12-13 Kubota Corp Incinerator
JPH1137436A (en) * 1997-07-16 1999-02-12 Sumitomo Heavy Ind Ltd Refuse feed control system for horizontal stoker type refuse incinerator
JP2005214513A (en) * 2004-01-29 2005-08-11 Takuma Co Ltd Refuse combustion method by stoker-type refuse incinerator
JP2018161817A (en) 2017-03-27 2018-10-18 セイコーエプソン株式会社 Recording apparatus
JP6397107B1 (en) * 2017-10-17 2018-09-26 三菱重工環境・化学エンジニアリング株式会社 Stoker furnace for burning incinerated materials such as garbage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3845806A4

Also Published As

Publication number Publication date
BR112020008004B1 (en) 2021-02-17
EP3845806A4 (en) 2022-06-08
KR102318973B1 (en) 2021-10-28
JP2020034232A (en) 2020-03-05
PH12020550227A1 (en) 2021-02-08
CN111133251A (en) 2020-05-08
SG11202003129PA (en) 2020-07-29
TWI697644B (en) 2020-07-01
CN111133251B (en) 2021-01-12
RU2731612C1 (en) 2020-09-07
BR112020008004A2 (en) 2020-08-18
EP3845806B1 (en) 2024-07-17
EP3845806A1 (en) 2021-07-07
KR20210040158A (en) 2021-04-12
JP6450987B1 (en) 2019-01-16
TW202009419A (en) 2020-03-01

Similar Documents

Publication Publication Date Title
WO2020044577A1 (en) Stoker furnace
EP3699490B1 (en) Stoker furnace for burning material to be incinerated
EP3734155B1 (en) Stoker-furnace sealing device and stoker furnace
EP3845805B1 (en) Stoker furnace
JP6481231B1 (en) Stalker furnace
JP5976337B2 (en) Incineration equipment and incineration equipment control method
JP3219379U (en) Stalker furnace
JP2019199991A (en) Waste incinerator and waste incineration method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931954

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020008004

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020008004

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200422

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018931954

Country of ref document: EP

Effective date: 20210330