WO2020044393A1 - 受信装置 - Google Patents

受信装置 Download PDF

Info

Publication number
WO2020044393A1
WO2020044393A1 PCT/JP2018/031526 JP2018031526W WO2020044393A1 WO 2020044393 A1 WO2020044393 A1 WO 2020044393A1 JP 2018031526 W JP2018031526 W JP 2018031526W WO 2020044393 A1 WO2020044393 A1 WO 2020044393A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
monitored
communication device
alive
communication
Prior art date
Application number
PCT/JP2018/031526
Other languages
English (en)
French (fr)
Inventor
真人 高井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/031526 priority Critical patent/WO2020044393A1/ja
Priority to CN201880096783.4A priority patent/CN112585909B/zh
Priority to US17/251,820 priority patent/US11425207B2/en
Priority to DE112018007947.3T priority patent/DE112018007947T5/de
Priority to JP2020539171A priority patent/JP7010382B2/ja
Publication of WO2020044393A1 publication Critical patent/WO2020044393A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/143Termination or inactivation of sessions, e.g. event-controlled end of session
    • H04L67/145Termination or inactivation of sessions, e.g. event-controlled end of session avoiding end of session, e.g. keep-alive, heartbeats, resumption message or wake-up for inactive or interrupted session

Definitions

  • the present invention relates to a receiving device.
  • Patent Document 1 discloses a monitoring system. According to the monitoring system, the communication state of the communication device can be determined.
  • the receiving device needs to transmit a confirmation signal to the communication device. Further, the communication device needs to transmit an acknowledgment signal. Therefore, the amount of data exchanged when determining the communication state of the communication device increases.
  • An object of the present invention is to provide a receiving device capable of specifying a communication device in a communication disabled state without transmitting a confirmation signal.
  • a receiving device is a monitoring timing determining unit that determines a timing at which a plurality of communication devices each generate a monitoring dead signal at the same timing as transmitting a monitored dead signal, and the monitoring timing.
  • a monitoring-side alive signal generation unit that generates a plurality of monitoring-side alive / result signals at a plurality of timings determined by the determination unit; and If the number of monitored alive signals generated is less than the number of generated monitoring alive signals, then the number of subsequently generated monitoring alive signals is compared with the number of received monitored alive signals.
  • the receiving device when the number of received monitored alive signals is smaller than the number of generated monitoring alive signals, the receiving device receives the number of monitoring alive signals generated thereafter and receives the number of the monitored alive signals.
  • the communication device in the communication disabled state is estimated based on the result of comparison with the number of the monitored vital signals. Therefore, it is possible to specify a communication device in a communication disabled state without transmitting a confirmation signal.
  • FIG. 1 is a configuration diagram of a monitoring system according to a first embodiment.
  • FIG. 5 is a diagram for explaining a method of determining a timing of transmitting a monitored alive signal by a communication device of the monitoring system according to the first embodiment.
  • 5 is a flowchart for describing an outline of an operation of the communication device of the monitoring system according to the first embodiment.
  • 5 is a flowchart for describing an outline of an operation of the receiving device of the monitoring system according to the first embodiment.
  • FIG. 3 is a hardware configuration diagram of a communication device of the monitoring system according to the first embodiment.
  • FIG. 13 is a configuration diagram of a monitoring system according to Embodiment 1 in Embodiment 2.
  • FIG. 13 is a diagram for explaining a method of estimating a communication device in a communication disabled state by a receiving device of the monitoring system according to the second embodiment.
  • FIG. 15 is a diagram for describing a method of estimating a communication device in a communication disabled state by a receiving device of a monitoring system in a third embodiment.
  • FIG. 1 is a configuration diagram of the monitoring system according to the first embodiment.
  • a monitoring system is provided so that a plurality of elevators 1 can be monitored.
  • the monitoring system includes a plurality of communication devices 2 and a plurality of receiving devices 3.
  • Each of the plurality of communication devices 2 is provided corresponding to each of the plurality of elevators 1.
  • Each of the plurality of communication devices 2 includes a monitored transmission unit 2a, a monitored reception unit 2b, a monitored time determination unit 2c, a monitored random number generation unit 2d, a monitored comparison unit 2e, and a monitored alive unit. It includes a signal generator 2f and an acknowledgment signal generator 2g.
  • the receiving device 3 is incorporated in a cloud server.
  • the receiving device 3 is installed near the communication device 2.
  • the receiving device 3 includes a monitoring-side receiving unit 3a, a monitoring-side transmitting unit 3b, a monitoring-side time determining unit 3c, a plurality of monitoring-side random number generating units 3d, a monitoring-side comparing unit 3e, a monitoring-side alive signal generating unit 3f, and a signal comparing unit. 3g, life and death judgment unit 3h, corresponding device confirmation unit 3i, and confirmation signal generation unit 3j.
  • the monitored time determination unit 2c, the monitored random number generation unit 2d, and the monitored comparison unit 2e are connected to the monitored transmitting unit 2a as the monitored timing determination unit.
  • the timing at which the monitoring-side alive signal is transmitted to the receiving device 3 is determined by itself.
  • the monitored-side alive signal generating unit 2f generates the monitored-side alive signal so that the monitored-side transmitting unit 2a transmits the monitored-side alive signal to the receiving device 3 at the determined timing.
  • the monitored-side transmitting unit 2a transmits the monitored-side alive signal to the receiving device 3.
  • the monitoring-side receiving unit 3 a receives the monitored alive signal from the plurality of communication devices 2.
  • the monitoring-side time determination unit 3c, the plurality of monitoring-side random number generation units 3d, and the monitoring-side comparison unit 3e function as a monitoring-side timing determination unit at the same timing as the timing at which the plurality of communication devices 2 transmit the monitored-side alive signal. Determines the timing of generating the monitoring-side alive signal.
  • the monitoring-side vital signal generation unit 3f generates a plurality of monitoring-side vital signals at the determined plurality of timings, respectively.
  • the signal comparing unit 3g compares the number of the generated alive signals on the monitoring side with the number of the received alive signals on the monitored side.
  • the life and death judgment unit 3h judges the communication device 2 in the communication disabled state based on the comparison result of the signal comparison unit 3g. For example, when the monitoring-side alive signal is not received by the monitored-side alive signal when the monitoring-side alive signal generation unit 3f generates the monitoring-side alive signal, the communication device 2 corresponding to the monitoring-side alive signal is used. Is determined to be in a communication disabled state. For example, when the monitoring-side alive signal generation unit 3f simultaneously generates a plurality of monitoring-side alive signals, if the received monitored-side alive signal is smaller than the number of the generated monitoring-side alive signals, the alive determination unit 3h determines that any of the plurality of communication devices 2 corresponding to the plurality of monitoring-side alive signals is in a communication disabled state.
  • the corresponding device confirmation unit 3i grasps the plurality of communication devices 2 corresponding to the plurality of monitoring alive signals, respectively.
  • the confirmation signal generation unit 3j generates a confirmation signal to be transmitted to the plurality of communication devices 2.
  • the monitoring-side transmission unit 3b transmits the confirmation signal generated by the confirmation signal generation unit 3j to the plurality of communication devices 2.
  • the monitored receiver 2b receives the confirmation signal from the receiver 3.
  • the acknowledgment signal generator 2g generates an acknowledgment signal when the monitored receiver 2b receives the acknowledgment signal.
  • the monitored transmission unit 2 a transmits an acknowledgment signal to the reception device 3. In the communication device 2 that is not in the communication disabled state, the monitored transmission unit 2 a does not transmit an acknowledgment signal to the reception device 3.
  • the monitoring-side receiving unit 3 a receives acknowledgment signals from the plurality of communication devices 2.
  • the receiving device 3 grasps the communication device 2 in which communication is disabled according to the reception status of the acknowledgment signal.
  • FIG. 2 is a diagram for explaining a method of determining the timing of transmitting the monitored alive signal by the communication device of the monitoring system according to the first embodiment.
  • the horizontal axis in FIG. 2 is time.
  • the vertical axis in FIG. 2 is the output value of the monitored time determination unit 2c and the monitored random number generation unit 2d.
  • the chain line represents the output value of only the minute at the current time by the monitored time determination unit 2c.
  • Each point represents an output value of the monitored random number generation unit 2d.
  • the monitored random number generation unit 2d outputs a signal at regular intervals. If the output value at this time is the same as the output value at the current time, the monitored side comparison unit 2e notifies the transmission of the monitored side alive signal.
  • the output value of the monitored random number generation unit 2d is set so that there is no correlation between the plurality of communication devices 2. In this case, the two communication devices 2 do not always transmit the monitored alive signal at the same timing. As a result, the receiving device 3 can recognize the communication device 2 that is in a communication disabled state.
  • a uniform random number generator to which an independent seed is input in each of the plurality of communication devices 2 may be used as the monitored random number generator 2d.
  • a pseudo random number generator on which software such as the linear congruential method or Xorshift is implemented may be used as the monitored random number generator 2d.
  • a hardware random number generator using thermal noise or the like may be used as the monitored random number generator 2d.
  • a cryptographic pseudorandom number generator based on a hash function such as SHA may be used as the monitored random number generator 2d.
  • the timing generator based on the operating state of the elevator 1 may be the monitored random number generator 2d.
  • a timing generator based on the current floor of the elevator 1 car may be used as the monitored random number generator 2d.
  • a timing generator based on the current acceleration of the car of the elevator 1 may be used as the monitored random number generator 2d.
  • a timing generator based on the cumulative number of times of activation of the elevator 1 may be used as the monitored random number generator 2d.
  • a timing generator based on the value of the current flowing through the hoist of the elevator 1 may be used as the monitored random number generator 2d.
  • a pseudo random number generator using the data of the operating state of the elevator 1 as a seed may be used as the monitored random number generator 2d.
  • the timing generator based on the attribute of the elevator 1 may be the monitored random number generator 2d.
  • a timing generator based on the specifications of the elevator 1, such as the floor and speed of the elevator 1 may be used as the monitored random number generation unit 2d.
  • a timing generator based on how the elevator 1 is used, such as a station or an office, may be used as the monitored random number generation unit 2d.
  • the attribute of elevator 1 creates a difference in the frequency requirements of life and death monitoring. For example, a station building requires more frequent alive monitoring than a residential apartment building.
  • the average mu, S according to the Gaussian distribution of variance ⁇ 2 (x) is output.
  • S (x) is represented by the following equation (1).
  • the generation time of the monitored vital signal of the plurality of property groups can be biased to an arbitrary time range.
  • the monitored vital signal may be transmitted at a high frequency by changing the interval of the monitored vital signal.
  • FIG. 3 is a flowchart for explaining an outline of the operation of the communication device of the monitoring system according to the first embodiment.
  • step S1 the communication device 2 refers to the current time. Thereafter, the communication device 2 performs the operation of step S2. In step S2, the communication device 2 determines whether the current time is a random number generation time.
  • step S2 If the current time is not the random number generation time in step S2, the communication device 2 performs the operation of step S1. If the current time is the random number generation time in step S2, the communication device 2 performs the operation of step S3.
  • step S3 the communication device 2 generates a random number. Thereafter, the communication device 2 performs the operation of step S4. In step S4, the communication device 2 determines whether or not the random number is the same as the current time.
  • step S4 If the random number is not the same as the current time in step S4, the communication device 2 ends the operation.
  • step S4 If the random number is the same as the current time in step S4, the communication device 2 performs the operation of step S5. In step S5, the communication device 2 transmits the monitored alive signal. Thereafter, the communication device 2 ends the operation.
  • FIG. 4 is a flowchart for describing an outline of the operation of the receiving device of the monitoring system according to the first embodiment.
  • step S11 the receiving device 3 refers to the current time. Thereafter, the receiving device 3 performs the operation of Step S12. In step S12, the receiving device 3 determines whether the current time is a random number generation time.
  • step S12 If the current time is not the random number generation time in step S12, the receiving device 3 performs the operation of step S11. If the current time is the random number generation time in step S12, the receiving device 3 performs the operation of step S13.
  • step S13 the receiving device 3 generates random numbers corresponding to all the communication devices 2. Thereafter, the receiving device 3 performs the operation of step S14.
  • step S14 the receiving device 3 determines whether there is a random number identical to the current time.
  • step S14 If there is no random number identical to the current time in step S14, the receiving device 3 ends the operation.
  • step S14 the receiving device 3 performs the operation of step S15.
  • step S15 the receiving device 3 compares the number of generated monitoring-side alive signals with the number of received monitored-side alive signals. Thereafter, the receiving device 3 performs the operation of Step S16.
  • step S16 the receiving device 3 determines whether the number of generated monitoring-side alive signals is the same as the number of received monitored-side alive signals.
  • step S16 When the number of the alive signal on the monitoring side generated in step S16 is the same as the number of the alive signal on the monitored side received, the receiving device 3 ends the operation.
  • step S16 If the number of the alive signals on the monitoring side generated in step S16 is not the same as the number of the alive signals on the monitored side received, the receiving device 3 performs the operation of the step S17. In step S17, the receiving device 3 performs an operation for life and death confirmation. Thereafter, the receiving device 3 ends the operation.
  • the communication device 2 itself determines the timing of transmitting the monitored alive signal to the receiving device 3. At this time, the receiving device 3 determines the communication state of the communication device 2 based on whether or not the monitored-side alive signal has been received at the timing. Therefore, the amount of data exchanged when determining the communication state of the communication device 2 can be reduced. As a result, the load on the network can be reduced.
  • the monitored vital signal is generated at the timing. For this reason, it is possible to suppress unnecessary generation of the monitored vital signal. As a result, erroneous transmission of the monitored vital signal can be suppressed.
  • the timing is determined based on a uniform random number. Therefore, the timing can be determined with a simple configuration.
  • the timing is determined based on the operating state of the corresponding elevator 1. Therefore, the monitored vital signal can be transmitted at a timing suitable for the corresponding elevator 1.
  • the timing is determined based on the attribute of the corresponding elevator 1. Therefore, the monitored vital signal can be transmitted at a timing suitable for the corresponding elevator 1.
  • n communication devices 2 out of N communication devices 2 output the monitored alive signal at the same time.
  • the collision probability Pc due to generation is expressed by the following equation (2) using a binomial distribution.
  • the probability Pnt that a certain communication device 2 does not transmit the monitored vital signal for m times is expressed by the following equation (3).
  • the monitored vital signal is transmitted with a probability of about 0.64 in 60 minutes.
  • the interval at which random numbers are generated may be reduced.
  • FIG. 5 is a hardware configuration diagram of a communication device of the monitoring system according to the first embodiment.
  • Each function of the communication device 2 can be realized by a processing circuit.
  • the processing circuit includes at least one processor 4a and at least one memory 4b.
  • the processing circuit includes at least one dedicated hardware 5.
  • each function of the communication device 2 is realized by software, firmware, or a combination of software and firmware. At least one of software and firmware is described as a program. At least one of software and firmware is stored in at least one memory 4b. At least one processor 4a realizes each function of the communication device 2 by reading and executing a program stored in at least one memory 4b.
  • the at least one processor 4a is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP.
  • the at least one memory 4b is a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, an EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, and the like.
  • a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, an EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, and the like.
  • the processing circuit comprises at least one dedicated hardware 5
  • the processing circuit is implemented, for example, as a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • each function of the communication device 2 is realized by a processing circuit.
  • each function of the communication device 2 is realized by a processing circuit collectively.
  • a part of each function of the communication device 2 may be realized by dedicated hardware 5, and the other part may be realized by software or firmware.
  • the function of the monitored random number generation unit 2d is realized by a processing circuit as dedicated hardware 5, and at least one processor 4a has at least one memory for functions other than the function of the monitored random number generation unit 2d.
  • 4b may be realized by reading and executing the program stored in the program 4b.
  • the processing circuit realizes each function of the communication device 2 by hardware 5, software, firmware, or a combination thereof.
  • each function of the receiving device 3 is also realized by a processing circuit equivalent to a processing circuit that realizes each function of the communication device 2.
  • FIG. FIG. 6 is a configuration diagram of the monitoring system according to the first embodiment in the second embodiment.
  • the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals. The description of this part is omitted.
  • the receiving device 3 does not include the monitoring-side transmitting unit 3b, the corresponding device checking unit 3i, and the check signal generating unit 3j.
  • the receiving device 3 includes an estimation unit 3k.
  • the estimating unit 3k is configured to, when the monitoring-side alive signal generation unit 3f simultaneously generates a plurality of monitoring-side alive signals, when the number of received monitored-side alive signals is smaller than the number of generated monitoring-side alive signals. Then, the communication device 2 in the communication disabled state is estimated based on the result of comparison between the number of monitoring-side alive signals generated thereafter and the number of received monitored-side alive signals. For example, the estimating unit 3k estimates the communication device 2 in the communication disabled state based on the graph theory.
  • FIG. 7 is a diagram for explaining a method of estimating a communication device in a communication disabled state by a receiving device of a monitoring system according to the second embodiment.
  • the lower circle is a node representing the communication device 2.
  • the solid line represents the communication device 2 in a communicable state.
  • the dotted line represents the communication device 2 that is in a disconnected state.
  • the square is a function node for calculating the total number of the alive signals on the monitored side received at the corresponding time.
  • the triangle is a node indicating the reception status of the monitored vital signal.
  • the white color indicates a situation in which all of the monitored alive signals to be received are being received. Black indicates a situation in which not all of the monitored alive signals to be received have been received.
  • the communication device 2 of “1” and the communication device 2 of “3” transmit the monitored alive signal, and these monitored alive signals are correctly received. .
  • the number of received packets matches the number of connections in the graph, and it is determined that the communication device 2 of “1” and the communication device 2 of “3” are in a communicable state.
  • the communication device 2 of “2”, the communication device 2 of “3”, and the communication device 2 of “6” should transmit the monitored alive signal. Does not transmit the monitored-side alive signal. In this case, an abnormality is detected. At this time, it is impossible to estimate the communication device 2 in the communication disabled state among the communication device 2 of “2”, the communication device 2 of “3”, and the communication device 2 of “6”.
  • the communication device 2 of “8” should transmit the monitored alive signal, but the communication device 2 of “8” does not transmit the monitored alive signal. In this case, an abnormality is detected. At this time, it is determined that the communication device 2 of “8” is in a communication disabled state.
  • the device 2 is estimated to be the communication device 2 of “2”.
  • the receiving apparatus 3 when the number of received alive signals on the monitored side is smaller than the number of generated alive signals on the monitored side, the receiving apparatus 3 generates The communication device 2 in the communication disabled state is estimated based on a comparison result between the number of alive signals and the number of received monitored alive signals. Specifically, the receiving device 3 estimates the communication device 2 in the communication disabled state based on the graph theory. Therefore, the communication device 2 in the communication disabled state can be specified without transmitting the confirmation signal.
  • FIG. 8 is a diagram for explaining a method of estimating a communication device in a communication disabled state by a receiving device of a monitoring system according to the third embodiment.
  • the same or corresponding parts as those of the second embodiment are denoted by the same reference numerals. The description of this part is omitted.
  • the estimation unit 3k disables communication based on compressed sensing, which is a method of estimating a high-dimensional vector (sparse vector) having many zero elements with the number of observations smaller than the number of dimensions of the vector. A certain communication device 2 is estimated.
  • the sparse vector x to be estimated is represented by the following equation (4).
  • the observation vector y is expressed by the following equation (5).
  • the estimation unit 3k solves the following equation (8) in order to estimate the vector x.
  • equation (9) represents a norm.
  • Equation (11) the norm represents the number of non-zero elements of the vector b.
  • the signal y received indicates the number of the alive signal on the monitored side received at a certain time.
  • x represents the operation status of the communication device 2. For example, when the communication device 2 is in a communicable state, x is non-zero. When the communication device 2 is in the communication disabled state, x is zero.
  • the life and death status of the eight communication devices 2 is estimated from the five observation statuses.
  • the signal input / output is expressed by the following equation (12).
  • the estimation unit 3k knows the number of signals to be truly received. For this reason, the estimation unit 3k obtains the left side from the number of actually received signals. Also, the transformation matrix is known because it shares the random number generator. For this reason, the estimating unit 3k treats the operation status vector on the right side as sparse and then as an estimation problem of compressed sensing.
  • the receiving device 3 estimates the communication device 2 in the communication disabled state based on the compressed sensing. Also in this case, the communication device 2 in the communication disabled state can be specified without transmitting the confirmation signal.
  • the communication device 2 in the communication disabled state may be estimated based on the pseudo inverse matrix. Also in this case, the communication device 2 in the communication disabled state can be specified without transmitting the confirmation signal.
  • the receiving device according to the present invention can be used for an elevator system.
  • Signal generation unit ⁇ 3g ⁇ signal comparison unit, ⁇ 3h ⁇ life and death judgment unit, ⁇ 3i ⁇ applicable device confirmation unit, ⁇ 3j ⁇ confirmation signal generation unit, ⁇ 3k ⁇ estimation unit, ⁇ 4a ⁇ processor, ⁇ 4b ⁇ memory, ⁇ 5 ⁇ hardware

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Alarm Systems (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Abstract

確認信号を送信することなく、通信不能状態にある通信装置を特定することができる受信装置を提供する。受信装置は、複数の通信装置が被監視側死活信号をそれぞれ送信するタイミングと同じタイミングで監視側死活信号をそれぞれ生成するタイミングを決定する監視側タイミング決定部と、前記監視側タイミング決定部により決定された複数のタイミングで複数の監視側死活信号をそれぞれ生成する監視側死活信号生成部と、前記監視側死活信号生成部が複数の監視側死活信号を同時に生成した際に、受信された被監視側死活信号の数が生成された監視側死活信号の数よりも少ない場合に、その後に生成された監視側死活信号の数と受信された被監視側死活信号の数との比較結果に基づいて通信不能状態にある通信装置を推定する推定部と、を備えた。

Description

受信装置
 この発明は、受信装置に関する。
 特許文献1は、監視システムを開示する。当該監視システムによれば、通信装置の通信状態を判定し得る。
日本特開2003-067264号公報
 しかしながら、特許文献1に記載の監視システムにおいては、受信装置は、確認信号を通信装置に送信する必要がある。さらに、通信装置は、確認応答信号を送信する必要がある。このため、通信装置の通信状態を判定する際にやり取りするデータ量が多くなる。
 この発明は、上述の課題を解決するためになされた。この発明の目的は、確認信号を送信することなく、通信不能状態にある通信装置を特定することができる受信装置を提供することである。
 この発明に係る受信装置は、複数の通信装置が被監視側死活信号をそれぞれ送信するタイミングと同じタイミングで監視側死活信号をそれぞれ生成するタイミングを決定する監視側タイミング決定部と、前記監視側タイミング決定部により決定された複数のタイミングで複数の監視側死活信号をそれぞれ生成する監視側死活信号生成部と、前記監視側死活信号生成部が複数の監視側死活信号を同時に生成した際に、受信された被監視側死活信号の数が生成された監視側死活信号の数よりも少ない場合に、その後に生成された監視側死活信号の数と受信された被監視側死活信号の数との比較結果に基づいて通信不能状態にある通信装置を推定する推定部と、を備えた。
 この発明によれば、受信装置は、受信された被監視側死活信号の数が生成された監視側死活信号の数よりも少ない場合に、その後に生成された監視側死活信号の数と受信された被監視側死活信号の数との比較結果に基づいて通信不能状態にある通信装置を推定する。このため、確認信号を送信することなく、通信不能状態にある通信装置を特定することができる。
実施の形態1における監視システムの構成図である。 実施の形態1における監視システムの通信装置による被監視側死活信号を送信するタイミングの決定方法を説明するための図である。 実施の形態1における監視システムの通信装置の動作の概要を説明するためのフローチャートである。 実施の形態1における監視システムの受信装置の動作の概要を説明するためのフローチャートである。 実施の形態1における監視システムの通信装置のハードウェア構成図である。 実施の形態2における実施の形態1における監視システムの構成図である。 実施の形態2における監視システムの受信装置による通信不能状態にある通信装置の推定方法を説明するための図である。 実施の形態3における監視システムの受信装置による通信不能状態にある通信装置の推定方法を説明するための図である。
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略する。
実施の形態1.
 図1は実施の形態1における監視システムの構成図である。
 例えば、監視システムは、複数のエレベータ1を監視し得るように設けられる。
 監視システムは、複数の通信装置2と受信装置3とを備える。
 複数の通信装置2の各々は、複数のエレベータ1の各々に対応して設けられる。複数の通信装置2の各々は、被監視側送信部2aと被監視側受信部2bと被監視側時刻判定部2cと被監視側乱数生成部2dと被監視側比較部2eと被監視側死活信号生成部2fと確認応答信号生成部2gとを備える。
 例えば、受信装置3は、クラウドサーバに組み込まれる。例えば、受信装置3は、通信装置2の付近に組み込まれる。受信装置3は、監視側受信部3aと監視側送信部3bと監視側時刻判定部3cと複数の監視側乱数生成部3dと監視側比較部3eと監視側死活信号生成部3fと信号比較部3gと死活判定部3hと該当装置確認部3iと確認信号生成部3jとを備える。
 複数の通信装置2の各々において、被監視側時刻判定部2cと被監視側乱数生成部2dと被監視側比較部2eとは、被監視側タイミング決定部として、被監視側送信部2aが被監視側死活信号を受信装置3に送信するタイミングを自らが決定する。被監視側死活信号生成部2fは、決定されたタイミングで被監視側送信部2aが被監視側死活信号を受信装置3に送信するように当該被監視側死活信号を生成する。被監視側送信部2aは、当該被監視側死活信号を受信装置3に送信する。
 受信装置3において、監視側受信部3aは、複数の通信装置2からの被監視側死活信号を受信する。監視側時刻判定部3cと複数の監視側乱数生成部3dと監視側比較部3eとは、監視側タイミング決定部として、複数の通信装置2が被監視側死活信号をそれぞれ送信するタイミングと同じタイミングで監視側死活信号をそれぞれ生成するタイミングを決定する。監視側死活信号生成部3fは、決定された複数のタイミングで複数の監視側死活信号をそれぞれ生成する。
 信号比較部3gは、生成された監視側死活信号の数と受信された被監視側死活信号の数とを比較する。
 死活判定部3hは、信号比較部3gの比較結果に基づいて通信不能状態にある通信装置2を判定する。例えば、監視側死活信号生成部3fが監視側死活信号を生成した際に、被監視側死活信号を受信していない場合に、死活判定部3hは、当該監視側死活信号に対応した通信装置2が通信不能状態にあると判定する。例えば、監視側死活信号生成部3fが複数の監視側死活信号を同時に生成した際に、受信された被監視側死活信号が生成された監視側死活信号の数よりも少ない場合に、死活判定部3hは、複数の監視側死活信号にそれぞれ対応した複数の通信装置2のいずれかが通信不能状態にあると判定する。
 この際、該当装置確認部3iは、複数の監視側死活信号にそれぞれ対応した複数の通信装置2を把握する。確認信号生成部3jは、当該複数の通信装置2に送信する確認信号を生成する。監視側送信部3bは、確認信号生成部3jにより生成された確認信号を当該複数の通信装置2に送信する。
 当該複数の通信装置2の各々において、被監視側受信部2bは、受信装置3からの確認信号を受信する。確認応答信号生成部2gは、被監視側受信部2bが確認信号を受信した際に確認応答信号を生成する。当該複数の通信装置2のうち、通信可能状態にある通信装置2において、被監視側送信部2aは、確認応答信号を受信装置3に送信する。通信不能状態にない通信装置2において、被監視側送信部2aは、確認応答信号を受信装置3に送信しない。
 受信装置3において、監視側受信部3aは、当該複数の通信装置2からの確認応答信号を受信する。受信装置3は、確認応答信号の受信状況に応じて通信不能になる通信装置2を把握する。
 次に、図2を用いて、被監視側死活信号を送信するタイミングの決定方法を説明する。
 図2は実施の形態1における監視システムの通信装置による被監視側死活信号を送信するタイミングの決定方法を説明するための図である。図2の横軸は時間である。図2の縦軸は、被監視側時刻判定部2cと被監視側乱数生成部2dとの出力値である。
 図2において、一点鎖線は、被監視側時刻判定部2cによる現在時刻における分のみの出力値を表す。各点は、被監視側乱数生成部2dの出力値を表す。
 被監視側乱数生成部2dは、一定の間隔で信号を出力する。この際の出力値が現在時刻の出力値と同一である場合、被監視側比較部2eは、被監視側死活信号を送信するように報知する。
 被監視側乱数生成部2dの出力値は、複数の通信装置2の間において相関を持たないように設定される。この場合、2つの通信装置2が常に同じタイミングで被監視側死活信号を送信することはない。その結果、受信装置3は、通信不能状態にある通信装置2を把握し得る。
 最も単純な方法として、複数の通信装置2の各々において独立したシードを入力した一様乱数生成器を被監視側乱数生成部2dとしてもよい。例えば、線形合同法、Xorshift等のソフトウェアが実装される疑似乱数生成器を被監視側乱数生成部2dとしてもよい。例えば、熱雑音等を利用するハードウェア乱数生成器を被監視側乱数生成部2dとしてもよい。例えば、SHA等のハッシュ関数に基づく暗号論的疑似乱数生成器を被監視側乱数生成部2dとしてもよい。
 なお、エレベータ1の稼働状態に基づくタイミング生成器を被監視側乱数生成部2dとしてもよい。例えば、エレベータ1のかごの現在階床に基づくタイミング生成器を被監視側乱数生成部2dとしてもよい。例えば、エレベータ1のかごの現在の加速度に基づくタイミング生成器を被監視側乱数生成部2dとしてもよい。例えば、エレベータ1のかごの累積起動回数に基づくタイミング生成器を被監視側乱数生成部2dとしてもよい。例えば、エレベータ1の巻上機に流れる電流の値に基づくタイミング生成器を被監視側乱数生成部2dとしてもよい。
 この際、隣接したエレベータ1においては、似通った出力値となり得る。この場合、エレベータ1の稼働状態のデータをシードにした疑似乱数生成器を被監視側乱数生成部2dとしてもよい。
 また、エレベータ1の属性に基づくタイミング生成器を被監視側乱数生成部2dとしてもよい。例えば、エレベータ1の階床、速度等のエレベータ1の仕様に基づくタイミング生成器を被監視側乱数生成部2dとしてもよい。例えば、駅、オフィス等のエレベータ1の使われ方に基づくタイミング生成器を被監視側乱数生成部2dとしてもよい。
 エレベータ1の属性は、死活監視の頻度要求の差を生む。例えば、駅舎においては、住宅マンションより高頻度の死活監視が必要となる。
 エレベータ1の属性に応じた特定の分布に従う被監視側乱数生成部2dにおいては、平均μ、分散σのガウス分布に従うS(x)が出力される。具体的には、S(x)は、以下の(1)式で表される。
Figure JPOXMLDOC01-appb-M000001
 例えば、住宅マンション等の特定の物件群においては、ガウス分布の平均20のパラメータが与えられる。例えば、駅舎等の別の物件群においては、ガウス分布の平均40のパラメータが与えられる。その結果、複数の物件群の被監視側死活信号の生成時間を任意の時刻範囲に偏らせることができる。なお、被監視側死活信号の生成時間の間隔を変えることにより高頻度に被監視側死活信号を送信してもよい。
 次に、図3を用いて、通信装置2の動作の概要を説明する。
 図3は実施の形態1における監視システムの通信装置の動作の概要を説明するためのフローチャートである。
 ステップS1では、通信装置2は、現在時刻を参照する。その後、通信装置2は、ステップS2の動作を行う。ステップS2では、通信装置2は、現在時刻が乱数生成時刻であるか否かを判定する。
 ステップS2で現在時刻が乱数生成時刻でない場合、通信装置2は、ステップS1の動作を行う。ステップS2で現在時刻が乱数生成時刻である場合、通信装置2は、ステップS3の動作を行う。
 ステップS3では、通信装置2は、乱数を生成する。その後、通信装置2は、ステップS4の動作を行う。ステップS4では、通信装置2は、当該乱数が現在時刻と同一であるか否かを判定する。
 ステップS4で当該乱数が現在時刻と同一でない場合、通信装置2は、動作を終了する。
 ステップS4で当該乱数が現在時刻と同一である場合、通信装置2は、ステップS5の動作を行う。ステップS5では、通信装置2は、被監視側死活信号を送信する。その後、通信装置2は、動作を終了する。
 次に、図4を用いて、受信装置3の動作の概要を説明する。
 図4は実施の形態1における監視システムの受信装置の動作の概要を説明するためのフローチャートである。
 ステップS11では、受信装置3は、現在時刻を参照する。その後、受信装置3は、ステップS12の動作を行う。ステップS12では、受信装置3は、現在時刻が乱数生成時刻であるか否かを判定する。
 ステップS12で現在時刻が乱数生成時刻でない場合、受信装置3は、ステップS11の動作を行う。ステップS12で現在時刻が乱数生成時刻である場合、受信装置3は、ステップS13の動作を行う。
 ステップS13では、受信装置3は、全ての通信装置2に対応した乱数を生成する。その後、受信装置3は、ステップS14の動作を行う。ステップS14では、受信装置3は、現在時刻と同一の乱数があるか否かを判定する。
 ステップS14で現在時刻と同一の乱数がない場合、受信装置3は、動作を終了する。
 ステップS14で現在時刻と同一の乱数がある場合、受信装置3は、ステップS15の動作を行う。ステップS15では、受信装置3は、生成された監視側死活信号の数と受信された被監視側死活信号の数とを比較する。その後、受信装置3は、ステップS16の動作を行う。ステップS16では、受信装置3は、生成された監視側死活信号の数と受信された被監視側死活信号の数とが同じであるか否かを判定する。
 ステップS16で生成された監視側死活信号の数と受信された被監視側死活信号の数とが同じである場合、受信装置3は、動作を終了する。
 ステップS16で生成された監視側死活信号の数と受信された被監視側死活信号の数とが同じでない場合、受信装置3は、ステップS17の動作を行う。ステップS17では、受信装置3は、死活確認のための動作を行う。その後、受信装置3は、動作を終了する。
 以上で説明した実施の形態1によれば、通信装置2は、被監視側死活信号を受信装置3に送信するタイミングを自らが決定する。この際、受信装置3は、当該タイミングにおける被監視側死活信号の受信の有無に基づいて通信装置2の通信状態を判定する。このため、通信装置2の通信状態を判定する際にやり取りするデータ量を少なくすることができる。その結果、ネットワークの負荷を軽減できる。
 また、被監視側死活信号は、当該タイミングにおいて生成される。このため、被監視側死活信号が無用に生成されることを抑制できる。その結果、被監視側死活信号の誤送信を抑制できる。
 また、当該タイミングは、一様乱数に基づいて決定される。このため、簡単な構成で当該タイミングを決定することができる。
 また、当該タイミングは、対応したエレベータ1の稼動状態に基づいて決定される。このため、対応したエレベータ1に適したタイミングで被監視側死活信号を送信することができる。
 また、当該タイミングは、対応したエレベータ1の属性に基づいて決定される。このため、対応したエレベータ1に適したタイミングで被監視側死活信号を送信することができる。
 なお、乱数生成部の出力乱数が一様分布に従っており、分の単位でタイミングを制御した場合、N台の通信装置2のうちのn台の通信装置2が被監視側死活信号を同時刻に生成することによる衝突確率Pは、二項分布を用いて次の(2)式で表される。
Figure JPOXMLDOC01-appb-M000002
 単純に識別情報のみを利用した場合、1byteで最大256台の通信装置2しか監視できないが、本方式によれば、乱数生成部の出力乱数が一様分布に従っている場合、0.37の衝突確率Pを許容することで監視できる通信装置2の数を増やすことができる。
 また、ある通信装置2が被監視側死活信号をm分送信しない確率Pntは、次の(3)式で表される。
Figure JPOXMLDOC01-appb-M000003
 この場合、60分で約0.64の確率で被監視側死活信号が送信される。被監視側死活信号が送信される間隔を短くするには、乱数を生成する間隔を短くすればよい。
 次に、図5を用いて、通信装置2の例を説明する。
 図5は実施の形態1における監視システムの通信装置のハードウェア構成図である。
 通信装置2の各機能は、処理回路により実現し得る。例えば、処理回路は、少なくとも1つのプロセッサ4aと少なくとも1つのメモリ4bとを備える。例えば、処理回路は、少なくとも1つの専用のハードウェア5を備える。
 処理回路が少なくとも1つのプロセッサ4aと少なくとも1つのメモリ4bとを備える場合、通信装置2の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ4bに格納される。少なくとも1つのプロセッサ4aは、少なくとも1つのメモリ4bに記憶されたプログラムを読み出して実行することにより、通信装置2の各機能を実現する。少なくとも1つのプロセッサ4aは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。例えば、少なくとも1つのメモリ4bは、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。
 処理回路が少なくとも1つの専用のハードウェア5を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。例えば、通信装置2の各機能は、それぞれ処理回路で実現される。例えば、通信装置2の各機能は、まとめて処理回路で実現される。

 通信装置2の各機能について、一部を専用のハードウェア5で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。例えば、被監視側乱数生成部2dの機能については専用のハードウェア5としての処理回路で実現し、被監視側乱数生成部2dの機能以外の機能については少なくとも1つのプロセッサ4aが少なくとも1つのメモリ4bに格納されたプログラムを読み出して実行することにより実現してもよい。
 このように、処理回路は、ハードウェア5、ソフトウェア、ファームウェア、またはこれらの組み合わせで通信装置2の各機能を実現する。
 図示されないが、受信装置3の各機能も、通信装置2の各機能を実現する処理回路と同等の処理回路で実現される。
実施の形態2.
 図6は実施の形態2における実施の形態1における監視システムの構成図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
 実施の形態2において、受信装置3は、監視側送信部3bと該当装置確認部3iと確認信号生成部3jとを備えない。受信装置3は、推定部3kを備える。
 推定部3kは、監視側死活信号生成部3fが複数の監視側死活信号を同時に生成した際に、受信された被監視側死活信号の数が生成された監視側死活信号の数よりも少ない場合に、その後に生成された監視側死活信号の数と受信された被監視側死活信号の数との比較結果に基づいて通信不能状態にある通信装置2を推定する。例えば、推定部3kは、グラフ理論に基づいて通信不能状態にある通信装置2を推定する。
 次に、図7を用いて、通信不能状態にある通信装置2の推定方法を説明する。
 図7は実施の形態2における監視システムの受信装置による通信不能状態にある通信装置の推定方法を説明するための図である。
 図7において、下側の円は、通信装置2を表すノードである。実線は、通信可能状態にある通信装置2を表す。点線は、不通状態にある通信装置2を表す。四角は、該当時刻において受信された被監視側死活信号の総数を計算する関数ノードである。三角は、被監視側死活信号の受信状況を表すノードである。白色は、受信すべき被監視側死活信号の全てを受信している状況を表す。黒色は、受信すべき被監視側死活信号の全てを受信しているわけではない状況を表す。
 例えば、時刻tが「1」の場合、「1」の通信装置2と「3」の通信装置2とが被監視側死活信号を送信し、これらの被監視側死活信号は、正しく受信される。このとき、受信パケット数とグラフの接続数とが一致し、「1」の通信装置2と「3」の通信装置2とが通信可能状態であると判定される。
 例えば、時刻tが「2」の場合、「2」の通信装置2と「3」の通信装置2と「6」の通信装置2とが被監視側死活信号を送信するはずのところ、「2」の通信装置2は被監視側死活信号を送信しない。この場合、異常が検知される。この時点において、「2」の通信装置2と「3」の通信装置2と「6」の通信装置2とのうち、通信不能状態にある通信装置2を推定することはできない。
 例えば、時刻tが「3」の場合、「8」の通信装置2が被監視側死活信号を送信するはずのところ、「8」の通信装置2は被監視側死活信号を送信しない。この場合、異常が検知される。この時点において、「8」の通信装置2が通信不能状態にあると判定される。
 時刻tが「5」まで進むと、この時点までに被監視側死活信号を送信すべき通信装置2と受信パケット数とに基づいて、時刻tが「2」の場合において通信不能状態にある通信装置2は、「2」の通信装置2であると推定される。
 以上で説明した実施の形態2によれば、受信装置3は、受信された被監視側死活信号の数が生成された監視側死活信号の数よりも少ない場合に、その後に生成された監視側死活信号の数と受信された被監視側死活信号の数との比較結果に基づいて通信不能状態にある通信装置2を推定する。具体的には、受信装置3は、グラフ理論に基づいて通信不能状態にある通信装置2を推定する。このため、確認信号を送信することなく、通信不能状態にある通信装置2を特定することができる。
実施の形態3.
 図8は実施の形態3における監視システムの受信装置による通信不能状態にある通信装置の推定方法を説明するための図である。なお、実施の形態2の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
 実施の形態3の受信装置3において、推定部3kは、零要素が多い高次元ベクトル(スパースベクトル)をベクトルの次元数より少ない観測数で推定する手法である圧縮センシングに基づいて通信不能状態にある通信装置2を推定する。
 推定の対象のスパースベクトルxは、次の(4)式で表される。
Figure JPOXMLDOC01-appb-M000004
 観測ベクトルyは、次の(5)式で表される。
Figure JPOXMLDOC01-appb-M000005
 ただし、Mは、nよりも小さい。
 この際、スパースベクトルxの推定に用いられるM×N行列Aは、次の(6)式で表される。
Figure JPOXMLDOC01-appb-M000006
 スパースベクトルxと観測ベクトルyとM×N行列Aとの関係は、次の(7)式で表される。
Figure JPOXMLDOC01-appb-M000007
 このとき、推定部3kは、ベクトルxを推定するために次の(8)式を解く。
Figure JPOXMLDOC01-appb-M000008
 ここで、次の(9)式は、ノルムを表す。
Figure JPOXMLDOC01-appb-M000009
 pが0よりも大きいとき、次の(10)式が成立する。
Figure JPOXMLDOC01-appb-M000010
 pが0のとき、ノルムは、次の(11)式で表される。
Figure JPOXMLDOC01-appb-M000011
 (11)式において、ノルムは、ベクトルbの非零要素の数を表す。
 受信装置3において、受信する信号yは、ある時間に受信した被監視側死活信号の数を表す。xは、通信装置2の稼働状況を表す。例えば、通信装置2が通信可能状態にある場合、xは非零である。通信装置2が通信不能状態にある場合、xは零である。
 図8においては、5個の観測状況から8台の通信装置2の生死状況が推定される。この際、本信号入出力は、次の(12)式で表される。
Figure JPOXMLDOC01-appb-M000012

 しかしながら、(12)式においては、推定したいベクトルの要素の大多数は、非零要素である。このため、圧縮センシングが解ける問題とならない。実際のシステムにおいては、通信不能状態にある通信装置2が多数を占める状況は起こりにくく、通信装置2の殆どは通信可能状態にある。そこで、推定ベクトルをスパースにするため、便宜上零を通信可能状態とし、非零を不通とする。ただし、真のベクトルは観測者に不明である。このままでは観測信号数とつじつまが合わない。そこで、時点tにおける受信すべき信号数をrとし、新たな観測ベクトルの要素が次の(13)式で定義される。
Figure JPOXMLDOC01-appb-M000013
 その結果、信号入出力は、次の(14)式に変換される。
Figure JPOXMLDOC01-appb-M000014
 推定部3kは、真に受信すべき信号数を把握している。このため、推定部3kは、実際に受信した信号数から左辺を求める。また、変換行列も乱数生成器を共有していることから既知である。このため、推定部3kは、右辺の稼働状況ベクトルをスパースとしたうえで圧縮センシングの推定問題として取り扱う。
 以上で説明した実施の形態3によれば、受信装置3は、圧縮センシングに基づいて通信不能状態にある通信装置2を推定する。この場合も、確認信号を送信することなく、通信不能状態にある通信装置2を特定することができる。
 なお、擬似逆行列に基づいて通信不能状態にある通信装置2を推定してもよい。この場合も、確認信号を送信することなく、通信不能状態にある通信装置2を特定することができる。
 以上のように、この発明に係る受信装置は、エレベータシステムに利用できる。
 1 エレベータ、 2 通信装置、 2a 被監視側送信部、 2b 被監視側受信部、 2c 被監視側時刻判定部、 2d 被監視側乱数生成部、 2e 被監視側比較部、 2f 被監視側死活信号生成部、 2g 確認応答信号生成部、 3 受信装置、 3a 監視側受信部、 3b 監視側送信部、 3c 監視側時刻判定部、 3d 監視側乱数生成部、 3e 監視側比較部、 3f 監視側死活信号生成部、 3g 信号比較部、 3h 死活判定部、 3i 該当装置確認部、 3j 確認信号生成部、 3k 推定部、 4a プロセッサ、 4b メモリ、 5 ハードウェア

Claims (3)

  1.  複数の通信装置が被監視側死活信号をそれぞれ送信するタイミングと同じタイミングで監視側死活信号をそれぞれ生成するタイミングを決定する監視側タイミング決定部と、
     前記監視側タイミング決定部により決定された複数のタイミングで複数の監視側死活信号をそれぞれ生成する監視側死活信号生成部と、
     前記監視側死活信号生成部が複数の監視側死活信号を同時に生成した際に、受信された被監視側死活信号の数が生成された監視側死活信号の数よりも少ない場合に、その後に生成された監視側死活信号の数と受信された被監視側死活信号の数との比較結果に基づいて通信不能状態にある通信装置を推定する推定部と、
    を備えた受信装置。
  2.  前記推定部は、前記監視側死活信号生成部が複数の監視側死活信号を同時に生成した際に、受信された被監視側死活信号が監視すべき全監視端末数よりも少ない場合に、その前後に生成された監視側死活信号の数と受信された被監視側死活信号の数との比較結果を用いたグラフ理論に基づいて通信不能状態にある通信装置を推定する請求項1に記載の受信装置。
  3.  前記推定部は、前記監視側死活信号生成部が複数の監視側死活信号を同時に生成した際に、受信された被監視側死活信号が監視すべき全監視端末数よりも少ない場合に、その前後に生成された監視側死活信号の数と受信された被監視側死活信号の数との比較結果とタイミング生成情報からなる変換行列を使い、圧縮センシングに基づいて通信不能状態にある通信装置を推定する請求項1に記載の受信装置。
PCT/JP2018/031526 2018-08-27 2018-08-27 受信装置 WO2020044393A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/031526 WO2020044393A1 (ja) 2018-08-27 2018-08-27 受信装置
CN201880096783.4A CN112585909B (zh) 2018-08-27 2018-08-27 接收装置
US17/251,820 US11425207B2 (en) 2018-08-27 2018-08-27 Receiving device estimating that a communication device is in an incommunicable state
DE112018007947.3T DE112018007947T5 (de) 2018-08-27 2018-08-27 Empfangsvorrichtung
JP2020539171A JP7010382B2 (ja) 2018-08-27 2018-08-27 受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031526 WO2020044393A1 (ja) 2018-08-27 2018-08-27 受信装置

Publications (1)

Publication Number Publication Date
WO2020044393A1 true WO2020044393A1 (ja) 2020-03-05

Family

ID=69643669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031526 WO2020044393A1 (ja) 2018-08-27 2018-08-27 受信装置

Country Status (5)

Country Link
US (1) US11425207B2 (ja)
JP (1) JP7010382B2 (ja)
CN (1) CN112585909B (ja)
DE (1) DE112018007947T5 (ja)
WO (1) WO2020044393A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11875041B2 (en) 2020-06-02 2024-01-16 Kioxia Corporation Semiconductor device and semiconductor storage device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006135282A1 (en) * 2005-06-14 2006-12-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for failure handling in a network
WO2007105271A1 (ja) * 2006-03-10 2007-09-20 Fujitsu Limited ネットワーク・システム
JP2009135621A (ja) * 2007-11-29 2009-06-18 Nec Access Technica Ltd ネットワーク接続装置およびネットワーク接続方法
JP2015180011A (ja) * 2014-03-19 2015-10-08 富士通フロンテック株式会社 無線lan端末装置、無線lanシステム、無線lanチップの死活監視方法、及びプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW475919B (en) * 1997-08-20 2002-02-11 Lg Otis Elevator Co An elevator control system
JP2003067264A (ja) 2001-08-23 2003-03-07 Hitachi Ltd ネットワークシステムの監視間隔制御方法
US9141489B2 (en) * 2009-07-09 2015-09-22 Uniloc Luxembourg S.A. Failover procedure for server system
DE102014009953A1 (de) * 2014-07-07 2016-01-07 LichtBlick SE System und Verfahren zum Bestimmen der Eignung mehrerer elektrischer Produzenten und Verbraucher, die in einem Netzwerk als virtuelles Kraftwerk betrieben werden, für die Erbringung von Regelleistung
US9692619B2 (en) 2015-01-14 2017-06-27 Huawei Technologies Co., Ltd. Non-underdetermined estimation for compressed sensing
JP6453788B2 (ja) 2016-02-09 2019-01-16 日本電信電話株式会社 分散ヘルスチェックシステム、および、分散ヘルスチェック方法
US9717110B1 (en) * 2016-03-15 2017-07-25 Qualcomm Incorporated User equipment centric mobility management in a mesh network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006135282A1 (en) * 2005-06-14 2006-12-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for failure handling in a network
WO2007105271A1 (ja) * 2006-03-10 2007-09-20 Fujitsu Limited ネットワーク・システム
JP2009135621A (ja) * 2007-11-29 2009-06-18 Nec Access Technica Ltd ネットワーク接続装置およびネットワーク接続方法
JP2015180011A (ja) * 2014-03-19 2015-10-08 富士通フロンテック株式会社 無線lan端末装置、無線lanシステム、無線lanチップの死活監視方法、及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11875041B2 (en) 2020-06-02 2024-01-16 Kioxia Corporation Semiconductor device and semiconductor storage device
JP7446923B2 (ja) 2020-06-02 2024-03-11 キオクシア株式会社 半導体装置及び半導体記憶装置

Also Published As

Publication number Publication date
DE112018007947T5 (de) 2021-06-02
CN112585909B (zh) 2022-10-14
CN112585909A (zh) 2021-03-30
US11425207B2 (en) 2022-08-23
US20210258388A1 (en) 2021-08-19
JP7010382B2 (ja) 2022-01-26
JPWO2020044393A1 (ja) 2021-08-12

Similar Documents

Publication Publication Date Title
WO2017026359A1 (ja) 通信装置
KR102148757B1 (ko) 통신 시스템에서 데이터를 송수신하는 방법 및 장치
KR20150007411A (ko) 데이터 전송 방법 및 장치, 데이터 수신 방법 및 장치 및 기록 매체
CN110832809B (zh) 检测装置、检测方法和非瞬态的计算机可读的存储介质
WO2020044393A1 (ja) 受信装置
CN110740144A (zh) 确定攻击目标的方法、装置、设备及存储介质
JP2019102974A (ja) データ収集システム、制御装置、制御プログラム、ゲートウェイ装置およびゲートウェイプログラム
JP2017028410A (ja) ネットワーク監視システム、ネットワーク監視プログラム及びネットワーク監視方法
WO2020044400A1 (ja) 通信装置、受信装置および監視システム
CN107430544B (zh) 信息处理装置以及信息处理系统
EP3399790A1 (en) Communication apparatus, communication method, and communication program
JP6129443B1 (ja) 通信装置、通信システムおよび通信障害検出方法
US11606366B2 (en) Using CRC for sender authentication in a serial network
US11206274B2 (en) Method and apparatus for calibrating a system for recognizing attempts to penetrate a computer network
US20200128041A1 (en) Method and device for monitoring data communications
US10104571B1 (en) System for distributing data using a designated device
EP3214547A1 (en) Data logging apparatus
WO2021106446A1 (ja) 検知装置、車両、検知方法および検知プログラム
JP2019029921A (ja) 送信装置、受信装置、及び通信方法
US9998294B1 (en) System for distributed audio output using designated audio devices
CN112470487A (zh) 用于现场设备的远程监测和诊断的方法和装置
JP5703154B2 (ja) スイッチングハブ接続段数検出方法および装置
CN110209624B (zh) 串行总线的数据传输方法和系统
US20220156042A1 (en) Network device for distributing computing operations by data communication in a network
US10158440B1 (en) System for configuring distributed audio output using an access point

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539171

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18931511

Country of ref document: EP

Kind code of ref document: A1