WO2020043259A1 - Sistema de generación y suministro de vapores de gasolina a motores de combustion interna - Google Patents

Sistema de generación y suministro de vapores de gasolina a motores de combustion interna Download PDF

Info

Publication number
WO2020043259A1
WO2020043259A1 PCT/DO2018/050001 DO2018050001W WO2020043259A1 WO 2020043259 A1 WO2020043259 A1 WO 2020043259A1 DO 2018050001 W DO2018050001 W DO 2018050001W WO 2020043259 A1 WO2020043259 A1 WO 2020043259A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
vapors
generator
vapor
dissipating
Prior art date
Application number
PCT/DO2018/050001
Other languages
English (en)
French (fr)
Inventor
Daniel Octavio Morel Perez
Original Assignee
Daniel Octavio Morel Perez
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daniel Octavio Morel Perez filed Critical Daniel Octavio Morel Perez
Priority to PCT/DO2018/050001 priority Critical patent/WO2020043259A1/es
Publication of WO2020043259A1 publication Critical patent/WO2020043259A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/16Other apparatus for heating fuel
    • F02M31/18Other apparatus for heating fuel to vaporise fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates in general to fuel saving systems and in particular to a system that allows to vaporize gasoline and supply it by the intake manifold of an internal combustion engine increasing the efficiency of the engine and decreasing fuel consumption.
  • ES8302852 discloses a method for evaporating liquid gasoline in order to increase the efficiency of an internal combustion engine of gasoline, by means of which an air stream is directed into a steam forming tank that acts to contain a predetermined amount of fuel, and where said tank comprises a stop or shock zone where the air comes into contact with the surface of the liquid fuel producing turbulence and increasing the evaporation of the fuel.
  • Another object of the present invention is a device for generating gasoline vapors from heated liquid gasoline, due to the effect of the turbulence generated by circulating the air from the steam generator through the intake, which is placed in contact with gasoline, where said device comprises two chambers and three physical barriers that allow the passage of vapors and prevent the passage of liquid fuel to the intake of the engine.
  • Another object of the present invention is a gasoline vapor meter that allows the entry, regulation and mixing of air and vapors by the intake manifold of an internal combustion engine, contributing to improve the quality of the air-fuel mixture that It burns in the combustion chamber, reducing fuel consumption and increasing the thermal efficiency of internal combustion engines.
  • the system object of the present invention not only has the advantages of simple construction and low cost, but also provides easy installation.
  • Figure 1 shows an overview of the generation and supply system of gasoline vapors.
  • Figure 2 is a diagonal view of the fuel vapor generator.
  • Figure 3 is an exploded view of the fuel vapor generator.
  • Figure 4 is a sectional view of the fuel vapor generator.
  • Figures 5, 6 and 7 are views of the dissipating discs.
  • Figures 8 and 9 are a view of the aerator rings.
  • Figures 10 and 11 are a view of the air inlet pipes or ducts
  • Figure 12 is a diagonal view of the vaporizer.
  • Figure 13 is an exploded view of the vaporizer.
  • Figure 14 is a view of the bubble dissipating rings or moons.
  • Figure 15 is a diagonal view of the disk of a porous material.
  • the present invention is directed to a system that can be adapted to an internal combustion engine to improve the thermal efficiency of these engines that work with gasoline, which comprises a two-chamber gasoline vapor generator, a doser of vapors, a fuel return pump, steam dryers, and an electromechanical controller for the system, allowing fuel savings and reducing the emission of polluting gases.
  • Fig. 1 illustrates a general view of a preferred embodiment of the gasoline generation system 1 according to the present invention, which comprises a fuel vapor generator 100, a fuel vaporizer 200 connected to the fuel generator.
  • the fuel vapors generator 100 can adopt several configurations, although in the present invention it is shown in its cylindrical variant and with a diameter 4 inches in diameter, as illustrated in Figures 2,3 and 4. Inside the fuel vapor generator 100 defines a first compartment or vapor formation chamber 101 intended to accommodate a certain amount of gasoline, coming from the fuel tank of a car and a second compartment or chamber 102 intended to accommodate and facilitate the maintenance of the fuel heating devices 1 18.
  • the vapors compartment or chamber 101 houses inside a tube 103 which is fixed at its end to the upper central part generating fuel vapors 100 by any appropriate means, for example threaded, descending perpendicularly to the bottom of the compartment or Vapor formation chamber 101 and where the distal bottom of said tube 103 is open and comprises at least one hole 104 for the circulation of the fuel.
  • the tube 103 is intended to house inside a fleet of vertical driven fuel 105 that regulates the amount of fuel present in the vapors compartment or chamber 101.
  • the tube 103 serves as a central guide and fixing point by its outer wall to the inner diameter of the central hole 106 which has a plurality of vapor dissipating discs, illustrated in Figures 5, 6 and 7, comprising upper dissipating discs 107, lower dissipating discs 108 and overlapping central dissipating discs 109, being located in the aforementioned order and preferably separated from each other at a distance of 5 mm and rotated together at an angle preferably of 2 alternate degrees, where said dissipating discs have holes intended to allow the passage of fuel vapors and retain the drops of fuel that are separated from the bubbles that are formed as a result of the operation of the air with the fuel; namely the upper dissipation discs 107 have holes 107a, 107b, 107c, 107d, 107e and 107f,
  • Figure 4 shows that the tube 103 is fixed by any appropriate means, for example by welding, a first and second pair of bubble dissipating rings 1 10 and 1 1 1, which take on half-moon shapes as shown in Figure 14, wherein said rings 1 10 and 1 1 1 are preferably separated from each other at a distance of 5 mm, being located relative to the tube 103 at an angle preferably 45 degrees and at an angle preferably 90 degrees between them and they are tightly fitted to the inner wall of the vapors compartment or chamber 101 by any appropriate means, for example by welding, acting as a physical barrier that disintegrates or breaks the bubbles of fuels that are formed by the actuation of the air with the fuel , allowing only the passage of fuel vapors through the holes 1 10a and 1 1 1a that each dissipating ring has.
  • any appropriate means for example by welding
  • the steam generator 100 comprises in its upper part a disk of a porous material 1 30 pierced through its center 131 by the tube 103 and is in contact with the walls of the steam generator 100.
  • This disc of porous material 1 30, more particularly illustrated in Figure 15, may consist, for example, of a steel sponge or tow or the like and acts as a physical barrier that allows the passage of fuel vapor and retains particles of liquid fuel which product of the suction force of the engine manages to overcome the two previous physical barriers, namely the drops or fuel particles that rise through the dissipating disks 107, 108 and 109 and the bubble dissipating rings 1 10 and 1 1 one .
  • a first and second aerator rings 1 12 and 1 13, illustrated in Figures 4, 8 and 9, formed by tubular structures with multiple air outlet openings 1 12a are placed in the lower part of the vapors compartment or chamber 101. and 1 1 3a respectively, acting connected to their respective air inlet tubes or ducts 1 14, 1 1 5, illustrated in Figures 10 and 1 1, where each air inlet pipe or duct has checks on its distal end air inlet 1 14a and 1 1 5a respectively.
  • the aerator rings 1 12 and 1 13 are located below the level of the fuel present in the vapors chamber or compartment 101 and act as bubbles of fuel by circulating the air entering the pipes or ducts 1 14 and 1 15 which interacts with the fuel present in the vapors compartment or chamber 101.
  • the heaters 1 18 are placed, as can be seen in Figure 4, which are intended to heat the fuel housed in the vapors compartment or chamber 101 to facilitate the formation of vapors when the fuel is subjected to the turbulence of the air leaving the aerator rings 1 12, 1 13.
  • the heaters 1 18 are accessed through the access cover 1 19, this facilitates the maintenance or replacement of the heaters 1 18 in case of breakage or damage in the performance.
  • the fuel vapor generator 100 has at the rear at least one fuel inlet 120 connected to the fuel line 121 owned by the vehicle and where said fuel line 121 has a check 700 that prevents the fuel present in the fuel generator. Vapors are returned to the tank or fuel tank of the vehicle; the manifestation in which the fuel vapors generator 100 has a single fuel inlet 120 is preferred for 4-cylinder engines with low fuel consumption. However, other manifestations of the invention, such as that illustrated in Figure 2, may have more than one fuel inlet 120, for vehicles having a high displacement, for example 6, 8 or 12 cylinders, so that it can be ensure adequate levels of fuel within generator 100 to ensure sufficient generation of fuel vapors to deliver to the 800 engine.
  • the fuel vapor generator 100 has two fuel vapor outlet nipples 122 and 123 at the top, as can be seen in Figures 2 and 3, where the nipple 122 is larger in diameter acting as an output of steam vapors of high and the nipple 123 is smaller in diameter and acts as an outlet for low vapors, allowing the output of the vapors depending on the demand for air resulting from the suction force of the engine 800.
  • the fuel vapors generated in the steam generator 100 exit through nipples 122 and 123 in the direction of the vapor meter 200, as a result of the suction force of the engine 800.
  • the vapors are driven by the connecting pipes 124 and 125 connected by one of its ends to nipples 122 and 123, and by their respective distal ends with nipples 126 and 127 which has the vapor meter 200, as illustrated in Figure 1.
  • the pipe 124 has a gas drying filter 400 that acts by retaining the possible fuel particles extracted from the generator 100 as a result of the suction force of the engine 800 and returning them to the fuel vapors generator 100 through a fuel return 1 15b having the air inlet tube 1 15 as shown in Figure 11.
  • the pipe 124 also has the one-way check 128 that guarantees no return of vapors and fuel to the steam generator 100;
  • the pipe 124 is connected to the solenoid valve 501 that controls and closes the gas flow when the 800 engine exceeds 2500 rpm and a direct supply of liquid fuel is required to meet the engine demand at high rpm.
  • the pipe 125 has a gas drying filter 401 that acts by retaining the possible fuel particles extracted from the generator 100 as a result of the suction force of the engine 800 and returning them to the return line of the fuel tank via the pump of fuel 300.
  • the pipe 125 further comprises a one-way check 129 which guarantees no return of vapors and fuel to the steam generator 100;
  • the pipe 125 is connected to the solenoid valve 501 which controls the passage of gases when the engine 800 exceeds 2500 rpm and a direct supply of fuel is required to meet the engine demand at high rpm.
  • vapor meter 200 is shown in more detail in Figures 12 and 13 and comprises a central chamber 202 formed by the housings 202a and 202b, inside which the vapor regulator 203 is housed.
  • the housing 202a has in its central part the fuel vapor inlet nipples 126 and 127 which are connected to the connection pipes 124 and 125 respectively, through which the fuel vapors that flow from the fuel vapor generator circulate 100.
  • the housing 202b houses inside the steam regulator 203 and comprises on its side the adjusting nut 204, where the hollow regulating screw 205 is coupled with the recovery spring 206, a system by which operates the steam regulator 203 that moves horizontally by the operation of the cable 207 that is coupled to the throttle body of the vehicle, regulating and allowing the entry of air from the air filter 208 through the hole 209 that It has the upper cover 212, according to the demand of the 800 engine.
  • the regulator 203 blocks the air inlet 209, and the supply of a For the admission of the engine 800, it occurs through the hole 21 1 which has the vapor regulator 203, where said hole preferably has a diameter of not less than 5 mm and not more than 15 mm.
  • Vapor dispenser 200 has an upper cover 212 to which the air filter 208 is fixed and a lower cover 213 with the hole 214 and to which the connecting tube 201 which attaches to the intake manifold of the engine 800 is fixed.
  • the system as a whole is regulated by an electrical-mechanical control comprising a microswitch 502, illustrated in Figure 12, which is connected to the vehicle's battery line and acts in correspondence with the rp m of the vehicle.
  • the microswitch 502 suspends the power to the relay box 500, which implies the closing of the solenoid valve 501 and the suspension of the generation and delivery of fuel vapors, passing the 800 engine to the standard of work and consumption of liquid fuel to meet the required demand at high rpm
  • the relay box 500 acts as the electrical control of the system, controlling the energy that activates the fuel pump 300, the fuel fleet 105, the solenoid valve 501, the heaters 1 18 and the temperature sensor 600 which is connected to the radiator hose of the engine 800 which acts sensing the temperature of the engine 800 to send the signal of temperature at relay box 500 that energizes the system and starts the generation of fuel vapors.
  • the system When the ignition swift is activated, the system is energized and the relay box 500 delivers power to the system, then the fuel fleet 105 completes the fuel level inside the vapors compartment or chamber 101 and the heaters 1 18 are activated. and start heating the fuel.
  • the temperature sensor 600 of the radiator hose reaches the appropriate temperature, preferably 45 degrees, the temperature sensor 600 sends the signal to the relay box 500 to activate the system by opening the solenoid valve 501, at which time the Vehicle intake requires air entering the generator 100 through the air inlet pipes or ducts 1 14, 1 1 5, leaving through the holes 1 12a and 1 1 3a that have the rings 1 1 2 and 1 1 3 starting the generation of turbulence and bubbles inside the generator 100 and converting the fuel into fuel vapors by the contact of the air with the heated fuel, said vapors rising through the holes that have the bubble dissipating rings 1 10 and 1 1 1 and the dissipating disks 104 , 105 and 106, said vapors coming out of nipples

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Un sistema de generación y suministro de vapores de gasolina a motores de combustión interna que permite mejorar la eficiencia térmica de estos motores, el cual comprende un generador de vapores de gasolina con dos cámaras interiores que actúa para contener una cantidad determinada de gasolina líquida calentada a partir de la cual se generan vapores de gasolina por el efecto de la turbulencia generada a partir de hacer circular por el generador de vapores aire que se pone en contacto con la gasolina, un dosificador de vapores conectado al generador de vapores de gasolina, donde dicho dosificador se encuentra unido al múltiple de admisión del motor de combustión interna y un control electromecánico del sistema de generación y suministro de vapores de gasolina que permite un funcionamiento controlado y condicionado a las r.p.m del motor.

Description

SISTEMA DE GENERACION Y SUMINISTRO DE VAPORES DE GASOLINA A MOTORES DE COMBUSTION INTERNA.
CAMPO DE LA INVENCIÓN.
La presente invención se relaciona en general con sistemas de ahorro de combustibles y en particular con un sistema que permite vaporizar gasolina y suministrarla por el múltiple de admisión de un motor de combustión interna aumentando la eficiencia del motor y disminuyendo el consumo de combustible.
ANTECEDENTES DE LA INVENCIÓN.
Desde la invención de los motores de combustión interna hasta nuestros días muchos han sido los esfuerzos orientados a mejorar la eficiencia térmica de los motores que emplean combustibles fósiles y de modo particular gasolina. Los expertos coinciden al señalar que la eficiencia térmica de estos motores, ya sean que usen carburador o inyectores, oscila entre el 20 y el 30% en el mejor de los casos, lo que dista mucho de un aprovechamiento y una transformación eficiente del calor generado por la combustión en una fuerza motriz o trabajo útil, lo que lleva a considerar a estos motores de combustión interna a gasolina como derrochadores de aproximadamente el 70% de potencial calorífico que se genera por la combustión de la gasolina, disipando esta energía en calor y liberando los gases resultantes de la combustión a la atmósfera.
A lo largo de los años los esfuerzos innovativos han estado orientados al desarrollo de sistemas de carburadores e inyectores buscando atomizar el combustible en forma de neblinas cada vez más finas, en el entendido que el menor tamaño de la gota entregada a la combustión garantiza una quema más completa del combustible; sin embargo a pesar de ello no se ha conseguido una combustión completa, dejando una cantidad considerable de combustible no quemado que se pierde por el escape.
En la técnica anterior se han probado diferentes dispositivos de vaporización adaptados para uso en motores de combustión interna. Más particularmente, estos dispositivos implican el uso de una cámara de vaporización externa para mezclar vapor de combustible con aire para su suministro a una cámara de combustión, tal como expone PIFER GEORGE MARK (Patente de Estados Unidos N° US8.028.681 ) la que comprende un aparato de vaporización para uso con un motor de combustión interna que posee una cámara de vaporización por el que se hace pasar un combustible, un flujo de aire comprimido y un área de recogida de vapores. Más aun JACKSON KENNETH AL et al. (Patente Española N° ES8302852) divulga un procedimiento para evaporar gasolina líquida con el fin de aumentar la eficacia de un motor de combustión interna de gasolina, mediante el cual se dirige una corriente de aire al interior de un depósito de formación de vapor que actúa para contener una cantidad predeterminada de combustible, y donde dicho depósito comprende un tope o zona de choque donde el aire entra en contacto con la superficie del combustible líquido produciendo turbulencia y aumentando la evaporación del combustible. Ambas tecnologías, según el dicho de sus inventores, reducen la cantidad de gasolina utilizada al entregar a la combustión vapores de gasolina que enriquecen la mezcla, facilitan la combustión y aumentan la eficiencia térmica de los motores, reduciendo la emisión de gases contaminantes; sin embargo estas tecnologías constituyen régimen constantes de generación de vapores y no evitan que junto con el vapor pase a la admisión del motor combustible en estado líquido; tampoco están diseñadas para operar en un régimen controlado y condicionado a las r.p.m del motor, todo lo cual indica que en altos regímenes de r.p.m la eficiencia en la reducción del consumo de combustible se vea comprometida reduciéndose significativamente la eficiencia de estos sistemas y aumentando el riesgo de roturas en el motor por el paso de combustible líquido al múltiple de admisión
Por lo tanto, es necesario y deseable en el estado de la técnica un sistema compatible con los motores de combustión interna modernos, para el suministro de vapor de gasolina a dichos motores y que proporcione una concentración confiable de vapor de combustible mezclado con aire, que garantice una reducción en el consumo, una quema más eficiente del combustible y una mejor eficiencia térmica de estos motores, condicionado a las r.p.m del motor.
SUMARIO DE LA INVENCION.
Por tanto, es un objetivo primario de la presente invención proporcionar un sistema para adaptar a un motor de combustión interna que permite mejorar la eficiencia térmica de estos motores de combustión interna que trabajan con gasolina, el cual comprende, entre otros componentes, un generador de vapores de gasolina, un dosificador de vapores, una bomba retorno de combustible, secadores de vapores, y un controlador electromecánico para el sistema. Constituye otro objeto de la presente invención un dispositivo para generar vapores de gasolina a partir de gasolina líquida calentada, por el efecto de la turbulencia generada a partir de hacer circular por el generador de vapor el aire, proveniente de la admisión, que se pone en contacto con la gasolina, donde dicho dispositivo comprende dos cámaras y tres barreras físicas que permiten el paso de los vapores e impiden el paso de combustible líquido a la admisión del motor.
Constituye otro objeto de la presente invención un dosificador de vapores de gasolina que permite la entrada, regulación y mezcla de aire y vapores por el múltiple de admisión de un motor de combustión interna, contribuyendo a mejorar la calidad de la mezcla de aire-combustible que se quema en la cámara de combustión, disminuyendo el consumo de combustible y aumentando la eficiencia térmica de los motores de combustión interna.
El sistema objeto de la presente invención no sólo tiene las ventajas de una construcción sencilla y un bajo costo, sino que también proporciona una instalación fácil.
Para facilitar la comprensión de los objetos, características y efectos de esta invención, utilizamos modalidades preferidas junto con los dibujos anexos para la descripción detallada de la invención.
BREVE DESCRIPCION DE LOS DIBUJOS.
Las características técnicas y el contenido de la presente invención serán evidentes con la descripción detallada acompañada de los dibujos relacionados que muestran realizaciones preferidas de la invención, donde:
La Figura 1 muestra una vista general del sistema de generación y suministro de vapores de gasolinas.
La Figura 2 es una vista diagonal del generador de vapores de combustible.
La Figura 3 es una vista en explosión del generador de vapores de combustible.
La Figura 4 es una vista seccional del generador de vapores de combustible.
Las Figuras 5, 6 y 7 son vistas de los discos disipadores. Las Figuras 8 y 9 son una vista de los aros aireadores.
Las Figuras 10 y 11 son una vista de los tubos o ductos de entrada de aire La Figura 12 es una vista diagonal del dosificador de vapores.
La Figura 13 es una vista en explosión del dosificador de vapores.
La Figura 14 es una vista de los anillos o lunas disipadores de burbujas.
La Figura 15 es una vista diagonal del disco de un material poroso.
DESCRIPCION DETALLADA DE LA INVENCION.
La presente invención se describirá a continuación de una manera más específica y con referencia a las siguientes realizaciones. Debe observarse que las siguientes descripciones de las realizaciones preferidas de la presente invención se presentan en este documento con el único fin de ilustración y descripción; no pretende ser exhaustivo o estar limitado a la forma precisa divulgada. Con referencia a las figuras, se usarán caracteres de referencia similares para indicar elementos similares a lo largo de las diversas realizaciones y vistas de los mismos.
En términos generales, la presente invención se dirige a un sistema que puede ser adaptado a un motor de combustión interna para mejorar la eficiencia térmica de estos motores que trabajan con gasolina, el cual comprende un generador de vapores de gasolina de dos cámaras, un dosificador de vapores, una bomba retorno de combustible, secadores de vapores, y un controlador electromecánico para el sistema, permitiendo el ahorro de combustible y reduciendo la emisión de gases contaminantes.
La Fig. 1 ilustra una vista general de una realización preferida del sistema 1 de generación de vapores de gasolinas de acuerdo con la presente invención, el cual comprende un generador de vapores de combustibles 100, un dosificador de vapores de combustible 200 conectado al generador de vapores de combustibles 100 y al múltiple de admisión de un motor de combustión interna 800, una bomba de retorno combustible 300, secadores de vapores 400 y 401 , y un sistema controlador eléctrico-mecánico del sistema 500,501 y 502, unido a otros componentes que más adelante se mencionan y describen en relación con el conjunto de la manifestación preferida de la invención que se describe e ilustra.
El generador de vapores de combustibles 100, puede adoptar varias configuraciones, aunque en la presente invención se muestra en su variante cilindrica y con un diámetro 4 pulgadas de diámetro, tal como se ilustra en las Figuras 2,3 y 4. En su interior el generador de vapores de combustibles 100 define un primer compartimento o cámara de formación de vapores 101 destinado a alojar una cantidad determinada de gasolina, proveniente del depósito de combustible de un automóvil y un segundo 102 compartimento o cámara destinado a alojar y facilitar el mantenimiento de los dispositivos calentadores del combustible 1 18.
El compartimento o cámara de formación de vapores 101 aloja en su interior un tubo 103 que se fija por su extremo a la parte central superior generador de vapores de combustibles 100 por cualquier medio apropiado, por ejemplo roscado, descendiendo perpendicularmente hasta el fondo del compartimento o cámara de formación de vapores 101 y donde la parte inferior distal de dicho tubo 103 es abierta y comprende al menos un orificio 104 para la circulación del combustible.
El tubo 103 está destinado a alojar en su interior una flota de combustible 105 de accionar vertical que regula la cantidad de combustible presente en el compartimento o cámara de formación de vapores 101. Así mismo, el tubo 103 sirve de guía central y punto de fijación por su pared exterior al diámetro interior del orificio central 106 que posee una pluralidad discos disipadores de vapores, ilustrados en las Figuras 5, 6 y 7, que comprenden discos disipadores superiores 107, discos disipadores inferiores 108 y discos disipadores centrales 109 superpuestos, estando ubicados en el orden antes mencionado y separados entre ellos preferentemente a una distancia de 5 mm y girados entre sí en un ángulo preferentemente de 2 grados alternos, donde dichos discos disipadores poseen orificios destinados a permitir el paso de los vapores de combustible y a retener las gotas de combustible que se separan de las burbujas que se forman producto del accionar del aire con el combustible; a saber los discos disipadores superiores 107 poseen los orificios 107a, 107b, 107c, 107d, 107e y 107f, donde los orificios 107a y 10fb tienen un diámetro de 5 mm preferentemente, los orificios 10fc y 107d posee un diámetro de preferentemente de 4mm, los discos disipadores inferiores 108 poseen los orificios 108a, 108b, 108c y 108d, todos con un diámetro preferentemente de 5 mm y los discos disipadores centrales 109 poseen los orificios los orificios 109a y 109b con un diámetro preferentemente de 5 mm cada uno y donde dichos discos disipadores están herméticamente fijados y ajustados a la pared interior del compartimento o cámara de formación de vapores 101 actuando como una barrera que obliga a los vapores de combustible a ascender a través de los orificios que poseen los discos disipadores 107, 109 y 109, reteniendo las partículas o gotas de combustible.
Así mismo, la Figura 4 muestra que al tubo 103 se fija por cualquier medio apropiado, por ejemplo mediante soldadura, un primer y segundo par de aros disipadores de burbujas 1 10 y 1 1 1 , que adoptan formas de medias lunas como se muestra en la Figura 14, donde dichos aros 1 10 y 1 1 1 están separados entre sí preferentemente a una distancia de 5 mm, estando ubicados respecto al tubo 103 en un ángulo preferentemente de 45 grados y en un ángulo preferentemente de 90 grados entre ellos y se encuentran herméticamente ajustados a la pared interior del compartimento o cámara de formación de vapores 101 por cualquier medio apropiado, por ejemplo mediante soldadura, actuando como una barrera física que desintegra o rompe las burbujas de combustibles que se forman por el accionar del aire con el combustible, permitiendo solo el paso a los vapores de combustible a través de los orificios 1 10a y 1 1 1a que posee cada aro disipador.
Adicionalmente en la Figura 4 se muestra que el generador de vapores 100 comprende en su parte superior un disco de un material poroso 1 30 atravesado por su centro 131 por el tubo 103 y que está en contacto con las paredes del generador de vapores 100. Este disco de material poroso 1 30, más particularmente ilustrado en la y Figura 15, puede consistir por ejemplo en una esponja o estopa de acero o similares y actúa como una barrera física que permite el paso del vapor de combustible y retiene las partículas de combustible líquido que producto de la fuerza de succión del motor logran sobrepasar las dos barreras físicas anteriores, a saber las gotas o partículas de combustible que logren ascender a través de los discos disipadores 107, 108 y 109 y los aros disipadores de burbujas 1 10 y 1 1 1 .
En la parte inferior del compartimento o cámara de formación de vapores 101 se colocan un primer y segundo anillos aireadores 1 12 y 1 13, ilustrados en las Figuras 4, 8 y 9, conformados por estructuras tubulares con múltiples orificios de salida de aire 1 12a y 1 1 3a respectivamente, actuando conectados a sus respectivos tubos o ductos de entrada de aire 1 14, 1 1 5, ilustrados en las Figuras 10 y 1 1 , donde cada tubo o ducto de entrada de aire posee en su extremo distal cheques de entrada de aire 1 14a y 1 1 5a respectivamente. Los anillos aireadores 1 12 y 1 13 están ubicados por debajo del nivel del combustible presente en la cámara o compartimento de formación de vapores 101 y actúan formando burbujas de combustibles al circular el aire que entra por los tubos o ductos 1 14 y 1 15 que interactúa con el combustible presente en el compartimento o cámara de formación de vapores 101.
En la base del compartimento o cámara de formación de vapores 101 se colocan los calentadores 1 18, según se puede apreciar en la Figura 4, los que están destinados a calentar el combustible alojado en el compartimento o cámara de formación de vapores 101 para facilitar la formación de vapores cuando el combustible es sometido a la turbulencia del aire que sale de los anillos aireadores 1 12, 1 13.
A través de compartimento o cámara 102 que posee el generador de vapores de combustibles 100 se accede a los calentadores 1 18 a través de la tapa de acceso 1 19, esto facilita el mantenimiento o la sustitución de los calentadores 1 18 ante roturas o desperfecto en el funcionamiento.
El generador de vapores de combustibles 100 posee en la parte posterior al menos una entrada de combustible 120 conectada a la línea de combustible 121 que posee el vehículo y donde dicha línea combustible 121 posee un cheque 700 que impide que el combustible presente en el generador de vapores se devuelva al tanque o depósito de combustible del vehículo; la manifestación en la cual el generador de vapores de combustibles 100 posee una sola entrada de combustible 120 es preferida para motores de 4 cilindros y de bajos consumo de combustible. Sin embargo, otras manifestaciones del invento, como la que se ilustra en la Figura 2, pueden tener más de una entrada de combustible 120, para vehículos que posean una alta cilindrada, por ejemplo 6, 8 o 12 cilindros, de modo que se pueda garantizar niveles adecuados de combustible dentro del generador 100 para garantizar suficiente generación vapores de combustible para entregar al motor 800.
El generador de vapores de combustibles 100 posee en la parte superior dos nipples de salida de vapores de combustible 122 y 123, como se puede apreciar en las Figuras 2 y 3, donde el nipple 122 es de mayor diámetro actuando como una salida de vapores de alta y el niple 123 es de menor diámetro y actúa como una salida de vapores de baja, permitiendo la salida de los vapores en dependencia de la demanda de aire resultante de la fuerza de succión del motor 800. Los vapores de combustible generados en el generador de vapores 100 salen por los nipples 122 y 123 con dirección al dosificador de vapores 200, como resultado de la fuerza de succión del motor 800. Los vapores son conducidos por las tuberías de conexión 124 y 125 conectadas por uno de sus extremos a los nipples 122 y 123, y por sus respectivos extremos distales con los nipples 126 y 127 que posee el dosificador de vapores 200, como es ilustrado en la Figura 1.
La tubería 124 posee un filtro de secado de gases 400 que actúa reteniendo las posibles partículas de combustible extraídas del generador 100 como resultado de la fuerza de succión del motor 800 y devolviéndolas al generador de vapores de combustible 100 a través de un retorno de combustible 1 15b que posee el tubo de entrada de aire 1 15 como se aprecia en la Figura 11 . La tubería 124 posee además el cheque 128 de una vía que garantiza el no retorno de vapores y de combustible al generador de vapores 100; finalmente la tubería 124 se conecta a la electroválvula 501 que controla y cierra el paso de gases cuando el motor 800 excede las 2500 r.p.m y se requiere un suministro directo de combustible líquido para satisfacer la demanda del motor en altas r.p.m.
Por su parte, la tubería 125 posee un filtro de secado gases 401 que actúa reteniendo las posibles partículas de combustible extraídas del generador 100 como resultado de la fuerza de succión del motor 800 y devolviéndolas a la línea de retorno del tanque de combustible vía la bomba de combustible 300. La tubería 125 comprende además un cheque 129 de una vía que garantiza el no retorno de vapores y de combustible al generador de vapores 100; finalmente la tubería 125 se conecta a la electroválvula 501 que controla el paso de gases cuando el motor 800 excede las 2500 r.p.m y se requiere un suministro directo de combustible para satisfacer la demanda del motor en altas r.p.m.
Luego de la electroválvula 501 , continúan las tuberías 124 y 125 que entregan los vapores de combustible provenientes del generador de vapores 100 al dosificador de vapores 200 a través de los nipples 126 y 127, actuando el dosificador de vapores 200 conectado al múltiple de admisión del motor 800 por medio del tubo o ducto de conexión 201 , como se muestra en las Figura 1 , 12 y 13. Dicho dosificador de vapores 200 se muestra con más detalles en las Figuras 12 y 13 y comprende una cámara central 202 conformada por las carcasas 202a y 202b, en cuyo interior se aloja el regulador de vapores 203.
La carcasa 202a posee en su parte central los nipples de entrada de vapores de combustible 126 y 127 los que se encuentran conectados a las tuberías de conexión 124 y 125 respectivamente, por la cual circulan los vapores de combustibles que provienen del generador de vapores de combustibles 100. Por su parte, la carcasa 202b aloja en su interior el regulador de vapores 203 y comprende en su lateral la tuerca de ajuste 204, donde se acopla el tornillo hueco de regulación 205 con el muelle de recuperación 206, sistema mediante el cual se acciona el regulador de vapores 203 que se mueve en la horizontal por el accionar del cable 207 que se en encuentra acoplado a la mariposa o throttle body del vehículo, regulando y permitiendo la entrada de aire proveniente del filtro de aire 208 por el orificio 209 que posee la tapa superior 212, según la demanda del motor 800. Cuando el motor 800 se encuentra trabajando en baja el regulador 203 bloquea la entrada de aire 209, y el suministro de aire para la admisión del motor 800 ocurre por el orificio 21 1 que posee el regulador de vapores 203, donde dicho orificio tiene un diámetro preferentemente no menor de 5 mm y no mayor de 15 mm.
El dosificador de vapores 200 posee una tapa superior 212 a la cual se fija el filtro de aire 208 y una tapa inferior 213 con el orificio 214 y a la cual se fija el tubo de conexión 201 que se une al múltiple de admisión del motor 800.
El sistema en su conjunto está regulado por un control eléctrico- mecánico que comprende un microswitch 502, ilustrado en la Figura 12, que se encuentra conectado a la línea de la batería del vehículo y actúa en correspondencia con las r.p. m del vehículo. Cuando la demanda del motor 800 excede las 2500 r.p.m el microswitch 502 suspende la energía a la caja de relay 500, lo que implica el cierre de la electroválvula 501 y la suspensión de la generación y entrega de vapores de combustible, pasando el motor 800 al estándar de trabajo y consumo de combustible líquido para satisfacer la demanda requerida en altas r.p.m. La caja de relay 500 actúa como control eléctrico del sistema, controlando la energía que activa la bomba de combustible 300, la flota de combustible 105, la electroválvula 501 , los calentadores 1 18 y el sensor de temperatura 600 que se encuentra conectado a la manguera del radiador del motor 800 que actúa sensando la temperatura del motor 800 para enviar la señal de temperatura a la caja de relay 500 que energiza el sistema y da inicio a la generación de vapores de combustible.
Al accionar el swift de encendido el sistema se energiza y la caja de relay 500 entrega energía al sistema, acto seguido la flota de combustible 105 completa el nivel de combustible dentro del compartimento o cámara de formación de vapores 101 y los calentadores 1 18 se activan y comienzan a calentar el combustible. Cuando el sensor de temperatura 600 de la manguera del radiador alcanza la temperatura adecuada, preferentemente de 45 grados, el sensor de temperatura 600 envía la señal a la caja de relay 500 para que active el sistema abriendo la electroválvula 501 , momento en el cual la admisión del vehículo demanda aire que entra al generador 100 por los tubos o ductos de entrada de aire 1 14, 1 1 5, saliendo por los orificios 1 12a y 1 1 3a que poseen los anillos 1 1 2 y 1 1 3 comenzando la generación de turbulencia y burbujas dentro del generador 100 y convirtiendo el combustible en vapores de combustible por el contacto del aire con el combustible calentado, ascendiendo dichos vapores por los orificios que poseen los aros disipadores de burbujas 1 10 y 1 1 1 y los discos disipadores 104, 105 y 106, saliendo dichos vapores por los nipples 123 y 124 con destino al dosificador de vapores 200 que actúa accionado por el cable 207 que se encuentra conectado al throttle body o mariposa y que mueve el regulador 203 permitiendo la entrada de aire y vapores de combustible vía el múltiple de admisión del motor 800, en correspondencia con las r.p.m del motor.

Claims

REIVINDICACIONES.
1 . Un sistema de generación y suministro de vapores de gasolina a motores de combustión interna, que permite mejorar la eficiencia térmica de estos motores, el cual comprende: un generador de vapores de gasolina que define dos cámaras interiores y tres barreras físicas que actúa para contener una cantidad determinada de combustible para ser trasformada en vapores de combustibles ,
un dosificador de vapores conectado al generador de vapores de gasolina, donde dicho dosificador se encuentra unido al múltiple de admisión del motor de combustión interna; y
un control electromecánico del sistema de generación y suministro de vapores que actúa condicionado a las r.p. m del motor.
2. El sistema de conformidad con la reivindicación 1 , donde el generador de vapores de gasolina comprende al menos una entrada de combustible y dos nipples de salida de vapores de combustible siendo el primero de alta y el segundo de baja.
3. El sistema de conformidad con la reivindicación 1 , donde el generador de vapores de gasolina comprende una primera cámara que posee un tubo central que se fija perpendicularmente en su extremo a la parte superior de la referida cámara y aloja en su interior una flota de combustible y actúa como guía central y punto de fijación a tres barreras físicas que retienen el combustible y permiten el paso de los vapores que se generan en su interior.
4. El sistema de conformidad con la reivindicación 2, donde las barreras físicas comprenden una pluralidad de discos disipadores, al menos dos aros disipadores y un disco de material poroso que actúan para permitir el paso de los vapores de combustible y retener las partículas de combustible.
5. El sistema de conformidad con la reivindicación 2, donde los discos disipadores comprende discos superiores, inferiores y centrales, superpuestos, separados y girados entre sí y donde dichos discos disipadores poseen orificios para el paso de los vapores de combustible y la retención de las partículas de combustible.
6. El sistema de conformidad con la reivindicación 2, donde los discos disipadores se encuentran fijados de manera hermética al tubo central y a la pared interior del generador de vapores.
El sistema de conformidad con la reivindicación 2, donde el tubo central actúa como guía central y punto de fijación para aros disipadores de burbujas que actúan para romper o desintegrar las burbujas que se forman dentro del generador.
8. El sistema de conformidad con la reivindicación 2, donde los aros disipadores se encuentran fijados de manera hermética al tubo central y a la pared interior del generador de vapores.
9. El sistema de conformidad con la reivindicación 2, donde los discos disipadores están ubicados perpendicularmente respecto al tubo central.
10. El sistema de conformidad con la reivindicación 2, donde los aros disipadores están ubicados respecto al tubo central en un ángulo de 45 grados y en un ángulo de 90 grados entre ellos.
11. El sistema de conformidad con la reivindicación 2, donde el disco de material poroso consiste en una esponja o estopa de acero que retiene las partículas de combustible líquido y permite el paso de los vapores de combustible.
12. El sistema de conformidad con la reivindicación 2, donde el disco de material poroso se encuentran fijado al tubo central y a la pared interior del generador de vapores.
13. El sistema de conformidad con la reivindicación 1 , que comprende al menos un par de anillos ai readores tubulares ubicados horizontalmente y donde cada anillo comprende una pluralidad de orificios de salida, donde dichos anillos actúan conectados a tubos o ductos de entrada de aire y donde cada tubo de entrada de aire posee un cheque de entrada de aire en su extremo distal.
14. El sistema de conformidad con la reivindicación 1 , donde el generador de vapores comprende una segunda cámara para alojar calentadores que actúan calentando el combustible alojado en la primera cámara o compartimento de formación de vapores.
15. El sistema de conformidad con la reivindicación 1 , donde el generador de vapores comprende al menos una entrada de combustible regulada por una flota que actúa definiendo un nivel de combustible dentro del generador de vapores.
16. El sistema de conformidad con la reivindicación 1 , donde el generador de vapores de combustible comprende un nipple de alta y otro de baja al que se acoplan tuberías conductoras unidas por su extremo distal con un dosificador de vapores.
17. El sistema de conformidad con la reivindicación 1 , donde el dosificador de vapores comprende un filtro de entrada de aire y un tubo o ducto de salida para la conexión con el múltiple de admisión de un motor de combustión interna y una cámara central conformada por dos carcasas en cuyo interior se aloja un regulador de vapores que actúa regulando el suministro de aire y de vapores de combustible al múltiple de admisión de un motor de combustión interna actuando por el accionar de un cable conectado al throttle body o mariposa.
18. El sistema de conformidad con la reivindicación 1 , que comprende filtros de secado de gases de alta y de baja que actúan reteniendo y evitando que gotas o partículas de combustible líquido entren al dosificador de vapores.
19. El sistema de conformidad con la reivindicación 1 , que comprende una bomba de retorno de combustible que actúa devolviendo al depósito de combustible del vehículo las partículas o gotas de combustible retenidas en el filtro de secado de gases de alta.
20. El sistema de conformidad con la reivindicación 1 , que comprende un retorno de combustible que actúa devolviendo al generador de vapores las partículas o gotas de combustible retenidas en el filtro de secado de gases de baja.
21. El sistema de conformidad con la reivindicación 1 , donde el control eléctrico- mecánico comprende: una caja de relay que controla la energía que activa la bomba de combustible, la flota de combustible, la electroválvula, el microswitch , los calentadores y el sensor de temperatura de la manguera del radiador del motor. un microswitch conectado a la línea de la batería del vehículo que actúa en correspondencia con las r.p.m del vehículo permitiendo el paso de la corriente a la caja de relay cuando las r.p.m del motor son igual o inferior a las 2500 r.p.m e impidiendo el paso de la corriente a la caja de relay cuando el motor supera las 2500 r.p.m.
22. El sistema de conformidad con la reivindicación 17 donde el sensor de temperatura de la manguera del radiador del motor envía una señal o lectura de temperatura a la caja de relay para dar inicio a la generación de vapores de combustible cuando la temperatura es igual o superior a los 45 grados Celsius.
23. El sistema de conformidad con la reivindicación 17 donde al accionar el swift de encendido de un motor de combustión interna se activa la flota de combustible y se completa el nivel de combustible dentro del generador de vapores.
24. El sistema de conformidad con la reivindicación 17 donde al accionar el swift de encendido de un motor de combustión interna se activan los calentadores que calientan el combustible presente dentro del generador de vapores.
25. El sistema de conformidad con la reivindicación 17 donde al energizarse el sistema se abre la electroválvula y la admisión del vehículo demanda aire que entra al generador de vapores por los tubos o ductos de entrada de aire, saliendo por los anillos ai readores comenzando la generación de turbulencia y burbujas dentro del generador convirtiendo el combustible calentado en vapores de combustible que ascienden dentro del generador a través de los orificios que poseen los aros disipadores de burbujas y los discos disipadores, saliendo estos vapores al dosificador de vapores y de ahí al motor de combustión interna vía el múltiple de admisión cuando el motor no excede las 2500 r.p.m.
PCT/DO2018/050001 2018-08-30 2018-08-30 Sistema de generación y suministro de vapores de gasolina a motores de combustion interna WO2020043259A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/DO2018/050001 WO2020043259A1 (es) 2018-08-30 2018-08-30 Sistema de generación y suministro de vapores de gasolina a motores de combustion interna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DO2018/050001 WO2020043259A1 (es) 2018-08-30 2018-08-30 Sistema de generación y suministro de vapores de gasolina a motores de combustion interna

Publications (1)

Publication Number Publication Date
WO2020043259A1 true WO2020043259A1 (es) 2020-03-05

Family

ID=69643955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DO2018/050001 WO2020043259A1 (es) 2018-08-30 2018-08-30 Sistema de generación y suministro de vapores de gasolina a motores de combustion interna

Country Status (1)

Country Link
WO (1) WO2020043259A1 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249502A (en) * 1979-06-04 1981-02-10 Hover David J Method and apparatus for generating and delivering gaseous fuel vapor to an internal combustion engine
US4359996A (en) * 1980-02-27 1982-11-23 James C. Kirkland, Jr. System for preparing hot vaporized fuel for use in internal combustion engine
US20050279334A1 (en) * 2002-07-02 2005-12-22 Greentech Motors (Israel) Ltd. Operating system, kit and method for engine
WO2013074129A1 (en) * 2011-11-03 2013-05-23 Kasprzak Adam Miami max ii " compact fuel vaporizer"
US20160169169A1 (en) * 2014-12-15 2016-06-16 Keyvan Mehrabi Nejad Two way valve air flow control in fuel vaporizer
US20180142633A1 (en) * 2016-11-22 2018-05-24 Caterpillar Inc. System, method, and apparatus to control gas substitution characteristic in dual fuel engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249502A (en) * 1979-06-04 1981-02-10 Hover David J Method and apparatus for generating and delivering gaseous fuel vapor to an internal combustion engine
US4359996A (en) * 1980-02-27 1982-11-23 James C. Kirkland, Jr. System for preparing hot vaporized fuel for use in internal combustion engine
US20050279334A1 (en) * 2002-07-02 2005-12-22 Greentech Motors (Israel) Ltd. Operating system, kit and method for engine
WO2013074129A1 (en) * 2011-11-03 2013-05-23 Kasprzak Adam Miami max ii " compact fuel vaporizer"
US20160169169A1 (en) * 2014-12-15 2016-06-16 Keyvan Mehrabi Nejad Two way valve air flow control in fuel vaporizer
US20180142633A1 (en) * 2016-11-22 2018-05-24 Caterpillar Inc. System, method, and apparatus to control gas substitution characteristic in dual fuel engine

Similar Documents

Publication Publication Date Title
ES2287848T3 (es) Sistema de alimentaci0n de combustible.
US7412973B2 (en) Fuel vaporizer
US4412521A (en) Evaporative carburetor and engine
US6907866B2 (en) Vapor fueled engine
US20080078363A1 (en) Fuel vaporization system and method
WO2020043259A1 (es) Sistema de generación y suministro de vapores de gasolina a motores de combustion interna
US20190017473A1 (en) Fuel Vaporizer System with Fuel Injection
WO2007068260A2 (es) Sistema apto para pulverizar agua al aire comburente aspirado en la admisión de los motores de combustión interna vehiculares e industriales
ES2315521T3 (es) Procedimiento y aparato para el control de un aparato de pulverizacion.
US4359971A (en) Steam injection apparatus for internal combustion engine
ES2227756T3 (es) Dispositivo para el suministro de vapor al aire de admision que se suministra a una maquina de combustion interna.
US6526952B1 (en) Pre-combustion chamber fuel vaporization and aeration system for internal combustion engines
US4551153A (en) Fuel vapor generator
MXPA06013607A (es) Aparato de acondicionamiento de combustible.
US6746002B2 (en) Fuel expansion system
ES2311106T3 (es) Cabezal pulverizador.
ES2383286T3 (es) Dispositivo de alimentación para un motor de combustión interna
US6499991B1 (en) Liquid fuel vaporizer having single fuel injector
JP2002070652A (ja) エンジンの液化ガス供給装置における圧力調整器
PL201498B1 (pl) Sposób i układ do kondycjonowania ciekłego paliwa w silniku wewnętrznego spalania
US3039862A (en) Apparatus for producing burnable gas from liquid gasoline
EP2320059A1 (en) Ecological/fuel optimization device for internal combustion engines which increases a moist air mass entering said engine by means of vacuum suction or normal aspiration
US20040103858A1 (en) Shetley fuel economizer
US1236267A (en) Kerosene-carbureter.
US1739073A (en) Air moistener

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932246

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18932246

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18932246

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.10.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18932246

Country of ref document: EP

Kind code of ref document: A1