WO2020043142A1 - 一种无位置探测器光轴稳定的空间光与光纤光耦合装置及方法 - Google Patents

一种无位置探测器光轴稳定的空间光与光纤光耦合装置及方法 Download PDF

Info

Publication number
WO2020043142A1
WO2020043142A1 PCT/CN2019/103126 CN2019103126W WO2020043142A1 WO 2020043142 A1 WO2020043142 A1 WO 2020043142A1 CN 2019103126 W CN2019103126 W CN 2019103126W WO 2020043142 A1 WO2020043142 A1 WO 2020043142A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
optical fiber
coupling
fiber
Prior art date
Application number
PCT/CN2019/103126
Other languages
English (en)
French (fr)
Inventor
侯培培
孙建锋
卢智勇
周煜
汪逸群
王利娟
奚越力
Original Assignee
中国科学院上海光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海光学精密机械研究所 filed Critical 中国科学院上海光学精密机械研究所
Priority to JP2021536137A priority Critical patent/JP7175483B2/ja
Priority to US17/271,250 priority patent/US11555971B2/en
Publication of WO2020043142A1 publication Critical patent/WO2020043142A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/421Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical component consisting of a short length of fibre, e.g. fibre stub
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4225Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements by a direct measurement of the degree of coupling, e.g. the amount of light power coupled to the fibre or the opto-electronic element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4227Active alignment methods, e.g. procedures and algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections

Definitions

  • the invention relates to a method for achieving high-efficiency coupling of space light and fiber light without a position detector, which can realize that space light and fiber light with an automatic tracking function always have high coupling efficiency, which is a high code rate and miniaturization.
  • Free-space laser communication as an information carrier has high frequency, good spatial and temporal coherence, and narrow transmission beam. It is an effective means to solve the bottleneck of microwave communication, build a space-based broadband network, and achieve global high-speed and real-time communication. Civil and military application potential.
  • Space coherent laser communication is the only technical means to achieve data transmission rates above Gbit / s in free-space long-distance communication.
  • Coherent laser communication based on self-difference and heterodyne detection methods has high detection sensitivity, and is the key system for achieving high code rate, miniaturization, light weight and low power consumption for long-distance laser communication terminals.
  • For the coherent laser communication self-difference detection method a space laser must be coupled into a single-mode fiber. Therefore, how to make space laser and single-mode fiber coupling, space laser and space laser coupling always have a high coupling efficiency, is a key technology for high code rate, miniaturization, light weight and low power consumption long-distance space coherent laser communication.
  • the purpose of the present invention is to provide a device and a method for efficiently coupling space light and fiber light with a stable optical axis without a position detector, which can realize the automatic tracking function of the system.
  • the basic idea is to first calculate the coupling efficiency model parameters through mode-field matching, and then use the four-point tracking algorithm to calculate the fiber nutation trajectory according to the principle of fiber nutation. Finally, use the nutation trajectory to calculate the center point position deviation. Correcting the position deviation ensures that the optical axis is stable and always has a high coupling efficiency.
  • the technical solution of the present invention is as follows:
  • a method for coupling spatial light and optical fiber with a stable optical axis of a positionless detector is applied to a device including a fiber coupler and a two-dimensional fast scanning galvanometer, which is characterized by including at least the following steps:
  • Step S002 The fiber coupler performs nutation under the action of the amplified orthogonal sinusoidal signal. Under the constant pressure of the two-dimensional fast scanning galvanometer, it is deflected to two preset positions in the x and y directions, and the output coupling light of each position is collected separately. Power, obtain the x-axis and y-axis trajectories on the nutation circle based on the optical power;
  • Step S003 the fiber coupler performs nutation under the action of the amplified orthogonal sinusoidal signal, collects an optical power signal every preset nutation period, and obtains a position error signal according to the collected optical power signal and its corresponding coordinate value;
  • Step S004 Adjust the optical path according to the position error signal to obtain a stable optical axis.
  • the method further includes:
  • Step S001 obtaining coupling model parameters
  • the step S001 includes at least the following steps:
  • the two-dimensional fast scanning galvanometer keeps the y direction stationary and performs a triangle wave scan in the x direction to collect the optical power signal of the fiber coupler; the two-dimensional fast scanning galvanometer keeps the x direction stationary and the y direction performs a triangle wave scanning to collect the fiber coupling Optical power signal of the receiver;
  • S001b Bring the optical power signal collected twice in S001a and the position signal of the two-dimensional fast scanning galvanometer corresponding to each signal point into the equation to solve the coupling model parameters.
  • step S001 After the step S001 and before the step S002, the following steps are included:
  • control signal transmitting module transmits two orthogonal sinusoidal signals
  • the driving signal control board divides the input signal into four amplified sinusoidal signals that are orthogonal to each other;
  • the drive signal control board loads the signal onto the fiber optic coupler via a wire, and the fiber coupler performs nutation under the action of the amplified orthogonal sinusoidal signal.
  • the step S003 includes at least one of the following steps:
  • S003a control the input signal board to transmit two orthogonal sinusoidal signals
  • the signal driving board divides the input signal into four amplified sinusoidal signals which are orthogonal to each other;
  • the signal driver board loads the signal onto the fiber optic coupler via a wire, and the fiber coupler performs nutation under the action of the amplified orthogonal sinusoidal signal;
  • S003d Collect one optical power signal every quarter nutation cycle
  • the amplitude of the sinusoidal signal emitted by the driving signal generator is in the range of 1V to 2.5V, and the frequency is in the range of 1kHz to 5kHz.
  • the voltage amplifier in step S002c amplifies the voltage to 100V-200V.
  • the x-axis trajectory obtained is:
  • the y-axis trajectory is:
  • x 1 and x 2 are the x coordinates of two preset positions in the x direction
  • y 1 and y 2 are the y coordinates of two preset positions in the y direction
  • ⁇ 0 is the coupling model parameter
  • Poutx 1 is the x 1 position corresponding Poutx 2 is the output optical power corresponding to position x 2
  • Pouty 1 is the output optical power corresponding to position y 1
  • Pouty 2 is the output optical power corresponding to position y 2 .
  • the error position is:
  • Rx 1 is the x coordinate on the x-direction trajectory
  • Ry 1 is the coordinate on the y-direction trajectory
  • ⁇ 0 is the coupling model parameter
  • Poutx 1 is the output optical power corresponding to the Rx 1 position
  • Poutx 2 is the Rx 2 position corresponding Output optical power
  • Pouty 1 is the output optical power corresponding to Ry 1 position
  • Pouty 2 is the output optical power corresponding to Ry 2 position.
  • step S003 or step S002 the method further includes:
  • Step S000 Calibrate the delay of the two-dimensional fast scanning galvanometer; specifically include the following steps:
  • Step S000c By calculating the phase difference between K and G
  • the present invention also provides a spatial light and fiber optical coupling device with stable optical axis of the positionless detector, which is characterized by including the above-mentioned method for optically coupling spatial light and optical fiber without position detector.
  • the invention also provides a spatial light and fiber optical coupling device with a stable optical axis without a position detector, including a laser (01), a beam collimator (02), a two-dimensional fast scanning mirror (03), and a condensing lens group (04). ), Fiber coupler (05), driving signal control board (06), signal transmitting module (07), bridge (08), detector (09), data acquisition board (10);
  • the laser (01) is connected to the port of the beam collimator (02) through an optical fiber, and the light emitted by the beam collimator (02) enters a two-dimensional fast scanning galvanometer (03) at an angle of 45 degrees, and the two-dimensional fast scanning galvanometer (03) (03)
  • the reflected light beam enters the convergent lens group (04) parallel to the optical center of the condensing lens group, and the focus of the light beam emitted by the condensing lens group (04) is incident on the end face of the fiber coupler (05), and the signal transmitting module (07)
  • the transmitted signal is transmitted to the driving signal control board (06) through the coaxial cable, and the driving signal control board (06) loads the signal to the fiber coupler (05) through the wire, and the optical power coupled by the fiber coupler (05) passes through the fiber Enter the bridge (08), the optical signal of the bridge (08) enters the detector (09) through the optical fiber, and the electrical signal of the detector (09) enters the data acquisition board
  • the optical fiber coupler (05) includes an optical fiber (11), and a piezoelectric ceramic tube (12).
  • the optical fiber (11) passes through the piezoelectric ceramic tube (12) and is fixed with the piezoelectric ceramic tube (12).
  • the piezoelectric ceramic tube (12) includes four electrode areas (13), and the four electrode areas (13) are all welded with electric wires (14).
  • the signal transmitting module (07) is a signal generator.
  • the driving signal control board (06) is a voltage amplifier.
  • the invention also provides an optical fiber coupler, which is characterized by comprising an optical fiber, a piezoelectric ceramic tube, a coupling base, and an electric wire;
  • the structure of the optical fiber is a capillary ferrule structure
  • the outside of the piezoelectric ceramic tube is divided into a plurality of strip-shaped electrode regions, and the regions are insulated;
  • the coupling base has a hole position
  • the optical fiber is embedded in a piezoelectric ceramic tube, the bottom end of the piezoelectric ceramic tube is fixed to the coupling base, a wire is led out from each electrode region of the piezoelectric ceramic tube near the base part, and the other end of the wire is passed through a hole on the base .
  • the end face of one end of the optical fiber has an end cap and is plated with a high-permeability film
  • the number of strip electrode regions outside the piezoelectric ceramic tube is four;
  • Equations (6) and (7) are simultaneous
  • the received light intensity values Px1, Px2, Py1, and Py2 at the nutation trajectories R X1 , R X2 , R Y1 , and R Y2 are recorded;
  • the present invention provides a high-efficiency coupling device and method for spatial light and fiber-optic light without the need for a position detector to achieve stable optical axis, which have the following beneficial effects:
  • the present invention achieves high-efficiency coupling of space light with stable optical axis and fiber light without the need for a position detector
  • the present invention can independently solve the coupling model parameters without external provision
  • the invention has a simple structure, stable and reliable performance, and easy integration
  • the present invention can obtain high coupling efficiency, has strong ability to filter out background light, can further improve anti-interference ability, and can achieve a relatively good space optical communication transmission channel.
  • FIG. 1 is a schematic diagram showing the steps of a method for efficiently coupling spatial light and fiber light without a position detector to achieve optical axis stabilization according to the present invention.
  • FIG. 2 is a schematic diagram of a high-efficiency coupling device for space light and fiber light that does not require a position detector to achieve optical axis stabilization.
  • FIG. 3 is a schematic diagram showing a connection structure of a fiber coupler and a coupling lens used in the present invention.
  • the chassis of the fiber coupler and the condensing lens group are fixed in a lens barrel, so that the end face of the fiber is located at the focal point of the lens group.
  • FIG. 4 is a schematic structural diagram of an optical fiber coupler used in the present invention.
  • the optical fiber is inserted into a ceramic tube with a capillary ferrule structure.
  • the low end of the ceramic tube is fixed on the chassis to form a cantilever structure.
  • the electrode area leads to four wires near the base. The wires pass through the base and are connected to the external signal drive control board.
  • Figure 5 shows the fiber coupling model
  • Laser (01), beam collimator (02), two-dimensional fast scanning mirror (03), focusing lens group (04), fiber coupler (05), drive signal control board (06), signal transmission module (07) , Bridge (08), detector (09), data acquisition board (10), fiber coupler (11), condensing lens group (12), lens barrel (13), lens barrel holder (14), piezoelectric
  • the ceramic tube (15), the coupling base (16), the electric wire (17), and the optical fiber (18).
  • the present invention provides a method for efficiently coupling space light and fiber light with a stable optical axis without a position detector.
  • the specific steps are shown in FIG. 1. It includes the following four steps:
  • Step S001 obtaining coupling model parameters
  • the laser (01) emits 1550nm laser light into the beam collimator (02) through the fiber, and the light emitted by the beam collimator (02) enters the two-dimensional fast scanning galvanometer (03) at a 45-degree angle, and the two-dimensional fast scanning galvanometer (03)
  • the reflected light beam enters the convergent lens group (04) in parallel, and the focus of the light beam emitted from the condensing lens group (04) is incident on the end face of the fiber coupler (05). Without the signal from the fiber coupler (05),
  • the two-dimensional fast scanning galvanometer (03) does not move in the y direction, and a triangle wave scan with an amplitude of 300 mv and a frequency of 2 Hz is performed in the x direction.
  • the optical power signal of the fiber coupler (03) is collected.
  • the data length is 10 ⁇ 6.
  • the two-dimensional fast When the scanning galvanometer (03) does not move in the x direction, a triangle wave scan with an amplitude of 300 mv and a frequency of 2 Hz is performed in the y direction to collect the optical power signal of the fiber coupler (05).
  • the sinusoidal signal of the two-dimensional fast scanning galvanometer (03) is the position coordinate corresponding to the light spot, and the position signal of the two-dimensional fast scanning galvanometer (03) corresponding to each point of the optical power signal collected twice is brought into equation (1) And (2)
  • Step S000 calibrate the delay of the two-dimensional fast scanning galvanometer
  • the 2D fast scanning galvanometer (03) itself may have a time delay, it is necessary to calibrate the delay of the 2D fast scanning galvanometer before calculating the position error.
  • the optical fiber nutator output sinusoidal optical power due to the scanning of the fast mirror without nutating
  • the fast mirror is loaded with a sinusoidal signal in the X direction with a frequency of 20Hz and an amplitude of 50mv.
  • the optical fiber nutator output sinusoidal optical power due to the scanning of the fast mirror without nutating
  • K1 fft (K, 10 ⁇ 7)
  • the maximum frequencies of the frequency domain signals K1 and G1 are obtained, and the angle corresponding to the maximum frequency is the phase.
  • K2 angle (K1 (max))
  • Step S002 Obtain a coordinate axis trajectory
  • the laser (01) emits 1550nm laser light into the beam collimator (02) through the fiber, and the light emitted by the beam collimator (02) enters the two-dimensional fast scanning galvanometer (03) at a 45-degree angle, and the two-dimensional fast scanning galvanometer (03)
  • the reflected light beam is incident on the convergent lens group (04) in parallel, and the focus of the light beam emitted from the condensing lens group (04) is incident on the end face of the fiber coupler (05).
  • the signal transmitting module (07) emits an orthogonal sinusoidal signal.
  • the signal amplitude is 2.1V and the frequency is 2kHz.
  • the signal transmitted by the signal transmitting module (07) is transmitted to the driving signal control board (06) through a coaxial cable.
  • the driving signal control board (06) divides the signal into four two-way orthogonal sinusoids.
  • the voltage of the signal is amplified to 100V and the signal is loaded on the fiber optic coupler (05) via the wire.
  • the fiber optic coupler (05) performs nutation under the action of the amplified orthogonal sinusoidal signal.
  • the x-direction deflection + 10mv and -10mv respectively, collect the output coupling optical power at two positions, that is, record the incident spot at two independent positions (x1, y0) on the x-axis and (x2, y0) output optical power values in two states, brought into equations (5) and (6)
  • Step S003 acquiring a position error
  • the laser (01) emits 1550nm laser light into the beam collimator (02) through the fiber, and the light emitted by the beam collimator (02) enters the two-dimensional fast scanning galvanometer (03) at a 45-degree angle, and the two-dimensional fast scanning galvanometer (03)
  • the reflected light beam enters the convergent lens group (04) in parallel, and the focus of the light beam emitted by the convergent lens group (04) is incident on the end face of the fiber coupler (05), and the signal transmitting module (07) emits two orthogonal sinusoids Signal, signal amplitude 2.1V, frequency 2kHz, the signal transmitted by the signal transmitting module (07) is transmitted to the driving signal control board (06) through a coaxial cable, and the driving signal control board (06) divides the two signals into four channels and two After the orthogonal sinusoidal signal is amplified to 100V at the same time, the signal is loaded on the optical fiber coupler (05) via a wire.
  • the optical fiber coupler (05) performs nutation under the action of the amplified orthogonal sinusoidal signal.
  • the output optical power coupled by the fiber coupler (05) enters the bridge (08) through the fiber, and the optical signal of the bridge (08) enters the detector (09) through the fiber, and the electrical signal of the detector (09) passes through the coaxial line.
  • nutation frequency of 2kHz nutation period of 500us, 125us taken every optical power signal of a collection, i.e., recording tracks nutating R X1, R X2, R Y1 , the value of the received light intensity at Px1 R Y2, Px2 are, Py1, Py2;
  • the spot position is
  • the fast mirror position is the actual position of the fast hair mirror at this time, and it is set to (k x , k y )
  • ⁇ x and ⁇ y can be positive or negative.
  • Step S004 Adjust the light path according to the position error, so that the light spot is at the position with the highest coupling efficiency
  • Rx 1 and Ry 1 are the x and y directions of the fiber nutation.
  • the nutation radius is obtained from the nutation trajectory of step S002, so the position error ⁇ x, ⁇ y signals can be obtained through step S003, and the position error signal is fed back to the two-dimensional fast scanning galvanometer (03) through the coaxial cable.
  • the scanning galvanometer (03) compensates the corresponding error in time, so that the light spot is always at the center of the fiber nutation, and the system has a stable optical axis.
  • the invention has stable and reliable performance, can obtain high coupling efficiency, has strong ability to filter background light, can further improve anti-interference ability, and can realize a relatively good space optical communication transmission channel.
  • the present invention provides a device for efficiently coupling spatial light and optical fiber light without a position detector to achieve stable optical axis.
  • the device includes the following components:
  • the invention also provides a spatial light and optical fiber optical coupling device with stable optical axis of the position detector, which is characterized by comprising a laser (01), a beam collimator (02), a two-dimensional fast scanning mirror (03), and convergence.
  • the optical path connection method of each part is: the laser (01) is connected to the port of the beam collimator (02) through an optical fiber, and the light emitted from the beam collimator (02) is incident at a 45-degree angle to the two-dimensional fast scanning galvanometer ( 03), the light beam reflected by the two-dimensional fast scanning galvanometer (03) enters the convergent lens group (04) parallel to the optical center of the convergent lens group, and the focus of the light beam emitted by the convergent lens group (04) enters the fiber coupler (05)
  • the signal transmitted by the signal transmitting module (07) is transmitted to the driving signal control board (06) through the coaxial cable, and the driving signal control board (06) loads the signal to the optical fiber coupler (05) through a wire, and the optical fiber coupler (05)
  • the coupled optical power enters the bridge (08) through the optical fiber.
  • the optical signal of the bridge (08) enters the detector (09) through the optical fiber.
  • the laser (01) emits a 1550 nm laser beam into the beam collimator (02) through the fiber, and the light emitted by the beam collimator (02) 45
  • the angle of incidence is incident on the two-dimensional fast scanning galvanometer (03)
  • the light beam reflected by the two-dimensional fast scanning galvanometer (03) is incident in parallel to the convergent lens group (04), and the focus of the light beam emitted by the condensing lens group (04) is incident on the optical fiber
  • the two-dimensional fast scanning galvanometer (03) does not move in the y direction, and a triangle wave scan with an amplitude of 300 mv and a frequency of 2 Hz is performed in the x direction to collect the fiber coupler.
  • the length of the collected data is 10 ⁇ 6.
  • the two-dimensional fast scanning galvanometer (03) does not move in the x direction, perform a triangle wave scan with an amplitude of 300mv and a frequency of 2Hz in the y direction to collect the fiber coupler.
  • the sinusoidal signal of the two-dimensional fast scanning galvanometer (03) is the position coordinate corresponding to the light spot, and the position signal of the two-dimensional fast scanning galvanometer (03) corresponding to each point of the optical power signal collected twice is brought into equation (1)
  • the signal transmitting module (07) transmits an orthogonal sinusoidal signal with a signal amplitude of 2.1V and a frequency of 2 kHz.
  • the signal transmitted by the signal transmitting module (07) is transmitted to the driving signal control board (06) through a coaxial cable, and the driving signal is transmitted.
  • the control board (06) amplifies the voltage to 100V and loads the signal to the optical fiber coupler (05) via the wire.
  • the optical fiber coupler (05) performs nutation under the action of the amplified orthogonal sinusoidal signal.
  • the x-direction deflection + 10mv and -10mv collect the output coupling optical power at two positions, that is, record the incident spot at two independent positions (x1, y0) on the x-axis and (x2, y0) output optical power values in two states, brought into equations (5) and (6)
  • the output optical power coupled by the fiber coupler (05) enters the bridge (08) through the fiber, and the optical signal of the bridge (08) enters the detector (09) through the fiber, and the electrical signal of the detector (09) passes through Enter the data acquisition board (10) on the same axis.
  • nutation frequency of 2kHz nutation period of 500us, 125us taken every optical power signal of a collection, i.e., recording tracks nutating R X1, R X2, R Y1 , the value of the received light intensity at Px1 R Y2, Px2 are, Py1, Py2;
  • the position error signal is fed back to the two-dimensional fast scanning galvanometer (03) through the coaxial cable.
  • the two-dimensional fast scanning galvanometer (03) compensates the corresponding error in time, so that the light spot is always at the center of the fiber nutation, and the system has a stable optical axis.
  • the invention has stable and reliable performance, can obtain high coupling efficiency, has strong ability to filter background light, can further improve anti-interference ability, and can realize a relatively good space optical communication transmission channel.
  • the invention also provides an optical fiber coupler, comprising: an optical fiber, a piezoelectric ceramic tube, a coupling base, and an electric wire.
  • the fiber is made of a capillary ferrule structure, and the end face of the fiber is made of an end cap and plated with a high permeability.
  • the outside of the piezoelectric ceramic tube is divided into four strip-shaped electrode regions, and the regions are insulated.
  • the optical fiber is embedded in the piezoelectric ceramic tube, the bottom end of the piezoelectric ceramic tube is fixed to the coupling base, a wire is led out of each electrode area of the piezoelectric ceramic tube near the base part, and the other end of the wire is passed through the hole on the base, and the base Fix the hole position through the wire.
  • a wire connected to a piezoelectric ceramic tube is connected to a signal drive control board signal output Port, the signal drives the control board to output the electric signal to the ceramic tube through the wire.
  • the ceramic tube shrinks in the vertical direction, causing the top of the ceramic tube to have a relatively large tilt.
  • the applied voltage will cause the ceramic to expand and contract in the axial direction, thereby controlling the piezoelectric ceramic tube as a chapter. Motion.

Abstract

一种无需位置探测器实现光轴稳定的空间光与光纤光高效率耦合装置及方法,其基本思想在于:首先根据理论耦合效率模型拟合计算出模型参数,其次依据光纤章动的原理,采用四点跟踪算法计算出光纤章动轨迹,最后利用章动轨迹计算中心点位置偏差,通过修正位置偏差保证光轴稳定,始终具有较高的耦合效率。用于空间相干激光通信DPSK链路中无位置探测器的光轴稳定和高效率耦合,是空间激光通信远距离高码率传输的关键技术,对星间光通信发展具有重要的意义。

Description

一种无位置探测器光轴稳定的空间光与光纤光耦合装置及方法 技术领域
本发明涉及无需位置探测器实现光轴稳定的空间光与光纤光高效率耦合的方法,能实现具有自动跟踪功能的空间光与光纤光始终具有较高的耦合效率,是高码率,小型化,轻量化和低功耗远距离空间相干激光通信的一个关键技术。
背景技术
激光束作为信息载体的自由空间激光通信频率高,空间和时间相干性好,发射波束窄,是解决微波通信瓶颈,构建天基宽带网,实现全球高速、实时通信的有效手段,具有很大的民用和军事应用潜力。
空间相干激光通信是自由空间远距离通信实现Gbit/s以上数据传输速率的唯一技术手段。基于自差和外差探测方式的相干激光通信具有较高的探测灵敏度,是实现高码率,小型化,轻量化和低功耗远距离激光通信终端的关键体制。对于相干激光通信自差探测方式需要将空间激光耦合进单模光纤。因此如何使空间激光与单模光纤耦合、空间激光和空间激光耦合始终具有较高的耦合效率,是高码率,小型化,轻量化和低功耗远距离空间相干激光通信的一个关键技术。
相干激光通信DPSK链路中空间激光与光纤光实现无位置探测器光轴稳定的方法,有效的提高了空间激光耦合效率,是对高码率空间激光相干通信技术的新探索,对我国星地通信终端研制有重要意义。现有方案参阅文献(1),Morio Toyoshima“Maximum fiber coupling efficiency and optimum beam size in the presence of random angular jitter for free-space laser systems and their applications,”J.Opt.Soc.Am.A,2006,23(9),(2)高建秋,孙建锋, 李佳蔚,朱韧,侯培培,陈卫标,基于激光章动的空间光到单模光纤的耦合方法。《中国激光》2016,43(8)
发明内容
本发明的目的在于提供一种无需位置探测器实现光轴稳定的空间光与光纤光高效率耦合的装置及方法,可以实现系统自动跟踪功能。基本思想是首先通过模场匹配,拟合计算出耦合效率模型参数,其次依据光纤章动的原理,采用四点跟踪算法计算出光纤章动轨迹,最后利用章动轨迹计算中心点位置偏差,通过修正位置偏差保证光轴稳定,始终具有较高的耦合效率。本发明的技术解决方案如下:
一种无位置探测器光轴稳定的空间光与光纤光耦合方法,应用于包含有光纤耦合器和二维快速扫描振镜的装置,其特征在于,至少包括以下步骤:
步骤S002:光纤耦合器在放大的正交正弦信号作用下做章动,二维快速扫描振镜恒压下,在x和y方向偏转到两个预设位置,分别采集各个位置的输出耦合光功率,根据光功率获得章动圆周上的x轴和y轴轨迹;
步骤S003:光纤耦合器在放大的正交正弦信号作用下做章动,每隔预设章动周期,采集一个光功率信号,根据采集的光功率信号及其对应的坐标值获取位置误差信号;
步骤S004:根据位置误差信号调节光路,获得稳定的光轴。
优选地,所述步骤S002之前还包括,
步骤S001:获取耦合模型参数;
所述步骤S001至少包含以下步骤:
S001a:二维快速扫描振镜保持y方向不动,x方向做三角波扫描,采集光纤 耦合器的光功率信号;二维快速扫描振镜保持x方向不动,y方向做三角波扫描,采集光纤耦合器的光功率信号;
S001b:将S001a中两次采集的光功率信号以及每个信号点对应的二维快速扫描振镜的位置信号带入方程,求解耦合模型参数。
优选地,所述步骤S001之后与步骤S002之前包括以下步骤:
S002a:控制信号发射模块发射两路正交的正弦信号;
S002b:驱动信号控制板将输入的信号分成四路两两正交的放大的正弦信号;
S002c:驱动信号控制板经电线将信号加载到光纤耦合器上,光纤耦合器在放大的正交正弦信号作用下做章动。
优选地,所述步骤S003至少包括以下步骤之一:
S003a:控制输入信号板发射两路正交的正弦信号;
S003b:信号驱动板将输入的信号分成四路两两正交的放大的正弦信号;
S003c:信号驱动板经电线将信号加载到光纤耦合器上,光纤耦合器在放大的正交正弦信号作用下做章动;
S003d:每隔四分之一章动周期,采集一个光功率信号;
S003e:将采集的光功率信号及其对应的坐标值带入方程,得出位置误差信号。
优选地,步骤S002a中驱动信号发生器发射的正弦信号幅值在1V~2.5V范围内,频率在1kHz~5kHz范围内。
优选地,步骤S002c中电压放大器将电压放大到100V~200V。
优选地,求解得到的x轴轨迹为:
Figure PCTCN2019103126-appb-000001
y轴轨迹为:
Figure PCTCN2019103126-appb-000002
其中,x 1,x 2为x方向两个预设位置的x坐标,y 1,y 2为y方向两个预设位置的y坐标,ω 0为耦合模型参数,Poutx 1为x 1位置对应的输出光功率,Poutx 2为x 2位置对应的输出光功率,Pouty 1为y 1位置对应的输出光功率,Pouty 2为y 2位置对应的输出光功率。
优选地,误差位置为:
Figure PCTCN2019103126-appb-000003
Figure PCTCN2019103126-appb-000004
其中,Rx 1,为x方向轨迹上的x坐标,Ry 1为y方向轨迹上的坐标,ω 0为耦合模型参数,Poutx 1为Rx 1位置对应的输出光功率,Poutx 2为Rx 2位置对应的输出光功率,Pouty 1为Ry 1位置对应的输出光功率,Pouty 2为Ry 2位置对应的输出光功率。
优选地,在步骤S003或步骤S002之前还包括:
步骤S000:标定二维快速扫描振镜的延时;具体包括以下步骤:
步骤S000a:在快反镜X,Y方向分别加载正弦信号K=sin(θ 1);
步骤S000b:在光纤不做章动的情况下,计算由于快反镜的扫描光纤章动器输出正弦光功率G=sin(θ 2);
步骤S000c:通过计算K和G的相位差
Δ=θ 12
可以得到快反镜的延时时间。
本发明还提供一种无位置探测器光轴稳定的空间光与光纤光耦合装置,其特征在于,包含上述无位置探测器光轴稳定的空间光与光纤光耦合方法。
本发明还提供一种无位置探测器光轴稳定的空间光与光纤光耦合装置,包括激光器(01),光束准直器(02),二维快速扫描镜(03),会聚透镜组(04),光纤耦合器(05),驱动信号控制板(06),信号发射模块(07),桥接器(08),探测器(09),数据采集板(10);
所述激光器(01)通过光纤连接到光束准直器(02)端口,光束准直器(02)的出射光45度角入射到二维快速扫描振镜(03),二维快速扫描振镜(03)反射的光束平行会聚透镜组的光学中心入射到会聚透镜组(04)内,会聚透镜组(04)出射光束的焦点入射到光纤耦合器(05)端面上,信号发射模块(07)发射的信号通过同轴电缆传给驱动信号控制板(06),驱动信号控制板(06)经电线将信号加载到光纤耦合器(05)上,光纤耦合器(05)耦合的光功率经光纤进入到桥接器(08),桥接器(08)的光信号经光纤进入探测器(09),探测器(09)的电信号经同轴线进入数据采集板(10)。
优选地,光纤耦合器(05)包括光纤(11),以及压电陶瓷管(12)。
优选地,光纤(11)从压电陶瓷管(12)内穿出并与压电陶瓷管(12)固定在一起。
优选地,压电陶瓷管(12)上包含四个电极区域(13),四个电极区域(13)上均焊有电线(14)。
优选地,信号发射模块(07)为信号发生器。
优选地,驱动信号控制板(06)为电压放大器。
本发明还提供一种光纤耦合器,其特征在于,包括光纤,压电陶瓷管,耦合底座,电线;
所述的光纤的结构为毛细管插芯结构;
所述的压电陶瓷管外部分为若干条带状电极区域,区域间绝缘;
所述的耦合底座具有孔位;
所述的光纤嵌入压电陶瓷管内,压电陶瓷管底端固定到耦合底座上,压电陶瓷管靠近底座部分的每个电极区域引出一根电线,电线另一端从底座上的孔位穿出。
优选地,光纤一端的端面具有端帽且加镀高透膜;
优选地,压电陶瓷管外部的带状电极区域数量为四条;
具体地,上述方程及其推导过程如下:
1)耦合模型参数求解:
基于光纤耦合效率模型
Figure PCTCN2019103126-appb-000005
光斑的位置在(x,y 11),(x,y 22),(x,y 33),(x,y 44)时,光纤耦合模型方程可以写为:
Figure PCTCN2019103126-appb-000006
Figure PCTCN2019103126-appb-000007
Figure PCTCN2019103126-appb-000008
Figure PCTCN2019103126-appb-000009
方程(2)减去方程(3),方程(4)减去方程(5)
模型求解:
Figure PCTCN2019103126-appb-000010
Figure PCTCN2019103126-appb-000011
方程(6)与方程(7)联立
Figure PCTCN2019103126-appb-000012
得到
Figure PCTCN2019103126-appb-000013
由于
Figure PCTCN2019103126-appb-000014
将方程(8)带入方程(9)中,可获得耦合模型参数。
2)轨迹求解
利用快反镜控制入射光斑x轴在两个独立位置(x 1,y 0)和(x 2,y 0),同时分别记录两种状态下的输出光功率值
Figure PCTCN2019103126-appb-000015
Figure PCTCN2019103126-appb-000016
取对数相减
Figure PCTCN2019103126-appb-000017
同样,可以得到y轴的轨迹
Figure PCTCN2019103126-appb-000018
3)误差求解:
如图5所示,记录章动轨迹R X1,R X2,R Y1,R Y2处的接收光强值Px1,Px2,Py1,Py2;
Figure PCTCN2019103126-appb-000019
Figure PCTCN2019103126-appb-000020
Figure PCTCN2019103126-appb-000021
Figure PCTCN2019103126-appb-000022
方程(14)减去方程(15),方程(16)减去方程(17)
Figure PCTCN2019103126-appb-000023
Figure PCTCN2019103126-appb-000024
Figure PCTCN2019103126-appb-000025
Figure PCTCN2019103126-appb-000026
Figure PCTCN2019103126-appb-000027
如上所述,本发明所提供的一种无需位置探测器实现光轴稳定的空间光与光 纤光高效率耦合装置及方法,具有以下有益效果:
(1)本发明在无需位置探测器的情况下实现了光轴稳定的空间光与光纤光高效率耦合;
(2)本发明可独立求解出耦合模型参数,无需外部提供;
(3)本发明结构简单,性能稳定可靠,易于集成;
(4)本发明可以获得高的耦合效率,有很强的滤除背景光能力,可以进一步提高抗干扰能力,能够实现比较优良的空间光通信传输信道。
附图说明
图1显示为本发明所提出的无需位置探测器实现光轴稳定的空间光与光纤光高效率耦合方法的步骤示意图。
图2显示为本发明所提出的无需位置探测器实现光轴稳定的空间光与光纤光高效率耦合装置示意图。
图3显示为本发明中所用的光纤耦合器与耦合透镜的连接结构示意图。光纤耦合器的底盘与会聚透镜组固定在一个镜筒内,使光纤端面位于透镜组焦点处。
图4显示为本发明中所用的光纤耦合器的结构示意图。光纤以毛细管插芯结构装入陶瓷管内。陶瓷管低端固定到底盘上形成悬臂结构,陶瓷管周围分四个电极区域,电极区域靠近底座的位置引出四根电线,电线穿过底座与外部信号驱动控制板连接。
图5为光纤耦合模型。
图中标号:
激光器(01),光束准直器(02),二维快速扫描镜(03),会聚透镜组(04),光纤耦合器(05),驱动信号控制板(06),信号发射模块(07),桥接器(08),探测器(09),数据采集板(10),光纤耦合器(11),会聚透镜组(12),镜筒(13),镜筒支座(14),压电陶瓷管(15),耦合底座(16),电线(17),光纤(18)。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。下面结合附图对本发明的无需位置探测器实现光轴稳定的空间光与光纤光高效率耦合的方法作进一步说明,但不应以此限制本发明的保护范围。
实施例1:
本发明提供了一种无需位置探测器实现光轴稳定的空间光与光纤光高效率耦合的方法,其具体步骤详见图1。具体包括如下四个步骤:
步骤S001:获取耦合模型参数;
激光器(01)发射1550nm激光经光纤进入光束准直器(02),光束准直器(02)的出射光45度角入射到二维快速扫描振镜(03)上,二维快速扫描振镜(03)反射的光束平行入射到会聚透镜组(04),会聚透镜组(04)出射光束的焦点入射到光纤耦合器(05)端面上,光纤耦合器(05)不加信号的情况下,二维快速扫描振镜(03)y方向不动,x方向做幅度300mv频率2Hz的三角波扫描,采集光纤耦合器(03)的光功率信号,采集数据长度10^6,同理,二维快速扫描振镜(03)x方向不动的情况下,y方向做幅度300mv频率2Hz的三角波扫描,采集光纤耦合器(05)的光功率信号。二维快速扫描振镜(03)的正弦信号即对应光斑的位置坐标,将两次采集的光功率信号每个点对应的二维快速扫描振镜(03)的位置信号带入方程(1)和(2)中
Figure PCTCN2019103126-appb-000028
Figure PCTCN2019103126-appb-000029
得到方程(3)
Figure PCTCN2019103126-appb-000030
由于
Figure PCTCN2019103126-appb-000031
将方程(3)带入方程(4)中,可获得耦合模型参数ω 0
步骤S000:标定二维快速扫描振镜的延时;
由于二维快速扫描振镜(03)本身可能存在时间延时,故在求位置误差之前需要先标定二维快速扫描振镜的延时。
在快反镜X,Y方向分别加载正弦信号,
K=sin(θ1)
光纤章动器在不章动的情况下,由于快反镜的扫描,光纤章动器输出正弦光功率
G=sin(θ2)
通过计算K和G的相位差
△=θ1-θ2
可以得到快反镜的延时时间。
例如
快反镜X方向加载正弦信号,频率为20Hz,幅度为50mv。
K=sin(θ1)
光纤章动器在不章动的情况下,由于快反镜的扫描,光纤章动器输出正弦光功率
G=sin(θ2)
通过示波器采集K和G信号,采用率为2.5e^5,将时域的K和G信号转换到频域,并补零,即
K1=fft(K,10^7)
G1=fft(G,10^7)
分别在求频域信号K1和G1的最大频率,最大频率对应的角度即相位。
K2=angle(K1(max))
G2=angle(G1(max))
频域的相位差即时域的时间差,因此快发镜的延时时间为
T=K2-G2
步骤S002:获取坐标轴轨迹;
激光器(01)发射1550nm激光经光纤进入光束准直器(02),光束准直器(02)的出射光45度角入射到二维快速扫描振镜(03)上,二维快速扫描振镜(03)反射的光束平行入射到会聚透镜组(04),会聚透镜组(04)出射光束的焦点入射到光纤耦合器(05)端面上,信号发射模块(07)发射正交的正弦信号,信号幅值2.1V,频率2kHz,信号发射模块(07)发射的信号通过同轴电缆传给驱动信号控制板(06),驱动信号控制板(06)将信号分成四路两两正交的正弦信号同时电压放大到100V经电线将信号加载到光纤耦合器(05)上,光纤耦合器(05)在放大的正交正弦信号作用下做章动。二维快速扫描振镜(03)恒压下,x方向偏转+10mv和-10mv,分别采集两个位置的输出耦合光功率,即记录入射光斑在x轴两个独立位置(x1,y0)和(x2,y0)时两种状态下的输出光功率值,带入方程(5)和(6)
Figure PCTCN2019103126-appb-000032
Figure PCTCN2019103126-appb-000033
取对数相减
Figure PCTCN2019103126-appb-000034
得到x轴的轨迹
Figure PCTCN2019103126-appb-000035
同样,可以得到y轴的轨迹
Figure PCTCN2019103126-appb-000036
步骤S003:获取位置误差;
激光器(01)发射1550nm激光经光纤进入光束准直器(02),光束准直器(02)的出射光45度角入射到二维快速扫描振镜(03)上,二维快速扫描振镜(03)反射的光束平行入射到会聚透镜组(04),会聚透镜组(04)出射光束的焦点入射到光纤耦合器(05)端面上,信号发射模块(07)发射两路正交的正弦信号,信号幅值2.1V,频率2kHz,信号发射模块(07)发射的信号通过同轴电缆传给驱动信号控制板(06),驱动信号控制板(06)将两路信号分成四路两两正交的正弦信号同时将电压放大到100V后,经电线将信号加载到光纤耦合器(05)上,光纤耦合器(05)在放大的正交正弦信号作用下做章动。光纤耦合器(05)耦合的输出光功率经光纤进入到桥接器(08),桥接器(08)的光信号经光纤进入探测器(09),探测器(09)的电信号经同轴线进入数据采集板(10)。
当章动频率2kHz时,章动周期为500us,每隔125us取一个采集的光功率信号,即记录章动轨迹R X1,R X2,R Y1,R Y2处的接收光强值Px1,Px2,Py1,Py2;
由光纤耦合模型得,如图5所示
Figure PCTCN2019103126-appb-000037
Figure PCTCN2019103126-appb-000038
Figure PCTCN2019103126-appb-000039
Figure PCTCN2019103126-appb-000040
方程(14)减去方程(15),方程(16)减去方程(17)
Figure PCTCN2019103126-appb-000041
Figure PCTCN2019103126-appb-000042
Figure PCTCN2019103126-appb-000043
Figure PCTCN2019103126-appb-000044
Figure PCTCN2019103126-appb-000045
即,光斑位置为
Figure PCTCN2019103126-appb-000046
快反镜位置为此时快发镜的实际位置,设为(k x,k y)
Figure PCTCN2019103126-appb-000047
最后,位置误差为
△=W(t0)-W k(t0+T)
由于光纤章动,存在-R X1=R X2,-R Y1=R Y2,因此在实际应用中△x,△y既可以为正值也可以为负值。
步骤S004:根据位置误差调节光路,使光斑处于耦合效率最大的位置;
由于步骤S001已经拟合计算出ω 0,此值只与光学系统和光纤模场分布有关,与其他没有关联,原则上不会改变,Rx 1,Ry 1是光纤章动的x方向和y方向的章动半径,由步骤S002章动轨迹得到,因此可以通过步骤S003得到位置误差△x,△y信号,位置误差信号通过同轴电缆反馈给二维快速扫描振镜(03),二维快速扫描振镜(03)及时补偿相应的误差,使光斑一直在光纤章动中心,系统具有稳定的光轴。
本发明具有性能稳定可靠,可以获得高的耦合效率,有很强的滤除背景光能力,可以进一步提高抗干扰能力,能够实现比较优良的空间光通信传输信道。
实施例2:
本发明提供了一种无需位置探测器实现光轴稳定的空间光与光纤光高效率耦合的装置,如图2所示,该装置共包括以下几个组成部分:
本发明还提供一种无位置探测器光轴稳定的空间光与光纤光耦合装置,其特征在于,包括激光器(01),光束准直器(02),二维快速扫描镜(03),会聚透镜组(04),光纤耦合器(05),驱动信号控制板(06),信号发射模块(07),桥接器(08),探测器(09),数据采集板(10)。
具体地,各个部分的光路连接方式为,激光器(01)通过光纤连接到光束准直器(02)端口,光束准直器(02)的出射光45度角入射到二维快速扫描振镜(03),二维快速扫描振镜(03)反射的光束平行会聚透镜组的光学中心入射到会聚透镜组(04)内,会聚透镜组(04)出射光束的焦点入射到光纤耦合器(05)端面上,信号发射模块(07)发射的信号通过同轴电缆传给驱动信号控制板(06),驱动信号控制板(06)经电线将信号加载到光纤耦合器(05)上,光纤耦合器(05)耦合的光功率经光纤进入到桥接器(08),桥接器(08)的光信号经光纤进入探测器(09),探测器(09)的电信号经同轴线进入数据采集板(10)。
在使用本发明的装置进行光轴稳定的空间光与光纤光耦合时,首先,激光器(01)发射1550nm激光经光纤进入光束准直器(02),光束准直器(02)的出射光45度角入射到二维快速扫描振镜(03)上,二维快速扫描振镜(03)反射的光束平行入射到会聚透镜组(04),会聚透镜组(04)出射光束的焦点入射到光纤耦合器(05)端面上,光纤耦合器(05)不加信号的情况下,二维快速扫描振镜(03)y方向不动,x方向做幅度300mv频率2Hz的三角波扫描,采集光纤耦合器(03)的光功率信号,采集数据长度10^6,同理,二维快速扫描振镜(03)x方向不动的情况下,y方向做幅度300mv频率2Hz的三角波扫描,采集光纤耦合器(05)的光功率信号。二维快速扫描振镜(03)的正弦信号即对应光斑的位置坐标,将两次采集的光功率信号每个点对应的二维快速扫描振镜(03)的位置信号带入方程(1)和(2)中
Figure PCTCN2019103126-appb-000048
Figure PCTCN2019103126-appb-000049
得到方程(3)
Figure PCTCN2019103126-appb-000050
由于
Figure PCTCN2019103126-appb-000051
将方程(3)带入方程(4)中,可获得耦合模型参数ω 0
接下来,信号发射模块(07)发射正交的正弦信号,信号幅值2.1V,频率2kHz,信号发射模块(07)发射的信号通过同轴电缆传给驱动信号控制板(06),驱动信号控制板(06)将电压放大到100V经电线将信号加载到光纤耦合器(05)上,光纤耦合器(05)在放大的正交正弦信号作用下做章动。二维快速扫描振镜(03)恒压下,x方向偏转+10mv和-10mv,分别采集两个位置的输出耦合光功率,即记录入射光斑在x轴两个独立位置(x1,y0)和(x2,y0)时两种状态下的输出光功率值,带入方程(5)和(6)
Figure PCTCN2019103126-appb-000052
Figure PCTCN2019103126-appb-000053
取对数相减
Figure PCTCN2019103126-appb-000054
得到x轴的轨迹
Figure PCTCN2019103126-appb-000055
同样,可以得到y轴的轨迹
Figure PCTCN2019103126-appb-000056
接下来,光纤耦合器(05)耦合的输出光功率经光纤进入到桥接器(08),桥接器(08)的光信号经光纤进入探测器(09),探测器(09)的电信号经同轴线进入数据采集板(10)。
当章动频率2kHz时,章动周期为500us,每隔125us取一个采集的光功率信号,即记录章动轨迹R X1,R X2,R Y1,R Y2处的接收光强值Px1,Px2,Py1,Py2;
由光纤耦合模型得,如图5所示
Figure PCTCN2019103126-appb-000057
Figure PCTCN2019103126-appb-000058
Figure PCTCN2019103126-appb-000059
Figure PCTCN2019103126-appb-000060
方程(14)减去方程(15),方程(16)减去方程(17)
Figure PCTCN2019103126-appb-000061
Figure PCTCN2019103126-appb-000062
Figure PCTCN2019103126-appb-000063
Figure PCTCN2019103126-appb-000064
Figure PCTCN2019103126-appb-000065
位置误差信号通过同轴电缆反馈给二维快速扫描振镜(03),二维快速扫描振镜(03)及时补偿相应的误差,使光斑一直在光纤章动中心,系统具有稳定的光轴。
本发明具有性能稳定可靠,可以获得高的耦合效率,有很强的滤除背景光能力,可以进一步提高抗干扰能力,能够实现比较优良的空间光通信传输信道。
实施例3:
本发明还提供一种光纤耦合器,包含:光纤,压电陶瓷管,耦合底座,电线。
如图3所示,光纤做毛细管插芯结构,光纤端面做端帽加镀高透膜。压电陶瓷管外部分为四条带状电极区域,区域间绝缘。光纤嵌入压电陶瓷管内,压电陶瓷管底端固定到耦合底座上,压电陶瓷管靠近底座部分的每个电极区域引出一根电线,电线另一端从底座上的孔位穿出,底座上穿出电线的孔位做固定处理。
当本发明所提供的光纤耦合器应用于本发明所提供的无位置探测器光轴稳定的空间光与光纤光耦合装置时,连接于压电陶瓷管上的电线连到信号驱动控制板信号输出端口,信号驱动控制板输出电信号通过电线加载到陶瓷管上。当外部施加一个电压到某一个电极区域时,陶瓷管向垂直方向收缩,使陶瓷管顶部产生比较大的倾斜,同时施加电压会使陶瓷轴向膨胀和收缩,从而实现控制压电陶瓷管做章动运动。

Claims (19)

  1. 一种无位置探测器光轴稳定的空间光与光纤光耦合方法,应用于包含有光纤耦合器和二维快速扫描振镜的装置,其特征在于,至少包括以下步骤:
    步骤S002:光纤耦合器在放大的正交正弦信号作用下做章动,二维快速扫描振镜恒压下,在x和y方向偏转到两个预设位置,分别采集各个位置的输出耦合光功率,根据光功率获得章动圆周上的x轴和y轴轨迹;
    步骤S003:光纤耦合器在放大的正交正弦信号作用下做章动,每隔预设章动周期,采集一个光功率信号,根据采集的光功率信号及其对应的坐标值获取位置误差信号;
    步骤S004:根据位置误差信号调节光路,获得稳定的光轴。
  2. 根据权利要求1所述一种无位置探测器光轴稳定的空间光与光纤光耦合方法,其特征在于,所述步骤S002之前还包括,
    步骤S001:获取耦合模型参数;
    所述步骤S001至少包含以下步骤:
    S001a:二维快速扫描振镜保持y方向不动,x方向做三角波扫描,采集光纤耦合器的光功率信号;二维快速扫描振镜保持x方向不动,y方向做三角波扫描,采集光纤耦合器的光功率信号;
    S001b:将S001a中两次采集的光功率信号以及每个信号点对应的二维快速扫描振镜的位置信号带入方程,求解耦合模型参数。
  3. 根据权利要求2所述一种无位置探测器光轴稳定的空间光与光纤光耦合方法,其特征在于,在所述步骤S001之后与步骤S002之前包括以下步骤:
    S002a:控制信号发射模块发射两路正交的正弦信号;
    S002b:驱动信号控制板将输入的信号分成四路两两正交的放大的正弦信号;
    S002c:驱动信号控制板经电线将信号加载到光纤耦合器上,光纤耦合器在放大的正交正弦信号作用下做章动。
  4. 根据权利要求3所述一种无位置探测器光轴稳定的空间光与光纤光耦合方法,其特征在于,所述步骤S002a中信号发射模块发射的正弦信号幅值在1V~2.5V范围内,频率在1kHz~5kHz范围内。
  5. 根据权利要求3所述一种无位置探测器光轴稳定的空间光与光纤光耦合方法,其特征在于,所述步骤S002c中驱动信号控制板将电压放大到100V~200V。
  6. 根据权利要求1所述一种无位置探测器光轴稳定的空间光与光纤光耦合方法,其特征在于,所述步骤S003至少包括以下步骤之一:
    S003a:控制信号发射模块发射两路正交的正弦信号;
    S003b:驱动信号控制板将输入的信号分成四路两两正交的放大的正弦信号;
    S003c:驱动信号控制板经电线将信号加载到光纤耦合器上,光纤耦合器在放大的正交正弦信号作用下做章动;
    S003d:每隔四分之一章动周期,采集一个光功率信号;
    S003e:将采集的光功率信号及其对应的坐标值带入方程,得出位置误差信号。
  7. 根据权利要求1所述一种无位置探测器光轴稳定的空间光与光纤光耦合方法,其特征在于,求解得到的x轴轨迹为:
    Figure PCTCN2019103126-appb-100001
    y轴轨迹为:
    Figure PCTCN2019103126-appb-100002
    其中,x 1,x 2为x方向两个预设位置的x坐标,y 1,y 2为y方向两个预设位置的y坐标,ω 0为耦合模型参数,Poutx 1为x 1位置对应的输出光功率,Poutx 2为x 2位置对应的输出光功率,Pouty 1为y 1位置对应的输出光功率,Pouty 2为y 2位置对应的输出光功率。
  8. 根据权利要求1所述一种无位置探测器光轴稳定的空间光与光纤光耦合方法,其特征在于,误差位置为:
    Figure PCTCN2019103126-appb-100003
    Figure PCTCN2019103126-appb-100004
    其中,Rx 1为x方向轨迹上的x坐标,Ry 1为y方向轨迹上的坐标,ω 0为耦合模型参数,Poutx 1为Rx 1位置对应的的输出光功率,Poutx 2为Rx 2位置对应的输出光功率,Pouty 1为y 1位置对应的输出光功率,Pouty 2为Ry 2位置对应的输出光功率。
  9. 根据权利要求1所述一种无位置探测器光轴稳定的空间光与光纤光耦合方法,其特征在于,在步骤S003或步骤S002之前还包括:
    步骤S000:标定二维快速扫描振镜的延时;具体包括以下步骤:
    步骤S000a:在快反镜X,Y方向分别加载正弦信号K=sin(θ 1);
    步骤S000b:在光纤不做章动的情况下,计算由于快反镜的扫描光纤章动器输出正弦光功率G=sin(θ 2);
    步骤S000c:通过计算K和G的相位差
    Δ=θ 12
    可以得到快反镜的延时时间。
  10. 一种无位置探测器光轴稳定的空间光与光纤光耦合装置,其特征在于,包括激光器(01),光束准直器(02),二维快速扫描镜(03),会聚透镜组(04),光纤耦合器(05),驱动信号控制板(06),信号发射模块(07),桥接器(08),探测器(09),数据采集板(10);
    所述激光器(01)通过光纤连接到光束准直器(02)端口,光束准直器(02)的出射光45度角入射到二维快速扫描振镜(03),二维快速扫描振镜(03)反射的光束平行会聚透镜组的光学中心入射到会聚透镜组(04)内,会聚透镜组(04)出射光束的焦点入射到光纤耦合器(05)端面上,信号发射模块(07)发射的信号通过同轴电缆传给驱动信号控制板(06),驱动信号控制板(06)经电线将信号加载到光纤耦合器(05)上,光纤耦合器(05)耦合的光功率经光纤进入到桥接器(08),桥接器(08)的光信号经光纤进入探测器(09),探测器(09)的电信号经同轴线进入数据采集板(10)。
  11. 根据权利要求10所述一种无位置探测器光轴稳定的空间光与光纤光耦合装置,其特征在于,所述的光纤耦合器(05)包括光纤(11),压电陶瓷管(12)。
  12. 根据权利要求11所述一种无位置探测器光轴稳定的空间光与光纤光耦合装置,其特征在于,所述光纤(11)从压电陶瓷管(12)内穿出并与压电陶瓷管(12)固定。
  13. 根据权利要求12所述一种无位置探测器光轴稳定的空间光与光纤光耦合装置,其特征在于,所述压电陶瓷管(12)上包含四个电极区域(13),四个 电极区域(13)上均焊有电线(14)。
  14. 根据权利要求10所述一种无位置探测器光轴稳定的空间光与光纤光耦合装置,其特征在于,所述的信号发射模块(07)为信号发生器。
  15. 根据权利要求10所述一种无位置探测器光轴稳定的空间光与光纤光耦合装置,其特征在于,所述的驱动信号控制板(06)为电压放大器。
  16. 一种无位置探测器光轴稳定的空间光与光纤光耦合装置,其特征在于,包含权利要求1至8所述的无位置探测器光轴稳定的空间光与光纤光耦合方法。
  17. 根据权利要求10所述一种无位置探测器光轴稳定的空间光与光纤光耦合装置,其特征在于,所述的光纤耦合器包括光纤,压电陶瓷管,耦合底座,电线;
    所述的光纤的结构为毛细管插芯结构;
    所述的压电陶瓷管外部分为若干条带状电极区域,区域间绝缘;
    所述的耦合底座具有孔位;
    所述的光纤嵌入压电陶瓷管内,压电陶瓷管底端固定到耦合底座上,压电陶瓷管靠近底座部分的每个电极区域引出一根电线,电线另一端从底座上的孔位穿出。
  18. 根据权利要求17所述一种光纤耦合器,其特征在于,所述的光纤一端的端面具有端帽且加镀高透膜。
  19. 根据权利要求17所述一种光纤耦合器,其特征在于,所述的带状电极区数量为四条。
PCT/CN2019/103126 2018-08-29 2019-08-28 一种无位置探测器光轴稳定的空间光与光纤光耦合装置及方法 WO2020043142A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021536137A JP7175483B2 (ja) 2018-08-29 2019-08-28 位置探知機なしで光軸が安定化される空間光とファイバー光とのカップリング装置及び方法
US17/271,250 US11555971B2 (en) 2018-08-29 2019-08-28 Apparatus and method for coupling the spatial light to the optical fiber light for achieving the stability of an optical axis without a position detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810997722.7 2018-08-29
CN201810997722.7A CN110873931B (zh) 2018-08-29 2018-08-29 一种无位置探测器光轴稳定的空间光与光纤光耦合装置及方法

Publications (1)

Publication Number Publication Date
WO2020043142A1 true WO2020043142A1 (zh) 2020-03-05

Family

ID=69645044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103126 WO2020043142A1 (zh) 2018-08-29 2019-08-28 一种无位置探测器光轴稳定的空间光与光纤光耦合装置及方法

Country Status (4)

Country Link
US (1) US11555971B2 (zh)
JP (1) JP7175483B2 (zh)
CN (1) CN110873931B (zh)
WO (1) WO2020043142A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114189284A (zh) * 2022-02-16 2022-03-15 之江实验室 一种星载激光通信机的在轨自标校装置及其标校方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113452437B (zh) * 2021-06-25 2022-10-11 中国科学院上海光学精密机械研究所 用于空间光通信的星间激光链路测试模拟系统及方法
CN115291331B (zh) * 2022-08-31 2024-03-19 山东航天电子技术研究所 一种应用于空间光通信的无章动镜的光纤章动耦合设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062150A (en) * 1989-01-23 1991-10-29 Massachusetts Institute Of Technology Fiber-based free-space optical system
US20010005273A1 (en) * 1999-12-22 2001-06-28 Contraves Space Ag Method and arrangement for establishing a connection between satellites
US6577421B1 (en) * 1999-08-12 2003-06-10 Hughes Electronics Corporation Alignment system and method for optical satellite communication
CN102681550A (zh) * 2012-05-18 2012-09-19 中国科学院光电技术研究所 一种双快速反射镜精跟踪装置及方法
CN104811244A (zh) * 2015-03-26 2015-07-29 中国科学院上海光学精密机械研究所 基于激光章动的空间光到单模光纤的耦合系统
CN106772837A (zh) * 2017-01-03 2017-05-31 中国科学院上海光学精密机械研究所 光束耦合的光轴稳定装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940034A (en) * 1998-08-08 1999-08-17 Space Systems/Loral, Inc. Dual RF autotrack control
CN2345987Y (zh) * 1998-12-21 1999-10-27 中国科学院西安光学精密机械研究所 激光光纤耦合装置
CN1170119C (zh) * 2002-07-05 2004-10-06 清华大学 基于正交双偏振光的滚转角光电检测方法及装置
JP2004159032A (ja) * 2002-11-06 2004-06-03 Communication Research Laboratory 空間光通信システム
US7373210B2 (en) * 2003-01-14 2008-05-13 Harman International Industries, Incorporated Effects and recording system
EP2906985B1 (en) * 2012-10-12 2022-03-09 Thorlabs, Inc. Compact, low dispersion, and low aberration adaptive optics scanning system
US9614620B2 (en) * 2013-02-06 2017-04-04 Applied Optoelectronics, Inc. Coaxial transmitter optical subassembly (TOSA) with cuboid type to laser package and optical transceiver including same
JP6296436B2 (ja) * 2013-09-24 2018-03-20 国立大学法人佐賀大学 光空間通信システム
JP2016184561A (ja) 2015-03-27 2016-10-20 矢崎総業株式会社 グロメット
CN105021128B (zh) * 2015-07-02 2017-09-26 哈尔滨工业大学 基于光束扫描共焦探测技术的探针传感方法及装置
CN206757171U (zh) * 2017-05-04 2017-12-15 浙江大学 新型多角度环状光学照明显微成像系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062150A (en) * 1989-01-23 1991-10-29 Massachusetts Institute Of Technology Fiber-based free-space optical system
US6577421B1 (en) * 1999-08-12 2003-06-10 Hughes Electronics Corporation Alignment system and method for optical satellite communication
US20010005273A1 (en) * 1999-12-22 2001-06-28 Contraves Space Ag Method and arrangement for establishing a connection between satellites
CN102681550A (zh) * 2012-05-18 2012-09-19 中国科学院光电技术研究所 一种双快速反射镜精跟踪装置及方法
CN104811244A (zh) * 2015-03-26 2015-07-29 中国科学院上海光学精密机械研究所 基于激光章动的空间光到单模光纤的耦合系统
CN106772837A (zh) * 2017-01-03 2017-05-31 中国科学院上海光学精密机械研究所 光束耦合的光轴稳定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114189284A (zh) * 2022-02-16 2022-03-15 之江实验室 一种星载激光通信机的在轨自标校装置及其标校方法
CN114189284B (zh) * 2022-02-16 2022-05-24 之江实验室 一种星载激光通信机的在轨自标校装置及其标校方法

Also Published As

Publication number Publication date
CN110873931A (zh) 2020-03-10
JP2022511985A (ja) 2022-02-01
US11555971B2 (en) 2023-01-17
CN110873931B (zh) 2022-04-05
US20210341689A1 (en) 2021-11-04
JP7175483B2 (ja) 2022-11-21

Similar Documents

Publication Publication Date Title
WO2020043142A1 (zh) 一种无位置探测器光轴稳定的空间光与光纤光耦合装置及方法
CN103311790B (zh) 一种激光束双向收发的自适应光纤耦合或准直器控制系统
CN101852613B (zh) 一种应用于光纤传感的光收发一体化装置
WO2021197403A1 (zh) 一种远距离探测的激光雷达及其探测方法
WO2015039394A1 (zh) 光波导芯片和pd阵列透镜耦合装置
US11880068B2 (en) Space optical coupling apparatus
CN109560878B (zh) 基于相干探测的空间光到单模光纤的自适应耦合系统
CN108873554B (zh) 一种基于液晶光学相控阵的多用户捕获跟踪方法
CN103543495A (zh) 一种图像采集和原位投影的光学装置
CN104158592A (zh) 湍流大气中部分相干光通信初始光源参数控制装置
CN107615725B (zh) 一种光接收机和基于光接收机的光信号调节方法
CN110971297B (zh) 基于超表面微纳芯片的室内光无线通信系统及方法
JP4015724B2 (ja) コヒーレント重畳受信中における2光波のアライメント制御のための方法および装置
CN110401483B (zh) 一种激光通信装置及方法
CN104811244A (zh) 基于激光章动的空间光到单模光纤的耦合系统
CN101769950A (zh) 基于法拉第效应的全光纤差流测量装置
CN114301523B (zh) 一种基于空间自滤波的涡旋光束指向误差探测和校正装置
CN207457496U (zh) 基于多视场合束镜的激光雷达光学装置及激光雷达系统
CN103904551A (zh) 自由电子激光器谐振腔
CN115291331B (zh) 一种应用于空间光通信的无章动镜的光纤章动耦合设计方法
CN106772837B (zh) 光束耦合的光轴稳定装置
CN109813313A (zh) 一种用于惯性导航物联网汽车的定位陀螺
CN110601756B (zh) 一种用于空间激光通信的电光章动耦合系统及方法
CN113690727A (zh) 一种单模光纤激光器单偏振光输出方法及装置
CN114337815A (zh) 一种空间光通信终端及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536137

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855462

Country of ref document: EP

Kind code of ref document: A1