WO2020042735A1 - 屏幕显示控制方法、装置、设备、及可读存储介质 - Google Patents

屏幕显示控制方法、装置、设备、及可读存储介质 Download PDF

Info

Publication number
WO2020042735A1
WO2020042735A1 PCT/CN2019/092849 CN2019092849W WO2020042735A1 WO 2020042735 A1 WO2020042735 A1 WO 2020042735A1 CN 2019092849 W CN2019092849 W CN 2019092849W WO 2020042735 A1 WO2020042735 A1 WO 2020042735A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
calibrated
electronic device
color difference
display control
Prior art date
Application number
PCT/CN2019/092849
Other languages
English (en)
French (fr)
Inventor
路来承
安博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020042735A1 publication Critical patent/WO2020042735A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature

Definitions

  • the embodiments of the present application relate to, but are not limited to, the field of communications, and specifically to, but not limited to, a screen display control method, device, device, and readable storage medium.
  • More and more electronic devices are equipped with display screens to allow users to visually experience the interaction of many applications, and some electronic devices will be equipped with two display screens to improve the user's visual experience.
  • the color difference displayed by the display screen is difficult to avoid.
  • the display colors of the two display screens have more or less color differences.
  • the color display of one display screen is relatively visually different from the other. One feels reddish or greenish and so on.
  • color differences may be generated between different display areas on a display screen, resulting in poor visual experience.
  • the screen display control method, device, device, and readable storage medium provided in the embodiments of the present application can at least solve the problems of color difference caused by the display screen and poor visual experience.
  • An embodiment of the present application provides a screen display control method, including:
  • An embodiment of the present application further provides a screen display control device, including:
  • a parameter acquisition module configured to acquire calibration parameters of a screen to be calibrated of the electronic device, the calibration parameters being obtained based on a color difference between the screen to be calibrated and a preset standard screen;
  • a layer generation module configured to generate a compensation layer for the screen to be calibrated according to the calibration parameters
  • the display control module is configured to superimpose and display the compensation layer and other layers of the screen to be calibrated.
  • An embodiment of the present application further provides an electronic device including a processor, a memory, and a communication bus;
  • the communication bus is used to implement a communication connection between the processor and the memory
  • the processor is configured to execute one or more computer programs stored in the memory to implement the steps of the screen display control method described above.
  • An embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores one or more computer programs, and the one or more computer programs can be executed by one or more processors to Implement the steps of the screen display control method as described above.
  • the screen display control method, device, device, and readable storage medium provided in the embodiments of the present application, when a screen display of an electronic device is used, calibration parameters of a screen to be calibrated of the electronic device can be obtained, and the calibration parameters are based on the screen to be calibrated.
  • the color difference between the calibration screen and the preset standard screen is obtained; then the compensation layer of the screen to be calibrated is generated according to the obtained calibration parameters, and the obtained compensation layer is superimposed with other layers of the screen to be calibrated, so that the electronic device
  • the display effect of the screen to be calibrated is basically consistent with the display effect of the preset standard screen, so as to avoid affecting the visual experience when the color difference of the screen to be calibrated of the electronic device is generated, and improve the user experience satisfaction.
  • FIG. 1 is a schematic flowchart of a screen display control method according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a process of obtaining calibration parameters according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a process of generating a compensation layer according to an embodiment of the present application
  • FIG. 4-1 is a first schematic diagram of a state of a first double-sided screen electronic device according to an embodiment of the present application.
  • 4-2 is a second schematic diagram of a state of a first type of double-sided screen electronic device according to an embodiment of the present application
  • 4-3 is a third schematic state diagram of a first type of double-sided screen electronic device according to an embodiment of the present application.
  • FIG. 5-1 is a schematic front view of a second double-sided screen electronic device according to an embodiment of the present application.
  • 5-2 is a schematic diagram of the back of a second type of double-sided screen electronic device according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a process of obtaining calibration parameters according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an area to be calibrated according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a compensation processing process according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a rendered area to be calibrated according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of layer overlay display according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a screen display control device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the screen display control method obtains calibration parameters of the screen to be calibrated of the electronic device during the screen display process of the electronic device.
  • the parameters are obtained based on the color difference between the screen to be calibrated and the preset standard screen; then the compensation layer of the screen to be calibrated is generated according to the obtained calibration parameters, and the obtained compensation layer is superimposed with other layers of the screen to be calibrated
  • the display makes the color display effect of the screen to be calibrated of the electronic device substantially the same as the color display effect of the preset standard screen, thereby avoiding affecting the visual experience when the screen of the electronic device produces a color difference.
  • the color difference of the screen to be calibrated may be a color difference generated by the screen to be calibrated compared to a preset standard screen.
  • this embodiment is described below with reference to an example screen display control method. The method is shown in FIG. 1 and includes:
  • the calibration parameter in step S101 of this embodiment is obtained based on the color difference between the screen to be calibrated of the electronic device and a preset standard screen. It should be understood that the calibration parameters of the screen to be calibrated in S101 include, but are not limited to, one of the following methods:
  • Method 1 In an example, the calibration parameters may be saved in advance, and the acquisition in S101 may be to obtain the previously saved calibration parameters;
  • the calibration parameter may also be acquired in real time.
  • the acquisition in S101 may acquire the calibration parameter in real time according to the color difference between the screen to be calibrated of the electronic device and a preset standard screen.
  • which acquisition method is used to obtain the calibration parameters may be flexibly selected and determined according to the specific application scenario.
  • the electronic device may be a single-screen device provided with only one screen (that is, a display screen), or may be provided with more than two screens (for example, two display screens, or three display screens, etc.) ) Multi-screen devices.
  • the electronic device when the electronic device is a single-screen device, for example, the electronic device includes only the first screen.
  • the preset standard screen in this embodiment may be a screen of another device other than the electronic device.
  • the first screen can be compared with a preset standard screen to obtain the color difference between the two to obtain calibration parameters, and / or, during the single-screen electronic device's factory use process, (For example, after using the preset duration or when it is detected that the screen aging condition meets the preset conditions), the current first screen is compared with the preset standard screen to obtain the color difference between the two to obtain the calibration parameters.
  • the preset standard screen may be a screen that meets the preset standard display conditions, and the preset label display conditions may be flexibly set according to the requirements of the application scenario.
  • the preset standard screen may be a screen of another device other than the electronic device, or may be one of the screens of the electronic device.
  • the electronic device is a double-sided screen device including a first screen and a second screen
  • the first screen may be set as a preset standard screen
  • the second screen may be a screen to be calibrated, or Set the second screen as the preset standard screen and the first screen as the screen to be calibrated.
  • both the first screen and the second screen of the electronic device can be set as the screens to be calibrated.
  • the preset standard screen can be the screen of another device other than the electronic device, and the preset in the application scenario
  • the standard screen can be a screen that meets the preset standard display conditions, and the preset label display conditions can be flexibly set according to the requirements of the application scenario.
  • corresponding compensations need to be generated for the first screen and the second screen of the double-sided screen device.
  • Overlay display of layers of course, if there is no color difference between a screen and a preset standard screen, a compensation layer can be selectively not generated for this screen, or a full transparency can be generated. Blank compensation layer.
  • the setting method of the screen to be calibrated and the preset standard screen may also adopt the method shown in the above example, and details are not described herein again.
  • FIG. 2 a process of obtaining a calibration parameter according to a color difference between a screen to be calibrated and a preset standard screen is shown in FIG. 2 and includes:
  • S201 Determine the area to be compensated for the color difference compensation on the screen to be calibrated according to the display difference between the screen to be calibrated and the preset standard screen.
  • the area to be compensated for which color difference compensation is required may be one, or may be more than two. When it is one, the area may cover the entire screen, or may be a part of the area on the screen. Of course, in some cases, the determined number of regions to be compensated may also be zero.
  • the determination and selection of the area to be compensated can be implemented manually, for example, the operator compares and analyzes the area where the screen to be calibrated is different from the preset standard screen, and is displayed on the screen to be calibrated. This partial area is divided as an area to be compensated.
  • the determination and selection of the area to be compensated may also be realized by a calculation and analysis algorithm set in advance.
  • S202 Obtain area determination parameters of the area to be compensated, and a color difference value of the area to be compensated and a corresponding area on a preset standard screen.
  • first area to be compensated For example, suppose that in one example, for one screen to be calibrated, it is determined that there are two areas to be compensated, which are respectively referred to as a first area to be compensated and a second area to be compensated in this example, and the first area to be compensated is obtained separately.
  • a first region determination parameter of the compensation region and a second region determination parameter of the second region to be compensated and respectively obtain a first color difference value of the first region to be compensated and a second color difference value of the second region to be compensated.
  • the acquisition process of the area determination parameter and the color difference value does not have strict timing restrictions, and the two can be acquired at the same time or not at the same time.
  • the specific calculation method of the color difference value of the corresponding area on the screen to be calibrated and the preset standard screen can be flexibly determined according to the application scenario.
  • the color value refers to a color value corresponding to a color in different color modes.
  • the color modes include, but are not limited to, red, green, and blue modes (RGB mode) (where R represents red, G represents green, and B represents blue), and printing color modes (that is, CMYK modes, where C represents cyan, M represents magenta, and Y Represents yellow, K represents black), Hue-Saturation-Brightness (HSB) mode or LAB mode (where L represents brightness and A represents color from dark green (bottom brightness value) to gray (medium brightness value) ) To bright pink (high brightness value); B represents the color from bright blue (bottom brightness value) to gray (medium brightness value) to yellow (high brightness value).
  • RGB mode red, green, and blue modes
  • printing color modes that is, CMYK modes, where C represents cyan, M represents magenta, and Y Represents yellow, K represents black
  • Hue-Saturation-Brightness (HSB) mode or LAB mode where L represents brightness and A represents color from dark green (bottom brightness value) to gray (medium brightness value) ) To bright
  • LAB mode has the widest color gamut, and it Including all colors in the RGB color gamut and CMYK color gamut, no color loss will be caused when using LAB mode for conversion.
  • Chromatic Aberration is expressed as the difference between two colors in one color mode.
  • the difference in color values is in the United States National Bureau of Standards (NBS), and is mathematically represented by the distance between two color points in the color space.
  • the screen to be calibrated and the standard screen can display the same color spectrum in the same mode.
  • the time to be recorded can be recorded.
  • the color currently displayed on the calibration screen is used as the initial color, and then the color of the area in the screen to be calibrated is changed until the display effect is no or substantially no color difference from the display effect of the corresponding area in the standard screen.
  • the color is used as the target color; then the difference between the target color and the initial color is calculated to obtain the color difference, and this color difference can be used as the color difference value of the area corresponding to the screen to be calibrated and the standard screen.
  • the division manner of the area to be calibrated in this embodiment may be flexibly set according to a specific application scenario.
  • S203 Store the area determination parameter of the area to be compensated and the color difference value in association.
  • the first region determination parameter of the first region to be compensated is stored in association with the first color difference value
  • the second region determination parameter of the second region to be compensated is stored in association with the second color difference value.
  • the process of generating the compensation layer of the screen to be calibrated according to the calibration parameters of the screen to be calibrated is shown in FIG. 3 and includes:
  • S302 Determine the area to be rendered on the blank layer according to the area determination parameters and color difference values stored in the calibration parameters, render the corresponding area to be rendered according to the corresponding color difference value, and set the layer to Transparent, get the compensation layer.
  • the example in which the first to-be-compensated area and the second to-be-compensated area exist on the screen to be calibrated is still described as an example.
  • the first region to be rendered and the second region to be rendered on the layer may be determined according to the first region determination parameter and the second region determination parameter, and then according to the corresponding first color difference values, respectively.
  • the second color difference value to perform rendering processing on the first to-be-rendered area and the second to-be-rendered area that is, display the first to-be-rendered area and the second to-be-rendered area according to the first and second color-difference values.
  • Set the color It should be understood that when the number of regions to be compensated is greater than two or one, the process of rendering blank layers is deduced by analogy, and the details are not described herein again.
  • the step of setting the layer to be transparent that is, setting the layer's alpha value to 0 (full transparency)
  • the step of performing the above rendering on the layer can be performed simultaneously.
  • the execution order between the two steps can be flexibly set, for example, the layer can be set to transparent before rendering it according to the above process, or the layer can be first After rendering as described above, set it to transparent.
  • superimposing and displaying the compensation layer of the screen to be calibrated and other layers of the screen to be calibrated may include: setting the compensation layer of the screen to be calibrated on the screen of the screen to be calibrated.
  • Overlay display on other layers, that is, the compensation layer is set on the top of all layers of the screen to be calibrated, so that the color display effect of the screen to be calibrated of the electronic device and the color display effect of the preset standard screen are basically maintained Consistent, so as to avoid or minimize the impact on the visual experience when the screen of the electronic device produces color difference.
  • the electronic device is an electronic device having more than two display screens (that is, screens), including various double-sided screen electronic devices, and even three-screen or more electronic devices.
  • a double-sided screen electronic device is taken as an example for description.
  • the double-screen electronic device in this embodiment may be a dual-screen smart electronic device in various forms. See, for example, a double-sided screen electronic device shown in FIGS. 4-1 to 4-3.
  • the two display screens of the double-sided screen electronic device 4 are in a folded state and are located in the electronic device.
  • the front first screen 41 faces the user.
  • the two display screens of the double-sided electronic device 1 are in a state of being opened, and the first screen 41 and the second screen 42 can be rotated relative to each other to expand, and the final example is an expanded state.
  • the first screen 41 and the second screen 42 are on the same plane or substantially on the same plane.
  • a double-sided screen electronic device 5 has a first screen 51 on the front of the electronic device and a second screen 51 on the back of the electronic device. Screen 52, the positions of the two displays are fixed.
  • the sizes of the first screen 51 and the second screen 52 may be the same or different, and may be flexibly set according to requirements. For example, in one example, the size of the second screen 52 may be smaller than that of the first screen 51.
  • the double-sided screen electronic device in this embodiment is not limited to the above-mentioned example structure.
  • the first screen and the second screen are both located on the front of the electronic device at the same time.
  • the double-sided electronic device shown in FIGS. 4-1 to 4-3 includes, but is not limited to, at least one of the following four display modes:
  • Big A mode Two screens are used as one screen to display the same application, each of which displays a part of the application.
  • the left and right halves or the upper and lower halves of the application can be displayed separately according to the change of the horizontal and vertical screen.
  • the two screens respectively display different applications. At this time, the two screens are similar to the display screens of two devices, and there may be little continuity or correlation between them.
  • AA mode (ie mirror mode): two screens display the same application at the same time, but each screen will completely display all parts of the application, but they are displayed in an axisymmetric form.
  • AX mode Currently only one display is available, such as the first screen is on and the second screen is off; or the first screen is off and the second screen is on).
  • the premise of the realization of AA mode, AB mode, and big A mode is that the two display screens of the device must be currently on. If there is a color difference between the two screens, this phenomenon is extremely easy to find, especially In large A mode or AA mode, this phenomenon will be more obvious, resulting in poor user experience satisfaction.
  • the method screen display control method provided in this embodiment may be applicable to the above four modes, or only for some of the above four modes. For example, when determining whether the device is in the AA mode, the AB mode, or the large A mode, or in the Only in the AA mode and the large A mode, the screen display control method provided in this embodiment is enabled to perform display control on the first screen and / or the second screen.
  • the first screen of the double-sided electronic device is used as the screen to be calibrated, and the second screen is used as the preset standard screen (Of course, in some application scenarios, the second screen of the double-sided electronic device may also be used as For the screen to be calibrated, the first screen is used as the preset standard screen, or both the first screen and the second screen of the double-sided screen electronic device are directly used as the screen to be calibrated, and the screen of the other device is used as the preset standard screen).
  • the color difference values between the regions of the two screens are obtained through calibration calculations. After having the color difference values of each region, a compensation layer can be added to the display layer of the first screen of the electronic device.
  • This compensation layer can set the color value and alpha value according to the color difference of the above areas.
  • the color value and alpha value here are the color difference values of the corresponding areas of the two screens calculated through the calculation. Adding a compensation layer to the first screen) can make the first screen and the second screen that the user finally sees have substantially no color difference, and improve the visual effect.
  • This control method can also be adopted for devices with more than two screens, so that multiple screens are basically free of color difference.
  • control process may include a calibration parameter acquisition process, and a compensation processing process in a display process.
  • the calibration parameter acquisition process may include: entering the first screen and the second screen into a calibration comparison interface, for example, displaying the two screens in white, determining that the first screen is a screen to be calibrated, and the second screen is a preset standard screen.
  • the area to be calibrated for example, it can include, but not limited to, areas that are reddish or greenish; then, red and green can be displayed linearly to the screen to be calibrated.
  • the compensation processing process in the display process may include: before the electronic device enters the normal boot display process, before the system frame is started and before the application interface is entered, the calibration parameter acquisition process obtained in the window management system may be read.
  • Calibration parameters (of course, you can also obtain the calibration parameters according to the above parameter acquisition process in real time), add a compensation layer to the screen to be calibrated according to the calibration parameters, and you can set it to the top of each coating on the screen to be calibrated, and Set the color difference of the corresponding area (that is, the compensation color) as the display color of the corresponding area in the compensation layer, and set the alpha value of the compensation layer to be completely transparent.
  • the color difference of the dual screens can be complemented by adding a compensation layer to compensate for the color difference, thereby achieving the visual effect of no color difference in the dual screen display.
  • the following describes an example of the calibration parameter acquisition process as an example. Refer to Figure 6, including:
  • S601 The double-sided screen electronic device enters the calibration interface. At this time, white can be displayed on the first screen and the second screen at the same time.
  • S602 Determine whether calibration is required. If yes, perform S603; otherwise, perform S608.
  • the operator or a preset algorithm can be used to determine whether calibration is required based on the display of the two screens. If there is no color difference, calibration is not required and the process proceeds to step S608. If there is color difference, calibration is required to proceed to S603.
  • the current screen is triggered to enter the calibration process as the screen to be calibrated.
  • S603 Determine an area with color difference from the standard screen on the screen to be calibrated, and select one or more color difference areas as the area to be calibrated.
  • the two areas marked by C1 and C2 in FIG. 7 are the areas to be calibrated, and area determination parameters for determining C1 and C2 can be obtained.
  • S604 Display the color spectrum on the selected area to be calibrated by linearly decreasing each component of the color RGB.
  • the area to be calibrated circled in FIG. 7 can be sequentially taken as the current area to be calibrated and entered into S604. If all the selected areas have been calibrated, the calibration is completed.
  • S605 According to the display of the color spectrum of the area to be calibrated, compare another preset standard screen, select a color that is consistent with it, and perform a preview comparison until the final two-screen preview displays the same color.
  • S606 Calculate the color difference between the screen color to be calibrated (that is, the initial color) and the target color selected in the previous step according to the color selected in the previous step (that is, the target color).
  • S607 Write the area determination parameters and color difference values of the areas to be calibrated (such as the C1 and C2 areas) to a file and save them.
  • S608 It indicates that there is no color difference between the first screen and the second screen.
  • a calibration process may be introduced or a file with a color difference value of 0 may be generated for saving.
  • S801 The electronic device starts and starts, and the window, screen, etc. enters an application window interface ready to be started.
  • S802 Read the calibration information file written in the calibration parameter acquisition process to determine whether the reading is successful. If yes, go to S803; otherwise, go to S806.
  • the method shown in FIG. 6 can be used to obtain the calibration parameters in real time.
  • the process may also directly go to S806.
  • S804 Generate a compensation layer, and render the compensation layer using the area determination parameters and color difference values parsed in S803. For example, suppose the rendering area of a compensation layer is shown in FIG. 9.
  • S805 Add the compensation layer generated by S804 to the screen to be calibrated, and always display the compensation layer at the top of all layers on the screen to be calibrated.
  • a schematic diagram of an overlay display can be shown in FIG. 10, where 1001, 1002, and 1003 are the wallpaper layer, the application layer (APP), and the status bar layer (StatusBar), and 1004 is the compensation layer. 1004, and the compensation layer 1004 is always above the wallpaper layer 1001, the application layer 1002, and the status bar layer 1003.
  • a compensation layer 1004 may be generated in both the first screen and the second screen for superimposed display.
  • the colors of the two screens of the double-sided electronic device can be displayed substantially without color difference, so the consistency of the screen display of the double-sided electronic device and the satisfaction of user experience can be improved.
  • This embodiment also provides a screen display control device.
  • the screen display control device may be provided in the device. As shown in FIG. 11, it includes:
  • the parameter acquisition module 1101 is configured to acquire calibration parameters of a screen to be calibrated of the electronic device.
  • the calibration parameters in this embodiment are obtained based on the color difference between the screen to be calibrated and the preset standard screen; for the specific process of the parameter acquisition module 1101 to obtain the calibration parameters, reference may be made to the foregoing embodiments.
  • the layer generation module 1102 is configured to generate a compensation layer for the screen to be calibrated according to the calibration parameters acquired by the parameter acquisition module 1101. For a specific generation process, refer to the foregoing embodiments, and details are not described herein again.
  • the display control module 1103 is configured to superimpose and display the compensation layer generated by the layer generation module 1102 and other layers of the screen to be calibrated. For a specific superimposed display process, refer to the foregoing embodiments, and it will not be repeated here. To repeat.
  • the preset standard screen in this embodiment may be other than the electronic device.
  • Device screen the first screen can be compared with a preset standard screen to obtain the color difference between the two to obtain calibration parameters, and / or, during the single-screen electronic device's factory use process, (For example, after using the preset duration or when it is detected that the screen aging condition meets the preset conditions), the current first screen is compared with the preset standard screen to obtain the color difference between the two to obtain the calibration parameters.
  • the preset standard screen may be a screen that meets the preset standard display conditions, and the preset label display conditions may be flexibly set according to the requirements of the application scenario.
  • the preset standard screen may be a screen of another device other than the electronic device, or may be one of the screens of the electronic device.
  • the electronic device is a double-sided screen device including a first screen and a second screen
  • the first screen may be set as a preset standard screen
  • the second screen may be a screen to be calibrated, or Set the second screen as the preset standard screen and the first screen as the screen to be calibrated.
  • both the first screen and the second screen of the electronic device can be set as the screens to be calibrated.
  • the preset standard screen can be the screen of another device other than the electronic device, and the preset in the application scenario
  • the standard screen can be a screen that meets the preset standard display conditions, and the preset label display conditions can be flexibly set according to the requirements of the application scenario.
  • corresponding compensations need to be generated for the first screen and the second screen of the double-sided screen device.
  • Overlay display of layers of course, if there is no color difference between a screen and a preset standard screen, a compensation layer can be selectively not generated for this screen, or a full transparency can be generated. Blank compensation layer.
  • the setting method of the screen to be calibrated and the preset standard screen may also adopt the method shown in the above example, and details are not described herein again.
  • the parameter obtaining module 1101 is configured to determine a to-be-compensated area on the to-be-calibrated screen that needs to be compensated for color difference according to a display difference between the to-be-calibrated screen and a preset standard screen, and obtain The area determination parameter of the area to be compensated, the color difference value of the area to be compensated and the corresponding area on the preset standard screen, and the area determination parameter of the area to be compensated and the color difference value are stored in association.
  • the area to be compensated for which color difference compensation is required may be one, or may be more than two. When it is one, the area may cover the entire screen, or may be a part of the area on the screen. Of course, in some cases, the determined number of regions to be compensated may also be zero.
  • the determination and selection of the area to be compensated can be realized manually, for example, the operator compares and analyzes the area where the screen to be calibrated is different from the preset standard screen, and is on the screen to be calibrated This partial area is divided as an area to be compensated.
  • the determination and selection of the area to be compensated may also be realized by a calculation and analysis algorithm set in advance.
  • first area to be compensated and a second area to be compensated For example, suppose that in one example, for one screen to be calibrated, it is determined that there are two areas to be compensated, which are respectively referred to as a first area to be compensated and a second area to be compensated in this example, and the first A first region determination parameter of the compensation region and a second region determination parameter of the second region to be compensated, and respectively obtain a first color difference value of the first region to be compensated and a second color difference value of the second region to be compensated. And in this example, the acquisition process of the area determination parameter and the color difference value does not have strict timing restrictions, and the two can be acquired at the same time or not at the same time.
  • the first region determination parameter of the first region to be compensated is stored in association with the first color difference value
  • the second region determination parameter of the second region to be compensated is stored in association with the second color difference value.
  • the layer generation module 1102 is configured to generate a blank layer that matches the screen to be calibrated, and determine the parameters and color difference values according to the region saved in association with the calibration parameters and determine The area to be rendered on the blank layer, and the corresponding area to be rendered is rendered according to the corresponding color difference value, and the layer is set to transparent to obtain a compensation layer.
  • the example in which the first to-be-compensated area and the second to-be-compensated area exist on the screen to be calibrated is still described as an example.
  • the first region to be rendered and the second region to be rendered on the layer may be determined according to the first region determination parameter and the second region determination parameter, and then according to the corresponding first color difference values, respectively.
  • the second color difference value to perform rendering processing on the first to-be-rendered area and the second to-be-rendered area that is, display the first to-be-rendered area and the second to-be-rendered area according to the first and second color-difference values.
  • Set the color It should be understood that when the number of regions to be compensated is greater than two or one, the process of rendering blank layers is deduced by analogy, and the details are not described herein again.
  • the step of setting the layer to be transparent that is, setting the layer's alpha value to 0 (full transparency)
  • the step of performing the above rendering on the layer can be performed simultaneously.
  • the execution order between the two steps can be flexibly set, for example, the layer can be set to transparent before rendering it according to the above process, or the layer can be first After rendering as described above, set it to transparent.
  • the display control module 1103 is configured to set a compensation layer of the screen to be calibrated on top of other layers of the screen to be calibrated for superimposed display, that is, the compensation layer Set at the top of all layers of the screen to be calibrated, so that the color display effect of the screen to be calibrated of the electronic device is basically the same as the color display effect of the preset standard screen, so as to avoid or reduce the effect of the screen of the electronic device when the color difference occurs Visual experience.
  • the functions of the above-mentioned parameter acquisition module 1101, layer generation module 1102, and display control module 1103 may be implemented by a processor or controller of an electronic device.
  • the screen display control device provided in this embodiment can make the display effect of the screen to be calibrated of the electronic device substantially consistent with the display effect of the preset standard screen, so as to avoid affecting the visual experience when the screen of the electronic device has a color difference, Improve user experience satisfaction.
  • This embodiment further provides an electronic device, as shown in FIG. 12, including a processor 1201, a memory 1202, and a communication bus 1203.
  • the communication bus 1203 is used to implement a communication connection between the processor 1201 and the memory 1202;
  • the processor 1201 is configured to execute one or more computer programs stored in the memory 1202 to implement the steps of the screen display control method in the foregoing embodiments.
  • This embodiment also provides a computer-readable storage medium that is implemented in any method or technology for storing information, such as computer-readable instructions, data structures, computer program modules, or other data. Volatile or non-volatile, removable or non-removable media.
  • Computer-readable storage media include, but are not limited to, Random Access Memory (RAM), Read-Only Memory (ROM), Electrically Erasable Programmable Readable Memory (EEPROM) ), Flash memory or other memory technology, compact disc read-only memory (CD-ROM), digital versatile disc (DVD) or other optical disc storage, magnetic box, magnetic tape, disk storage or other magnetic storage devices, Or any other medium that can be used to store desired information and can be accessed by a computer.
  • the computer-readable storage medium in this embodiment may be used to store one or more computer programs, and the one or more computer programs may be executed by one or more processors to implement the foregoing embodiments.
  • the screen shows the steps of the control method.
  • This embodiment also provides a computer program (or computer software), which can be distributed on a computer-readable medium and executed by a computing device to implement the screen display control method shown in the above embodiments. At least one step; and in some cases, at least one step shown or described may be performed in an order different from that described in the above embodiments.
  • This embodiment also provides a computer program product including a computer-readable device, where the computer-readable device stores the computer program as shown above.
  • the computer-readable device in this embodiment may include a computer-readable storage medium as shown above.
  • a communication medium typically contains computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium. Therefore, this application is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • User Interface Of Digital Computer (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

本申请实施例公开了一种屏幕显示控制方法、装置、设备、及可读存储介质,在采用电子设备的屏幕显示时,可以获取电子设备的待校准屏幕的校准参数,该校准参数为基于该待校准屏幕与预设标准屏幕之间的色差获取的;然后根据获取的校准参数生成待校准屏幕的补偿图层,将得到的补偿图层与待校准屏幕的其他图层进行叠加显示。

Description

屏幕显示控制方法、装置、设备、及可读存储介质
相关申请的交叉引用
本申请基于申请号为201810998361.8、申请日为2018年08月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及但不限于通信领域,具体涉及但不限于一种屏幕显示控制方法、装置、设备、及可读存储介质。
背景技术
越来越多的电子设备都配备有显示屏,用来让用户从视觉上感受诸多应用的交互,而有的电子设备则会配备两块显示屏来提高用户的视觉体验。对于具有显示屏的电子设备,显示屏显示的色差是难以避免问题。例如对于配备两块显示屏的电子设备,由于生产批次、厂家等各个方面的原因导致两块显示屏的显示色彩存在或多或少的色彩差异,比如一个显示屏颜色显示从视觉上相对另一个感觉偏红或者偏绿等等。又例如,对于配置一个显示屏的电子设备,在使用过程中由于该显示屏不同区域的老化情况,也会导致在一个显示屏上的不同显示区域之间产生色差,导致视觉体验差。
发明内容
本申请实施例提供的屏幕显示控制方法、装置、设备、及可读存储介质,至少能够解决显示屏产生色差、导致视觉体验差的问题。
本申请实施例提供了一种屏幕显示控制方法,包括:
获取电子设备的待校准屏幕的校准参数,所述校准参数为基于所述待校准屏幕与预设标准屏幕之间的色差得到的;
根据所述校准参数生成所述待校准屏幕的补偿图层;
将所述补偿图层与所述待校准屏幕的其他图层进行叠加显示。
本申请实施例还提供了一种屏幕显示控制装置,包括:
参数获取模块,配置为获取电子设备的待校准屏幕的校准参数,所述校准参数为基于所述待校准屏幕与预设标准屏幕之间的色差得到的;
图层生成模块,配置为根据所述校准参数生成所述待校准屏幕的补偿图层;
显示控制模块,配置为将所述补偿图层与所述待校准屏幕的其他图层进行叠加显示。
本申请实施例还提供了一种电子设备,包括处理器、存储器以及通信总线;
所述通信总线用于实现所述处理器与所述存储器之间的通信连接;
所述处理器用于执行存所述储器中存储的一个或者多个计算机程序,以实现如上所述的屏幕显示控制方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个计算机程序,所述一个或者多个计算机程序可被一个或者多个处理器执行,以实现如上所述的屏幕显示控制方法的步骤。
根据本申请实施例提供的屏幕显示控制方法、装置、设备、及可读存储介质,在采用电子设备的屏幕显示时,可以获取电子设备的待校准屏幕的校准参数,该校准参数为基于该待校准屏幕与预设标准屏幕之间的色差得到的;然后根据获取的校准参数生成待校准屏幕的补偿图层,将得到的补偿图层与待校准屏幕的其他图层进行叠加显示,使得电子设备的待校准屏幕的显示效果与预设标准屏幕的显示效果基本保持一致,从而避免电子 设备的待校准屏幕产生色差时影响视觉体验,提升用户体验满意度。
本申请实施例其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本申请实施例说明书中的记载变的显而易见。
附图说明
图1为本申请实施例的屏幕显示控制方法的流程示意图;
图2为本申请实施例的获取校准参数过程的流程示意图;
图3为本申请实施例的生成补偿图层过程的流程示意图;
图4-1为本申请实施例的第一种双面屏电子设备状态示意图一;
图4-2为本申请实施例的第一种双面屏电子设备状态示意图二;
图4-3为本申请实施例的第一种双面屏电子设备状态示意图三;
图5-1为本申请实施例的第二种双面屏电子设备正面示意图;
图5-2为本申请实施例的第二种双面屏电子设备背面示意图;
图6为本申请实施例的获取校准参数过程的流程示意图;
图7为本申请实施例的待校准区域示意图;
图8为本申请实施例的补偿处理过程的流程示意图;
图9为本申请实施例的渲染的待校准区域示意图;
图10为本申请实施例的图层叠加显示示意图;
图11为本申请实施例的屏幕显示控制装置的结构示意图;
图12为本申请实施例的电子设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本申请实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
为了尽可能避免或降低电子设备的屏幕产生色差而影响视觉体验,本实施例提供的屏幕显示控制方法,在通过电子设备的屏幕显示过程中,获取电子设备的待校准屏幕的校准参数,该校准参数为基于该待校准屏幕与预设标准屏幕之间的色差得到的;然后根据获取的校准参数生成待校准屏幕的补偿图层,将得到的补偿图层与待校准屏幕的其他图层进行叠加显示,使得电子设备的待校准屏幕的颜色显示效果与预设标准屏幕的颜色显示效果基本保持一致,从而避免电子设备的屏幕产生色差时影响视觉体验。
在本实施例的一种可选示例中,待校准屏幕的色差可为待校准屏幕与预设标准屏幕相比所产生的色差。为了便于理解,本实施例下面结合一种示例的屏幕显示控制方法进行说明,该方法参见图1所示,其包括:
S101:获取电子设备的待校准屏幕的校准参数;
S102:根据获取的校准参数生成待校准屏幕的补偿图层;
S103:将生成的补偿图层与待校准屏幕的其他图层进行叠加显示。
本实施例S101中的校准参数为基于电子设备的待校准屏幕与预设标准屏幕之间的色差得到的。且应当理解的是,S101中的获取待校准屏幕的校准参数包括但不限于以下方式之一:
方式一:在一示例中,该校准参数可以是预先得到保存的,此时S101中的获取则可为获取预先保存的校准参数;
方式二:在另一示例中,该校准参数也可以是实时获取的,此时S101中的获取则可为根据电子设备的待校准屏幕与预设标准屏幕之间的色差实时获取校准参数。
在本实施例中,具体采用哪种获取方式获取校准参数可以根据具体应用场景灵活选择确定。
另外,在本实施例中,电子设备可以为仅设置有一个屏幕(即一个显示屏)的单屏幕设备,也可为设置有两个屏幕以上(例如两个显示屏、或 三个显示屏等)多屏幕设备。
在一示例中,当电子设备为单屏幕设备时,例如该电子设备仅包括第一屏幕,此时本实施例中的预设标准屏幕可为电子设备之外的其他设备的屏幕。在该示例中,可以在但屏幕设备生成过程中,将其第一屏幕与预设标准屏幕进行显示比较获取二者的色差从而得到校准参数,和/或,在单屏幕电子设备出厂使用过程中(例如使用预设时长后或检测到屏幕老化情况满足预设条件时等),将当前的第一屏幕与预设标准屏幕进行显示比较获取二者的色差从而得到校准参数。在本示例中,预设标准屏幕可为满足预设标准显示条件的屏幕,且预设标注显示条件具体可根据应用场景需求灵活设置。
在另一示例中,当电子设备为多屏幕设备时,预设标准屏幕可为电子设备之外的其他设备的屏幕,也可为电子设备的其中一个屏幕。例如当该电子设备为包括第一屏幕和第二屏幕的双面屏设备时,此时在一种应用场景中,可设置第一屏幕为预设标准屏幕,第二屏幕为待校准屏幕,或设置第二屏幕为预设标准屏幕,第一屏幕为待校准屏幕,此时则只需针对双面屏设备的第一屏幕或第二屏幕生成对应的补偿图层进行叠加显示;在另一种应用场景中,也可设置电子设备的第一屏幕和第二屏幕都为待校准屏幕,此时的预设标准屏幕可为电子设备之外的其他设备的屏幕,且该应用场景中的预设标准屏幕可为满足预设标准显示条件的屏幕,且预设标注显示条件具体可根据应用场景需求灵活设置;此时则需针对双面屏设备的第一屏幕和第二屏幕分别生成对应的补偿图层进行叠加显示;当然若某一屏幕与预设标准屏幕之间没有色差时,针对该屏幕则可选择性的不生成补偿图层,或生成一个全透明的空白补偿图层。
应当理解的是,对于包括三个或三个以上屏幕的电子设备,待校准屏幕和预设标准屏幕的设置方式也可采用上述所示例的方式,在此不再赘述。
在本申请的一种可选实施例中,根据待校准屏幕与预设标准屏幕之间的色差获取校准参数的过程参见图2所示,包括:
S201:根据待校准屏幕与预设标准屏幕的显示差异,确定待校准屏幕上需要进行色差补偿的待补偿区域。
在本实施例中,确定出的需要进行色差补偿的待补偿区域可能是一个,也可能是两个以上,是一个时,该区域有可能覆盖整个屏幕,也可能是屏幕中的其中一部分区域。当然,在一些情况下,确定出的待补偿区域个数也可能为0。
应当理解的是,在本实施例中,待补偿区域的确定和选择可通过手动实现,例如由操作人员比对分析待校准屏幕与预设标准屏幕存在显示差异的区域,并在待校准屏幕上划分出该部分区域作为待补偿区域。在本实施例中,待补偿区域的确定和选择也可通过预先设定的算法自动计算分析实现。
S202:获取待补偿区域的区域确定参数,以及待补偿区域与预设标准屏幕上对应区域的色差值。
例如,假设在一种示例中,针对一个待校准屏幕,确定出其上存在两个待补偿区域,本实例中分别称为第一待补偿区域和第二待补偿区域,则分别获取第一待补偿区域的第一区域确定参数和第二待补偿区域的第二区域确定参数,并分别获取第一待补偿区域的第一色差值和第二待补偿区域的第二色差值。且在本示例中,区域确定参数和色差值的获取过程并无严格的时序限制,二者可同时获取,也可不同时获取。
另外,应当理解的是,在本实施例中,待校准屏幕与预设标准屏幕上对应区域的色差值的具体计算方式可以根据应用场景灵活确定。其中,色值是指一种颜色在不同的颜色模式中所对应的颜色值。而颜色模式包括但不限于红绿蓝模式(RGB模式)(其中R代表红色,G代表绿色,B代表蓝 色)、印刷色彩模式(即CMYK模式,其中,C代表青色,M代表洋红,Y代表黄色,K代表黑色),色相饱和度亮度(Hue-Saturation-Brightness,HSB)模式或LAB模式(其中,L代表亮度,A代表颜色是从深绿色(底亮度值)到灰色(中亮度值)再到亮粉红色(高亮度值);B代表颜色是从亮蓝色(底亮度值)到灰色(中亮度值)再到黄色(高亮度值)。LAB模式的色域最宽,它包括RGB色域和CMYK色域中的所有颜色,在使用LAB模式进行转换时可不会造成任何色彩上的损失。其中色差(Chromatic Aberration,CA)它表示为在一种颜色模式中两种颜色的色值的差别,其单位为美国国家标准局(National Bureau of Standard,NBS),在数学上由颜色空间中两个色点间的距离表示。
在本实施例中,可以将待校准屏幕和标准屏幕在相同的模式下显示相同的颜色图谱,对于待校准屏幕中与标准屏幕对应区域存在色差的区域(也即待校准区域),可以记录待校准屏幕当前显示的色彩作为初始色彩,然后改变待校准屏幕中该区域的色彩直到其显示效果与标准屏幕中对应区域的显示效果无或基本无色差,将此时该待校准屏幕中该区域的色彩作为目标色彩;然后计算目标色彩与初始色彩的差值得到色差,该色差则可作为待校准屏幕与标准屏幕对应区域的色差值。且应当理解的是,本实施例中待校准区域的划分方式可以根据具体应用场景灵活设定。
S203:将待补偿区域的区域确定参数和色差值关联保存。
例如,将第一待补偿区域的第一区域确定参数和第一色差值关联保存,并将第二待补偿区域的第二区域确定参数和第二色差值关联保存。应当理解的是,当待补偿区域的个数大于2个时或为1个时,待补偿区域的区域确定参数和色差值的关联保存方式以此类推,在此不再赘述。
在本申请的一种可选实施例中,所述根据待校准屏幕的校准参数生成待校准屏幕的补偿图层的过程参见图3所示,包括:
S301:生成与待校准屏幕匹配的空白图层;
S302:根据校准参数中关联保存的区域确定参数和色差值,确定出空白图层上待渲染的区域,并根据对应的色差值对相应待渲染的区域进行渲染,并将图层设置为透明,得到补偿图层。
例如,仍以上述待校准屏幕存在第一待补偿区域和第二待补偿区域的示例进行示例说明。在该示例中,则可根据第一区域确定参数和第二区域确定参数确定出图层上待渲染的第一待渲染区域和第二待渲染区域,然后根据分别根据对应的第一色差值和第二色差值对第一待渲染区域和第二待渲染区域进行渲染处理,也即根据第一色差值和第二色差值对第一待渲染区域和第二待渲染区域的显示颜色进行设置。应当理解的是,当待补偿区域的个数大于2个时或为1个时,对空白图层的渲染过程以此类推,在此不再赘述。
另外,应当理解的是,在本实施例中,将图层设置为透明(也即将图层的alpha值设置为0(全透))的步骤,与对图层进行上述渲染的步骤可以同时进行,也可不同时进行,且不同时进行时,两个步骤之间的执行顺序可以灵活设置,例如可以先将图层设置为透明之后,再对其按上述过程进行渲染,也可先对图层按上述过程渲染之后,再将其设置为透明。
在本申请的一种可选实施例中,所述将待校准屏幕的补偿图层与待校准屏幕的其他图层进行叠加显示可包括:将待校准屏幕的补偿图层设置于待校准屏幕的其他图层之上进行叠加显示,也即将该补偿图层设置于待校准屏幕的所有图层的最上方,使得电子设备的待校准屏幕的颜色显示效果与预设标准屏幕的颜色显示效果基本保持一致,从而尽量避免或减少电子设备的屏幕产生色差时影响视觉体验。
为了便于理解,本实施例下面以电子设备为具有两个以上显示屏(即屏幕)的电子设备,包括各种双面屏电子设备,甚至三屏及以上的电子设 备。本实施例下面一双面屏电子设备为示例进行说明。
本实施例中的双面屏电子设备可以是各种形式的双屏智能电子设备。例如参见图4-1至图4-3所示的一种双面屏电子设备,在图4-1所示状态下,双面屏电子设备4的两个显示屏处于折叠状态,位于电子设备正面的第一屏幕41面对用户。在图4-2所示状态下,双面屏电子设备1的两个显示屏处于打开过程中的状态,第一屏幕41和第二屏幕42可相对转动实现展开,最终的一种示例展开状态可参见图4-3所示,此时第一屏幕41和第二屏幕42处于同一个平面或基本处于同一个平面。
又例如参见图5-1至图5-2所示的一种双面屏电子设备5,该双面屏电子设备5具有处于电子设备正面的第一屏幕51,以及处于电子设备背面的第二屏幕52,两个显示屏的位置是固定的。第一屏幕51和第二屏幕52的尺寸可相同,也可不同,具体可根据需求灵活设置。例如一种示例中可设置第二屏幕52的尺寸小于第一屏幕51。
应当理解的是,本实施例中的双面屏电子设备并不限于上述示例结构,例如在某些示例中,其第一屏幕和第二屏幕都同时位于电子设备的正面等。
为了便于理解,本实施例下面以图4-1至图4-3所示的双面屏电子设备的应用进行示例说明,但应当理解的是,对于其他形式的多面屏电子设备的显示控制过程类似,在此不再赘述。
在一些应用场景中,图4-1至图4-3所示的双面屏电子设备包括但不限于以下四种显示的模式中的至少一种:
大A模式:两个屏作为一个屏来显示同一个应用,各显示一个应用的一部分,可选地,可根据横竖屏的变化情况分别显示应用的左右半部或者上下半部。
AB模式:两个屏分别显示不同的应用,此时两个屏类似于两个设备的显示屏,二者之间可基本不存在什么连续或者关联性。
AA模式(即镜像模式):两个屏同时显示同一个应用,但是每个屏都会完全的显示应用的所有部分,只是它们是按照轴对称的形式显示。
AX模式:当前只有一个显示屏开启可用,例如第一屏幕开启,第二屏幕关闭;或第一屏幕关闭,第二屏幕开启)。
在上述模式中,AA模式、AB模式、大A模式实现的前提都是设备的两个显示屏当前都需要处于开启状态,如果当前两个屏幕存在色差,那么该现象极易被发现,尤其是在大A模式或AA模式下,这种现象会更为明显,导致用户体验的满意度差。本实施例提供的方法屏幕显示控制方法可适用于上述四种模式,也可仅针对上述四种模式中的部分模式,例如可在判断设备处于AA模式、AB模式、大A模式时,或处于AA模式、大A模式时,才启用本实施例提供的屏幕显示控制方法对第一屏幕和/或第二屏幕进行显示控制。在本实施例中,将双面屏电子设备的第一屏幕作为待校准屏幕,第二屏幕作为预设标准屏幕(当然在一些应用场景中,也可将双面屏电子设备的第二屏幕作为待校准屏幕,第一屏幕作为预设标准屏幕,或者直接将双面屏电子设备的第一屏幕和第二屏幕都作为待校准屏幕,采用其他设备的屏幕作为预设标准屏幕)。在本实施例中,通过校准计算得出两个屏幕各区域之间的色差值,有了各个区域色差值之后,可以在电子设备的第一屏幕的显示图层中添加一个补偿图层,这个补偿图层可按照上述各区域色色差设置颜色值及alpha值,这里的颜色值和alpha值就是通过计算得出的两个屏幕对应区域的色差值,只需要在待校准屏幕(即第一屏幕)中添加一个补偿图层,即可使得用户最终看到的第一屏幕和第二屏幕基本无色差,提升视觉效果。对于具有两个以上屏幕的设备也可采用该控制方式,使得多个屏幕基本无色差。
在一种示例中,该控制过程可包括校准参数获取过程,以及显示过程中的补偿处理过程。
一种示例中,校准参数获取过程可包括:让第一屏幕和第二屏幕进入校准对比界面,例如让两个屏幕显示白色,确定第一屏幕为待校准屏幕,第二屏幕为预设标准屏幕,确定一屏幕相对第二屏幕需要进行校准的区域,也即待校准区域,例如可包括但不限于显示偏红或者偏绿的区域;然后可通过线性的显示红色及绿色到待校准屏幕,初步为各个待校准区域选择合适的色差并确认,将这些区域的色差值存储起来作为后续显示补偿中进行颜色填充的参数;并可将确定各待校准区域的区域参数与各交校准区域的色差值进行关联保存。
一种示例中,显示过程中的补偿处理过程可包括:在电子设备进入正常开机显示过程,当系统框架启动完成并且尚未进入应用界面之前,可在窗口管理系统中读取校准参数获取过程得到的校准参数(当然此时也可实时的按照上述参数获取过程获取校准参数),根据校准参数添加一个补偿图层到待校准屏幕,具体可设置其处于待校准屏各涂层的最上方,且可设置对应区域的色差(即补偿色)作为该补偿图层中对应区域的显示色,并可设置补偿图层的alpha值为全透明。
通过本实施例提供的方法,可通过添加补偿图层补偿色差的方式将双屏的色差补齐,从而达到双屏显示无色差的视觉效果。下面结合一种示例的校准参数获取过程为示例进行说明,请参见图6所示,包括:
S601:双面屏电子设备进入校准界面,此时可在第一屏幕和第二屏幕同时显示白色。
S602:确定是否需要进行校准,如是,执行S603;否则,执行S608。
在一种示例中,可通过操作人员或预设算法根据两个屏显示情况判断是否需要进行校准,若无色差则不需要进行校准进入步骤S608,若有色差则需要进行校准进入S603,例如可通过选中待校准屏幕(即第一屏幕)上对应的控制图标,触发将当前屏幕作为待校准屏进入校准流程。
S603:在待校准屏幕确定与标准屏幕有色差的区域,选定一个或者多个色差区域作为待校准区域。
例如,选定的待校准区域参考图7所示,图7中C1和C2所标记的两个区域为待校准区域,并可获取确定C1和C2的区域确定参数。
S604:在选定的待校准区域上通过对色彩RGB各个分量线性递减的方式显示色谱。
在本示例中,可依次取出图7中圈定的待校准区域作为当前待校准区域进入S604,若所有已选定区域均已完成校准,则校准完毕。
S605:根据待校准区域色谱的显示,对比另一个预设标准屏幕,选择一个颜色与其一致的色彩,并进行预览对比,直至最终两屏幕预览显示色彩一致。
S606:根据上一步骤选定的色彩(即目标色彩),计算出当前待校准屏幕色彩(即初始色彩)与上一步骤选择的目标色彩的色差值。
S607:将待校准区域(例如C1和C2区域)的区域确定参数和色差值写入文件保存下来。
S608:说明第一屏幕和第二屏幕两者无色差,可推出校准流程或则生成色差值为0的文件进行保存。
下面结合一种示例的显示过程中的补偿处理过程进行说明,请参见图8所示,包括:
S801:电子设备开机启动,窗口、屏幕等进入就绪即将启动的应用窗口界面。
S802:读取校准参数获取过程写入的校准信息文件,判断读取是否成功,如是,执行S803;否则,执行S806。
当然在本步骤中可以采用图6所示的方式实时获取校准参数。
S803:解析校准信息文件内容得到对应的区域确定参数和色差值。
在本申请的一种可选实施例中,当读取到的色差值为0时,也可直接转至S806。
S804:生成一个补偿图层,并使用S803解析出的区域确定参数和色差值来渲染该补偿图层,例如假设一补偿图层的渲染区域参见图9所示。
S805:将S804生成的补偿图层添加到待校准屏幕中,并将该补偿图层始终显示在待校准屏幕所有图层的最上方。例如,一种叠加显示示意图可参见图10所示,其中1001、1002和1003分别为壁纸图层(Wallpaper)、应用图层(APP)和状态栏图层(StatusBar),1004则为补偿图层1004,且补偿图层1004始终处于壁纸图层1001、应用图层1002和状态栏图层1003上方。当然,如果是以双面屏电子设备之外的其他设备的屏幕作为标准屏幕时,在一种示例中,在第一屏幕和第二屏幕中都可生成补偿图层1004进行叠加显示。
S806:进入正常的应用启动流程。
可见,通过本实施例提供的显示控制方法,可以使得双面屏电子设备的两块屏幕的颜色基本无色差显示,因此可提升双面屏电子设备屏幕显示的一致性和用户体验的满意度。
本实施例还提供了一种屏幕显示控制装置,该屏幕显示控制装置可设置于设备中,参见图11所示,包括:
参数获取模块1101,配置为获取电子设备的待校准屏幕的校准参数。
本实施例中的校准参数为基于待校准屏幕与预设标准屏幕之间的色差得到的;所述参数获取模块1101获取校准参数的具体过程可参见上述各实施例所示。
图层生成模块1102,配置为根据所述参数获取模块1101获取的校准参数生成待校准屏幕的补偿图层,具体生成过程请参见上述各实施例所示,在此也不再赘述。
显示控制模块1103,配置为将所述图层生成模块1102生成的补偿图层与待校准屏幕的其他图层进行叠加显示,具体的叠加显示过程参见上述各实施例所示,在此也不再赘述。
在本申请的一种可选实施例中,当电子设备为单屏幕设备时,例如该电子设备仅包括第一屏幕,此时本实施例中的预设标准屏幕可为电子设备之外的其他设备的屏幕。在该示例中,可以在但屏幕设备生成过程中,将其第一屏幕与预设标准屏幕进行显示比较获取二者的色差从而得到校准参数,和/或,在单屏幕电子设备出厂使用过程中(例如使用预设时长后或检测到屏幕老化情况满足预设条件时等),将当前的第一屏幕与预设标准屏幕进行显示比较获取二者的色差从而得到校准参数。在本示例中,预设标准屏幕可为满足预设标准显示条件的屏幕,且预设标注显示条件具体可根据应用场景需求灵活设置。
在本申请的一种可选实施例中,当电子设备为多屏幕设备时,预设标准屏幕可为电子设备之外的其他设备的屏幕,也可为电子设备的其中一个屏幕。例如当该电子设备为包括第一屏幕和第二屏幕的双面屏设备时,此时在一种应用场景中,可设置第一屏幕为预设标准屏幕,第二屏幕为待校准屏幕,或设置第二屏幕为预设标准屏幕,第一屏幕为待校准屏幕,此时则只需针对双面屏设备的第一屏幕或第二屏幕生成对应的补偿图层进行叠加显示;在另一种应用场景中,也可设置电子设备的第一屏幕和第二屏幕都为待校准屏幕,此时的预设标准屏幕可为电子设备之外的其他设备的屏幕,且该应用场景中的预设标准屏幕可为满足预设标准显示条件的屏幕,且预设标注显示条件具体可根据应用场景需求灵活设置;此时则需针对双面屏设备的第一屏幕和第二屏幕分别生成对应的补偿图层进行叠加显示;当然若某一屏幕与预设标准屏幕之间没有色差时,针对该屏幕则可选择性的不生成补偿图层,或生成一个全透明的空白补偿图层。
应当理解的是,对于包括三个或三个以上屏幕的电子设备,待校准屏幕和预设标准屏幕的设置方式也可采用上述所示例的方式,在此不再赘述。
在本申请的一种可选实施例中,所述参数获取模块1101,配置为根据待校准屏幕与预设标准屏幕的显示差异,确定待校准屏幕上需要进行色差补偿的待补偿区域,并获取待补偿区域的区域确定参数,以及待补偿区域与预设标准屏幕上对应区域的色差值,并将待补偿区域的区域确定参数和色差值关联保存。
在本实施例中,确定出的需要进行色差补偿的待补偿区域可能是一个,也可能是两个以上,是一个时,该区域有可能覆盖整个屏幕,也可能是屏幕中的其中一部分区域。当然,在一些情况下,确定出的待补偿区域个数也可能为0。
应当理解的是,在本实施例中,待补偿区域的确定和选择可通过手动实现,例如由操作人员比对分析待校准屏幕与预设标准屏幕存在显示差异的区域,并在待校准屏幕上划分出该部分区域作为待补偿区域。在本实施例中,待补偿区域的确定和选择也可通过预先设定的算法自动计算分析实现。
例如,假设在一种示例中,针对一个待校准屏幕,确定出其上存在两个待补偿区域,本实例中分别称为第一待补偿区域和第二待补偿区域,则分别获取第一待补偿区域的第一区域确定参数和第二待补偿区域的第二区域确定参数,并分别获取第一待补偿区域的第一色差值和第二待补偿区域的第二色差值。且在本示例中,区域确定参数和色差值的获取过程并无严格的时序限制,二者可同时获取,也可不同时获取。
例如,将第一待补偿区域的第一区域确定参数和第一色差值关联保存,并将第二待补偿区域的第二区域确定参数和第二色差值关联保存。应当理解的是,当待补偿区域的个数大于2个时或为1个时,待补偿区域的区域 确定参数和色差值的关联保存方式以此类推,在此不再赘述。
在本申请的一种可选实施例中,所述图层生成模块1102,配置为生成与待校准屏幕匹配的空白图层,根据校准参数中关联保存的区域确定参数和色差值,确定出空白图层上待渲染的区域,并根据对应的色差值对相应待渲染的区域进行渲染,并将图层设置为透明,得到补偿图层。
例如,仍以上述待校准屏幕存在第一待补偿区域和第二待补偿区域的示例进行示例说明。在该示例中,则可根据第一区域确定参数和第二区域确定参数确定出图层上待渲染的第一待渲染区域和第二待渲染区域,然后根据分别根据对应的第一色差值和第二色差值对第一待渲染区域和第二待渲染区域进行渲染处理,也即根据第一色差值和第二色差值对第一待渲染区域和第二待渲染区域的显示颜色进行设置。应当理解的是,当待补偿区域的个数大于2个时或为1个时,对空白图层的渲染过程以此类推,在此不再赘述。
另外,应当理解的是,在本实施例中,将图层设置为透明(也即将图层的alpha值设置为0(全透))的步骤,与对图层进行上述渲染的步骤可以同时进行,也可不同时进行,且不同时进行时,两个步骤之间的执行顺序可以灵活设置,例如可以先将图层设置为透明之后,再对其按上述过程进行渲染,也可先对图层按上述过程渲染之后,再将其设置为透明。
在本申请的一种可选实施例中,所述显示控制模块1103,配置为将待校准屏幕的补偿图层设置于待校准屏幕的其他图层之上进行叠加显示,也即将该补偿图层设置于待校准屏幕的所有图层的最上方,使得电子设备的待校准屏幕的颜色显示效果与预设标准屏幕的颜色显示效果基本保持一致,从而尽量避免或减少电子设备的屏幕产生色差时影响视觉体验。
应当理解的是,上述参数获取模块1101、图层生成模块1102和显示控制模块1103的功能可通过电子设备的处理器或控制器实现。且通过本实施 例提供的屏幕显示控制装置,可使得电子设备的待校准屏幕的显示效果与预设标准屏幕的显示效果基本保持一致,从而避免电子设备的待校准屏幕产生色差时影响视觉体验,提升用户体验满意度。
本实施例还提供了一种电子设备,参见图12所示,包括处理器1201、存储器1202以及通信总线1203;
通信总线1203用于实现处理器1201与存储器1202之间的通信连接;
处理器1201用于执行存储器1202中存储的一个或者多个计算机程序,以实现如上各实施例中的屏幕显示控制方法的步骤。
本实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于随机存取存储器(Random Access Memory,RAM),只读存储器(Read-Only Memory,ROM),带电可擦可编程只读存储器(Electrically Erasable Programmable read only memory,EEPROM)、闪存或其他存储器技术、光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
在一种示例中,本实施例中的计算机可读存储介质可用于存储一个或者多个计算机程序,该一个或者多个计算机程序可被一个或者多个处理器执行,以实现如上各实施例中的屏幕显示控制方法的步骤。
本实施例还提供了一种计算机程序(或称计算机软件),该计算机程序可以分布在计算机可读介质上,由可计算装置来执行,以实现如上各实施例所示的屏幕显示控制方法的至少一个步骤;并且在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本实施例还提供了一种计算机程序产品,包括计算机可读装置,该计算机可读装置上存储有如上所示的计算机程序。本实施例中该计算机可读装置可包括如上所示的计算机可读存储介质。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本申请不限制于任何特定的硬件和软件结合。
本申请所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。
本申请所提供的几个产品实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的产品实施例。
本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
以上内容是结合具体的实施方式对本申请实施例所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (14)

  1. 一种屏幕显示控制方法,包括:
    获取电子设备的待校准屏幕的校准参数,所述校准参数为基于所述待校准屏幕与预设标准屏幕之间的色差得到的;
    根据所述校准参数生成所述待校准屏幕的补偿图层;
    将所述补偿图层与所述待校准屏幕的其他图层进行叠加显示。
  2. 如权利要求1所述的屏幕显示控制方法,其中,所述待校准屏幕包括所述电子设备的第一屏幕,所述预设标准屏幕为所述电子设备之外的其他设备的屏幕。
  3. 如权利要求1所述的屏幕显示控制方法,其中,所述待校准屏幕包括所述电子设备的第一屏幕,所述预设标准屏幕包括所述电子设备的第二屏幕。
  4. 如权利要求1至3任一项所述的屏幕显示控制方法,其中,基于所述待校准屏幕与预设标准屏幕之间的色差获取校准参数包括:
    根据所述待校准屏幕与所述预设标准屏幕的显示差异,确定所述待校准屏幕上需要进行色差补偿的待补偿区域;
    获取所述待补偿区域的区域确定参数,以及所述待补偿区域与所述预设标准屏幕上对应区域的色差值;
    将所述待补偿区域的区域确定参数和色差值关联保存。
  5. 如权利要求4所述的屏幕显示控制方法,其中,所述根据所述校准参数生成所述待校准屏幕的补偿图层,包括:
    生成与所述待校准屏幕匹配的空白图层;
    根据所述校准参数中关联保存的区域确定参数和色差值,确定出所述空白图层上待渲染的区域,并根据所述色差值对相应待渲染的区域进行渲染,以及将所述图层设置为透明,得到补偿图层。
  6. 如权利要求1至3任一项所述的屏幕显示控制方法,其中,将所述补偿图层与所述待校准屏幕的其他图层进行叠加显示,包括:将所述补偿图层设置于所述待校准屏幕的其他图层之上进行叠加显示。
  7. 如权利要求1至3任一项所述的屏幕显示控制方法,其中,所述方法还包括:
    当获取所述电子设备的待校准屏幕的校准参数失败时,或获取的所述校准参数中的色差值为0时,直接将所述待校准屏幕的图层进行显示。
  8. 一种屏幕显示控制装置,包括:
    参数获取模块,配置为获取电子设备的待校准屏幕的校准参数,所述校准参数为基于所述待校准屏幕与预设标准屏幕之间的色差得到的;
    图层生成模块,配置为根据所述校准参数生成所述待校准屏幕的补偿图层;
    显示控制模块,配置为将所述补偿图层与所述待校准屏幕的其他图层进行叠加显示。
  9. 如权利要求8所述的屏幕显示控制装置,其中,所述待校准屏幕包括所述电子设备的第一屏幕,所述预设标准屏幕为所述电子设备之外的其他设备的屏幕。
  10. 如权利要求8所述的屏幕显示控制装置,其中,所述待校准屏幕包括所述电子设备的第一屏幕,所述预设标准屏幕包括所述电子设备的第二屏幕。
  11. 如权利要求8至10任一项所述的屏幕显示控制装置,其中,所述校准参数包括关联保存的区域确定参数和色差值;
    所述图层生成模块,配置为生成与所述待校准屏幕匹配的空白图层,并根据所述校准参数中关联保存的区域确定参数和色差值,确定出所述空白图层上待渲染的区域,根据所述色差值对相应待渲染的区域进行渲染, 以及将所述图层设置为透明,得到补偿图层。
  12. 如权利要求8至10任一项所述的屏幕显示控制装置,其中,所述显示控制模块,配置为将所述补偿图层设置于所述待校准屏幕的其他图层之上进行叠加显示。
  13. 一种电子设备,包括处理器、存储器以及通信总线;
    所述通信总线用于实现所述处理器与所述存储器之间的通信连接;
    所述处理器用于执行存所述储器中存储的一个或者多个计算机程序,以实现如权利要求1至7任一项所述的屏幕显示控制方法的步骤。
  14. 一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个计算机程序,所述一个或者多个计算机程序可被一个或者多个处理器执行,以实现如权利要求1至7任一项所述的屏幕显示控制方法的步骤。
PCT/CN2019/092849 2018-08-29 2019-06-25 屏幕显示控制方法、装置、设备、及可读存储介质 WO2020042735A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810998361.8A CN110875021A (zh) 2018-08-29 2018-08-29 屏幕显示控制方法、装置、设备、及可读存储介质
CN201810998361.8 2018-08-29

Publications (1)

Publication Number Publication Date
WO2020042735A1 true WO2020042735A1 (zh) 2020-03-05

Family

ID=69643409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092849 WO2020042735A1 (zh) 2018-08-29 2019-06-25 屏幕显示控制方法、装置、设备、及可读存储介质

Country Status (2)

Country Link
CN (1) CN110875021A (zh)
WO (1) WO2020042735A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113903306B (zh) * 2021-10-13 2023-04-07 昆山国显光电有限公司 一种显示面板的补偿方法和补偿装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136192A (zh) * 2006-08-11 2008-03-05 奥普提克斯晶硅有限公司 用于显示几何和色彩的自动校准和校正的系统和方法
US20110205253A1 (en) * 2008-04-28 2011-08-25 Bernhard Hill Method and Device for the True-to-Original Representation of Colors on Screens
CN105679221A (zh) * 2016-03-31 2016-06-15 广东欧珀移动通信有限公司 一种色差的检测方法、检测装置以及终端
CN107038037A (zh) * 2017-05-22 2017-08-11 北京小米移动软件有限公司 显示模式切换方法及装置
CN108257579A (zh) * 2018-01-17 2018-07-06 中兴通讯股份有限公司 一种屏幕校准的方法、装置及终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202650490U (zh) * 2012-06-27 2013-01-02 上海仪器仪表研究所 一种改善led显示屏色差影响的装置
US20150187248A1 (en) * 2012-07-25 2015-07-02 Sharp Kabushiki Kaisha Display device and display method
CN103050109B (zh) * 2012-12-25 2015-04-29 广东威创视讯科技股份有限公司 多屏显示装置颜色校正方法和系统
TWI540566B (zh) * 2014-12-09 2016-07-01 緯創資通股份有限公司 顯示器及其亮度、色彩補償方法與系統
CN105869552B (zh) * 2016-03-31 2019-03-15 Oppo广东移动通信有限公司 一种显示屏的检测方法、检测装置以及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136192A (zh) * 2006-08-11 2008-03-05 奥普提克斯晶硅有限公司 用于显示几何和色彩的自动校准和校正的系统和方法
US20110205253A1 (en) * 2008-04-28 2011-08-25 Bernhard Hill Method and Device for the True-to-Original Representation of Colors on Screens
CN105679221A (zh) * 2016-03-31 2016-06-15 广东欧珀移动通信有限公司 一种色差的检测方法、检测装置以及终端
CN107038037A (zh) * 2017-05-22 2017-08-11 北京小米移动软件有限公司 显示模式切换方法及装置
CN108257579A (zh) * 2018-01-17 2018-07-06 中兴通讯股份有限公司 一种屏幕校准的方法、装置及终端

Also Published As

Publication number Publication date
CN110875021A (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
US20180315365A1 (en) Electronic Device Capable Of Displaying And Performing Color Compensation And Color Compensation Method
CN111429827B (zh) 显示屏色彩校准方法、装置、电子设备及可读存储介质
KR20190055289A (ko) 색역 변환 방법 및 이를 채용한 표시 장치
CN111091789B (zh) 显示装置及其色彩校正方法
US9013502B2 (en) Method of viewing virtual display outputs
CN113495709B (zh) 色彩校正方法、ap芯片、终端和存储介质
US20100085480A1 (en) Image processor, and image processing method
US20140204007A1 (en) Method and system for liquid crystal display color optimization with sub-pixel openings
US20160180558A1 (en) Display apparatus and controlling method
US10770027B2 (en) Image color cast compensation method and device, and display device
KR101967416B1 (ko) 디스플레이 디바이스의 컬러 프로파일링을 위한 기법
CN110277076B (zh) 一种颜色映射方法及装置、显示设备、介质
WO2020042735A1 (zh) 屏幕显示控制方法、装置、设备、及可读存储介质
US20130027421A1 (en) Language-based color calibration of displays
JP4333421B2 (ja) 映像表示装置
JP2008112133A (ja) 電子機器
CN105403381B (zh) Sdi信号发生器
US10506209B2 (en) Image output control device, image output control method, image output system, and recording medium
Ryu et al. Colorimetric background estimation for color blending reduction of OST-HMD
CN112309312A (zh) 图像显示方法及装置、接收卡、发送卡和led显示系统
US20050219259A1 (en) Color correction of images while maintaining constant luminance
KR102529957B1 (ko) 디스플레이장치 및 기록매체
US10477135B2 (en) Display apparatus, display control apparatus, and display control method
US20240257777A1 (en) Display calibration and color preset generation
US20140168250A1 (en) Method for controlling an image display device to allow an observer to perceive colours as another observer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19853760

Country of ref document: EP

Kind code of ref document: A1