WO2020042225A1 - 发光单元及其制造方法 - Google Patents

发光单元及其制造方法 Download PDF

Info

Publication number
WO2020042225A1
WO2020042225A1 PCT/CN2018/105362 CN2018105362W WO2020042225A1 WO 2020042225 A1 WO2020042225 A1 WO 2020042225A1 CN 2018105362 W CN2018105362 W CN 2018105362W WO 2020042225 A1 WO2020042225 A1 WO 2020042225A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
light
emitting unit
gallium nitride
Prior art date
Application number
PCT/CN2018/105362
Other languages
English (en)
French (fr)
Inventor
张桂洋
查国伟
杨勇
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/308,468 priority Critical patent/US20210226083A1/en
Publication of WO2020042225A1 publication Critical patent/WO2020042225A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings

Definitions

  • the present disclosure relates to a light emitting unit, and more particularly, to a light emitting unit having a flip-chip type light emitting diode chip and a manufacturing method thereof.
  • LED Light Emitting Diode
  • GaAs gallium arsenide
  • InGaN indium gallium nitride
  • LEDs have replaced traditional incandescent, tungsten and fluorescent lamps, and are widely used in lighting, billboards, traffic lights, vehicle indicators and backlights.
  • White LED can be composed of LED (R), LED (G), LED (B) three primary color LEDs, where (R), (G), (B) are the three primary colors of red, green and blue.
  • FIG. 1 a schematic diagram of a conventional white LED 10 is shown.
  • the white LED 10 includes a driving substrate 11, a reflective layer 12, a plurality of blue LEDs 13 in parallel, and a yellow fluorescent film 14.
  • the light-emitting principle of the white LED 10 is to cover the blue LED 13 with a layer of yellow fluorescent film 14 so that the light emitted by the blue LED 13 can emit white light after mixing through the yellow fluorescent film 14.
  • the white LED 10 has the advantages of simple structure, low cost, easy adjustment of chromaticity, high reliability, and can be used for special-shaped displays. Therefore, it is widely used in various backlight modules.
  • the scheme of using the white LED 10 to make the backlight module has many advantages, because the blue light emitted by the blue LED 13 passes through the yellow fluorescent film 14 and is excited by the red and green quantum dot materials, red and green light are excited. These red, Green light is easily scattered and reflected when passing through other film layers. And when these red and green lights are incident on the blue LED 13, the sapphire substrate (refractive index of about 1.76) on the surface of the blue LED 13 has a low reflectance to light.
  • FIG. 2 shows a graph of the reflectance of a sapphire substrate in air and different incidence angles. It can be seen from FIG.
  • the light reflected from the surface of the sapphire substrate occupies only a small part, and most of the light is caused by the internal structure of the white LED 10 (such as a multiple quantum well structure, a carrier doped layer, etc.) without radiation. Absorption in the way of transition, which will reduce the luminous efficiency of the backlight module.
  • an object of the present disclosure is to provide a light-emitting unit and a method for manufacturing the same.
  • an optically functional film is prepared on a light-emitting surface of an LED (such as a surface of a sapphire substrate). The red and green light can be reflected out, thereby improving the overall luminous efficiency of the backlight module.
  • a light emitting unit including: a light emitting diode chip including: a substrate including a light emitting surface and a light incident surface opposite to the light emitting surface; and an N-type gallium nitride layer disposed on the substrate.
  • the light incident surface at the bottom a multi-quantum well layer disposed on the N-type gallium nitride layer; a P-type gallium nitride layer disposed on the multi-quantum well layer, and the multi-quantum well level Between the N-type GaN layer and the P-type GaN layer; a negative electrode is provided on the N-type GaN layer; and a positive electrode is provided on the P-type GaN layer And a blue light transmitting film disposed on the light emitting surface of the light emitting diode chip, wherein a light transmittance of the blue light transmitting film in a wavelength range of 350 nm to 480 nm is greater than 95%, and the blue light The thickness of the transmissive film is less than 25 microns.
  • the blue light transmitting film has a multilayer film structure, and the material is an inorganic compound, and the multilayer film structure is selected from the group consisting of a silicon dioxide layer, a zinc sulfide layer, and a dioxide.
  • the present disclosure also provides a light emitting unit including: a light emitting diode chip including a light emitting surface; and an optical functional film disposed on the light emitting surface of the light emitting diode chip, wherein the optical functional film is in a range of 350 nm to 480 nm.
  • the light transmittance in the wavelength range is greater than 95%.
  • the optical functional film includes a blue light transmitting film.
  • the optical functional film has a multi-layer film structure, and the material is an inorganic compound.
  • the multilayer film structure is selected from the group consisting of a silicon dioxide layer, a zinc sulfide layer, a zirconium dioxide layer, a tantalum pentoxide layer, a niobium pentoxide layer, a titanium dioxide layer, A group consisting of an aluminum oxide layer, an indium tin oxide layer, and a magnesium fluoride layer.
  • the light-emitting diode chip is a flip-chip light-emitting diode chip.
  • the light emitting diode chip includes: a substrate including the light emitting surface and a light incident surface opposite to the light emitting surface; and an N-type gallium nitride layer disposed on the substrate.
  • the light incident surface; a multi-quantum well layer disposed on the N-type gallium nitride layer; a P-type gallium nitride layer disposed on the multi-quantum well layer, and the multi-quantum well layer being located at Between the N-type GaN layer and the P-type GaN layer; a negative electrode is provided on the N-type GaN layer; and a positive electrode is provided on the P-type GaN layer.
  • the light emitting diode chip further includes: a metal layer provided between the P-type gallium nitride layer and the positive electrode; and an isolation layer provided between the metal layer and the metal layer.
  • the negative electrode and the positive electrode are used to electrically isolate the negative electrode and the positive electrode from each other.
  • the material of the substrate includes sapphire.
  • the thickness of the optical functional film is less than 25 microns.
  • the present disclosure also provides a method for manufacturing a light-emitting unit, including: providing a substrate, and defining a light emitting surface and a light incident surface on the substrate; forming an optical functional film on the light emitting surface of the substrate, wherein The optical functional film has a light transmittance of greater than 95% in a wavelength range of 350 nm to 480 nm; and sequentially forming an N-type gallium nitride layer, a multiple quantum well layer, A P-type GaN layer, a negative electrode, and a positive electrode to form a light emitting diode chip.
  • the step of forming the light emitting diode chip includes: setting the N-type gallium nitride layer on the light incident surface of the substrate;
  • the multi-quantum well layer is disposed on the top;
  • the P-type gallium nitride layer is disposed on the multi-quantum well layer, and the multi-quantum well layer is located between the N-type gallium nitride layer and the P-type nitrogen Between the gallium nitride layer; the negative electrode is disposed on the N-type gallium nitride layer; and the positive electrode is disposed on the P-type gallium nitride layer.
  • the step of forming the light emitting diode chip further includes: providing a metal layer between the P-type gallium nitride layer and the positive electrode; and placing the metal layer and the negative electrode An isolation layer is provided on the positive electrode, wherein the isolation layer is used to electrically isolate the negative electrode and the positive electrode from each other.
  • the present disclosure prepares an optically functional film on the light emitting surface of the LED without changing the conventional LED manufacturing process.
  • the blue light emitted by the LED passes through the optical function film and enters the yellow fluorescent film to excite red and green light.
  • the optical function film can reflect these red and green light, thereby reducing the red absorption of red and green light by the LED and improving the backlight.
  • the optical functional film can also protect the light emitting surface of the LED.
  • the improvement of the luminous efficiency of the backlight module also means that the product's battery life is improved, which is conducive to improving the competitiveness of the product in the market.
  • FIG. 1 is a schematic structural diagram of a conventional white light LED
  • FIG. 2 shows a graph showing the reflectance of a sapphire substrate in the air corresponding to the angle of incidence
  • FIG. 3 is a schematic structural diagram of a light emitting unit according to a preferred embodiment of the present disclosure.
  • FIG. 4 shows a flowchart of a method for manufacturing a light emitting unit according to a preferred embodiment of the present disclosure.
  • FIG. 5 shows a graph of transmittance versus wavelength for the optical functional film of FIG. 3.
  • FIG. 3 is a schematic structural diagram of a light emitting unit 20 according to a preferred embodiment of the present disclosure.
  • the light emitting unit 20 includes a light emitting diode chip 21 and an optical functional film 22.
  • the light-emitting unit 20 is a light source capable of emitting blue light. By covering the light-emitting unit 20 with a yellow fluorescent film, the light emitted by the light-emitting unit 20 can be mixed to emit white light through the yellow fluorescent film.
  • an optical functional film 22 is prepared on the light-emitting surface S1 of the light-emitting diode chip 21 without changing the manufacturing process of the conventional light-emitting diode chip 21 through optical design. The specific structure and manufacturing method will be described in detail. Described later.
  • the blue light emitted by the light-emitting diode chip 21 passes through the optical function film 22 and enters the yellow fluorescent film, and is excited by the red and green light quantum dot materials to produce red light and green light.
  • the optical function film 22 can reflect these red and green lights, thereby reducing the red and green light absorption of the LED chip 21 and improving the overall luminous efficiency of the backlight module.
  • the optical functional film 22 can also protect the light-emitting surface S1 of the light-emitting diode chip 21.
  • FIG. 4 shows a flowchart of a method for manufacturing a light emitting unit 20 according to a preferred embodiment of the present disclosure.
  • step S100 is performed to provide a substrate 210, and the substrate 210 is defined to include a light-emitting surface S1 and a light-incident surface S2.
  • the material of the substrate 210 includes sapphire.
  • step S200 is performed, and an optical functional film 22 is provided on the light emitting surface S1 of the substrate 210.
  • the optical functional film 22 has a multilayer film structure (including a first film layer L1, a second film layer L2, a third film layer L3, etc.), and the material is preferably an inorganic compound.
  • the optical functional film 22 can be formed by layer stacking by means of vacuum evaporation or magnetron sputtering, and the thickness of each layer can be accurately controlled according to the results of optical simulation and by controlling the coating parameters.
  • the total thickness of the optical functional film 22 is less than 25 micrometers, so as to avoid affecting the optical performance of the light emitting unit 20, and at the same time improve the white light emitting efficiency of the light emitting unit 20, the light emitting surface of the light emitting diode chip 210 can also be activated. To protection.
  • the multilayer film structure of the optical functional film 22 is selected from the group consisting of a silicon dioxide (SiO2) layer, a zinc sulfide (ZnS) layer, a zirconium dioxide (ZrO2) layer, a tantalum pentoxide (Ta2O5) layer, A group consisting of a niobium oxide (Nb2O5) layer, a titanium dioxide (TiO2) layer, an aluminum oxide (Al2O3) layer, an indium tin oxide (ITO) layer, and a magnesium fluoride (MgF2) layer.
  • SiO2 silicon dioxide
  • ZnS zinc sulfide
  • ZrO2 zirconium dioxide
  • Ta2O5 tantalum pentoxide
  • FIG. 5 shows a graph of transmittance versus wavelength of the optical functional film 22 of FIG. 3.
  • the optical transmittance of the optical functional film 22 in the wavelength range of 350 nm to 480 nm is greater than 95% (as shown in FIG. 3). 5).
  • the reflectance of red and green light having a longer wavelength is greater than 95% except for individual wavelength bands.
  • the absorption effect of the red and green light by the light emitting diode chip 210 of the light emitting unit 20 of FIG. 3 is avoided.
  • the optical functional film 22 can reflect red and green light, thereby reducing re-absorption of red and green light by the light emitting unit 20. Therefore, when the light emitting unit 20 is provided in the backlight module, the overall light emitting efficiency of the backlight module can be improved.
  • step S300 is then performed, using techniques such as metal-organic chemical vapor deposition (MOCVD), electron beam evaporation, ion beam etching, and electron beam etching.
  • MOCVD metal-organic chemical vapor deposition
  • An N-type gallium nitride layer 220 and a multiple quantum well layer (Multiple Quantum Well) are sequentially disposed on the light incident surface S2 of the substrate 210.
  • an N-type gallium nitride layer 220 is provided on the light incident surface S2 of the substrate 210.
  • a multiple quantum well layer 230 is provided on the N-type gallium nitride layer 220.
  • a P-type gallium nitride layer 240 is disposed on the multi-quantum well layer 230.
  • the multi-quantum well layer 230 is located between the N-type gallium nitride layer 220 and the P-type gallium nitride layer 240.
  • a metal layer 250 is provided on the P-type gallium nitride layer 240.
  • a negative electrode 260 is provided on the N-type gallium nitride layer 220.
  • a positive electrode 270 is provided on the metal layer 250, so that the metal layer 250 is positioned on the P-type GaN layer 240 and the positive electrode 270, so that the P-type GaN layer 240 and the positive electrode 270 are in electrical contact.
  • an isolation layer 280 is disposed on the metal layer 250, the negative electrode 260, and the positive electrode 270.
  • the isolation layer 280 is used to electrically isolate the negative electrode 260 and the positive electrode 270 from each other.
  • the LED chip 210 is a flip-chip LED chip, but it is not limited thereto. It can be known from the above that the existence of the optical functional film 22 does not change the original manufacturing process of the LED chip 210.
  • the manufactured light emitting unit 20 is subjected to bin (BIN) measurement inside the factory.
  • the light-emitting unit 20 is driven with a certain voltage and current, and the light-emitting power and light-emitting wavelength of the light-emitting unit 20 are detected. (The wavelength fluctuation range is less than 1 nanometer), the light-emitting units 20 are separated by means of splitting, and are placed on the same blue film, and then placed in a warehouse after packaging.
  • the present disclosure prepares an optical functional film on the light emitting surface of the LED without changing the conventional LED manufacturing process.
  • the blue light emitted by the LED passes through the optical function film and enters the yellow fluorescent film to excite red and green light.
  • the optical function film can reflect these red and green light, thereby reducing the red absorption of red and green light by the LED and improving the backlight.
  • the optical functional film can also protect the light emitting surface of the LED.
  • the improvement of the luminous efficiency of the backlight module also means that the product's battery life is improved, which is conducive to improving the competitiveness of the product in the market.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

一种发光单元及其制造方法。发光单元包含:发光二极管芯片(21),包含一出光面(S1);以及光学功能膜(22),设置在发光二极管芯片的出光面,其中光学功能膜在350纳米至480纳米的波长范围的光透过率大于95%。

Description

发光单元及其制造方法 技术领域
本揭示涉及一种发光单元,特别是涉及一种具有倒装型发光二极管芯片的发光单元及其制造方法。
背景技术
发光二极管(Light Emitting Diode,简称LED)是一种主动发光器件,具有体积小、质量轻、亮度高、寿命长和发光色彩多样性的优点。早在西元1955年,美国无线电公司就发现了砷化镓(GaAs)能够发射红光的现象。并且在西元1962年,成功开发出第一种可见光发光二极管。直到西元1993年日本科学家中村修二发明了基于氮化镓(GaN)和铟氮化镓(InGaN)的蓝光LED。目前LED已经取代了传统的白炽灯、钨丝灯和荧光灯,广泛应用在照明、广告牌、交通灯、车载指示灯和背光源等领域。
为了实现RGB全彩色显示,通常使用白色背光源。白光LED可以由LED(R)、LED(G)、LED(B)此三基色LED组成,其中(R)、(G)、(B)分别是红、绿、蓝三原色。或者是,参照图1,其显示一种现有的白光LED 10的结构示意图。白光LED 10包含驱动基板11、反射层12、多个并列的蓝光LED 13、和黄色荧光膜14。白光LED 10的发光原理是通过在蓝光LED 13的上方覆盖一层黄色荧光膜14,使得蓝光LED 13所发出的光线通过黄色荧光膜14混合后可以发出白色光线。白光LED 10具有结构简单、成本低、色度易调节、可靠性高、可用于异形显示等优势,因而被广泛地应用在各种背光模组中。
尽管采用白光LED 10制作背光模组的方案具有诸多优势,但是由于蓝光LED 13发出的蓝光在通过黄色荧光膜14会因红光和绿光量子点材料而激发出红光和绿光,这些红、绿光通过其他膜层间时容易发生散射和反射。并且这些红、绿光入射到蓝光LED 13时,蓝光LED 13表面的蓝宝石基板(折射率约为1.76)对光的反射率很低。具体来说,请参照图2,其显示蓝宝石基板在空气中反射率与不同入射角度的曲线图。从图2可以看到从蓝宝石基板表面反射的光只占很少的一部分,大部分的光是被白光LED 10的内部结构(例如多量子阱结构、载流子掺杂层等)以无辐射跃迁的方式吸收,如此会降低背光模组的发光效率。
有鉴于此,有必要提出一种发光单元及其制造方法,以解决现有技术中存在的问题。
技术问题
为解决上述现有技术的问题,本揭示的目的在于提供一种发光单元及其制造方法,通过光学设计,在LED的出光面(如蓝宝石衬底的表面)上制备一层光学功能膜,其能将红绿光反射出去,从而提高了背光模组整体的发光效率。
技术解决方案
为达成上述目的,本揭示提供一种发光单元,包含:发光二极管芯片,包含:衬底,包含出光面和相对所述出光面的入光面;N型氮化镓层,设置在所述衬底的所述入光面;多量子阱层,设置在所述N型氮化镓层上;P型氮化镓层,设置在所述多量子阱层上,且所述多量子阱层位在所述N型氮化镓层与所述P型氮化镓层之间;负电极,设置在所述N型氮化镓层上;以及正电极,设置在所述P型氮化镓层上;以及蓝光透过膜,设置在所述发光二极管芯片的所述出光面,其中所述蓝光透过膜在350纳米至480纳米的波长范围的光透过率大于95%,且所述蓝光透过膜的厚度小于25微米。
本揭示其中之一优选实施例中,所述蓝光透过膜为多层膜结构,且材质为无机化合物,且所述多层膜结构选自于由二氧化硅层、硫化锌层、二氧化锆层、五氧化二钽层、五氧化二铌层、二氧化钛层、三氧化二铝层、氧化铟锡层和氟化镁层所组成的群组。
本揭示还提供一种发光单元,包含:发光二极管芯片,包含一出光面;以及光学功能膜,设置在所述发光二极管芯片的所述出光面,其中所述光学功能膜在350纳米至480纳米的波长范围的光透过率大于95%。
本揭示其中之一优选实施例中,所述光学功能膜包含蓝光透过膜。
本揭示其中之一优选实施例中,所述光学功能膜为多层膜结构,且材质为无机化合物。
本揭示其中之一优选实施例中,所述多层膜结构选自于由二氧化硅层、硫化锌层、二氧化锆层、五氧化二钽层、五氧化二铌层、二氧化钛层、三氧化二铝层、氧化铟锡层和氟化镁层所组成的群组。
本揭示其中之一优选实施例中,所述发光二极管芯片为倒装型发光二极管芯片。
本揭示其中之一优选实施例中,所述发光二极管芯片包含:衬底,包含所述出光面和相对所述出光面的入光面;N型氮化镓层,设置在所述衬底的所述入光面;多量子阱层,设置在所述N型氮化镓层上;P型氮化镓层,设置在所述多量子阱层上,且所述多量子阱层位在所述N型氮化镓层与所述P型氮化镓层之间;负电极,设置在所述N型氮化镓层上;以及正电极,设置在所述P型氮化镓层上。
本揭示其中之一优选实施例中,所述发光二极管芯片还包含:金属层,设置在所述P型氮化镓层与正电极之间;以及隔离层,设置在所述金属层、所述负电极、所述正电极之上,用于使所述负电极与所述正电极彼此电性隔离。
本揭示其中之一优选实施例中,所述衬底的材质包含蓝宝石。
本揭示其中之一优选实施例中,所述光学功能膜的厚度小于25微米。
本揭示还提供一种发光单元的制造方法,包含:提供衬底,并且在所述衬底定义包含有出光面和入光面;在所述衬底的所述出光面形成光学功能膜,其中所述光学功能膜在350纳米至480纳米的波长范围的光透过率大于95%;以及在所述衬底的所述入光面依序形成N型氮化镓层、多量子阱层、P型氮化镓层、负电极、和正电极以形成发光二极管芯片。
本揭示其中之一优选实施例中,形成所述发光二极管芯片的步骤包含:在所述衬底的所述入光面设置所述N型氮化镓层;在所述N型氮化镓层上设置所述多量子阱层;在所述多量子阱层上设置所述P型氮化镓层,且所述多量子阱层位在所述N型氮化镓层与所述P型氮化镓层之间;在所述N型氮化镓层上设置所述负电极;以及在所述P型氮化镓层上设置所述正电极。
本揭示其中之一优选实施例中,形成所述发光二极管芯片的步骤还包含:在所述P型氮化镓层与正电极之间设置金属层;以及在所述金属层、所述负电极、所述正电极之上设置隔离层,其中所述隔离层用于使所述负电极与所述正电极彼此电性隔离。
有益效果
相较于先前技术,本揭示通过在不改变常规LED制备工艺的前提下,在LED的出光面上制备一层光学功能膜。使用时,LED发出的蓝光透过光学功能膜进入黄色荧光膜后激发出红绿光,光学功能膜能将这些红绿光反射出去,从而降低了LED对红绿光的再吸收,提高了背光模组整体的发光效率。此外,光学功能膜也能够对LED的出光面起到保护作用。背光模组的发光效率的提升也意味着产品续航能力的提高,有利于提升产品在市场的竞争力。
附图说明
图1显示一种现有的白光LED的结构示意图;
图2显示显示蓝宝石基板在空气中反射率对应入射角度的曲线图;
图3显示一种根据本揭示优选实施例的发光单元的结构示意图;
图4显示一种根据本揭示优选实施例的发光单元的制造方法流程图;以及
图5显示图3的光学功能膜的透过率对应波长的曲线图。
本发明的实施方式
为了让本揭示的上述及其他目的、特征、优点能更明显易懂,下文将特举本揭示优选实施例,并配合所附图式,作详细说明如下。
请参照图3,其显示一种根据本揭示优选实施例的发光单元20的结构示意图。发光单元20包含发光二极管芯片21和光学功能膜22。发光单元20为一种能发出蓝光的光源,并且通过在发光单元20的上方覆盖一层黄色荧光膜,可使得发光单元20所发出的光线通过黄色荧光膜混合后发出白色光线。在本揭示中,通过光学设计,在不改变常规发光二极管芯片21的制备工艺的前提下,在发光二极管芯片21的出光面S1上制备一层光学功能膜22,具体的结构与制造方法将详述于后。当发光单元20设置在背光模组时,发光二极管芯片21发出的蓝光透过光学功能膜22进入黄色荧光膜后,会被红光和绿光量子点材料激发出红光和绿光,光学功能膜22能将这些红、绿光反射出去,从而降低了发光二极管芯片21对红、绿光的再吸收,提高了背光模组整体的发光效率。此外,光学功能膜22也能够对发光二极管芯片21的出光面S1起到保护作用。
参照图3和图4,图4显示根据本揭示优选实施例的发光单元20的制造方法流程图。在本揭示的发光单元20的制造方法中,首先,进行步骤S100,提供衬底210,并且在衬底210定义包含有出光面S1和入光面S2。优选地,衬底210材质包含蓝宝石。
如图3和图4所示,接着,进行步骤S200,在衬底210的出光面S1设置光学功能膜22。光学功能膜22是采用多层膜结构(包含第一膜层L1、第二膜层L2、第三膜层L3…等),且材质优选为无机化合物。在制造时,光学功能膜22可通过真空蒸镀或者磁控溅射等方式分层堆叠而形成,每层的厚度根据光学模拟结果并且通过控制镀膜参数来精准地控制。优选地,光学功能膜22的总厚度小于25微米,如此可避免影响发光单元20的光学性能,并且在提高发光单元20的白光发光效能的同时,还可以对发光二极管芯片210的出光面能起到保护作用。可选地,光学功能膜22的多层膜结构选自于由二氧化硅(SiO2)层、硫化锌(ZnS)层、二氧化锆(ZrO2)层、五氧化二钽(Ta2O5)层、五氧化二铌(Nb2O5)层、二氧化钛(TiO2)层、三氧化二铝(Al2O3)层、氧化铟锡(ITO)层和氟化镁(MgF2)层所组成的群组。
请参照图5,其显示图3的光学功能膜22的透过率对应波长的曲线图。当图3的光学功能膜22采用蓝光透过膜(Blue Light Transmission Film,简称BLTF)来实施时,光学功能膜22在350纳米至480纳米的波长范围的光透过率大于95%(如图5所示)。又,如图5所示,除个别波段外,波长较长的红、绿光的反射率大于95%。在保证光学功能膜22具有蓝光高透过的基础上,避免了图3的发光单元20的发光二极管芯片210对红、绿光的吸收效应。也就是说,光学功能膜22能反射红、绿光,从而降低了发光单元20对红、绿光的再吸收。因此当发光单元20设置在背光模组时,可提高背光模组整体的发光效率。
如图3和图4所示,接着,进行步骤S300,通过有机金属化学气相沉积法(Metal-Organic Chemical Vapor Deposition,简称MOCVD)、电子束蒸镀、离子束刻蚀、电子束刻蚀等技术,在衬底210的入光面S2依序设置N型氮化镓层220、多量子阱层(Multiple Quantum Well Structure)230、P型氮化镓层240、金属层250、负电极260、正电极270、和隔离层280以形成发光二极管芯片210。具体来说,首先,在衬底210的入光面S2设置N型氮化镓层220。接着,在N型氮化镓层220上设置多量子阱层230。接着,在多量子阱层230上设置P型氮化镓层240,其中多量子阱层230位在N型氮化镓层220与P型氮化镓层240之间。接着,在P型氮化镓层240上设置金属层250。接着,在N型氮化镓层220上设置负电极260。接着,在金属层250上设置正电极270,如此金属层250会位在P型氮化镓层240与正电极270,使P型氮化镓层240与正电极270电性接触。接着,在金属层250、负电极260、正电极270之上设置隔离层280,其中隔离层280用于使负电极260与正电极270彼此电性隔离。在本实施例中,发光二极管芯片210为倒装型发光二极管芯片,惟不局限于此。由上可知,光学功能膜22的存在并不会改变发光二极管芯片210原有的制成工艺。通过上述步骤制备发光单元20完成后,工厂内部对制作出的发光单元20进行分档(BIN)测量。利用一定规格的电压和电流对发光单元20进行驱动,检测发光单元20的发光功率和发光波长,并且将相同规格(如某一发光功率下,发光功率波动范围小于3%,以及在某一波长下,波长波动范围小于1纳米)的发光单元20通过裂片的方式进行分离,并放置在同一张蓝膜上,包装后置于仓库。
综上所述,本揭示通过在不改变常规LED制备工艺的前提下,在LED的出光面上制备一层光学功能膜。使用时,LED发出的蓝光透过光学功能膜进入黄色荧光膜后激发出红绿光,光学功能膜能将这些红绿光反射出去,从而降低了LED对红绿光的再吸收,提高了背光模组整体的发光效率。此外,光学功能膜也能够对LED的出光面起到保护作用。背光模组的发光效率的提升也意味着产品续航能力的提高,有利于提升产品在市场的竞争力。
以上仅是本揭示的优选实施方式,应当指出,对于所属领域技术人员,在不脱离本揭示原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本揭示的保护范围。

Claims (20)

  1. 一种发光单元,包含:
    发光二极管芯片,包含:
    衬底,包含出光面和相对所述出光面的入光面;
    N型氮化镓层,设置在所述衬底的所述入光面;
    多量子阱层,设置在所述N型氮化镓层上;
    P型氮化镓层,设置在所述多量子阱层上,且所述多量子阱层位在所述N型氮化镓层与所述P型氮化镓层之间;
    负电极,设置在所述N型氮化镓层上;以及
    正电极,设置在所述P型氮化镓层上;以及
    蓝光透过膜,设置在所述发光二极管芯片的所述出光面,其中所述蓝光透过膜在350纳米至480纳米的波长范围的光透过率大于95%,且所述蓝光透过膜的厚度小于25微米。
  2. 如权利要求1的发光单元,其中所述蓝光透过膜为多层膜结构,且材质为无机化合物,且所述多层膜结构选自于由二氧化硅层、硫化锌层、二氧化锆层、五氧化二钽层、五氧化二铌层、二氧化钛层、三氧化二铝层、氧化铟锡层和氟化镁层所组成的群组。
  3. 一种发光单元,包含:
    发光二极管芯片,包含一出光面;以及
    光学功能膜,设置在所述发光二极管芯片的所述出光面,其中所述光学功能膜在350纳米至480纳米的波长范围的光透过率大于95%。
  4. 如权利要求3的发光单元,其中所述光学功能膜包含蓝光透过膜。
  5. 如权利要求3的发光单元,其中所述光学功能膜为多层膜结构,且材质为无机化合物。
  6. 如权利要求5的发光单元,其中所述多层膜结构选自于由二氧化硅层、硫化锌层、二氧化锆层、五氧化二钽层、五氧化二铌层、二氧化钛层、三氧化二铝层、氧化铟锡层和氟化镁层所组成的群组。
  7. 如权利要求3的发光单元,其中所述发光二极管芯片为倒装型发光二极管芯片。
  8. 如权利要求3的发光单元,其中所述发光二极管芯片包含:
    衬底,包含所述出光面和相对所述出光面的入光面;
    N型氮化镓层,设置在所述衬底的所述入光面;
    多量子阱层,设置在所述N型氮化镓层上;
    P型氮化镓层,设置在所述多量子阱层上,且所述多量子阱层位在所述N型氮化镓层与所述P型氮化镓层之间;
    负电极,设置在所述N型氮化镓层上;以及
    正电极,设置在所述P型氮化镓层上。
  9. 如权利要求8的发光单元,其中所述发光二极管芯片还包含:
    金属层,设置在所述P型氮化镓层与正电极之间;以及
    隔离层,设置在所述金属层、所述负电极、所述正电极之上,用于使所述负电极与所述正电极彼此电性隔离。
  10. 如权利要求8的发光单元,其中所述衬底的材质包含蓝宝石。
  11. 如权利要求3的发光单元,其中所述光学功能膜的厚度小于25微米。
  12. 一种发光单元的制造方法,包含:
    提供衬底,并且在所述衬底定义包含有出光面和入光面;
    在所述衬底的所述出光面形成光学功能膜,其中所述光学功能膜在350纳米至480纳米的波长范围的光透过率大于95%;以及
    在所述衬底的所述入光面依序形成N型氮化镓层、多量子阱层、P型氮化镓层、负电极、和正电极以形成发光二极管芯片。
  13. 如权利要求12的发光单元的制造方法,其中所述光学功能膜包含蓝光透过膜。
  14. 如权利要求12的发光单元的制造方法,其中所述光学功能膜为多层膜结构,且材质为无机化合物。
  15. 如权利要求14的发光单元的制造方法,其中所述多层膜结构选自于由二氧化硅层、硫化锌层、二氧化锆层、五氧化二钽层、五氧化二铌层、二氧化钛层、三氧化二铝层、氧化铟锡层和氟化镁层所组成的群组。
  16. 如权利要求12的发光单元的制造方法,其中所述发光二极管芯片为倒装型发光二极管芯片。
  17. 如权利要求12的发光单元的制造方法,其中所述衬底的材质包含蓝宝石。
  18. 如权利要求12的发光单元的制造方法,其中所述光学功能膜的厚度小于25微米。
  19. 如权利要求12的发光单元的制造方法,其中形成所述发光二极管芯片的步骤包含:
    在所述衬底的所述入光面设置所述N型氮化镓层;
    在所述N型氮化镓层上设置所述多量子阱层;
    在所述多量子阱层上设置所述P型氮化镓层,且所述多量子阱层位在所述N型氮化镓层与所述P型氮化镓层之间;
    在所述N型氮化镓层上设置所述负电极;以及
    在所述P型氮化镓层上设置所述正电极。
  20. 如权利要求19的发光单元的制造方法,其中形成所述发光二极管芯片的步骤还包含:
    在所述P型氮化镓层与正电极之间设置金属层;以及
    在所述金属层、所述负电极、所述正电极之上设置隔离层,其中所述隔离层用于使所述负电极与所述正电极彼此电性隔离。
PCT/CN2018/105362 2018-08-30 2018-09-13 发光单元及其制造方法 WO2020042225A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/308,468 US20210226083A1 (en) 2018-08-30 2018-09-13 Light emitting unit and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811000766.4 2018-08-30
CN201811000766.4A CN109216523A (zh) 2018-08-30 2018-08-30 发光单元及其制造方法

Publications (1)

Publication Number Publication Date
WO2020042225A1 true WO2020042225A1 (zh) 2020-03-05

Family

ID=64986742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105362 WO2020042225A1 (zh) 2018-08-30 2018-09-13 发光单元及其制造方法

Country Status (3)

Country Link
US (1) US20210226083A1 (zh)
CN (1) CN109216523A (zh)
WO (1) WO2020042225A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060033116A1 (en) * 2004-08-10 2006-02-16 Samsung Electro-Mechanics Co., Ltd. Gallium nitride based semiconductor light emitting diode and process for preparing the same
CN105006508A (zh) * 2015-07-02 2015-10-28 厦门市三安光电科技有限公司 发光二极管封装结构
CN106299076A (zh) * 2015-05-19 2017-01-04 青岛海信电器股份有限公司 一种量子点发光元件、背光模组和显示装置
CN107195744A (zh) * 2016-03-15 2017-09-22 光宝光电(常州)有限公司 深紫外光发光二极管芯片
CN107359222A (zh) * 2016-05-09 2017-11-17 上海博恩世通光电股份有限公司 一种倒装发光二极管及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060033116A1 (en) * 2004-08-10 2006-02-16 Samsung Electro-Mechanics Co., Ltd. Gallium nitride based semiconductor light emitting diode and process for preparing the same
CN106299076A (zh) * 2015-05-19 2017-01-04 青岛海信电器股份有限公司 一种量子点发光元件、背光模组和显示装置
CN105006508A (zh) * 2015-07-02 2015-10-28 厦门市三安光电科技有限公司 发光二极管封装结构
CN107195744A (zh) * 2016-03-15 2017-09-22 光宝光电(常州)有限公司 深紫外光发光二极管芯片
CN107359222A (zh) * 2016-05-09 2017-11-17 上海博恩世通光电股份有限公司 一种倒装发光二极管及其制作方法

Also Published As

Publication number Publication date
CN109216523A (zh) 2019-01-15
US20210226083A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
US6833565B2 (en) White-light led with dielectric omni-directional reflectors
TWI384654B (zh) 色溫可調之白光發光裝置
JP5877347B2 (ja) バックライト装置、およびそのバックライト装置を用いた液晶表示装置、およびそれらに用いる発光ダイオード
US7242030B2 (en) Quantum dot/quantum well light emitting diode
US20100277887A1 (en) Polarized white light emitting diode
KR101809259B1 (ko) 디스플레이 패널 및 그 장치
JP5617916B2 (ja) バックライト装置、およびそのバックライト装置を用いた液晶表示装置、およびそれらに用いる発光ダイオード
WO2021184914A1 (zh) 阵列基板、其制作方法、显示面板及显示装置
US7473939B2 (en) Light-emitting diode structure with transparent window covering layer of multiple films
WO2024098972A1 (zh) Micro LED微显示芯片及其制造方法
GB2614126A (en) Display substrate and display apparatus
TWI829671B (zh) 發光裝置
US8928024B2 (en) Optical device and method for manufacturing the same
KR101543672B1 (ko) 백라이트 유닛
CN108051951B (zh) Led光源、背光模组及液晶显示装置
US20230369546A1 (en) Light source device and manufacturing method of light source device
WO2021134571A1 (zh) 一种微型发光二极管芯片及其制作方法和显示装置
WO2020042225A1 (zh) 发光单元及其制造方法
TW202115924A (zh) 發光二極體
US20230343893A1 (en) Led epitaxial structure and led chip
KR20070008852A (ko) 이색성 칼라 필터를 이용한 평면 광원장치
WO2021253179A1 (zh) 一种发光二极管
KR20150090458A (ko) 광변환기판 및 이를 포함하는 조명장치, 차량용 램프
CN107768526B (zh) 量子点电致发光器件
KR102242660B1 (ko) 발광 다이오드 소자 및 이를 포함하는 백라이트 유닛과 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932119

Country of ref document: EP

Kind code of ref document: A1