WO2020042074A1 - 曝光调整方法和装置 - Google Patents

曝光调整方法和装置 Download PDF

Info

Publication number
WO2020042074A1
WO2020042074A1 PCT/CN2018/103210 CN2018103210W WO2020042074A1 WO 2020042074 A1 WO2020042074 A1 WO 2020042074A1 CN 2018103210 W CN2018103210 W CN 2018103210W WO 2020042074 A1 WO2020042074 A1 WO 2020042074A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
exposure time
exposure
real
gain
Prior art date
Application number
PCT/CN2018/103210
Other languages
English (en)
French (fr)
Inventor
赵超
任伟
常坚
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880039804.9A priority Critical patent/CN110786000B/zh
Priority to PCT/CN2018/103210 priority patent/WO2020042074A1/zh
Publication of WO2020042074A1 publication Critical patent/WO2020042074A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene

Definitions

  • the present application relates to the field of image processing, and in particular, to an exposure adjustment method and device.
  • the shooting device can only shoot a certain part of the scene such as a high brightness scene or a low brightness scene in a scene with a large dynamic range of brightness. . If the shooting device has an HDR function, an image that meets the requirements can be taken by using an exposure adjustment strategy.
  • HDR High-Dynamic Range
  • the exposure adjustment strategy adopted by the shooting device with HDR function divides the entire exposure time into the following two sections: the first exposure time and the second exposure time.
  • the ratio between the second exposure time and the entire exposure time is referred to as the exposure time ratio, and the exposure time ratio is used to characterize the brightness dynamic range of the photographing device.
  • the exposure time ratio of the shooting device is fixed.
  • a fixed exposure time ratio means that the brightness dynamic range of the shooting device is fixed, so that the shooting device can only shoot high-quality images in a certain fixed scene (the scene corresponding to the fixed brightness dynamic range), and in other scenes You cannot capture high-quality images.
  • the captured image will lose contours, and the brightness dynamic range of the scene is higher than the fixed brightness dynamic range. When it is within the range, the captured image will have obvious overexposed areas.
  • the present application discloses an exposure adjustment method and device to improve the image shooting quality by dynamically adjusting the exposure time of a shooting device.
  • this application discloses an exposure adjustment method.
  • the method is applied to a photographing device and includes:
  • the exposure time of the photographing device is adjusted according to the target exposure gain, the target inflection point value, and the target pixel feature value.
  • obtaining the target inflection point value by using the target exposure gain includes:
  • the found inflection point value is determined as the target inflection point value.
  • determining the target pixel feature value according to the pixel feature information of at least one frame of the captured image includes:
  • determining the target pixel feature value according to the status code level includes:
  • the found pixel feature value is determined as the target pixel feature value.
  • the target pixel feature value is a maximum gray value.
  • the pixel characteristic information includes at least: a gray-scale pixel histogram
  • adjusting the exposure time of the photographing device according to the target exposure gain, the target inflection point value, and the target pixel feature value includes:
  • the exposure time includes a first period of exposure time and a second period of exposure time
  • the exposure time ratio refers to a ratio of a second exposure time to the exposure time in the exposure time.
  • the adjusting the exposure time according to the exposure time ratio includes:
  • the calculating the exposure time ratio to be exposed according to the target exposure gain, the target inflection point value, and the target pixel feature value includes:
  • adjusting the exposure time to be exposed according to the target exposure gain, the target inflection point value, and the target pixel feature value includes:
  • the calculated second period of exposure time is determined as a second period of exposure time in the exposure time.
  • determining the second exposure time in the exposure time according to the target exposure gain, the target inflection point value, and the target pixel feature value includes:
  • calculating the real brightness REAL_DST corresponding to the exposure according to the target exposure gain includes:
  • the exposure information includes at least: the maximum pixel feature MAX_SRC, the knee value Knee_SRC, the exposure time T0_SRC, and the second exposure time T1_SRC of the exposure time T0_SRC;
  • After determining the corresponding gain real brightness REAL_SRC0 according to the exposure information corresponding to at least one frame of the captured image includes:
  • the calculation of the real brightness REAL_DST corresponding to the exposure using REAL_SRC0 and the target exposure gain includes:
  • calculating the REAL_DST according to the REAL_SRC and the target exposure gain includes:
  • the calculating the second exposure time using the REAL_DST, the target pixel feature value, and the target inflection point value includes:
  • the present application discloses a photographing device, the photographing device includes:
  • Computer-readable storage medium having computer programs stored thereon
  • a processor configured to read the computer program and implement the method described above by executing the computer program to adjust an exposure time of the photographing device.
  • the present application discloses a photographing device, the photographing device includes:
  • Computer-readable storage medium having computer programs stored thereon
  • a processor configured to read the computer program, and obtain an adjustment parameter related to the exposure time T0_DST to be exposed by executing the computer program, and adjust the exposure time T0_DST according to the obtained adjustment parameter and according to a specified formula
  • the adjustment parameters include at least: the target exposure gain Gain_DST, the target inflection point value Knee_DST, the target pixel feature value MAX_DST, the maximum pixel feature value of the previous frame image MAX_SRC, the knee point value Knee_SRC, the exposure time T0_SRC, and the exposure time T0_SRC The ratio f_SRC of the second exposure time T1_SRC in the exposure time to_SRC;
  • the f_DST is a ratio of T1_DST in the exposure time T0_DST.
  • the fixed exposure time ratio is not used to capture the current frame image, but according to the target exposure gain, target inflection point value, target
  • the pixel characteristic value adjusts the exposure time of the shooting device, which can ensure that the exposure time of the shooting device matches the current application scene, and finally captures a high-quality image.
  • FIG. 1 is a flowchart of an example of an exposure adjustment method provided in Embodiment 1 of the present application; FIG.
  • FIG. 2 is a flowchart of an example of an exposure adjustment method provided in Embodiment 2 of the present application.
  • step 3 is a flowchart of implementing step 204 provided in Embodiment 2 of the present application.
  • FIG. 5 is a flowchart of an embodiment of a second period of exposure time provided by this application.
  • FIG. 6 is a schematic diagram of an exposure curve provided by the present application.
  • FIG. 7 is a flowchart of an example of an exposure adjustment method according to Embodiment 4 of the present application.
  • FIG. 8 is a structural diagram of a device provided by the present application.
  • FIG. 1 is a flowchart of an example of an exposure adjustment method according to Embodiment 1 of the present application.
  • This process is applied to a photographing device.
  • the shooting device here can be a shooting device applied to different fields such as drones, robots, unmanned driving, security monitoring and the like.
  • the drone aerial photography system includes an aircraft side and a remote control side.
  • the process shown in FIG. Alternatively, some steps in the process shown in FIG. 1 are applied to the photographing device on the aircraft side, and other steps are applied to the photographing device on the remote control side, which are not specifically limited in this application.
  • the photographing device herein may be a device with a camera such as a video camera or a camera.
  • the process can include the following steps:
  • Step 101 Obtain a target exposure gain.
  • the exposure gain required for capturing the image is first obtained, and the exposure gain here is the target exposure gain in step 101.
  • the image to be captured is referred to as the current frame image in this application.
  • obtaining the target exposure gain may include: receiving a target exposure gain from an external input; or reading the target exposure gain from a designated storage medium. This application does not specifically describe how to obtain the target exposure gain.
  • Step 102 Use the target exposure gain to obtain a target inflection point value.
  • the target inflection point value is used to suppress the highlight portion in the image, eliminating the processing load on the back end.
  • the shooting device needs to undergo two periods of exposure time to capture the current frame image: a first exposure time and a second exposure time.
  • the shooting device for the first exposure time, has a brightness greater than a target knee point value. Pixel, the brightness of the pixel will be forced to the target inflection point value. Because in the first exposure time, the brightness of pixels whose brightness is greater than the target inflection value is forcibly set to the target inflection value, the highlighted portion of the entire current frame image that is finally captured is suppressed, eliminating the processing burden on the back end .
  • the mapping relationship between the exposure gain and the inflection point value needs to be established in advance.
  • the mapping relationship between the exposure gain and the inflection point value can be established under the purpose of complying with the optimal image quality.
  • the image quality here is optimal, which can make the inflection point value at each exposure gain reach the optimal value, avoiding the introduction of flicker and overexposure by the inflection point adjustment.
  • obtaining the target inflection point value by using the target exposure gain in step 102 may include:
  • the found inflection point value is determined as the target inflection point value.
  • Step 103 Determine a target pixel feature value according to the pixel feature information of at least one frame of the captured image.
  • the pixel feature information herein may be feature information related to grayscale. Accordingly, the target pixel feature value here may be a maximum gray value.
  • Step 104 Adjust the exposure time of the shooting device according to the target exposure gain, the target inflection point value, and the target pixel feature value.
  • adjusting the exposure time of the photographing device here may be the second period of time of adjusting the exposure time of the photographing device to capture the current frame image, which will be described in detail below, and will not be repeated here.
  • the shooting device when the shooting device shoots the current frame image, it does not use the fixed exposure time ratio to shoot the current frame image, but according to the target exposure gain and target inflection point value.
  • the target pixel characteristic value adjusts the exposure time of the shooting device, which can ensure that the exposure time of the shooting device matches the current application scene, and finally shoots a high-quality image.
  • the brightness of the pixel points mentioned above may be characterized by the gray value and voltage value of the pixel points, which is not specifically limited in this application.
  • Embodiment 1 has been described above.
  • FIG. 2 is an exemplary flowchart of an exposure adjustment method provided in Embodiment 2 of the present application. This process is applied to a photographing device.
  • the shooting device here is as described in the embodiment, and will not be described again.
  • the process may include the following steps:
  • Steps 201 and 202 are similar to steps 101 and 102 in Embodiment 1, respectively, and are not described again.
  • Step 203 Obtain pixel feature information of at least one frame of the captured image.
  • the pixel feature information of a captured frame of image (compared to the current frame image described above as the previous frame image) is taken as an example.
  • Step 204 Determine a status code level used to characterize a target pixel characteristic value according to the pixel characteristic information.
  • the gray value parameter of the image can represent the lightness and darkness of the image.
  • the pixel feature information obtained in step 203 may be a grayscale pixel histogram.
  • step 204 the determination of the status code level used to characterize the target pixel feature value based on the pixel feature information may include the process shown in FIG. 3, specifically See the description below, I will not repeat them here.
  • Step 205 Determine the target pixel feature value according to the status code level.
  • a mapping relationship between a status code level and a pixel feature value needs to be established in advance.
  • the mapping relationship between the status code level and the pixel feature value is established based on the purpose of suppressing and improving the scene.
  • determining the target pixel feature value according to the status code level may include: finding the pixel corresponding to the status code level in the established mapping relationship between the status code level and the pixel feature value. Feature value, determining the found pixel feature value as the target pixel feature value.
  • the above step 203 to step 205 are an implementation manner of determining the target pixel feature value according to the pixel feature information of at least one frame of the image captured in the above step 103.
  • Step 206 is similar to step 104 in Embodiment 1, and details are not described herein again.
  • the shooting device when the shooting device captures the current frame image, instead of taking a fixed exposure time ratio to capture the current frame image, it uses the target exposure gain, the target inflection point value, and the target pixel.
  • the characteristic value adjusts the exposure time of the shooting device, which can ensure that the exposure time of the shooting device matches the current application scene, and finally captures a high-quality image.
  • FIG. 3 an implementation manner of determining a status code level used to characterize a target pixel characteristic value according to the pixel characteristic information in the above step 204 is shown in FIG. 3:
  • FIG. 3 is a flowchart for implementing step 204 provided in Embodiment 2 of the present application.
  • This process takes the previous image as an example, and the pixel feature information of the previous image includes at least a pixel histogram of grayscale as an example.
  • the gray-scale pixel histogram is used to represent the distribution of the gray-scale value of each pixel in the previous frame of image.
  • the process may include the following steps:
  • Step 301 Determine a pixel grayscale maximum value in the grayscale pixel histogram, and determine a target grayscale maximum value segment in which the pixel grayscale maximum value is located from the divided grayscale maximum value segments. .
  • the divided maximum gray level segments are divided according to actual needs in advance, such as: [0 to 224], (224 to 255), and [255] three segments.
  • Step 302 Determine a target gray scale segment among the divided gray scale segments.
  • each grayscale segment that has been divided is divided in advance according to actual needs. As an embodiment, it may be different from the above-mentioned target maximum grayscale segment. For example, divide the gray range from 0 to 255 into 8 gray segments, each gray segment includes 32 gray values, the first gray segment is [0 to 31], and the second gray segment It is [32 ⁇ 63], the third grayscale segment is [64 ⁇ 95], the fourth grayscale segment is [96 ⁇ 127], and so on, the 32nd grayscale segment is [224 ⁇ 255] . It should be noted that, in this embodiment, the specific division manner of the grayscale segmentation can be set according to actual needs, which is only an exemplary description here.
  • the target grayscale segment may include at least two grayscale segments.
  • each gray level segment included in the target gray level segment in step 302 may be a gray level segment that is continuous with each other and closest to the maximum gray level.
  • Step 303 Count the number of pixels whose gray values are within the target gray segment from at least one frame of the captured image.
  • the at least one frame of the captured image may be the above-mentioned image of the previous frame.
  • Step 304 Determine the status code level according to the target gray level maximum segment and the number of pixels located in the target gray level segment.
  • mapping relationship among grayscale segments, pixel numbers, and status code levels is established in advance.
  • the following example describes this mapping relationship:
  • the status code level is determined to be 5, indicating that the brightness of the current frame needs to be strengthened.
  • Status code levels are related; similarly, when the number of pixels with a gray value in (160-192) is greater than the third threshold and the number of pixels with a gray value in (192-224) is less than the fourth threshold, the status is determined
  • the code level is 4, indicating that the brightness of the current frame needs to be strengthened, but the degree of enhancement is less than that when the status code level is 5, and so on.
  • the status code level is determined to be 3; when the number of pixels with gray values in (160-192) is greater than the seventh threshold, and When the number of pixels with a gray value in (192 to 224) is greater than the eighth threshold, it is determined that the status code level is two. The lower the status code level is, the less the brightness of the current frame needs to be enhanced. In one example, the first threshold to the eighth threshold may be equal.
  • the status code level is determined to be 1, indicating that the brightness of the current frame needs to be slightly enhanced.
  • the magnitude of enhancement is related to the status code level; when the number of pixels with a gray value in (192 to 224) is greater than the eleventh threshold and the number of pixels with a gray value in (224 to 255) is less than the twelfth threshold , Then the status code level is determined to be 1, indicating that the brightness of the current frame needs to be slightly enhanced, and the magnitude of the enhancement is related to the status code level; when the number of pixels in the gray value (192 to 224) is less than the thirteenth threshold and gray When the number of pixels with a degree value in (224 to 255) is greater than the fourteenth threshold, the status code level is determined to be 0, indicating that the brightness of the current frame can be enhanced; when the gray value is in the pixels of (192 to 224), The number of pixels is greater than the fifteenth threshold and the number of pixels with a gray value in (224 to 255) is large At the sixteenth threshold, the status code level is determined to be 0, indicating that the brightness of the current frame may not be enhanced. Among them, the above ninth threshold to
  • the target gray level segment is (192 to 224), (224 to 255), when the number of pixels with a gray value of 255 is less than a preset threshold (thresh), then :
  • the status code level is -1, It indicates that the brightness of the current frame needs to be suppressed, and the degree of suppression is related to the status code level; if the number of pixels with a gray value in (192 to 224) is greater than the nineteenth threshold and the gray value in (224 to 255) The number of pixels is less than the twentieth threshold, then the status code level is determined to be -2, which indicates that the brightness of the current frame needs to be suppressed to a greater degree; and so on, if the number of pixels with a gray value in (192 to 224) If the number of pixels smaller than the twenty-first threshold and the gray value in (224 to 255) is greater than the twenty-second threshold, the status code level is determined to be -4; if the gray value is in (192 to 224), When the number of pixels is greater than the twenty-third threshold and
  • the first The seven threshold may be equal to or different from the ninth threshold described above.
  • the eighteenth threshold may be equal to or different from the tenth threshold described above;
  • the nineteenth threshold may be equal to the eleventh threshold described above.
  • the thresholds may be equal or different;
  • the twentieth threshold may be equal to or equal to the twelfth threshold described above;
  • the twenty-first threshold may be equal to or equal to the thirteenth threshold described above;
  • the twentieth The second threshold may be equal to or different from the fourteenth threshold described above;
  • the twenty-third threshold may be equal to or different from the fifteenth threshold described above;
  • the twenty-fourth threshold may be equal to the sixteenth threshold described above Equal or different.
  • the target gray level segment is (192 ⁇ 224), (224 ⁇ 255), when the number of pixels with a gray value of 255 is greater than a preset threshold, then:
  • the status code level is- 3, indicating that the brightness of the current frame needs to be suppressed, and the degree of suppression is related to the status code level; if the number of pixels with a gray value in (192 to 224) is greater than the twenty-seventh threshold, and the gray value is between (224 to 255) The number of pixels in] is less than the twenty-eighth threshold, then the status code level is determined to be -4, indicating that the brightness of the current frame needs to be suppressed to a greater degree; and so on, if the gray value is in (192 to 224) If the number of pixels is less than the twenty-ninth threshold and the number of pixels with a gray value in (224 to 255) is greater than the thirtieth threshold, the status code level is determined to be -5; if the gray value is between
  • the above The twenty-fifth threshold may be equal to or different from the ninth threshold described above.
  • the twenty-sixth threshold may be equal to or different from the tenth threshold described above.
  • the aforementioned twentieth The seven threshold may be equal to or different from the eleventh threshold described above.
  • the twenty-eighth threshold may be equal to or different from the twelfth threshold described above.
  • the twenty-ninth threshold may be equal to the above
  • the thirteenth threshold may be equal or different.
  • the thirtieth threshold may be equal to or different from the fourteenth threshold.
  • the thirty-first threshold may be equal to the fifteenth threshold, or It may be different.
  • the thirty-second threshold may be the same as or equal to the sixteenth threshold.
  • step 304 it is easy to determine the status code level based on the above mapping relationship and the target gray level segmentation, and the number of pixels located in the target gray level segment, which is similar to the description above, here No longer.
  • the process shown in FIG. 3 is used to determine the status code level used to characterize the target pixel characteristic value according to the pixel characteristic information in the above step 204. It should be noted that the process shown in FIG. 3 is only an implementation manner of determining a status code level used to characterize a target pixel characteristic value according to the pixel characteristic information in the foregoing step 204, and is not intended to limit.
  • Embodiment 2 has been described above.
  • FIG. 4 is a flowchart of an example of an exposure adjustment method according to Embodiment 3 of the present application. This process is applied to a photographing device.
  • the shooting device here is as described in the embodiment, and will not be described again.
  • the process may include the following steps:
  • Steps 401 to 403 are similar to steps 101 to 103 in Embodiment 1, and are not described again.
  • Step 404 Calculate the exposure time ratio based on the target exposure gain, the target inflection point value, and the target pixel feature value.
  • the exposure time ratio here refers to the ratio of the second exposure time to the exposure time in the exposure time of the current frame image.
  • Step 405 Adjust the second exposure time in the exposure time according to the exposure time ratio.
  • the second exposure time can be determined from the entire exposure time based on the exposure time ratio.
  • the above steps 404 to 405 are an implementation manner of adjusting the exposure time of the photographing device according to the target exposure gain, the target inflection point value, and the target pixel feature value in step 104.
  • calculating the exposure time ratio to be exposed according to the target exposure gain, the target inflection point value, and the target pixel feature value in the above step 404 may include: according to the target exposure gain, the target pixel feature value, the The target inflection point value determines a second exposure time in the exposure time; and calculates the exposure time ratio based on the exposure time and the second exposure time.
  • the above-mentioned determining the second exposure time in the exposure time according to the target exposure gain, the target inflection point value, and the target pixel feature value may include the process shown in FIG. 5:
  • Step 501 Calculate the real brightness REAL_DST corresponding to the exposure according to the target exposure gain.
  • calculating the real brightness REAL_DST corresponding to the exposure according to the target exposure gain may include: determining the corresponding real brightness REAL_SRC0 after gain according to the exposure information corresponding to at least one frame of the captured image, using the REAL_SRC0, the target exposure The gain calculates the real brightness REAL_DST corresponding to the exposure.
  • determining the corresponding real brightness REAL_SRC0 according to the exposure information corresponding to at least one frame of the captured image may include: calculating a difference D1 between the MAX_SRC and the knee_SRC, and according to the D1, the T1_SRC, The T0_SRC calculates the REAL_SRC0.
  • the following formula 1 shows the calculation formula for REAL_SRC0:
  • MAX_SRC is the maximum pixel feature value of the previous frame image
  • Knee_SRC is the inflection point value of the previous frame image
  • exposure time T0_SRC is the exposure time of the previous frame image
  • T1_SRC is the second exposure time in the exposure time T0_SRC.
  • the above calculation of the real brightness corresponding to the exposure using REAL_SRC0 and the target exposure gain REAL_DST may include: using the REAL_SRC0 and the exposure gain Gain_SRC corresponding to at least one captured image to calculate the corresponding exposure information After gaining the real brightness REAL_SRC1, the REAL_DST is calculated according to the REAL_SRC1 and the target exposure gain.
  • the above-mentioned real brightness REAL_SRC1 after calculating the gain corresponding to the exposure information using the REAL_SRC0 and the exposure gain Gain_SRC corresponding to at least one frame of the captured image can be calculated by Equation 2:
  • Gain_SRC is the exposure gain of the previous frame image.
  • the calculation of the REAL_DST based on the REAL_SRC and the target exposure gain may include: calculating the target real brightness REAL_DST0 associated with time based on the REAL_SRC1, the T0_SRC, and the exposure time T0_DST to be exposed; based on the REAL_DST0, the target exposure gain calculates the REAL_DST.
  • REAL_DST0 can be calculated by the following formula 3:
  • T0_DST is the exposure time of the current frame image.
  • the REAL_DST calculation based on the REAL_DST0 and the target exposure gain can be calculated by the following formula 4:
  • REAL_DST REAL_DST0 ⁇ Gain_DST (formula 4)
  • Gain_DST is the above-mentioned target exposure gain.
  • Step 502 Use the REAL_DST, the target pixel feature value, and the target inflection point value to calculate a second exposure time.
  • the step 502 using the REAL_DST, the target pixel feature value, and the target inflection point value to calculate the second period of exposure time may include:
  • the second exposure time can be calculated by the following formula 5:
  • T1_DST is the second exposure time of the current frame image
  • MAX_DST is the target pixel feature value
  • Knee_DST is the target inflection point value.
  • FIG. 6 shows the above-mentioned parameters related to the second exposure time of the current frame image.
  • the determination of the second exposure time can be achieved through the process shown in FIG. 5. Based on the second exposure time determined in FIG. 5, the exposure time ratio in step 405 can be calculated by the following formula 6:
  • the second exposure time of the current frame image can be adjusted according to the determined exposure time ratio.
  • Embodiment 3 has been described above.
  • FIG. 7 is a flowchart of an example of an exposure adjustment method according to Embodiment 4 of the present application. This process is applied to a photographing device.
  • the shooting device here is as described in the embodiment, and will not be described again.
  • the process may include the following steps:
  • Steps 701 to 703 are similar to steps 101 to 103 in Embodiment 1, and are not described again.
  • Step 704 Calculate the second exposure time according to the target exposure gain, the target inflection point value, and the target pixel feature value.
  • Step 705 Determine the calculated second exposure time as the second exposure time of the exposure time of the current frame image.
  • the second exposure time in the entire exposure time can be calculated for the current frame image through the process shown in FIG. 7.
  • Embodiment 4 has been described above.
  • FIG. 8 is a structural diagram of a device provided by the present application. As shown in FIG. 8, the shooting device may include:
  • Computer-readable storage medium having computer programs stored thereon
  • a processor is configured to read the computer program, and execute the computer program to implement the method according to any one of Embodiments 1 to 4 to adjust an exposure time of the photographing device.
  • a processor is configured to read the computer program, and obtain an adjustment parameter related to the exposure time T0_DST to be exposed by executing the computer program, and adjust according to the obtained adjustment parameter and according to a specified formula.
  • the adjustment parameters include at least: the target exposure gain Gain_DST, the target inflection point value Knee_DST, the target pixel feature value MAX_DST, the maximum pixel feature value of the previous frame image MAX_SRC, the knee point value Knee_SRC, the exposure time T0_SRC, and the exposure time T0_SRC The ratio f_SRC of the second exposure time T1_SRC in the exposure time to_SRC;
  • the f_DST is a ratio of T1_DST in the exposure time T0_DST.
  • the machine-readable storage medium may be any electronic, magnetic, optical, or other physical storage device, and may contain or store information, such as executable instructions, data, and so on.
  • the machine-readable storage medium may be: RAM (Radom Access Memory), volatile memory, non-volatile memory, flash memory, storage drive (such as hard drive), solid state hard disk, any type of storage disk (Such as optical discs, DVDs, etc.), or similar storage media, or a combination thereof.
  • the device, module, or unit described in the foregoing embodiments may be specifically implemented by a computer chip or entity, or may be implemented by a product having a certain function.
  • a typical implementation device is a computer, and the specific form of the computer may be a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email sending and receiving device, and a game control Desk, tablet computer, wearable device, or a combination of any of these devices.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Therefore, this application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, the embodiments of the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • these computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured article including the instruction device,
  • the instruction device implements the functions specified in a flowchart or a plurality of processes and / or a block or a block of the block diagram.
  • These computer program instructions may also be loaded on a computer or other programmable data processing device, so that a series of operation steps are performed on the computer or other programmable device to generate a computer-implemented process, and thus the computer or other
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

一种曝光调整方法和装置。拍摄装置在拍摄当前帧图像时,并非采用已固定的曝光时间比值来拍摄当前帧图像,而是依据目标曝光增益、目标拐点值、目标像素特征值调整拍摄装置的曝光时间,这能够保证拍摄装置的曝光时间与当前应用场景相匹配,最终拍摄出高质量的图像。

Description

曝光调整方法和装置 技术领域
本申请涉及图像处理领域,尤其涉及曝光调整方法和装置。
背景技术
在应用中,拍摄装置如果不具有高动态范围图像(HDR:High-Dynamic Range)功能,则在亮度动态范围较大的场景下,拍摄装置只能拍摄某一部分场景比如高亮度场景或者低亮度场景。而如果拍摄装置具有HDR功能,则通过采用曝光调整策略可以拍摄出满足要求的图像。
在应用中,具有HDR功能的拍摄装置采用的曝光调整策略将整个曝光时间分成以下两段:第一曝光时间、第二曝光时间。其中,第二曝光时间与整个曝光时间的比值称为曝光时间比值,曝光时间比值用于表征拍摄装置的亮度动态范围。
在目前的曝光调整策略中,拍摄装置的曝光时间比值是固定的。而曝光时间比值固定,则意味着拍摄装置的亮度动态范围固定,使得拍摄装置只能在某一固定场景(固定的亮度动态范围对应的场景)下拍摄出高质量的图像,而在其他场景下则无法拍摄出高质量的图像,比如,在场景的亮度动态范围低于上述固定的亮度动态范围时,拍摄出的图像会出现轮廓丢失,而在场景的亮度动态范围高于上述固定的亮度动态范围时,拍摄出的图像会出现明显的过曝区域。
发明内容
本申请公开了曝光调整方法和装置,以通过动态调整拍摄装置的曝光时间提高图像拍摄质量。
在一个例子中,本申请公开了一种曝光调整方法所述方法应用于拍摄装置,包括:
获取目标曝光增益;
利用所述目标曝光增益获取目标拐点值;
依据已拍摄的至少一帧图像的像素特征信息确定目标像素特征值;
依据所述目标曝光增益、目标拐点值、目标像素特征值调整本拍摄装置的曝光时间。
作为一个实施例,所述利用目标曝光增益获取目标拐点值包括:
在已建立的曝光增益与拐点值的映射关系中查找所述目标曝光增益对应的拐点值;
将查找到的所述拐点值确定为所述目标拐点值。
作为一个实施例,所述依据已拍摄的至少一帧图像的像素特征信息确定目标像素特征值包括:
获取已拍摄的至少一帧图像的像素特征信息;
依据所述像素特征信息确定用于表征目标像素特征值的状态码等级;
依据所述状态码等级确定所述目标像素特征值。
作为一个实施例,所述依据状态码等级确定所述目标像素特征值包括:
在已建立的状态码等级与像素特征值的映射关系中查找所述状态码等级对应的像素特征值;
将查找到的像素特征值确定为所述目标像素特征值。
作为一个实施例,所述目标像素特征值为最大灰度值。
作为一个实施例,所述像素特征信息至少包括:灰度的像素直方图;
所述依据像素特征信息确定用于表征目标像素特征值的状态码等级包括:
在所述灰度的像素直方图中确定像素灰度最大值;
在已划分的各灰度分段中确定像素灰度最大值对应的目标灰度分段;
统计已拍摄的至少一帧图像中灰度值为所述像素灰度最大值的像素的数量N;
依据所述目标灰度分段和所述N确定所述状态码等级。
作为一个实施例,所述依据目标曝光增益、目标拐点值、目标像素特征值调整本拍摄装置的曝光时间包括:
依据目标曝光增益、目标拐点值、目标像素特征值计算待曝光的曝光时间比值;
依据所述曝光时间比值调整所述曝光时间。
作为一个实施例,所述曝光时间包括第一段曝光时间和第二段曝光时间;
所述曝光时间比值是指所述曝光时间中第二段曝光时间与所述曝光时间的比值。
作为一个实施例,所述依据曝光时间比值调整曝光时间包括:
依据所述曝光时间比值调整所述曝光时间中的第二段曝光时间。
作为一个实施例,所述依据目标曝光增益、目标拐点值、目标像素特征值计算待曝光的曝光时间比值包括:
依据所述目标曝光增益、所述目标像素特征值、所述目标拐点值确定所述曝光时间中第二段曝光时间;
依据所述曝光时间、所述第二段曝光时间计算所述曝光时间比值。
作为一个实施例,所述依据目标曝光增益、目标拐点值、目标像素特征值调整待曝光的 曝光时间包括:
依据目标曝光增益、目标拐点值、目标像素特征值计算第二段曝光时间;
将计算出的所述第二段曝光时间确定为所述曝光时间中的第二段曝光时间。
作为一个实施例,所述依据目标曝光增益、目标拐点值、目标像素特征值确定所述曝光时间中的第二段曝光时间包括:
依据所述目标曝光增益计算待曝光对应的现实亮度REAL_DST;
利用所述REAL_DST、所述目标像素特征值、所述目标拐点值计算第二段曝光时间。
作为一个实施例,所述依据目标曝光增益计算待曝光对应的现实亮度REAL_DST包括:
依据已拍摄的至少一帧图像对应的曝光信息确定对应的增益后现实亮度REAL_SRC0;
利用所述REAL_SRC0、所述目标曝光增益计算待曝光对应的现实亮度REAL_DST。
作为一个实施例,所述曝光信息至少包括:上一帧图像的像素特征最大值MAX_SRC、拐点值Knee_SRC、曝光时间T0_SRC、曝光时间T0_SRC中的第二段曝光时间T1_SRC;
所述依据已拍摄的至少一帧图像对应的曝光信息确定对应的增益后现实亮度REAL_SRC0包括:
计算所述MAX_SRC与所述Knee_SRC的差值D1;
依据所述D1、所述T1_SRC、所述T0_SRC计算所述REAL_SRC0。
作为一个实施例,所述利用REAL_SRC0、所述目标曝光增益计算待曝光对应的现实亮度REAL_DST包括:
利用所述REAL_SRC0和已拍摄的至少一帧图像对应的曝光增益Gain_SRC计算与所述曝光信息对应的增益后现实亮度REAL_SRC1;
依据所述REAL_SRC1和所述目标曝光增益计算所述REAL_DST。
作为一个实施例,所述依据REAL_SRC和所述目标曝光增益计算所述REAL_DST包括:
依据所述REAL_SRC1、所述T0_SRC、待曝光的曝光时间T0_DST计算与时间相关联的目标现实亮度REAL_DST0;
依据所述REAL_DST0、所述目标曝光增益计算所述REAL_DST。
作为一个实施例,所述利用所述REAL_DST、所述目标像素特征值、所述目标拐点值计算所述第二段曝光时间包括:
计算所述目标像素特征值与所述目标拐点值的差值D2;
依据所述D2、所述曝光时间、所述REAL_DST计算所述第二段曝光时间。
在一个例子中,本申请公开了一种拍摄装置,所述拍摄装置包括:
计算机可读存储介质,其上存储有计算机程序;
处理器,用于读取所述计算机程序,并通过执行所述计算机程序实现如上所述的方法来调整所述拍摄装置的曝光时间。
在一个例子中,本申请公开了一种拍摄装置,所述拍摄装置包括:
计算机可读存储介质,其上存储有计算机程序;
处理器,用于读取所述计算机程序,并通过执行所述计算机程序获取与待曝光的曝光时间T0_DST相关的调整参数,依据获取的所述调整参数并按照指定公式调整所述曝光时间T0_DST中的第二段曝光时间T1_DST;
其中,所述调整参数至少包括:待曝光的目标曝光增益Gain_DST、目标拐点值Knee_DST、目标像素特征值MAX_DST,上一帧图像的像素特征最大值MAX_SRC、拐点值Knee_SRC、曝光时间T0_SRC、曝光时间T0_SRC中第二段曝光时间T1_SRC在曝光时间to_SRC的比值f_SRC;
所述指定公式为:
Figure PCTCN2018103210-appb-000001
或者为:
Figure PCTCN2018103210-appb-000002
所述f_DST为T1_DST在所述曝光时间T0_DST中的比值。
由以上技术方案可以看出,在本申请中,拍摄装置在拍摄当前帧图像时,并非采用已固定的曝光时间比值来拍摄当前帧图像,而是依据所述目标曝光增益、目标拐点值、目标像素特征值调整本拍摄装置的曝光时间,这能够保证拍摄装置的曝光时间与当前应用场景相匹配,最终拍摄出高质量的图像。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例1提供的曝光调整方法示例流程图;
图2为本申请实施例2提供的曝光调整方法示例流程图;
图3为本申请实施例2提供的步骤204实现流程图;
图4为本申请实施例3提供的曝光调整方法示例流程图;
图5为本申请提供的第二段曝光时间的实施例流程图;
图6为本申请提供的曝光曲线的示意图;
图7为本申请实施例4提供的曝光调整方法示例流程图;
图8为本申请提供的装置结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1:
参见图1,图1为本申请实施例1提供的曝光调整方法示例流程图。该流程应用于拍摄装置。这里的拍摄装置可为应用于无人机、机器人、无人驾驶、安防监控等不同领域的拍摄装置。以应用于无人机航拍领域为例,无人机航拍系统包括飞机侧和遥控器侧,图1所示的流程可以应用于飞行器侧的拍摄装置,也可应用于遥控器侧的拍摄装置,或者,图1所示流程中一部分步骤应用于飞行器侧的拍摄装置,另一部分步骤应用于遥控器侧的拍摄装置等,本申请不做具体限定。
具体地,在一个例子中,这里的拍摄装置可为摄像机、照相机等具有摄像头的装置。
如图1所示,该流程可包括以下步骤:
步骤101,获取目标曝光增益。
本申请中,拍摄装置在即将拍摄图像时,会先获取拍摄该图像所需的曝光增益,这里的曝光增益即为步骤101中的目标曝光增益。为便于描述,本申请将即将拍摄的图像称为当前帧图像。
作为一个实施例,本步骤101中,获取目标曝光增益可包括:接收外部输入的目标曝光增益;或者,从指定存储介质读取所述目标曝光增益。本申请并不具体如何获取目标曝光增益的方式。
步骤102,利用所述目标曝光增益获取目标拐点值。
这里,目标拐点值是用于抑制图像中的高亮部分,免去后端的处理负担。在具体实现时,拍摄装置拍摄当前帧图像需要经历两段曝光时间:第一曝光时间和第二曝光时间,其中,拍摄装置在第一曝光时间内,对于亮度大于目标拐点值(Knee Point)的像素点,则会将该像素点的亮度强制置为目标拐点值。因为在第一曝光时间内,亮度大于目标拐点值的像素点的亮度被强制设置为目标拐点值,所以最终拍摄出的整个当前帧图像中的高亮部分被抑制,免去 了后端的处理负担。
在具体实现时,步骤102中利用目标曝光增益获取目标拐点值有很多实现方式,本申请举例描述其中一种实现方式:
一种实现方式中,需要预先建立曝光增益与拐点值的映射关系,这里曝光增益与拐点值的映射关系可在遵照图像质量最优的目的下建立。这里的图像质量最优,能够使得每个曝光增益下的拐点值达到最佳数值,避免拐点调节引入闪烁和过曝。
一种实现方式中,基于曝光增益与拐点值的映射关系,则步骤102中利用目标曝光增益获取目标拐点值可包括:
在已建立的曝光增益与拐点值的映射关系中查找所述目标曝光增益对应的拐点值;
将查找到的所述拐点值确定为所述目标拐点值。
步骤103,依据已拍摄的至少一帧图像的像素特征信息确定目标像素特征值。
作为一个实施例,这里的像素特征信息可为与灰度相关的特征信息。相应地,这里的目标像素特征值可为最大灰度值。
步骤104,依据所述目标曝光增益、目标拐点值、目标像素特征值调整本拍摄装置的曝光时间。
具体地,这里调整本拍摄装置的曝光时间可为调整本拍摄装置拍摄当前帧图像的曝光时间中的第二段时间,下文会重点描述,这里暂不赘述。
至此,完成图1所示流程。
通过图1所示流程可以看出,在本申请中,拍摄装置在拍摄当前帧图像时,并非采用已固定的曝光时间比值来拍摄当前帧图像,而是依据所述目标曝光增益、目标拐点值、目标像素特征值调整本拍摄装置的曝光时间,这能够保证拍摄装置的曝光时间与当前应用场景相匹配,最终拍摄出高质量的图像。
需要说明的是,作为一个实施例,上述涉及的像素点的亮度可通过像素点的灰度值、电压值等表征,本申请并不具体限定。
以上对实施例1进行了描述。
实施例2:
参见图2,图2为本申请实施例2提供的曝光调整方法示例流程图。该流程应用于拍摄装置。这里的拍摄装置如实施例所述,不再赘述。
如图2所示,该流程可包括以下步骤:
步骤201、步骤202分别与实施例1中的步骤101、步骤102类似,不再赘述。
步骤203,获取已拍摄的至少一帧图像的像素特征信息。
在一个例子中,本实施例2以获取已拍摄的一帧图像(相比上述的当前帧图像,记为上一帧图像)的像素特征信息为例。
步骤204,依据所述像素特征信息确定用于表征目标像素特征值的状态码等级。
在一个例子中,图像的灰度值参数能够表示图像的亮暗程度,基于此,作为一个实施例,步骤203获取的像素特征信息可为灰度的像素直方图。
以步骤203获取的像素特征信息为灰度的像素直方图为例,步骤204中,所述依据像素特征信息确定用于表征目标像素特征值的状态码等级可包括图3所示的流程,具体见下文描述,这里暂不赘述。
步骤205,依据所述状态码等级确定所述目标像素特征值。
在具体实现时,步骤205中依据状态码等级确定目标像素特征值有很多实现方式,本申请举出其中一种实现方式:
一种实现方式中,需要预先建立状态码等级与像素特征值的映射关系。这里,状态码等级与像素特征值的映射关系是基于对场景进行抑制和提升的目的建立的。基于状态码等级与像素特征值的映射关系,则上述依据状态码等级确定目标像素特征值可包括:在已建立的状态码等级与像素特征值的映射关系中查找所述状态码等级对应的像素特征值,将查找到的像素特征值确定为所述目标像素特征值。
上述步骤203至步骤205是上述步骤103中依据已拍摄的至少一帧图像的像素特征信息确定目标像素特征值的一种实现方式。
步骤206与实施例1中步骤104类似,不再赘述。
至此,完成图2所示流程。
通过图2所示流程,在本申请中,拍摄装置在拍摄当前帧图像时,并非采用已固定的曝光时间比值来拍摄当前帧图像,而是依据所述目标曝光增益、目标拐点值、目标像素特征值调整本拍摄装置的曝光时间,这能够保证拍摄装置的曝光时间与当前应用场景相匹配,最终拍摄出高质量的图像。
在本实施例2中,上述步骤204中依据像素特征信息确定用于表征目标像素特征值的状态码等级的一种实现方式如图3所示:
参见图3,图3为本申请实施例2提供的步骤204实现流程图。该流程以上述的上一帧图像为例,上一帧图像的像素特征信息至少包括灰度的像素直方图为例。这里灰度的像素直方图用于表示上一帧图像中的各像素的灰度值的分布情况。
如图3所示,该流程可包括以下步骤:
步骤301,在所述灰度的像素直方图中确定像素灰度最大值,从已划分的各灰度最大值 分段中确定所述像素灰度最大值所处的目标灰度最大值分段。
在一个例子中,已划分的各灰度最大值分段是预先根据实际需求划分的,比如划分为:[0~224]、(224~255)、[255]三个分段。
步骤302,在已划分的各灰度分段中确定目标灰度分段。
在一个例子中,已划分的各灰度分段是预先根据实际需求划分的,作为一个实施例,其可与上述的目标灰度最大值分段不同。比如,将灰度范围0~255划分出8个灰度分段,每个灰度分段包括32个灰度值,第一灰度分段为[0~31],第二灰度分段为[32~63],第三灰度分段为[64~95],第四灰度分段为[96~127],以此类推,第32个灰度分段为[224~255]。需要注意的是,本实施例中,灰度分段的具体划分方式可以根据实际需要进行设定,在此仅是示例性的说明。
本步骤302中,作为一个实施例,所述目标灰度分段可包括至少两个灰度分段。
这里,作为一个实施例,本步骤302中目标灰度分段包括的各个灰度分段可为相互连续且最接近灰度最大值的灰度分段。
步骤303,从已拍摄的至少一帧图像中统计灰度值位于目标灰度分段内的像素的数量。
这里,已拍摄的至少一帧图像可为上述的上一帧图像。
步骤304,依据所述目标灰度最大值分段、位于所述目标灰度分段内的像素数量确定所述状态码等级。
在本实施例中,预先会建立灰度分段、像素数量、状态码等级之间的映射关系。下文举例描述该映射关系:
假若像素灰度最大值在[0~224]内,目标灰度分段为(160~192](192~224],则:当统计出上一帧图像中灰度值在(160~192]内的像素的数量小于第一阈值、且灰度值在(192~224]中的像素的数量小于第二阈值时,确定状态码等级为5,表明当前帧的亮度需要得到加强,加强幅度与状态码等级相关;同样,当灰度值在(160~192]中的像素的数量大于第三阈值、且灰度值在(192~224]中的像素的数量小于第四阈值时,确定状态码等级为4,表明当前帧的亮度需要得到加强,但加强程度小于状态码等级为5时的程度,以此类推,当灰度值在(160~192]中的像素的数量小于第五阈值、且灰度值在(192~224]中的像素的数量大于第六阈值时,确定状态码等级为3;当灰度值在(160~192]中的像素的数量大于第七阈值、且灰度值在(192~224]中的像素的数量大于第八阈值时,确定状态码等级为2。其中,状态码等级越小,当前帧的亮度需要得到加强的程度越小。在一个例子中,上述第一阈值至第八阈值可相等。
假若像素灰度最大值在(224~255)内,目标灰度分段为(192~224]、(224~255],则: 当统计出上一帧图像中灰度值在(192~224]中的像素的数量小于第九阈值、且灰度值在(224~255]中的像素的数量小于第十阈值时,则确定状态码等级为1,表明当前帧的亮度需要得到轻微加强,加强幅度与状态码等级相关;当灰度值在(192~224]中的像素的数量大于第十一阈值、且灰度值在(224~255]中的像素的数量小于第十二阈值时,则确定状态码等级为1,表明当前帧的亮度需要得到轻微加强,加强幅度与状态码等级相关;当灰度值在(192~224]中的像素的数量小于第十三阈值、且灰度值在(224~255]中的像素的数量大于第十四阈值时,则确定状态码等级为0,表明当前帧的亮度可以不用加强;当灰度值在(192~224]中的像素的数量大于第十五阈值、且灰度值在(224~255]中的像素的数量大于第十六阈值时,则确定状态码等级为0,表明当前帧的亮度可以不用加强。其中,上述第九阈值至第十六阈值可相等,第九阈值、第十一阈值、第十三阈值、第十五阈值可与上述的第二阈值、第四阈值、第六阈值、第八阈值相等。
假若像素灰度最大值为255,目标灰度分段为(192~224]、(224~255],当统计出灰度值为255的像素点的数量小于预设阈值(thresh)时,则:
若灰度值在(192~224]中的像素的数量小于第十七阈值、且灰度值在(224~255]中的像素的数量小于第十八阈值,确定状态码等级为-1,说明当前帧的亮度需要被抑制,抑制程度与状态码等级相关;若灰度值在(192~224]中的像素的数量大于第十九阈值、且灰度值在(224~255]中的像素的数量小于第二十阈值,则确定状态码等级为-2,说明当前帧的亮度需要被抑制的程度更大;以此类推,若灰度值在(192~224]中的像素的数量小于第二十一阈值、且灰度值在(224~255]中的像素的数量大于第二十二阈值,则确定状态码等级为-4;若灰度值在(192~224]中的像素的数量大于第二十三阈值、且灰度值在(224~255]中的像素的数量大于第二十四阈值时,则确定状态码等级为-5;状态码等级的绝对值取值越大,当前帧的亮度需要被抑制的程度更大。作为一个实施例,这里,上述的第十七阈值可与上述的第九阈值相等,也可以不等。类似地,上述的第十八阈值可与上述的第十阈值相等,也可以不等;第十九阈值可与上述的第十一阈值相等,也可以不等;第二十阈值可与上述的第十二阈值相等,也可以不等;第二十一阈值可与上述的第十三阈值相等,也可以不等;第二十二阈值可与上述的第十四阈值相等,也可以不等;第二十三阈值可与上述的第十五阈值相等,也可以不等;第二十四阈值可与上述的第十六阈值相等,也可以不等。
假若像素灰度最大值为255,目标灰度分段为(192~224]、(224~255],当统计出灰度值为255的像素点的数量大于预设阈值时,则:
若灰度值在(192~224]中的像素的数量小于第二十五阈值、且灰度值在(224~255]中的像素的数量小于第二十六阈值,确定状态码等级为-3,说明当前帧的亮度需要被抑制,抑 制程度与状态码等级相关;若灰度值在(192~224]中的像素的数量大于第二十七阈值、且灰度值在(224~255]中的像素的数量小于第二十八阈值,则确定状态码等级为-4,说明当前帧的亮度需要被抑制的程度更大;以此类推,若灰度值在(192~224]中的像素的数量小于第二十九阈值、且灰度值在(224~255]中的像素的数量大于第三十阈值,则确定状态码等级为-5;若灰度值在(192~224]中的像素的数量大于第三十一阈值、且灰度值在(224~255]中的像素的数量大于第三十二阈值时,则确定状态码等级为-6;状态码等级的绝对值取值越大,当前帧的亮度需要被抑制的程度更大。作为一个实施例,这里,上述的第二十五阈值可与上述的第九阈值相等,也可以不等。类似地,上述的第二十六阈值可与上述的第十阈值相等,也可以不等。上述的第二十七阈值可与上述的第十一阈值相等,也可以不等。上述的第二十八阈值可与上述的第十二阈值相等,也可以不等。上述的第二十九阈值可与上述的第十三阈值相等,也可以不等。上述的第三十阈值可与上述的第十四阈值相等,也可以不等。上述的第三十一阈值可与上述的第十五阈值相等,也可以不等。上述的第三十二阈值可与上述的第十六阈值相等,也可以不等。
至此,基于上述映射关系,本步骤304会很容易依据上述映射关系并目标灰度最大值分段、位于所述目标灰度分段内的像素数量确定状态码等级,具体类似上文描述,这里不再赘述。
至此,完成图3所示流程。
通过图3所示流程实现了上述步骤204中依据像素特征信息确定用于表征目标像素特征值的状态码等级。需要说明的是,图3所示流程只是上述步骤204中依据像素特征信息确定用于表征目标像素特征值的状态码等级的一种实现方式,并非用于限定。
以上对实施例2进行了描述。
实施例3:
参见图4,图4为本申请实施例3提供的曝光调整方法示例流程图。该流程应用于拍摄装置。这里的拍摄装置如实施例所述,不再赘述。
如图4所示,该流程可包括以下步骤:
步骤401至步骤403分别与实施例1中的步骤101至步骤103类似,不再赘述。
步骤404,依据目标曝光增益、目标拐点值、目标像素特征值计算曝光时间比值。
这里的曝光时间比值是指当前帧图像的曝光时间中第二段曝光时间与所述曝光时间的比值。
步骤405,依据所述曝光时间比值调整所述曝光时间中的第二段曝光时间。
一旦曝光时间比值固定,则即可依据曝光时间比值从整个曝光时间中确定第二段曝光时 间。
在一个例子中,上述步骤404至步骤405是步骤104中依据所述目标曝光增益、目标拐点值、目标像素特征值调整本拍摄装置的曝光时间的一种实现方式。
至此,完成图4所示流程。
在本实施例中,上述步骤404中,依据目标曝光增益、目标拐点值、目标像素特征值计算待曝光的曝光时间比值可包括:依据所述目标曝光增益、所述目标像素特征值、所述目标拐点值确定所述曝光时间中第二段曝光时间;依据所述曝光时间、所述第二段曝光时间计算所述曝光时间比值。
在一个例子中,上述依据目标曝光增益、目标拐点值、目标像素特征值确定所述曝光时间中的第二段曝光时间可包括图5所示流程:
步骤501,依据所述目标曝光增益计算待曝光对应的现实亮度REAL_DST。
在一个例子中,依据目标曝光增益计算待曝光对应的现实亮度REAL_DST可包括:依据已拍摄的至少一帧图像对应的曝光信息确定对应的增益后现实亮度REAL_SRC0,利用所述REAL_SRC0、所述目标曝光增益计算待曝光对应的现实亮度REAL_DST。
作为一个实施例,依据已拍摄的至少一帧图像对应的曝光信息确定对应的增益后现实亮度REAL_SRC0可包括:计算所述MAX_SRC与所述Knee_SRC的差值D1,依据所述D1、所述T1_SRC、所述T0_SRC计算所述REAL_SRC0。下述公式1示出了REAL_SRC0的计算公式:
Figure PCTCN2018103210-appb-000003
其中,MAX_SRC为上一帧图像的像素特征最大值,Knee_SRC为上一帧图像的拐点值,曝光时间T0_SRC为上一帧图像的曝光时间,T1_SRC为曝光时间T0_SRC中第二段曝光时间。
作为一个实施例,上述利用REAL_SRC0、所述目标曝光增益计算待曝光对应的现实亮度REAL_DST可包括:利用所述REAL_SRC0和已拍摄的至少一帧图像对应的曝光增益Gain_SRC计算与所述曝光信息对应的增益后现实亮度REAL_SRC1,依据所述REAL_SRC1和所述目标曝光增益计算所述REAL_DST。
在一个例子中,上述利用所述REAL_SRC0和已拍摄的至少一帧图像对应的曝光增益Gain_SRC计算与所述曝光信息对应的增益后现实亮度REAL_SRC1可通过公式2计算:
Figure PCTCN2018103210-appb-000004
其中,Gain_SRC为上一帧图像的曝光增益。
在一个例子中,上述依据REAL_SRC和所述目标曝光增益计算所述REAL_DST可包括:依据所述REAL_SRC1、所述T0_SRC、待曝光的曝光时间T0_DST计算与时间相关联的目标现实亮度REAL_DST0;依据所述REAL_DST0、所述目标曝光增益计算所述REAL_DST。
作为一个实施例,REAL_DST0可通过下述公式3计算:
Figure PCTCN2018103210-appb-000005
其中,T0_DST为当前帧图像的曝光时间。
作为一个实施例,上述依据REAL_DST0、所述目标曝光增益计算所述REAL_DST可通过下述公式4计算:
REAL_DST=REAL_DST0×Gain_DST                (公式4)
其中,Gain_DST是上述的目标曝光增益。
步骤502,利用所述REAL_DST、所述目标像素特征值、所述目标拐点值计算第二段曝光时间。
在一个例子中,本步骤502利用所述REAL_DST、所述目标像素特征值、所述目标拐点值计算所述第二段曝光时间可包括:
计算所述目标像素特征值与所述目标拐点值的差值D2;
依据所述D2、所述曝光时间、所述REAL_DST计算所述第二段曝光时间。
这里,作为一个实施例,第二段曝光时间可通过以下公式5计算:
Figure PCTCN2018103210-appb-000006
其中,T1_DST为当前帧图像的第二段曝光时间,MAX_DST为目标像素特征值,Knee_DST为目标拐点值。
为便于理解,图6示出了当前帧图像的第二段曝光时间涉及的上述各个参数。
通过图5所示流程即可实现第二段曝光时间的确定。基于图5确定出的第二段曝光时间,则上述步骤405中的曝光时间比值可通过以下公式6计算:
Figure PCTCN2018103210-appb-000007
基于上述确定出的曝光时间比值,则本实施例中,即可依据确定出的曝光时间比值调整当前帧图像的第二段曝光时间。
以上对实施例3进行了描述。
实施例4:
参见图7,图7为本申请实施例4提供的曝光调整方法示例流程图。该流程应用于拍摄装置。这里的拍摄装置如实施例所述,不再赘述。
如图7所示,该流程可包括以下步骤:
步骤701至步骤703分别与实施例1中的步骤101至步骤103类似,不再赘述。
步骤704,依据目标曝光增益、目标拐点值、目标像素特征值计算第二段曝光时间。
这里,计算第二段曝光时间的实现方式如实施例3所述。
步骤705,将计算出的第二段曝光时间确定为当前帧图像的曝光时间中的第二段曝光时间。
至此,完成图7所示的流程。
通过图7所示流程可以为当前帧图像计算整个曝光时间中的第二段曝光时间。
以上对实施例4进行了描述。
下面对本申请提供的装置进行描述:
参见图8,图8为本申请提供的装置结构图。如图8所示,该拍摄装置可包括:
计算机可读存储介质,其上存储有计算机程序;
在一个例子中,处理器,用于读取所述计算机程序,并通过执行所述计算机程序实现如上实施例1至实施例4任一所述的方法来调整所述拍摄装置的曝光时间。
在另一个例子中,处理器,用于读取所述计算机程序,并通过执行所述计算机程序获取与待曝光的曝光时间T0_DST相关的调整参数,依据获取的所述调整参数并按照指定公式调整所述曝光时间T0_DST中的第二段曝光时间T1_DST;
其中,所述调整参数至少包括:待曝光的目标曝光增益Gain_DST、目标拐点值Knee_DST、目标像素特征值MAX_DST,上一帧图像的像素特征最大值MAX_SRC、拐点值Knee_SRC、曝光时间T0_SRC、曝光时间T0_SRC中第二段曝光时间T1_SRC在曝光时间to_SRC的比值f_SRC;
所述指定公式为:
Figure PCTCN2018103210-appb-000008
或者为:
Figure PCTCN2018103210-appb-000009
所述f_DST为T1_DST在所述曝光时间T0_DST中的比值。
至此,完成图8所示装置的结构描述。
在本申请实施例中,机器可读存储介质可以是任何电子、磁性、光学或其它物理存储装置,可以包含或存储信息,如可执行指令、数据,等等。例如,机器可读存储介质可以是:RAM(Radom Access Memory,随机存取存储器)、易失存储器、非易失性存储器、闪存、存储驱动器(如硬盘驱动器)、固态硬盘、任何类型的存储盘(如光盘、dvd等),或者类似的 存储介质,或者它们的组合。
上述实施例阐明的装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机,计算机的具体形式可以是个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件收发设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任意几种设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可以由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其它可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其它可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
而且,这些计算机程序指令也可以存储在能引导计算机或其它可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或者多个流程和/或方框图一个方框或者多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其它可编程数据处理设备上,使得在计算机或者其它可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其它可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (19)

  1. 一种曝光调整方法,其特征在于,所述方法应用于拍摄装置,包括:
    获取目标曝光增益;
    利用所述目标曝光增益获取目标拐点值;
    依据已拍摄的至少一帧图像的像素特征信息确定目标像素特征值;
    依据所述目标曝光增益、目标拐点值、目标像素特征值调整本拍摄装置的曝光时间。
  2. 根据权利要求1所述的方法,其特征在于,所述利用目标曝光增益获取目标拐点值包括:
    在已建立的曝光增益与拐点值的映射关系中查找所述目标曝光增益对应的拐点值;
    将查找到的所述拐点值确定为所述目标拐点值。
  3. 根据权利要求1所述的方法,其特征在于,所述依据已拍摄的至少一帧图像的像素特征信息确定目标像素特征值包括:
    获取已拍摄的至少一帧图像的像素特征信息;
    依据所述像素特征信息确定用于表征目标像素特征值的状态码等级;
    依据所述状态码等级确定所述目标像素特征值。
  4. 根据权利要求3所述的方法,其特征在于,所述依据状态码等级确定所述目标像素特征值包括:
    在已建立的状态码等级与像素特征值的映射关系中查找所述状态码等级对应的像素特征值;
    将查找到的像素特征值确定为所述目标像素特征值。
  5. 根据权利要求3或4所述的方法,其特征在于,所述目标像素特征值为最大灰度值。
  6. 根据权利要求3所述的方法,其特征在于,所述像素特征信息至少包括:灰度的像素直方图;
    所述依据像素特征信息确定用于表征目标像素特征值的状态码等级包括:
    在所述灰度的像素直方图中确定像素灰度最大值,从已划分的各灰度最大值分段中确定所述像素灰度最大值所处的目标灰度最大值分段;
    在已划分的各灰度分段中确定目标灰度分段;
    从已拍摄的至少一帧图像中统计灰度值位于所述目标灰度分段内的像素的数量;
    依据依据所述目标灰度最大值分段、位于所述目标灰度分段内的像素数量确定所述状态码等级。
  7. 根据权利要求1所述的方法,其特征在于,所述依据目标曝光增益、目标拐点值、目标像素特征值调整本拍摄装置的曝光时间包括:
    依据目标曝光增益、目标拐点值、目标像素特征值计算待曝光的曝光时间比值;
    依据所述曝光时间比值调整所述曝光时间。
  8. 根据权利要求7所述的方法,其特征在于,
    所述曝光时间包括第一段曝光时间和第二段曝光时间;
    所述曝光时间比值是指所述曝光时间中第二段曝光时间与所述曝光时间的比值。
  9. 根据权利要求8所述的方法,其特征在于,所述依据曝光时间比值调整曝光时间包括:
    依据所述曝光时间比值调整所述曝光时间中的第二段曝光时间。
  10. 根据权利要求8或9所述的方法,其特征在于,所述依据目标曝光增益、目标拐点值、目标像素特征值计算待曝光的曝光时间比值包括:
    依据所述目标曝光增益、所述目标像素特征值、所述目标拐点值确定所述曝光时间中第二段曝光时间;
    依据所述曝光时间、所述第二段曝光时间计算所述曝光时间比值。
  11. 根据权利要求1所述的方法,其特征在于,所述依据目标曝光增益、目标拐点值、目标像素特征值调整待曝光的曝光时间包括:
    依据目标曝光增益、目标拐点值、目标像素特征值计算第二段曝光时间;
    将计算出的所述第二段曝光时间确定为所述曝光时间中的第二段曝光时间。
  12. 根据权利要求10或11所述的方法,其特征在于,所述依据目标曝光增益、目标拐点值、目标像素特征值确定所述曝光时间中的第二段曝光时间包括:
    依据所述目标曝光增益计算待曝光对应的现实亮度REAL_DST;
    利用所述REAL_DST、所述目标像素特征值、所述目标拐点值计算第二段曝光时间。
  13. 根据权利要求12所述的方法,其特征在于,所述依据目标曝光增益计算待曝光对应的现实亮度REAL_DST包括:
    依据已拍摄的至少一帧图像对应的曝光信息确定对应的增益后现实亮度REAL_SRC0;
    利用所述REAL_SRC0、所述目标曝光增益计算待曝光对应的现实亮度REAL_DST。
  14. 根据权利要求13所述的方法,其特征在于,所述曝光信息至少包括:上一帧图像的像素特征最大值MAX_SRC、拐点值Knee_SRC、曝光时间T0_SRC、曝光时间T0_SRC中的第二段曝光时间T1_SRC;
    所述依据已拍摄的至少一帧图像对应的曝光信息确定对应的增益后现实亮度 REAL_SRC0包括:
    计算所述MAX_SRC与所述Knee_SRC的差值D1;
    依据所述D1、所述T1_SRC、所述T0_SRC计算所述REAL_SRC0。
  15. 根据权利要求13所述的方法,其特征在于,所述利用REAL_SRC0、所述目标曝光增益计算待曝光对应的现实亮度REAL_DST包括:
    利用所述REAL_SRC0和已拍摄的至少一帧图像对应的曝光增益Gain_SRC计算与所述曝光信息对应的增益后现实亮度REAL_SRC1;
    依据所述REAL_SRC1和所述目标曝光增益计算所述REAL_DST。
  16. 根据权利要求15所述的方法,其特征在于,所述依据REAL_SRC和所述目标曝光增益计算所述REAL_DST包括:
    依据所述REAL_SRC1、所述T0_SRC、待曝光的曝光时间T0_DST计算与时间相关联的目标现实亮度REAL_DST0;
    依据所述REAL_DST0、所述目标曝光增益计算所述REAL_DST。
  17. 根据权利要求12所述的方法,其特征在于,所述利用所述REAL_DST、所述目标像素特征值、所述目标拐点值计算所述第二段曝光时间包括:
    计算所述目标像素特征值与所述目标拐点值的差值D2;
    依据所述D2、所述曝光时间、所述REAL_DST计算所述第二段曝光时间。
  18. 一种拍摄装置,其特征在于,所述拍摄装置包括:
    计算机可读存储介质,其上存储有计算机程序;
    处理器,用于读取所述计算机程序,并通过执行所述计算机程序实现如权利要求1至17任一所述的方法来调整所述拍摄装置的曝光时间。
  19. 一种拍摄装置,其特征在于,所述拍摄装置包括:
    计算机可读存储介质,其上存储有计算机程序;
    处理器,用于读取所述计算机程序,并通过执行所述计算机程序获取与待曝光的曝光时间T0_DST相关的调整参数,依据获取的所述调整参数并按照指定公式调整所述曝光时间T0_DST中的第二段曝光时间T1_DST;
    其中,所述调整参数至少包括:待曝光的目标曝光增益Gain_DST、目标拐点值Knee_DST、目标像素特征值MAX_DST,上一帧图像的像素特征最大值MAX_SRC、拐点值Knee_SRC、曝光时间T0_SRC、曝光时间T0_SRC中第二段曝光时间T1_SRC在曝光时间to_SRC的比值f_SRC;
    所述指定公式为:
    Figure PCTCN2018103210-appb-100001
    或者为:
    Figure PCTCN2018103210-appb-100002
    所述f_DST为T1_DST在所述曝光时间T0_DST中的比值。
PCT/CN2018/103210 2018-08-30 2018-08-30 曝光调整方法和装置 WO2020042074A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880039804.9A CN110786000B (zh) 2018-08-30 2018-08-30 曝光调整方法和装置
PCT/CN2018/103210 WO2020042074A1 (zh) 2018-08-30 2018-08-30 曝光调整方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/103210 WO2020042074A1 (zh) 2018-08-30 2018-08-30 曝光调整方法和装置

Publications (1)

Publication Number Publication Date
WO2020042074A1 true WO2020042074A1 (zh) 2020-03-05

Family

ID=69383064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103210 WO2020042074A1 (zh) 2018-08-30 2018-08-30 曝光调整方法和装置

Country Status (2)

Country Link
CN (1) CN110786000B (zh)
WO (1) WO2020042074A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111540042A (zh) * 2020-04-28 2020-08-14 上海盛晃光学技术有限公司 用于三维重构的方法、装置以及相关设备
CN113156408A (zh) * 2021-03-19 2021-07-23 奥比中光科技集团股份有限公司 一种对比度标定方法、装置及设备
CN113657427A (zh) * 2021-06-29 2021-11-16 东风汽车集团股份有限公司 一种车内多源图像融合识别方法及装置
CN115277984A (zh) * 2022-07-24 2022-11-01 湖南大学 玻璃尺寸检测中自适应的相机调整曝光时间的方法
CN115514900A (zh) * 2022-08-26 2022-12-23 中国科学院合肥物质科学研究院 一种成像光谱仪快速自动化曝光成像方法及存储介质
CN117793539A (zh) * 2024-02-26 2024-03-29 浙江双元科技股份有限公司 一种基于可变周期的图像获取方法及光学传感装置
CN118158538A (zh) * 2024-05-09 2024-06-07 杭州海康威视数字技术股份有限公司 一种宽动态自动曝光控制方法及图像采集设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113660413B (zh) * 2021-07-26 2022-05-10 中国科学院西安光学精密机械研究所 一种应用于飞行器的大口径大视场相机自动曝光方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274973A (ja) * 1990-03-26 1991-12-05 Sony Corp 自動ニー制御回路
CN101247479A (zh) * 2008-03-26 2008-08-20 北京中星微电子有限公司 一种基于图像中目标区域的自动曝光方法
CN101262567A (zh) * 2008-04-07 2008-09-10 北京中星微电子有限公司 自动曝光方法与装置
CN101873434A (zh) * 2009-04-21 2010-10-27 安国国际科技股份有限公司 图像撷取装置及相关方法
CN104202537A (zh) * 2014-09-05 2014-12-10 天彩电子(深圳)有限公司 一种红外摄像机的调光方法
CN104580925A (zh) * 2014-12-31 2015-04-29 安科智慧城市技术(中国)有限公司 一种控制图像亮度的方法、装置及摄像机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126661B (zh) * 2007-09-20 2010-06-02 北京中星微电子有限公司 一种确定环境亮度的方法及装置
KR101492564B1 (ko) * 2008-08-06 2015-03-06 삼성디스플레이 주식회사 액정 표시 장치 및 그것의 공통전압 조절 방법
CN101394482A (zh) * 2008-09-09 2009-03-25 任晓慧 互补金属氧化物半导体图像传感器的自动曝光控制方法
JP2010219624A (ja) * 2009-03-13 2010-09-30 Toshiba Corp 画像信号処理装置及び画像信号処理方法
CN104954696B (zh) * 2014-03-27 2018-04-03 南京理工大学 一种emccd增益自动调节方法
CN108121942B (zh) * 2016-11-30 2022-08-23 江西欧迈斯微电子有限公司 一种指纹识别的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274973A (ja) * 1990-03-26 1991-12-05 Sony Corp 自動ニー制御回路
CN101247479A (zh) * 2008-03-26 2008-08-20 北京中星微电子有限公司 一种基于图像中目标区域的自动曝光方法
CN101262567A (zh) * 2008-04-07 2008-09-10 北京中星微电子有限公司 自动曝光方法与装置
CN101873434A (zh) * 2009-04-21 2010-10-27 安国国际科技股份有限公司 图像撷取装置及相关方法
CN104202537A (zh) * 2014-09-05 2014-12-10 天彩电子(深圳)有限公司 一种红外摄像机的调光方法
CN104580925A (zh) * 2014-12-31 2015-04-29 安科智慧城市技术(中国)有限公司 一种控制图像亮度的方法、装置及摄像机

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111540042A (zh) * 2020-04-28 2020-08-14 上海盛晃光学技术有限公司 用于三维重构的方法、装置以及相关设备
CN111540042B (zh) * 2020-04-28 2023-08-11 上海盛晃光学技术有限公司 用于三维重构的方法、装置以及相关设备
CN113156408A (zh) * 2021-03-19 2021-07-23 奥比中光科技集团股份有限公司 一种对比度标定方法、装置及设备
CN113657427A (zh) * 2021-06-29 2021-11-16 东风汽车集团股份有限公司 一种车内多源图像融合识别方法及装置
CN113657427B (zh) * 2021-06-29 2024-01-23 东风汽车集团股份有限公司 一种车内多源图像融合识别方法及装置
CN115277984A (zh) * 2022-07-24 2022-11-01 湖南大学 玻璃尺寸检测中自适应的相机调整曝光时间的方法
CN115514900A (zh) * 2022-08-26 2022-12-23 中国科学院合肥物质科学研究院 一种成像光谱仪快速自动化曝光成像方法及存储介质
CN115514900B (zh) * 2022-08-26 2023-11-07 中国科学院合肥物质科学研究院 一种成像光谱仪快速自动化曝光成像方法及存储介质
CN117793539A (zh) * 2024-02-26 2024-03-29 浙江双元科技股份有限公司 一种基于可变周期的图像获取方法及光学传感装置
CN117793539B (zh) * 2024-02-26 2024-05-10 浙江双元科技股份有限公司 一种基于可变周期的图像获取方法及光学传感装置
CN118158538A (zh) * 2024-05-09 2024-06-07 杭州海康威视数字技术股份有限公司 一种宽动态自动曝光控制方法及图像采集设备

Also Published As

Publication number Publication date
CN110786000A (zh) 2020-02-11
CN110786000B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
WO2020042074A1 (zh) 曝光调整方法和装置
CN108335279B (zh) 图像融合和hdr成像
CN110121882B (zh) 一种图像处理方法及装置
US8989484B2 (en) Apparatus and method for generating high dynamic range image from which ghost blur is removed using multi-exposure fusion
US10026160B2 (en) Systems and techniques for automatic image haze removal across multiple video frames
US9542734B2 (en) Information processing apparatus, image processing method, and storage medium that determine tone characteristics for respective object signals
CN110796041B (zh) 主体识别方法和装置、电子设备、计算机可读存储介质
CN108234858B (zh) 图像虚化处理方法、装置、存储介质及电子设备
CN111986129A (zh) 基于多摄图像融合的hdr图像生成方法、设备及存储介质
US10298853B2 (en) Image processing apparatus, method of controlling image processing apparatus, and imaging apparatus
CN107993189B (zh) 一种基于局部分块的图像色调动态调节方法和装置
CN109413335B (zh) 一种双重曝光合成hdr图像的方法和装置
US10235745B2 (en) Image processing method, computer storage medium, apparatus and terminal
CN115082350A (zh) 频闪图像处理方法、装置、电子设备和可读存储介质
CN111953893A (zh) 一种高动态范围图像生成方法、终端设备及存储介质
US11863873B2 (en) Image capturing apparatus, method of controlling image capturing apparatus, and storage medium
US10863103B2 (en) Setting apparatus, setting method, and storage medium
TWI566206B (zh) 寬動態範圍影像方法
KR101437898B1 (ko) 단일 영상을 이용한 hdr 영상 생성 장치 및 방법
JP2012231441A (ja) 画像処理システム
US8675963B2 (en) Method and apparatus for automatic brightness adjustment of image signal processor
WO2021056538A1 (zh) 一种图像处理方法及设备
WO2020107289A1 (zh) 拍摄方法、装置及无人机
JP6739955B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム、および記録媒体
JP6554009B2 (ja) 画像処理装置、その制御方法、プログラム及び記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931779

Country of ref document: EP

Kind code of ref document: A1