WO2020041963A1 - 一种用于矫正步态的下肢外骨骼机器人及其感测方法 - Google Patents

一种用于矫正步态的下肢外骨骼机器人及其感测方法 Download PDF

Info

Publication number
WO2020041963A1
WO2020041963A1 PCT/CN2018/102637 CN2018102637W WO2020041963A1 WO 2020041963 A1 WO2020041963 A1 WO 2020041963A1 CN 2018102637 W CN2018102637 W CN 2018102637W WO 2020041963 A1 WO2020041963 A1 WO 2020041963A1
Authority
WO
WIPO (PCT)
Prior art keywords
current consumption
trajectory
motor
wearer
expected time
Prior art date
Application number
PCT/CN2018/102637
Other languages
English (en)
French (fr)
Inventor
卢添福
Original Assignee
孟思宇
张利强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孟思宇, 张利强 filed Critical 孟思宇
Priority to CN201880001996.4A priority Critical patent/CN111107820B/zh
Priority to PCT/CN2018/102637 priority patent/WO2020041963A1/zh
Publication of WO2020041963A1 publication Critical patent/WO2020041963A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about

Definitions

  • the invention belongs to the technical field of rehabilitation medical equipment, and particularly relates to a lower limb exoskeleton robot for correcting gait and a sensing method thereof.
  • the various design ideas mentioned in the prior art mainly include two aspects: first, the placement and arrangement of degrees of freedom, and the setting of active and passive joints can make the wearer walk more naturally; Second, how to get the wearer out of the restraint while using the exoskeleton to achieve more natural walking.
  • LOKOMAT rehabilitation lower extremity exoskeleton robots are used on the market to correct the gait of the wearer.
  • the new LOKOMAT rehabilitation lower extremity exoskeleton robots have 7 degrees of freedom: four of the two knee joints and two hip joints are correspondingly Motor-driven active rotational degrees of freedom, two ankle joints corresponding to 2 passive degrees of freedom.
  • the LOKOMAT rehabilitation skeletal robot has an additional active joint to provide up / down motion to make the wearer's gait track close to natural walking.
  • the up / down movement direction is specifically the Z-axis direction shown in FIG. 2.
  • the LOKOMAT rehabilitation exoskeleton robot is expensive, difficult to move, and needs to be reset for each different patient. It takes up a lot of space and cannot make the wearer's gait trajectory closer to that of a normal person.
  • the existing lower extremity exoskeleton robot also includes several different types of sensors that need to be installed on the wearer or on the exoskeleton to sense the movement state of the wearer or predict the wearer's action intention.
  • some sensors such as EMG
  • EMG EMG
  • the wearing process of each sensor of this type is tedious and time-consuming; at the same time, in addition to the way of wearing will make the wearer feel uncomfortable, when sensing the multiple wear use of the same wearer and the use of different wearers It is difficult to maintain the consistency of the data collected for the same action; other types of sensors are installed to sense through the wearer's torso, limbs, or indirectly through external mechanisms.
  • EMG electromyography
  • EMG sensors that is, an EMG sensor
  • the mechanical mechanism of the muscle Movement is converted into electrical signals by EMG sensors, which can then be used to sense the wearer's movement and possible spasms.
  • EMG sensors since the exact position where the EMG sensor is placed varies from person to person, it requires professional knowledge and experience to determine.
  • the signal stability of the EMG sensor is easily affected by noise, a special signal amplifier and expensive high-level computer are needed for signal processing to eliminate the noise collected during the work process and eliminate factors that cause signal instability. (For example, changes in the conductance of the skin and the position of the electrodes.) This also increases costs.
  • the signal from the surface EMG sensor is susceptible to the wearer's sweat and cannot reliably estimate muscle strength including muscle fatigue factors.
  • EEG Electroencephalography
  • EEG Electroencephalography
  • the wearer In addition, for the wearer, the wearer must first be trained so that the wearer knows how to concentrate, thereby generating a meaningful signal, the operation is complex and the requirements are high. This prevents the wearer from thinking about other things while controlling the actions of the exoskeleton robot.
  • the above invasive methods are more common in controlling prostheses. To achieve this, surgery is inevitable. It is not suitable for wearers, especially those who only need temporary rehabilitation training.
  • biomechanical sensors including: force / torque sensors, pressure sensors, encoders, inertial measurements Unit (Inertial Measurement Unit, referred to as "IMU"), gyroscope, inclinometer, etc.
  • IMU Inertial Measurement Unit
  • gyroscope gyroscope
  • inclinometer etc.
  • the electrical signal converted from the mechanical movement of the wearer can be used by a single sensor or a plurality of sensors to jointly sense the movement status of the wearer and possible spasms.
  • biomechanical sensors can avoid some of the problems of bioelectric sensors, in order to estimate the user's intention of action, these sensors still need to be in direct contact with the wearer by being pushed, pressed or worn by the wearer, and related signals need to be made. Process and develop relevant judgment algorithms. Because the sensor needs to be pushed or pressed to generate a signal, both the sensor and the wire are prone to wear.
  • the purpose of the present invention is to solve the above problems of the existing lower extremity exoskeleton robot and the existing sensing method.
  • the present invention provides a method for A lower extremity exoskeleton robot for correcting gait and capable of sensing the wearer's movement and possible spasticity.
  • the lower extremity gait rehabilitation exoskeleton robot is a compact mechanism that allows the wearer to wear his own shoes and provide patients with physiological
  • the rehabilitation lower extremity exoskeleton robot provided with highly repeated gait training on the upper side; in addition, the lower extremity gait rehabilitation exoskeleton robot is used to correct the gait of the wearer's lower limb and sense whether the wearer's lower limb has spasm And it senses whether the wearer has an intention to speed up or slow down the movement.
  • the present invention provides a lower limb exoskeleton robot for correcting gait
  • the lower limb exoskeleton robot includes: a hip joint mechanism, a left leg mechanism, a right leg mechanism, a first connection mechanism and a second connection
  • the hip joint mechanism is located between the left leg mechanism and the right leg mechanism, and two ends of the hip joint mechanism are correspondingly connected to the first connection mechanism and the second connection mechanism, and one end of the hip joint mechanism is connected through the first connection mechanism. It is detachably connected to the left leg mechanism, and the other end of the hip joint mechanism is detachably connected to the right leg mechanism through the second connection mechanism. among them,
  • the hip joint mechanism further includes: a front plate, a rear plate, a first rotation motor, two fixing plates, three square frames, springs, a plurality of connecting rods and a plurality of tension springs; the front plate and the rear plate are oppositely placed, and The middle part of the front plate and the rear plate is respectively installed with a fixing plate; a plurality of connecting rods are fixedly installed on both sides of each of the upper, lower, left, and right ends of the front plate and the rear plate, and each connecting rod is located on the front plate and Between the rear plates, both are perpendicular to the front plate and the rear plate, and two adjacent connecting rods at the left and right ends of the front plate and the rear plate are connected through a plurality of tension springs to form an octagonal structure; A first fixing plate is installed at the upper end and the lower end of the U-shaped structure respectively; a mouth-shaped frame is vertically installed in the middle of the octagonal structure, and a mouth-shaped frame is symmetrically and vertically placed on
  • the frames are arranged at equal intervals, and two adjacent mouth-shaped frames are connected by several springs; the guide rod is installed in the axial direction of the octagonal structure and penetrates both sides of the octagonal structure; wherein, the Octagon
  • the structure, located in the middle of the square-shaped central frame is mounted a first rotary motor, a first rotary motor in the axial direction through the front and rear plates, and fixed by the fixing plate.
  • horizontally outward tube bearing brackets are symmetrically mounted on the ends of the guide rod 12 near the left and right ends.
  • the front plate includes: a first vertical I-shaped frame and a first horizontal I-shaped frame; the first vertical I-shaped frame and the first horizontal I-shaped frame are perpendicular to each other, intersect, and present Cruciform structure.
  • the rear plate includes: a second vertical I-shaped frame and a second horizontal I-shaped frame; the second vertical I-shaped frame and the second horizontal I-shaped frame are perpendicular to each other, intersect, and present Cruciform structure.
  • the guide rod is a hollow structure, and an adjusting inner tube is also provided in the guide rod.
  • the first rotary motor is located between a middle portion of the front plate and a middle portion of the rear plate, and is installed at a middle portion in a chevron frame located at the middle portion.
  • the hip joint mechanism adjusts the movement state and movement range of the wearer's hip in three directions: up, down, left and right, through a tension spring and a spring; wherein the movement range of the up and down movement is ⁇ 4 cm, The left and right motion range is ⁇ 4cm, and the rolling motion range is ⁇ 4 °.
  • the hip joint mechanism can also achieve movement adjustment in the yaw direction, where the movement range in the yaw direction is ⁇ 4 °.
  • the hip joint mechanism has active degrees of freedom for up-and-down motion, passive degrees of freedom for left-right motion, active degrees of freedom for rolling motion, and passive degrees of freedom for swinging in a yaw direction.
  • the first connection mechanism includes: a first substrate, a plurality of first bases, a first U-shaped fixing device, a first DC current sensor, a plurality of second U-shaped fixing devices, a first joint mechanism, a first motor, and a reducer.
  • Adapter and motor reducer ;
  • a first U-shaped fixing device is installed at the bottom of the first substrate, and a first motor is installed on the first U-shaped fixing device; two first bases are installed in parallel on the first substrate; one end of the first DC current sensor is sequentially connected to the motor Reducer, reducer conversion joint, and the reducer conversion joint, motor reducer, and first DC current sensor are placed on two first bases and fixed by a second U-shaped fixing device; the reducer conversion joint and The first joint mechanism is connected; one end of the guide rod passes through the first U-shaped fixing device and is connected to the first motor.
  • the first joint mechanism specifically includes: an L-shaped connection bracket, a 90-degree motor adapter, a motor adapter cover, a 90-degree motor adapter cover, a bearing, and a connection bracket cover; the 90-degree motor adapter is placed on the L
  • the 90-degree motor adapter is fixed to the other end of the 90-degree motor adapter through a fixing screw and fixed to the other end of the 90-degree motor adapter through a fixing screw.
  • the bracket cover is connected; the motor adapter cover is covered on the 90 motor adapter by the fixing screw.
  • a protrusion is provided on the right side of the 90-degree motor adapter cover, and the bearing is sleeved on the protrusion.
  • a hole is provided on the cover of the connection bracket, and the protrusion passes through the hole and is fixed by a fixing screw. .
  • the structure of the second connection mechanism is the same as that of the first connection mechanism, and specifically includes: a second substrate, a plurality of second bases, a third U-shaped fixing device, a second DC current sensor, and a plurality of fourth U-shaped fixing devices.
  • the structure of the second joint mechanism is the same as the structure of the first joint mechanism, and specifically includes: an L-shaped connection bracket, a 90-degree motor adapter, a motor adapter cover, a 90-degree motor adapter cover, a bearing, and a connection bracket.
  • 90-degree motor adapter is placed on the L-shaped connection bracket, and one end of the 90-degree motor adapter is fixed to the vertical end of the L-shaped connection bracket; the 90-degree motor adapter cover is fixed to the 90-degree motor by fixing screws The other end of the adapter is connected to the bearing and the cover of the connection bracket; the motor adapter cover is covered on the 90 motor adapter by fixing screws.
  • a protrusion is provided on the right side of the 90-degree motor adapter cover, and the bearing is sleeved on the protrusion.
  • a hole is provided on the cover of the connection bracket, and the protrusion passes through the hole and is fixed by a fixing screw. .
  • the left leg mechanism further includes: a left thigh sub mechanism, a left knee cover mechanism, a left calf sub mechanism and a left foot sub mechanism; one end of the left thigh sub mechanism is vertically fixed to the bottom of the first joint mechanism, and the other end thereof passes through the left
  • the knee cap mechanism is connected to one end of the left calf sub-mechanism, and the other end of the left calf sub-mechanism is vertically connected to the left foot sub-mechanism; wherein the left thigh sub-mechanism and the left calf sub-mechanism are located on the same longitudinal axis.
  • the left thigh sub-mechanism is an aluminum tube that can be adjusted to any length; one end of the left thigh sub-mechanism is vertically connected to the bottom of the first joint mechanism through a hinge.
  • the left knee cover mechanism includes: a third base, a third motor, a third DC current sensor, and a first hinge; the first hinge is fixedly installed below the third base, and the third motor crosses the first A hinge is mounted on the hinge; a third DC current sensor is mounted on the third motor for driving the third motor, thereby driving the left lower leg mechanism to swing.
  • the left calf sub-mechanism is an aluminum tube that can be adjusted to any length, and one end of the left calf sub-mechanism is vertically connected to the left knee cap mechanism through a first hinge.
  • the left foot mechanism includes: a fourth base, a second hinge, a fourth motor, a fourth DC current sensor, a first corner angle code and a first U-shaped buckle; the other end of the left lower leg mechanism is vertically fixed at On the fourth base, the second hinge is fixedly installed below the fourth base, and the fourth motor crosses the second hinge and is mounted on it; the fourth DC current sensor is installed on the fourth motor and is used for driving The fourth motor drives the left foot mechanism to swing; the first corner angle is vertically connected to the second hinge, and the first U-shaped buckle is installed on the first corner angle and is parallel to the horizontal ground.
  • the first U-shaped buckle includes: a first half U-shaped strip, a second half U-shaped strip, and a plurality of rubber strips; a bottom of the first half U-shaped strip and a bottom of the second half U-shaped strip pass through a locking device; The two are consolidated together to form a U-shaped structure; the inside of the first half of the U-shaped strip and the inside of the second half of the U-shaped strip are symmetrically installed with a plurality of rubber strips. The strip is fixed on the U-shaped structure.
  • the right leg mechanism further includes: a right thigh sub mechanism, a right knee cap mechanism, a right calf sub mechanism and a right foot sub mechanism; one end of the right thigh sub mechanism is vertically fixed to the bottom of the second joint mechanism, and the other end thereof passes through the right
  • the knee cap mechanism is connected to one end of the right calf sub-mechanism, and the other end of the right calf sub-mechanism is vertically connected to the right foot sub-mechanism; wherein the right thigh sub-mechanism and the right calf sub-mechanism are located on the same longitudinal axis.
  • the right thigh sub mechanism is an aluminum tube that can be adjusted to any length; one end of the right thigh sub mechanism is vertically connected to the bottom of the second joint mechanism through a hinge.
  • the right knee cover mechanism includes: a fifth base, a fifth motor, a fifth direct current sensor, and a third hinge; the third hinge is fixedly installed below the fifth base, and the fifth motor crosses the third A hinge is mounted on the hinge; a fifth direct current sensor is mounted on the fifth motor for driving the fifth motor, thereby driving the right lower leg mechanism to swing.
  • the right calf sub-mechanism is an aluminum tube that can be adjusted to any length.
  • One end of the right calf sub-mechanism is vertically connected to the right knee cap mechanism through a third hinge.
  • the right foot mechanism includes: a sixth base, a fourth hinge, a sixth motor, a sixth direct current sensor, a second right angle code and a second U-shaped buckle; the other end of the right lower leg mechanism is vertically fixed at On the sixth base, the fourth hinge is fixedly installed below the sixth base, and the sixth motor crosses the fourth hinge and is mounted thereon; the sixth DC current sensor is mounted on the sixth motor and is used for driving The sixth motor drives the right foot mechanism to swing; the second right angle code is vertically connected to the fourth hinge, and the second U-shaped buckle is installed on the second right angle code and is parallel to the horizontal ground.
  • the second U-shaped buckle includes: a third half U-shaped strip, a fourth half U-shaped strip, and a plurality of rubber strips; a bottom of the third half U-shaped strip and a bottom of the fourth half U-shaped strip pass through a locking device; The two are consolidated together to form a U-shaped structure; the inside of the third half U-shaped strip and the inside of the fourth half U-shaped strip are symmetrically installed with a plurality of rubber strips. The strip is fixed on the U-shaped structure.
  • each motor By integrating each motor with the corresponding current DC sensor, or installing each current DC sensor next to the corresponding motor. Since each current DC sensor does not need to be in direct contact with the wearer, the wear and tear of each DC sensor is effectively avoided.
  • the present invention also provides a sensing method, which respectively monitors the first rotary motor, the first motor, the second motor, the third motor, the fourth motor, the fifth motor, and the sixth motor in real time. Wait for the current consumption of all the rotation motors to achieve dynamic sensing of the muscle spasms of the wearer and sense the movement state of the wearer; wherein the first rotation motor is a motor installed in the hip joint mechanism; the movement state Including: whether the wearer resists the movement of the lower limb exoskeleton robot or whether the lower limb exoskeleton robot prevents the wearer from increasing the speed of movement.
  • the sensing method specifically includes:
  • Step 1) Use the combined dynamic formulas (1) and (2), or use experimental methods to obtain the expected time-torque trajectory map of any motor when the wearer uses the lower extremity exoskeleton robot; where, formula (1 ) And (2) are:
  • is the vector of the combined rotation angle variable of any wearer and the lower extremity exoskeleton robot
  • ⁇ m is the combined motor torque of the wearer and the lower extremity exoskeleton robot
  • M ( ⁇ ) is the combination of the lower extremity exoskeleton robot and the wearer Quality matrix Acceleration variables for independent joints of the lower limbs of any wearer and lower exoskeleton robot
  • Is the velocity parameter of the independent joint of the lower limb of any wearer and the lower extremity exoskeleton robot
  • G ( ⁇ ) is the gravity parameter
  • Is the torque error is the vector of the combined rotation angle variable of any wearer and the lower extremity exoskeleton robot
  • ⁇ m is the combined motor torque of the wearer and the lower extremity exoskeleton robot
  • M ( ⁇ ) is the combination of the lower extremity exoskeleton robot and the wearer Quality matrix Acceleration variables for independent joints of the lower limbs of any wearer and lower exoskeleton robot
  • Is the velocity parameter of the independent joint
  • ⁇ h is the torque of the wearer's body dynamics
  • ⁇ e is the motor torque of the exoskeleton dynamics of the lower extremity exoskeleton robot
  • Step 2 Set the expected spastic upper limit threshold value of the time-torque trajectory map to obtain the expected time-torque spastic upper limit trajectory map; then set the expected time-torque trajectory map of the lower limit of spasm to obtain the expected time -Torque spasticity lower limit trajectory map;
  • Step 3) According to formula (3), convert the expected time-torque trajectory map of step 1) into the expected time-current consumption trajectory map; and convert the expected time-torque convulsion upper limit trajectory map in step 2). Converted into the expected time-current consumption spastic upper trajectory map; converted the expected time-torque spastic lower limit trajectory map in step 2) into the expected time-current consumed spastic lower trajectory map; where, formula (3) for:
  • I the combined motor torque expected by any motor
  • K m is the coefficient of any motor itself
  • I the total magnetic flux of any motor
  • I is the expected current consumption of any motor
  • Step 4) Set the expected time-torque trajectory map for the upper limit of motion intent to obtain the expected time-torque trajectory upper limit trajectory map; set the expected time-torque trajectory chart for the lower limit of motion intention (89) , To obtain the expected time-torque motion intention lower limit trajectory diagram;
  • Step 5) According to formula (3), convert the expected time-torque movement intention upper limit trajectory map of step 4) into the expected time-current consumption movement upper limit trajectory map to obtain the expected time-current consumption movement intention trajectory.
  • Upper threshold value converting the expected time-torque motion intentional lower limit trajectory map of step 4) into the expected time-current consumption motion intentional lower trajectory map to obtain the expected time-current consumption motion intentional lower limit threshold value;
  • Step 6 Operate the lower extremity exoskeleton robot to make a complete rehabilitation action, and any motor of the lower extremity exoskeleton robot will generate a corresponding current consumption amount to obtain a true time-current consumption trajectory map;
  • Real-time current consumption of the current time-current consumption trajectory chart is compared with the current consumption of the expected time-current consumption spasm upper limit trajectory chart and the expected time-current consumption spasm lower limit trajectory chart. Compare, according to the comparison result, sense whether the wearer's lower limbs have spasm;
  • Real-time current consumption of the actual time-current consumption trajectory chart is compared with the current time consumption of the expected time-current consumption trajectory upper limit trajectory chart, and expected time-current consumption movement of the current trajectory lower current trajectory chart. The amount is compared, and the wearer's intention to exercise is sensed based on the comparison result.
  • step 6 sensing whether a lower limb of the wearer has spasm specifically includes:
  • step 6 sensing the motion intention of the wearer specifically includes:
  • the current consumption of the lower limit trajectory graph needs to increase the speed or torque of the corresponding motor.
  • the present invention reduces the number of sensors used and avoids direct contact with the wearer using an intrusive method and the sensor; therefore, the present invention prevents the wearer from directly contacting the sensor and causing discomfort.
  • the present invention provides a new capability for exoskeleton devices to dynamically and in real time detect possible muscle spasms and movement conditions of the wearer.
  • the combination of hinge and aluminum tube sleeve rotation is used, which solves the technical problem of joint universal rotation compared to the traditional problem of welding all joints; the use of alloy aluminum tube material, compared with traditional angle iron, has Lightweight and non-rusting. All parts of the lower extremity exoskeleton robot of the present invention are made of non-rusty material, and are fixed by screwing together to form one body.
  • the length of the angle aluminum can be changed at any time and combined into the proportion required by the user. This is a qualitative leap over the traditional immutability.
  • FIG. 1 is a schematic structural diagram of a lower limb exoskeleton robot for correcting gait according to the present invention
  • FIG. 2 is a front view of a lower extremity exoskeleton robot for correcting gait of FIG. 1;
  • Figure 3 is a partially enlarged view A of C-C of Figure 2;
  • FIG. 4 is a schematic structural diagram of a hip joint mechanism of a lower limb exoskeleton robot for correcting gait according to the present invention
  • FIG. 5 is a front view of a hip joint mechanism of a lower limb exoskeleton robot for correcting gait of FIG. 4;
  • FIG. 6 is a time-torque trajectory diagram of any motor of a sensing method of the present invention, including a time-torque trajectory diagram of spasm and movement intention;
  • FIG. 7 is a time-current consumption trajectory diagram of any motor of FIG. 6 including time-current consumption trajectory diagram of spasm and exercise intention;
  • FIG. 8 is a schematic diagram of a leg and a waist horizontal line when the lower extremity exoskeleton robot is standing;
  • FIG. 9 is a schematic diagram of leg raising of a lower extremity exoskeleton robot when walking without a passive joint
  • FIG. 10 is a structural diagram of a system controller of a lower extremity exoskeleton robot
  • FIG. 11 is a schematic structural diagram of a lower limb exoskeleton robot for gait correction of the present invention suspended on a suspension bracket;
  • FIG. 12 is a schematic structural diagram of a first connection mechanism of a lower limb exoskeleton robot for correcting gait according to the present invention.
  • the second connection mechanism the left leg mechanism
  • the first fixing plate the first frame, the frame
  • the first base the first U-shaped fixing device
  • the first motor the first U-shaped fixing device, the second U-shaped fixing device
  • the first joint mechanism 26. Right side lateral swing axis
  • the second base plate the second base plate, the second base plate, the second base plate, the second base plate, the second base plate, the second base plate, the second base plate, the second base plate, and the second base plate.
  • the first hinge the fourth base, the fourth base
  • the fourth hinge The sixth motor. 60. The sixth motor.
  • the present invention provides a lower limb exoskeleton robot for correcting gait.
  • the lower limb exoskeleton robot includes: a hip joint mechanism 1, a first connection mechanism 2, a second connection mechanism 3, Left leg mechanism 4 and right leg mechanism 5; the hip joint mechanism 1 is located between the left leg mechanism 4 and the right leg mechanism 5, and two ends of the hip joint mechanism 1 are respectively connected to the first connection mechanism 2 and the second connection mechanism 3, and one end of the hip joint mechanism 1 is detachably connected to the left leg mechanism 4 through the first connecting mechanism 2 and the other end of the hip joint mechanism 1 is detachably connected to the right leg mechanism 5 through the second connecting mechanism 3 .
  • the lower extremity exoskeleton robot has a total of 7 active degrees of freedom in motion control, including: left and right ankles, left and right knees, left and right knees in left leg mechanism 4 and right leg mechanism 5.
  • the right hip joint ie, the first connection mechanism 2 and the second connection mechanism 3
  • the rolling motion provided by the first rotary motor 17 the exoskeleton robot also has six passive degrees of freedom: the hip joint mechanism 1 adjusts the movement of the wearer's hip in three directions: up, down, left and right, through eight tension springs 8 and springs 16.
  • the suspension strap is connected to the hip joint mechanism 1 and suspended on the suspension bracket through the suspension strap and the suspension bracket, so that the hip of the wearer can swing in the yaw direction.
  • the left leg mechanism 4 and the right leg mechanism 5 each have a passive passive degree of swing.
  • the left and right legs of the wearer each have a passive passive degree of swing.
  • the rolling motion also causes the left leg mechanism 4 and the right leg mechanism 5 to move up or down. among them,
  • the hip joint mechanism 1 further includes: a front plate, a rear plate, a first rotary motor 17, two fixing plates 13, three mouth-shaped frames 10, springs 16, and several connections. Rod 18 and several tension springs 8;
  • the front plate and the rear plate are left and right facing each other as shown in FIG. 4.
  • a fixing plate 13 is respectively installed in the middle of the front plate and the rear plate;
  • a plurality of connecting rods 18 are fixedly installed at the upper ends of the front plate and the rear plate.
  • Lower end, left end, right end of each end, and each connecting rod 18 is located between the front plate and the rear plate, and each connecting rod 18 is perpendicular to the front plate and the rear plate, and passes through a number of pulling forces
  • the spring 8 connects the two adjacent connecting rods 18 at the left and right ends of the front plate and the rear plate to form an octagonal structure;
  • a first fixing plate 9 is installed at the upper end and the lower end of the octagonal structure, respectively; as shown in FIGS. 5 and 6, the middle part of the octagonal structure is vertically installed with a mouth-shaped frame 10, and the two inner sides of the octagonal structure are separately installed.
  • the mouth-shaped frame 10 is placed vertically, and the three mouth-shaped frames 10 are arranged at equal intervals, and the tops and bottoms of two adjacent mouth-shaped frames 10 are connected by a plurality of springs 16; as shown in FIG.
  • the guide rod 12 It is installed in the transverse axis direction of the octagonal structure, that is, the X-axis direction, and penetrates the left and right sides of the octagonal structure; inside the octagonal structure, the middle part of the square frame 10 located in the middle is installed first
  • the rotary motor 17 passes through the front plate and the rear plate in an axial direction perpendicular to the transverse axis direction, that is, the Y-axis direction, and is fixed to the front plate and the rear plate by the fixing plate 13.
  • horizontally outward tube bearing brackets A19 are symmetrically mounted on the ends of the guide rod 12 near the left and right ends.
  • the front plate includes: a first vertical I-shaped frame 6 and a first horizontal I-shaped frame 7; the first vertical I-shaped frame 6 and the first horizontal I-shaped frame 6
  • the zigzag frames 7 are perpendicular to each other, cross each other, and have a cross-shaped structure.
  • the rear plate includes: a second vertical I-shaped frame 15 and a second horizontal I-shaped frame 11; the second vertical I-shaped frame 15 and the second horizontal I-shaped frame 11 are perpendicular to each other, Cross and cross structure.
  • the guiding rod 12 is a hollow structure, and an adjusting inner tube 14 is also provided in the guiding rod 12.
  • the first rotary motor 17 is located between the middle portion of the front plate and the middle portion of the rear plate, and is installed at the middle portion of the square frame 10 located at the middle portion.
  • the hip joint mechanism 1 adjusts the movement state of the wearer's hip in three directions: up and down, left and right, and rolling by means of the tension spring 8 and the spring 16; wherein the movement range of the up and down movement is ⁇ 4 cm, The left and right motion range is ⁇ 4cm, and the rolling motion range is ⁇ 4 °.
  • the hip joint mechanism 1 is hung on the suspension bracket by the suspension sling.
  • the hip joint mechanism 1 can also realize movement adjustment in the yaw direction, wherein the range of movement in the yaw direction It is ⁇ 4 °.
  • the hip joint mechanism 1 has active degrees of freedom for up-and-down motion, passive degrees of freedom for left-right motion, active degrees of freedom for rolling motion, and passive degrees of freedom for swinging in a yaw direction.
  • the hip joint of the hip when a healthy person walks, not only has the up and down movement in the Z axis direction as shown in FIG. 2, but also the left and right movement in the Y axis direction as shown in FIG. 2. It has a rolling motion in the X-axis direction as shown in FIG. 2 and a swing in the yaw direction in the Y-axis direction as shown in FIG. 2; wherein the rolling motion and the up-and-down motion can be combined.
  • the wearer's hips are allowed to move up and down.
  • the freedom of up and down movement is provided with a linear motor, which can be used for height adjustment so that the wearer's hips The part can move up and down during walking.
  • a linear motor which can be used for height adjustment so that the wearer's hips
  • the part can move up and down during walking.
  • Fig. 1, Fig. 2, Fig. 3, Fig. 4 and Fig. 5 all the degrees of freedom of the lower extremity exoskeleton robot are shown, and the best rehabilitation effect is achieved, so that the walking trajectory of the wearer is closer to that of a natural person.
  • the hip joint mechanism 1 in the present invention provides an adjustable range of hip movements, wherein the up and down movement range is ⁇ 4cm, the left and right movement range is ⁇ 4cm, the range of the yaw direction is ⁇ 4 °, and the movement of the rolling direction is ⁇ 4 °.
  • the above parameters may vary depending on the movement state of the wearer and the wearer; for example, fast walking and slow walking.
  • the hip joint mechanism uses tension springs 8 and springs 16 to adjust the motion range of the hips in three directions: left, right, up and down, and rolling. Therefore, the wearer can move in the three directions described above.
  • the design of the three rod-shaped frames 10 and the four springs 16 on the guide rod 12 enables the hip of the wearer to move left and right in the X-axis direction.
  • the spring 18 By replacing the spring 18 with different stiffness and adjusting the position of the first horizontal I-shaped frame 7 by adjusting the fixing nut of the positioning plate 13, the passive restoring force of the wearer's hip in the X-axis direction by the spring 16 can be adjusted And the range of motion for left and right movement.
  • every two tension springs 8 are diagonally connected to two adjacent connecting rods 18 on both sides of the left and right ends of the front plate and the rear plate.
  • the middle part that is, the middle part of the square-shaped frame 10 in the octagonal structure, is installed with a first rotary motor 17 so that the hip part can rotate in the direction of the Y axis, that is, a rolling motion.
  • the two passive joints connecting the hip mechanism 1, the left leg mechanism 4, and the right leg mechanism 5, that is, the first connection mechanism 2 and the first connection mechanism 3, can make the walking posture of the wearer as much as possible.
  • a walking posture close to a healthy person, as shown in FIGS. 8 and 9, is used to correct the rotation of the leg around the Y axis caused by the hip mechanism during walking.
  • the hip joint mechanism 1 has 4 degrees of freedom, as follows:
  • the up and down movement that is, the movement along the Z axis direction as shown in FIG. 2:
  • the up and down movement of the hip joint mechanism 1 is realized by the first rotary motor 17 installed in the middle of the octagonal structure as shown in FIG. 5.
  • the rotational movement of the first rotary motor 17 causes both ends of the adjustment inner tube 14 to move up and down.
  • the rolling motion joint of the exoskeleton hip is passive without the first rotation motor 17, and consists of eight
  • the spring 8 provides a passive rolling motion. If combined with the first rotary motor 17, the hip joint of this hip will become an active joint.
  • the left-right movement of the hip joint mechanism 1 is realized; wherein the stiffness value of the left-right movement can be adjusted.
  • Rolling motion that is, the movement around the Y axis direction as shown in FIG. 2:
  • the hip joint mechanism 1 has a rolling motion by driving the first rotary motor 17 installed in the middle of the octagonal structure.
  • the degree of freedom is adjusted by adjusting the stiffness and length of the tension spring 8.
  • the yaw movement that is, the movement around the Z axis direction as shown in FIG. 2:
  • the yaw movement is by using a suspension strap and a suspension bracket as shown in FIG. 11 to connect the suspension strap with the hip joint mechanism 1 and hang on the suspension
  • the hip of the wearer can swing in the yaw direction; by adjusting the length of the suspension belt and the height of the suspension bracket, the range of yaw movement can be adjusted.
  • two swinging degrees of freedom (as shown in FIG. 3 and the corresponding joint between the right leg and the hip joint) connect the left and right ends of the hip joint mechanism 1 and the left leg.
  • the mechanism 4 and the right leg mechanism 5 can make the left and right legs of the wearer in a more natural position during the walking process as shown in FIG. 8 when standing and 9 when walking with the legs raised.
  • first connection mechanism 2 and a first connection mechanism 3 as shown in FIG. 2, the left and right ends of the hip joint mechanism 1 are respectively connected to the corresponding left leg mechanism 4 and right leg mechanism 5 so that the wearer Of your legs can swing within the allowable range during normal walking.
  • the first connection mechanism 2 includes: a first substrate 20, two first bases 21, a first U-shaped fixing device 22, a first motor 23, and two second U Shape fixing device 24, a first joint mechanism 25, a right leg lateral swing shaft 26, a reduction gear conversion joint 80, and a motor speed reducer 81;
  • a first U-shaped fixing device 22 is installed on the lower side of the first substrate 20, and a right leg lateral swing shaft 26 is installed on the first U-shaped fixing device 22; two first bases 21 are installed on the upper side of the first substrate 20 in parallel ;
  • the left end of the first motor 23 is connected to the motor reducer and the reducer adapter in order, and the reducer conversion joint 80, the motor reducer 81, and the first motor 23 are placed on the two first bases 21 and pass through the second
  • the U-shaped fixing device 24 is used for fixing; the reducer conversion joint is connected to the first joint mechanism 25; wherein the left end of the guide rod 12 passes through the first U-shaped fixing device 22 and is connected to the right leg lateral swing shaft 26.
  • the first joint mechanism 25 specifically includes: an L-shaped connection bracket 82, a 90-degree motor adapter 83, a motor adapter cover 84, a 90-degree motor adapter cover 85, a bearing 86, and a connection bracket cover 87; 90
  • the 90-degree motor adapter 83 is placed on the L-shaped connection bracket 82, and one end of the 90-degree motor adapter 83 is fixed to the vertical end of the L-shaped connection bracket 82; the 90-degree motor adapter cover 85 is fixed at 90 degrees by fixing screws The other end of the motor adapter 83 is connected to the bearing 86 and the connection bracket cover 87; the motor adapter cover 84 is covered on the 90 motor adapter 83 by a fixing screw.
  • a 90-degree motor adapter cover 85 is provided with a protrusion on the right side, and the bearing 86 is sleeved on the protrusion.
  • the connection bracket cover 87 is provided with a hole, and the protrusion passes through the hole and is fixed by Fasten with screws.
  • the structure of the second connection mechanism 3 is the same as that of the first connection mechanism 2, and specifically includes: a second substrate 27, a plurality of second bases 28, and a third U-shaped fixing device. 29, a second motor 30, a number of fourth U-shaped fixing devices 31, a second joint mechanism 32, a left leg lateral swing shaft 33, a reducer conversion joint 80, and a motor reducer 81;
  • a third U-shaped fixing device 29 is installed on the lower side of the second substrate 27, and the left leg lateral swing shaft 33 is installed on the third U-shaped fixing device 29; two second bases 27 are installed on the upper side of the second substrate 27 in parallel ;
  • the left end of the second motor 30 is sequentially connected to the motor reducer 80 and the reducer adapter 81, and the reducer conversion joint 81, the motor reducer 80, and the second motor 30 are placed on the two second bases 27, and It is fixed by the fourth U-shaped fixing device 31; the reduction gear conversion joint 81 is connected to the second joint mechanism 32.
  • the right end of the guide rod 12 passes through the third U-shaped fixing device 29 and is connected to the left leg lateral swing shaft 33.
  • the structure of the second joint mechanism 32 is the same as that of the first joint mechanism 25, and specifically includes: an L-shaped connection bracket 82, a 90-degree motor adapter 83, a motor adapter cover 84, and a 90-degree motor adapter cover. 85.
  • Bearing 86 and connection bracket cover 87; 90-degree motor adapter 83 is placed on L-shaped connection bracket 82, and one end of 90-degree motor adapter 83 is fixed to the vertical end of L-shaped connection bracket 82; 90-degree motor
  • the adapter cover 85 is fixed to the other end of the 90-degree motor adapter 83 by a fixing screw, and is connected to the bearing 86 and the connection bracket cover 87; the motor adapter cover 84 is covered on the 90 motor adapter 83 by a fixing screw.
  • a 90-degree motor adapter cover 85 is provided with a protrusion on the right side, and the bearing 86 is sleeved on the protrusion.
  • the connection bracket cover 87 is provided with a hole, and the protrusion passes through the hole and is fixed by Fasten with screws.
  • the left leg mechanism 4 further includes: a left thigh sub-mechanism 34, a left knee cap mechanism 35, a left calf sub-mechanism 36 and a left foot sub-mechanism 37;
  • the upper end of the left thigh sub-mechanism 34 is vertically fixed to the bottom of the first joint mechanism 25, and the lower end thereof is connected to the upper end of the left calf sub-mechanism 36 through the left knee cap mechanism 35, and the lower end of the left calf sub-mechanism 36 and the left foot sub-mechanism 37 Vertically connected; wherein the left thigh sub-mechanism 34 and the left calf sub-mechanism 36 are located on the same longitudinal axis.
  • the left thigh sub-mechanism 34 is specifically an aluminum tube that can be adjusted to any length; the upper end of the left thigh sub-mechanism 34 is vertically connected to the bottom of the first joint mechanism 25 through a hinge.
  • the left knee cover mechanism 35 includes a third base 38, a third motor 39, a third motor signal power contact 40, and a first hinge 41;
  • the first hinge 41 is fixedly installed below the third base 38, and the third motor 39 crosses the first hinge 41 and is mounted thereon; the third motor signal power contact 40 is installed on the third motor 39, The third motor 39 is used to drive the left lower leg mechanism 36 to swing.
  • the left lower leg sub-mechanism 36 is an aluminum tube that can be adjusted to any length.
  • the upper end of the left lower leg sub-mechanism 36 is vertically connected to the left knee cover mechanism 35 through a first hinge 41.
  • the left foot mechanism 36 includes a fourth base 42, a second hinge 43, a fourth motor 44, a fourth motor signal power contact 45, a first right angle 46 and a first U-shape.
  • Buckle
  • the lower end of the left calf sub-mechanism 36 is vertically fixed on the fourth base 42, the second hinge 43 is fixedly installed below the fourth base 42, and the fourth motor 44 crosses the second hinge 43 and is mounted on it;
  • the fourth motor signal power contact 45 is mounted on the fourth motor 44 and is used to drive the fourth motor 44 to drive the left foot mechanism 36 to swing.
  • the first right angle code 46 is vertically connected to the second hinge 43.
  • the first U-shape The buckle is installed on the first corner angle code 46 and is parallel to the horizontal ground.
  • the first U-shaped buckle includes: a first half U-shaped strip 47, a second half U-shaped strip 48, and a plurality of rubber strips 49;
  • the bottom of the first half U-shaped strip 47 and the bottom of the second half U-shaped strip 48 are fixed together by a locking device to form a U-shaped structure; the inside of the first half U-shaped strip 47 and the second half
  • a plurality of rubber strips 49 are symmetrically installed on the inner side of the U-shaped strip 48, and the rubber strips 49 are fixed on the U-shaped structure by setting screws on the inner side of the two equally spaced.
  • the right leg mechanism 5 further includes: a right thigh sub mechanism 50, a right knee cover mechanism 51, a right calf sub mechanism 52 and a right foot mechanism 53;
  • the upper end of the right thigh sub-mechanism 50 is vertically fixed to the bottom of the second joint mechanism 32, and the lower end thereof is connected to the upper end of the right calf sub-mechanism 52 through the right knee cap mechanism 51, and the lower end of the right calf sub-mechanism 52 and the right foot sub-mechanism 53 Vertically connected; wherein, the right thigh sub-mechanism 50 and the right calf sub-mechanism 52 are located on the same longitudinal axis.
  • the right thigh sub-mechanism 50 is an aluminum tube that can be adjusted to any length; the upper end of the right thigh sub-mechanism 50 is vertically connected to the bottom of the second joint mechanism 32 through a hinge.
  • the right knee cover mechanism 51 includes a fifth base 54, a fifth motor 55, a fifth motor signal power contact 56 and a third hinge 57;
  • the third hinge 57 is fixedly installed below the fifth base 54, and the fifth motor 55 crosses the third hinge 57 and is mounted thereon; the fifth motor signal power contact 56 is installed on the fifth motor 55, The fifth motor 55 is used to drive the right lower leg mechanism 52 to swing.
  • the right lower leg sub-mechanism 52 is an aluminum tube that can be adjusted to an arbitrary length.
  • the upper end of the right lower leg sub-mechanism 52 is vertically connected to the right knee cover mechanism 51 through a third hinge 57.
  • the right foot mechanism 53 includes a sixth base 58, a fourth hinge 59, a sixth motor 60, a sixth motor signal power contact 61, a second right angle code 62 and a second U-shape.
  • Buckle
  • the lower end of the right lower leg mechanism 52 is vertically fixed on the sixth base 58, the fourth hinge 59 is fixedly installed below the sixth base 58, and the sixth motor 60 crosses the fourth hinge 59 and is mounted on it;
  • the sixth motor signal power contact 61 is mounted on the sixth motor 60 and is used to drive the sixth motor 60 to drive the right foot mechanism 53 to swing.
  • the second right angle code 62 is vertically connected to the fourth hinge 59.
  • the second U-shape The buckle is installed on the second right angle code 62 and is parallel to the horizontal ground.
  • the second U-shaped buckle includes: a third half U-shaped strip 63, a fourth half U-shaped strip 64, and a plurality of rubber strips 49;
  • the bottom of the third half U-shaped strip 63 and the bottom of the fourth half U-shaped strip 64 are fixed together by a locking device to form a U-shaped structure; the inner side of the third half U-shaped strip 63 and the fourth half A plurality of rubber strips 49 are symmetrically installed on the inner side of the U-shaped strip 64, and the rubber strips 49 are fixed on the U-shaped structure by setting screws on the inner side of the two equally spaced.
  • the design of the first U-shaped buckle and the second U-shaped buckle allows the wearer to use his own shoes while not requiring a strip-shaped fixing strap to be wrapped on the shoe upper, and it is not required to be commonly used on the market.
  • the design of the first U-shaped buckle and the second U-shaped buckle is adopted, and a wearer's shoes are fixed thereon by a simple mechanism.
  • the ankle joint of the wearer is fixed on the active ankle joint of the exoskeleton robot in such a way, so that the exoskeleton robot can control the movement of the lower limbs including the movement of the ankle joint of the wearer.
  • the discomfort and interference feeling caused by the fixed strap and / or the metal bottom plate in the bottom of the shoe in other designs are avoided.
  • each motor By integrating each motor with the corresponding current DC sensor, or installing each current DC sensor next to the corresponding motor controller in the control box.
  • Each current DC sensor does not need to be in direct contact with the wearer, so the wear and tear of each DC sensor is effectively avoided.
  • the present invention also provides a sensing method by monitoring the first rotary motor 17, the right leg lateral swing axis 26, the left leg lateral swing axis 33, the third motor 39,
  • the current consumption of the four motors 44, the fifth motor 55, and the sixth motor 60 is to realize dynamic sensing of muscle spasms of the wearer and sense the movement state of the wearer, wherein the movement state includes: whether the wearer resists Whether the movement of the lower extremity exoskeleton robot or the lower extremity exoskeleton robot prevents the wearer from increasing the speed of movement.
  • the sensing method specifically includes:
  • Step 1) Using the combined dynamic formulas (1) and (2), as shown in FIG. 6, obtain the expected constant time-torque trajectory corresponding to any motor when the wearer does not use the lower extremity exoskeleton robot.
  • the expected time-torque trajectory of the wearer when using a lower extremity exoskeleton robot is shown in Figure 68; where formulas (1) and (2) are as follows:
  • ⁇ m is the combined motor torque of the wearer and the lower extremity exoskeleton robot
  • M ( ⁇ ) is the mass matrix of the lower extremity exoskeleton robot and the wearer; it is related to acceleration; Acceleration variables of independent joints of the lower limbs of any wearer; Speed parameters of independent joints of the lower limbs of any wearer, including: independent joint speed parameters of the lower limbs of all wearers; wherein the independent joints include: hip, knee and ankle joints of the lower limbs of the wearer; G ( ⁇ ) is a gravity parameter, which includes: a gravitational constant g; For unmodeled aspects and possible errors (including friction and system interference);
  • ⁇ h is the torque of the wearer's body dynamics
  • ⁇ e is the motor torque of the exoskeleton dynamics of the lower extremity exoskeleton robot
  • ⁇ h [ ⁇ hh , ⁇ hk , ⁇ ha ] T
  • ⁇ e [ ⁇ eh , ⁇ ek , ⁇ ea ] T.
  • ⁇ hh is the expected torque of the wearer's hip joint
  • ⁇ hk is the expected torque of the wearer's knee joint
  • ⁇ ha is the expected torque of the wearer's ankle joint
  • ⁇ eh is the exoskeleton robot's
  • ⁇ ek is the expected motor torque of any knee joint mechanism of the exoskeleton robot
  • ⁇ ea is the expected motor torque of any ankle joint mechanism of the exoskeleton robot
  • Step 2 Set the expected spastic upper limit threshold 66 of the time-torque trajectory map to obtain the expected time-torque spastic upper limit trajectory map 67; then set the expected time-torque trajectory map of the lower limit of spasm 70, obtain Expected time-torque spasticity lower trajectory Figure 69;
  • Step 3) As shown in FIG. 7, according to formula (3), the expected time-torque trajectory map 68 of step 1) is converted into the expected time-current trajectory map 74; the expected Time-torque upper limit spasticity trajectory Figure 67 is converted into the expected time-current consumption spastic upper limit trajectory Figure 73; the expected time-torque lower limit trajectory figure 2 of step 2) is converted into the expected time-current consumption
  • the lower limit of the spasticity trajectory is shown in Figure 75; where formula (3) is:
  • I the combined motor torque expected by any motor
  • K m is the coefficient of any motor itself
  • I the total magnetic flux of any motor
  • I is the expected current consumption of any motor
  • Step 4) Set the expected time-torque trajectory motion intent upper limit threshold 88 to obtain the expected time-torque trajectory upper limit trajectory graph 90; set the expected time-torque trajectory in the lower limit threshold 89 , To obtain the expected time-torque movement intentional lower limit trajectory Figure 91;
  • Step 5 As shown in FIG. 7, according to formula (3), the expected time-torque movement intention upper limit trajectory map 90 of step 4) is converted into the expected time-current consumption movement upper intention trajectory map 94, and the expected result is obtained.
  • Time-current consumption movement intention upper limit threshold 92 convert the expected time-torque movement intention lower limit trajectory figure 91 of step 4) into the expected time-current consumption movement intention lower-limit trajectory figure 95 to obtain the expected time -The current consumption movement intentionally lower limit threshold value 93;
  • Step 6 Operate the lower extremity exoskeleton robot to make a complete rehabilitation action, and any motor of the lower extremity exoskeleton robot will generate a corresponding current consumption amount to obtain a true time-current consumption trajectory map;
  • the current consumption of the real time-current consumption trajectory graph and the expected time-current consumption spastic upper limit trajectory are shown in real time, and the expected time-current consumption spastic lower limit trajectory is shown in Figure 75.
  • the amount is compared, and based on the comparison result, it is sensed whether the lower limb of the wearer has spasm;
  • the current consumption of the real time-current consumption trajectory graph and the expected time-current consumption movement intention upper limit trajectory of the current consumption amount, the expected time-current consumption movement intention lower limit trajectory of the figure 95 The current consumption is compared, and based on the comparison result, the wearer's exercise intention is sensed.
  • step 6 sensing whether a lower limb of the wearer has spasm specifically includes:
  • step 6 sensing the motion intention of the wearer specifically includes:
  • the current consumption of the lower trajectory chart 95 is required to increase the speed or torque of the corresponding motor.
  • the actual time-current consumption trajectory of each motor obtained through monitoring by the current sensor can be compared with the expected time-current consumption trajectory, the expected upper limit trajectory graph, and the expected lower limit trajectory graph to achieve Sensing the wearer's dynamic muscle spasms and movement.
  • the upper limit trajectory map or the lower limit trajectory map of the expected current consumption trajectory is set. At any time, if a current sensor detects that the current consumption value of the corresponding motor exceeds the upper or lower trajectory map, that is, exceeds the preset upper and lower thresholds, the wearer generates muscle spasms.
  • the sensing method can also be used for sensing the motion state of the wearer. For example, as shown in FIG. 6, before the motor starts to rotate according to a preset walking trajectory or when it is not working, the current consumption of the motor remains constant. In this case, if the monitored current becomes larger or smaller, it means that the wearer is pushing the lower extremity exoskeleton robot to move in the direction required by the wearer, and the corresponding motor is set clockwise or counterclockwise according to the setting. Direction.
  • the wearer's movement state can be intelligently detected in situ in real time to increase or decrease the speed or torque of the corresponding motor to obtain a better rehabilitation effect.
  • the lower extremity exoskeleton robot uses 6 current DC sensors for sensing the muscle spasm of the wearer, and also for the wearer's movement state sensing. ; Reduce the total number of sensors required, and avoid intrusive sensing methods and direct contact between the sensor and the wearer; therefore, effectively avoid the discomfort caused to the wearer by direct contact between the sensor and the wearer; achieve more natural Gait rehabilitation trajectory.
  • each joint mechanism such as the hip joint mechanism, knee joint mechanism, and ankle joint mechanism
  • each joint mechanism of the exoskeleton robot is controlled and moved according to the required motion trajectory and speed trajectory.
  • the current consumption trajectory of the lower extremity exoskeleton robot can be measured and recorded by a current sensor, such as a Hall sensor.
  • the measured current consumption trajectory is the expected current consumption trajectory of the lower extremity exoskeleton robot without a wearer.
  • the wearer's expected current consumption can also be obtained by formula (3) combined with torque data measured experimentally in the relevant literature.
  • the threshold value is set according to the wearer's situation; by adjusting its threshold value, the upper and lower limits of the trajectory can be obtained. Therefore, the upper and lower trajectory maps corresponding to the two states can be obtained.
  • the threshold can be constant or non-constant, and can be the same or different.
  • the main controller when a motion is started to drive, the time-torque trajectory of the desired joint mechanism corresponding to the motion is input and provided to the main controller; wherein the main controller is specifically implemented on a computer and installed in Lower limb exoskeleton robot next to the control box. Through the main controller, the control signal is transmitted to each corresponding motor controller in the control box located next to the lower extremity exoskeleton robot.
  • the motor controller is also connected to a current sensor.
  • the spasm / status sensor is specifically implemented in a single-chip control board placed in a control box next to the exoskeleton robot to collect information from the sensor and make judgments.
  • the judgment result (whether there is spasm / need to change state, for example, speed up or speed down) is then forwarded to the main controller.
  • the main controller calculates the required control signals and transmits the control signals to the motor controller to control the actions of the motors corresponding to all joint mechanisms;
  • the first DC current sensor (such as a Hall sensor) can monitor the lower extremity exoskeleton
  • the first motor in the robot draws current through the motor controller.
  • the measured current information is fed back to the system controller or a spasm / motion sensor in the system controller.
  • the threshold value can be set to be large or small.
  • a large threshold value is used to calculate a large upper and lower limit value to monitor whether spasm occurs.
  • a small threshold value is used to calculate a small upper and lower limit value to detect whether the wearer is resisting a specified action or moving faster than the specified action. Therefore, the principle of the upper and lower limit values can be used not only to detect the occurrence of spasms, but also to detect whether the wearer is resisting the specified action (the motor current consumption is greater than expected), or is moving. Faster than specified action (motor current consumption is less than expected). Therefore, the threshold is set according to actual needs and is not fixed.
  • control behaviors can be adopted, such as, but not limited to, stopping the lower extremity exoskeleton robot, increasing or decreasing the speed of movement or the applied torque.
  • the innovation of the present invention is that, without using a sensor in direct contact with the wearer, the above-mentioned sensing method is used to dynamically monitor the muscle spasm and movement status of the wearer of the lower extremity exoskeleton robot; sensing whether the wearer resists Does the action of the lower extremity exoskeleton robot or the lower extremity exoskeleton robot hinder the wearer from speeding up the movement. Therefore, the movement speed of the exoskeleton robot and the torque of each motor can be adjusted in real time to optimize the rehabilitation effect.
  • the present invention proposes a new sensing method using a current DC sensor (such as a Hall current sensor) to monitor the current consumption of the corresponding motor, instead of using those sensors that are in direct contact with the wearer.
  • a current DC sensor such as a Hall current sensor
  • the hips of the lower extremity exoskeleton robots in the prior art do not have up, down, left and right, yaw, and rolling directions of movement.
  • the present invention proposes a design using a first U-shaped buckle and a second U-shaped buckle, which solves the problem of not using a fixed strap around a wearer's shoes, feet and / or ankle joints or mounting on a sole such as The problem of fixing the wearer's shoes by the hard plate of the metal plate; and innovatively making the hip joint mechanism of the lower extremity exoskeleton robot active (motor-driven) or passive (no motor or similar) It also allows the wearer to swing the hip of the wearer in the yaw direction, which can be closer to the walking trajectory of the healthy person's natural walking and walk more naturally to achieve the best rehabilitation effect.
  • the current consumption of the motor can be monitored through different measurement methods, such as a sensor that monitors physical effects related to the current, including: sensing a magnetic field or an electric field.
  • the structure and shape of the first U-shaped buckle and the second U-shaped buckle can be changed, and then the position of the buckle can be changed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Rehabilitation Tools (AREA)
  • Manipulator (AREA)

Abstract

一种用于矫正步态的下肢外骨骼机器人,其包括:髋关节机构(1)、左腿机构(4)、右腿机构(5)、第一连接机构(2)和第二连接机构(3);髋关节机构(1)位于左腿机构(4)和右腿机构(5)之间,髋关节机构(1)的两端分别对应的连接第一连接机构(2)和第二连接机构(3),且通过第一连接机构(2)将髋关节机构(1)的一端与左腿机构(4)可拆卸地连接,通过第二连接机构(3)将髋关节机构(1)的另一端与右腿机构(5)可拆卸地连接。

Description

一种用于矫正步态的下肢外骨骼机器人及其感测方法 技术领域
本发明属于康复医疗器械的技术领域,具体涉及一种用于矫正步态的下肢外骨骼机器人及其感测方法。
背景技术
近年来,下肢外骨骼机器人以其能够为人体提供额外的动力,增强人类的运动机能,在多个领域发挥着重要作用,特别是康复领域的应用。
对于康复用的下肢外骨骼机器人,现有技术提到的各种设计思想主要包括两个方面:第一,自由度的放置与安排、主动与被动关节的设置,可以使穿戴者走路更加自然;第二,如何让穿戴者在使用外骨骼的同时摆脱束缚,以实现更加自然的行走。
其中,对于上述第一方面,关于下肢外骨骼机器人所具有的主动自由度和被动自由度、主动关节和被动关节及其各自所处的位置,目前现有的下肢外骨骼机器人通常是一个关节具有一个主动自由度(Degree of Freedom,简称“DOF”)。例如,对于每个踝关节、膝关节和髋关节都会有一个对应的主动旋转自由度;但是,现有的外骨骼机器人并没有给踝关节设计主动旋转自由度,而是通过给踝关节设计被动自由度来代替主动旋转自由度。因此,现有的下肢外骨骼机器人通常具有6个自由度:两个膝关节和两个髋关节所具有的4个分别由对应的电机驱动的主动旋转自由度,两个踝关节对应的2个被动自由度。或者,甚至没有踝关节。
目前,市场上采用LOKOMAT康复下肢外骨骼机器人对穿戴者进行步态矫正,新型的LOKOMAT康复下肢外骨骼机器人具有7个自由度:两个膝关节和两个髋关节所具有的4个分别由对应的电机驱动的主动旋转自由度,两个踝关节对应的2个被动自由度。另外,LOKOMAT康复骨骼机器人还有一个额外的主动关节,用于提供上/下运动,使穿戴者的步态轨迹接近自然步行。其中,所述上/下运动方向具体为图2所示的Z轴方向。但是,LOKOMAT康复外骨骼机器人造价高、难移动、需要对每一个不同的患者进行重新设定,所占空间较大,无法使穿戴者的步态轨迹更接近正常人的步态轨迹。
另外,现有的下肢外骨骼机器人还包括若干不同类型的传感器,需被安装在穿戴者身上或者被安装在外骨骼上,用以感测穿戴者的运动状态或者预测穿戴者的行动意向。目前,有些传感器(如EMG)需要以直接接触的形式被黏贴在穿戴者的身上。但是,这种类型的每个传感器的穿戴过程繁琐耗时;同时,除了穿戴的方式会使穿戴者感到不 适之外,在感测同一穿戴者的多次穿戴使用和不同的穿戴者的使用时,都难以保持采集到同一动作的数据的一致性;其他类型的传感器则被安装成通过穿戴者的躯干、四肢直接按压或通过外部的机构间接按压的形式来感测。
举例来说,使用生物肌电信号(Electromyography,简称“EMG”)传感器,即EMG传感器;通过其与穿戴者的大腿或小腿特定位置的皮肤直接接触,以产生肌肉运动信号;然后,肌肉的机械运动被EMG传感器转换成电信号,然后可以用来感测穿戴者的运动状况和可能发生的痉挛。但是,由于放置EMG传感器的确切位置因人而异,因此,需要专业知识和经验来判定。此外,由于EMG传感器的信号的稳定性极易受到噪声的影响,因此,需要专门的信号放大器以及昂贵的高级计算机进行信号处理,来消除工作过程中收集到的噪声,并排除信号不稳定的因素(例如,皮肤的电导和电极位置的变化。),也因此使得成本增加。此外,表面EMG传感器的信号容易受到穿戴者的汗液影响,并且不能对包含肌肉疲劳因素在内的肌肉力量进行可靠的估计。
此外,脑电信号(Electroencephalography,简称“EEG”)传感器的穿戴方式,即EEG传感器,通过像帽子一样附着在头皮上的电极,来获得人脑的脑电活动信息。类似于EMG传感器,EEG传感器产生的电信号也能够用于感测穿戴者的运动状况和可能发生的痉挛。但是,其也存在着和EMG传感器相似的问题:放置EEG传感器的确切位置因人而异,需要专业知识和经验来判定。此外,EEG在使用过程中还存在着诸多缺陷:因运动信号源不在脑皮层导致的测定受限;而且对于实时应用而言,信号处理速度相对较慢。此外,对于穿戴者来说,首先要对穿戴者进行训练,使穿戴者知道如何集中注意力,从而产生有意义的信号,操作复杂且要求较高。这使得穿戴者在控制外骨骼机器人行动时无法思考其他事情。除了上述非侵入性的方法,还有侵入性的方法,即使用电子元件连接到穿戴者的神经元,获取控制信号。但是,上述侵入性方法在控制假肢方面更为常见。为了实现这一点,手术是不可避免的。对于穿戴者,尤其对于仅需要暂时性康复训练的穿戴者来说,是不适合使用的。
基于上述生物传感器及侵入式的感测方法在预测穿戴者的行动意图时存在的问题和缺陷,有些研究开始探索使用生物力学传感器,其包括:力/力矩传感器,压力传感器,编码器,惯性测量单元(Inertial Measurement Unit,简称“IMU”),陀螺仪,倾斜仪等等。通过生物力学传感器,从通过穿戴者的机械运动转换过来的电信号可以单独一个传感器或许多传感器共同用于感测穿戴者的运动状况和可能发生的痉挛情况。尽管使用生物力学传感器可以避免生物电传感器的一些问题,但是为了预估用户的行动意图,这些传感器仍然需要通过被穿戴者推动、按压或佩戴的方式与穿戴者直接接触,同时需要做相关的信号处理并开发相关的判断算法。由于传感器需要被推动或者被按压来产生信 号,因此,传感器和线材都容易磨损。
发明内容
本发明的目的在于,为了解决现有的下肢外骨骼机器人和现有的感测方法存在上述问题,为了使康复运动轨迹更接近自然人的步行轨迹,避免过度复杂的设计,本发明提供一种用于矫正步态并且能感测穿戴者的运动状况和可能发生的痉挛情况的下肢外骨骼机器人,该下肢步态康复外骨骼机器人为紧凑型机构,允许穿戴者穿自己的鞋子,为患者在生理上提供高度重复的步态训练的康复用下肢外骨骼机器人;另外,所述下肢步态康复外骨骼机器人用于矫正穿戴者下肢的步态,以及感测穿戴者的下肢是否有痉挛的情况发生以及感测穿戴者是否有要加快或减慢运动速度的意向。
为了实现上述目的,本发明提供了一种用于矫正步态的下肢外骨骼机器人,所述下肢外骨骼机器人包括:髋关节机构、左腿机构、右腿机构、第一连接机构和第二连接机构;所述髋关节机构位于左腿机构和右腿机构之间,髋关节机构的两端分别对应的连接第一连接机构和第二连接机构,且通过第一连接机构将髋关节机构的一端与左腿机构可拆卸地连接,通过第二连接机构将髋关节机构的另一端与右腿机构可拆卸地连接。其中,
所述髋关节机构进一步包括:前板、后板、第一旋转马达、两个固定板、三个口字型框架、弹簧、若干连接杆和若干拉力弹簧;前板和后板相对放置,在前板和后板的中部分别安装固定板;若干连接杆固定安装在前板和后板的上端、下端、左端、右端的每一个端部的两侧,且每一个连接杆均位于前板和后板之间,并均垂直于前板和后板,并通过若干拉力弹簧将前板和后板的左端、右端的相邻的两个连接杆连接,形成一个八边形结构;在八边形结构的上端和下端分别安装一个第一固定板;所述八边形结构内的中部竖直安装口字形框架,并在其两侧再分别对称地竖直放置一口字形框架,三个口字形框架之间等间距设置,且通过若干弹簧将相邻的两个口字形框架连接;导向杆安装在八边形结构的轴向方向上,且贯穿八边形结构的两侧;其中,所述八边形结构内,位于中部的口字形框架的中部安装第一旋转马达,第一旋转马达沿轴线方向穿过前板和后板,并通过固定板进行固定。其中,在导向杆12的靠近左、右两端的端部上对称地安装水平向外管轴承支架。
在上述技术方案中,所述前板包括:第一竖直工字形框架和第一水平工字形框架;所述第一竖直工字形框架和第一水平工字形框架相互垂直、交叉,且呈十字形结构。
在上述技术方案中,所述后板包括:第二竖直工字形框架和第二水平工字形框架;所述第二竖直工字形框架和第二水平工字形框架相互垂直、交叉,且呈十字形结构。
在上述技术方案中,所述导向杆为中空结构,且所述导向杆内还设有一调节内管。
在上述技术方案中,所述第一旋转马达位于前板的中部和后板的中部之间,且安装在位于中部的口字形框架内的中部。
在上述技术方案中,所述髋关节机构通过拉力弹簧和弹簧调节穿戴者的髋部的上下、左右、滚动三个方向上的运动状态与运动范围;其中,上下运动的运动范围为±4cm,左右运动的运动范围为±4cm,滚动运动的运动范围为±4°。另外,通过结合悬挂支架和悬挂吊带,所述髋关节机构还可以实现在偏航方向上的运动调节,其中,偏航方向的运动范围为±4°。所述髋关节机构具有上下运动的主动自由度、左右运动的被动自由度、滚动运动的主动自由度和偏航方向上摆动的被动自由度。
所述第一连接机构包括:第一基板、若干第一基座,第一U形固定装置,第一直流电流传感器,若干第二U形固定装置,第一接头机构、第一马达、减速器转换接头和马达减速器;
第一基板的底部安装第一U形固定装置,第一马达安装在第一U形固定装置上;第一基板上并行安装两个第一基座;第一直流电流传感器的一端顺次连接马达减速器、减速器转换接头,并将减速器转换接头、马达减速器、第一直流电流传感器置于两个第一基座上,并通过第二U形固定装置进行固定;减速器转换接头与第一接头机构连接;其中,导向杆的一端穿过第一U形固定装置,并与第一马达连接。其中,所述第一接头机构具体包括:L形连接支架、90度马达转接头、马达转接头罩、90度马达转接头盖板、轴承和连接支架盖板;90度马达转接头放置在L形连接支架上,且90度马达转接头的一端与L形连接支架的竖直端固定;90度马达转接头盖板通过固定螺丝固定在90度马达转接头的另一端,并与轴承、连接支架盖板连接;马达转接头罩通过固定螺丝盖在90马达转接头上。其中,90度马达转接头盖板的右侧上设有凸起,将轴承套在该凸起上,连接支架盖板上设有一孔,该凸起穿过该孔,并通过固定螺丝进行固定。
所述第二连接机构的结构与第一连接机构的结构相同,具体包括:第二基板、若干第二基座,第三U形固定装置,第二直流电流传感器,若干第四U形固定装置,第二接头机构、第二马达、减速器转换接头和马达减速器;第二基板的底部安装第三U形固定装置,第二马达安装在第三U形固定装置上;第二基板上并行安装两个第二基座;第二直流电流传感器的一端顺次连接马达减速器、减速器转换接头,并将减速器转换接头、马达减速器、第二直流电流传感器置于两个第二基座上,并通过第四U形固定装置进行固定;减速器转换接头与第二接头机构连接。其中,导向杆的一端穿过第三U形固定装置,并与第二马达连接。其中,所述第二接头机构的结构与第一接头机构的结构相同,具体包括:L形连接支架、90度马达转接头、马达转接头罩、90度马达转接头盖板、轴承和连接支架盖板;90度马达转接头放置在L形连接支架上,且90度马达 转接头的一端与L形连接支架的竖直端固定;90度马达转接头盖板通过固定螺丝固定在90度马达转接头的另一端,并与轴承、连接支架盖板连接;马达转接头罩通过固定螺丝盖在90马达转接头上。其中,90度马达转接头盖板的右侧上设有凸起,将轴承套在该凸起上,连接支架盖板上设有一孔,该凸起穿过该孔,并通过固定螺丝进行固定。
所述左腿机构进一步包括:左大腿子机构,左膝盖子机构,左小腿子机构和左脚子机构;左大腿子机构的一端垂直固定在第一接头机构的底部,其另一端则通过左膝盖子机构与左小腿子机构的一端连接,左小腿子机构的另一端与左脚子机构垂直连接;其中,左大腿子机构与左小腿子机构位于同一纵向轴线上。
所述左大腿子机构为可以调节任意长度的铝管;左大腿子机构的一端通过铰链与第一接头机构的底部垂直连接。
所述左膝盖子机构包括:第三基座、第三马达、第三直流电流传感器和第一铰链;第一铰链固定安装在第三基座的下方,所述第三马达横穿过第一铰链,并安装在其上;第三直流电流传感器安装在第三马达上,用于驱动第三马达,从而驱动左小腿子机构摆动。
所述左小腿子机构为可以调节任意长度的铝管,左小腿子机构的一端通过第一铰链与左膝盖子机构垂直连接。
所述左脚子机构包括:第四基座、第二铰链、第四马达、第四直流电流传感器、第一直角角码和第一U形卡扣;左小腿子机构的另一端垂直固定在第四基座上,第二铰链固定安装在第四基座的下方,第四马达横穿过第二铰链,并安装在其上;第四直流电流传感器安装在第四马达上,用于驱动第四马达,从而驱动左脚子机构摆动;第一直角角码与第二铰链垂直连接,第一U形卡扣安装在第一直角角码上,且与水平地面平行。
所述第一U形卡扣包括:第一半U形条、第二半U形条和若干橡胶条;所述第一半U形条的底部与第二半U形条的底部通过锁定装置将二者固结在一起,形成U形结构;第一半U形条的内侧与第二半U形条的内侧均对称安装若干橡胶条,通过在二者的内侧等间距设置螺丝,将橡胶条固定在U形结构上。
所述右腿机构进一步包括:右大腿子机构,右膝盖子机构,右小腿子机构和右脚子机构;右大腿子机构的一端垂直固定在第二接头机构的底部,其另一端则通过右膝盖子机构与右小腿子机构的一端连接,右小腿子机构的另一端与右脚子机构垂直连接;其中,右大腿子机构与右小腿子机构位于同一纵向轴线上。
所述右大腿子机构为可以调节任意长度的铝管;右大腿子机构的一端通过铰链与第二接头机构的底部垂直连接。
所述右膝盖子机构包括:第五基座、第五马达、第五直流电流传感器和第三铰链; 第三铰链固定安装在第五基座的下方,所述第五马达横穿过第三铰链,并安装在其上;第五直流电流传感器安装在第五马达上,用于驱动第五马达,从而驱动右小腿子机构摆动。
所述右小腿子机构为可以调节任意长度的铝管,右小腿子机构的一端通过第三铰链与右膝盖子机构垂直连接。
所述右脚子机构包括:第六基座、第四铰链、第六马达、第六直流电流传感器、第二直角角码和第二U形卡扣;右小腿子机构的另一端垂直固定在第六基座上,第四铰链固定安装在第六基座的下方,第六马达横穿过第四铰链,并安装在其上;第六直流电流传感器安装在第六马达上,用于驱动第六马达,从而驱动右脚子机构摆动;第二直角角码与第四铰链垂直连接,第二U形卡扣安装在第二直角角码上,且与水平地面平行。
所述第二U形卡扣包括:第三半U形条、第四半U形条和若干橡胶条;所述第三半U形条的底部与第四半U形条的底部通过锁定装置将二者固结在一起,形成U形结构;第三半U形条的内侧与第四半U形条的内侧均对称安装若干橡胶条,通过在二者的内侧等间距设置螺丝,将橡胶条固定在U形结构上。
通过将每一个马达与对应的电流直流传感器集成在一起,或者将每一个电流直流传感器安装在对应的马达的旁边。由于各个电流直流传感器不需要直接与穿戴者接触,因此,有效避免了各个直流传感器的磨损和被线材所困扰。
基于上述下肢外骨骼机器人,本发明还提供了一种感测方法,通过分别实时监测第一旋转马达、第一马达、第二马达、第三马达、第四马达、第五马达、第六马达等所有的旋转马达的电流消耗来实现对穿戴者的肌肉痉挛的动态感测,以及感测穿戴者的运动状态;其中,第一旋转马达是安装在髋关节机构中的马达;所述运动状态包括:穿戴者是否抵制下肢外骨骼机器人的运动或者下肢外骨骼机器人是否阻止穿戴者提高运动速度。所述感测方法具体包括:
步骤1)采用组合动力学公式(1)和(2),或者采用实验的方法获取任一马达在穿戴者使用下肢外骨骼机器人时对应的预期的时间-扭矩的轨迹图;其中,公式(1)和(2)为:
Figure PCTCN2018102637-appb-000001
其中,θ是任一穿戴者和下肢外骨骼机器人的组合旋转角度变量向量集合,τ m为穿戴者和下肢外骨骼机器人的组合马达扭矩,M(θ)是下肢外骨骼机器人与穿戴者合并的质量矩阵;
Figure PCTCN2018102637-appb-000002
为任一穿戴者和下肢外骨骼机器人的组合下肢的独立关节的加速度变量;
Figure PCTCN2018102637-appb-000003
为任一穿戴者和下肢外骨骼机器人的组合下肢的独立关节的速度参数,G(θ)为重力参数,
Figure PCTCN2018102637-appb-000004
为扭矩误差;
τ m=τ he  (2)
其中,τ h为穿戴者的人体动力学的扭矩;τ e为下肢外骨骼机器人的外骨骼动力学的马达扭矩;
步骤2)设置预期的时间-扭矩的轨迹图的痉挛上限门槛值,获得预期的时间-扭矩的痉挛上限轨迹图;再设置预期的时间-扭矩的轨迹图的痉挛下限门槛值,获得预期的时间-扭矩的痉挛下限轨迹图;
步骤3)根据公式(3),将步骤1)的预期的时间-扭矩的轨迹图转换成预期的时间-电流消耗的轨迹图;将步骤2)中的预期的时间-扭矩的痉挛上限轨迹图转换成预期的时间-电流消耗的痉挛上限轨迹图;将步骤2)中的预期的时间-扭矩的痉挛下限轨迹图转换成预期的时间-电流消耗的痉挛下限轨迹图;其中,公式(3)为:
Figure PCTCN2018102637-appb-000005
其中,
Figure PCTCN2018102637-appb-000006
是任一马达预期的组合马达扭矩;K m是任一马达自身的系数;
Figure PCTCN2018102637-appb-000007
是任一马达的总磁通量;I为任一马达预期的电流消耗量;
步骤4)设置预期的时间-扭矩的轨迹图的运动意向上限门槛值,获得预期的时间-扭矩的运动意向上限轨迹图;设置预期的时间-扭矩的轨迹图的运动意向下限门槛值(89),获得预期的时间-扭矩的运动意向下限轨迹图;
步骤5)根据公式(3),将步骤4)的预期的时间-扭矩的运动意向上限轨迹图转换成预期的时间-电流消耗的运动意向上限轨迹图,获得预期的时间-电流消耗的运动意向上限门槛值;将步骤4)的预期的时间-扭矩的运动意向下限轨迹图转换成预期的时间-电流消耗的运动意向下限轨迹图,获得预期的时间-电流消耗的运动意向下限门槛值;
步骤6)操作下肢外骨骼机器人,做出一个完整的康复动作,下肢外骨骼机器人的任一马达会产生对应的电流消耗量,获得真实的时间-电流消耗的轨迹图;
实时的将真实的时间-电流消耗的轨迹图的电流消耗量分别与预期的时间-电流消耗的痉挛上限轨迹图的电流消耗量、预期的时间-电流消耗的痉挛下限轨迹图的电流消耗量进行比较,根据比较结果,感测穿戴者的下肢是否有痉挛发生;
实时的将真实的时间-电流消耗的轨迹图的电流消耗量分别与预期的时间-电流消耗的运动意向上限轨迹图的电流消耗量、预期的时间-电流消耗的运动意向下限轨迹图的电流消耗量进行比较,根据比较结果,感测穿戴者的运动意向。
作为上述技术方案的改进之一,所述步骤6)中,感测穿戴者的下肢是否有痉挛发生,具体包括:
如果真实的时间-电流消耗的轨迹图的电流消耗量在预期的时间-电流消耗的痉挛 上限轨迹图的电流消耗量和预期的时间-电流消耗的痉挛下限轨迹图的电流消耗量之间,则穿戴者的下肢没有出现肌肉痉挛;
如果真实的时间-电流消耗的轨迹图的电流消耗量超出了预期的时间-电流消耗的痉挛上限轨迹图的电流消耗量或预期的时间-电流消耗的痉挛下限轨迹图的电流消耗量,则穿戴者的下肢出现了肌肉痉挛,下肢外骨骼机器人停止工作。
作为上述技术方案的改进之一,所述步骤6)中,感测穿戴者的运动意向,具体包括:
如果真实的时间-电流消耗的轨迹图的电流消耗量在预期的时间-电流消耗的运动意向上限轨迹图的电流消耗量和预期的时间-电流消耗的运动意向下限轨迹图的电流消耗量之间,则穿戴者没有加快或减慢运动速度的意向;
如果真实的时间-电流消耗的轨迹图的电流消耗量超出了预期的时间-电流消耗的运动意向上限轨迹图的电流消耗量或预期的时间-电流消耗的运动意向下限轨迹图的电流消耗量;则出现了穿戴者阻止加快或减慢运动速度的意向,需要降低或提高对应的马达的速度或扭矩;其中,
当真实的时间-电流消耗的轨迹图的电流消耗量超出了预期的时间-电流消耗的运动意向上限轨迹图的电流消耗量,则需要降低对应的马达的速度或扭矩;
当真实的时间-电流消耗的轨迹图的电流消耗量超出了预期的时间-电流消耗的运动意向下限轨迹图的电流消耗量,则需要提高对应的马达的速度或扭矩。
本发明的优点在于:
本发明减少了使用的传感器的数量,并避免了使用侵入式方法和传感器直接接触穿戴者;因此,本发明防止穿戴者直接与传感器接触而引起不适。本发明为外骨骼装置提供了一种新的能力,以动态地和实时地检测可能的肌肉痉挛以及穿戴者的运动状况。另外,使用了铰链和铝管套连旋转的组合,较之传统的所有关节焊死的问题,解决了关节万向旋转的技术难题;使用了合金铝管材料,较之传统的角铁,具有轻便,不生锈的特点。本发明的下肢外骨骼机器人的所有部件都是不生锈的材料,并通过螺丝拼接固定,一体形成。使用完毕之后,可整体或局部拆卸,并可清洗。较之传统方法不需要任何焊接、打磨工序、并且不限次使用;根据人体比例大小,随时更换角铝的长度,并组合成自己需要的比例,较传统的比例不可变有了质的飞跃。
附图说明
图1是本发明的一种用于矫正步态的下肢外骨骼机器人的结构示意图;
图2是图1的一种用于矫正步态的下肢外骨骼机器人的主视图;
图3是图2的C-C的局部放大图A;
图4是本发明的一种用于矫正步态的下肢外骨骼机器人的髋关节机构的结构示意图;
图5是图4的一种用于矫正步态的下肢外骨骼机器人的髋关节机构的主视图;
图6是本发明的一种感测方法的任一马达的时间-扭矩的轨迹图包含了痉挛与运动意向的时间-扭矩轨迹图;
图7是图6的任一马达的时间-电流消耗的轨迹图包含了痉挛与运动意向的时间-电流消耗轨迹图;
图8是下肢外骨骼机器人在站立的时候腿部和腰部水平线的示意图;
图9是下肢外骨骼机器人的腿在没有被动关节的情况下走路时抬腿的示意图;
图10是下肢外骨骼机器人的系统控制器结构图;
图11是本发明的一种用于矫正步态的下肢外骨骼机器人悬挂在悬挂支架上的结构示意图;
图12是本发明的一种用于矫正步态的下肢外骨骼机器人的第一连接机构的结构示意图。
附图标记:
1、髋关节机构                              2、第一连接机构
3、第二连接机构                            4、左腿机构
5、右腿机构                                6、第一竖直工字形框架
7、第一水平工字形框架                      8、拉力弹簧
9、第一固定板                              10、口字形框架
11、第二水平工字形框架                     12、导向杆
13、固定板                                 14、调节内管
15、第二竖直工字形框架                     16、弹簧
17、第一旋转马达                           18、连接杆
19、水平向外管轴承支架A                    20、第一基板
21、第一基座                               22、第一U形固定装置
23、第一马达                               24、第二U形固定装置
25、第一接头机构                           26、右腿侧向摆动轴
27、第二基板                               28、第二基座
29、第三U形固定装置                        30、第二马达
31、第四U形固定装置                        32、第二接头机构
33、左腿侧向摆动轴                         34、左大腿子机构
35、左膝盖子机构                           36、左小腿子机构
37、左脚子机构                             38、第三基座
39、第三马达                               40、第三马达信号电源接点
41、第一铰链                               42、第四基座
43、第二铰链                               44、第四马达
45、第四马达信号电源接点                   46、第一直角角码
47、第一半U形条                            48、第二半U形条
49、橡胶条                                 50、右大腿子机构
51、右膝盖子机构                           52、右小腿子机构
53、右脚子机构                             54、第五基座
55、第五马达                               56、第五马达信号电源接点
57、第三铰链                               58、第六基座
59、第四铰链                               60、第六马达
61、第六马达信号电源接点                   62、第二直角角码
63、第三半U形条                            64、第四半U形条
65、预期的恒定的时间-扭矩的痉挛上限门槛值
66、预期的时间-扭矩的轨迹图的痉挛上限门槛值
67、预期的时间-扭矩的痉挛上限轨迹图
68、预期的时间-扭矩的轨迹图;
69、预期的时间-扭矩的痉挛下限轨迹图
70、预期的时间-扭矩的轨迹图的痉挛下限门槛值
71、预期的恒定的时间-电流消耗的痉挛上限门槛值
72、预期的时间-电流消耗的轨迹图的痉挛上限门槛值
73、预期的时间-电流消耗的痉挛上限轨迹图
74、预期的时间-电流消耗的轨迹图
75、预期的时间-电流消耗的痉挛下限轨迹图
76、预期的时间-电流消耗的轨迹图的痉挛下限门槛值
77、穿戴者的髋部
78、穿戴者的右腿
79、穿戴者的左腿
80、减速器转换接头                   81、马达减速器
82、L形连接支架                      83、90度马达转接头
84、马达转接头罩                     85、90度马达转接头盖板
86、轴承                             87、连接支架盖板
88、预期的时间-扭矩的轨迹图的运动意向上限门槛值
89、预期的时间-扭矩的轨迹图的运动意向下限门槛值
90、预期的时间-扭矩的运动意向上限轨迹图
91、预期的时间-扭矩的运动意向下限轨迹图
92、预期的时间-电流消耗的运动意向上限门槛值
93、预期的时间-电流消耗的运动意向下限门槛值
94、预期的时间-电流消耗的运动意向上限轨迹图
95、预期的时间-电流消耗的运动意向下限轨迹图
具体实施方式
如图1和2所示,本发明提供了一种用于矫正步态的下肢外骨骼机器人,所述下肢外骨骼机器人包括:髋关节机构1、第一连接机构2、第二连接机构3、左腿机构4和右腿机构5;所述髋关节机构1位于左腿机构4和右腿机构5之间,髋关节机构1的两端分别对应的连接第一连接机构2和第二连接机构3,且通过第一连接机构2将髋关节机构1的一端与左腿机构4可拆卸地连接,通过第二连接机构3将髋关节机构1的另一端与右腿机构5可拆卸地连接起来。
如图4所示,所述下肢外骨骼机器人,在运动控制上一共具有7个主动自由度,包括:左腿机构4和右腿机构5中的左、右脚踝,左、右膝盖,左、右髋关节(即第一连接机构2和第二连接机构3),以及第一旋转马达17提供的滚动运动。另外,所述外骨骼机器人还具有6个被动自由度:髋关节机构1通过8个拉力弹簧8和弹簧16调节穿戴者的髋部在上下、左右、滚动三个方向上的运动。通过悬挂吊带和悬挂支架,将悬挂吊带与髋关节机构1连接并挂在悬挂支架上,使穿戴者的髋部可以在偏航方向摆动。另外,图2所示的A区,左腿机构4和右腿机构5各具有一个摆动被动自由度,具体地,通过如图3所示的第一连接机构2和第二连接机构3,使穿戴者的左、右腿各自具有一个摆动被动自由度。其中,第一旋转马达17提供的滚动运动,除了会使得穿戴者的髋部可以有滚动运动,通过第一连接机构2和第二连接机构3将髋关节机构1的两端分别与左腿机构4和右腿机构5也同时耦合了。因此,滚动运动也同时使得左腿机构4和右腿机构5产生上抬或下放的运动。其中,
如图4、5和6所示,所述髋关节机构1进一步包括:前板、后板、第一旋转马达17、两个固定板13、三个口字型框架10、弹簧16、若干连接杆18和若干拉力弹簧8;
如图5所示,前板和后板左、右相对放置如图4所示,在前板和后板的中部分别安装固定板13;若干连接杆18固定安装在前板和后板的上端、下端、左端、右端的每一个端部的两侧,且每一个连接杆18均位于前板和后板之间,且每一个连接杆18均垂直于前板和后板,并通过若干拉力弹簧8将前板和后板的左端和右端的相邻的两个连接杆 18连接,形成一个八边形结构;
在八边形结构的上端和下端分别安装一个第一固定板9;如图5和6所示,所述八边形结构内的中部竖直安装口字形框架10,并在其两内侧再分别竖直放置口字形框架10,三个口字形框架10之间等间距设置,且通过若干弹簧16将相邻的两个口字形框架10的顶部和底部连接;如图5所示,导向杆12安装在八边形结构的横向轴线方向上,即X轴方向,且贯穿八边形结构的左、右两侧;所述八边形结构内,位于中部的口字形框架10的中部安装第一旋转马达17,第一旋转马达17沿垂直于横向轴线方向的轴线方向,即Y轴方向,穿过前板和后板,并通过固定板13固定在前板和后板上。其中,在导向杆12的靠近左右两端的端部上对称地安装水平向外管轴承支架A19。
在上述技术方案中,如图4所示,所述前板包括:第一竖直工字形框架6和第一水平工字形框架7;所述第一竖直工字形框架6和第一水平工字形框架7相互垂直、交叉,且呈十字形结构。
在上述技术方案中,所述后板包括:第二竖直工字形框架15和第二水平工字形框架11;所述第二竖直工字形框架15和第二水平工字形框架11相互垂直、交叉,且呈十字形结构。
在上述技术方案中,所述导向杆12为中空结构,且所述导向杆12内还设有一调节内管14。
在上述技术方案中,所述第一旋转马达17位于前板的中部和后板的中部之间,且安装在位于中部的口字形框架10的中部。
在上述技术方案中,所述髋关节机构1通过拉力弹簧8和弹簧16调节穿戴者的髋部在上下、左右、滚动三个方向上的运动状态;其中,上下运动的运动范围为±4cm,左右运动的运动范围为±4cm,滚动运动的运动范围为±4°。另外,通过结合悬挂支架和悬挂吊带,将髋关节机构1通过悬挂吊带挂在悬挂支架上,所述髋关节机构1还可以实现在偏航方向上的运动调节,其中,偏航方向的运动范围为±4°。所述髋关节机构1具有上下运动的主动自由度、左右运动的被动自由度、滚动运动的主动自由度和偏航方向上摆动的被动自由度。
在本实施例中,当一个健康的人走路时,髋部的髋关节不仅仅具有如图2所示的沿Z轴方向的上下运动、如图2所示的Y轴方向的左右运动,还具有如图2所示的X轴方向的滚动运动、如图2所示的Y轴方向的偏航方向的摆动;其中,滚动运动与上下运动可以相结合。为了给穿戴者提供更贴近自然行走的步态轨迹,其中,允许穿戴者的髋部上下运动,具体地,其上下运动的自由度由于带有线性马达,可用于高度调节,使穿戴者的髋部在行走过程中可以上下运动。如图1,图2,图3,图4和图5所示,展 示了所述下肢外骨骼机器人的所有自由度,达成了最佳的康复效果,使穿戴者的步行轨迹更接近自然人行走,如图8和9所示。
本发明中的髋关节机构1提供了可调节范围的髋部运动,其中,上下运动范围为±4cm,左右运动范围为±4cm,偏航方向的范围为±4°,滚动方向运动为±4°。上述参数会因为穿戴者和穿戴者的运动状态的不同而出现差异;例如,快走和慢走。在康复训练中,为了兼容不同的穿戴者和不同的运动状态,所述髋关节机构采用拉力弹簧8和弹簧16来调节髋部的左右、上下、滚动三个方向的运动范围。因此,穿戴者可以在上述的三个方向运动。
如图4和5所示,导向杆12上,三个口字形框架10与4根弹簧16连接的设计,使穿戴者的髋部在X轴方向上进行左右运动。通过更换不同劲度的弹簧18以及通过调节定位板13的固定螺母来调节第一水平工字形框架7的位置,就可以调节穿戴者的髋部在X轴方向上由弹簧16产生的被动回复力以及左右运动的运动范围。
如图5所示,每2个拉力弹簧8斜连接在前板和后板的左、右两个端部的两侧的相邻的两个连接杆18上,前板与后板之间的中部,即八边形结构内的位于中部的口字形框架10的中部,安装第一旋转马达17,使得髋部可以在围绕Y轴方向旋转,即滚动运动。通过更换不同劲度和长度的拉力弹簧8,调整滚动运动的动态范围。当围绕着Y轴产生滚动运动时,左腿机构4和右腿机构5会沿Z轴上下运动。
如图2所示,连接髋部机构1以及左腿机构4、右腿机构5的两个被动关节,即第一连接机构2和第一连接机构3,可以使穿戴者的走路姿势尽可能地接近健康人的走路姿势,如图8和9所示,用于纠正在行走过程中腿部被髋部机构导致的围绕Y轴的旋转。
总而言之,髋关节机构1具有4个自由度,具体如下:
上下运动,即如图2所示的沿Z轴方向的运动:通过如图5所示,通过安装在八边形结构内的中部的第一旋转马达17实现髋关节机构1的上下运动。如图5所示,由于在导向杆12内安装了调节内管14,第一旋转马达17的旋转运动导致了调节内管14的两端上下运动。通过更换不同长度的调节内管14,可以调节上下运动的范围。
左右运动,即如图2所示的沿X轴方向的运动:如图5所示,这个外骨骼髋部的滚动的运动关节在没有第一旋转马达17的情况下是被动的,由八个弹簧8提供被动的滚动运动。如果结合第一旋转马达17,那么这个髋部的髋关节会变成一个主动关节。通过更换不同劲度的弹簧16,实现髋关节机构1的左右运动;其中,左右运动的劲度值可以调整。
滚动运动,即如图2所示的围绕Y轴方向的运动:如图5所示,通过安装在八边 形结构内的中部的第一旋转马达17的驱动,使髋关节机构1具有一个滚动自由度,通过调节拉力弹簧8的劲度和长度,来调节运动运动范围。
偏航运动,即如图2所示的围绕Z轴方向的运动:该偏航运动是通过采用如图11所示的悬挂吊带和悬挂支架,将悬挂吊带与髋关节机构1连接并挂在悬挂支架上,使穿戴者的髋部可以在偏航方向摆动;通过调节悬挂带的长度和悬挂支架的高度,可以调节偏航运动的运动范围。
此外,如图2所示的A区设计,两个摆动被动自由度(如图3所示以及相对应的右腿与髋关节连接处)连接髋关节机构1左、右的两端和左腿机构4、右腿机构5,可以使穿戴者的左腿和右腿在如图8站立时和9抬腿行走时所示的行走过程中处于更加自然的位置。
通过如图2所示,提供第一连接机构2和第一连接机构3,将髋关节机构1的左、右两端分别与对应的左腿机构4和右腿机构5进行连接,使穿戴者的腿部在正常行走中可以在允许范围内摆动。
如图1、2和12所示,所述第一连接机构2包括:第一基板20、两个第一基座21,第一U形固定装置22,第一马达23,两个第二U形固定装置24,第一接头机构25、右腿侧向摆动轴26、减速器转换接头80和马达减速器81;
第一基板20的下侧安装第一U形固定装置22,右腿侧向摆动轴26安装在第一U形固定装置22上;第一基板20的上侧并行安装两个第一基座21;第一马达23的左端依次连接马达减速器、减速器转接头,并将减速器转换接头80、马达减速器81、第一马达23置于两个第一基座21上,并通过第二U形固定装置24进行固定;减速器转换接头与第一接头机构25连接;其中,导向杆12的左端穿过第一U形固定装置22,并与右腿侧向摆动轴26连接。其中,所述第一接头机构25具体包括:L形连接支架82、90度马达转接头83、马达转接头罩84、90度马达转接头盖板85、轴承86和连接支架盖板87;90度马达转接头83放置在L形连接支架82上,且90度马达转接头83的一端与L形连接支架82的竖直端固定;90度马达转接头盖板85通过固定螺丝固定在90度马达转接头83的另一端,并与轴承86、连接支架盖板87连接;马达转接头罩84通过固定螺丝盖在90马达转接头83上。其中,90度马达转接头盖板85的右侧上设有凸起,将轴承86套在该凸起上,连接支架盖板87上设有一孔,该凸起穿过该孔,并通过固定螺丝进行固定。
如图1、2和12所示,所述第二连接机构3的结构与第一连接机构2的结构相同,具体包括:第二基板27、若干第二基座28,第三U形固定装置29,第二马达30,若干第四U形固定装置31,第二接头机构32、左腿侧向摆动轴33、减速器转换接头80 和马达减速器81;
第二基板27的下侧安装第三U形固定装置29,左腿侧向摆动轴33安装在第三U形固定装置29上;第二基板27的上侧并行安装两个第二基座27;第二马达30的左端顺次连接马达减速器80、减速器转接头81,并将减速器转换接头81、马达减速器80、第二马达30置于两个第二基座27上,并通过第四U形固定装置31进行固定;减速器转换接头81与第二接头机构32连接。其中,导向杆12的右端穿过第三U形固定装置29,并与左腿侧向摆动轴33连接。其中,所述第二接头机构32的结构与第一接头机构25的结构相同,具体包括:L形连接支架82、90度马达转接头83、马达转接头罩84、90度马达转接头盖板85、轴承86和连接支架盖板87;90度马达转接头83放置在L形连接支架82上,且90度马达转接头83的一端与L形连接支架82的竖直端固定;90度马达转接头盖板85通过固定螺丝固定在90度马达转接头83的另一端,并与轴承86、连接支架盖板87连接;马达转接头罩84通过固定螺丝盖在90马达转接头83上。其中,90度马达转接头盖板85的右侧上设有凸起,将轴承86套在该凸起上,连接支架盖板87上设有一孔,该凸起穿过该孔,并通过固定螺丝进行固定。
如图1和2所示,所述左腿机构4进一步包括:左大腿子机构34,左膝盖子机构35,左小腿子机构36和左脚子机构37;
左大腿子机构34的上端垂直固定在第一接头机构25的底部,其下端则通过左膝盖子机构35与左小腿子机构36的上端连接,左小腿子机构36的下端与左脚子机构37垂直连接;其中,左大腿子机构34与左小腿子机构36位于同一纵向轴线上。
如图1所示,所述左大腿子机构34具体为可以调节任意长度的铝管;左大腿子机构34的上端通过铰链与第一接头机构25的底部垂直连接。
如图1所示,所述左膝盖子机构35包括:第三基座38、第三马达39、第三马达信号电源接点40和第一铰链41;
第一铰链41固定安装在第三基座38的下方,所述第三马达39横穿过第一铰链41,并安装在其上;第三马达信号电源接点40安装在第三马达39上,用于驱动第三马达39,从而驱动左小腿子机构36摆动。
如图1所示,所述左小腿子机构36为可以调节任意长度的铝管,左小腿子机构36的上端通过第一铰链41与左膝盖子机构35垂直连接。
如图1所示,所述左脚子机构36包括:第四基座42、第二铰链43、第四马达44、第四马达信号电源接点45、第一直角角码46和第一U形卡扣;
左小腿子机构36的下端垂直固定在第四基座42上,第二铰链43固定安装在第四基座42的下方,第四马达44横穿过第二铰链43,并安装在其上;第四马达信号电源 接点45安装在第四马达44上,用于驱动第四马达44,从而驱动左脚子机构36摆动;第一直角角码46与第二铰链43垂直连接,第一U形卡扣安装在第一直角角码46上,且与水平地面平行。
如图1所示,所述第一U形卡扣包括:第一半U形条47、第二半U形条48和若干橡胶条49;
所述第一半U形条47的底部与第二半U形条48的底部通过锁定装置将二者固结在一起,形成U形结构;第一半U形条47的内侧与第二半U形条48的内侧均对称安装若干橡胶条49,通过在二者的内侧等间距设置螺丝,将橡胶条49固定在U形结构上。
如图1所示,所述右腿机构5进一步包括:右大腿子机构50,右膝盖子机构51,右小腿子机构52和右脚子机构53;
右大腿子机构50的上端垂直固定在第二接头机构32的底部,其下端则通过右膝盖子机构51与右小腿子机构52的上端连接,右小腿子机构52的下端与右脚子机构53垂直连接;其中,右大腿子机构50与右小腿子机构52位于同一纵向轴线上。
如图1所示,所述右大腿子机构50为可以调节任意长度的铝管;右大腿子机构50的上端通过铰链与第二接头机构32的底部垂直连接。
如图1所示,所述右膝盖子机构51包括:第五基座54、第五马达55、第五马达信号电源接点56和第三铰链57;
第三铰链57固定安装在第五基座54的下方,所述第五马达55横穿过第三铰链57,并安装在其上;第五马达信号电源接点56安装在第五马达55上,用于驱动第五马达55,从而驱动右小腿子机构52摆动。
如图1所示,所述右小腿子机构52为可以调节任意长度的铝管,右小腿子机构52的上端通过第三铰链57与右膝盖子机构51垂直连接。
如图1所示,所述右脚子机构53包括:第六基座58、第四铰链59、第六马达60、第六马达信号电源接点61、第二直角角码62和第二U形卡扣;
右小腿子机构52的下端垂直固定在第六基座58上,第四铰链59固定安装在第六基座58的下方,第六马达60横穿过第四铰链59,并安装在其上;第六马达信号电源接点61安装在第六马达60上,用于驱动第六马达60,从而驱动右脚子机构53摆动;第二直角角码62与第四铰链59垂直连接,第二U形卡扣安装在第二直角角码62上,且与水平地面平行。
如图1所示,所述第二U形卡扣包括:第三半U形条63、第四半U形条64和若干橡胶条49;
所述第三半U形条63的底部与第四半U形条64的底部通过锁定装置将二者固结 在一起,形成U形结构;第三半U形条63的内侧与第四半U形条64的内侧均对称安装若干橡胶条49,通过在二者的内侧等间距设置螺丝,将橡胶条49固定在U形结构上。
所述第一U形卡扣和第二U形卡扣的设计,允许穿戴者使用自己的鞋子的同时,既不需要条纹状的固定条带包裹在鞋面上,也不需要和市面上常见的在鞋底安装金属板。因为不论是用固定条带包裹鞋面,还是在鞋底安装金属板,穿戴者在走路时都会感受到来自固定条带的束缚感或者是来自金属的硬物感,从而影响了穿戴者的舒适性,也使得用户感到很不自然。相比于在穿戴者的鞋子和踝关节上使用固定条带或者在穿戴者的鞋底安装硬质底板,如金属底板。如图1所示,采用所述第一U形卡扣和第二U形卡扣的设计,用一个简单的机构将穿戴者的鞋子固定在其上。穿戴者的踝关节通过这样的方式固定在外骨骼机器人的主动踝关节上,这样外骨骼机器人可以控制包括穿戴者踝关节运动在内的下肢运动。同时,避免了其他设计中在鞋子底部由固定条带和/或金属底板产生的不适感和被干扰的感觉。
通过将各个马达与对应的电流直流传感器集成在一起,或者将各个电流直流传感器安装在控制箱中对应的马达控制器的旁边。各个电流直流传感器不需要直接与穿戴者接触,因此有效避免了各个直流传感器的磨损和被线材所困扰。
基于上述下肢外骨骼机器人,本发明还提供了一种感测方法,通过分别实时监测第一旋转马达17、右腿侧向摆动轴26、左腿侧向摆动轴33、第三马达39、第四马达44、第五马达55、第六马达60的电流消耗来实现对穿戴者的肌肉痉挛的动态感测,以及感测穿戴者的运动状态;其中,所述运动状态包括:穿戴者是否抵制下肢外骨骼机器人的运动或者下肢外骨骼机器人是否阻止穿戴者提高运动速度。所述感测方法具体包括:
步骤1)采用组合动力学公式(1)和(2),如图6所示,获取任一马达在穿戴者不使用下肢外骨骼机器人时对应的预期的恒定的时间-扭矩的轨迹图65和穿戴者使用下肢外骨骼机器人时对应的预期的时间-扭矩的轨迹图68;其中,公式(1)和(2)如下:
Figure PCTCN2018102637-appb-000008
其中,τ m为穿戴者和下肢外骨骼机器人的组合马达扭矩,M(θ)是下肢外骨骼机器人与穿戴者合并的质量矩阵;其与加速度相关;
Figure PCTCN2018102637-appb-000009
为任一穿戴者的下肢的独立关节的加速度变量;
Figure PCTCN2018102637-appb-000010
为任一穿戴者的下肢的独立关节的速度参数,其包括:所有穿戴者的下肢的独立的关节速度参数;其中,所述独立关节包括:穿戴者下肢的髋关节、膝关节和踝关节;G(θ)为重力参数,其包括:引力常数g;
Figure PCTCN2018102637-appb-000011
为未建模的方面和可能的误差(包括摩擦和系统干扰);
τ m=τ he  (2)
其中,τ h为穿戴者的人体动力学的扭矩;τ e为下肢外骨骼机器人的外骨骼动力学的 马达扭矩;
具体地,τ h=[τ h-h,τ h-k,τ h-a] T;τ e=[τ e-h,τ e-k,τ e-a] T。其中,τ h-h是穿戴者的髋关节预期所需的扭矩,τ h-k是穿戴者的膝关节预期所需的扭矩;τ h-a是穿戴者脚踝关节预期所需的扭矩;τ e-h是外骨骼机器人的髋关节机构预期的马达扭矩;τ e-k是外骨骼机器人的任意一膝关节机构预期的马达扭矩;τ e-a是外骨骼机器人的任意一踝关节机构预期的马达扭矩;
若是采用实验的方法,在穿戴者使用下肢外骨骼机器人时,获取任一马达对应的预期的时间-扭矩的轨迹图(68)。
步骤2)设置预期的时间-扭矩的轨迹图的痉挛上限门槛值66,获得预期的时间-扭矩的痉挛上限轨迹图67;再设置预期的时间-扭矩的轨迹图的痉挛下限门槛值70,获得预期的时间-扭矩的痉挛下限轨迹图69;
步骤3)如图7所示,根据公式(3),将步骤1)的预期的时间-扭矩的轨迹图68转换成预期的时间-电流消耗的轨迹图74;将步骤2)中的预期的时间-扭矩的痉挛上限轨迹图67转换成预期的时间-电流消耗的痉挛上限轨迹图73;将步骤2)中的预期的时间-扭矩的痉挛下限轨迹图69转换成预期的时间-电流消耗的痉挛下限轨迹图75;其中,公式(3)为:
Figure PCTCN2018102637-appb-000012
其中,
Figure PCTCN2018102637-appb-000013
是任一马达预期的组合马达扭矩;K m是任一马达自身的系数;
Figure PCTCN2018102637-appb-000014
是任一马达的总磁通量;I为任一马达预期的电流消耗量;
步骤4)设置预期的时间-扭矩的轨迹图的运动意向上限门槛值88,获得预期的时间-扭矩的运动意向上限轨迹图90;设置预期的时间-扭矩的轨迹图的运动意向下限门槛值89,获得预期的时间-扭矩的运动意向下限轨迹图91;
步骤5)如图7所示,根据公式(3),将步骤4)的预期的时间-扭矩的运动意向上限轨迹图90转换成预期的时间-电流消耗的运动意向上限轨迹图94,获得预期的时间-电流消耗的运动意向上限门槛值92;将步骤4)的预期的时间-扭矩的运动意向下限轨迹图91转换成预期的时间-电流消耗的运动意向下限轨迹图95,获得预期的时间-电流消耗的运动意向下限门槛值93;
步骤6)操作下肢外骨骼机器人,做出一个完整的康复动作,下肢外骨骼机器人的任一马达会产生对应的电流消耗量,获得真实的时间-电流消耗的轨迹图;
实时的将真实的时间-电流消耗的轨迹图的电流消耗量分别与预期的时间-电流消耗的痉挛上限轨迹图73的电流消耗量、预期的时间-电流消耗的痉挛下限轨迹图75的电流消耗量进行比较,根据比较结果,感测穿戴者的下肢是否有痉挛发生;
实时的将真实的时间-电流消耗的轨迹图的电流消耗量分别与预期的时间-电流消耗的运动意向上限轨迹图94的电流消耗量、预期的时间-电流消耗的运动意向下限轨迹图95的电流消耗量进行比较,根据比较结果,感测穿戴者的运动意向。
作为上述技术方案的改进之一,所述步骤6)中,感测穿戴者的下肢是否有痉挛发生,具体包括:
如果真实的时间-电流消耗的轨迹图的电流消耗量在预期的时间-电流消耗的痉挛上限轨迹图73的电流消耗量和预期的时间-电流消耗的痉挛下限轨迹图75的电流消耗量之间,则穿戴者的下肢没有出现肌肉痉挛;
如果真实的时间-电流消耗的轨迹图的电流消耗量超出了预期的时间-电流消耗的痉挛上限轨迹图73的电流消耗量或预期的时间-电流消耗的痉挛下限轨迹图75的电流消耗量,则穿戴者的下肢出现了肌肉痉挛,下肢外骨骼机器人停止工作。
作为上述技术方案的改进之一,所述步骤6)中,感测穿戴者的运动意向,具体包括:
如果真实的时间-电流消耗的轨迹图的电流消耗量在预期的时间-电流消耗的运动意向上限轨迹图94的电流消耗量和预期的时间-电流消耗的运动意向下限轨迹图95的电流消耗量之间,则穿戴者没有加快或减慢运动速度的意向;
如果真实的时间-电流消耗的轨迹图的电流消耗量超出了预期的时间-电流消耗的运动意向上限轨迹图94的电流消耗量或预期的时间-电流消耗的运动意向下限轨迹图95的电流消耗量;则出现了穿戴者阻止加快或减慢运动速度的意向,需要降低或提高对应的马达的速度或扭矩;其中,
当真实的时间-电流消耗的轨迹图的电流消耗量超出了预期的时间-电流消耗的运动意向上限轨迹图94的电流消耗量,则需要降低对应的马达的速度或扭矩;
当真实的时间-电流消耗的轨迹图的电流消耗量超出了预期的时间-电流消耗的运动意向下限轨迹图95的电流消耗量,则需要提高对应的马达的速度或扭矩。
当为穿戴者设计接近健康人自然行走的步态康复轨迹时,通过结合所述下肢外骨骼机器人和穿戴者的动力学模型,即公式(1)、公式(2)和公式(3);利用数学公式获得每个马达的独立于时间的预期的时间-电流消耗轨迹图74;具体地,通过结合动力学模型,获得每个马达的独立于时间的预期的时间-扭矩轨迹图,如图6所示。然后,基于图6所示的时间-扭矩轨迹图,通过数学公式(3)获得每个马达的独立于时间的预期的时间-电流消耗轨迹图,如图7所示。最后,通过电流传感器监测而获得的每个马达的真实的时间-电流消耗的轨迹图,与预期的时间-电流消耗轨迹图、预期的上限轨迹图 和预期的下限轨迹图进行比较,就可以实现对穿戴者的动态地肌肉痉挛和运动状态的感测。
通过设计预期的时间-电流消耗的轨迹图的上限门槛值和下限门槛值,来设定预期的电流消耗轨迹的上限轨迹图或下限轨迹图。在任意时刻,如果有某一电流传感器监测到对应的马达的电流消耗值超过上限轨迹图或下限轨迹图,即超过预设的上限门槛值和下限门槛值,则穿戴者产生肌肉痉挛。
所述感测方法也可以用于穿戴者的运动状态的感测。例如,如图6所示,马达在开始根据预设的步行轨迹转动之前或者不工作时,马达的电流消耗量一直保持恒定不变。在这种情况下,如果监测到的电流变大或者变小了,这表示穿戴者正在推动下肢外骨骼机器人往穿戴者所要求的方向运动,将对应的马达按照设定向顺时针或逆时针方向转动。
当马达正在根据预设的步行轨迹转动时,如果对应的电流直流传感器测定的电流消耗值大于或小于预设的电流消耗轨迹设定的上限门槛值和下限门槛值时,这表明穿戴者正在阻碍或助推马达的运动。因此,穿戴者的运动状态可以被实时地原位智能地检测到来提高或降低对应的马达的速度或扭矩,以获得更好的康复效果。
考虑到穿戴者的肌肉痉挛和运动状态的感测,所述下肢外骨骼机器人采用了6个电流直流传感器,用于感测穿戴者的肌肉痉挛,同时也用于穿戴者的运动状态的感测;减少了所需传感器的总数量,并且避免了侵入式的感测方法以及让传感器和穿戴者直接接触;因此,有效避免了因传感器与穿戴者直接接触对穿戴者造成的不适;实现更自然的步态康复轨迹。
对于第二种方法,不需要用到组合动力学公式来获得没有穿戴者的情况下的和有穿戴者的情况下的期望的时间-电流消耗轨迹图后。具体如下:
对于给出的动作,首先,可以制定出下肢外骨骼机器人的每个关节机构(如髋关节机构,膝关节机构,踝关节机构)的运动轨迹。具体地,在没有穿戴者的情况下,根据所需的运动轨迹和速度轨迹,来控制和移动外骨骼机器人的每个关节机构。此时,下肢外骨骼机器人的电流消耗轨迹就可以通过电流传感器,如霍尔传感器,测得并记录下来。这样量测到的电流消耗轨迹即为没有穿戴者的情况下的下肢外骨骼机器人的期望电流消耗轨迹。然后,在有穿戴者的情况下,再次执行上述操作,测得的电流消耗轨迹即为外骨骼在有穿戴者的情况下的期望电流消耗轨迹。或者,穿戴者的期望电流消耗也可以通过公式(3)结合相关的文献中实验测得的扭矩数据得出。
获得了期望关节电流消耗轨迹后,也就是获得有穿戴者的情况下的和没有穿戴者的情况下的期望的时间-电流消耗轨迹图后,通过公式(3)的运用,就可得到两种情况下 对应的时间-扭矩轨迹图;再依据穿戴者的情况来设定门槛值;通过对其门槛值的调节,可以得到轨迹的上限和下限。因此,就可得到两种状态下对应的上限轨迹图与下限轨迹图。根据患者的状态不同,门槛值可以是常数,也可以不是常数,可以相同也可以不同。
如图3和10所示,当开始驱动一个动作时,输入该动作对应的期望的关节机构的时间-扭矩轨迹,并提供给主控制器;其中,主控制器具体实现在电脑上,安装在下肢外骨骼机器人旁边控制箱上。通过主控制器,将控制讯号传至位于下肢外骨骼机器人旁边的控制箱中的各个对应的马达控制器。马达控制器也连接着电流传感器。痉挛/状态感测器则具体实现在安置于外骨骼机器人旁边控制箱中的单晶片控制板,用于收集感测器发出的信息并进行判断。随后将判断结果(是否有痉挛发生/是否需要改变状态,例如,提速或降速)转发给主控制器。基于输入信息,主控制器计算所需的控制信号并将该控制信号传送给马达控制器来控制所有关节机构对应的马达的动作;第一直流电流传感器(如霍尔传感器)可以监测下肢外骨骼机器人中的第一马达通过马达控制器汲取的电流。所测得的电流信息会被反馈给系统控制器或者系统控制器中的痉挛/运动感测器。
如图3所示,由于设定的门槛值可大也可小。大的门槛值用来算大的上下限值,用来监测痉挛是否发生。小的门槛值用来算小的上下限值,用来侦测穿戴者是正在抵制指定的动作或是动的比指定的动作更快。因此这种上限值和下限值的原理不只可以用于感测痉挛的发生,也可以用于感测穿戴者是正在抵制指定的动作(马达电流消耗比预期的大),或是动的比指定的动作更快(马达电流消耗比预期的小)。因此,门槛值是根据实际需要设置的,并不固定。
如图3所示,基于肌肉痉挛和运动状态的感测结果,可以采用不同的控制行为,例如但不限于停止下肢外骨骼机器人,提高或降低动作的速度或所施加的扭矩。
本发明的创新之处在于,在不使用与穿戴者直接接触的传感器的情况下,采用上述感测方法动态地监测下肢外骨骼机器人的穿戴者的肌肉痉挛和运动状况;感测穿戴者是否抵制下肢外骨骼机器人进行的动作或下肢外骨骼机器人是否阻碍穿戴者加快运动速度。因此,可以实时调节外骨骼机器人的运动速度和每个马达的扭矩,以优化康复效果。
本发明提出一项利用电流直流传感器(例如霍尔电流传感器)的新的感测方法来监测对应的马达的电流消耗,而不是使用那些与穿戴者直接接触的传感器。目前,现有技术中并没有下肢外骨骼机器人的髋部具有上下、左右、偏航以及滚动方向的运动。
另外,本发明提出了采用第一U形卡扣和第二U形卡扣的设计,解决了可以不通过围绕在穿戴者的鞋子、脚和/或踝关节的固定条带或在鞋底安装如金属板的硬质底板的方式固定穿戴者的鞋子的问题;并创新性地使下肢外骨骼机器人的髋关节机构在上下、左右和滚动方向具备主动(由马达驱动)或被动(没有马达或类似物驱动)的自由 度,同时也允许穿戴者在偏航方向摇摆穿戴者的髋部,能够更贴近健康者的自然行走的步行轨迹,更加自然的行走,以达到最好的康复效果。
此外,在其他具体实施例中,可以不使用电流传感器,而是通过不同的测量方法监测马达的电流消耗,如监测电流相关的物理效应的传感器,包括:感应磁场或电场。
在其他的具体实施例中,可以改变第一U形卡扣和第二U形卡扣的结构和形状,进而改变卡扣的位置。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种用于矫正步态的下肢外骨骼机器人,其特征在于,其包括:髋关节机构(1)、左腿机构(4)、右腿机构(5)、第一连接机构(2)和第二连接机构(3);所述髋关节机构(1)位于左腿机构(4)和右腿机构(5)之间,髋关节机构(1)的两端分别对应的连接第一连接机构(2)和第二连接机构(3),且通过第一连接机构(2)将髋关节机构(1)的一端与左腿机构(4)可拆卸地连接,通过第二连接机构(3)将髋关节机构(1)的另一端与右腿机构(5)可拆卸地连接。
  2. 根据权利要求1所述的下肢外骨骼机器人,其特征在于,所述髋关节机构(1)进一步包括:前板、后板、第一旋转马达(17)、两个固定板(13)、若干口字型框架(10)、弹簧(16)、若干连接杆(18)、若干拉力弹簧(8)、第一固定板(9)、导向杆(12)和两个水平向外管轴承支架(19);
    前板和后板相对放置,前板和后板的中部分别安装固定板(13);若干连接杆(18)固定安装在前板和后板的上端、下端、左端、右端的每一个端部的两侧,且每一个连接杆(18)均位于前板和后板之间,并通过若干拉力弹簧(8)将前板和后板的左端、右端的相邻的两个连接杆(18)连接,形成一个八边形结构;
    八边形结构的上端和下端分别安装第一固定板(9);所述八边形结构内的中部竖直安装口字形框架(10),并在其两侧再分别对称地竖直放置若干口字形框架(10),所述口字形框架(10)之间等间距设置,且通过若干弹簧(16)将相邻的两个口字形框架(10)连接;导向杆(12)安装在八边形结构的轴向方向上,且贯穿八边形结构的两侧;其中,所述八边形结构内,位于中部的口字形框架(10)的中部安装第一旋转马达(17),第一旋转马达(17)沿轴线方向穿过前板和后板,并通过固定板(13)进行固定;导向杆(12)的靠近两端的端部上,对称地安装水平向外管轴承支架(19)。
  3. 根据权利要求2所述的下肢外骨骼机器人,其特征在于,所述前板包括:第一竖直工字形框架(6)和第一水平工字形框架(7);所述第一竖直工字形框架(6)和第一水平工字形框架(7)相互垂直、交叉,且呈十字形结构;
    所述后板包括:第二竖直工字形框架(15)和第二水平工字形框架(11);所述第二竖直工字形框架(15)和第二水平工字形框架(11)相互垂直、交叉,且呈十字形结构。
  4. 根据权利要求2所述的下肢外骨骼机器人,其特征在于,所述导向杆(12)为中空结构,且所述导向杆(12)内还设有一调节内管(14)。
  5. 根据权利要求1所述的下肢外骨骼机器人,其特征在于,所述左腿机构(4)进一步包括:左大腿子机构(34)、左膝盖子机构(35)、左小腿子机构(36)和左脚子机构(37);
    左大腿子机构(34)的一端垂直固定在第一接头机构(2)的底部,其另一端则通过左膝盖子机构(35)与左小腿子机构(36)的一端连接,左小腿子机构(36)的另一端与左脚子机构(37)垂直连接;其中,左大腿子机构(34)与左小腿子机构(36)位于同一纵向轴线上。
  6. 根据权利要求5所述的下肢外骨骼机器人,其特征在于,所述左脚子机构(37)包括:第四基座(42)、第二铰链(43)、第四马达(44)、第四马达信号电源接点(45)、第一直角角码(46)和第一U形卡扣;
    左小腿子机构(36)的另一端垂直固定在第四基座(42)上,第二铰链(43)固定安装在第四基座(42)的下方,第四马达(44)横穿过第二铰链(43);第四马达信号电源接点(45)安装在第四马达(44)上,用于驱动第四马达(44);第一直角角码(46)与第二铰链(43)垂直连接,第一U形卡扣安装在第一直角角码(46)上,且与水平地面平行。
  7. 根据权利要求6所述的下肢外骨骼机器人,其特征在于,所述第一U形卡扣包括:第一半U形条(47)、第二半U形条(48)和若干橡胶条(49);
    所述第一半U形条(47)的底部与第二半U形条(48)的底部通过锁定装置将二者固结在一起,形成U形结构;第一半U形条(47)的内侧与第二半U形条(48)的内侧均对称安装若干橡胶条(49),通过在二者的内侧等间距设置螺丝,将橡胶条(49)固定在U形结构上。
  8. 一种基于权利要求1-7任一所述的下肢外骨骼机器人的感测方法,其特征在于,其包括:
    步骤1)采用组合动力学公式(1)和(2),获取任一马达在穿戴者使用下肢外骨骼机器人时对应的预期的时间-扭矩的轨迹图(68);其中,公式(1)和(2)为:
    Figure PCTCN2018102637-appb-100001
    其中,τ m为穿戴者和下肢外骨骼机器人的组合马达扭矩,θ是任一穿戴者和下肢外骨骼机器人的组合旋转角度变量向量集合,M(θ)是下肢外骨骼机器人与穿戴者合并的质量矩阵;
    Figure PCTCN2018102637-appb-100002
    为任一穿戴者和下肢外骨骼机器人的组合下肢的独立关节的加速度变量;
    Figure PCTCN2018102637-appb-100003
    为任一穿戴者和下肢外骨骼机器人的组合下肢的独立关节的速度参数,G(θ)为重力参数,
    Figure PCTCN2018102637-appb-100004
    为扭矩误差;
    τ m=τ he   (2)
    其中,τ h为穿戴者的人体动力学的扭矩;τ e为下肢外骨骼机器人的外骨骼动力学的马达扭矩;
    步骤2)设置预期的时间-扭矩的轨迹图的痉挛上限门槛值(66),获得预期的时间-扭矩的痉挛上限轨迹图(67);再设置预期的时间-扭矩的轨迹图的痉挛下限门槛值(70),获得预期的时间-扭矩的痉挛下限轨迹图(69);
    步骤3)根据公式(3),将步骤1)的预期的时间-扭矩的轨迹图(68)转换成预期的时间-电流消耗的轨迹图(74);将步骤2)中的预期的时间-扭矩的痉挛上限轨迹图(67)转换成预期的时间-电流消耗的痉挛上限轨迹图(73);将步骤2)中的预期的时间-扭矩的痉挛下限轨迹图(69)转换成预期的时间-电流消耗的痉挛下限轨迹图(75);其中,公式(3)为:
    Figure PCTCN2018102637-appb-100005
    其中,τ m′是任一马达预期的组合马达扭矩;K m是任一马达自身的系数;
    Figure PCTCN2018102637-appb-100006
    是任一马达的总磁通量;I为任一马达预期的电流消耗量;
    步骤4)设置预期的时间-扭矩的轨迹图的运动意向上限门槛值(88),获得预期的时间-扭矩的运动意向上限轨迹图(90);设置预期的时间-扭矩的轨迹图的运动意向下限门槛值(89),获得预期的时间-扭矩的运动意向下限轨迹图(91);
    步骤5)根据公式(3),将步骤4)的预期的时间-扭矩的运动意向上限轨迹图(90)转换成预期的时间-电流消耗的运动意向上限轨迹图(94);将步骤4)的预期的时间-扭矩的运动意向下限轨迹图(91)转换成预期的时间-电流消耗的运动意向下限轨迹图(95);
    步骤6)操作下肢外骨骼机器人,做出一个完整的康复动作,下肢外骨骼机器人的任一马达会产生对应的电流消耗量,获得真实的时间-电流消耗的轨迹图;
    实时的将真实的时间-电流消耗的轨迹图的电流消耗量分别与预期的时间-电流消耗的痉挛上限轨迹图(73)的电流消耗量、预期的时间-电流消耗的痉挛下限轨迹图(75)的电流消耗量进行比较,根据比较结果,感测穿戴者的下肢是否有痉挛发生;
    实时的将真实的时间-电流消耗的轨迹图的电流消耗量分别与预期的时间-电流消 耗的运动意向上限轨迹图(94)的电流消耗量、预期的时间-电流消耗的运动意向下限轨迹图(95)的电流消耗量进行比较,根据比较结果,感测穿戴者的运动意向。
  9. 根据权利要求8所述的感测方法,其特征在于,所述步骤6)中,感测穿戴者的下肢是否有痉挛发生,具体包括:
    如果真实的时间-电流消耗的轨迹图的电流消耗量在预期的时间-电流消耗的痉挛上限轨迹图(73)的电流消耗量和预期的时间-电流消耗的痉挛下限轨迹图(75)的电流消耗量之间,则穿戴者的下肢没有出现肌肉痉挛;
    如果真实的时间-电流消耗的轨迹图的电流消耗量超出了预期的时间-电流消耗的痉挛上限轨迹图(73)的电流消耗量或预期的时间-电流消耗的痉挛下限轨迹图(75)的电流消耗量,则穿戴者的下肢出现了肌肉痉挛,下肢外骨骼机器人停止工作。
  10. 根据权利要求8所述的感测方法,其特征在于,所述步骤6)中,感测穿戴者的运动意向,具体包括:
    如果真实的时间-电流消耗的轨迹图的电流消耗量在预期的时间-电流消耗的运动意向上限轨迹图(94)的电流消耗量和预期的时间-电流消耗的运动意向下限轨迹图(95)的电流消耗量之间,则穿戴者没有加快或减慢运动速度的意向;
    如果真实的时间-电流消耗的轨迹图的电流消耗量超出了预期的时间-电流消耗的运动意向上限轨迹图(94)的电流消耗量或预期的时间-电流消耗的运动意向下限轨迹图(95)的电流消耗量;则出现了穿戴者阻止加快或减慢运动速度的意向,需要降低或提高对应的马达的速度或扭矩;其中,
    当真实的时间-电流消耗的轨迹图的电流消耗量超出了预期的时间-电流消耗的运动意向上限轨迹图(94)的电流消耗量,则需要降低对应的马达的速度或扭矩;
    当真实的时间-电流消耗的轨迹图的电流消耗量超出了预期的时间-电流消耗的运动意向下限轨迹图(95)的电流消耗量,则需要提高对应的马达的速度或扭矩。
PCT/CN2018/102637 2018-08-28 2018-08-28 一种用于矫正步态的下肢外骨骼机器人及其感测方法 WO2020041963A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880001996.4A CN111107820B (zh) 2018-08-28 2018-08-28 一种用于矫正步态的下肢外骨骼机器人及其感测方法
PCT/CN2018/102637 WO2020041963A1 (zh) 2018-08-28 2018-08-28 一种用于矫正步态的下肢外骨骼机器人及其感测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/102637 WO2020041963A1 (zh) 2018-08-28 2018-08-28 一种用于矫正步态的下肢外骨骼机器人及其感测方法

Publications (1)

Publication Number Publication Date
WO2020041963A1 true WO2020041963A1 (zh) 2020-03-05

Family

ID=69643508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102637 WO2020041963A1 (zh) 2018-08-28 2018-08-28 一种用于矫正步态的下肢外骨骼机器人及其感测方法

Country Status (2)

Country Link
CN (1) CN111107820B (zh)
WO (1) WO2020041963A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113876474B (zh) * 2021-09-22 2024-01-30 复旦大学 一种模块化动力假肢
CN116118894B (zh) * 2021-11-15 2024-06-07 腾讯科技(深圳)有限公司 髋关节组件和机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101810532A (zh) * 2010-04-28 2010-08-25 河北工业大学 一种下肢康复训练机器人
US20110264016A1 (en) * 2009-01-12 2011-10-27 Chang-Soo Han Wearable robot for assisting muscular strength of lower extremity
CN103622792A (zh) * 2013-11-25 2014-03-12 北京林业大学 外骨骼助力机器人的信息采集与控制系统
CN105686927A (zh) * 2016-01-08 2016-06-22 中国人民解放军理工大学 可折叠便携式下肢外骨骼
CN107648017A (zh) * 2017-11-09 2018-02-02 上海司羿智能科技有限公司 外骨骼驱动装置、助力外骨骼系统及其驱动与助力方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2555119T3 (es) * 2008-05-20 2015-12-29 Ekso Bionics, Inc. Dispositivo y método para disminuir el consumo de energía de una persona mediante el uso de un exoesqueleto de extremidad inferior
KR101280904B1 (ko) * 2011-10-10 2013-07-02 주식회사 사이보그-랩 힙 조인트 보상용 메커니즘을 갖는 하지 재활 훈련 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110264016A1 (en) * 2009-01-12 2011-10-27 Chang-Soo Han Wearable robot for assisting muscular strength of lower extremity
CN101810532A (zh) * 2010-04-28 2010-08-25 河北工业大学 一种下肢康复训练机器人
CN103622792A (zh) * 2013-11-25 2014-03-12 北京林业大学 外骨骼助力机器人的信息采集与控制系统
CN105686927A (zh) * 2016-01-08 2016-06-22 中国人民解放军理工大学 可折叠便携式下肢外骨骼
CN107648017A (zh) * 2017-11-09 2018-02-02 上海司羿智能科技有限公司 外骨骼驱动装置、助力外骨骼系统及其驱动与助力方法

Also Published As

Publication number Publication date
CN111107820B (zh) 2022-03-15
CN111107820A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
US20220296848A1 (en) Immersive multisensory simulation system
US9198821B2 (en) Lower extremity exoskeleton for gait retraining
US10406059B2 (en) Human movement research, therapeutic, and diagnostic devices, methods, and systems
US10278883B2 (en) Systems, methods, and devices for assisting walking for developmentally-delayed toddlers
US6666831B1 (en) Method, apparatus and system for automation of body weight support training (bwst) of biped locomotion over a treadmill using a programmable stepper device (psd) operating like an exoskeleton drive system from a fixed base
Lee et al. Effects of assistance timing on metabolic cost, assistance power, and gait parameters for a hip-type exoskeleton
KR101504793B1 (ko) 휴대용 상지 재활 장치
TW201639533A (zh) 互動式外骨骼膝關節機器系統
Wang et al. A semi-active exoskeleton based on EMGs reduces muscle fatigue when squatting
Gimmon et al. Age-related differences in pelvic and trunk motion and gait adaptability at different walking speeds
EP3415123A1 (en) System and method for restoring human motor activity
JP4742263B2 (ja) 歩行補助装置
WO2020041963A1 (zh) 一种用于矫正步态的下肢外骨骼机器人及其感测方法
KR101471856B1 (ko) 능동형 보행보조장치
CN114367080B (zh) 一种面向下肢康复训练的智能医疗机器人
Kang et al. A novel assist-as-needed control method to guide pelvic trajectory for gait rehabilitation
Li et al. Mechanical compliance and dynamic load isolation design of lower limb exoskeleton for locomotion assistance
Jiang et al. Recent advances on lower limb exoskeleton rehabilitation robot
Tino et al. Wireless vibrotactile feedback system for postural response improvement
Zirker et al. Changes in kinematics, metabolic cost, and external work during walking with a forward assistive force
Low Subject-oriented overground walking pattern generation on a rehabilitation robot based on foot and pelvic trajectories
Carrasco et al. Vibration motor stimulation device in smart leggings that promotes motor performance in older people
Al-Hayali et al. Analysis and evaluation of a quasi-passive lower limb exoskeleton for gait rehabilitation
Dong et al. A performance evaluation of overground gait training with a mobile body weight support system using wearable sensors
Xu et al. Reducing migration of knee exoskeletons with dynamic Waist strap

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18932055

Country of ref document: EP

Kind code of ref document: A1