WO2020040492A1 - Method for measuring bending deformation and stiffness of multi-segmented catheter using nonlinear deformation analysis, and device for measuring bending deformation and stiffness of catheter using same - Google Patents

Method for measuring bending deformation and stiffness of multi-segmented catheter using nonlinear deformation analysis, and device for measuring bending deformation and stiffness of catheter using same Download PDF

Info

Publication number
WO2020040492A1
WO2020040492A1 PCT/KR2019/010457 KR2019010457W WO2020040492A1 WO 2020040492 A1 WO2020040492 A1 WO 2020040492A1 KR 2019010457 W KR2019010457 W KR 2019010457W WO 2020040492 A1 WO2020040492 A1 WO 2020040492A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter
catheter tube
deformation
wire
equation
Prior art date
Application number
PCT/KR2019/010457
Other languages
French (fr)
Korean (ko)
Inventor
류재준
안효영
윤대중
안중환
김화영
Original Assignee
부산대학교병원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교병원 filed Critical 부산대학교병원
Publication of WO2020040492A1 publication Critical patent/WO2020040492A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending

Definitions

  • the present invention provides a method of measuring bending and stiffness of a multi-segment catheter that accurately predicts the deformation of the catheter using a nonlinear deformation equation and provides a standard method for measuring the stiffness against the nonlinear deformation of the catheter, and the catheter bending deformation using the same and Stiffness measurement apparatus
  • the catheter is introduced into blood vessels and organs for intravascular diagnosis, treatment, and delivery of medical device structures.
  • the catheter tube has a problem that it is difficult to precisely control because the direction of deformation is not constant.
  • it is very important to measure the catheter's bending deformation and its rigidity according to the bending deformation.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a measuring device capable of measuring rigidity against nonlinear deformation of a catheter.
  • the apparatus for measuring bending deformation and stiffness of a multi-segment catheter using a nonlinear deformation analysis includes: a wire fixing part 30 for fixing an end of the wire 140; A sensor unit 20 provided with a sensor measuring a tension of the wire 140 fixed to the wire fixing unit 30; A catheter fixing part 40 for fixing the mounted catheter tube 100; A bottom part 50 fixing the catheter fixing part 40; A bottom control part 60 provided with a fine conveying device to convey the bottom part 50; Grid paper (70) capable of measuring the deformation curve of the catheter tube 100 is deformed; And a support part 10 supporting the sensor part 20 and the bottom part 50, wherein the tension applied to the wire 140 is transmitted to the catheter tube 100 to form a bending deformation. It is done.
  • this invention can provide the measuring apparatus which can measure the rigidity with respect to the nonlinear deformation of a catheter.
  • the present invention can provide a standard method to measure the stiffness against nonlinear deformation of the catheter.
  • FIG. 1 is a view showing a catheter deformation tester model that can be applied to the method of measuring the bending deformation and rigidity of a multi-segment catheter using a nonlinear deformation analysis.
  • FIG. 2 is a flow chart showing a bending deformation and stiffness measurement method of a multi-segment catheter using the present invention nonlinear deformation analysis.
  • FIG. 3 is a photograph of an experimental apparatus using the catheter deformation test apparatus model of FIG. 2.
  • FIG. 4 is a side view of a catheter tube 100 showing a segmented catheter and a wire 140 inserted inside the catheter to provide bending deformation of the catheter.
  • Equation 5 is a coordinate value showing an embodiment of the nonlinear bending deformation of the beam according to the catheter deformation nonlinear bending curve formula (Equation 1) and the catheter deformation nonlinear bending curve length value (Equation 2).
  • FIG. 6 is a coordinate value showing a value obtained by analyzing a deformation curve of several segments and connecting them into one curve.
  • 9 is a coordinate value showing the test deformation curve according to the tension change.
  • 10 is a coordinate value showing a simulation deformation curve according to the tension change based on the obtained stiffness value.
  • the wire fixing portion 30 fixes the end of the wire 140.
  • the wire fixing portion 30 can adjust the tightening by a screw to the forceps.
  • the wire 140 penetrates through the catheter tube 100 and extends outside the catheter tube 100 to be fixed by the wire fixing part 30.
  • the wire fixing unit 30 is preferably provided on the front of the sensor unit 20 is provided so that the wire 140 passing through the wire fixing unit 30 passes through the sensor unit 20.
  • the sensor unit 20 is provided with a sensor for measuring the tension of the wire 140 fixed to the wire fixing portion (30).
  • the sensor unit 20 is preferably disposed in the longitudinal direction to measure the tension of the wire 140 provided in the longitudinal direction.
  • the wire fixing part 30 provided on the front of the sensor unit 20 is also preferably disposed in the longitudinal direction.
  • the catheter fixing part 40 fixes the catheter tube 100 mounted.
  • the catheter fixing part 40 is provided at the top of the bottom part 50, and the first fixing part and the second fixing part are arranged in order on the top of the bottom part 50 to sequentially position the first fixing part and the second fixing part.
  • the catheter tube 100 is fixed between the fixing parts.
  • first fixing part and the second fixing part are provided with a groove in the center, respectively, to form a gap by facing the groove.
  • the catheter tube 100 penetrates between the pores and is provided to be adjustable between the pores to fix the catheter tube 100.
  • the bottom 50 is fixed to the catheter fixing part (40).
  • the bottom part 50 is provided at the upper end of the support part 10 and the catheter fixing part 40 is provided at the top of the bottom part 50.
  • the bottom portion 50 is provided with an adjustment portion on the side to move back and forth in the forward (forward) direction shown in FIG.
  • the bottom adjustment unit 60 is provided with a micro-feeding device to transfer the bottom 50.
  • the bottom control part 60 is provided to move the bottom part 50 back and forth in the forward direction.
  • the bottom adjustment unit 60 may be prepared in different stages by varying the adjustment step to finely control the movement of the bottom 50.
  • the support part 10 supports the sensor part 20 and the bottom part 50. More specifically, the support 10 is provided with a vertical portion and a horizontal portion, the vertical portion supports the sensor portion 20, the horizontal portion supports the bottom portion 50.
  • the bending deformation and stiffness measuring device of the multi-segment catheter using a nonlinear deformation analysis grid paper 70 for recording the deformation curve of the catheter tube 100 fixed to the catheter fixing part 40 ).
  • the grid paper 70 is provided with a size of 1 mm or less in scale, and the deformation curve of the catheter tube 100 is measured at the top of the grid paper 70.
  • the bending deformation and stiffness measuring device of a multi-segment catheter using the nonlinear deformation analysis of the present invention preferably measures the bending deformation and stiffness of the multi-segment catheter according to the measuring method described below (FIG. 2).
  • the first step (S10) determines the segment according to the shape of the catheter tube 100 according to any shape, as shown in Figure 10, and inputs an arbitrary stiffness value.
  • the catheter tube 100 used in the present invention has rigidity differently for each section so that the catheter tube 100 can be accurately positioned to a required position required by the user without being easily shaken by the user's movement.
  • the catheter tube 100 is composed of a relatively high rigidity proximal member 110, a relatively low rigidity soft member 120 and the highest rigid end member 130.
  • the second step S20 creates a first deformation value. More specifically, the first modification value may be calculated by the following [Formula 1] and [Formula 2].
  • the deformation amount y is calculated by the following [Equation 1]
  • the curve length that is deformed when the catheter tube 100 is deformed is calculated by the following [Equation 2].
  • the deformation amount y of the catheter tube 100 is inversely proportional to the elastic modulus E of the material of the catheter tube 100 and the cross-sectional moment I of the cross-sectional shape of the tube by the following Equation 1, and the bending moment M It is desirable to be provided in proportion to).
  • E the elastic modulus of the catheter tube (100)
  • I the cross-sectional moment of the cross-sectional shape of the catheter tube (100)
  • M the bending moment of the catheter tube (100)
  • Nonlinear bending deformation of the catheter tube 100 calculated by the above [Equation 1] and [Equation 2] can be prepared as shown in FIG.
  • a third step (S30) is to create a test strain curve by segmenting the catheter tube 100 into the three zones.
  • the test strain curve is prepared as shown in FIG. 6 by combining the first strain values of the multi-segment catheter tube 100 segmented into the three sections.
  • the fourth step (S40) calculates the strain point by re-segmenting the catheter tube 100 when the imaginary number in the [Equation 1] and [Equation 2]. More specifically, as shown in FIG. 7, the imaginary cases in [Equation 1] and [Equation 2] are when the tangent angles of both ends of the segment divided into the three zones are less than 90 °.
  • a fifth step S50 the calculated strain point is recorded to prepare a stiffness data curve.
  • the strain point calculated by resegmenting the catheter tube 100 at the contact point P perpendicular to the x-axis is connected to a curve.
  • the sixth step (S60) deforms the catheter tube 100. More specifically, the catheter tube 100 may be deformed by the tension of the wire 140.
  • the seventh step (S70) is to obtain the test data by the modified catheter tube 100.
  • the eighth step (S80) compares the acquired data of the fifth step (S50) and the test data of the sixth step (S60). More specifically, as shown in FIG. 8, after the strain point is connected to one curve, the deformation curve of the acquired data obtained by repeatedly adjusting the stiffness value (too flexible, too stiff) and repeatedly obtained is compared with the test strain curve. It is preferable to create a third deformation curve.
  • the ninth step (S90) to compare the deformation curve of the acquired data and the test deformation curve of the test data if the same or high degree of similarity proceeds to the tenth step (S100), and if the similarity is low the first Steps S10 to 7th S70 are repeated and compared.
  • the tenth step (S10) confirms whether the third strain curve prepared by applying to the tension of the other wire 140 coincides with the test strain curve.
  • the following shows the test strain curve values applied at different wire 140 tensions in the third strain curve prepared in the tenth step (S10).
  • the points (x0, y0), (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5) of FIG. 9 are 0 mm in order in the longitudinal direction of the catheter, Corresponds to the positions of 100 mm, 150 mm, 225 mm, 280 mm and 295 mm.
  • the points (x0, y0), (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5) of FIG. 10 are 0 mm in order in the length direction of the curve. Corresponds to the positions of 100 mm, 150 mm, 225 mm, 280 mm and 295 mm.
  • this invention can provide the measuring apparatus which can measure the rigidity with respect to the nonlinear deformation of a catheter.
  • the present invention can provide a standard method to measure the stiffness against nonlinear deformation of the catheter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

The present invention relates to a method for measuring the bending deformation and stiffness of a multi-segmented catheter, and a device for measuring the bending deformation and stiffness of the catheter using same, the method enabling a standard method to be presented whereby, by using a nonlinear deformation equation, the deformation of a catheter may be accurately predicted, and the stiffness of the catheter against nonlinear deformation may be measured. According to the characteristics of the present invention in order to achieve the above purpose, the device for measuring the bending deformation and stiffness of the multi-segmented catheter using a nonlinear deformation analysis comprises: a wire fixing part (30) for fixing an end portion of a wire (140); a sensor part (20) having a sensor for measuring the tension of the wire (140) fixed to the wire fixing part (30); a catheter fixing part (40) for fixing a mounted catheter tube (100); a bottom part (50) for fixing the catheter fixing part (40); a bottom control part (60) having a micro-feeding apparatus so as to enable the bottom part (50) to be transferred; graph paper (70) for measuring a deformation curve by the deformation of the catheter tube (100); and a support part (10) for supporting the sensor part (20) and the bottom part (50), wherein bending deformation is formed by the tension, acting on the wire (140), being transferred to the catheter tube (100).

Description

비선형 변형해석을 이용한 다분절 카테터의 굽힘 변형 및 강성 측정방법 및 이를 이용한 카테터의 굽힘 변형 및 강성 측정장치Method for measuring bending deformation and stiffness of multi-segment catheter using nonlinear deformation analysis and measuring device for bending deformation and stiffness using same
본 발명은 비선형 변형식을 이용하여 카테터의 변형을 정확하게 예측하고 상기 카테터의 비선형 변형에 대한 강성을 측정하는 표준적인 방법을 제시하는 다분절 카테터의 굽힘 변형 및 강성 측정방법 및 이를 이용한 카테터 굽힘변형 및 강성 측정장치에 관한 것이다. The present invention provides a method of measuring bending and stiffness of a multi-segment catheter that accurately predicts the deformation of the catheter using a nonlinear deformation equation and provides a standard method for measuring the stiffness against the nonlinear deformation of the catheter, and the catheter bending deformation using the same and Stiffness measurement apparatus
카테터는 관내 진단, 처리 및 의료기기 구조체의 전달을 위해 혈관 및 기관 내로 도입되는 것으로, 현재 카테터 튜브는 변형 방향이 일정하지 않아 정밀하게 제어하기 어려운 문제점이 있다. 카테터 끝을 흉막 내 요구 위치로 정확히 포지셔닝하기 위해서는 카테터의 굽힘 변형 및 굽힘 변형에 따른 강성을 측정하는 방법이 매우 중요하다. The catheter is introduced into blood vessels and organs for intravascular diagnosis, treatment, and delivery of medical device structures. Currently, the catheter tube has a problem that it is difficult to precisely control because the direction of deformation is not constant. In order to accurately position the catheter tip to the required position in the pleura, it is very important to measure the catheter's bending deformation and its rigidity according to the bending deformation.
카테터를 구성하는 각 분절의 정확한 강성값을 알지 못하면 카테터의 변형을 정확하게 예측할 수 없고 카테터 끝단의 위치 제어를 할 수 없다. 따라서 카테터의 비선형 변형에 대한 강성을 측정하는 표준적인 방법을 마련하여 정확한 강성값을 측정할 수 있는 측정방법 및 측정장치가 필요한 실정이다.Without knowing the exact stiffness values of each segment constituting the catheter, it is impossible to accurately predict the catheter deformation and to control the position of the catheter tip. Therefore, there is a need for a measuring method and a measuring device capable of measuring accurate stiffness values by providing a standard method for measuring stiffness against nonlinear deformation of a catheter.
본 발명은 상기의 문제점을 해결하기 위해서 안출된 것으로서, 본 발명은 카테터의 비선형 변형에 대한 강성을 측정할 수 있는 측정 장치를 제공하는데 그 목적이 있다. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a measuring device capable of measuring rigidity against nonlinear deformation of a catheter.
또한, 본 발명은 카테터의 비선형 변형에 대한 강성을 측정할 수 있도록 표준방법을 제시하는데 그 목적이 있다. It is also an object of the present invention to provide a standard method for measuring the stiffness of non-linear deformation of the catheter.
상술한 목적을 달성하기 위한 본 발명의 특징에 의하면, 비선형 변형해석을 이용한 다분절 카테터의 굽힘 변형 및 강성 측정장치는 상기 와이어(140)의 단부를 고정하는 와이어고정부(30); 상기 와이어고정부(30)에 고정된 와이어(140)의 장력을 측정하는 센서가 마련된 센서부(20); 장착된 카테터튜브(100)를 고정하는 카테터고정부(40); 상기 카테터고정부(40)를 고정하는 바닥부(50); 상기 바닥부(50)를 이송할 수 있도록 미세 이송장치가 마련된 바닥조절부(60); 상기 카테터튜브(100)가 변형되어 변형곡선을 측정할 수 있는 모눈종이(70); 및 상기 센서부(20)와 바닥부(50)를 지지하는 지지부(10);로 구성하되, 상기 와이어(140)에 가해진 장력이 상기 카테터튜브(100)에 전달되어 굽힘 변형이 형성되는 것을 특징으로 한다. According to a feature of the present invention for achieving the above object, the apparatus for measuring bending deformation and stiffness of a multi-segment catheter using a nonlinear deformation analysis includes: a wire fixing part 30 for fixing an end of the wire 140; A sensor unit 20 provided with a sensor measuring a tension of the wire 140 fixed to the wire fixing unit 30; A catheter fixing part 40 for fixing the mounted catheter tube 100; A bottom part 50 fixing the catheter fixing part 40; A bottom control part 60 provided with a fine conveying device to convey the bottom part 50; Grid paper (70) capable of measuring the deformation curve of the catheter tube 100 is deformed; And a support part 10 supporting the sensor part 20 and the bottom part 50, wherein the tension applied to the wire 140 is transmitted to the catheter tube 100 to form a bending deformation. It is done.
상기 과제의 해결 수단에 의해, 본 발명은 카테터의 비선형 변형에 대한 강성을 측정할 수 있는 측정 장치를 제공할 수 있다. By the means of solving the said subject, this invention can provide the measuring apparatus which can measure the rigidity with respect to the nonlinear deformation of a catheter.
또한, 본 발명은 카테터의 비선형 변형에 대한 강성을 측정할 수 있도록 표준방법을 제시할 수 있다. In addition, the present invention can provide a standard method to measure the stiffness against nonlinear deformation of the catheter.
도 1은 비선형 변형해석을 이용한 다분절 카테터의 굽힘 변형 및 강성 측정방법을 적용할 수 있는 카테터 변형 시험 장치 모델을 나타낸 도면이다. 1 is a view showing a catheter deformation tester model that can be applied to the method of measuring the bending deformation and rigidity of a multi-segment catheter using a nonlinear deformation analysis.
도 2는 본 발명인 비선형 변형해석을 이용한 다분절 카테터의 굽힘 변형 및 강성 측정방법을 나타내는 순서도이다. 2 is a flow chart showing a bending deformation and stiffness measurement method of a multi-segment catheter using the present invention nonlinear deformation analysis.
도 3은 도 2의 카테터 변형 시험 장치 모델을 이용하여 실험 장치를 구성한 사진이다. 3 is a photograph of an experimental apparatus using the catheter deformation test apparatus model of FIG. 2.
도 4는 분절된 카테터와 상기 카테터 내부에 삽입되어 상기 카테터의 굽힘 변형을 제공하는 와이어(140)를 나타낸 카테터튜브(100) 측면도이다. 4 is a side view of a catheter tube 100 showing a segmented catheter and a wire 140 inserted inside the catheter to provide bending deformation of the catheter.
도 5는 카테터 변형 비선형 굽힘 곡선식(식 1) 및 상기 카테터 변형 비선형 굽힘 곡선 길이 값(식 2)에 따라 보의 비선형 굽힘 변형 일실시예를 나타낸 좌표값이다. 5 is a coordinate value showing an embodiment of the nonlinear bending deformation of the beam according to the catheter deformation nonlinear bending curve formula (Equation 1) and the catheter deformation nonlinear bending curve length value (Equation 2).
도 6는 여러 분절의 변형곡선을 각각 해석하여 한 곡선으로 이은 값을 나타낸 좌표값이다. FIG. 6 is a coordinate value showing a value obtained by analyzing a deformation curve of several segments and connecting them into one curve. FIG.
도 7은 변형량에 따른 분절 양끝 접선 사잇각의 차이에 따른 좌표값이다. 7 is a coordinate value according to the difference between the tangent angles at both ends of the segment according to the deformation amount.
도 8은 시뮬레이션 변형곡선과 시험 결과의 변형곡선에 근접하는 강성값을 나타낸 좌표값이다. 8 is a coordinate value showing a stiffness value approaching a strain curve of the simulation strain curve and the test result.
도 9은 장력 변화에 따른 시험 변형곡선을 나타낸 좌표값이다. 9 is a coordinate value showing the test deformation curve according to the tension change.
도 10는 획득한 강성값을 바탕으로 장력 변화에 따른 시뮬레이션 변형곡선을 나타낸 좌표값이다. 10 is a coordinate value showing a simulation deformation curve according to the tension change based on the obtained stiffness value.
이하, 본 발명의 바람직한 실시예를 첨부된 도면에 의거하여 상세히 설명하며, 도 1 내지 도 10에 있어서 동일한 기능을 수행하는 구성 요소에 대해서는 동일한 참조 번호를 병기한다. 한편, 도면의 도시 및 상세한 설명에 있어서 본 발명의 기술적 특징과 직접적으로 연관되지 않는 요소의 구체적인 기술적 구성 및 작용에 대한 상세한 설명 및 도시는 생략하고, 본 발명과 관련되는 기술적 구성만을 간략하게 도시하거나 설명하였다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, in which like reference numerals denote components that perform the same function in FIGS. 1 to 10. Meanwhile, in the drawings and detailed description of the drawings, detailed descriptions and illustrations of specific technical configurations and operations of elements not directly related to technical features of the present invention are omitted, and only the technical configurations related to the present invention are briefly shown or Explained.
본 발명인 비선형 변형해석을 이용한 다분절 카테터의 굽힘 변형 및 강성 측정장치는 도 1에 나타난 바와 같이, 와이어고정부(30), 센서부(20), 카테터고정부(40), 바닥부(50), 바닥조절부(60) 및 지지부(10)로 구성된다. Bending deformation and stiffness measuring apparatus of the multi-segment catheter using the nonlinear deformation analysis of the present invention, as shown in Figure 1, the wire fixing part 30, the sensor part 20, the catheter fixing part 40, the bottom part 50 , The bottom control portion 60 and the support 10 is composed.
먼저, 상기 와이어고정부(30)은 상기 와이어(140)의 단부를 고정한다. 상기 와이어고정부(30)은 집게형으로 나사에 의해 조임을 조절할 수 있다. First, the wire fixing portion 30 fixes the end of the wire 140. The wire fixing portion 30 can adjust the tightening by a screw to the forceps.
도 4에 나타난 바와 같이, 상기 와이어(140)는 상기 카테터튜브(100) 내부에 관통하여 마련되고 상기 카테터튜브(100) 외부로 연장되어 상기 와이어고정부(30)에 의해 고정된다. As shown in FIG. 4, the wire 140 penetrates through the catheter tube 100 and extends outside the catheter tube 100 to be fixed by the wire fixing part 30.
상기 와이어고정부(30)은 상기 센서부(20) 전면에 마련되어 상기 와이어고정부(30)을 통과한 상기 와이어(140)가 상기 센서부(20)를 통과하도록 마련되는 것이 바람직하다. The wire fixing unit 30 is preferably provided on the front of the sensor unit 20 is provided so that the wire 140 passing through the wire fixing unit 30 passes through the sensor unit 20.
다음으로, 상기 센서부(20)는 상기 와이어고정부(30)에 고정된 와이어(140)의 장력을 측정하는 센서가 마련된다. 상기 센서부(20)는 상기 종방향으로 마련된 와이어(140)의 장력을 측정할 수 있도록 종방향으로 배치되는 것이 바람직하다. 상기 센서부(20) 전면에 마련된 와이어고정부(30) 또한 종방향으로 배치되는 것이 바람직하다. Next, the sensor unit 20 is provided with a sensor for measuring the tension of the wire 140 fixed to the wire fixing portion (30). The sensor unit 20 is preferably disposed in the longitudinal direction to measure the tension of the wire 140 provided in the longitudinal direction. The wire fixing part 30 provided on the front of the sensor unit 20 is also preferably disposed in the longitudinal direction.
다음으로, 상기 카테터고정부(40)는 장착된 카테터튜브(100)를 고정한다. 상기 카테터고정부(40)는 상기 바닥부(50) 상단에 마련되고, 상기 바닥부(50) 상단에 제1고정부와 제2고정부를 차례로 위치하도록 마련하여 상기 제1고정부와 제2고정부 사이에 상기 카테터튜브(100)를 고정한다.Next, the catheter fixing part 40 fixes the catheter tube 100 mounted. The catheter fixing part 40 is provided at the top of the bottom part 50, and the first fixing part and the second fixing part are arranged in order on the top of the bottom part 50 to sequentially position the first fixing part and the second fixing part. The catheter tube 100 is fixed between the fixing parts.
보다 구체적으로, 상기 제1고정부와 제2고정부는 각각 중앙에 홈부가 마련되고 상기 홈부를 마주보도록 하여 공극을 형성한다. 상기 공극 사이에 상기 카테터튜브(100)가 관통하고 상기 카테터튜브(100)를 고정하도록 공극 사이를 조절 가능하도록 마련된다. More specifically, the first fixing part and the second fixing part are provided with a groove in the center, respectively, to form a gap by facing the groove. The catheter tube 100 penetrates between the pores and is provided to be adjustable between the pores to fix the catheter tube 100.
다음으로, 상기 바닥부(50)는 상기 카테터고정부(40)를 고정한다. 상기 바닥부(50)는 상기 지지부(10) 상단에 마련되고 상기 바닥부(50) 상단에 상기 카테터고정부(40)를 마련한다. 상기 바닥부(50)는, 도 1에 나타난 화살표(forward) 방향의 전후로 이동할 수 있도록 측면에 조절부가 마련된다. Next, the bottom 50 is fixed to the catheter fixing part (40). The bottom part 50 is provided at the upper end of the support part 10 and the catheter fixing part 40 is provided at the top of the bottom part 50. The bottom portion 50 is provided with an adjustment portion on the side to move back and forth in the forward (forward) direction shown in FIG.
다음으로, 상기 바닥조절부(60)는 상기 바닥부(50)를 이송할 수 있도록 미세 이송장치가 마련된다. 상기 바닥조절부(60)는 상기 바닥부(50)를 상기 화살표(forward) 방향의 전후로 이동할 수 있도록 마련된다. 상기 바닥조절부(60)는 상기 바닥부(50)의 이동을 미세하게 조절할 수 있도록 조절 단계를 달리하여 단계별로 마련할 수 있다. Next, the bottom adjustment unit 60 is provided with a micro-feeding device to transfer the bottom 50. The bottom control part 60 is provided to move the bottom part 50 back and forth in the forward direction. The bottom adjustment unit 60 may be prepared in different stages by varying the adjustment step to finely control the movement of the bottom 50.
다음으로, 상기 지지부(10)는 상기 센서부(20)와 바닥부(50)를 지지한다. 보다 구체적으로, 상기 지지부(10)는 수직부와 수평부로 마련되어 상기 수직부는 상기 센서부(20)를 지지하고 상기 수평부는 상기 바닥부(50)를 지지한다. Next, the support part 10 supports the sensor part 20 and the bottom part 50. More specifically, the support 10 is provided with a vertical portion and a horizontal portion, the vertical portion supports the sensor portion 20, the horizontal portion supports the bottom portion 50.
본 발명인 비선형 변형해석을 이용한 다분절 카테터의 굽힘 변형 및 강성 측정장치는, 도 3에 나타난 바와 같이, 상기 카테터고정부(40)에 상기 카테터튜브(100)를 고정한 뒤, 상기 바닥조절부(60)에 의해 상기 바닥부(50)를 전진시키며 상기 센서부(20)로 상기 와이어(140)의 장력을 측정한다. 상기 와이어(140)에 장력이 가해짐에 따라 상기 카테터튜브(100)가 변형된다. Bending deformation and stiffness measuring device of the multi-segment catheter using the nonlinear deformation analysis of the present invention, as shown in Figure 3, after fixing the catheter tube 100 to the catheter fixing part 40, the bottom control unit 60 Advance the bottom portion 50 by) and measure the tension of the wire 140 with the sensor unit 20. As the tension is applied to the wire 140, the catheter tube 100 is deformed.
또한, 도 3에 나타난 바와 같이, 비선형 변형해석을 이용한 다분절 카테터의 굽힘 변형 및 강성 측정장치는 상기 카테터고정부(40)에 고정된 카테터튜브(100)의 변형곡선을 기록하는 모눈종이(70)를 더 마련한다. 상기 모눈종이(70)는 눈금 1mm 이하의 크기로 마련되어 상기 카테터튜브(100)의 변형곡선은 상기 모눈종이(70) 상단에서 측정한다. In addition, as shown in Figure 3, the bending deformation and stiffness measuring device of the multi-segment catheter using a nonlinear deformation analysis grid paper 70 for recording the deformation curve of the catheter tube 100 fixed to the catheter fixing part 40 ). The grid paper 70 is provided with a size of 1 mm or less in scale, and the deformation curve of the catheter tube 100 is measured at the top of the grid paper 70.
본 발명인 비선형 변형해석을 이용한 다분절 카테터의 굽힘 변형 및 강성 측정장치는 아래에 기술된 측정방법(도 2)에 따라 다분절 카테터의 굽힘 변형 및 강성을 측정하는 것이 바람직하다. The bending deformation and stiffness measuring device of a multi-segment catheter using the nonlinear deformation analysis of the present invention preferably measures the bending deformation and stiffness of the multi-segment catheter according to the measuring method described below (FIG. 2).
먼저, 제1단계(S10)는 상기 카테터튜브(100)를 도 10과 같이 임의의 형태에 따라 분절을 정하고, 임의의 강성 값을 입력한다. 도 10에 나타난 바와 같이, 본 발명에서 사용된 상기 카테터튜브(100)는 강성이 구간별로 다르게 마련되어 사용자의 움직임에 의해 쉽게 흔들리지 않고 사용자가 요구하는 요구 위치로 정확하게 포지셔닝 될 수 있도록 한다. 보다 구체적으로, 상기 카테터튜브(100)는 상대적으로 강성이 높은 근위부재(110), 상대적으로 강성이 낮은 소프트부재(120) 및 강성이 가장 높은 말단부재(130)로 구성된다. First, the first step (S10) determines the segment according to the shape of the catheter tube 100 according to any shape, as shown in Figure 10, and inputs an arbitrary stiffness value. As shown in FIG. 10, the catheter tube 100 used in the present invention has rigidity differently for each section so that the catheter tube 100 can be accurately positioned to a required position required by the user without being easily shaken by the user's movement. More specifically, the catheter tube 100 is composed of a relatively high rigidity proximal member 110, a relatively low rigidity soft member 120 and the highest rigid end member 130.
다음으로, 제2단계(S20)는 제1 변형값을 작성한다. 보다 구체적으로, 상기 제1 변형값은 하기 [식 1] 및 [식 2]에 의해 계산될 수 있다. 상기 카테터튜브(100)가 변형될 때 변형량(y)은 하기 [식 1]에 의해 산출되고, 상기 카테터튜브(100)가 변형될 때 변형되는 곡선 길이는 하기 [식 2]에 의해 산출된다. Next, the second step S20 creates a first deformation value. More specifically, the first modification value may be calculated by the following [Formula 1] and [Formula 2]. When the catheter tube 100 is deformed, the deformation amount y is calculated by the following [Equation 1], and the curve length that is deformed when the catheter tube 100 is deformed is calculated by the following [Equation 2].
상기 카테터튜브(100)의 변형량(y)은 하기 [식 1]에 의해 상기 카테터튜브(100) 재료의 탄성계수(E)와 상기 튜브 단면형상의 단면모멘트(I)에 반비례하고 굽힘모멘트(M)에 비례하도록 마련되는 것이 바람직하다. The deformation amount y of the catheter tube 100 is inversely proportional to the elastic modulus E of the material of the catheter tube 100 and the cross-sectional moment I of the cross-sectional shape of the tube by the following Equation 1, and the bending moment M It is desirable to be provided in proportion to).
[식 1][Equation 1]
Figure PCTKR2019010457-appb-I000001
Figure PCTKR2019010457-appb-I000001
[식 2][Equation 2]
Figure PCTKR2019010457-appb-I000002
Figure PCTKR2019010457-appb-I000002
(이 때, E : 카테터튜브(100) 탄성계수, I : 카테터튜브(100) 단면형상의 단면모멘트, M : 카테터튜브(100) 굽힘모멘트)At this time, E: the elastic modulus of the catheter tube (100), I: the cross-sectional moment of the cross-sectional shape of the catheter tube (100), M: the bending moment of the catheter tube (100))
상기 [식 1] 및 [식 2]에 의해 계산된 상기 카테터튜브(100)의 비선형 굽힘 변형은 도 5와 같이 작성될 수 있다. Nonlinear bending deformation of the catheter tube 100 calculated by the above [Equation 1] and [Equation 2] can be prepared as shown in FIG.
다음으로, 제3단계(S30)는 상기 카테터튜브(100)를 상기 세구역으로 분절하여 시험변형 곡선을 작성한다. 상기 세 구역으로 분절된 다분절 카테터튜브(100)의 제1변형값을 취합하여 시험변형 곡선을 도 6에 나타난 바와 같이 작성한다. Next, a third step (S30) is to create a test strain curve by segmenting the catheter tube 100 into the three zones. The test strain curve is prepared as shown in FIG. 6 by combining the first strain values of the multi-segment catheter tube 100 segmented into the three sections.
다음으로, 제4단계(S40)는 상기 [식 1] 및 [식 2]에서 허수가 될 때 상기 카테터튜브(100)를 재분절하여 변형점을 계산한다. 보다 구체적으로, 도 7에 나타난 바와 같이, 상기 [식 1] 및 [식 2]에서 허수가 되는 경우는 상기 세 구역으로 분절된 분절 양끝의 접선 사잇각이 90° 미만일 때 이다. Next, the fourth step (S40) calculates the strain point by re-segmenting the catheter tube 100 when the imaginary number in the [Equation 1] and [Equation 2]. More specifically, as shown in FIG. 7, the imaginary cases in [Equation 1] and [Equation 2] are when the tangent angles of both ends of the segment divided into the three zones are less than 90 °.
상기 [식 1] 및 [식 2]에서 허수가 될 때, x축의 수직이 되는 접점(P)에서 상기 카테터튜브(100)를 분절하여 상기 [식 1] 및 [식 2]을 통해 비선형 굽힘 변형점을 계산한다. When the imaginary numbers in the above [Equation 1] and [Equation 2], the catheter tube 100 is segmented at the contact point P perpendicular to the x-axis and the nonlinear bending deformation through the above [Equation 1] and [Equation 2] Calculate the point.
다음으로, 제5단계(S50)은 상기 계산된 변형점을 기록하여 강성값 데이터 곡선을 작성한다. 상기 x축의 수직이 되는 접점(P)에서 상기 카테터튜브(100)를 재분절하여 계산된 상기 변형점을 한 곡선으로 이어준다. Next, in a fifth step S50, the calculated strain point is recorded to prepare a stiffness data curve. The strain point calculated by resegmenting the catheter tube 100 at the contact point P perpendicular to the x-axis is connected to a curve.
다음으로, 제6단계(S60)는 상기 카테터튜브(100)를 변형한다. 보다 구체적으로, 상기 와이어(140)의 장력에 의해 상기 카테터튜브(100)가 변형될 수 있도록 한다. 또한, 다음으로, 제7단계(S70)는 상기 변형된 카테터튜브(100)에 의해 시험데이터를 획득한다. Next, the sixth step (S60) deforms the catheter tube 100. More specifically, the catheter tube 100 may be deformed by the tension of the wire 140. In addition, the seventh step (S70) is to obtain the test data by the modified catheter tube 100.
다음으로, 제8단계(S80)는 상기 제5단계(S50)의 획득데이터와 상기 제6단계(S60)의 시험데이터를 비교한다. 보다 구체적으로, 도 8에 나타난 바와 같이, 상기 변형점을 한 곡선으로 이어준 후, 강성값을 조절(too flexible, too stiff)하며 여러 번 반복하여 구한 획득데이터의 변형곡선과 시험변형 곡선을 비교하여 제3 변형 곡선을 작성하는 것이 바람직하다. Next, the eighth step (S80) compares the acquired data of the fifth step (S50) and the test data of the sixth step (S60). More specifically, as shown in FIG. 8, after the strain point is connected to one curve, the deformation curve of the acquired data obtained by repeatedly adjusting the stiffness value (too flexible, too stiff) and repeatedly obtained is compared with the test strain curve. It is preferable to create a third deformation curve.
다음으로, 제9단계(S90)에서 상기 획득데이터의 변형곡선과 시험데이터의 시험변형 곡선을 비교하여 동일하거나 유사도가 높은 경우 하기 제10단계(S100)을 진행하고, 유사도가 낮은 경우 상기 제1단계(S10) 내지 제7단계(S70)을 재실시하여 비교한다. Next, in the ninth step (S90) to compare the deformation curve of the acquired data and the test deformation curve of the test data, if the same or high degree of similarity proceeds to the tenth step (S100), and if the similarity is low the first Steps S10 to 7th S70 are repeated and compared.
다음으로, 도 9 내지 도 10에 나타난 바와 같이, 제10단계(S10)은 상기 작성된 제3 변형 곡선은 다른 와이어(140) 장력에도 적용하여 상기 시험변형 곡선과 일치하는지 확인한다.Next, as shown in Figures 9 to 10, the tenth step (S10) confirms whether the third strain curve prepared by applying to the tension of the other wire 140 coincides with the test strain curve.
아래는 제10단계(S10)의 작성된 제3 변형 곡선에서 다른 와이어(140) 장력에서 적용한 시험변형 곡선값을 나타내었다. The following shows the test strain curve values applied at different wire 140 tensions in the third strain curve prepared in the tenth step (S10).
도 9의 점 (x0, y0), (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5)는 카테터의 길이 방향으로 순서대로 0 mm, 100 mm, 150 mm, 225 mm, 280mm, 295 mm의 위치에 해당한다. The points (x0, y0), (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5) of FIG. 9 are 0 mm in order in the longitudinal direction of the catheter, Corresponds to the positions of 100 mm, 150 mm, 225 mm, 280 mm and 295 mm.
장력 [N]Tension [N] (x0, y0)[mm](x0, y0) [mm] (x1, y1)[mm](x1, y1) [mm] (x2, y2)[mm](x2, y2) [mm] (x3, y3)[mm](x3, y3) [mm] (x4, y4)[mm](x4, y4) [mm] (x5, y5)[mm](x5, y5) [mm]
3.863.86 (0, 0)(0, 0) (100, 4)(100, 4) (149, 11)(149, 11) (252, 34)(252, 34) (272, 46)(272, 46) (281, 56)(281, 56)
6.756.75 (0, 0)(0, 0) (99, 8)(99, 8) (148, 19)(148, 19) (246, 54)(246, 54) (260, 72)(260, 72) (261, 86)(261, 86)
9.649.64 (0, 0)(0, 0) (99, 12)(99, 12) (146, 28)(146, 28) (237,76)(237,76) (242, 97)(242, 97) (236, 109)(236, 109)
11.2611.26 (0, 0)(0, 0) (99, 14)(99, 14) (145, 32)(145, 32) (232, 87)(232, 87) (233, 107)(233, 107) (222, 116)(222, 116)
도 10의 점 (x0, y0), (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5)는 곡선의 길이 방향으로 순서대로 0 mm, 100 mm, 150 mm, 225 mm, 280mm, 295 mm의 위치에 해당한다.The points (x0, y0), (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5) of FIG. 10 are 0 mm in order in the length direction of the curve. Corresponds to the positions of 100 mm, 150 mm, 225 mm, 280 mm and 295 mm.
장력 [N]Tension [N] (x0, y0)[mm](x0, y0) [mm] (x1, y1)[mm](x1, y1) [mm] (x2, y2)[mm](x2, y2) [mm] (x3, y3)[mm](x3, y3) [mm] (x4, y4)[mm](x4, y4) [mm] (x5, y5)[mm](x5, y5) [mm]
3.863.86 (0, 0)(0, 0) (99.7, 4.9)(99.7, 4.9) (149.1, 10.9)(149.1, 10.9) (251.9, 31.5)(251.9, 31.5) (273.1, 43.8)(273.1, 43.8) (281.5, 55.8)(281.5, 55.8)
6.756.75 (0, 0)(0, 0) (99.4, 8.5)(99.4, 8.5) (148.1, 19.1)(148.1, 19.1) (246.6, 54.5)(246.6, 54.5) (261.0, 73.5)(261.0, 73.5) (259.7, 88.0)(259.7, 88.0)
9.649.64 (0, 0)(0, 0) (98.9, 12.1)(98.9, 12.1) (146.4, 27.1)(146.4, 27.1) (238.5, 76.6)(238.5, 76.6) (244.4, 98.3)(244.4, 98.3) (234.4, 108.5)(234.4, 108.5)
11.2611.26 (0, 0)(0, 0) (98.5, 14.1)(98.5, 14.1) (145.2, 31.5)(145.2, 31.5) (232.8, 88.4)(232.8, 88.4) (234.4, 109.6)(234.4, 109.6) (221.7, 116.1)(221.7, 116.1)
상기 과제의 해결 수단에 의해, 본 발명은 카테터의 비선형 변형에 대한 강성을 측정할 수 있는 측정 장치를 제공할 수 있다. By the means of solving the said subject, this invention can provide the measuring apparatus which can measure the rigidity with respect to the nonlinear deformation of a catheter.
또한, 본 발명은 카테터의 비선형 변형에 대한 강성을 측정할 수 있도록 표준방법을 제시할 수 있다. In addition, the present invention can provide a standard method to measure the stiffness against nonlinear deformation of the catheter.
[부호의 설명][Description of the code]
10. 지지부10. Support
20. 센서부20. Sensor
30. 와이어고정부30. Wire fixing
40. 카테터고정부40. Catheter Government
50. 바닥부50. Bottom part
60. 바닥조절부60. Floor Control
70. 모눈종이70. Grid paper
100. 카테터튜브100. Catheter Tube
110. 근위부재110. Proximal member
120. 소프트부재120. Soft Member
130. 말단부재130. End member
140. 와이어140. Wire

Claims (5)

  1. 상기 와이어(140)의 단부를 고정하는 와이어고정부(30);A wire fixing part 30 fixing an end of the wire 140;
    상기 와이어고정부(30)에 고정된 와이어(140)의 장력을 측정하는 센서가 마련된 센서부(20);A sensor unit 20 provided with a sensor measuring a tension of the wire 140 fixed to the wire fixing unit 30;
    장착된 카테터튜브(100)를 고정하는 카테터고정부(40); A catheter fixing part 40 for fixing the mounted catheter tube 100;
    상기 카테터고정부(40)를 고정하는 바닥부(50); A bottom part 50 fixing the catheter fixing part 40;
    상기 바닥부(50)를 이송할 수 있도록 미세 이송장치가 마련된 바닥조절부(60); A bottom control part 60 provided with a fine conveying device to convey the bottom part 50;
    상기 카테터튜브(100)가 변형되어 변형곡선을 측정할 수 있는 모눈종이(70); 및Grid paper (70) capable of measuring the deformation curve of the catheter tube 100 is deformed; And
    상기 센서부(20)와 바닥부(50)를 지지하는 지지부(10);로 구성하되,Consists of the support unit 10 for supporting the sensor unit 20 and the bottom portion 50,
    상기 와이어(140)에 가해진 장력이 상기 카테터튜브(100)에 전달되어 굽힘 변형이 형성되고 상기 카테터튜브(100)를 임의로 분절하여 강성을 측정하는 것을 특징으로 하는 비선형 변형해석을 이용한 다분절 카테터의 굽힘 변형 및 강성 측정장치.The tension applied to the wire 140 is transmitted to the catheter tube 100, the bending deformation is formed, and the segmented catheter tube 100 arbitrarily segmented to measure the rigidity of the multi-segment catheter, characterized in that for measuring the rigidity Bending strain and stiffness measuring device.
  2. 제1항에 있어서,The method of claim 1,
    상기 카테터고정부(40)에 상기 카테터튜브(100)를 고정한 뒤 상기 바닥부(50)를 전진시키며 상기 센서부(20)로 상기 와이어(140)의 장력을 측정하고,After the catheter tube 100 is fixed to the catheter fixing part 40, the bottom part 50 is advanced and the tension of the wire 140 is measured by the sensor part 20.
    상기 와이어(140)에 장력이 가해짐에 따라 상기 카테터튜브(100)가 변형하는 것을 특징으로 하는 비선형 변형해석을 이용한 다분절 카테터의 굽힘 변형 및 강성 측정장치.Bending strain and stiffness measuring device of a multi-segment catheter using a non-linear deformation analysis, characterized in that the catheter tube 100 is deformed as the tension is applied to the wire (140).
  3. 제1항에 있어서,The method of claim 1,
    상기 카테터튜브(100)가 변형될 때 변형량(y)은 하기 [식 1]에 의해 산출되고, 상기 카테터튜브(100)가 변형될 때 변형되는 곡선 길이는 하기 [식 2]에 의해 산출되는 것을 특징으로 하는 비선형 변형해석을 이용한 다분절 카테터의 굽힘 변형 및 강성 측정장치.When the catheter tube 100 is deformed, the deformation amount y is calculated by the following [Equation 1], and the curve length that is deformed when the catheter tube 100 is deformed is calculated by the following [Equation 2]. Bending deformation and stiffness measuring device of multi-segment catheter using nonlinear deformation analysis.
    [식 1][Equation 1]
    Figure PCTKR2019010457-appb-I000003
    Figure PCTKR2019010457-appb-I000003
    [식 2][Equation 2]
    Figure PCTKR2019010457-appb-I000004
    Figure PCTKR2019010457-appb-I000004
    (이 때, E : 카테터튜브(100) 탄성계수, I : 카테터튜브(100) 단면형상의 단면모멘트, M : 카테터튜브(100) 굽힘모멘트)At this time, E: the elastic modulus of the catheter tube (100), I: the cross-sectional moment of the cross-sectional shape of the catheter tube (100), M: the bending moment of the catheter tube (100))
  4. 제1항에 있어서,The method of claim 1,
    상기 카테터튜브(100)는 강성에 따라 구간별로 분절되는 근위부재(110), 소프트부재(120), 말단부재(130)와 상기 와이어(140)로 구성되고,The catheter tube 100 is composed of the proximal member 110, the soft member 120, the end member 130 and the wire 140 segmented for each section according to the rigidity,
    상기 와이어(140)는 상기 카테터튜브(100) 내부에 삽입되어 상기 와이어(140)에 가해진 장력에 의해 상기 카테터튜브(100)가 변형되도록 마련되는 것을 특징으로 하는 비선형 변형해석을 이용한 다분절 카테터의 굽힘 변형 및 강성 측정장치.The wire 140 is inserted into the catheter tube 100 of the multi-segment catheter using a non-linear deformation analysis, characterized in that the catheter tube 100 is provided to be deformed by the tension applied to the wire 140. Bending strain and stiffness measuring device.
  5. 제1항에 있어서,The method of claim 1,
    상기 카테터튜브(100)에 전달되어 굽힘 변형이 형성되면 When the bending deformation is transmitted to the catheter tube 100 is formed
    하기 [식 1] 및 [식 2]으로 상기 카테터튜브(100)의 변형 곡선을 작성하되,To create a deformation curve of the catheter tube 100 in the following [Equation 1] and [Equation 2],
    [식 1] [Equation 1]
    Figure PCTKR2019010457-appb-I000005
    Figure PCTKR2019010457-appb-I000005
    [식 2][Equation 2]
    Figure PCTKR2019010457-appb-I000006
    Figure PCTKR2019010457-appb-I000006
    (이 때, E : 카테터튜브(100) 탄성계수, I : 카테터튜브(100) 단면형상의 단면모멘트, M : 카테터튜브(100) 굽힘모멘트)At this time, E: the elastic modulus of the catheter tube (100), I: the cross-sectional moment of the cross-sectional shape of the catheter tube (100), M: the bending moment of the catheter tube (100))
    상기 [식 1] 및 [식 2]의 값이 허수가 될 때 x축의 수직이 되는 접점에서 상기 카테터튜브(100)를 분절하여 변형 곡선을 재작성한 뒤 연결하는 것을 특징으로 하는 비선형 변형해석을 이용한 다분절 카테터의 굽힘 변형 및 강성 측정장치.When the values of [Equation 1] and [Equation 2] are imaginary, the catheter tube 100 is segmented at the contact point perpendicular to the x-axis, and the deformation curve is reconstructed and connected using a nonlinear deformation analysis. Bending strain and stiffness measuring device of multi-segment catheter.
PCT/KR2019/010457 2018-08-23 2019-08-19 Method for measuring bending deformation and stiffness of multi-segmented catheter using nonlinear deformation analysis, and device for measuring bending deformation and stiffness of catheter using same WO2020040492A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0098553 2018-08-23
KR1020180098553A KR102105248B1 (en) 2018-08-23 2018-08-23 Measuring method of bending deflection/stiffness for a multi-segmented catheter using nonlinear deformation analysis and device

Publications (1)

Publication Number Publication Date
WO2020040492A1 true WO2020040492A1 (en) 2020-02-27

Family

ID=69592475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010457 WO2020040492A1 (en) 2018-08-23 2019-08-19 Method for measuring bending deformation and stiffness of multi-segmented catheter using nonlinear deformation analysis, and device for measuring bending deformation and stiffness of catheter using same

Country Status (2)

Country Link
KR (1) KR102105248B1 (en)
WO (1) WO2020040492A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162746A (en) * 2007-12-14 2009-07-23 Ntn Corp Load detector and method of detecting load
JP2009222467A (en) * 2008-03-14 2009-10-01 Seiko Epson Corp Moment measuring device, and molding method of longitudinal member
JP2014190703A (en) * 2013-03-26 2014-10-06 Gifu Prefecture Device and method for evaluating catheter friction
KR20150016065A (en) * 2013-08-01 2015-02-11 아이메디컴(주) catheter and manufacturing method thereof
US20150272683A1 (en) * 2012-10-05 2015-10-01 Imperial Innovations Ltd Device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736555B1 (en) 2014-12-24 2017-05-17 주식회사 포스코 Casting apparatus for preventing damage of mould
KR101955472B1 (en) * 2016-06-23 2019-03-11 삼성중공업 주식회사 Nonlinear measuring instrument and measuring method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162746A (en) * 2007-12-14 2009-07-23 Ntn Corp Load detector and method of detecting load
JP2009222467A (en) * 2008-03-14 2009-10-01 Seiko Epson Corp Moment measuring device, and molding method of longitudinal member
US20150272683A1 (en) * 2012-10-05 2015-10-01 Imperial Innovations Ltd Device
JP2014190703A (en) * 2013-03-26 2014-10-06 Gifu Prefecture Device and method for evaluating catheter friction
KR20150016065A (en) * 2013-08-01 2015-02-11 아이메디컴(주) catheter and manufacturing method thereof

Also Published As

Publication number Publication date
KR20200022666A (en) 2020-03-04
KR102105248B1 (en) 2020-05-29

Similar Documents

Publication Publication Date Title
Welch et al. Manometry of the normal upper esophageal sphincter and its alterations in laryngectomy
WO2011062315A1 (en) Electrode apparatus for measuring impedance within the human body, and apparatus using same for measuring impedance within the human body and performing treatment
US4697601A (en) Tongue force measuring device
WO2014014214A1 (en) Pulse measuring device and method of pulse measurement therewith
WO2020251248A1 (en) Portable blood pressure measuring device
WO2013048124A9 (en) Orthodontic force-measuring device using a typodont and a load cell
FR2464054B1 (en)
WO2020040492A1 (en) Method for measuring bending deformation and stiffness of multi-segmented catheter using nonlinear deformation analysis, and device for measuring bending deformation and stiffness of catheter using same
Tzelepis et al. Transmission of pressure within the abdomen
WO2014054871A1 (en) Device for measuring teeth occlusal force and measuring method thereof
WO2016148531A1 (en) Pressure sensor
WO2017209435A1 (en) High-sensitivity sensor having crack-containing transparent conductive thin film and method for preparing same
WO2021049815A1 (en) Apparatus for measuring eyelid tension, system for processing data of eyelid tension, and method for processing data of eyelid tension
CN110074772A (en) A kind of pre-calibration intracranial pressure probe
WO2018101724A1 (en) Conductive flexible element
WO2017010832A1 (en) Device for calculating systolic blood pressure using pulse transit time and method therefor
WO2023153615A1 (en) Micro needle sensor
WO2011142627A2 (en) Linear hydrogen-material-containing ampoule test piece and a tension testing method using the same
WO2019225905A1 (en) Myotome testing device for quantification of neurological examination
WO2015142120A1 (en) Method for detecting diseases using high resolution manometry, and apparatus therefor
WO2024054022A1 (en) Modular joint gap measurement device
WO2020138631A1 (en) Capsule endoscope location detection system and method therefor
WO2015072744A1 (en) Endoscope device including distance measurement module, and lesion size measuring system and method using same
WO2015130125A1 (en) Human body impedance measurement device
WO2019027218A1 (en) Biometric signal-measuring device for measuring biometric signal of micro-animal and method for measuring same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19851704

Country of ref document: EP

Kind code of ref document: A1