WO2020040273A1 - Local air purification device - Google Patents

Local air purification device Download PDF

Info

Publication number
WO2020040273A1
WO2020040273A1 PCT/JP2019/032945 JP2019032945W WO2020040273A1 WO 2020040273 A1 WO2020040273 A1 WO 2020040273A1 JP 2019032945 W JP2019032945 W JP 2019032945W WO 2020040273 A1 WO2020040273 A1 WO 2020040273A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminar flow
guide
air
flow
opening surface
Prior art date
Application number
PCT/JP2019/032945
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 剛人
信哉 前田
Original Assignee
興研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興研株式会社 filed Critical 興研株式会社
Priority to JP2020538475A priority Critical patent/JP7401915B2/en
Publication of WO2020040273A1 publication Critical patent/WO2020040273A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/003Ventilation in combination with air cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit

Definitions

  • the present invention relates to a local air cleaning device.
  • a clean bench is often used as a device for improving the air cleanliness of a local work space.
  • a general clean bench only a surface in front of a workbench has an opening for work, and other surfaces are enclosed to maintain cleanliness.
  • a clean air outlet is disposed in the enclosure, and an operator works by putting his / her hand through a front working opening.
  • the air flow opening surface of one push hood is arranged so as to face an air collision surface such as a wall, and the air flow from the air flow opening surface collides with the air collision surface.
  • a local air cleaning device has been proposed that can make a region between the above and the other region a clean air space having higher cleanliness than other regions (Patent Document 2).
  • the present invention has been made in view of the above problems, and it is an object of the present invention to maintain high cleanliness in a working space in which a work is actually being performed by moving dust generated by the work in the clean air space to the outside of the working space. It is an object of the present invention to provide a local air cleaning device capable of performing the following.
  • the local air cleaning device includes: A push hood having an air flow opening surface for blowing out a purified uniform air flow; A guide that is provided on the airflow opening surface side of the push hood, extends from the airflow opening surface side toward the downstream side of the uniform airflow, and forms an opening surface at a downstream end.
  • the push hood is arranged such that a uniform air stream, which is blown out from the airflow opening surface, passes through the guide and then strikes an air collision surface downstream of the opening surface of the guide.
  • a first laminar flow generator that is disposed downstream of a position where dust is generated in the guide and that blows out a laminar flow in a direction substantially perpendicular to a direction in which the uniform air flow is blown out from the air flow opening surface.
  • the push hood is configured to discharge the dust moved to a peripheral edge in the guide by the first laminar flow generation device out of the guide by a uniform airflow blown out from the airflow opening surface.
  • the local air cleaning device includes: A push hood having an air flow opening surface for blowing out a purified uniform air flow; A guide that is provided on the airflow opening surface side of the push hood, extends from the airflow opening surface side toward the downstream side of the uniform airflow, and forms an opening surface at a downstream end.
  • the push hood is arranged such that a uniform air stream, which is blown out from the airflow opening surface, passes through the guide and then strikes an air collision surface downstream of the opening surface of the guide.
  • a first laminar flow generator that is disposed downstream of a position where dust is generated in the guide and that blows out a laminar flow in a direction substantially perpendicular to a direction in which the uniform air flow is blown out from the air flow opening surface.
  • a hole is formed at a position where a laminar flow blown from the first laminar flow generator collides with the guide,
  • the first laminar flow generating device discharges dust generated in the guide from the hole to the outside of the guide by a laminar flow blown in a direction substantially orthogonal to the guide.
  • a second laminar flow generator that blows out a laminar flow substantially parallel to a direction in which the uniform air flow is blown out from the air flow opening surface toward the opening surface, The second laminar flow generator blows out the laminar flow substantially in parallel with a flow velocity higher than the flow velocity of the uniform air flow, The second laminar flow generating device discharges the dust moved to the periphery in the guide by the first laminar flow generating device out of the guide by the laminar flow blown out in substantially parallel.
  • a flow rate of the laminar flow blown in the substantially orthogonal direction by the first laminar flow generator is 3 to 25 times a flow rate of the uniform air flow blown out by the push hood.
  • the first laminar flow generator sucks air upstream of the first laminar flow generator in the uniform airflow.
  • the local air purification apparatus which can maintain high cleanliness in the working space which is actually working by moving the dust generated by the work in the clean air space to the outside of the working space. Can be provided.
  • FIG. 2 is a diagram illustrating an example of a local air cleaning device according to the first embodiment. It is a figure showing the structure of a push food.
  • FIG. 2 is a diagram illustrating an example of a local air cleaning device according to the first embodiment. It is a figure showing an example of a local air cleaning device concerning Embodiment 2.
  • FIG. 13 is a diagram illustrating an example of a local air cleaning device according to a third embodiment.
  • FIG. 14 is a diagram illustrating an example of a local air cleaning device according to a fourth embodiment.
  • FIG. 4 is a plan view of the local air cleaning device according to Embodiments 1 to 3.
  • FIG. 2 is a side view of the local air cleaning device according to the first embodiment.
  • FIG. 9 is a side view of the local air cleaning device according to the second embodiment.
  • FIG. 13 is a side view of the local air cleaning device according to the third embodiment.
  • FIG. 13 is a side view of the local air cleaning device according to the fourth embodiment.
  • FIG. 13 is a side view of the local air cleaning device according to the fourth embodiment.
  • FIG. 13 is a side view of the local air cleaning device according to the fourth embodiment.
  • FIG. 14 is a side view of the local air cleaning device according to the fifth embodiment.
  • FIG. 14 is a side view of the local air cleaning device according to the fifth embodiment.
  • FIG. 14 is a side view of the local air cleaning device according to the fifth embodiment.
  • FIG. 13 is a side view of the local air cleaning device according to the sixth embodiment.
  • FIG. 14 is a side view of the local air cleaning device according to the seventh embodiment. It is a top view of the local air purifier which concerns on Example 7.
  • FIG. 14 is a side view of the local air cleaning device according to the seventh embodiment.
  • a local air cleaning device 1 As shown in FIG. 1, a local air cleaning device 1 according to the present embodiment includes a push hood 2 arranged to face an air collision surface W such as a wall or a screen, and a guide provided on the push hood 2. 3 and a first laminar flow generator 41 disposed in the guide 3.
  • FIG. 1 is a diagram of the local air cleaning device 1 viewed from a side.
  • a table 5 is arranged in the guide 3, and a device 6 as a dust generation source that generates dust is installed on the table 5.
  • the air cleaning device 1 will be described.
  • FIG. 1 shows a state in which the device 6 generates dust and the first laminar flow generating device 41 is not operating.
  • An arrow (for example, arrow 28) in FIG. 1 indicates a flow of a uniform airflow blown from the push hood 2.
  • the color of the arrow indicates the degree of contamination in the guide 3. The darker the arrow, the more dust there is at that location.
  • FIG. 1 at the same height as the dust generating device 6, the dust is moving in the guide on a uniform air flow, and the clean air space in the guide is most contaminated.
  • the uniform air flow and the uniform flow here are synonymous with the uniform flow described in Taro Hayashi, “Factory Ventilation” (The Society of Air Conditioning and Sanitary Engineers, issued in 1982). This refers to the flow at a slight wind speed that does not produce any wind. However, the present invention does not intend to provide an air blowing device in which the flow velocity and velocity distribution of air are strictly defined.
  • the uniform air flow preferably has, for example, a variation in velocity distribution in the absence of an obstacle within ⁇ 50%, and more preferably ⁇ 30% of the average value.
  • the push hood 2 only needs to have a mechanism for blowing out a purified uniform air flow.
  • the push hood 2 has a basic structure of a push hood conventionally used in a push-pull ventilator and has a cleaning filter provided therein. A structure can be adopted.
  • the push hood 2 of the present embodiment has nine (three by three) horizontal push hoods 2a whose air flow opening surfaces are in the same direction, and the short sides of the push hood 2a The sides are arranged and connected so as to be adjacent to each other.
  • FIG. 2 shows the structure of the push hood 2a.
  • the structure of the other connected push hood 2a is basically the same.
  • the housing 21 of the push hood 2a is formed in a substantially rectangular parallelepiped shape, and an air flow suction surface 22 is formed on one surface thereof.
  • the air flow suction surface 22 is, for example, a surface in which a plurality of holes are formed on one entire surface of the housing 21.
  • outside air and room air which are ambient air outside the push hood 2a, are taken in from the holes.
  • an air blowing surface (air flow opening surface) 23 is formed on the other surface of the housing 21 opposite to the air flow suction surface 22.
  • the air flow opening surface 23 is, for example, a surface in which a plurality of holes are formed on one entire surface of the housing 21.
  • the size of the airflow opening surface 23 of the push hood 2a is not particularly limited, but is, for example, 1050 mm ⁇ 850 mm.
  • the push hood 2 is arranged such that the air flow opening surface 23 faces an air collision surface W such as a wall.
  • that the air flow opening surface 23 faces the air collision surface W is not limited to a state in which the air flow opening surface 23 of the push hood 2 and the air collision surface W face each other. 2 includes a state where the airflow opening surface 23 and the air collision surface W are slightly inclined. It is preferable that the inclination between the air flow opening surface 23 and the air collision surface W of the push hood 2 is within a range of about 30 ° between the air flow opening surface 23 and the air collision surface W.
  • an air blowing mechanism 24, a high-performance filter 25, and a rectifying mechanism 26 are arranged.
  • the blower mechanism 24 is disposed on the side of the airflow suction surface 22 in the housing 21.
  • the blowing mechanism 24 includes a fan for blowing air and the like.
  • the blower mechanism 24 takes in outside air or room air, which is the air around the push hood 2a, from the airflow suction surface 22 and blows out the airflow from the airflow opening surface 23. Further, the blower mechanism 24 is formed so as to vary the flow velocity of the airflow blown from the airflow opening surface 23 by controlling the blowout force of the fan.
  • the high-performance filter 25 is disposed between the blower mechanism 24 and the rectifier mechanism 26.
  • the high-performance filter 25 is composed of a high-performance filter according to a cleaning level such as a HEPA filter (High Efficiency Particulate Air Filter) or an ULPA filter (Ultra Low Penetration Air Filter) for filtering the taken-in surrounding air. .
  • the high-performance filter 25 purifies the surrounding air taken in by the blower mechanism 24 to clean air of a desired cleaning level.
  • the clean air that has been cleaned to a desired cleaning level by the high-performance filter 25 is sent to the rectifying mechanism 26 by the blowing mechanism 24.
  • the rectifying mechanism 26 is disposed between the high-performance filter 25 and the airflow opening surface 23.
  • the rectifying mechanism 26 includes an air resistor (not shown), and is formed of a punching plate, a net member, or the like.
  • the rectification mechanism 26 blows air that is blown from the high-performance filter 25 and has a bias in the amount of air flow to the entire airflow opening surface 23, and makes the airflow uniform to the entire airflow opening surface 23 without bias in the amount of airflow. (Rectified) to the air flow (uniform air flow). This rectified uniform airflow is blown out of the push hood 2 from the entire airflow opening surface 23 by the blowing mechanism 24.
  • a pre-filter 27 is disposed between the air flow suction surface 22 in the housing 21 and the blower mechanism 24.
  • the pre-filter 27 for example, a medium-performance filter is used.
  • the surrounding air taken in by the blowing mechanism 24 is purified by the pre-filter 27 and the high-performance filter 25 into clean air of a desired cleaning level. Then, the purified clean air is rectified into a uniform air flow by the rectification mechanism 26. The uniform airflow thus cleaned is blown out from the entire airflow opening surface 23 to the outside in a direction substantially perpendicular to the airflow opening surface 23 of the push hood 2a.
  • the flow rate of the uniform air flow blown out from the air flow opening surface 23 is preferably 0.2 to 0.7 m / s.
  • the guide 3 has one end provided on the airflow opening surface 23 side of the push hood 2.
  • the guide 3 is provided on the air flow opening surface 23, extends from the air flow opening surface 23 toward the downstream side of the uniform air flow blown from the air flow opening surface 23, and covers the outer peripheral contour of the air flow opening surface 23. It is formed as follows. For example, when the shape of the airflow opening surface 23 is a quadrangle, the airflow opening surface 23 is formed so as to have a U-shaped cross section.
  • the open side of the U-shape and the floor surface include an outer peripheral portion in the direction of the uniform airflow, and the periphery of the airflow in parallel with the flow of the uniform airflow blown therefrom. It is in a state of surrounding in a tunnel shape.
  • the guide 3 is formed so as to have an open area between the guide 3 and the other end (opening surface 31).
  • the cross-sectional shape may be extended and formed so as to be not a U-shape but a square shape.
  • the guide 3 can be formed of any material as long as the air flow blown from the opening surface 31 can maintain a state of a clean and uniform air flow from the air flow opening surface 23. It is possible. Further, the guide 3 does not need to completely cover the entire periphery of the uniform air flow as long as the state of the purified uniform air flow from the air flow opening surface 23 can be maintained. A hole may be partially formed or a slit may be formed.
  • the guide 3 is arranged such that the opening surface 31 thereof faces the air collision surface W.
  • the opening surface 31 so as to face the air collision surface W, the airflow blown from the opening surface 31 collides with the air collision surface W.
  • the uniform air flow exhibits a behavior of changing the direction of the flow substantially perpendicularly upon collision with the air collision surface W.
  • the airflow that has collided with the air collision surface W flows out of the surface where the collision has occurred.
  • a clean air space is obtained in a region from the surface where the air flow has hit to the end of the opening surface 31.
  • the shape of the opening surface 31 is formed to be substantially the same as the shape of the airflow opening surface 23. This is because by making the opening surface 31 and the airflow opening surface 23 substantially the same shape, it is easy to maintain the state of the uniform airflow blown from the airflow opening surface 23 at the opening surface 31.
  • the guide 3 configured as described above is provided (attached) from the airflow opening surface 23 side of the push hood 2 toward the downstream side of the uniform airflow, and has a downstream end.
  • the opening surface 31 provided in the portion is disposed so as to face the air collision surface W. Thereby, an open area is formed between the opening surface 31 and the air collision surface W.
  • the first laminar flow generator 41 blows out a laminar flow in a direction substantially perpendicular to the direction in which the uniform air flow is blown out from the air flow opening surface 23. Then, the first laminar flow generator 41 moves the dust generated in the guide 3 to the peripheral edge in the guide 3 by a laminar flow blown in a direction substantially perpendicular to the dust.
  • FIG. 3 shows a state in which the first laminar flow generator 41 blows out the laminar flow 41a.
  • substantially orthogonal indicates that the direction in which the uniform air flow is blown out (the direction of arrow 28) and the direction in which the laminar flow 41a is blown out form an angle of about 90 °, for example, ⁇ 10 °. A degree of error is allowed.
  • the peripheral edge in the guide 3 is a peripheral edge side (upper, lower, left and right end sides) of a surface perpendicular to the flow of the uniform airflow.
  • the peripheral edges in the guide 3 are the ceiling inside the guide 3, the both side surfaces inside the guide 3, and the floor.
  • the peripheral edge in the guide 3 is a ceiling inside the guide 3, a side surface inside the guide 3, and a bottom inside the guide 3.
  • the first laminar flow generating device 41 is disposed in the guide 3 on the downstream side of the dust generating device 6.
  • the first laminar flow generator 41 moves the dust, which has been flown by the uniform airflow, toward the ceiling in the guide 3 by blowing the laminar flow 41a upward. It is desirable that the first laminar flow generation device 41 is close to the position where dust is generated.
  • the first laminar flow generator 41 may be any device that can generate a laminar flow. Those that generate turbulence such as electric fans are not suitable because they diffuse dust.
  • a cross flow fan (or a line flow fan) is employed as the first laminar flow generator 41.
  • the cross flow fan arranged downstream of the table 5 draws in the downstream air 41b of the uniform air flow and blows out the laminar flow 41a.
  • the first laminar flow generation device 41 includes a punching plate and a mesh filter at an intake port that sucks the air 41b.
  • the first laminar flow generator 41 includes a plate-shaped member having a honeycomb structure at an outlet for blowing out the laminar flow 41a. By providing a plate-shaped member having a honeycomb structure at the outlet, it is possible to reduce variations in the wind speed in the width direction of the laminar flow 41a.
  • the first laminar flow generator 41 always blows out the laminar flow 41a while the uniform air flow is blown out.
  • the flow rate of the laminar flow 41a blown in a direction substantially orthogonal to the first laminar flow generator 41 is preferably 3 to 25 times, and more preferably 5 to 20 times the flow rate of the uniform air flow blown by the push hood 2. Yes, and more preferably 5 to 15 times.
  • the dust can be moved to the periphery of the guide 3 before the dust is caused to flow downstream by the uniform air flow.
  • the thickness of the laminar flow 41a blown out by the first laminar flow generator 41 is preferably from 50 mm to 200 mm.
  • the dust can be moved out of the working space.
  • the thickness is smaller than the above range, the dust cannot be sufficiently moved, and the dust is caused to flow downstream. If the thickness is larger than the above range, the uniform air flow flowing in the horizontal direction is affected.
  • the width of the laminar flow 41a blown out by the first laminar flow generator 41 fluctuates in accordance with the width of the dust generation source (device 6). Is preferable.
  • the width of the laminar flow 41a By setting the width of the laminar flow 41a as described above, it is possible to prevent the dust from flowing downstream from the position where the dust is generated.
  • the laminar flow 41a is covered with the airflow flowing laterally of the laminar flow 41a, and the airflow on the back side (downstream side) of the laminar flow 41a joins the uniform airflow while being attracted by the uniform airflow. If the dust source is too wide, the airflow behind is not sufficiently attracted to a uniform airflow. If the air flow is not sufficiently induced, for example, when the uniform air flow is 0.3 m / s, the central flow velocity of the rear air flow is 0.1 m / s, and the uniform air flow is not maintained in that portion. . Therefore, the width of the laminar flow 41a blown out by the first laminar flow generator 41 needs to be set to a width that allows the lateral and rear airflows to join the uniform airflow.
  • the push hood 2 discharges the dust moved to the peripheral edge in the guide 3 by the first laminar flow generator 41 to the outside of the guide 3 by a uniform airflow blown out from the airflow opening surface 23.
  • the dust moved to the ceiling side of the guide 3 is discharged out of the guide 3 along the ceiling, riding on a uniform air flow.
  • the ceiling side of the guide 3 is contaminated, the degree of contamination at the height of the table 5 on which the device 6 for generating dust is placed can be reduced.
  • the arrow of the uniform air flow is described in the upward direction, but the invention is not limited thereto, and the uniform air flow in the open area is also blown out in the horizontal direction. .
  • the local air cleaning device 1 of the present embodiment moves the dust out of the work space by the laminar flow blown out from the first laminar flow generator 41, instead of sucking the dust.
  • the dust can be moved to the outside of the work space with a small flow rate, so that the power required for discharging the dust generated during the work can be reduced.
  • the flow velocity of the uniform air flow is set to 0.5 m / s. It has been confirmed that by setting the air flow rate to about the same level, dust can be eliminated more quickly than when the flow velocity of the uniform air flow is set to 0.2 m / s. That is, in the local air cleaning device in which the first laminar flow generation device 41 is not disposed, it is necessary to increase the flow velocity of the uniform air flow in order to quickly remove the dust. On the other hand, in the local air cleaning device 1 of the present invention, the uniform air flow can be quickly eliminated at a flow velocity of 0.3 m / s.
  • the local air cleaning device 1 In the local air cleaning device without the first laminar flow generating device 41, in order to quickly move the dust from inside the guide, the flow velocity of the uniform air flow must be set fast. Since the air cleaning device 1 moves the dust to the outside of the working space by the laminar flow blown out from the first laminar flow generating device 41, it is not necessary to set the flow velocity of the uniform air flow fast. Therefore, the local air cleaning device 1 of the present embodiment can set the flow velocity to be low, so that the noise value and the power consumption can be suppressed, and the load on the pre-filter 27 and the high-performance filter 25 is reduced. be able to.
  • the direction of the laminar flow 41a blown out by the first laminar flow generator 41 is not limited to the upward direction, and may be any direction as long as the laminar flow can be moved to the peripheral edge in the guide.
  • the first laminar flow generator 41 may blow the laminar flow 41a in accordance with the timing at which dust is generated.
  • the first laminar flow generator 41 has a function of detecting the generation of dust, and when the number of dusts exceeds a predetermined first threshold, the first laminar flow generator 41 blows out the laminar flow 41a. You may do so. Then, when the number of dusts falls below a predetermined second threshold value, the first laminar flow generator 41 may stop blowing the laminar flow 41a. According to such a configuration, it is possible to maintain high cleanliness during actual work with less power as compared with a case where a laminar flow is constantly blown out.
  • the present invention has been described by exemplifying a case in which the device 6 for generating dust is installed on the table 5 arranged in the guide 3, but, for example, on the floor downstream of the airflow opening surface 23.
  • the present invention can be applied to a case where a device 6 for generating dust is installed, and is limited to a case where the device 6 is installed on a table 5 arranged in the guide 3. is not.
  • the first laminar flow generating device 41 is disposed downstream of the device 6 and above the device 6, and blows out a laminar flow downward.
  • the dust may be moved toward the floor.
  • the present invention has been described by taking as an example a case where the device 6 as a dust generation source that generates dust is installed in the guide 3.
  • the local air cleaning device 1 having no dust generation source is described. It is possible to apply to.
  • the local air cleaning device is not limited to the local air cleaning device 1 in which the push hood 2 and the air collision surface W are arranged to face each other.
  • a pair of push hoods 2 oppose each other. It is also possible to use the local air cleaning device 1 arranged such that the push hoods 2 are provided with the guides 3 respectively.
  • the local air cleaning device 1 As shown in FIG. 4, the local air cleaning device 1 according to the present embodiment includes a push hood 2 arranged to face an air collision surface W such as a wall or a screen, and a guide provided on the push hood 2. 3 and a first laminar flow generator 41 disposed in the guide 3.
  • the push hood 2 and the first laminar flow generating device 41 of the present embodiment have the same configuration as that of the first embodiment, and thus the description is omitted.
  • a configuration of the guide 3 that is different from that of the first embodiment will be described.
  • a hole is formed at a position where the laminar flow 41a blown out from the first laminar flow generator 41 collides with the guide 3.
  • the size of the hole is desirably larger than the collision surface of the laminar flow 41a when the laminar flow 41a collides with the guide 3 where no hole is formed.
  • the shape of the hole may be various shapes such as a circle and a rectangle, but it is preferable that the shape is similar to the shape of the laminar flow 41a blown out by the first laminar flow generator 41.
  • the hole 32 is formed at the position of the ceiling where the laminar flow 41a collides.
  • the first laminar flow generator 41 discharges the dust generated in the guide 3 from the hole 32 of the guide 3 by a laminar flow 41a that blows out in a substantially perpendicular direction.
  • the dust can be quickly discharged out of the guide without moving the dust to the downstream side in the guide, so that the contamination on the downstream side can be prevented.
  • the flow rate of the laminar flow 41a blown in a direction substantially orthogonal to the first laminar flow generator 41 is preferably 3 to 25 times the flow rate of the uniform air flow blown out by the push hood 2. 5 to 20 times is more preferable, and 15 to 20 times is more preferable.
  • the local air cleaning device 1 As shown in FIG. 5, the local air cleaning device 1 according to the present embodiment includes a push hood 2 arranged to face an air collision surface W such as a wall or a screen, and a guide provided on the push hood 2. 3, a first laminar flow generator 41 disposed in the guide 3, and a second laminar flow generator 42 disposed in the guide 3.
  • the push hood 2, the guide 3, and the first laminar flow generator 41 of the present embodiment have the same configurations as those of the first embodiment, and thus the description will be omitted.
  • the second laminar flow generator 42 will be described.
  • the second laminar flow generator 42 has the same function as the first laminar flow generator 41.
  • the second laminar flow generating device 42 is located at a position near the position where the laminar flow 41a blown out from the first laminar flow generating device 41 collides with the guide 3 at the peripheral edge in the guide 3, and It is arranged downstream of the device 41.
  • the second laminar flow generator 42 blows out the laminar flow 42a toward the opening surface 31 substantially in parallel with the direction in which the uniform air flow is blown out from the air flow opening surface 23.
  • substantially parallel means that the direction in which the uniform air flow is blown out and the direction in which the laminar flow 42a is blown out form an angle of approximately 0 °. For example, an error of about ⁇ 10 ° is allowed. You.
  • the second laminar flow generator 42 blows out the laminar flow 42a substantially in parallel with the flow velocity higher than the flow velocity of the uniform air flow. For example, if the flow velocity of the laminar flow 42a blown out by the second laminar flow generator 42 is about 30 to 40 times the uniform air flow, dust can be discharged out of the guide 3 before diffusing into the working space.
  • a cross-flow fan is typically used as the second laminar flow generator 42. As shown in FIG. 5, the cross flow fan arranged on the ceiling of the guide 3 sucks the air 42b below it and blows out the laminar flow 42a.
  • the second laminar flow generator 42 discharges the dust moved to the periphery in the guide 3 by the first laminar flow generator 41 to the outside of the guide 3 by the laminar flow 42a which blows out substantially in parallel.
  • the time during which the dust stays in the guide 3 can be shortened.
  • dust can be quickly discharged out of the guide without deforming the guide, and high cleanliness can be maintained in the working space where the work is actually being performed.
  • the dust can be effectively moved to the periphery in the guide by the attraction effect of the fast airflow blown out from the second laminar flow generator, and furthermore, the dust does not fall to a low position.
  • the local air cleaning device 1 As shown in FIG. 6, the local air cleaning device 1 according to the present embodiment includes a push hood 2 arranged to face an air collision surface W such as a wall or a screen, and a guide provided on the push hood 2. 3 and a first laminar flow generator 41 disposed in the guide 3.
  • a cross flow fan (or a line flow fan) is employed as the first laminar flow generator 41.
  • the cross flow fan arranged on the downstream side of the table 5 sucks the air 41c on the upstream side of the uniform air flow and blows out the laminar flow 41a.
  • the first laminar flow generation device 41 includes a punching plate and a mesh filter at an intake port that sucks the air 41c.
  • the first laminar flow generator 41 includes a plate-shaped member having a honeycomb structure at an outlet for blowing out the laminar flow 41a.
  • the local air cleaning device 1 according to the present embodiment has the same effect as the local air cleaning device 1 according to the first embodiment, and is better than the local air flow cleaning device 1 according to the first embodiment in the reduction rate of the number of dusts. Results can be obtained.
  • the configuration having the first laminar flow generation device 41 of the present embodiment is not limited to the configuration shown in FIG.
  • the first laminar flow generation device 41 of the present embodiment can be replaced with the first laminar flow generation device 41 of the second and third embodiments.
  • Example 1 Using the local air cleaning device 1 of FIG. 3, the number of dust particles was measured at a plurality of measurement positions at different distances and heights.
  • FIG. 7 is a plan view of the local air cleaning device 1 according to the first embodiment.
  • the push hood 2 of the local air cleaning device 1 has a push hood 2a having a width of 1050 mm and a length of 850 mm in which the air flow opening surfaces are in the same direction, and the short sides and the long sides of the push hood 2a are adjacent to each other. (3 ⁇ 3 ⁇ 9), and the size of the opening surface 31 is 3150 mm in width and 2570 mm in height.
  • the purified uniform air flow flows at a flow velocity of 0.3 m / s, and a clean air space is formed.
  • the device 6 installed on the table 5 uses 5.0 ⁇ 10 7 to 6.7 ⁇ 10 7 [pieces / m 3 ]. Generated atmospheric dust.
  • the device 6 blows out atmospheric dust by a pump.
  • the height of the table 5 is 800 mm.
  • the first laminar flow generator 41 is located at a position close to the device 6 and downstream thereof. In the plane of FIG. 7, the center of the first laminar flow generation device 41 and the center of the device 6 are on a straight line 7 extending in the x direction, and each center is located at a position 900 mm from the side surface of the guide in the y direction.
  • the first laminar flow generation device 41 transmits a laminar flow 41a having a thickness (x direction in FIG. 7) of 55.7 mm and a width (y direction in FIG. 7) of 760 mm from the top at a flow velocity of 2.1 m / s or 4.6 m / s. I blew out.
  • the distance from the upstream end of the first laminar flow generator 41 to the downstream side of the uniform air flow in the uniform air flow is 1000 mm, 2000 mm, 3000 mm, and 4000 mm.
  • the point at 5000 mm was taken as the measurement position in the x direction (hereinafter, referred to as “distance direction”).
  • points at distances of 0 mm, 900 mm, and 1800 mm from the straight line 7 in the y direction were measured positions in the depth direction.
  • FIG. 8 shows a side view of the local air cleaning device 1.
  • a point at a height from the floor of 400 mm, 800 mm, 1500 mm, or 2200 mm was defined as a measurement position in the height direction.
  • the number of dust [pieces / m 3 ] was measured at a total of 60 measurement positions in five distance directions, three in the depth direction, and four in the height direction. Measurements of the number of dust [pieces / m 3] uses a PMS Co. LASAIR-II, was measured dust particle number size 0.1 [mu] m [pieces / m 3] at each measurement position. The measurement results are shown in a class representing the degree of cleanliness of ISO14644-1. Classes representing cleanliness are classified into “Class 1” to “Class 9” based on the number and particle size of dust. “Class 1” indicates that the measured number of dust particles [pieces / m 3 ] is the smallest, and thus indicates that the cleanliness is the highest.
  • the measured dust count [pieces / m 3 ] goes up by one digit, thus indicating lower cleanliness.
  • the class required for a clean room is said to be “class 5” or lower. Table 1 shows the measurement results.
  • the device 6 for generating dust As shown in Table 1, at 800 mm in the vicinity of the height of the table 5, the device 6 for generating dust compared with the case where the laminar flow is not blown out under both the conditions of the flow velocity of 2.1 m / s and 4.6 m / s. It was confirmed that the cleanliness was improved on the downstream side of. That is, it was confirmed that the work space could be prevented from being contaminated on the downstream side of the dust generating device 6. Also, at a height of 2200 mm and 1500 mm, the number of dusts on the downstream side of the dust generating device 6 is lower than that in the case where the laminar flow is not blown out under the conditions of the flow velocity of 2.1 m / s and 4.6 m / s.
  • Example 2 Using the local air cleaning device 1 shown in FIG. 4, the number of dust particles was measured at a plurality of measurement positions at different distances and heights.
  • the method of measuring the push hood 2 and the cleanliness of the local air cleaning device 1 is the same as that of the first embodiment. Further, similarly to the first embodiment, the flow velocity of the uniform air flow is 0.3 m / s, and the flow velocity of the laminar flow 41a generated by the first laminar flow generator 41 is 2.1 m / s or 4.6 m / s. Met. The number of atmospheric dust generated from the device 6 was 3.3 ⁇ 10 7 to 4.0 ⁇ 10 7 [pieces / m 3 ].
  • FIG. 9 shows a side view of the local air cleaning device 1.
  • the measurement position in the height direction is the same as in the first embodiment (FIG. 8).
  • the hole 32 formed in the guide 3 is provided at a position where the laminar flow 41 a blown out from the first laminar flow generator 41 collides with the guide 3.
  • a straight line passing through the upstream end of the first laminar flow generator 41 in the distance direction (x direction in FIG. 7) in the vertical direction (toward the ceiling of the guide 3 in FIG. 8) corresponds to a hole corresponding to the ceiling of the guide 3.
  • the shape of the hole 32 formed in the guide 3 was rectangular, and was 500 mm long (x direction in FIG. 7) and 1000 mm wide (y direction in FIG. 7).
  • the number of dust [pieces / m 3 ] was measured at a total of 60 measurement positions in five distance directions, three in the depth direction, and four in the height direction.
  • the measurement result is represented by a class representing the cleanliness of ISO14644-1. Table 2 shows the measurement results.
  • Example 3 Using the local air cleaning device 1 shown in FIG. 5, the number of dusts was measured at a plurality of measurement positions at different distances and heights.
  • the method of measuring the push hood 2 and the cleanliness of the local air cleaning device 1 is the same as that of the first embodiment. Further, similarly to the first embodiment, the flow velocity of the uniform air flow is 0.3 m / s, and the flow velocity of the laminar flow 41a generated by the first laminar flow generator 41 is 2.1 m / s or 4.6 m / s. Met. The number of atmospheric dust generated from the apparatus 6 was 2.9 ⁇ 10 7 to 4.8 ⁇ 10 7 [pieces / m 3 ].
  • the second laminar flow generating device 42 applies a laminar flow 42a having a thickness (x direction in FIG. 7) of 55.7 mm and a width (y direction in FIG. 7) of 760 mm toward the opening surface 31 of the guide. Blowing was performed at 5 m / s or 11.5 m / s.
  • FIG. 7 shows a side view of the local air cleaning device 1.
  • the measurement position in the height direction is the same as in the first embodiment (FIG. 8).
  • the second laminar flow generator 42 is located at a position close to the position where the laminar flow 41 a blown out from the first laminar flow generator 41 collides with the guide 3, and is higher than the first laminar flow generator 41. It was located downstream. As shown in FIG. 10, the position in the distance direction where the second laminar flow generator 42 is arranged is such that the distance from the upstream end of the first laminar flow generator 41 to the downstream direction of the uniform airflow is 1000 mm. It is a point of. In the plane of FIG. 7, the center of the second laminar flow generator 42 is on the straight line 7, and the center is located 900 mm in the depth direction from the side surface of the guide 3.
  • the number of dust [pieces / m 3 ] was measured at a total of 60 measurement positions in five distance directions, three in the depth direction, and four in the height direction.
  • the measurement result is represented by a class representing the cleanliness of ISO14644-1.
  • Table 3 shows the measurement results when the flow velocity of the laminar flow 42a blown out by the second laminar flow generator 42 is 9.5 m / s
  • Table 4 shows the measurement results when the flow velocity is 11.5 m / s.
  • the laminar flow 42a blown from the second laminar flow generator 42 is blown out from the first laminar flow generator 41 at a point of 0 mm in depth under both the conditions of the flow velocity of 9.5 m / s and 11.5 m / s. Since better results were obtained under the condition of the flow velocity of 2.1 m / s than the flow velocity of 4.6 m / s of the laminar flow 41a, the depth of 900 mm and 1800 mm were not measured at the flow velocity of 4.6 m / s. Was.
  • Example 1 when comparing the conditions of Example 1 with the conditions of 11.5 m / s of Example 3, at a height of 800 mm, the conditions of 11.5 m / s of Example 3 have more classes 3 or less, and the [Pcs / m 3 ] was confirmed to be small. That is, it was confirmed that the dust was quickly discharged to the outside of the guide 3 without applying a deformation such as making a hole to the guide 3.
  • Example 4 In the local air cleaning device 1 of FIG. 5, the number of dusts was measured at a plurality of measurement positions while changing the position of the second laminar flow generator 42.
  • the method of measuring the push hood 2 and the cleanliness of the local air cleaning device 1 is the same as that of the first embodiment.
  • the flow velocity of the uniform air flow was 0.3 m / s
  • the flow velocity of the laminar flow 41a generated by the first laminar flow generator 41 was 2.1 m / s.
  • the number of atmospheric dust generated from the apparatus 6 was 5.0 ⁇ 10 7 to 6.7 ⁇ 10 7 [pieces / m 3 ].
  • the second laminar flow generator 42 applies a laminar flow 42a having a thickness (x direction in FIG. 7) of 55.7 mm and a width (y direction in FIG. 7) of 760 mm toward the opening surface 31 of the guide. It blew off at 5 m / s.
  • the position of the second laminar flow generator 42 will be described with reference to FIGS. 11A to 11C.
  • the second laminar flow generator 42 was arranged at three different positions with respect to the first laminar flow generator 41.
  • the second laminar flow generator 42 was disposed 1000 mm downstream from the upstream end of the first laminar flow generator 41.
  • the laminar flow 42a of the second laminar flow generator 42 was arranged to be blown from a position 1000 mm downstream from the upstream end of the first laminar flow generator 41.
  • the second laminar flow generator 42 was disposed directly above the first laminar flow generator 41. Specifically, in the distance direction (x direction in FIG.
  • the upstream end of the first laminar flow generator 41 and the upstream end of the second laminar flow generator 42 are arranged to be the same.
  • the third one was disposed 1000 mm upstream from the upstream end of the first laminar flow generator 41, as shown in FIG. 11C.
  • the laminar flow 42a of the second laminar flow generator 42 was arranged to be blown from a position 1000 mm upstream from the upstream end of the first laminar flow generator 41.
  • the measurement positions of the number of dusts [pieces / m 3 ] in the local air cleaning device 1 are points at a distance of 1000 mm, a depth of 0 mm, a height of 400 mm, 800 mm, 1500 mm, and 2,200. That is, the number of dust [pieces / m 3 ] was measured at a total of 12 measurement positions of three positions of the second laminar flow generator 42, one in the distance direction, one in the depth direction, and four in the height direction.
  • the measurement result is represented by a class representing the cleanliness of ISO14644-1. Table 5 shows the measurement results.
  • the position of the second laminar flow generator 42 shown in FIG. 11A is the ceiling FAN position + 1000 mm
  • the position of the second laminar flow generator 42 shown in FIG. 11B is the ceiling FAN position 0 mm
  • FIG. 11C The position of the second laminar flow generator 42 is defined as the ceiling FAN position-1000 mm.
  • Example 5 In the local air cleaning device 1 having the first laminar flow generator 41 having different suction port positions, the number of dust particles was measured.
  • FIGS. 12A to 12C are side views of the local air cleaning device 1.
  • the first laminar flow generation device 41 of the local air cleaning device 1 of FIGS. 12A to 12C is located at a position close to the device 6 and downstream thereof, and the center of the first laminar flow generation device 41 and the device 6 was arranged on the same straight line.
  • the first laminar flow generation device 41 in FIG. 12A sucks the downstream air 41b and blows out the laminar flow 41a.
  • the first laminar flow generator 41 in FIG. 12B sucks the air 41c on the upstream side and blows out the laminar flow 41a.
  • the first laminar flow generator 41 in FIG. 12C sucks air 41d from the floor and blows out laminar flow 41a.
  • the measuring method of the push hood 2 and the number of dusts of the local air cleaning device 1 of FIGS. 12A to 12C is the same as that of the first embodiment.
  • the flow velocity of the uniform air flow was 0.3 m / s, and the number of atmospheric dust generated from the device 6 was 5.0 ⁇ 10 7 to 6.7 ⁇ 10 7 [pieces / m 3 ].
  • the measurement position of the dust in the local air cleaning device 1 of FIGS. 12A to 12C is such that the distance from the downstream end of the first laminar flow generator 41 to the downstream side of the uniform air flow in the uniform air flow is 1000 mm.
  • the height from the floor was 800 mm, and the position on a straight line passing through the center of the first laminar flow generation device 41 and the device 6 was defined as the measurement position.
  • the number of dust particles was measured when the outlet size of the first laminar flow generator 41 in FIGS. 12A to 12C was 25 mm, 50 mm, 100 mm, and the blowing air speed was 1 m / s to 6 m / s.
  • the measurement result is represented by a class representing the cleanliness of ISO14644-1. Table 6 shows the measurement results.
  • the cleanness is most improved when the outlet size is 50 mm out of 25 mm, 50 mm, and 100 mm as compared with the case where the laminar flow is not blown out. Make sure you do. That is, it was confirmed that the outlet size was preferably 50 mm. In addition, the highest cleanliness was confirmed under the condition that the position of the intake air was the upstream intake air, the outlet size was 50 mm, and the outlet wind speed was 4 m / s.
  • Example 6 The number of dust particles was measured at a plurality of measurement positions at different distances and heights using the local air cleaning device 1 including the first laminar flow generator 41 having the suction port located on the upstream side.
  • FIG. 13 is a side view of the local air cleaning device 1 including the first laminar flow generation device 41 in which the suction port is located on the upstream side.
  • the measuring method of the push hood 2 and the number of dusts of the local air cleaning device 1 of FIG. 13 is the same as that of the first embodiment.
  • the flow velocity of the uniform air flow was 0.3 m / s, and the number of atmospheric dust generated from the device 6 was 5.0 ⁇ 10 7 to 6.7 ⁇ 10 7 [pieces / m 3 ].
  • the distance from the downstream end of the first laminar flow generator 41 to the downstream side of the uniform air flow is 1000 mm, 2000 mm, 3000 mm, and the height from the floor is 800 mm, 1200 mm.
  • the position on a straight line passing through the center of the first laminar flow generator 41 and the device 6 was defined as the measurement position.
  • the number of dust particles was measured when the size of the outlet of the first laminar flow generator 41 in FIG. 13 was 50 mm and the blowing wind speed was 2 m / s to 4 m / s.
  • the measurement result is represented by a class representing the cleanliness of ISO14644-1. Table 7 shows the measurement results.
  • Example 7 The wind speed in the local air cleaning device 1 when the first laminar flow generator 41 emitted a laminar flow was measured.
  • the push hood 2 of the local air cleaning device 1 of FIGS. 14A, 14B, 15A and 15B has a push hood 2a having a width of 1050 mm and a length of 850 mm in the same direction as that of the push hood 2a.
  • the short side and the long side are arranged so that they are adjacent to each other and connected (15 vertically 3 ⁇ 5 horizontally).
  • the size of the opening surface 31 is 5250 mm in width and 2570 mm in height. is there.
  • the uniform air flow blown out from the push hood 2 flows at a flow rate of 0.3 m / s, and a clean air space is formed.
  • FIG. 14A and 14B show a plan view and a side view of the local air cleaning device 1 when the first laminar flow generator 41 blows out the laminar flow 41a upward
  • FIGS. 15A and 15B show the first laminar flow.
  • FIG. 3 shows a plan view and a side view of the local air cleaning device 1 in a case where the generator 41 blows out a laminar flow 41a in a horizontal direction (y direction).
  • the table 5 is located at the center of the local air cleaning device 1 in the y direction, and the first laminar flow generation device 41 shown in FIGS. 14A, 14B, 15A, and 15B is a position close to the table 5 and It was located downstream.
  • the center of the first laminar flow generator 41 that blows out laminar flow upward and the center of the table 5 are located on the straight line 8.
  • the first laminar flow generator 41 that blows out laminar flow in the horizontal direction is located at the downstream end of the table 5.
  • the downstream side of the uniform laminar air flow from the downstream end of the first laminar flow generator 41 in the uniform laminar air flow ( The points at distances of 1000 mm, 2000 mm, and 3000 mm to the x direction) were taken as measurement positions in the distance direction.
  • points at which the distance from the straight line 8 in the y direction is ⁇ 400 mm, 0 mm, and +400 mm were determined as measurement positions in the depth direction.
  • points at heights from the floor of 400 mm, 800 mm, 1200 mm, and 1600 mm were measured positions in the height direction.
  • the downstream side of the uniform laminar flow from the downstream end of the first laminar flow generator 41 in the uniform airflow ( The points at distances of 1000 mm, 2000 mm, and 3000 mm to the x direction) were taken as measurement positions in the distance direction. Further, points at distances of 0 mm, 400 mm, 800 mm, and 1200 mm from the outlet of the first laminar flow generator 41 in the y direction were measured positions in the depth direction. In addition, as shown in FIG. 15B, points at 400 mm, 800 mm, and 1200 mm from the floor were measured positions in the height direction.
  • Table 8 shows the measurement results in the case of the first laminar flow generator 41 that blows out laminar flow upward
  • Table 9 shows the measurement results in the case of the first laminar flow generator 41 that blows out laminar flow in the horizontal direction.
  • upstream airflow ON indicates a case where the first laminar flow generator 41 blows out a laminar flow upward
  • upstream airflow OFF indicates that the first laminar flow generator 41 does not blow out a laminar flow. Show the case. As shown in Table 8, it was confirmed that the wind speed distribution was within ⁇ 50% under the condition of “upstream air flow ON” and the condition of “upstream air flow OFF”. Further, it was confirmed that there was almost no difference in the distribution of the airflow between the condition of “upstream airflow ON” and the condition of “upstream airflow OFF”.
  • lateral airflow ON indicates a case where the first laminar flow generator 41 blows out laminar flow in the horizontal direction
  • lateral airflow OFF indicates that the first laminar flow generator 41 does not blow out laminar flow. Show the case.
  • the wind speed distribution was within ⁇ 50% under the conditions of “sideways airflow ON” and “sideways airflow OFF”.
  • the local air purification apparatus which can maintain high cleanliness in the working space which is actually working by moving the dust generated by the work in the clean air space to the outside of the working space. Can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ventilation (AREA)
  • Duct Arrangements (AREA)
  • Air-Flow Control Members (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

This local air purification device (1) is provided with: a push hood (2) having an air flow open surface (23) for blowing out a purified uniform air flow; a guide (3) which is provided on the air flow open surface (23) side of the push hood (2), extends the uniform air flow from the air flow open surface (23) side toward a downstream side, and forms an open surface (31) on a downstream-side end section; and a first laminar flow generation device (41) which is arranged inside the guide (3) and blows out a laminar flow (41a) in a direction approximately perpendicular to the direction in which the uniform air flow is blown out from the air flow open surface (23). The first laminar flow generation device (41) moves dust generated inside the guide (3) to the peripheral edge of the inside of the guide (3) by means of the laminar flow (41a) blown out in the approximately perpendicular direction, and the push hood (2) discharges the dust, moved to the peripheral edge of the inside of the guide (3) by the first laminar flow generation device (41), out of the guide (3) by the uniform air flow blown out from the air flow open surface (23).

Description

局所空気清浄化装置Local air purifier
 本発明は、局所空気清浄化装置に関する。 The present invention relates to a local air cleaning device.
 従来、局所的な作業空間の空気清浄度を向上させる装置としてクリーンベンチがしばしば用いられている。一般的なクリーンベンチは、作業台の手前の面だけが作業用の開口になっており、それ以外の面では清浄度を保つために囲いとなっている。このようなクリーンベンチでは、その囲い内に清浄空気吹き出し口が配置されており、作業者は手前の作業用の開口から手を入れて作業を行っている。 Conventionally, a clean bench is often used as a device for improving the air cleanliness of a local work space. In a general clean bench, only a surface in front of a workbench has an opening for work, and other surfaces are enclosed to maintain cleanliness. In such a clean bench, a clean air outlet is disposed in the enclosure, and an operator works by putting his / her hand through a front working opening.
 しかし、クリーンベンチの作業用の開口が狭いことから、作業者が精密機械の組立作業等を行う場合には、その作業性に問題がある。また、製造ラインのように、製品や製造部品の移動が伴う場合には、ライン全体をクリーンルーム内に入れる等の措置がとられてきたが、これでは設備が大規模になってしまうという問題がある。 However, since the working opening of the clean bench is narrow, there is a problem in the workability when an operator performs assembling work of a precision machine or the like. In addition, when products and manufactured parts are moved, as in a production line, measures such as putting the entire line in a clean room have been taken.However, this has the problem that the equipment becomes large-scale. is there.
 このため、清浄化された空気の一様流を吹き出すことのできる一対のプッシュフードの空気流開口面を対向させて配置し、それぞれの空気流開口面からの空気流を衝突させることにより、一対のプッシュフード間の領域を他の領域と比較して高い清浄度を有する清浄空気空間とすることができる局所空気清浄化装置が提案されている(特許文献1)。 For this reason, a pair of push hoods that can blow out a uniform flow of purified air are arranged so that the air flow opening surfaces thereof face each other, and the air flows from the respective air flow opening surfaces collide with each other. A local air cleaning device has been proposed which can make a region between push hoods as a clean air space having higher cleanliness than other regions (Patent Document 1).
 また、一つのプッシュフードの空気流開口面を、壁などの空気衝突面に対向させて配置し、空気流開口面からの空気流を空気衝突面に衝突させることにより、プッシュフードと空気衝突面との間の領域を他の領域と比較して高い清浄度を有する清浄空気空間とすることができる局所空気清浄化装置も提案されている(特許文献2)。 In addition, the air flow opening surface of one push hood is arranged so as to face an air collision surface such as a wall, and the air flow from the air flow opening surface collides with the air collision surface. A local air cleaning device has been proposed that can make a region between the above and the other region a clean air space having higher cleanliness than other regions (Patent Document 2).
特開2008-275266号公報JP 2008-275266 A 特開2013-068396号公報JP 2013-068396 A
 ところで、上記の清浄空気空間において作業者が作業を行ったり、清浄空気空間に配置される製造ラインを作動させると、粉じんが発生してしまうことがある。従来の局所空気清浄化装置は、発生した粉じんを、空気流開口面から吹き出される空気流により下流側(例えば、空気流開口面と対向した空気衝突面側)に移動し、暫くすると清浄空気空間から排出することができた。しかし、粉じん発生と同時に下流側で作業する場合には作業空間から素早く排出したいという要望もある。 By the way, when an operator works in the above-mentioned clean air space or activates a production line arranged in the clean air space, dust may be generated. The conventional local air cleaning device moves generated dust to the downstream side (for example, the air collision surface side facing the air flow opening surface) by the air flow blown out from the air flow opening surface, and after a while, clean air Could be discharged from space. However, when working on the downstream side simultaneously with the generation of dust, there is also a demand for quick discharge from the work space.
 本発明は、上記課題に鑑みてなされたものであり、清浄空気空間内において作業により発生した粉じんを作業空間外へ移動することにより、実際に作業中の作業空間において清浄度を高く維持することが可能な局所空気清浄化装置を提供することを目的とする。 The present invention has been made in view of the above problems, and it is an object of the present invention to maintain high cleanliness in a working space in which a work is actually being performed by moving dust generated by the work in the clean air space to the outside of the working space. It is an object of the present invention to provide a local air cleaning device capable of performing the following.
 上記目的を達成するため、本発明の第1の観点に係る局所空気清浄化装置は、
 清浄化された一様空気流を吹き出す空気流開口面を有するプッシュフードと、
 前記プッシュフードの空気流開口面側に設けられ、前記空気流開口面側から前記一様空気流の下流側に向かって延び、下流側端部に開口面を形成するガイドと、を備え、
 前記空気流開口面から吹き出される清浄化された一様空気流が、前記ガイド内を通過した後、前記ガイドの前記開口面の下流側において空気衝突面に衝突するように前記プッシュフードを配置するとともに、前記ガイドの前記開口面を前記空気衝突面から離間して対向させることにより、前記ガイドの前記開口面と前記空気衝突面との間に開放した領域を形成し、
 前記空気流開口面から吹き出される清浄化された一様空気流が、前記空気衝突面で衝突して前記開放した領域外に流出することにより、前記ガイド内及び前記開放した領域内を他の領域と比較して高い清浄度とする局所空気清浄化装置において、
 前記ガイド内において粉じんが発生する位置よりも下流側に配置され、前記空気流開口面から前記一様空気流が吹き出される方向に対し略直交する方向に層流を吹き出す第1層流発生装置を備え、
 前記第1層流発生装置は、前記ガイド内で発生する粉じんを、前記略直交する方向に吹き出す層流により、前記ガイド内の周縁に移動させ、
 前記プッシュフードは、前記第1層流発生装置により前記ガイド内の周縁に移動された粉じんを、前記空気流開口面から吹き出す一様空気流により、前記ガイド外へ排出する
 ことを特徴とする。
In order to achieve the above object, the local air cleaning device according to the first aspect of the present invention includes:
A push hood having an air flow opening surface for blowing out a purified uniform air flow;
A guide that is provided on the airflow opening surface side of the push hood, extends from the airflow opening surface side toward the downstream side of the uniform airflow, and forms an opening surface at a downstream end.
The push hood is arranged such that a uniform air stream, which is blown out from the airflow opening surface, passes through the guide and then strikes an air collision surface downstream of the opening surface of the guide. And, by facing the opening surface of the guide away from the air collision surface to form an open area between the opening surface of the guide and the air collision surface,
The purified uniform air flow blown out from the air flow opening surface collides with the air collision surface and flows out of the open region, so that other air flows in the guide and the open region. In a local air purification device that has a higher cleanness compared to the area,
A first laminar flow generator that is disposed downstream of a position where dust is generated in the guide and that blows out a laminar flow in a direction substantially perpendicular to a direction in which the uniform air flow is blown out from the air flow opening surface. With
The first laminar flow generation device moves the dust generated in the guide to a peripheral edge in the guide by a laminar flow blown out in the substantially orthogonal direction,
The push hood is configured to discharge the dust moved to a peripheral edge in the guide by the first laminar flow generation device out of the guide by a uniform airflow blown out from the airflow opening surface.
 本発明の第2の観点に係る局所空気清浄化装置は、
 清浄化された一様空気流を吹き出す空気流開口面を有するプッシュフードと、
 前記プッシュフードの空気流開口面側に設けられ、前記空気流開口面側から前記一様空気流の下流側に向かって延び、下流側端部に開口面を形成するガイドと、を備え、
 前記空気流開口面から吹き出される清浄化された一様空気流が、前記ガイド内を通過した後、前記ガイドの前記開口面の下流側において空気衝突面に衝突するように前記プッシュフードを配置するとともに、前記ガイドの前記開口面を前記空気衝突面から離間して対向させることにより、前記ガイドの前記開口面と前記空気衝突面との間に開放した領域を形成し、
 前記空気流開口面から吹き出される清浄化された一様空気流が、前記空気衝突面で衝突して前記開放した領域外に流出することにより、前記ガイド内及び前記開放した領域内を他の領域と比較して高い清浄度とする局所空気清浄化装置において、
 前記ガイド内において粉じんが発生する位置よりも下流側に配置され、前記空気流開口面から前記一様空気流が吹き出される方向に対し略直交する方向に層流を吹き出す第1層流発生装置を備え、
 前記ガイドにおいて、前記第1層流発生装置から吹き出される層流が前記ガイドに衝突する位置に穴が形成され、
 前記第1層流発生装置は、前記ガイド内で発生した粉じんを、前記略直交する方向に吹き出す層流により、前記穴から前記ガイド外へ排出する
 ことを特徴とする。
The local air cleaning device according to the second aspect of the present invention includes:
A push hood having an air flow opening surface for blowing out a purified uniform air flow;
A guide that is provided on the airflow opening surface side of the push hood, extends from the airflow opening surface side toward the downstream side of the uniform airflow, and forms an opening surface at a downstream end.
The push hood is arranged such that a uniform air stream, which is blown out from the airflow opening surface, passes through the guide and then strikes an air collision surface downstream of the opening surface of the guide. And, by facing the opening surface of the guide away from the air collision surface to form an open area between the opening surface of the guide and the air collision surface,
The purified uniform air flow blown out from the air flow opening surface collides with the air collision surface and flows out of the open region, so that other air flows in the guide and the open region. In a local air purification device that has a higher cleanness compared to the area,
A first laminar flow generator that is disposed downstream of a position where dust is generated in the guide and that blows out a laminar flow in a direction substantially perpendicular to a direction in which the uniform air flow is blown out from the air flow opening surface. With
In the guide, a hole is formed at a position where a laminar flow blown from the first laminar flow generator collides with the guide,
The first laminar flow generating device discharges dust generated in the guide from the hole to the outside of the guide by a laminar flow blown in a direction substantially orthogonal to the guide.
 第1の観点に係る局所空気清浄化装置において、
 前記ガイド内の周縁において、前記第1層流発生装置から吹き出される層流が前記ガイドに衝突する位置に近接する位置であって、前記第1層流発生装置よりも下流側に配置され、前記開口面に向かって、前記空気流開口面から前記一様空気流が吹き出される方向に対し略平行に層流を吹き出す第2層流発生装置をさらに備え、
 前記第2層流発生装置は、前記一様空気流の流速よりも速い流速で、前記略平行に層流を吹き出し、
 前記第2層流発生装置は、前記第1層流発生装置により前記ガイド内の周縁に移動された粉じんを、前記略平行に吹き出す層流により、前記ガイド外へ排出する
 ことを特徴とする。
In the local air cleaning device according to the first aspect,
At a peripheral edge in the guide, a position where a laminar flow blown out from the first laminar flow generation device collides with the guide, and is located downstream of the first laminar flow generation device, A second laminar flow generator that blows out a laminar flow substantially parallel to a direction in which the uniform air flow is blown out from the air flow opening surface toward the opening surface,
The second laminar flow generator blows out the laminar flow substantially in parallel with a flow velocity higher than the flow velocity of the uniform air flow,
The second laminar flow generating device discharges the dust moved to the periphery in the guide by the first laminar flow generating device out of the guide by the laminar flow blown out in substantially parallel.
 また、第1及び第2の観点に係る局所空気清浄化装置において、
 前記第1層流発生装置が前記略直交する方向に吹き出す層流の流速は、前記プッシュフードが吹き出す前記一様空気流の流速の3~25倍である
 ことを特徴とする。
Further, in the local air cleaning device according to the first and second aspects,
A flow rate of the laminar flow blown in the substantially orthogonal direction by the first laminar flow generator is 3 to 25 times a flow rate of the uniform air flow blown out by the push hood.
 また、第1及び第2の観点に係る局所空気清浄化装置において、
 前記第1層流発生装置は、前記一様空気流中における当該第1層流発生装置の上流側の空気を吸い込む
 ことを特徴とする。
Further, in the local air cleaning device according to the first and second aspects,
The first laminar flow generator sucks air upstream of the first laminar flow generator in the uniform airflow.
 本発明によれば、清浄空気空間内において作業により発生した粉じんを作業空間外へ移動することにより、実際に作業中の作業空間において清浄度を高く維持することが可能な局所空気清浄化装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the local air purification apparatus which can maintain high cleanliness in the working space which is actually working by moving the dust generated by the work in the clean air space to the outside of the working space. Can be provided.
実施形態1に係る局所空気清浄化装置の一例を示す図である。FIG. 2 is a diagram illustrating an example of a local air cleaning device according to the first embodiment. プッシュフードの構造を示す図である。It is a figure showing the structure of a push food. 実施形態1に係る局所空気清浄化装置の一例を示す図である。FIG. 2 is a diagram illustrating an example of a local air cleaning device according to the first embodiment. 実施形態2に係る局所空気清浄化装置の一例を示す図である。It is a figure showing an example of a local air cleaning device concerning Embodiment 2. 実施形態3に係る局所空気清浄化装置の一例を示す図である。FIG. 13 is a diagram illustrating an example of a local air cleaning device according to a third embodiment. 実施形態4に係る局所空気清浄化装置の一例を示す図である。FIG. 14 is a diagram illustrating an example of a local air cleaning device according to a fourth embodiment. 実施例1乃至3に係る局所空気清浄化装置の平面図である。FIG. 4 is a plan view of the local air cleaning device according to Embodiments 1 to 3. 実施例1に係る局所空気清浄化装置の側面図である。FIG. 2 is a side view of the local air cleaning device according to the first embodiment. 実施例2に係る局所空気清浄化装置の側面図である。FIG. 9 is a side view of the local air cleaning device according to the second embodiment. 実施例3に係る局所空気清浄化装置の側面図である。FIG. 13 is a side view of the local air cleaning device according to the third embodiment. 実施例4に係る局所空気清浄化装置の側面図である。FIG. 13 is a side view of the local air cleaning device according to the fourth embodiment. 実施例4に係る局所空気清浄化装置の側面図である。FIG. 13 is a side view of the local air cleaning device according to the fourth embodiment. 実施例4に係る局所空気清浄化装置の側面図である。FIG. 13 is a side view of the local air cleaning device according to the fourth embodiment. 実施例5に係る局所空気清浄化装置の側面図である。FIG. 14 is a side view of the local air cleaning device according to the fifth embodiment. 実施例5に係る局所空気清浄化装置の側面図である。FIG. 14 is a side view of the local air cleaning device according to the fifth embodiment. 実施例5に係る局所空気清浄化装置の側面図である。FIG. 14 is a side view of the local air cleaning device according to the fifth embodiment. 実施例6に係る局所空気清浄化装置の側面図である。FIG. 13 is a side view of the local air cleaning device according to the sixth embodiment. 実施例7に係る局所空気清浄化装置の平面図である。It is a top view of the local air purifier which concerns on Example 7. 実施例7に係る局所空気清浄化装置の側面図である。FIG. 14 is a side view of the local air cleaning device according to the seventh embodiment. 実施例7に係る局所空気清浄化装置の平面図である。It is a top view of the local air purifier which concerns on Example 7. 実施例7に係る局所空気清浄化装置の側面図である。FIG. 14 is a side view of the local air cleaning device according to the seventh embodiment.
 以下、本発明の局所空気清浄化装置について、図1乃至15を参照して説明する。 Hereinafter, the local air cleaning device of the present invention will be described with reference to FIGS.
(実施形態1)
 本実施形態に係る局所空気清浄化装置1は、図1に示すように、壁、衝立などの空気衝突面Wに対向するように配置されたプッシュフード2と、プッシュフード2に設けられたガイド3と、ガイド3内に配置された第1層流発生装置41と、を備える。図1は、局所空気清浄化装置1を側面から見た図である。本実施形態及び以下に示す実施形態では、ガイド3内にはテーブル5が配置され、このテーブル5の上に粉じんを発生する粉じん発生源としての装置6が設置されている場合を例に、局所空気清浄化装置1を説明する。
(Embodiment 1)
As shown in FIG. 1, a local air cleaning device 1 according to the present embodiment includes a push hood 2 arranged to face an air collision surface W such as a wall or a screen, and a guide provided on the push hood 2. 3 and a first laminar flow generator 41 disposed in the guide 3. FIG. 1 is a diagram of the local air cleaning device 1 viewed from a side. In the present embodiment and the embodiments described below, a table 5 is arranged in the guide 3, and a device 6 as a dust generation source that generates dust is installed on the table 5. The air cleaning device 1 will be described.
 図1は、装置6が粉じんを発生し、第1層流発生装置41が動作していない状態を示している。図1の矢印(例えば、矢印28)は、プッシュフード2から吹き出される一様空気流の流れを示すものである。また、矢印の色は、ガイド3内の汚染の程度を示す。矢印の色が濃いほど、その場所には粉じんが多く存在することを示す。図1において、粉じんを発生している装置6と同程度の高さでは、粉じんが一様空気流に乗ってガイド内を移動しており、ガイド内の清浄空気空間が最も汚染されている。 FIG. 1 shows a state in which the device 6 generates dust and the first laminar flow generating device 41 is not operating. An arrow (for example, arrow 28) in FIG. 1 indicates a flow of a uniform airflow blown from the push hood 2. The color of the arrow indicates the degree of contamination in the guide 3. The darker the arrow, the more dust there is at that location. In FIG. 1, at the same height as the dust generating device 6, the dust is moving in the guide on a uniform air flow, and the clean air space in the guide is most contaminated.
 ここでいう一様空気流および一様流は、林太郎著「工場換気」(空気調和・衛生工学会 1982年発行)に記載の一様流と同義であり、一様に連続し、大きな渦部の生じない微風速の流れをいう。ただし、本発明は、空気の流速および速度分布を厳密に規定した空気吹き出し装置を提供しようとするものではない。一様空気流は、例えば、障害物がない状態での速度分布のバラツキが、その平均値に対して±50%以内、さらには±30%以内であるものが好ましい。 The uniform air flow and the uniform flow here are synonymous with the uniform flow described in Taro Hayashi, “Factory Ventilation” (The Society of Air Conditioning and Sanitary Engineers, issued in 1982). This refers to the flow at a slight wind speed that does not produce any wind. However, the present invention does not intend to provide an air blowing device in which the flow velocity and velocity distribution of air are strictly defined. The uniform air flow preferably has, for example, a variation in velocity distribution in the absence of an obstacle within ± 50%, and more preferably ± 30% of the average value.
 プッシュフード2は、清浄化された一様空気流を吹き出す機構を有するものであればよく、従来からプッシュプル型換気装置に用いられているプッシュフードを基本的構造とし清浄用フィルタを内設した構造を採用することができる。 The push hood 2 only needs to have a mechanism for blowing out a purified uniform air flow. The push hood 2 has a basic structure of a push hood conventionally used in a push-pull ventilator and has a cleaning filter provided therein. A structure can be adopted.
 本実施形態のプッシュフード2は、連結具により、9個(縦3個×横3個)のプッシュフード2aがその空気流開口面が同一方向であって、プッシュフード2aの短辺どうし、長辺どうしがそれぞれ隣り合うように配列して連結されている。図2にプッシュフード2aの構造を示す。なお、連結された他のプッシュフード2aの構造も基本的に同一である。 The push hood 2 of the present embodiment has nine (three by three) horizontal push hoods 2a whose air flow opening surfaces are in the same direction, and the short sides of the push hood 2a The sides are arranged and connected so as to be adjacent to each other. FIG. 2 shows the structure of the push hood 2a. The structure of the other connected push hood 2a is basically the same.
 図2に示すように、プッシュフード2aのハウジング21は、略直方体状に形成され、その一面に空気流吸込面22が形成されている。空気流吸込面22は、例えば、ハウジング21の一面全体に複数の孔が形成された面からなる。空気流吸込面22では、この孔からプッシュフード2aの外部の周辺空気である外気や室内空気を取り入れる。また、ハウジング21の空気流吸込面22と対向する他面には、空気吹出面(空気流開口面)23が形成されている。空気流開口面23は、例えば、ハウジング21の一面全体に複数の孔が形成された面からなる。空気流開口面23では、この孔からプッシュフード2a内で形成された清浄空気の一様空気流がプッシュフード2aの外部に吹き出される。プッシュフード2aの空気流開口面23の大きさは、特に限定されるものではないが、例えば、1050mm×850mmである。 As shown in FIG. 2, the housing 21 of the push hood 2a is formed in a substantially rectangular parallelepiped shape, and an air flow suction surface 22 is formed on one surface thereof. The air flow suction surface 22 is, for example, a surface in which a plurality of holes are formed on one entire surface of the housing 21. In the air flow suction surface 22, outside air and room air, which are ambient air outside the push hood 2a, are taken in from the holes. On the other surface of the housing 21 opposite to the air flow suction surface 22, an air blowing surface (air flow opening surface) 23 is formed. The air flow opening surface 23 is, for example, a surface in which a plurality of holes are formed on one entire surface of the housing 21. In the air flow opening surface 23, a uniform air flow of clean air formed in the push hood 2a is blown out of the push hood 2a from this hole. The size of the airflow opening surface 23 of the push hood 2a is not particularly limited, but is, for example, 1050 mm × 850 mm.
 プッシュフード2は、その空気流開口面23が壁などの空気衝突面Wに対向するように配置される。ここで、空気流開口面23が空気衝突面Wに対向するとは、プッシュフード2の空気流開口面23と空気衝突面Wとが正対した状態に限定されるものではなく、例えば、プッシュフード2の空気流開口面23と空気衝突面Wとが若干傾いた状態のものも含まれる。プッシュフード2の空気流開口面23と空気衝突面Wとの傾きは、空気流開口面23と空気衝突面Wとが成す角度が30°程度の範囲内であることが好ましい。 The push hood 2 is arranged such that the air flow opening surface 23 faces an air collision surface W such as a wall. Here, that the air flow opening surface 23 faces the air collision surface W is not limited to a state in which the air flow opening surface 23 of the push hood 2 and the air collision surface W face each other. 2 includes a state where the airflow opening surface 23 and the air collision surface W are slightly inclined. It is preferable that the inclination between the air flow opening surface 23 and the air collision surface W of the push hood 2 is within a range of about 30 ° between the air flow opening surface 23 and the air collision surface W.
 ハウジング21内には、送風機構24と、高性能フィルタ25と、整流機構26とが配置されている。 In the housing 21, an air blowing mechanism 24, a high-performance filter 25, and a rectifying mechanism 26 are arranged.
 送風機構24は、ハウジング21内の空気流吸込面22側に配置されている。送風機構24は、空気吹き出し用のファン等から構成されている。送風機構24は、プッシュフード2aの周辺空気である外気や室内空気を空気流吸込面22から取り入れるとともに、空気流開口面23から空気流を吹き出す。また、送風機構24は、ファンの吹き出し力を制御することにより、空気流開口面23から吹き出される空気流の流速を可変できるように形成されている。 風 The blower mechanism 24 is disposed on the side of the airflow suction surface 22 in the housing 21. The blowing mechanism 24 includes a fan for blowing air and the like. The blower mechanism 24 takes in outside air or room air, which is the air around the push hood 2a, from the airflow suction surface 22 and blows out the airflow from the airflow opening surface 23. Further, the blower mechanism 24 is formed so as to vary the flow velocity of the airflow blown from the airflow opening surface 23 by controlling the blowout force of the fan.
 高性能フィルタ25は、送風機構24と整流機構26との間に配置されている。高性能フィルタ25は、取り入れた周辺空気をろ過するためのHEPAフィルタ(High Efficiency Particulate Air Filter)やULPAフィルタ(Ultra Low Penetration Air Filter)等の清浄化レベルに応じた高性能フィルタから構成されている。高性能フィルタ25は、送風機構24によって取り入れた周辺空気を所望の洗浄化レベルの清浄空気に清浄化する。高性能フィルタ25により所望の洗浄化レベルに清浄された清浄空気は、送風機構24により整流機構26に送られる。 (4) The high-performance filter 25 is disposed between the blower mechanism 24 and the rectifier mechanism 26. The high-performance filter 25 is composed of a high-performance filter according to a cleaning level such as a HEPA filter (High Efficiency Particulate Air Filter) or an ULPA filter (Ultra Low Penetration Air Filter) for filtering the taken-in surrounding air. . The high-performance filter 25 purifies the surrounding air taken in by the blower mechanism 24 to clean air of a desired cleaning level. The clean air that has been cleaned to a desired cleaning level by the high-performance filter 25 is sent to the rectifying mechanism 26 by the blowing mechanism 24.
 整流機構26は、高性能フィルタ25と空気流開口面23との間に配置されている。整流機構26は、図示しない空気抵抗体を備えており、パンチングプレートや網部材などから形成されている。整流機構26は、高性能フィルタ25から送風され、空気流開口面23全体に対して通気量に偏りのある送風空気を、空気流開口面23全体に対して通気量に偏りのない均一化された空気流(一様空気流)に補正(整流)する。この整流された一様空気流が、送風機構24により、空気流開口面23全体からプッシュフード2の外部に吹き出される。 The rectifying mechanism 26 is disposed between the high-performance filter 25 and the airflow opening surface 23. The rectifying mechanism 26 includes an air resistor (not shown), and is formed of a punching plate, a net member, or the like. The rectification mechanism 26 blows air that is blown from the high-performance filter 25 and has a bias in the amount of air flow to the entire airflow opening surface 23, and makes the airflow uniform to the entire airflow opening surface 23 without bias in the amount of airflow. (Rectified) to the air flow (uniform air flow). This rectified uniform airflow is blown out of the push hood 2 from the entire airflow opening surface 23 by the blowing mechanism 24.
 また、プッシュフード2aは、図2に示すように、ハウジング21内の空気流吸込面22と送風機構24との間に、プレフィルタ27が配置されていることが好ましい。プレフィルタ27としては、例えば、中性能フィルタが挙げられる。空気流吸込面22と送風機構24との間にプレフィルタ27を配置することにより、空気流吸込面22を介してハウジング21内部に吸い込まれた周辺空気に含まれる比較的大きな粉じんを取り除くことができ、目詰まり等が生じやすい高性能フィルタ25の性能を長期間維持することができる。 In the push hood 2a, as shown in FIG. 2, it is preferable that a pre-filter 27 is disposed between the air flow suction surface 22 in the housing 21 and the blower mechanism 24. As the pre-filter 27, for example, a medium-performance filter is used. By disposing the pre-filter 27 between the air flow suction surface 22 and the air blowing mechanism 24, relatively large dust contained in the surrounding air sucked into the housing 21 through the air flow suction surface 22 can be removed. Thus, the performance of the high-performance filter 25 in which clogging or the like easily occurs can be maintained for a long period of time.
 このように構成されたプッシュフード2aでは、送風機構24によって取り入れた周辺空気がプレフィルタ27及び高性能フィルタ25によって所望の洗浄化レベルの清浄空気に清浄化される。そして、清浄化された清浄空気は整流機構26によって一様空気流に整流される。このように清浄化された一様空気流は空気流開口面23全体からプッシュフード2aの空気流開口面23にほぼ垂直方向に外部へ向かって吹き出される。 In the push hood 2a configured as described above, the surrounding air taken in by the blowing mechanism 24 is purified by the pre-filter 27 and the high-performance filter 25 into clean air of a desired cleaning level. Then, the purified clean air is rectified into a uniform air flow by the rectification mechanism 26. The uniform airflow thus cleaned is blown out from the entire airflow opening surface 23 to the outside in a direction substantially perpendicular to the airflow opening surface 23 of the push hood 2a.
 なお、空気流開口面23から吹き出される一様空気流の流速は、0.2~0.7m/sが好ましい。この範囲の流速で吹き出すことにより、一様空気流がガイド3内を押し出されるように移動し、ガイド3内で一様空気流の状態を維持しやすいためである。 The flow rate of the uniform air flow blown out from the air flow opening surface 23 is preferably 0.2 to 0.7 m / s. By blowing at a flow velocity in this range, the uniform air flow moves so as to be pushed out in the guide 3 and the state of the uniform air flow is easily maintained in the guide 3.
 ガイド3は、その一端が、プッシュフード2の空気流開口面23側に設けられている。また、ガイド3は、空気流開口面23に設けられ、そこから、空気流開口面23から吹き出される一様空気流の下流側に向かって延び、空気流開口面23の外周輪郭部を覆うように形成されている。例えば、空気流開口面23の形状が四角形の場合、その断面形状がコの字状となるように延伸形成されている。このコの字状の開放された側と床面とにより、一様空気流の吹き出し方向に向かって外周輪郭部を含み、そこから吹き出される一様空気流の流れと並行に気流の周囲をトンネル状に囲う状態となる。ガイド3は、その他端(開口面31)との間に開放した領域を有するように形成されている。なお、空気流開口面23の形状が四角形の場合、断面形状はコの字ではなく、ロの字状となるように延伸形成されてもよい。 The guide 3 has one end provided on the airflow opening surface 23 side of the push hood 2. The guide 3 is provided on the air flow opening surface 23, extends from the air flow opening surface 23 toward the downstream side of the uniform air flow blown from the air flow opening surface 23, and covers the outer peripheral contour of the air flow opening surface 23. It is formed as follows. For example, when the shape of the airflow opening surface 23 is a quadrangle, the airflow opening surface 23 is formed so as to have a U-shaped cross section. The open side of the U-shape and the floor surface include an outer peripheral portion in the direction of the uniform airflow, and the periphery of the airflow in parallel with the flow of the uniform airflow blown therefrom. It is in a state of surrounding in a tunnel shape. The guide 3 is formed so as to have an open area between the guide 3 and the other end (opening surface 31). In the case where the shape of the airflow opening surface 23 is a quadrangle, the cross-sectional shape may be extended and formed so as to be not a U-shape but a square shape.
 ガイド3は、その開口面31から吹き出される空気流が、空気流開口面23からの清浄化された一様空気流の状態を維持可能なものであれば、任意の材料により形成することが可能である。また、ガイド3は、空気流開口面23からの清浄化された一様空気流の状態を維持可能であれば、一様空気流の周囲全体を完全に覆っていなくてもよく、例えば、その一部に穴が開いていたり、スリットが形成されていてもよい。 The guide 3 can be formed of any material as long as the air flow blown from the opening surface 31 can maintain a state of a clean and uniform air flow from the air flow opening surface 23. It is possible. Further, the guide 3 does not need to completely cover the entire periphery of the uniform air flow as long as the state of the purified uniform air flow from the air flow opening surface 23 can be maintained. A hole may be partially formed or a slit may be formed.
 ガイド3は、その開口面31が空気衝突面Wに対向するように配置されている。開口面31が空気衝突面Wに対向するように配置されることで、開口面31から吹き出された空気流が空気衝突面Wに衝突する。例えば、開口面31を壁に正対させた場合、一様空気流は、空気衝突面Wに衝突すると、ほぼ垂直に流れの向きを変える挙動を示す。このように流れることにより、空気衝突面Wに衝突した空気流はぶつかった面の外側へと流出する。この結果、気流がぶつかった面から開口面31端部までの領域において清浄空気空間が得られる。 The guide 3 is arranged such that the opening surface 31 thereof faces the air collision surface W. By arranging the opening surface 31 so as to face the air collision surface W, the airflow blown from the opening surface 31 collides with the air collision surface W. For example, when the opening surface 31 is directly opposed to the wall, the uniform air flow exhibits a behavior of changing the direction of the flow substantially perpendicularly upon collision with the air collision surface W. By flowing in this manner, the airflow that has collided with the air collision surface W flows out of the surface where the collision has occurred. As a result, a clean air space is obtained in a region from the surface where the air flow has hit to the end of the opening surface 31.
 開口面31の形状は、空気流開口面23とほぼ同じ形状となるように形成されていることが好ましい。開口面31と空気流開口面23とをほぼ同じ形状とすることにより、開口面31において空気流開口面23から吹き出された一様空気流の状態を維持しやすいためである。 It is preferable that the shape of the opening surface 31 is formed to be substantially the same as the shape of the airflow opening surface 23. This is because by making the opening surface 31 and the airflow opening surface 23 substantially the same shape, it is easy to maintain the state of the uniform airflow blown from the airflow opening surface 23 at the opening surface 31.
 このように構成されたガイド3は、図1に示すように、プッシュフード2の空気流開口面23側から、一様空気流の下流側に向かって設けられ(取り付けられ)、その下流側端部に設けられた開口面31が空気衝突面Wに対向するように配置される。これにより、開口面31と空気衝突面Wとの間に開放された領域が形成される。 As shown in FIG. 1, the guide 3 configured as described above is provided (attached) from the airflow opening surface 23 side of the push hood 2 toward the downstream side of the uniform airflow, and has a downstream end. The opening surface 31 provided in the portion is disposed so as to face the air collision surface W. Thereby, an open area is formed between the opening surface 31 and the air collision surface W.
 第1層流発生装置41は、空気流開口面23から一様空気流が吹き出される方向に対し略直交する方向に層流を吹き出す。そして、第1層流発生装置41は、ガイド3内で発生する粉じんを、略直行する方向に吹き出す層流により、ガイド3内の周縁に移動させる。 The first laminar flow generator 41 blows out a laminar flow in a direction substantially perpendicular to the direction in which the uniform air flow is blown out from the air flow opening surface 23. Then, the first laminar flow generator 41 moves the dust generated in the guide 3 to the peripheral edge in the guide 3 by a laminar flow blown in a direction substantially perpendicular to the dust.
 図3に、第1層流発生装置41が層流41aを吹き出す様子を示す。 FIG. 3 shows a state in which the first laminar flow generator 41 blows out the laminar flow 41a.
 ここで、略直交とは、一様空気流が吹き出される方向(矢印28の方向)と、層流41aを吹き出す方向とが、概ね90°の角度をなすことを指し、例えば、±10°程度の誤差が許容される。 Here, “substantially orthogonal” indicates that the direction in which the uniform air flow is blown out (the direction of arrow 28) and the direction in which the laminar flow 41a is blown out form an angle of about 90 °, for example, ± 10 °. A degree of error is allowed.
 また、ガイド3内の周縁とは、一様空気流の流れに垂直方向な面の周縁部側(上下左右端側)である。例えば、ガイド3がコの字状に延伸形成されている場合、ガイド3内の周縁とは、ガイド3の内側の天井、ガイド3の内側の両側面及び床である。また、ガイド3が、ロの字状に延伸形成されている場合、ガイド3内の周縁とは、ガイド3の内側の天井、ガイド3の内側の側面、ガイド3の内側の底部である。 {Circle around (3)} The peripheral edge in the guide 3 is a peripheral edge side (upper, lower, left and right end sides) of a surface perpendicular to the flow of the uniform airflow. For example, when the guide 3 is formed to extend in a U-shape, the peripheral edges in the guide 3 are the ceiling inside the guide 3, the both side surfaces inside the guide 3, and the floor. When the guide 3 is formed to extend in a square shape, the peripheral edge in the guide 3 is a ceiling inside the guide 3, a side surface inside the guide 3, and a bottom inside the guide 3.
 第1層流発生装置41は、ガイド3内において粉じんを発生する装置6の下流側に配置されている。第1層流発生装置41は、層流41aを上方に吹き出すことにより、一様空気流により流されてきた粉じんをガイド3内の天井側に移動する。なお、第1層流発生装置41は、粉じんが発生する位置に近接していることが望ましい。 The first laminar flow generating device 41 is disposed in the guide 3 on the downstream side of the dust generating device 6. The first laminar flow generator 41 moves the dust, which has been flown by the uniform airflow, toward the ceiling in the guide 3 by blowing the laminar flow 41a upward. It is desirable that the first laminar flow generation device 41 is close to the position where dust is generated.
 第1層流発生装置41は、層流を発生させることができる装置であれば、どのようなものでも採用できる。扇風機のように乱流を発生させるものは、粉じんを拡散してしまうため適さない。 The first laminar flow generator 41 may be any device that can generate a laminar flow. Those that generate turbulence such as electric fans are not suitable because they diffuse dust.
 第1層流発生装置41として、典型的には、クロスフローファン(又はラインフローファン)が採用される。図3に示すように、テーブル5の下流側に配置されたクロスフローファンは、一様空気流の下流側の空気41bを吸い込み、層流41aを吹き出す。第1層流発生装置41は、空気41bを吸い込む吸気口に、パンチングプレート及びメッシュフィルタを備える。また、第1層流発生装置41は、層流41aを吹き出す吹き出し口に、ハニカム構造を有する板状部材を備える。吹き出し口に、ハニカム構造を有する板状部材を備えることにより、層流41aの幅方向の風速のばらつきを低減させることができる。 ク ロ ス Typically, a cross flow fan (or a line flow fan) is employed as the first laminar flow generator 41. As shown in FIG. 3, the cross flow fan arranged downstream of the table 5 draws in the downstream air 41b of the uniform air flow and blows out the laminar flow 41a. The first laminar flow generation device 41 includes a punching plate and a mesh filter at an intake port that sucks the air 41b. Further, the first laminar flow generator 41 includes a plate-shaped member having a honeycomb structure at an outlet for blowing out the laminar flow 41a. By providing a plate-shaped member having a honeycomb structure at the outlet, it is possible to reduce variations in the wind speed in the width direction of the laminar flow 41a.
 第1層流発生装置41は、一様空気流が吹き出されている間、常に層流41aを吹き出す。第1層流発生装置41が略直交する方向に吹き出す層流41aの流速は、プッシュフード2が吹き出す一様空気流の流速の3~25倍が好適であり、5~20倍がより好適であり、さらには、5~15倍がより好適である。 The first laminar flow generator 41 always blows out the laminar flow 41a while the uniform air flow is blown out. The flow rate of the laminar flow 41a blown in a direction substantially orthogonal to the first laminar flow generator 41 is preferably 3 to 25 times, and more preferably 5 to 20 times the flow rate of the uniform air flow blown by the push hood 2. Yes, and more preferably 5 to 15 times.
 上記の範囲に層流41aの流速を設定することにより、粉じんが一様空気流により下流側に流される前に、粉じんをガイド3の周縁に移動させることができる。 設定 By setting the flow velocity of the laminar flow 41a in the above range, the dust can be moved to the periphery of the guide 3 before the dust is caused to flow downstream by the uniform air flow.
 また、第1層流発生装置41が吹き出す層流41aの厚さは、50mm~200mmが好適である。 層 The thickness of the laminar flow 41a blown out by the first laminar flow generator 41 is preferably from 50 mm to 200 mm.
 上記の範囲に層流41aの厚さを設定することにより、粉じんを作業空間外に移動させることができる。上記の範囲より薄い場合、粉じんを移動させることが十分にできず、粉じんが下流側に流されてしまう。また、上記の範囲よりも厚い場合、水平方向に流れる一様空気流に影響を与える。 設定 By setting the thickness of the laminar flow 41a in the above range, the dust can be moved out of the working space. When the thickness is smaller than the above range, the dust cannot be sufficiently moved, and the dust is caused to flow downstream. If the thickness is larger than the above range, the uniform air flow flowing in the horizontal direction is affected.
 また、第1層流発生装置41が吹き出す層流41aの幅は、粉じん発生源(装置6)の幅に合わせて変動するのが好適であり、さらには、粉じん発生源の幅に少なくとも左右200mmを加えた幅が好適である。 It is preferable that the width of the laminar flow 41a blown out by the first laminar flow generator 41 fluctuates in accordance with the width of the dust generation source (device 6). Is preferable.
 上記のように層流41aの幅を設定することにより、粉じんが発生する位置より下流側に粉じんを流さないようにすることができる。なお、層流41aの横を流れる気流で層流41aを覆い、層流41aの背後側(下流側)の気流は一様空気流に誘引されながら、一様空気流に合流する。粉じん発生源の幅が広すぎると、背後側の気流は一様空気流に十分に誘引されない。十分に誘引されないと、例えば、一様空気流が0.3m/sの場合、背後側の気流の中央の流速は0.1m/sとなってしまい、その部分は一様空気流が維持されない。したがって、第1層流発生装置41が吹き出す層流41aの幅は、横及び背後側の気流が一様空気流に合流できる幅に設定する必要がある。 幅 By setting the width of the laminar flow 41a as described above, it is possible to prevent the dust from flowing downstream from the position where the dust is generated. In addition, the laminar flow 41a is covered with the airflow flowing laterally of the laminar flow 41a, and the airflow on the back side (downstream side) of the laminar flow 41a joins the uniform airflow while being attracted by the uniform airflow. If the dust source is too wide, the airflow behind is not sufficiently attracted to a uniform airflow. If the air flow is not sufficiently induced, for example, when the uniform air flow is 0.3 m / s, the central flow velocity of the rear air flow is 0.1 m / s, and the uniform air flow is not maintained in that portion. . Therefore, the width of the laminar flow 41a blown out by the first laminar flow generator 41 needs to be set to a width that allows the lateral and rear airflows to join the uniform airflow.
 プッシュフード2は、第1層流発生装置41によりガイド3内の周縁に移動された粉じんを、空気流開口面23から吹き出す一様空気流により、ガイド3外へ排出する。 (4) The push hood 2 discharges the dust moved to the peripheral edge in the guide 3 by the first laminar flow generator 41 to the outside of the guide 3 by a uniform airflow blown out from the airflow opening surface 23.
 図3に示すように、ガイド3の天井側に移動された粉じんは、一様空気流に乗って、天井に沿ってガイド3の外へ排出される。ガイド3の天井側が汚染されているが、粉じんを発生する装置6が置かれたテーブル5の高さの汚染の度合いを、少なくすることができる。なお、図3の開放された領域において、一様空気流の矢印を上方向に記載しているが、これに限らず、開放された領域における一様空気流は、水平方向にも吹き出される。 粉 As shown in FIG. 3, the dust moved to the ceiling side of the guide 3 is discharged out of the guide 3 along the ceiling, riding on a uniform air flow. Although the ceiling side of the guide 3 is contaminated, the degree of contamination at the height of the table 5 on which the device 6 for generating dust is placed can be reduced. In the open area of FIG. 3, the arrow of the uniform air flow is described in the upward direction, but the invention is not limited thereto, and the uniform air flow in the open area is also blown out in the horizontal direction. .
 一般的に、ガイドの天井、側面、床面付近のガイド内の周縁では作業を行うことは少なく、これら以外の場所を作業空間として作業が行われる。すなわち、本実施形態によれば、作業に支障のない作業空間外に粉じんを移動することにより、実際に作業中の作業空間内において高い清浄度を維持することができる。 Generally, work is rarely performed on the periphery of the guide near the ceiling, side, and floor of the guide, and work is performed using other places as work spaces. That is, according to the present embodiment, by moving the dust out of the work space that does not hinder the work, it is possible to maintain high cleanliness in the work space that is actually being worked.
 また、本実施形態の局所空気清浄化装置1は、粉じんを吸い込むのではなく、第1層流発生装置41より吹き出された層流により粉じんを作業空間外へ移動する。一般的に、吸引により粉じんを移動する場合と比較して、吹き出された層流により粉じんを移動する場合は、少ない流量で遠くまで移動させることができる。よって、本実施形態によれば、少ない流量で粉じんを作業空間外へ移動することができるので、作業中に発生した粉じんを排出するために必要な電力を少なくすることができる。 局 所 In addition, the local air cleaning device 1 of the present embodiment moves the dust out of the work space by the laminar flow blown out from the first laminar flow generator 41, instead of sucking the dust. In general, when dust is moved by a blown laminar flow, it can be moved far with a small flow rate as compared with the case where dust is moved by suction. Therefore, according to the present embodiment, the dust can be moved to the outside of the work space with a small flow rate, so that the power required for discharging the dust generated during the work can be reduced.
 また、第1層流発生装置41を備えない局所空気清浄化装置においては、ガイド内で、粉じん(コンタミナンツ)が発生するような状況においては、一様空気流の流速を0.5m/s程度とすることで、一様空気流の流速を0.2m/sに設定した場合と比較して粉じんを速やかに排除することが確認されている。つまり、第1層流発生装置41が配置されない局所空気清浄化装置においては、粉じんを速やかに排除するためには、一様空気流の流速を速くする必要があった。一方、本発明の局所空気清浄化装置1においては、一様空気流の流速が0.3m/sで速やか排除することができる。 Further, in the local air cleaning device without the first laminar flow generation device 41, in a situation where dust (contaminants) is generated in the guide, the flow velocity of the uniform air flow is set to 0.5 m / s. It has been confirmed that by setting the air flow rate to about the same level, dust can be eliminated more quickly than when the flow velocity of the uniform air flow is set to 0.2 m / s. That is, in the local air cleaning device in which the first laminar flow generation device 41 is not disposed, it is necessary to increase the flow velocity of the uniform air flow in order to quickly remove the dust. On the other hand, in the local air cleaning device 1 of the present invention, the uniform air flow can be quickly eliminated at a flow velocity of 0.3 m / s.
 第1層流発生装置41を備えない局所空気清浄化装置は、ガイド内から粉じんを速やかに移動させるためには、一様空気流の流速を速く設定しなければならないが、本実施形態の局所空気清浄化装置1は、第1層流発生装置41から吹き出される層流により粉じんを作業空間外へ移動させるので、一様空気流の流速を速く設定する必要がない。よって、本実施形態の局所空気清浄化装置1は、流速を遅く設定することができるので、騒音値及び消費電力を抑制することができるとともに、プレフィルタ27及び高性能フィルタ25の負荷を低減することができる。 In the local air cleaning device without the first laminar flow generating device 41, in order to quickly move the dust from inside the guide, the flow velocity of the uniform air flow must be set fast. Since the air cleaning device 1 moves the dust to the outside of the working space by the laminar flow blown out from the first laminar flow generating device 41, it is not necessary to set the flow velocity of the uniform air flow fast. Therefore, the local air cleaning device 1 of the present embodiment can set the flow velocity to be low, so that the noise value and the power consumption can be suppressed, and the load on the pre-filter 27 and the high-performance filter 25 is reduced. be able to.
 なお、第1層流発生装置41が吹き出す層流41aの向きは上方に限らず、ガイド内の周縁に移動させることができれば、どの方向であってもよい。 Note that the direction of the laminar flow 41a blown out by the first laminar flow generator 41 is not limited to the upward direction, and may be any direction as long as the laminar flow can be moved to the peripheral edge in the guide.
 また、第1層流発生装置41は、粉じんが発生するタイミングに合わせて層流41aを吹き出す構成としてもよい。例えば、第1層流発生装置41は、粉じんの発生を検知する機能を備え、粉じん数が予め定められた第1閾値を超えた場合、第1層流発生装置41は、層流41aを吹き出すようにしてもよい。そして、粉じん数が予め定められた第2閾値を下回った場合、第1層流発生装置41は、層流41aの吹き出しを止めるようにしてもよい。このような構成によれば、常時層流を吹き出す場合と比較して、少ない電力で実際の作業中の清浄度を高く維持することができる。 The first laminar flow generator 41 may blow the laminar flow 41a in accordance with the timing at which dust is generated. For example, the first laminar flow generator 41 has a function of detecting the generation of dust, and when the number of dusts exceeds a predetermined first threshold, the first laminar flow generator 41 blows out the laminar flow 41a. You may do so. Then, when the number of dusts falls below a predetermined second threshold value, the first laminar flow generator 41 may stop blowing the laminar flow 41a. According to such a configuration, it is possible to maintain high cleanliness during actual work with less power as compared with a case where a laminar flow is constantly blown out.
 上記実施形態では、ガイド3内に配置されたテーブル5上に粉じんを発生する装置6が設置されている場合を例に本発明を説明したが、例えば、空気流開口面23の下流側の床上に粉じんを発生する装置6が設置されている場合にも本発明を適用することは可能であり、ガイド3内に配置されたテーブル5上に装置6が設置されている場合に限定されるものではない。 In the above-described embodiment, the present invention has been described by exemplifying a case in which the device 6 for generating dust is installed on the table 5 arranged in the guide 3, but, for example, on the floor downstream of the airflow opening surface 23. The present invention can be applied to a case where a device 6 for generating dust is installed, and is limited to a case where the device 6 is installed on a table 5 arranged in the guide 3. is not.
 例えば、床上に粉じんを発生する装置6が設置されている場合、第1層流発生装置41は、装置6よりも下流側であって、装置6の上方に配置され、下方に層流を吹き出し、床方向へ粉じんを移動させてもよい。 For example, when a device 6 that generates dust is installed on the floor, the first laminar flow generating device 41 is disposed downstream of the device 6 and above the device 6, and blows out a laminar flow downward. Alternatively, the dust may be moved toward the floor.
 上記実施形態では、ガイド3内に粉じんを発生する粉じん発生源としての装置6が設置されている場合を例に本発明を説明したが、粉じん発生源を有していない局所空気清浄化装置1に適用することが可能である。 In the above-described embodiment, the present invention has been described by taking as an example a case where the device 6 as a dust generation source that generates dust is installed in the guide 3. However, the local air cleaning device 1 having no dust generation source is described. It is possible to apply to.
 また、局所空気清浄化装置は、プッシュフード2と空気衝突面Wとが対向するように配置された局所空気清浄化装置1に限定されるものではなく、例えば、一対のプッシュフード2が対向するように配置され、各プッシュフード2にガイド3がそれぞれ設けられた局所空気清浄化装置1を用いてもよい。 Further, the local air cleaning device is not limited to the local air cleaning device 1 in which the push hood 2 and the air collision surface W are arranged to face each other. For example, a pair of push hoods 2 oppose each other. It is also possible to use the local air cleaning device 1 arranged such that the push hoods 2 are provided with the guides 3 respectively.
(実施形態2)
 本実施形態に係る局所空気清浄化装置1は、図4に示すように、壁、衝立などの空気衝突面Wに対向するように配置されたプッシュフード2と、プッシュフード2に設けられたガイド3と、ガイド3内に配置された第1層流発生装置41と、を備える。
(Embodiment 2)
As shown in FIG. 4, the local air cleaning device 1 according to the present embodiment includes a push hood 2 arranged to face an air collision surface W such as a wall or a screen, and a guide provided on the push hood 2. 3 and a first laminar flow generator 41 disposed in the guide 3.
 本実施形態のプッシュフード2及び第1層流発生装置41は、実施形態1のものと同様の構成を有するので、説明を省略する。以下、ガイド3の、実施形態1と異なる構成について説明する。 プ ッ シ ュ The push hood 2 and the first laminar flow generating device 41 of the present embodiment have the same configuration as that of the first embodiment, and thus the description is omitted. Hereinafter, a configuration of the guide 3 that is different from that of the first embodiment will be described.
 ガイド3において、第1層流発生装置41から吹き出される層流41aがガイド3に衝突する位置に穴が形成される。 穴 In the guide 3, a hole is formed at a position where the laminar flow 41a blown out from the first laminar flow generator 41 collides with the guide 3.
 穴の大きさは、層流41aが、穴が形成されていない状態のガイド3に衝突したときの、層流41aの衝突面よりも大きいことが望ましい。 The size of the hole is desirably larger than the collision surface of the laminar flow 41a when the laminar flow 41a collides with the guide 3 where no hole is formed.
 上記の大きさの穴を形成することにより、層流41aが移動させた粉じんがガイド3内側に衝突してガイド3内に留まることを防ぎ、効率よくガイド3外へ排出することができる。 穴 By forming a hole of the above size, it is possible to prevent the dust moved by the laminar flow 41a from colliding with the inside of the guide 3 and staying in the guide 3, and efficiently discharging the dust outside the guide 3.
 この穴の形は、円形、矩形等の種々の形を採用することができるが、第1層流発生装置41が吹き出す層流41aの形状に類似していることが望ましい。 穴 The shape of the hole may be various shapes such as a circle and a rectangle, but it is preferable that the shape is similar to the shape of the laminar flow 41a blown out by the first laminar flow generator 41.
 例えば、図4に示すように、第1層流発生装置41が、上方に層流41aを吹き出す場合、層流41aが衝突する天井の位置に穴32が形成される。第1層流発生装置41は、ガイド3内で発生する粉じんを、略直行する方向に吹き出す層流41aにより、ガイド3の穴32から排出する。 For example, as shown in FIG. 4, when the first laminar flow generator 41 blows out the laminar flow 41a upward, the hole 32 is formed at the position of the ceiling where the laminar flow 41a collides. The first laminar flow generator 41 discharges the dust generated in the guide 3 from the hole 32 of the guide 3 by a laminar flow 41a that blows out in a substantially perpendicular direction.
 本実施形態によれば、粉じんをガイド内の下流側まで移動させずに、素早く粉じんをガイド外へ排出することができるので、下流側の汚染を防ぐことができる。なお、本実施形態において、第1層流発生装置41が略直交する方向に吹き出す層流41aの流速は、プッシュフード2が吹き出す一様空気流の流速の3~25倍が好適で、あり、5~20倍がより好適であり、さらには、15~20倍がより好適である。 According to the present embodiment, the dust can be quickly discharged out of the guide without moving the dust to the downstream side in the guide, so that the contamination on the downstream side can be prevented. In the present embodiment, the flow rate of the laminar flow 41a blown in a direction substantially orthogonal to the first laminar flow generator 41 is preferably 3 to 25 times the flow rate of the uniform air flow blown out by the push hood 2. 5 to 20 times is more preferable, and 15 to 20 times is more preferable.
(実施形態3)
 本実施形態に係る局所空気清浄化装置1は、図5に示すように、壁、衝立などの空気衝突面Wに対向するように配置されたプッシュフード2と、プッシュフード2に設けられたガイド3と、ガイド3内に配置された第1層流発生装置41と、ガイド3内に配置された第2層流発生装置42と、を備える。
(Embodiment 3)
As shown in FIG. 5, the local air cleaning device 1 according to the present embodiment includes a push hood 2 arranged to face an air collision surface W such as a wall or a screen, and a guide provided on the push hood 2. 3, a first laminar flow generator 41 disposed in the guide 3, and a second laminar flow generator 42 disposed in the guide 3.
 本実施形態のプッシュフード2、ガイド3及び第1層流発生装置41は、実施形態1のものと同様の構成を有するので、説明は省略する。以下、第2層流発生装置42について説明する。 プ ッ シ ュ The push hood 2, the guide 3, and the first laminar flow generator 41 of the present embodiment have the same configurations as those of the first embodiment, and thus the description will be omitted. Hereinafter, the second laminar flow generator 42 will be described.
 第2層流発生装置42は、第1層流発生装置41と同様の機能を有する。第2層流発生装置42は、ガイド3内の周縁において、第1層流発生装置41から吹き出される層流41aがガイド3に衝突する位置に近接する位置であって、第1層流発生装置41よりも下流側に配置される。 2The second laminar flow generator 42 has the same function as the first laminar flow generator 41. The second laminar flow generating device 42 is located at a position near the position where the laminar flow 41a blown out from the first laminar flow generating device 41 collides with the guide 3 at the peripheral edge in the guide 3, and It is arranged downstream of the device 41.
 第2層流発生装置42は、開口面31に向かって、空気流開口面23から一様空気流が吹き出される方向に対し略平行に層流42aを吹き出す。 The second laminar flow generator 42 blows out the laminar flow 42a toward the opening surface 31 substantially in parallel with the direction in which the uniform air flow is blown out from the air flow opening surface 23.
 ここで、略平行とは、一様空気流が吹き出される方向と、層流42aを吹き出す方向とが、概ね0°の角度をなすことを指し、例えば、±10°程度の誤差が許容される。 Here, “substantially parallel” means that the direction in which the uniform air flow is blown out and the direction in which the laminar flow 42a is blown out form an angle of approximately 0 °. For example, an error of about ± 10 ° is allowed. You.
 また、第2層流発生装置42は、一様空気流の流速よりも速い流速で、略平行に層流42aを吹き出す。例えば、第2層流発生装置42が吹き出す層流42aの流速は、一様空気流の30~40倍程度であれば、作業空間に拡散する前に粉じんをガイド3外に排出できる。 {Circle around (2)} The second laminar flow generator 42 blows out the laminar flow 42a substantially in parallel with the flow velocity higher than the flow velocity of the uniform air flow. For example, if the flow velocity of the laminar flow 42a blown out by the second laminar flow generator 42 is about 30 to 40 times the uniform air flow, dust can be discharged out of the guide 3 before diffusing into the working space.
 第2層流発生装置42として、典型的には、クロスフローファンが採用される。図5に示すように、ガイド3の天井に配置されたクロスフローファンは、その下方の空気42bを吸い込み、層流42aを吹き出す。 ク ロ ス A cross-flow fan is typically used as the second laminar flow generator 42. As shown in FIG. 5, the cross flow fan arranged on the ceiling of the guide 3 sucks the air 42b below it and blows out the laminar flow 42a.
 このようにして、第2層流発生装置42は、第1層流発生装置41によりガイド3内の周縁に移動された粉じんを、略平行に吹き出す層流42aにより、ガイド3外へ排出する。これにより、粉じんがガイド3内に滞留する時間を短くすることができる。 Thus, the second laminar flow generator 42 discharges the dust moved to the periphery in the guide 3 by the first laminar flow generator 41 to the outside of the guide 3 by the laminar flow 42a which blows out substantially in parallel. As a result, the time during which the dust stays in the guide 3 can be shortened.
 本実施形態によれば、ガイドに変形を加えることなく、素早く粉じんをガイド外へ排出することができ、実際に作業中の作業空間内において高い清浄度を維持することができる。 According to this embodiment, dust can be quickly discharged out of the guide without deforming the guide, and high cleanliness can be maintained in the working space where the work is actually being performed.
 また、本実施形態によれば、第2層流発生装置から吹き出される速い気流による誘引効果により、効果的にガイド内の周縁に粉じんを移動することができ、さらに、低い位置に落ちないようにすることができる。 Further, according to the present embodiment, the dust can be effectively moved to the periphery in the guide by the attraction effect of the fast airflow blown out from the second laminar flow generator, and furthermore, the dust does not fall to a low position. Can be
(実施形態4)
 本実施形態に係る局所空気清浄化装置1は、図6に示すように、壁、衝立などの空気衝突面Wに対向するように配置されたプッシュフード2と、プッシュフード2に設けられたガイド3と、ガイド3内に配置された第1層流発生装置41と、を備える。
(Embodiment 4)
As shown in FIG. 6, the local air cleaning device 1 according to the present embodiment includes a push hood 2 arranged to face an air collision surface W such as a wall or a screen, and a guide provided on the push hood 2. 3 and a first laminar flow generator 41 disposed in the guide 3.
 本実施形態のプッシュフード2及びガイド3は、実施形態1のものと同様の構成を有するので、説明は省略する。以下、第1層流発生装置41について説明する。 プ ッ シ ュ Since the push hood 2 and the guide 3 of the present embodiment have the same configuration as that of the first embodiment, the description is omitted. Hereinafter, the first laminar flow generator 41 will be described.
 第1層流発生装置41として、典型的には、クロスフローファン(又はラインフローファン)が採用される。図6に示すように、テーブル5の下流側に配置されたクロスフローファンは、一様空気流の上流側の空気41cを吸い込み、層流41aを吹き出す。第1層流発生装置41は、空気41cを吸い込む吸気口に、パンチングプレート及びメッシュフィルタを備える。また、第1層流発生装置41は、層流41aを吹き出す吹き出し口に、ハニカム構造を有する板状部材を備える。 ク ロ ス Typically, a cross flow fan (or a line flow fan) is employed as the first laminar flow generator 41. As shown in FIG. 6, the cross flow fan arranged on the downstream side of the table 5 sucks the air 41c on the upstream side of the uniform air flow and blows out the laminar flow 41a. The first laminar flow generation device 41 includes a punching plate and a mesh filter at an intake port that sucks the air 41c. Further, the first laminar flow generator 41 includes a plate-shaped member having a honeycomb structure at an outlet for blowing out the laminar flow 41a.
 本実施形態の局所空気清浄化装置1は、実施形態1の局所空気清浄化装置1と同様の効果を奏し、粉じん数の減少率において、実施形態1の局所空気流清浄化装置1よりも良好な結果を得ることができる。 The local air cleaning device 1 according to the present embodiment has the same effect as the local air cleaning device 1 according to the first embodiment, and is better than the local air flow cleaning device 1 according to the first embodiment in the reduction rate of the number of dusts. Results can be obtained.
 なお、本実施形態の第1層流発生装置41を有する構成は、図6に示す態様に限らない。本実施形態の第1層流発生装置41は、実施形態2及び実施形態3の第1層流発生装置41と置き換えが可能である。 The configuration having the first laminar flow generation device 41 of the present embodiment is not limited to the configuration shown in FIG. The first laminar flow generation device 41 of the present embodiment can be replaced with the first laminar flow generation device 41 of the second and third embodiments.
 以下、本発明の具体的な実施例を示し、本発明をさらに詳細に説明する。 Hereinafter, specific examples of the present invention will be shown, and the present invention will be described in more detail.
(実施例1)
 図3の局所空気清浄化装置1を用いて、距離及び高さを変えた複数の測定位置で粉じんの個数を計測した。
(Example 1)
Using the local air cleaning device 1 of FIG. 3, the number of dust particles was measured at a plurality of measurement positions at different distances and heights.
 図7に、実施例1における局所空気清浄化装置1の平面図を示す。 FIG. 7 is a plan view of the local air cleaning device 1 according to the first embodiment.
 局所空気清浄化装置1のプッシュフード2は、横1050mm、縦850mmのプッシュフード2aをその空気流開口面が同一方向であって、プッシュフード2aの短辺どうし、長辺どうしがそれぞれ隣り合うように配列して連結(縦3個×横3個の9個)したものであり、その開口面31の大きさは、幅3150mm、高さ2570mmである。局所空気清浄化装置1内では、清浄化された一様空気流は流速0.3m/sで流れ、清浄空気空間が形成されている。 The push hood 2 of the local air cleaning device 1 has a push hood 2a having a width of 1050 mm and a length of 850 mm in which the air flow opening surfaces are in the same direction, and the short sides and the long sides of the push hood 2a are adjacent to each other. (3 × 3 × 9), and the size of the opening surface 31 is 3150 mm in width and 2570 mm in height. In the local air cleaning device 1, the purified uniform air flow flows at a flow velocity of 0.3 m / s, and a clean air space is formed.
 このように一様空気流が流れている局所空気清浄化装置1において、テーブル5の上に設置された装置6から、5.0×10~6.7×10[個/m]の大気じんを発生させた。装置6は、ポンプによって大気じんを吹き出すものである。テーブル5の高さは800mmである。 As described above, in the local air cleaning device 1 in which the uniform air flow is flowing, the device 6 installed on the table 5 uses 5.0 × 10 7 to 6.7 × 10 7 [pieces / m 3 ]. Generated atmospheric dust. The device 6 blows out atmospheric dust by a pump. The height of the table 5 is 800 mm.
 また、第1層流発生装置41は、装置6に近接する位置であってその下流側に配置した。図7の平面において、第1層流発生装置41の中心と、装置6の中心は、x方向に伸びる直線7上にあり、各中心は、ガイド側面からy方向に900mmの位置であった。第1層流発生装置41は、厚さ(図7のx方向)55.7mm、幅(図7のy方向)760mmの層流41aを上部から流速2.1m/s又は4.6m/sで吹き出した。 第 The first laminar flow generator 41 is located at a position close to the device 6 and downstream thereof. In the plane of FIG. 7, the center of the first laminar flow generation device 41 and the center of the device 6 are on a straight line 7 extending in the x direction, and each center is located at a position 900 mm from the side surface of the guide in the y direction. The first laminar flow generation device 41 transmits a laminar flow 41a having a thickness (x direction in FIG. 7) of 55.7 mm and a width (y direction in FIG. 7) of 760 mm from the top at a flow velocity of 2.1 m / s or 4.6 m / s. I blew out.
 図3の局所空気清浄化装置1における粉じん数の測定位置を、図7及び図8を用いて説明する。 測定 The measurement position of the number of dusts in the local air cleaning device 1 of FIG. 3 will be described with reference to FIGS. 7 and 8.
 図7に示すように、直線7上において、一様空気流中における第1層流発生装置41の上流側の端から一様空気流の下流側への距離が、1000mm、2000mm、3000mm、4000mm、5000mmの地点をx方向(以下、「距離方向」という)の測定位置とした。また、直線7からy方向への距離が、0mm、900mm、1800mmの地点を奥行方向の測定位置とした。 As shown in FIG. 7, on the straight line 7, the distance from the upstream end of the first laminar flow generator 41 to the downstream side of the uniform air flow in the uniform air flow is 1000 mm, 2000 mm, 3000 mm, and 4000 mm. The point at 5000 mm was taken as the measurement position in the x direction (hereinafter, referred to as “distance direction”). In addition, points at distances of 0 mm, 900 mm, and 1800 mm from the straight line 7 in the y direction were measured positions in the depth direction.
 図8に、局所空気清浄化装置1の側面図を示す。図7に示した平面の各測定位置において、床からの高さが、400mm、800mm、1500mm、2200mmの地点を高さ方向の測定位置とした。 FIG. 8 shows a side view of the local air cleaning device 1. At each measurement position on the plane shown in FIG. 7, a point at a height from the floor of 400 mm, 800 mm, 1500 mm, or 2200 mm was defined as a measurement position in the height direction.
 以上より、距離方向5つ、奥行方向3つ及び高さ方向4つの合計60の測定位置において粉じん数[個/m]を測定した。粉じん数[個/m]の測定は、PMS社製のLASAIR-IIを用い、各測定位置における粒子径0.1μmの粉じん数[個/m]を測定した。測定結果は、ISO14644-1の清浄度を表すクラスで示す。清浄度を表すクラスは、粉じんの数及び粒子径に基づいて、「クラス1」~「クラス9」に分けられる。「クラス1」が、測定された粉じん数[個/m]が最も少ないことを示し、したがって、清浄度が最も高いことを示す。クラスの数字が1つ上がるにしたがって、測定された粉じん数[個/m]が1桁上がり、したがって、清浄度がより低いことを示す。一般的に、クリーンルームに必要なクラスは、「クラス5」以下と言われている。測定結果を表1に示す。 From the above, the number of dust [pieces / m 3 ] was measured at a total of 60 measurement positions in five distance directions, three in the depth direction, and four in the height direction. Measurements of the number of dust [pieces / m 3] uses a PMS Co. LASAIR-II, was measured dust particle number size 0.1 [mu] m [pieces / m 3] at each measurement position. The measurement results are shown in a class representing the degree of cleanliness of ISO14644-1. Classes representing cleanliness are classified into “Class 1” to “Class 9” based on the number and particle size of dust. “Class 1” indicates that the measured number of dust particles [pieces / m 3 ] is the smallest, and thus indicates that the cleanliness is the highest. As the class number goes up by one, the measured dust count [pieces / m 3 ] goes up by one digit, thus indicating lower cleanliness. Generally, the class required for a clean room is said to be “class 5” or lower. Table 1 shows the measurement results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、“上向きFAN OFF”は、第1層流発生装置41が層流を吹き出していない場合を示す。なお、奥行0mmの地点において、流速4.6m/sよりも流速2.1m/sの条件の方が、良好な結果が得られたため、流速4.6m/sについて、奥行900mm、1800mmの位置における測定は行わなかった。 In Table 1, “upward FAN OFF” indicates a case where the first laminar flow generator 41 does not blow out laminar flow. In addition, at a point of 0 mm in depth, better results were obtained under the condition of a flow velocity of 2.1 m / s than at a flow velocity of 4.6 m / s. Was not measured.
 表1に示すように、テーブル5の高さ付近の800mmでは、流速2.1m/s及び4.6m/sの条件ともに、層流が吹き出されない場合と比較して、粉じんを発生する装置6の下流側において、清浄度が向上することを確認した。すなわち、粉じんを発生する装置6の下流側において、作業空間の汚染を防止できていることを確認した。また、高さ2200mm、1500mmでは、流速2.1m/s及び4.6m/sの条件ともに、層流が吹き出されない場合と比較して、粉じんを発生する装置6の下流側において、粉じん数[個/m]が増加することを確認した。すなわち、粉じんを発生する装置6の下流側において、粉じんが作業空間外のガイド3天井側に移動させられていることを確認した。また、高さ800mm、400mmでは、流速2.1m/s及び4.6m/sの条件ともに、いずれの距離においても、クラス5以下の清浄度を確認することができた。なお、流速2.1m/sの条件の方がより良好な結果が得られた。実施例1のように天井がある場合は、吹き上げる層流の流速が速いと、反射が起きて粉じんが拡散されるため、流速2.1m/sの条件の方が良好な結果が得られたと考えられる。 As shown in Table 1, at 800 mm in the vicinity of the height of the table 5, the device 6 for generating dust compared with the case where the laminar flow is not blown out under both the conditions of the flow velocity of 2.1 m / s and 4.6 m / s. It was confirmed that the cleanliness was improved on the downstream side of. That is, it was confirmed that the work space could be prevented from being contaminated on the downstream side of the dust generating device 6. Also, at a height of 2200 mm and 1500 mm, the number of dusts on the downstream side of the dust generating device 6 is lower than that in the case where the laminar flow is not blown out under the conditions of the flow velocity of 2.1 m / s and 4.6 m / s. / M 3 ] was confirmed to increase. That is, it was confirmed that the dust was moved to the ceiling side of the guide 3 outside the working space on the downstream side of the dust generating device 6. In addition, at 800 mm and 400 mm height, cleanliness of class 5 or less could be confirmed at any of the distances under the conditions of the flow rates of 2.1 m / s and 4.6 m / s. A better result was obtained under the condition of a flow velocity of 2.1 m / s. In the case where there is a ceiling as in Example 1, if the flow velocity of the laminar flow to be blown up is high, reflection occurs and dust is diffused, so that a better result was obtained under the condition of a flow velocity of 2.1 m / s. Conceivable.
(実施例2)
 図4に示す局所空気清浄化装置1を用いて、距離及び高さを変えた複数の測定位置で粉じんの個数を計測した。
(Example 2)
Using the local air cleaning device 1 shown in FIG. 4, the number of dust particles was measured at a plurality of measurement positions at different distances and heights.
 局所空気清浄化装置1のプッシュフード2及び清浄度の測定手法は、実施例1と同様である。また、実施例1と同様に、一様空気流の流速は0.3m/s、第1層流発生装置41が発生する層流41aの流速は、2.1m/s又は4.6m/sであった。装置6から発生する大気じんの個数は、3.3×10~4.0×10[個/m]であった。 The method of measuring the push hood 2 and the cleanliness of the local air cleaning device 1 is the same as that of the first embodiment. Further, similarly to the first embodiment, the flow velocity of the uniform air flow is 0.3 m / s, and the flow velocity of the laminar flow 41a generated by the first laminar flow generator 41 is 2.1 m / s or 4.6 m / s. Met. The number of atmospheric dust generated from the device 6 was 3.3 × 10 7 to 4.0 × 10 7 [pieces / m 3 ].
 図4の局所空気清浄化装置1における粉じん数の測定位置を、図7及び図9を用いて説明する。 測定 The measurement position of the number of dusts in the local air cleaning device 1 of FIG. 4 will be described with reference to FIGS. 7 and 9.
 平面の測定位置は、実施例1(図7)と同様である。図9に局所空気清浄化装置1の側面図を示す。高さ方向の測定位置も、実施例1(図8)と同様である。 The measurement position of the plane is the same as in the first embodiment (FIG. 7). FIG. 9 shows a side view of the local air cleaning device 1. The measurement position in the height direction is the same as in the first embodiment (FIG. 8).
 ここで、ガイド3に形成された穴32は、第1層流発生装置41から吹き出される層流41aがガイド3に衝突する位置に設けた。詳細には、距離方向(図7のx方向)における第1層流発生装置41の上流側の端を垂直方向(図8のガイド3天井方向)に通る直線がガイド3の天井にあたる位置を穴の起点とした。ガイド3に形成された穴32の形状は矩形であり、縦(図7のx方向)500mm、横(図7のy方向)1000mmの大きさとした。 Here, the hole 32 formed in the guide 3 is provided at a position where the laminar flow 41 a blown out from the first laminar flow generator 41 collides with the guide 3. In detail, a straight line passing through the upstream end of the first laminar flow generator 41 in the distance direction (x direction in FIG. 7) in the vertical direction (toward the ceiling of the guide 3 in FIG. 8) corresponds to a hole corresponding to the ceiling of the guide 3. Was the starting point. The shape of the hole 32 formed in the guide 3 was rectangular, and was 500 mm long (x direction in FIG. 7) and 1000 mm wide (y direction in FIG. 7).
 以上より、距離方向5つ、奥行方向3つ及び高さ方向4つの合計60の測定位置において粉じん数[個/m]を測定した。実施例1と同様に、測定結果は、ISO14644-1の清浄度を表すクラスで示す。測定結果を表2に示す。 From the above, the number of dust [pieces / m 3 ] was measured at a total of 60 measurement positions in five distance directions, three in the depth direction, and four in the height direction. As in the case of the first embodiment, the measurement result is represented by a class representing the cleanliness of ISO14644-1. Table 2 shows the measurement results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、高さ800mm、400mmでは、流速2.1m/s及び4.6m/sの条件ともに、層流が吹き出されない場合と比較して、粉じんを発生する装置6の下流側において、清浄度が向上することを確認した。すなわち、粉じんを発生する装置6の下流側において、作業空間の汚染を防止できていることを確認した。また、高さ1500mmにおいても、4.6m/sでは、清浄度が向上していることを確認した。また、高さ2200mmでは、流速2.1m/s及び4.6m/sの条件ともに、粉じんを発生する装置6の下流側において、粉じん数[個/m]が増加することを確認した。すなわち、粉じんを発生する装置6の下流側において、粉じんが作業空間外の天井付近に移動させられていることを確認した。また、高さ800mm、400mmでは、流速2.1m/s及び4.6m/sの条件ともに、いずれの距離においても、ISO14644-1のクラス4以下の清浄度を確認することができたが、概ね4.6m/sの条件の方が良好な結果が得られた。また、4.6m/sでは、高さ1500mmにおいてもクラス5以下の清浄度を確認した。実施例2のように天井に穴がある場合は、吹き上げる層流の流速が速い方が良い結果が得られることを確認した。さらに、実施例1の流速2.1m/sの条件と実施例2の4.6m/sの条件とを比較すると、高さ800mmでは、実施例2の4.6m/sの条件の方が、クラス3以下が多く、粉じん数[個/m]が少ないことを確認した。すなわち、実施例1と比較して、素早く粉じんをガイド3外へ排出することを確認できた。 As shown in Table 2, at the heights of 800 mm and 400 mm, the flow rate of 2.1 m / s and 4.6 m / s both under the condition that the laminar flow is not blown and the downstream side of the device 6 that generates dust , It was confirmed that the cleanliness was improved. That is, it was confirmed that the work space could be prevented from being contaminated on the downstream side of the dust generating device 6. In addition, even at a height of 1500 mm, it was confirmed that the cleanliness was improved at 4.6 m / s. In addition, at a height of 2200 mm, it was confirmed that the number of dust [pieces / m 3 ] increased on the downstream side of the dust generating device 6 under both the conditions of a flow velocity of 2.1 m / s and 4.6 m / s. That is, it was confirmed that the dust was moved to the vicinity of the ceiling outside the work space on the downstream side of the dust generating device 6. In addition, at the height of 800 mm and 400 mm, the cleanliness of class 4 or less of ISO14644-1 could be confirmed at any flow rate of 2.1 m / s and 4.6 m / s at any distance. A better result was obtained under the condition of about 4.6 m / s. At 4.6 m / s, cleanliness of class 5 or less was confirmed even at a height of 1500 mm. In the case where there is a hole in the ceiling as in Example 2, it was confirmed that a higher flow rate of the laminar flow to be blown up gave better results. Furthermore, comparing the conditions of Example 1 with a flow velocity of 2.1 m / s and the conditions of 4.6 m / s of Example 2, at a height of 800 mm, the condition of 4.6 m / s of Example 2 is better. , Class 3 or less, and the number of dust particles [pieces / m 3 ] was small. That is, it was confirmed that the dust was quickly discharged out of the guide 3 as compared with the example 1.
(実施例3)
 図5に示す局所空気清浄化装置1を用いて、距離及び高さを変えた複数の測定位置で粉じんの個数を計測した。
(Example 3)
Using the local air cleaning device 1 shown in FIG. 5, the number of dusts was measured at a plurality of measurement positions at different distances and heights.
 局所空気清浄化装置1のプッシュフード2及び清浄度の測定手法は、実施例1と同様である。また、実施例1と同様に、一様空気流の流速は0.3m/s、第1層流発生装置41が発生する層流41aの流速は、2.1m/s又は4.6m/sであった。装置6から発生する大気じんの個数は、2.9×10~4.8×10[個/m]であった。 The method of measuring the push hood 2 and the cleanliness of the local air cleaning device 1 is the same as that of the first embodiment. Further, similarly to the first embodiment, the flow velocity of the uniform air flow is 0.3 m / s, and the flow velocity of the laminar flow 41a generated by the first laminar flow generator 41 is 2.1 m / s or 4.6 m / s. Met. The number of atmospheric dust generated from the apparatus 6 was 2.9 × 10 7 to 4.8 × 10 7 [pieces / m 3 ].
 また、第2層流発生装置42は、厚さ(図7のx方向)55.7mm、幅(図7のy方向)760mmの層流42aをガイドの開口面31に向かって、流速9.5m/s又は11.5m/sで吹き出した。 The second laminar flow generating device 42 applies a laminar flow 42a having a thickness (x direction in FIG. 7) of 55.7 mm and a width (y direction in FIG. 7) of 760 mm toward the opening surface 31 of the guide. Blowing was performed at 5 m / s or 11.5 m / s.
 図5の局所空気清浄化装置1における粉じん数の測定位置を、図7及び図10を用いて説明する。 The measurement position of the number of dusts in the local air cleaning device 1 of FIG. 5 will be described with reference to FIGS.
 平面の測定位置は、実施例1(図7)と同様である。図10に局所空気清浄化装置1の側面図を示す。高さ方向の測定位置も、実施例1(図8)と同様である。 The measurement position of the plane is the same as in the first embodiment (FIG. 7). FIG. 10 shows a side view of the local air cleaning device 1. The measurement position in the height direction is the same as in the first embodiment (FIG. 8).
 ここで、第2層流発生装置42は、第1層流発生装置41から吹き出される層流41aがガイド3に衝突する位置に近接する位置であって、第1層流発生装置41よりも下流側に配置した。図10に示すように、第2層流発生装置42が配置された距離方向の位置は、第1層流発生装置41の上流側の端から一様空気流の下流側方向への距離が1000mmの地点である。また、図7の平面において、第2層流発生装置42の中心は直線7上にあり、その中心は、ガイド3の側面から奥行方向に900mmの位置であった。 Here, the second laminar flow generator 42 is located at a position close to the position where the laminar flow 41 a blown out from the first laminar flow generator 41 collides with the guide 3, and is higher than the first laminar flow generator 41. It was located downstream. As shown in FIG. 10, the position in the distance direction where the second laminar flow generator 42 is arranged is such that the distance from the upstream end of the first laminar flow generator 41 to the downstream direction of the uniform airflow is 1000 mm. It is a point of. In the plane of FIG. 7, the center of the second laminar flow generator 42 is on the straight line 7, and the center is located 900 mm in the depth direction from the side surface of the guide 3.
 以上より、距離方向5つ、奥行方向3つ及び高さ方向4つの合計60の測定位置において粉じん数[個/m]を測定した。実施例1と同様に、測定結果は、ISO14644-1の清浄度を表すクラスで示す。第2層流発生装置42が吹き出す層流42aの流速が9.5m/sの場合の測定結果を表3に示し、流速が11.5m/sの場合の測定結果を表4に示す。 From the above, the number of dust [pieces / m 3 ] was measured at a total of 60 measurement positions in five distance directions, three in the depth direction, and four in the height direction. As in the case of the first embodiment, the measurement result is represented by a class representing the cleanliness of ISO14644-1. Table 3 shows the measurement results when the flow velocity of the laminar flow 42a blown out by the second laminar flow generator 42 is 9.5 m / s, and Table 4 shows the measurement results when the flow velocity is 11.5 m / s.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、第2層流発生装置42から吹き出される層流42aの流速9.5m/s及び11.5m/sの両条件ともに、奥行0mmの地点において、第1層流発生装置41から吹き出される層流41aの流速4.6m/sよりも流速2.1m/sの条件の方が、良好な結果が得られたため、流速4.6m/sについて、奥行900mm、1800mmの測定は行わなかった。 Note that the laminar flow 42a blown from the second laminar flow generator 42 is blown out from the first laminar flow generator 41 at a point of 0 mm in depth under both the conditions of the flow velocity of 9.5 m / s and 11.5 m / s. Since better results were obtained under the condition of the flow velocity of 2.1 m / s than the flow velocity of 4.6 m / s of the laminar flow 41a, the depth of 900 mm and 1800 mm were not measured at the flow velocity of 4.6 m / s. Was.
 表3及び表4に示すように、テーブル5の高さ付近の800mm、400mmでは、流速2.1m/s及び4.6m/sの条件ともに、層流が吹き出されない場合と比較して、粉じんを発生する装置6の下流側において、清浄度が向上することを確認した。すなわち、粉じんを発生する装置6の下流側において、作業空間の汚染を防止できていることを確認した。また、高さ2200mm、1500mmでは、流速2.1m/s及び4.6m/sの条件ともに、粉じんを発生する装置6の下流側において、粉じん数[個/m]が増加することを確認した。すなわち、粉じんを発生する装置6の下流側において、粉じんが作業空間外のガイド3の天井側に移動させられていることを確認した。また、高さ800mm、400mmでは、いずれの距離においても、ISO14644-1のクラス5以下の清浄度を確認することができた。さらに、実施例1と実施例3の11.5m/sの条件とを比較すると、高さ800mmでは、実施例3の11.5m/sの条件の方が、クラス3以下が多く、粉じん数[個/m]が少ないことを確認した。すなわち、穴を開けるなどの変形をガイド3に加えなくても、素早く粉じんをガイド3外へ排出することを確認できた。 As shown in Tables 3 and 4, at 800 mm and 400 mm near the height of the table 5, both the conditions of the flow velocities of 2.1 m / s and 4.6 m / s compared to the case where the laminar flow was not blown out. It was confirmed that the degree of cleanliness was improved on the downstream side of the device 6 that generates the odor. That is, it was confirmed that the work space could be prevented from being contaminated on the downstream side of the dust generating device 6. Also, at a height of 2200 mm and 1500 mm, it was confirmed that the number of dust [pieces / m 3 ] increased on the downstream side of the dust generating device 6 under the conditions of the flow velocity of 2.1 m / s and 4.6 m / s. did. That is, it was confirmed that the dust was moved to the ceiling side of the guide 3 outside the work space on the downstream side of the dust generating device 6. Further, at the heights of 800 mm and 400 mm, it was possible to confirm the cleanliness of class 5 or less of ISO14644-1 at any distance. Further, when comparing the conditions of Example 1 with the conditions of 11.5 m / s of Example 3, at a height of 800 mm, the conditions of 11.5 m / s of Example 3 have more classes 3 or less, and the [Pcs / m 3 ] was confirmed to be small. That is, it was confirmed that the dust was quickly discharged to the outside of the guide 3 without applying a deformation such as making a hole to the guide 3.
(実施例4)
 図5の局所空気清浄化装置1において、第2層流発生装置42の位置を変えて、複数の測定位置で粉じんの個数を計測した。
(Example 4)
In the local air cleaning device 1 of FIG. 5, the number of dusts was measured at a plurality of measurement positions while changing the position of the second laminar flow generator 42.
 局所空気清浄化装置1のプッシュフード2及び清浄度の測定手法は、実施例1と同様である。また、実施例1と同様に、一様空気流の流速は0.3m/s、第1層流発生装置41が発生する層流41aの流速は、2.1m/sであった。装置6から発生する大気じんの個数は、5.0×10~6.7×10[個/m]であった。 The method of measuring the push hood 2 and the cleanliness of the local air cleaning device 1 is the same as that of the first embodiment. As in the first embodiment, the flow velocity of the uniform air flow was 0.3 m / s, and the flow velocity of the laminar flow 41a generated by the first laminar flow generator 41 was 2.1 m / s. The number of atmospheric dust generated from the apparatus 6 was 5.0 × 10 7 to 6.7 × 10 7 [pieces / m 3 ].
 また、第2層流発生装置42は、厚さ(図7のx方向)55.7mm、幅(図7のy方向)760mmの層流42aをガイドの開口面31に向かって、流速11.5m/sで吹き出した。 Further, the second laminar flow generator 42 applies a laminar flow 42a having a thickness (x direction in FIG. 7) of 55.7 mm and a width (y direction in FIG. 7) of 760 mm toward the opening surface 31 of the guide. It blew off at 5 m / s.
 第2層流発生装置42の位置を、図11A~図11Cを用いて説明する。第2層流発生装置42を、第1層流発生装置41を基準として3種類の位置に配置した。1つめは、図11Aに示すように、第2層流発生装置42を、第1層流発生装置41の上流側の端から1000mm下流側に配置した。詳細には、第1層流発生装置41の上流側の端から1000mm下流側の位置から、第2層流発生装置42の層流42aが吹き出されるよう配置した。2つめは、図11Bに示すように、第2層流発生装置42を、第1層流発生装置41の真上に配置した。詳細には、距離方向(図7のx方向)において、第1層流発生装置41の上流側の端と第2層流発生装置42の上流側の端とが同じとなるよう配置した。3つめは、図11Cに示すように、第1層流発生装置41の上流側の端から1000mm上流側に配置した。詳細には、第1層流発生装置41の上流側の端から1000mm上流側の位置から、第2層流発生装置42の層流42aが吹き出されるよう配置した。 The position of the second laminar flow generator 42 will be described with reference to FIGS. 11A to 11C. The second laminar flow generator 42 was arranged at three different positions with respect to the first laminar flow generator 41. First, as shown in FIG. 11A, the second laminar flow generator 42 was disposed 1000 mm downstream from the upstream end of the first laminar flow generator 41. Specifically, the laminar flow 42a of the second laminar flow generator 42 was arranged to be blown from a position 1000 mm downstream from the upstream end of the first laminar flow generator 41. Second, as shown in FIG. 11B, the second laminar flow generator 42 was disposed directly above the first laminar flow generator 41. Specifically, in the distance direction (x direction in FIG. 7), the upstream end of the first laminar flow generator 41 and the upstream end of the second laminar flow generator 42 are arranged to be the same. The third one was disposed 1000 mm upstream from the upstream end of the first laminar flow generator 41, as shown in FIG. 11C. Specifically, the laminar flow 42a of the second laminar flow generator 42 was arranged to be blown from a position 1000 mm upstream from the upstream end of the first laminar flow generator 41.
 図11A~図11Cにおいて、局所空気清浄化装置1における粉じん数[個/m]の測定位置を、距離1000mm、奥行0mm、高さ400mm、800mm、1500mm、2200の地点とした。すなわち、第2層流発生装置42の位置3つ、距離方向1つ、奥行方向1つ及び高さ方向4つの合計12の測定位置において、粉じん数[個/m]を測定した。実施例1と同様に、測定結果は、ISO14644-1の清浄度を表すクラスで示す。測定結果を表5に示す。 11A to 11C, the measurement positions of the number of dusts [pieces / m 3 ] in the local air cleaning device 1 are points at a distance of 1000 mm, a depth of 0 mm, a height of 400 mm, 800 mm, 1500 mm, and 2,200. That is, the number of dust [pieces / m 3 ] was measured at a total of 12 measurement positions of three positions of the second laminar flow generator 42, one in the distance direction, one in the depth direction, and four in the height direction. As in the case of the first embodiment, the measurement result is represented by a class representing the cleanliness of ISO14644-1. Table 5 shows the measurement results.
 なお、表5において、図11Aに示す第2層流発生装置42の位置を、天井FAN位置+1000mm、図11Bに示す第2層流発生装置42の位置を、天井FAN位置0mm、図11Cに示す第2層流発生装置42の位置を、天井FAN位置-1000mm、と定義する。 In addition, in Table 5, the position of the second laminar flow generator 42 shown in FIG. 11A is the ceiling FAN position + 1000 mm, the position of the second laminar flow generator 42 shown in FIG. 11B is the ceiling FAN position 0 mm, and FIG. 11C. The position of the second laminar flow generator 42 is defined as the ceiling FAN position-1000 mm.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、高さ800mm、400mmでは、第2層流発生装置42が第1層流発生装置41の下流側(図11A)に配置された場合に、最も高い清浄度を示すことを確認した。これは、真上(図11B)及び上流側(図11C)に配置された第2層流発生装置42の層流42aが、第2層流発生装置42よりも下方の粉じんを押し流すためと考えられる。 As shown in Table 5, when the height is 800 mm and 400 mm, when the second laminar flow generator 42 is arranged downstream of the first laminar flow generator 41 (FIG. 11A), it shows the highest cleanliness. It was confirmed. This is because the laminar flow 42a of the second laminar flow generator 42 disposed directly above (FIG. 11B) and the upstream side (FIG. 11C) pushes down dust below the second laminar flow generator 42. Can be
(実施例5)
 吸込口の位置が異なる第1層流発生装置41を有する局所空気清浄化装置1において、粉じんの個数を計測した。
(Example 5)
In the local air cleaning device 1 having the first laminar flow generator 41 having different suction port positions, the number of dust particles was measured.
 図12A~図12Cは、局所空気清浄化装置1の側面図である。図12A~図12Cの局所空気清浄化装置1の第1層流発生装置41は、装置6に近接する位置であってその下流側に配置し、第1層流発生装置41の中心と、装置6の中心とは同一直線上に配置した。図12Aの第1層流発生装置41は、下流側の空気41bを吸い込み、層流41aを吹き出す。図12Bの第1層流発生装置41は、上流側の空気41cを吸い込み、層流41aを吹き出す。図12Cの第1層流発生装置41は、床面から空気41dを吸い込み、層流41aを吹き出す。 FIGS. 12A to 12C are side views of the local air cleaning device 1. The first laminar flow generation device 41 of the local air cleaning device 1 of FIGS. 12A to 12C is located at a position close to the device 6 and downstream thereof, and the center of the first laminar flow generation device 41 and the device 6 was arranged on the same straight line. The first laminar flow generation device 41 in FIG. 12A sucks the downstream air 41b and blows out the laminar flow 41a. The first laminar flow generator 41 in FIG. 12B sucks the air 41c on the upstream side and blows out the laminar flow 41a. The first laminar flow generator 41 in FIG. 12C sucks air 41d from the floor and blows out laminar flow 41a.
 図12A~図12Cの局所空気清浄化装置1のプッシュフード2及び粉じん数の測定手法は、実施例1と同様である。一様空気流の流速は、0.3m/sであり、装置6から発生する大気じんの個数は、5.0×10~6.7×10[個/m]であった。 The measuring method of the push hood 2 and the number of dusts of the local air cleaning device 1 of FIGS. 12A to 12C is the same as that of the first embodiment. The flow velocity of the uniform air flow was 0.3 m / s, and the number of atmospheric dust generated from the device 6 was 5.0 × 10 7 to 6.7 × 10 7 [pieces / m 3 ].
 図12A~図12Cの局所空気清浄化装置1における粉じんの測定位置は、一様空気流中における第1層流発生装置41の下流側の端から一様空気流の下流側への距離が1000mm、床からの高さが800mmであって、第1層流発生装置41及び装置6の中心を通る直線上の位置を測定位置とした。 The measurement position of the dust in the local air cleaning device 1 of FIGS. 12A to 12C is such that the distance from the downstream end of the first laminar flow generator 41 to the downstream side of the uniform air flow in the uniform air flow is 1000 mm. The height from the floor was 800 mm, and the position on a straight line passing through the center of the first laminar flow generation device 41 and the device 6 was defined as the measurement position.
 上記測定位置において、図12A~図12Cの第1層流発生装置41の吹出口サイズが、25mm、50mm、100mm、吹出風速が、1m/s~6m/sの場合における粉じん数を測定した。実施例1と同様に、測定結果は、ISO14644-1の清浄度を表すクラスで示す。測定結果を表6に示す。 に お い て At the above measurement positions, the number of dust particles was measured when the outlet size of the first laminar flow generator 41 in FIGS. 12A to 12C was 25 mm, 50 mm, 100 mm, and the blowing air speed was 1 m / s to 6 m / s. As in the case of the first embodiment, the measurement result is represented by a class representing the cleanliness of ISO14644-1. Table 6 shows the measurement results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6において、“OFF”は、第1層流発生装置41が層流を吹き出していない場合を示し、“ON”は、第1層流発生装置41が層流を吹き出している場合を示す。表6に示すように、下流側吸気(図12A)、上流側吸気(図12B)、床面吸気(図12C)の条件のうち、上流側吸気(図12B)の条件において、層流が吹き出されない場合と比較して、清浄度が最も向上することを確認した。また、吸気の位置が上流側吸気(図12B)の条件では、吹出口サイズが25mm、50mm、100mmのうち、50mmの場合に、層流が吹き出されない場合と比較して、清浄度が最も向上することを確認した。すなわち、吹出口サイズは、50mmが好適であることを確認した。また、吸気の位置が上流側吸気、吹出口サイズが50mm、吹出風速が4m/sの条件において、最も高い清浄度を確認した。 に お い て In Table 6, “OFF” indicates a case where the first laminar flow generating device 41 is not blowing out a laminar flow, and “ON” indicates a case where the first laminar flow generating device 41 is blowing out a laminar flow. As shown in Table 6, the laminar flow is blown out under the conditions of the upstream intake (FIG. 12B) among the conditions of the downstream intake (FIG. 12A), the upstream intake (FIG. 12B), and the floor intake (FIG. 12C). It was confirmed that the cleanliness was most improved as compared with the case where no cleaning was performed. Further, under the condition that the position of the intake air is the upstream intake air (FIG. 12B), the cleanness is most improved when the outlet size is 50 mm out of 25 mm, 50 mm, and 100 mm as compared with the case where the laminar flow is not blown out. Make sure you do. That is, it was confirmed that the outlet size was preferably 50 mm. In addition, the highest cleanliness was confirmed under the condition that the position of the intake air was the upstream intake air, the outlet size was 50 mm, and the outlet wind speed was 4 m / s.
(実施例6)
 吸込口が上流側に位置する第1層流発生装置41を備えた局所空気清浄化装置1を用いて、距離及び高さを変えた複数の測定位置で粉じんの個数を計測した。
(Example 6)
The number of dust particles was measured at a plurality of measurement positions at different distances and heights using the local air cleaning device 1 including the first laminar flow generator 41 having the suction port located on the upstream side.
 図13は、吸込口が上流側に位置する第1層流発生装置41を備えた局所空気清浄化装置1の側面図である。 FIG. 13 is a side view of the local air cleaning device 1 including the first laminar flow generation device 41 in which the suction port is located on the upstream side.
 図13の局所空気清浄化装置1のプッシュフード2及び粉じん数の測定手法は、実施例1と同様である。一様空気流の流速は、0.3m/sであり、装置6から発生する大気じんの個数は、5.0×10~6.7×10[個/m]であった。 The measuring method of the push hood 2 and the number of dusts of the local air cleaning device 1 of FIG. 13 is the same as that of the first embodiment. The flow velocity of the uniform air flow was 0.3 m / s, and the number of atmospheric dust generated from the device 6 was 5.0 × 10 7 to 6.7 × 10 7 [pieces / m 3 ].
 図13に示すように、第1層流発生装置41の下流側の端から一様空気流の下流側への距離が、1000mm、2000mm、3000mm、床からの高さが、800mm、1200mmであって、第1層流発生装置41及び装置6の中心を通る直線上の位置を測定位置とした。 As shown in FIG. 13, the distance from the downstream end of the first laminar flow generator 41 to the downstream side of the uniform air flow is 1000 mm, 2000 mm, 3000 mm, and the height from the floor is 800 mm, 1200 mm. The position on a straight line passing through the center of the first laminar flow generator 41 and the device 6 was defined as the measurement position.
 上記測定位置において、図13の第1層流発生装置41の吹出口サイズが、50mm、吹出風速が、2m/s~4m/sの場合における粉じん数を測定した。実施例1と同様に、測定結果は、ISO14644-1の清浄度を表すクラスで示す。測定結果を表7に示す。 に お い て At the above measurement position, the number of dust particles was measured when the size of the outlet of the first laminar flow generator 41 in FIG. 13 was 50 mm and the blowing wind speed was 2 m / s to 4 m / s. As in the case of the first embodiment, the measurement result is represented by a class representing the cleanliness of ISO14644-1. Table 7 shows the measurement results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7において、“OFF”は、第1層流発生装置41が層流を吹き出していない場合を示し、“ON”は、第1層流発生装置41が層流を吹き出している場合を示す。表7に示すように、高さ800mm、1200mmでは、風速が2m/s、3m/sの条件よりも、風速が4m/sの条件の方が、層流が吹き出されない場合と比較して、清浄度が向上することを確認した。すなわち、第1層流発生装置41の吹出風速は、4m/sが好適であることを確認した。 In Table 7, “OFF” indicates a case where the first laminar flow generating device 41 is not blowing out a laminar flow, and “ON” indicates a case where the first laminar flow generating device 41 is blowing out a laminar flow. As shown in Table 7, at a height of 800 mm and 1200 mm, the condition at a wind speed of 4 m / s is better than the condition at a wind speed of 2 m / s and 3 m / s as compared to a case where a laminar flow is not blown out. It was confirmed that the cleanliness was improved. That is, it was confirmed that the blowing speed of the first laminar flow generator 41 was preferably 4 m / s.
(実施例7)
 第1層流発生装置41が層流を吹き出した際の局所空気清浄化装置1内の風速を測定した。
(Example 7)
The wind speed in the local air cleaning device 1 when the first laminar flow generator 41 emitted a laminar flow was measured.
 図14A、図14B、図15A、図15Bの局所空気清浄化装置1のプッシュフード2は、横1050mm、縦850mmのプッシュフード2aをその空気流開口面が同一方向であって、プッシュフード2aの短辺どうし、長辺どうしがそれぞれ隣り合うように配列して連結(縦3個×横5個の15個)したものであり、その開口面31の大きさは、幅5250mm、高さ2570mmである。プッシュフード2からの吹き出される一様空気流は流速0.3m/sで流れ、清浄空気空間が形成されている。 The push hood 2 of the local air cleaning device 1 of FIGS. 14A, 14B, 15A and 15B has a push hood 2a having a width of 1050 mm and a length of 850 mm in the same direction as that of the push hood 2a. The short side and the long side are arranged so that they are adjacent to each other and connected (15 vertically 3 × 5 horizontally). The size of the opening surface 31 is 5250 mm in width and 2570 mm in height. is there. The uniform air flow blown out from the push hood 2 flows at a flow rate of 0.3 m / s, and a clean air space is formed.
 図14A,図14Bは、第1層流発生装置41が上向きに層流41aを吹き出す場合の局所空気清浄化装置1の平面図及び側面図を示し、図15A,図15Bは、第1層流発生装置41が横向き(y方向)に層流41aを吹き出す場合の局所空気清浄化装置1の平面図及び側面図を示す。 14A and 14B show a plan view and a side view of the local air cleaning device 1 when the first laminar flow generator 41 blows out the laminar flow 41a upward, and FIGS. 15A and 15B show the first laminar flow. FIG. 3 shows a plan view and a side view of the local air cleaning device 1 in a case where the generator 41 blows out a laminar flow 41a in a horizontal direction (y direction).
 テーブル5は、局所空気清浄化装置1のy方向の中心に位置し、図14A、図14B,図15A,図15Bの第1層流発生装置41を、テーブル5に近接する位置であってその下流側に配置した。図14A、図14Bに示すように、上向きに層流を吹き出す第1層流発生装置41の中心とテーブル5の中心は直線8上に位置する。また、図15A、図15Bに示すように、横向きに層流を吹き出す第1層流発生装置41はテーブル5の下流側の端に位置する。 The table 5 is located at the center of the local air cleaning device 1 in the y direction, and the first laminar flow generation device 41 shown in FIGS. 14A, 14B, 15A, and 15B is a position close to the table 5 and It was located downstream. As shown in FIGS. 14A and 14B, the center of the first laminar flow generator 41 that blows out laminar flow upward and the center of the table 5 are located on the straight line 8. As shown in FIGS. 15A and 15B, the first laminar flow generator 41 that blows out laminar flow in the horizontal direction is located at the downstream end of the table 5.
 上向きに層流を吹き出す第1層流発生装置41の場合、図14Aに示すように、一様空気流中における第1層流発生装置41の下流側の端から一様空気流の下流側(x方向)への距離が、1000mm、2000mm、3000mmの地点を距離方向の測定位置とした。また、直線8からy方向への距離が、-400mm、0mm、+400mmの地点を奥行方向の測定位置とした。また、図14Bに示すように、床からの高さが、400mm、800mm、1200mm、1600mmの地点を高さ方向の測定位置とした。 In the case of the first laminar flow generator 41 that blows out a laminar flow upward, as shown in FIG. 14A, the downstream side of the uniform laminar air flow from the downstream end of the first laminar flow generator 41 in the uniform laminar air flow ( The points at distances of 1000 mm, 2000 mm, and 3000 mm to the x direction) were taken as measurement positions in the distance direction. In addition, points at which the distance from the straight line 8 in the y direction is −400 mm, 0 mm, and +400 mm were determined as measurement positions in the depth direction. In addition, as shown in FIG. 14B, points at heights from the floor of 400 mm, 800 mm, 1200 mm, and 1600 mm were measured positions in the height direction.
 横向きに層流を吹き出す第1層流発生装置41の場合、図15Aに示すように、一様空気流中における第1層流発生装置41の下流側の端から一様空気流の下流側(x方向)への距離が、1000mm、2000mm、3000mmの地点を距離方向の測定位置とした。また、第1層流発生装置41の吹出口からy方向への距離が、0mm、400mm、800mm、1200mmの地点を奥行き方向の測定位置とした。また、図15Bに示すように、床からの高さが、400mm、800mm、1200mmの地点を高さ方向の測定位置とした。 In the case of the first laminar flow generator 41 that blows out a laminar flow in the lateral direction, as shown in FIG. 15A, the downstream side of the uniform laminar flow from the downstream end of the first laminar flow generator 41 in the uniform airflow ( The points at distances of 1000 mm, 2000 mm, and 3000 mm to the x direction) were taken as measurement positions in the distance direction. Further, points at distances of 0 mm, 400 mm, 800 mm, and 1200 mm from the outlet of the first laminar flow generator 41 in the y direction were measured positions in the depth direction. In addition, as shown in FIG. 15B, points at 400 mm, 800 mm, and 1200 mm from the floor were measured positions in the height direction.
 上記測定位置において、風速[m/s]を測定した。上向きに層流を吹き出す第1層流発生装置41の場合の測定結果を表8に示し、横向きに層流を吹き出す第1層流発生装置41の場合の測定結果を表9に示す。 風 Wind speed [m / s] was measured at the above measurement position. Table 8 shows the measurement results in the case of the first laminar flow generator 41 that blows out laminar flow upward, and Table 9 shows the measurement results in the case of the first laminar flow generator 41 that blows out laminar flow in the horizontal direction.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表8において、“上向き気流ON”は、第1層流発生装置41が上向きに層流を吹き出す場合を示し、“上向き気流OFF”は、第1層流発生装置41が層流を吹き出していない場合を示す。表8に示すように、“上向き気流ON”の条件及び“上向き気流OFF”の条件は、それぞれ、風速分布が±50%以内であることを確認した。また、“上向き気流ON”の条件と“上向き気流OFF”とでは、気流の分布にほぼ違いがないことを確認した。 In Table 8, “upstream airflow ON” indicates a case where the first laminar flow generator 41 blows out a laminar flow upward, and “upstream airflow OFF” indicates that the first laminar flow generator 41 does not blow out a laminar flow. Show the case. As shown in Table 8, it was confirmed that the wind speed distribution was within ± 50% under the condition of “upstream air flow ON” and the condition of “upstream air flow OFF”. Further, it was confirmed that there was almost no difference in the distribution of the airflow between the condition of “upstream airflow ON” and the condition of “upstream airflow OFF”.
 表9において、“横向き気流ON”は、第1層流発生装置41が横向きに層流を吹き出す場合を示し、“横向き気流OFF”は、第1層流発生装置41が層流を吹き出していない場合を示す。表9に示すように、“横向き気流ON”の条件及び“横向き気流OFF”の条件は、それぞれ、風速分布が±50%以内であることを確認した。また、“横向き気流ON”の条件と“横向き気流OFF”とでは、気流の分布にほぼ違いがないことを確認した。 In Table 9, "lateral airflow ON" indicates a case where the first laminar flow generator 41 blows out laminar flow in the horizontal direction, and "lateral airflow OFF" indicates that the first laminar flow generator 41 does not blow out laminar flow. Show the case. As shown in Table 9, it was confirmed that the wind speed distribution was within ± 50% under the conditions of “sideways airflow ON” and “sideways airflow OFF”. In addition, it was confirmed that there was almost no difference in the airflow distribution between the condition of “lateral airflow ON” and the condition of “lateral airflow OFF”.
 表8,9に示すように、第1層流発生装置41の層流の向き及び層流の有無が風速分布に影響を与えないことを確認した。すなわち、第1層流発生装置41が吹き出す層流は、一様空気流の流れに影響を与えないことを確認した。 よ う As shown in Tables 8 and 9, it was confirmed that the direction of the laminar flow of the first laminar flow generator 41 and the presence or absence of the laminar flow did not affect the wind speed distribution. That is, it was confirmed that the laminar flow blown out by the first laminar flow generator 41 did not affect the flow of the uniform air flow.
 なお、本発明は、本発明の広義の趣旨及び範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention allows various embodiments and modifications without departing from the broad meaning and scope of the present invention. Further, the above-described embodiments are for explaining the present invention, and do not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications made within the scope of the claims and the scope of the invention equivalent thereto are considered to be within the scope of the present invention.
 本出願は、2018年8月24日に出願された日本国特許出願特願2018-157443号に基づく。本明細書中に日本国特許出願特願2018-157443号の明細書、特許請求の範囲、及び図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2018-157443 filed on Aug. 24, 2018. The specification, claims and drawings of Japanese Patent Application No. 2018-157443 are incorporated herein by reference.
 本発明によれば、清浄空気空間内において作業により発生した粉じんを作業空間外へ移動することにより、実際に作業中の作業空間において清浄度を高く維持することが可能な局所空気清浄化装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the local air purification apparatus which can maintain high cleanliness in the working space which is actually working by moving the dust generated by the work in the clean air space to the outside of the working space. Can be provided.
 1 局所空気清浄化装置
 2、2a プッシュフード
 21 ハウジング
 22 空気流吸込面
 23 空気吹出面(空気流開口面)
 24 送風機構
 25 高性能フィルタ
 26 整流機構
 27 プレフィルタ
 28 矢印
 3 ガイド
 31 開口面
 32 穴
 41 第1層流発生装置
 41a 層流
 41b,41c,41d 空気
 42 第2層流発生装置
 42a 層流
 42b 空気
 5 テーブル
 6 装置
 7,8 直線
 W 空気衝突面
DESCRIPTION OF SYMBOLS 1 Local air cleaner 2, 2a Push hood 21 Housing 22 Air flow suction surface 23 Air blowing surface (air flow opening surface)
24 blower mechanism 25 high-performance filter 26 rectifier mechanism 27 pre-filter 28 arrow 3 guide 31 opening surface 32 hole 41 first laminar flow generator 41a laminar flow 41b, 41c, 41d air 42 second laminar flow generator 42a laminar flow 42b air 5 Table 6 Equipment 7, 8 Straight line W Air collision surface

Claims (5)

  1.  清浄化された一様空気流を吹き出す空気流開口面を有するプッシュフードと、
     前記プッシュフードの空気流開口面側に設けられ、前記空気流開口面側から前記一様空気流の下流側に向かって延び、下流側端部に開口面を形成するガイドと、を備え、
     前記空気流開口面から吹き出される清浄化された一様空気流が、前記ガイド内を通過した後、前記ガイドの前記開口面の下流側において空気衝突面に衝突するように前記プッシュフードを配置するとともに、前記ガイドの前記開口面を前記空気衝突面から離間して対向させることにより、前記ガイドの前記開口面と前記空気衝突面との間に開放した領域を形成し、
     前記空気流開口面から吹き出される清浄化された一様空気流が、前記空気衝突面で衝突して前記開放した領域外に流出することにより、前記ガイド内及び前記開放した領域内を他の領域と比較して高い清浄度とする局所空気清浄化装置において、
     前記ガイド内において粉じんが発生する位置よりも下流側に配置され、前記空気流開口面から前記一様空気流が吹き出される方向に対し略直交する方向に層流を吹き出す第1層流発生装置を備え、
     前記第1層流発生装置は、前記ガイド内で発生する粉じんを、前記略直交する方向に吹き出す層流により、前記ガイド内の周縁に移動させ、
     前記プッシュフードは、前記第1層流発生装置により前記ガイド内の周縁に移動された粉じんを、前記空気流開口面から吹き出す一様空気流により、前記ガイド外へ排出する
     ことを特徴とする局所空気清浄化装置。
    A push hood having an air flow opening surface for blowing out a purified uniform air flow;
    A guide that is provided on the airflow opening surface side of the push hood, extends from the airflow opening surface side toward the downstream side of the uniform airflow, and forms an opening surface at a downstream end.
    The push hood is arranged so that a uniform air stream, which is blown out from the air flow opening surface, passes through the guide and then collides with an air collision surface on the downstream side of the opening surface of the guide. And, by facing the opening surface of the guide away from the air collision surface, to form an open area between the opening surface of the guide and the air collision surface,
    The purified uniform air flow blown out from the air flow opening surface collides with the air collision surface and flows out of the open region, thereby causing another inside of the guide and the inside of the open region to flow through the inside of the guide and the inside of the open region. In a local air purification device that has a higher cleanness compared to the area,
    A first laminar flow generator that is disposed downstream of a position where dust is generated in the guide and that blows out a laminar flow in a direction substantially perpendicular to a direction in which the uniform air flow is blown out from the air flow opening surface. With
    The first laminar flow generation device moves the dust generated in the guide to a peripheral edge in the guide by a laminar flow blown out in the substantially orthogonal direction,
    The push hood discharges the dust moved to the periphery in the guide by the first laminar flow generation device to outside of the guide by a uniform airflow blown out from the airflow opening surface. Air purifier.
  2.  清浄化された一様空気流を吹き出す空気流開口面を有するプッシュフードと、
     前記プッシュフードの空気流開口面側に設けられ、前記空気流開口面側から前記一様空気流の下流側に向かって延び、下流側端部に開口面を形成するガイドと、を備え、
     前記空気流開口面から吹き出される清浄化された一様空気流が、前記ガイド内を通過した後、前記ガイドの前記開口面の下流側において空気衝突面に衝突するように前記プッシュフードを配置するとともに、前記ガイドの前記開口面を前記空気衝突面から離間して対向させることにより、前記ガイドの前記開口面と前記空気衝突面との間に開放した領域を形成し、
     前記空気流開口面から吹き出される清浄化された一様空気流が、前記空気衝突面で衝突して前記開放した領域外に流出することにより、前記ガイド内及び前記開放した領域内を他の領域と比較して高い清浄度とする局所空気清浄化装置において、
     前記ガイド内において粉じんが発生する位置よりも下流側に配置され、前記空気流開口面から前記一様空気流が吹き出される方向に対し略直交する方向に層流を吹き出す第1層流発生装置を備え、
     前記ガイドにおいて、前記第1層流発生装置から吹き出される層流が前記ガイドに衝突する位置に穴が形成され、
     前記第1層流発生装置は、前記ガイド内で発生した粉じんを、前記略直交する方向に吹き出す層流により、前記穴から前記ガイド外へ排出する
     ことを特徴とする局所空気清浄化装置。
    A push hood having an air flow opening surface for blowing out a purified uniform air flow;
    A guide that is provided on the airflow opening surface side of the push hood, extends from the airflow opening surface side toward the downstream side of the uniform airflow, and forms an opening surface at a downstream end.
    The push hood is arranged such that a uniform air stream, which is blown out from the airflow opening surface, passes through the guide and then strikes an air collision surface downstream of the opening surface of the guide. And, by facing the opening surface of the guide away from the air collision surface to form an open area between the opening surface of the guide and the air collision surface,
    The purified uniform air flow blown out from the air flow opening surface collides with the air collision surface and flows out of the open region, so that other air flows in the guide and the open region. In a local air purification device that has a higher cleanness compared to the area,
    A first laminar flow generator that is disposed downstream of a position where dust is generated in the guide and that blows out a laminar flow in a direction substantially perpendicular to a direction in which the uniform air flow is blown out from the air flow opening surface. With
    In the guide, a hole is formed at a position where a laminar flow blown from the first laminar flow generator collides with the guide,
    The local air cleaning device, wherein the first laminar flow generating device discharges dust generated in the guide to the outside of the guide from the hole by a laminar flow that is blown in a direction substantially orthogonal to the guide.
  3.  前記ガイド内の周縁において、前記第1層流発生装置から吹き出される層流が前記ガイドに衝突する位置に近接する位置であって、前記第1層流発生装置よりも下流側に配置され、前記開口面に向かって、前記空気流開口面から前記一様空気流が吹き出される方向に対し略平行に層流を吹き出す第2層流発生装置をさらに備え、
     前記第2層流発生装置は、前記一様空気流の流速よりも速い流速で、前記略平行に層流を吹き出し、
     前記第2層流発生装置は、前記第1層流発生装置により前記ガイド内の周縁に移動された粉じんを、前記略平行に吹き出す層流により、前記ガイド外へ排出する
     ことを特徴とする請求項1に記載の局所空気清浄化装置。
    At a peripheral edge in the guide, a position where a laminar flow blown out from the first laminar flow generation device collides with the guide, and is located downstream of the first laminar flow generation device, A second laminar flow generator that blows out a laminar flow substantially parallel to a direction in which the uniform air flow is blown out from the air flow opening surface toward the opening surface,
    The second laminar flow generator blows out the laminar flow substantially in parallel with a flow velocity higher than the flow velocity of the uniform air flow,
    The said 2nd laminar flow generator discharges the dust moved to the periphery in the said guide by the said 1st laminar flow generator to the outside of a said guide by the said laminar flow which blows out substantially in parallel. Item 2. The local air cleaning device according to Item 1.
  4.  前記第1層流発生装置が前記略直交する方向に吹き出す層流の流速は、前記プッシュフードが吹き出す前記一様空気流の流速の3~25倍である
     ことを特徴とする請求項1乃至3のいずれか1項に記載の局所空気清浄化装置。
    The flow rate of the laminar flow blown in the substantially orthogonal direction by the first laminar flow generator is 3 to 25 times the flow rate of the uniform air flow blown out by the push hood. The local air cleaning device according to any one of claims 1 to 4.
  5.  前記第1層流発生装置は、前記一様空気流中における当該第1層流発生装置の上流側の空気を吸い込む
     ことを特徴とする請求項1乃至4のいずれか1項に記載の局所空気清浄化装置。
    The local air according to any one of claims 1 to 4, wherein the first laminar flow generator sucks air upstream of the first laminar flow generator in the uniform airflow. Purification equipment.
PCT/JP2019/032945 2018-08-24 2019-08-23 Local air purification device WO2020040273A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020538475A JP7401915B2 (en) 2018-08-24 2019-08-23 local air purification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-157443 2018-08-24
JP2018157443 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020040273A1 true WO2020040273A1 (en) 2020-02-27

Family

ID=69592097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032945 WO2020040273A1 (en) 2018-08-24 2019-08-23 Local air purification device

Country Status (3)

Country Link
JP (1) JP7401915B2 (en)
TW (1) TW202019545A (en)
WO (1) WO2020040273A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112473763A (en) * 2020-09-25 2021-03-12 北京市医疗器械检验所 Workbench for laminar flow controlled environment
JP7487954B2 (en) 2022-03-09 2024-05-21 北越商工株式会社 Clean Room System

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590234U (en) * 1992-05-07 1993-12-10 高砂熱学工業株式会社 Device for purifying locally polluted air
JP2014025624A (en) * 2012-07-26 2014-02-06 Shinryo Corp Chemical substance discharge system
JP2014098519A (en) * 2012-11-15 2014-05-29 Koken Ltd Induced airflow generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541335A (en) * 1978-09-13 1980-03-24 Nippon Air Curtain Kk Entrance shielding device
JP3208642B2 (en) * 1995-08-25 2001-09-17 三菱電機株式会社 Suction device and air purifier provided with the device
JP5484516B2 (en) 2011-10-03 2014-05-07 興研株式会社 Clean air blowing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590234U (en) * 1992-05-07 1993-12-10 高砂熱学工業株式会社 Device for purifying locally polluted air
JP2014025624A (en) * 2012-07-26 2014-02-06 Shinryo Corp Chemical substance discharge system
JP2014098519A (en) * 2012-11-15 2014-05-29 Koken Ltd Induced airflow generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112473763A (en) * 2020-09-25 2021-03-12 北京市医疗器械检验所 Workbench for laminar flow controlled environment
JP7487954B2 (en) 2022-03-09 2024-05-21 北越商工株式会社 Clean Room System

Also Published As

Publication number Publication date
JP7401915B2 (en) 2023-12-20
JPWO2020040273A1 (en) 2021-08-12
TW202019545A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
KR102153150B1 (en) Local air cleaner
WO2020040273A1 (en) Local air purification device
KR101578923B1 (en) Local air purification device
JP5484515B2 (en) Local air purifier
TWI609156B (en) Clean air blowoff device
WO2012002424A1 (en) Air blowing device
JP6957308B2 (en) Air conditioning system
WO2014077255A1 (en) Guided airflow generation device
RU2574995C2 (en) Local air cleaner
JP7094586B1 (en) Splash collector
TWI609159B (en) Local air cleaning device
WO2013058005A1 (en) Local air purification device
JP2014059140A (en) Spot air cleaning device
TWI609158B (en) Local air cleaning device
JP2014016156A (en) Cleaned air blowoff device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851535

Country of ref document: EP

Kind code of ref document: A1