WO2020040171A1 - Coating material for heat insulation material and heat insulation material - Google Patents

Coating material for heat insulation material and heat insulation material Download PDF

Info

Publication number
WO2020040171A1
WO2020040171A1 PCT/JP2019/032553 JP2019032553W WO2020040171A1 WO 2020040171 A1 WO2020040171 A1 WO 2020040171A1 JP 2019032553 W JP2019032553 W JP 2019032553W WO 2020040171 A1 WO2020040171 A1 WO 2020040171A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
silica airgel
polysaccharide
paint
coating
Prior art date
Application number
PCT/JP2019/032553
Other languages
French (fr)
Japanese (ja)
Inventor
信志 熊谷
片山 直樹
Original Assignee
住友理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社 filed Critical 住友理工株式会社
Priority to CN201980039000.3A priority Critical patent/CN112272689B/en
Publication of WO2020040171A1 publication Critical patent/WO2020040171A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials

Definitions

  • the present invention relates to a heat insulating paint and a heat insulating material using silica airgel.
  • Silica airgel is a porous material in which silica fine particles are linked to form a skeleton and have a pore structure of about 10 to 50 nm.
  • the thermal conductivity of silica airgel is lower than that of air. For this reason, the development of a heat insulating material utilizing the high heat insulating properties of silica airgel is in progress.
  • Patent Document 1 describes an article containing silica airgel bonded by a water-dispersible polyurethane and having a thermal conductivity of 0.025 W / m ⁇ K or less.
  • Patent Document 2 discloses an aqueous dispersion of silica airgel particles including silica airgel particles, organic nanofibers having an anionic functional group, a water-soluble nonionic surfactant, a water-soluble resin, and water. And drying it to produce thermal insulation.
  • Patent Literature 3 describes a heat insulating material including silica airgel particles, a hydrophilic adhesive such as a phenol resin, and an amphiphilic compound (surfactant) having a hydrophilic group and a hydrophobic group.
  • silica aerogels used as heat insulators have hydrophobic parts on the surface to prevent moisture and the like from entering inside and crushing the pores.
  • a urethane binder is used for the purpose of fixing silica airgel or the like
  • a hydrophobic solvent is used as a dispersion medium
  • the solvent permeates the pores of the silica airgel.
  • a coating material is prepared by adding silica airgel to a dispersion in which a urethane binder is dispersed in water instead of a hydrophobic solvent.
  • silica airgel has a hydrophobic portion on its surface, and therefore is not easily adapted to water.
  • the heat insulating material described in Patent Document 2 contains organic nanofibers.
  • the fibrous substance is entangled around the silica airgel, and exhibits a thickening effect and an effect of suppressing separation of the silica airgel from the dispersion medium.
  • a fibrous substance when a fibrous substance is blended, it becomes a heat transfer path, and as the blending amount increases, the thermal conductivity of the heat insulating material increases and the heat insulating property decreases. I understood.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a heat insulating paint having good coatability, in which silica airgel hardly separates. Another object is to provide a heat insulating material which is easy to manufacture and has excellent heat insulating properties by using the heat insulating material paint.
  • the heat insulating coating material of the present invention is characterized by having silica airgel, an aqueous emulsion binder, and a polysaccharide.
  • the heat insulating material of the present invention has a cured product of the heat insulating coating material of the present invention described in the above (1) on at least a part of the surface and inside of the substrate.
  • the paint for heat insulating material of the present invention has a polysaccharide.
  • the polysaccharide is one in which one or more monosaccharides are glycoside-linked, and has high viscosity.
  • the viscosity of the coating material is increased, and the silica airgel is hardly separated from the dispersion medium. Thereby, the silica airgel is stably held in the paint.
  • the viscosity of the paint is high, it is difficult to drip, so that the paint is easily applied to the base material.
  • Polysaccharides suppress the separation of silica airgel by increasing the viscosity due to entanglement of molecular chains. For this reason, even if the polysaccharide is blended, unlike the fibrous substance, a heat transfer path is hardly formed. Therefore, even if the blending amount of the polysaccharide is increased, the heat insulating property does not easily decrease.
  • silica airgel has a hydrophobic portion on its surface, thereby maintaining the pore structure.
  • the hydrophobic portion selectively binds to the hydrophobic portion of the silica airgel, and the hydrophilic portion is disposed so as to surround the silica airgel, thereby protecting the silica airgel. It becomes like a colloid. This action also suppresses the separation of the silica airgel from the dispersion medium and improves the dispersibility of the silica airgel. As a result, the time required for dispersion can be reduced, and coating can be easily performed.
  • polysaccharides having a hydrophilic portion are less likely to enter the pores of silica airgel.
  • the silica airgel can be easily dispersed, and the time of the dispersion step can be shortened.
  • the silica airgel is difficult to separate from the dispersion medium such as water after preparing the coating material, restrictions on the working process are reduced. That is, since the next step does not need to be performed immediately after preparing the paint, the next step can be performed after several days.
  • coating by a coating machine becomes possible, and it can respond to continuous production.
  • the viscosity of the paint is high, it can be easily applied to a film-like base material, and various types of heat insulating materials can be easily manufactured. Polysaccharides are also used as additives for foods and the like, and are easily available and inexpensive. Therefore, according to the heat insulating material paint of the present invention, the heat insulating material can be manufactured at low cost.
  • Patent Documents 2 and 3 describe that a surfactant is blended.
  • the surfactant has a protective colloid property, its viscosity is poor, so that the effect of improving the coatability is small.
  • the heat insulating material of the present invention is easy to manufacture because the heat insulating paint of the present invention, which has excellent coatability, is used.
  • the cured product constituting the heat insulating material of the present invention contains silica aerogel, and also contains a polysaccharide in which a heat transfer path is less likely to be formed than a fibrous substance. Therefore, the thermal conductivity of the cured product can be reduced, and a heat insulating material having high heat insulating properties can be realized. For example, when a polysaccharide having a long main chain and easily causing entanglement of molecular chains is used, the retention of silica airgel becomes higher. Thereby, falling off of the silica airgel (so-called powder dropout) in the cured product can be suppressed. In addition, cracks and the like can be suppressed by increasing the strength of the cured product.
  • heat-insulating paint and the heat insulating material of the present invention will be described.
  • the heat-insulating paint and heat-insulating material of the present invention are not limited to the following forms, and various modifications and alterations that can be made by those skilled in the art without departing from the gist of the present invention. Can be implemented.
  • the coating material for a heat insulating material of the present invention (hereinafter, appropriately referred to as “paint”) has silica airgel, an aqueous emulsion-based binder, and a polysaccharide.
  • the structure, shape, size, etc. of the silica airgel are not particularly limited.
  • the diameter of the silica fine particles (primary particles) forming the skeleton of the silica airgel is preferably about 2 to 5 nm, and the size of the pores formed between the skeletons is preferably about 10 to 50 nm.
  • Most of the pores are so-called mesopores of 50 nm or less. Since the mesopores are smaller than the mean free path of the air, the convection of the air is restricted and heat transfer is hindered. Thereby, the silica airgel has high heat insulating properties.
  • the shape of the silica airgel is spherical or irregularly shaped lump, but spherical is preferable.
  • the dispersibility is improved, so that it is easy to make a paint.
  • the close-packing is easy, the filling amount can be increased, and the effect of improving the heat insulating property is increased.
  • the surface area is reduced, the amount of the binder having a relatively large thermal conductivity can be reduced, which leads to an improvement in heat insulation.
  • the average particle diameter is desirably about 1 to 200 ⁇ m.
  • the small-diameter silica airgel enters the gap between the large-diameter silica airgels, so that the filling amount can be increased, and the effect of enhancing the heat insulating property is increased.
  • the silica airgel has a hydrophobic portion on at least the surface out of the surface and the inside.
  • This type of silica airgel can be manufactured by performing a hydrophobic treatment such as imparting a hydrophobic group in a manufacturing process.
  • a hydrophobic treatment such as imparting a hydrophobic group in a manufacturing process.
  • permeation of moisture or the like can be suppressed, so that the pore structure is maintained and the heat insulating property is not easily impaired.
  • the method for producing the silica airgel is not particularly limited, and the drying step may be performed at normal pressure or may be performed at supercritical conditions. For example, if the hydrophobizing treatment is performed before the drying step, supercritical drying is not required, that is, drying may be performed at normal pressure, and therefore, production may be easier and at lower cost.
  • silica airgel can be produced through an aqueous silica sol preparation step ⁇ an emulsion formation step ⁇ a gelation step ⁇ a solvent replacement step ⁇ a hydrophobic treatment step ⁇ a drying step.
  • the emulsion forming step the aqueous silica sol obtained in the previous step is dispersed in a hydrophobic solvent to form a W / O emulsion (an emulsion in which water droplets are dispersed in the hydrophobic solvent).
  • the silica sol which is a dispersoid, becomes spherical due to surface tension or the like, and is gelled in a subsequent step, whereby a spherical gelled body can be obtained.
  • polysaccharides examples include carboxymethyl cellulose, carboxyethyl cellulose, carboxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, xanthan gum, agarose, and carrageenan. Above all, from the viewpoint of suppressing infiltration of the silica airgel into the pores, those having high compatibility with water are desirable. For example, when the solubility parameter (SP value) is 21 or more, It is desirable to adopt a close one. Polysaccharides having an SP value close to that of water have high compatibility with water (is easily soluble in water). According to the simulation software described later, the SP value of water is estimated to be 29.7.
  • polysaccharides having an SP value of 21 or more have high hydrophilicity and low affinity with hydrophobic pores, and thus do not easily enter the pores of silica airgel. More preferably, the SP value of the polysaccharide is 34 or more. On the other hand, the SP value of the polysaccharide is desirably 50 or less.
  • a value calculated by a material property simulation software “J-OCTA (registered trademark)” manufactured by JSOL Corporation is used as a solubility parameter.
  • the SP value is estimated using the group contribution method.
  • the polysaccharides those with a long main chain and no or short side chains have more entangled molecular chains. Thereby, the holding property of the silica airgel is increased, and thus the silica airgel in the cured product can be prevented from falling off. Further, by increasing the strength of the cured product, cracks and the like can be suppressed. From such a viewpoint, carboxymethyl cellulose is particularly preferable.
  • the polysaccharide desirably has a hydrophilic part and a hydrophobic part.
  • the molecular weight of the polysaccharide is large.
  • the molecular weight is preferably 70,000 or more, 100,000 or more, and more preferably 300,000 or more.
  • the content is desirably 0.08% by mass or more when the whole coating material is 100% by mass, because a desired thickening effect is exhibited. It is more preferable that the content be 0.2% by mass or more. On the other hand, if the viscosity is too high, the coatability may be reduced. Therefore, the carboxymethylcellulose content is preferably 4% by mass or less when the whole coating material is 100% by mass. It is preferably at most 2% by mass, more preferably at most 0.6% by mass.
  • the aqueous emulsion binder is an emulsion binder using water as a solvent.
  • the aqueous emulsion-based binder is emulsified by introducing a surfactant or a hydrophilic group.
  • a surfactant or a hydrophilic group volatilize at the time of drying to lower the hydrophilicity and become less soluble in water.
  • the method of emulsification may be a forced emulsification type using a surfactant as an emulsifier, or a self-emulsification type in which a hydrophilic group is introduced.
  • the binder component may be a resin or rubber. That is, it may be a resin emulsion or a rubber emulsion.
  • the resin include an acrylic resin, a urethane resin, and a mixture of an acrylic resin and a urethane resin.
  • the rubber include styrene butadiene rubber, nitrile rubber, silicone rubber, urethane rubber, and acrylic rubber. From the viewpoint of softening the cured product of the paint, urethane resin, styrene-butadiene rubber and the like are preferred.
  • the binder component may be crosslinked using a crosslinking agent or the like. That is, the heat insulating coating material of the present invention may contain other components such as a crosslinking agent in addition to the silica airgel, the aqueous emulsion binder, and the polysaccharide.
  • the coating material for a heat insulating material of the present invention may be prepared by adding silica aerogel, an aqueous emulsion-based binder, a polysaccharide and, if necessary, an additive to water and stirring.
  • silica airgel having a hydrophobic portion on its surface or inside is not easily adapted to water.
  • the specific gravity is small, it easily floats on water and is hardly dispersed. Therefore, in consideration of the dispersibility of the silica airgel, it is desirable to increase the viscosity of the liquid by adding an aqueous emulsion binder and a polysaccharide to water before adding the silica airgel.
  • the stirring may be blade stirring, but may be positively applying a shearing force or applying ultrasonic waves.
  • a rotation orbital stirring device or a media type stirring device may be used.
  • the heat insulating material of the present invention has a cured product of the above-described heat insulating material paint of the present invention on at least a part of the surface and inside of the base material.
  • the material of the base material include a cloth such as a non-woven fabric and a resin.
  • the shape of the substrate is not particularly limited, and may be a film or a molded product.
  • the heat insulating material of the present invention can be produced by applying the heat insulating material coating material of the present invention to the surface of a substrate and drying the coating film.
  • a coating machine such as a bar coater, a die coater, a comma coater (registered trademark), a roll coater, or the like, or a spray may be used.
  • the base material may be immersed in the heat insulating coating material of the present invention and then dried.
  • a part of the applied paint impregnates the inside of the substrate.
  • the cured product of the heat insulating paint contains silica airgel, an aqueous emulsion binder, and a polysaccharide. Each component is as described in the heat insulating paint of the present invention.
  • the content of the silica airgel in the cured product is desirably 40% by mass or more when the mass of the entire cured product is 100% by mass, from the viewpoint of improving the heat insulating properties of the cured product. More preferably, it is 50% by mass or more and 65% by mass or more.
  • the content of the silica airgel is desirably 75% by mass or less when the mass of the entire cured product is 100% by mass.
  • Examples 1 to 3 First, in water, a urethane resin emulsion (“Permarin (registered trademark) UA-368, manufactured by Sanyo Chemical Industries, Ltd., solid content: 50% by mass)” as an aqueous emulsion-based binder, and carboxymethyl cellulose (CMC: (SP value 34.4, molecular weight 380,000) and stirred. Thereto, spherical silica airgel (average particle diameter: 10 ⁇ m) was added and stirred to prepare a coating. Silica airgel is produced according to the method described in the above-mentioned Japanese Patent No. 4960534, and has a hydrophobic portion on the surface and inside. Three types of paints were prepared by changing the amount of CMC added, and used as paints of Examples 1 to 3. The paints of Examples 1 to 3 are included in the concept of the paint for heat insulating material of the present invention.
  • a urethane resin emulsion (“Permarin (registered trademark) UA-368, manufactured by San
  • Example 4 A coating material of Example 4 was prepared in the same manner as in Example 1 except that the type (molecular weight) of CMC was changed. In Example 4, CMC having a molecular weight of 100,000 was used. The paint of Example 4 is included in the concept of the paint for heat insulating material of the present invention.
  • Example 5 A coating material of Example 5 was prepared in the same manner as in Example 3 except that xanthan gum (SP value: 34.7, molecular weight: 2,000,000 or more) was used instead of CMC as a polysaccharide.
  • the paint of Example 5 is included in the concept of the paint for heat insulating material of the present invention.
  • Example 6 Except for using hydroxyethylcellulose (HEC: “Natrosol (registered trademark) HH” manufactured by Ashland, SP value 31.7, molecular weight 1.3 million) instead of CMC as the polysaccharide, A paint of Example 6 was prepared. The paint of Example 6 is included in the concept of the heat-insulating paint of the present invention.
  • HEC hydroxyethylcellulose
  • Example 7 Except for using hydroxypropylcellulose (HPC: "Klucel (registered trademark) H” manufactured by Ashland, SP value 28.5, molecular weight 1.15 million) instead of CMC as the polysaccharide, the same procedure as in Example 1 was carried out. The coating material of Example 7 was prepared. The paint of Example 7 is included in the concept of the paint for heat insulating material of the present invention.
  • HPC hydroxypropylcellulose
  • SP value 28.5 molecular weight 1.15 million
  • Comparative Example 1 Instead of polysaccharide, 9.89% by mass of thickener 1 (nonionic synthetic associative thickener: "Aquaflow (registered trademark) XLS-530" manufactured by Ashland, SP value 19.5) was added. A coating material of Comparative Example 1 was prepared in the same manner as in Example 1 except for the above points.
  • thickener 1 nonionic synthetic associative thickener: "Aquaflow (registered trademark) XLS-530" manufactured by Ashland, SP value 19.5
  • Comparative Example 2 instead of polysaccharides, 9.89% by mass of thickener 2 (nonionic synthetic associative thickener: “Aquaflow (registered trademark) NHS-350” manufactured by Ashland, SP value 20.1) was added. A coating material of Comparative Example 2 was prepared in the same manner as in Example 1 except for the above points.
  • the thickener 2 is a thickener that forms a network by associating with a hydrophobic component. For this reason, the viscosity does not increase much when used alone, but increases when hydrophobic particles are added.
  • Comparative Example 3 A coating material of Comparative Example 3 was prepared in the same manner as in Example 1, except that 2.67% by mass of polyvinylpyrrolidone (PVP: SP value: 36.4, molecular weight: 2,000,000) was added instead of the polysaccharide.
  • PVP polyvinylpyrrolidone
  • the prepared paint was blade-coated on a polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • good coating properties were obtained (indicated by a mark “ ⁇ ” in Table 1 below), but coating was possible, but there were some problems such as uneven thickness. If there was, the coatability was normal (indicated by the symbol ⁇ in the table), and if the coating could not be applied due to repelling or solid separation, the coatability was poor (indicated by the mark x in the table). evaluated.
  • Silica airgel was added to an aqueous solution in which additives (polysaccharides in Examples 1 to 7, and thickener 1, thickener 2, and PVP in Comparative Examples 1 to 3) were sequentially dissolved in water, followed by stirring.
  • additives polysaccharides in Examples 1 to 7, and thickener 1, thickener 2, and PVP in Comparative Examples 1 to 3
  • the silica aerogel did not settle, there was no intrusion into the pores (indicated by a triangle in Table 1 below), and when the silica aerogel settled, there was intrusion into the pores (the crosses in the same table). ).
  • the prepared paint was applied to a substrate and dried to produce a heat insulating material, and the heat insulating property, cracks in the coating film and the presence or absence of silica airgel were evaluated.
  • a sample for evaluation of heat insulation was produced as follows. First, the prepared paint was blade-coated on both sides of a non-woven fabric (manufactured by Kurashiki Fiber Processing Co., Ltd., thickness 5 mm, basis weight 130 g / m 2 ), and dried at 100 ° C. for 1 hour. At the time of blade coating, care was taken not to form an air layer inside the nonwoven fabric. Two nonwoven fabrics each having a coating film formed on both surfaces in this way were prepared, and the same coating material was overlaid on each surface and blade-coded, and then the one surfaces were bonded to each other. Then, a weight of 1 kg was placed on the two nonwoven fabrics that were superimposed, and dried at 100 ° C.
  • thermo conductivity of the manufactured sample was measured using a heat flux meter “HC-074” manufactured by Eiko Seiki Co., Ltd., which complies with the heat flow meter method of JIS A1412-2 (1999).
  • the coating film of the manufactured sample was visually observed to check for cracks.
  • Table 1 the case where there was no crack is indicated by a mark, and the case where there is no crack is indicated by a cross.
  • a weak adhesive tape (“Scotch (registered trademark) peelable tape” (product number: 811-3-12) manufactured by 3M) was applied to the coating film of the sample, and when the tape was peeled off, silica airgel was applied. It was examined whether or not it adhered. In the case where the silica airgel did not adhere, there was no detachment (indicated by the symbol “ ⁇ ” in Table 1 below). In the case where the test was performed, it was evaluated that the sample dropped out (indicated by a cross in the same table).
  • Table 1 shows the content of each component in the prepared coating material, the evaluation result of the coating material, and the evaluation result of the heat insulating material.
  • the content of the silica airgel in the coating film of the sample used for the evaluation of the heat insulating material is as follows (the entire coating film is 100% by mass). Examples 1, 4, 6, 7: 72.2% by mass, Example 2: 72.8% by mass, Examples 3, 5: 71.7% by mass, Comparative Examples 1, 2: 46.3% by mass, Comparative Example 3: 64.3% by mass.
  • thermo conductivity of air at 40 ° C. is 0.0272 W / m ⁇ K or less. Therefore, it is understood that the samples using the paints of Examples 1 to 7 have higher heat insulating properties than the air.
  • xanthan gum has a short main chain and side chains, so that the entanglement of molecular chains is reduced and the retention of silica airgel is reduced.
  • the silica airgel was often dropped and cracked. It is considered that the reason for this is that HEC and HPC have large molecular weights, because the side chains are long, and the retention of silica airgel is reduced due to less entanglement of the main chain as compared with CMC.
  • the heat insulating material of the present invention is suitable for heat insulating interior materials for automobiles, heat insulating materials for houses, heat insulating materials for home appliances, heat insulating materials for electronic components, heat insulating materials for heat insulation and cooling containers, and the like.

Abstract

Provided is a coating material for a heat insulation material, comprising a silica aerogel, an aqueous emulsion binder, and a polysaccharide. The thickening and colloid stabilizing effects of the polysaccharide suppress the separation of the silica aerogel and improve the dispersibility thereof in the coating material. Also provided is a heat insulation material comprising a cured product of the coating material for a heat insulation material in at least part of a surface or the inside of the base material. In addition to the silica aerogel, the cured product comprises the polysaccharide which is less likely to form a heat conduction path compared with fibrous materials. With this configuration, the thermal conductivity of the cured product is lowered and a heat insulation material having an excellent heat insulation effect is achieved.

Description

断熱材用塗料および断熱材Insulation paint and insulation
 本発明は、シリカエアロゲルを用いた断熱材用塗料および断熱材に関する。 The present invention relates to a heat insulating paint and a heat insulating material using silica airgel.
 シリカエアロゲルは、シリカ微粒子が連結して骨格をなし10~50nm程度の大きさの細孔構造を有する多孔質材料である。シリカエアロゲルの熱伝導率は、空気のそれよりも小さい。このため、シリカエアロゲルの高い断熱性を活かした断熱材の開発が進んでいる。 Silica airgel is a porous material in which silica fine particles are linked to form a skeleton and have a pore structure of about 10 to 50 nm. The thermal conductivity of silica airgel is lower than that of air. For this reason, the development of a heat insulating material utilizing the high heat insulating properties of silica airgel is in progress.
 例えば、特許文献1には、水分散性ポリウレタンによって結合されたシリカエアロゲルを含み、熱伝導率が0.025W/m・K以下の物品が記載されている。特許文献2には、シリカエアロゲル粒子と、陰イオン性官能基を持つ有機ナノファイバーと、水溶性非イオン界面活性剤と、水溶性樹脂と、水と、を有するシリカエアロゲル粒子の水分散液が記載され、さらにそれを乾燥して断熱材を製造することが記載されている。特許文献3には、シリカエアロゲル粒子と、フェノール樹脂などの親水性接着剤と、親水基および疎水基を有する両親媒性化合物(界面活性剤)と、を有する断熱材が記載されている。 For example, Patent Document 1 describes an article containing silica airgel bonded by a water-dispersible polyurethane and having a thermal conductivity of 0.025 W / m · K or less. Patent Document 2 discloses an aqueous dispersion of silica airgel particles including silica airgel particles, organic nanofibers having an anionic functional group, a water-soluble nonionic surfactant, a water-soluble resin, and water. And drying it to produce thermal insulation. Patent Literature 3 describes a heat insulating material including silica airgel particles, a hydrophilic adhesive such as a phenol resin, and an amphiphilic compound (surfactant) having a hydrophilic group and a hydrophobic group.
特表2013-534958号公報JP-T-2013-534958A 特開2018-43927号公報JP 2018-43927 A 特開2014-35045号公報JP 2014-35045 A
 断熱材に用いられるシリカエアロゲルは、内部に水分などが浸入して細孔を潰さないように、表面に疎水部位を有するものが多い。例えば特許文献1に記載されているように、シリカエアロゲルの固定などを目的としてウレタンバインダーを用いる場合、分散媒として疎水性溶媒を用いると、当該溶媒がシリカエアロゲルの細孔に浸入してしまう。このため、疎水性溶媒ではなく、水にウレタンバインダーを分散した分散液にシリカエアロゲルを添加して、塗料を調製している。しかしながら、シリカエアロゲルは、表面に疎水部位を有するため、水になじみにくい。加えて、比重が小さいため、水に浮きやすい。よって、水を分散媒とするバインダー分散液にシリカエアロゲルを分散させるのは難しく、分散工程に時間を要していた。また、一旦塗料を調製しても、すぐにシリカエアロゲルが水と分離して浮いてしまうという問題があった。このため、塗料を調製したら速やかに成形、塗工などの次工程を行わなければならず、作業工程上の制約が大きかった。さらに、塗料に圧力を加えると分離してしまうため、塗工機による塗工が難しく、連続生産に対応することができなかった。 シ リ カ Many silica aerogels used as heat insulators have hydrophobic parts on the surface to prevent moisture and the like from entering inside and crushing the pores. For example, as described in Patent Document 1, when a urethane binder is used for the purpose of fixing silica airgel or the like, if a hydrophobic solvent is used as a dispersion medium, the solvent permeates the pores of the silica airgel. For this reason, a coating material is prepared by adding silica airgel to a dispersion in which a urethane binder is dispersed in water instead of a hydrophobic solvent. However, silica airgel has a hydrophobic portion on its surface, and therefore is not easily adapted to water. In addition, because of its low specific gravity, it easily floats on water. Therefore, it is difficult to disperse the silica airgel in a binder dispersion using water as a dispersion medium, and the dispersion step requires time. Further, once the paint is prepared, there is a problem that the silica airgel is immediately separated from water and floats. For this reason, once the coating material is prepared, the next steps such as molding and coating must be performed immediately, which greatly restricts the working steps. Furthermore, since the coating is separated when pressure is applied, it is difficult to apply the coating using a coating machine, and it has not been possible to cope with continuous production.
 また、特許文献2に記載されている断熱材には、有機ナノファイバーが配合されている。ファイバー状の物質は、シリカエアロゲルの周りに絡みつき、増粘効果や、シリカエアロゲルの分散媒からの分離抑制効果を発揮する。しかしながら、本発明者の検討によると、ファイバー状の物質を配合した場合、それが熱の伝達経路になってしまい、配合量の増加と共に断熱材の熱伝導率が大きくなり断熱性が低下することがわかった。 断 熱 The heat insulating material described in Patent Document 2 contains organic nanofibers. The fibrous substance is entangled around the silica airgel, and exhibits a thickening effect and an effect of suppressing separation of the silica airgel from the dispersion medium. However, according to the study of the present inventor, when a fibrous substance is blended, it becomes a heat transfer path, and as the blending amount increases, the thermal conductivity of the heat insulating material increases and the heat insulating property decreases. I understood.
 本発明は、このような実情に鑑みてなされたものであり、シリカエアロゲルが分離しにくく塗工性が良好な断熱材用塗料を提供することを課題とする。また、当該断熱材用塗料を用いることにより、製造しやすく断熱性に優れた断熱材を提供することを課題とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a heat insulating paint having good coatability, in which silica airgel hardly separates. Another object is to provide a heat insulating material which is easy to manufacture and has excellent heat insulating properties by using the heat insulating material paint.
 (1)上記課題を解決するため、本発明の断熱材用塗料は、シリカエアロゲルと、水性エマルジョン系バインダーと、多糖類と、を有することを特徴とする。 (1) In order to solve the above problems, the heat insulating coating material of the present invention is characterized by having silica airgel, an aqueous emulsion binder, and a polysaccharide.
 (2)上記課題を解決するため、本発明の断熱材は、基材の表面および内部の少なくとも一部に、上記(1)に記載した本発明の断熱材用塗料の硬化物を有することを特徴とする。 (2) In order to solve the above problems, the heat insulating material of the present invention has a cured product of the heat insulating coating material of the present invention described in the above (1) on at least a part of the surface and inside of the substrate. Features.
 (1)本発明の断熱材用塗料は、多糖類を有する。多糖類は、一種または二種以上の単糖類がグリコシド結合したものであり、高い粘性を有する。多糖類が含まれることにより、塗料の粘性が高くなり、シリカエアロゲルが分散媒から分離しにくくなる。これにより、塗料中に、シリカエアロゲルが安定して保持される。また、塗料の粘性が高くなると液だれしにくくなるため、塗料を基材に塗布しやすい。多糖類は、分子鎖の絡み合いで増粘することによりシリカエアロゲルの分離を抑制する。このため、多糖類を配合しても、ファイバー状の物質とは異なり、熱の伝達経路が形成されにくい。よって、多糖類の配合量を増加しても断熱性が低下しにくい。 (1) The paint for heat insulating material of the present invention has a polysaccharide. The polysaccharide is one in which one or more monosaccharides are glycoside-linked, and has high viscosity. When the polysaccharide is contained, the viscosity of the coating material is increased, and the silica airgel is hardly separated from the dispersion medium. Thereby, the silica airgel is stably held in the paint. Further, when the viscosity of the paint is high, it is difficult to drip, so that the paint is easily applied to the base material. Polysaccharides suppress the separation of silica airgel by increasing the viscosity due to entanglement of molecular chains. For this reason, even if the polysaccharide is blended, unlike the fibrous substance, a heat transfer path is hardly formed. Therefore, even if the blending amount of the polysaccharide is increased, the heat insulating property does not easily decrease.
 上述したように、シリカエアロゲルは表面に疎水部位を有し、これにより細孔構造を維持している。例えば、親水部位と疎水部位の両方を有する多糖類を配合すると、疎水部位がシリカエアロゲルの疎水部位と選択的に結合し、親水部位がシリカエアロゲルの周りを囲むように配置されることにより、保護コロイドのような状態になる。この作用によっても、分散媒からのシリカエアロゲルの分離が抑制されると共に、シリカエアロゲルの分散性が向上する。これにより、分散に要する時間を短縮することができ、塗料化が容易になる。また、親水部位を有する多糖類は、シリカエアロゲルの細孔に浸入しにくい。 シ リ カ As described above, silica airgel has a hydrophobic portion on its surface, thereby maintaining the pore structure. For example, when a polysaccharide having both a hydrophilic portion and a hydrophobic portion is blended, the hydrophobic portion selectively binds to the hydrophobic portion of the silica airgel, and the hydrophilic portion is disposed so as to surround the silica airgel, thereby protecting the silica airgel. It becomes like a colloid. This action also suppresses the separation of the silica airgel from the dispersion medium and improves the dispersibility of the silica airgel. As a result, the time required for dispersion can be reduced, and coating can be easily performed. In addition, polysaccharides having a hydrophilic portion are less likely to enter the pores of silica airgel.
 このように、本発明の断熱性塗料によると、シリカエアロゲルを容易に分散することができ、分散工程の時間を短縮することができる。また、塗料を調製した後に、シリカエアロゲルが水などの分散媒から分離しにくいため、作業工程上の制約が少なくなる。すなわち、塗料を調製した後、急いで次工程を行う必要はなくなるため、数日経ってから次工程を行うことができる。加えて、塗工機による塗工が可能になり、連続生産にも対応することができる。また、塗料の粘度が高いため、フィルム状の基材にも塗工しやすくなり、様々な形態の断熱材を容易に製造することができる。また、多糖類は、食品などの添加物としても用いられ入手が容易で安価である。よって、本発明の断熱材用塗料によると、断熱材を低コストで製造することができる。 Thus, according to the heat insulating paint of the present invention, the silica airgel can be easily dispersed, and the time of the dispersion step can be shortened. In addition, since the silica airgel is difficult to separate from the dispersion medium such as water after preparing the coating material, restrictions on the working process are reduced. That is, since the next step does not need to be performed immediately after preparing the paint, the next step can be performed after several days. In addition, coating by a coating machine becomes possible, and it can respond to continuous production. In addition, since the viscosity of the paint is high, it can be easily applied to a film-like base material, and various types of heat insulating materials can be easily manufactured. Polysaccharides are also used as additives for foods and the like, and are easily available and inexpensive. Therefore, according to the heat insulating material paint of the present invention, the heat insulating material can be manufactured at low cost.
 ちなみに、特許文献2、3には、界面活性剤を配合することが記載されている。しかし、界面活性剤は保護コロイド性を有するものの、増粘性に乏しいため、塗工性の改善効果は小さい。 Incidentally, Patent Documents 2 and 3 describe that a surfactant is blended. However, although the surfactant has a protective colloid property, its viscosity is poor, so that the effect of improving the coatability is small.
 (2)本発明の断熱材は、塗工性に優れた本発明の断熱材用塗料を用いるため、製造しやすい。また、本発明の断熱材を構成する硬化物は、シリカエアロゲルを含む他、ファイバー状の物質と比較して熱の伝達経路が形成されにくい多糖類を含む。よって、硬化物の熱伝導率を小さくすることができ、これにより高い断熱性を有する断熱材を実現することができる。例えば、主鎖が長く分子鎖の絡み合いが生じやすい多糖類を使用すると、シリカエアロゲルの保持性がより高くなる。これにより、硬化物におけるシリカエアロゲルの脱落(いわゆる粉落ち)を抑制することができる。また、硬化物の強度が高くなることにより、ひび割れなども抑制することができる。 (2) The heat insulating material of the present invention is easy to manufacture because the heat insulating paint of the present invention, which has excellent coatability, is used. In addition, the cured product constituting the heat insulating material of the present invention contains silica aerogel, and also contains a polysaccharide in which a heat transfer path is less likely to be formed than a fibrous substance. Therefore, the thermal conductivity of the cured product can be reduced, and a heat insulating material having high heat insulating properties can be realized. For example, when a polysaccharide having a long main chain and easily causing entanglement of molecular chains is used, the retention of silica airgel becomes higher. Thereby, falling off of the silica airgel (so-called powder dropout) in the cured product can be suppressed. In addition, cracks and the like can be suppressed by increasing the strength of the cured product.
 以下、本発明の断熱材用塗料および断熱材の実施の形態について説明する。なお、本発明の断熱材用塗料および断熱材は、以下の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良などを施した種々の形態にて実施することができる。 Hereinafter, embodiments of the heat insulating paint and the heat insulating material of the present invention will be described. In addition, the heat-insulating paint and heat-insulating material of the present invention are not limited to the following forms, and various modifications and alterations that can be made by those skilled in the art without departing from the gist of the present invention. Can be implemented.
 <断熱材用塗料>
 本発明の断熱材用塗料(以下適宜、「塗料」と称する)は、シリカエアロゲルと、水性エマルジョン系バインダーと、多糖類と、を有する。
<Insulation coating>
The coating material for a heat insulating material of the present invention (hereinafter, appropriately referred to as “paint”) has silica airgel, an aqueous emulsion-based binder, and a polysaccharide.
 [シリカエアロゲル]
 シリカエアロゲルの構造、形状、大きさなどは、特に限定されない。例えば、シリカエアロゲルの骨格をなすシリカ微粒子(一次粒子)の直径は2~5nm程度、骨格と骨格との間に形成される細孔の大きさは、10~50nm程度であることが望ましい。細孔の多くは、50nm以下のいわゆるメソ孔である。メソ孔は、空気の平均自由行程よりも小さいため、空気の対流が制限され熱の移動が阻害される。これにより、シリカエアロゲルは高い断熱性を有する。
[Silica aerogel]
The structure, shape, size, etc. of the silica airgel are not particularly limited. For example, the diameter of the silica fine particles (primary particles) forming the skeleton of the silica airgel is preferably about 2 to 5 nm, and the size of the pores formed between the skeletons is preferably about 10 to 50 nm. Most of the pores are so-called mesopores of 50 nm or less. Since the mesopores are smaller than the mean free path of the air, the convection of the air is restricted and heat transfer is hindered. Thereby, the silica airgel has high heat insulating properties.
 シリカエアロゲルの形状としては、球状、異形状の塊状などがあるが、球状が望ましい。球状の場合、分散性が向上するため塗料化しやすい。また、最密充填しやすいため充填量を多くすることができ、断熱性を高める効果が大きくなる。また、表面積が小さくなるため、熱伝導率が比較的大きいバインダーの量を低減することができ、断熱性の向上につながる。 The shape of the silica airgel is spherical or irregularly shaped lump, but spherical is preferable. In the case of a spherical shape, the dispersibility is improved, so that it is easy to make a paint. In addition, since the close-packing is easy, the filling amount can be increased, and the effect of improving the heat insulating property is increased. Further, since the surface area is reduced, the amount of the binder having a relatively large thermal conductivity can be reduced, which leads to an improvement in heat insulation.
 シリカエアロゲルの最大長さを粒子径とした場合、平均粒子径は1~200μm程度が望ましい。シリカエアロゲルの粒子径が大きいほど、表面積が小さくなり細孔(空隙)容積が大きくなるため、断熱性を高める効果は大きくなる。例えば、平均粒子径が10μm以上のものが好適である。一方、塗料の安定性や塗工のしやすさを考慮すると、平均粒子径が100μm以下のものが好適である。また、粒子径が異なる二種類以上を併用すると、小径のシリカエアロゲルが大径のシリカエアロゲル間の隙間に入りこむため、充填量を多くすることができ、断熱性を高める効果が大きくなる。 場合 When the maximum length of the silica airgel is defined as the particle diameter, the average particle diameter is desirably about 1 to 200 μm. The larger the particle size of the silica airgel, the smaller the surface area and the larger the volume of pores (voids). For example, those having an average particle diameter of 10 μm or more are suitable. On the other hand, considering the stability of the paint and the ease of coating, those having an average particle diameter of 100 μm or less are preferred. Further, when two or more kinds of particles having different particle diameters are used in combination, the small-diameter silica airgel enters the gap between the large-diameter silica airgels, so that the filling amount can be increased, and the effect of enhancing the heat insulating property is increased.
 シリカエアロゲルは、表面および内部のうち少なくとも表面に疎水部位を有するものが望ましい。この種のシリカエアロゲルは、製造過程において、疎水基を付与するなどの疎水化処理を施して製造することができる。少なくとも表面に疎水部位を有すると、水分などの染み込みを抑制することができるため、細孔構造が維持され、断熱性が損なわれにくい。シリカエアロゲルの製造方法は、特に限定されず、乾燥工程を常圧で行ったものでも、超臨界で行ったものでも構わない。例えば、疎水化処理を乾燥工程前に行うと、超臨界で乾燥する必要がなくなる、すなわち常圧で乾燥すればよいため、より容易かつ低コストに製造することができる。 Desirably, the silica airgel has a hydrophobic portion on at least the surface out of the surface and the inside. This type of silica airgel can be manufactured by performing a hydrophobic treatment such as imparting a hydrophobic group in a manufacturing process. When at least the surface has a hydrophobic site, permeation of moisture or the like can be suppressed, so that the pore structure is maintained and the heat insulating property is not easily impaired. The method for producing the silica airgel is not particularly limited, and the drying step may be performed at normal pressure or may be performed at supercritical conditions. For example, if the hydrophobizing treatment is performed before the drying step, supercritical drying is not required, that is, drying may be performed at normal pressure, and therefore, production may be easier and at lower cost.
 球状のシリカエアロゲルを常圧乾燥により製造する方法としては、例えば、特許第4960534号公報に記載されている方法が挙げられる。同公報によると、シリカエアロゲルは、水性シリカゾル調製工程→エマルジョン形成工程→ゲル化工程→溶媒置換工程→疎水化処理工程→乾燥工程を経て製造することができる。エマルジョン形成工程においては、前工程で得られた水性シリカゾルを疎水性溶媒中に分散させて、W/O型エマルジョン(疎水性溶媒中に水滴が分散しているエマルジョン)を形成する。これにより、分散質であるシリカゾルが表面張力などにより球状になり、それを後工程でゲル化することにより、球状のゲル化体を得ることができる。 方法 As a method for producing a spherical silica airgel by drying under normal pressure, for example, a method described in Japanese Patent No. 4960534 can be mentioned. According to the publication, silica airgel can be produced through an aqueous silica sol preparation step → an emulsion formation step → a gelation step → a solvent replacement step → a hydrophobic treatment step → a drying step. In the emulsion forming step, the aqueous silica sol obtained in the previous step is dispersed in a hydrophobic solvent to form a W / O emulsion (an emulsion in which water droplets are dispersed in the hydrophobic solvent). As a result, the silica sol, which is a dispersoid, becomes spherical due to surface tension or the like, and is gelled in a subsequent step, whereby a spherical gelled body can be obtained.
 [多糖類]
 多糖類としては、カルボキシルメチルセルロース、カルボキシエチルセルロース、カルボキシプロピルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、キサンタンガム、アガロース、カラギナンなどが挙げられる。なかでも、シリカエアロゲルの細孔への浸入を抑制するという観点から、水との相溶性が高いものが望ましく、例えば、溶解度パラメータ(solubility parameter:SP値)が21以上で、水のSP値に近いものを採用することが望ましい。SP値が水のそれに近い多糖類は、水との相溶性が高い(水に溶けやすい)。後述のシミュレーションソフトウエアによると、水のSP値は29.7と推算される。よって、SP値が21以上の多糖類は親水性が高く、疎水性を有する細孔との親和性が低くなるため、シリカエアロゲルの細孔に浸入しにくくなる。多糖類のSP値が34以上であるとより好適である。一方、多糖類のSP値は、50以下であることが望ましい。
[Polysaccharides]
Examples of the polysaccharide include carboxymethyl cellulose, carboxyethyl cellulose, carboxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, xanthan gum, agarose, and carrageenan. Above all, from the viewpoint of suppressing infiltration of the silica airgel into the pores, those having high compatibility with water are desirable. For example, when the solubility parameter (SP value) is 21 or more, It is desirable to adopt a close one. Polysaccharides having an SP value close to that of water have high compatibility with water (is easily soluble in water). According to the simulation software described later, the SP value of water is estimated to be 29.7. Therefore, polysaccharides having an SP value of 21 or more have high hydrophilicity and low affinity with hydrophobic pores, and thus do not easily enter the pores of silica airgel. More preferably, the SP value of the polysaccharide is 34 or more. On the other hand, the SP value of the polysaccharide is desirably 50 or less.
 本明細書において、溶解度パラメータは、(株)JSOL製の材料物性シミュレーションソフトウエア「J-OCTA(登録商標)」により算出された値を採用する。同シミュレーションにおいては、原子団寄与法を用いてSP値を推算している。 に お い て In this specification, a value calculated by a material property simulation software “J-OCTA (registered trademark)” manufactured by JSOL Corporation is used as a solubility parameter. In the simulation, the SP value is estimated using the group contribution method.
 多糖類のうち、主鎖が長く、側鎖がないか短いものは、分子鎖の絡み合いが多くなる。これにより、シリカエアロゲルの保持性が高くなるため、硬化物におけるシリカエアロゲルの脱落を抑制することができる。さらに硬化物の強度が高くなることにより、ひび割れなども抑制することができる。このような観点から、特にカルボキシメチルセルロースが好適である。 Of the polysaccharides, those with a long main chain and no or short side chains have more entangled molecular chains. Thereby, the holding property of the silica airgel is increased, and thus the silica airgel in the cured product can be prevented from falling off. Further, by increasing the strength of the cured product, cracks and the like can be suppressed. From such a viewpoint, carboxymethyl cellulose is particularly preferable.
 保護コロイド性を発揮させてシリカエアロゲルの分散性を向上させるという観点から、多糖類は、親水部位および疎水部位を有することが望ましい。また、分子鎖による絡み合いを多くして高い増粘効果を発揮させるという観点から、多糖類の分子量は大きい方が望ましい。例えば、主鎖が長く側鎖が短いという点で好適なカルボキシメチルセルロースの場合、分子量は7万以上、10万以上、さらには30万以上であるとよい。 か ら From the viewpoint of exhibiting protective colloid properties and improving the dispersibility of the silica airgel, the polysaccharide desirably has a hydrophilic part and a hydrophobic part. In addition, from the viewpoint of increasing the entanglement due to the molecular chains and exhibiting a high thickening effect, it is desirable that the molecular weight of the polysaccharide is large. For example, in the case of carboxymethylcellulose which is suitable in that the main chain is long and the side chains are short, the molecular weight is preferably 70,000 or more, 100,000 or more, and more preferably 300,000 or more.
 多糖類としてカルボキシメチルセルロースを用いた場合、所望の増粘効果を発揮させるという理由から、その含有量を、塗料全体を100質量%とした場合の0.08質量%以上にすることが望ましい。0.2質量%以上にするとより好適である。他方、粘度が高くなりすぎると塗工性が低下するおそれがあるため、カルボキシメチルセルロース含有量は、塗料全体を100質量%とした場合の4質量%以下であることが望ましい。好適には2質量%以下、さらには0.6質量%以下である。 (4) When carboxymethylcellulose is used as the polysaccharide, the content is desirably 0.08% by mass or more when the whole coating material is 100% by mass, because a desired thickening effect is exhibited. It is more preferable that the content be 0.2% by mass or more. On the other hand, if the viscosity is too high, the coatability may be reduced. Therefore, the carboxymethylcellulose content is preferably 4% by mass or less when the whole coating material is 100% by mass. It is preferably at most 2% by mass, more preferably at most 0.6% by mass.
 [水性エマルジョン系バインダー]
 水性エマルジョン系バインダーは、水を溶媒としたエマルジョン状のバインダーである。水性エマルジョン系バインダーは、界面活性剤または親水基の導入により乳化されている。水性エマルジョン系バインダーによると、乾燥時に界面活性剤や親水基が揮発することにより親水性が低下し、水に溶解しにくくなるため、塗料の硬化後にべたつきが生じにくいと考えられる。エマルジョン化する方法としては、界面活性剤を乳化剤として使用した強制乳化型でも、親水基が導入された自己乳化型でも構わない。
[Aqueous emulsion binder]
The aqueous emulsion binder is an emulsion binder using water as a solvent. The aqueous emulsion-based binder is emulsified by introducing a surfactant or a hydrophilic group. According to the aqueous emulsion-based binder, it is considered that the surfactant and the hydrophilic group volatilize at the time of drying to lower the hydrophilicity and become less soluble in water. The method of emulsification may be a forced emulsification type using a surfactant as an emulsifier, or a self-emulsification type in which a hydrophilic group is introduced.
 バインダー成分としては、樹脂でもゴムでもよい。すなわち、樹脂エマルジョンでもゴムエマルジョンでもよい。樹脂としては、アクリル樹脂、ウレタン樹脂、アクリル樹脂とウレタン樹脂との混合物などが挙げられる。ゴムとしては、スチレンブタジエンゴム、ニトリルゴム、シリコーンゴム、ウレタンゴム、アクリルゴムなどが挙げられる。塗料の硬化物を柔軟にするという観点から、ウレタン樹脂、スチレンブタジエンゴムなどが好適である。 樹脂 The binder component may be a resin or rubber. That is, it may be a resin emulsion or a rubber emulsion. Examples of the resin include an acrylic resin, a urethane resin, and a mixture of an acrylic resin and a urethane resin. Examples of the rubber include styrene butadiene rubber, nitrile rubber, silicone rubber, urethane rubber, and acrylic rubber. From the viewpoint of softening the cured product of the paint, urethane resin, styrene-butadiene rubber and the like are preferred.
 塗料の硬化物において、バインダー層の強度を高めて、断熱材の強度を向上させるという観点から、架橋剤などを併用してバインダー成分を架橋させてもよい。すなわち、本発明の断熱材用塗料は、シリカエアロゲル、水性エマルジョン系バインダー、多糖類の他に、架橋剤などの他の成分を含んでいてもよい。 (4) From the viewpoint of increasing the strength of the binder layer and improving the strength of the heat insulating material in the cured product of the paint, the binder component may be crosslinked using a crosslinking agent or the like. That is, the heat insulating coating material of the present invention may contain other components such as a crosslinking agent in addition to the silica airgel, the aqueous emulsion binder, and the polysaccharide.
 [調製方法]
 本発明の断熱材用塗料は、シリカエアロゲル、水性エマルジョン系バインダー、多糖類と、必要に応じて添加剤と、を水に添加し撹拌して調製すればよい。なお、表面や内部に疎水部位を有するシリカエアロゲルは、水になじみにくい。加えて、比重が小さいため、水に浮きやすく分散しにくい。よって、シリカエアロゲルの分散性を考慮すると、水に水性エマルジョン系バインダーおよび多糖類を加えて液の粘度を高めてから、シリカエアロゲルを添加することが望ましい。撹拌は、羽根撹拌でもよいが、積極的にせん断力を加えたり、超音波を加えたりしてもよい。自転公転撹拌装置や、メディア型撹拌装置を用いてもよい。
[Preparation method]
The coating material for a heat insulating material of the present invention may be prepared by adding silica aerogel, an aqueous emulsion-based binder, a polysaccharide and, if necessary, an additive to water and stirring. It should be noted that silica airgel having a hydrophobic portion on its surface or inside is not easily adapted to water. In addition, since the specific gravity is small, it easily floats on water and is hardly dispersed. Therefore, in consideration of the dispersibility of the silica airgel, it is desirable to increase the viscosity of the liquid by adding an aqueous emulsion binder and a polysaccharide to water before adding the silica airgel. The stirring may be blade stirring, but may be positively applying a shearing force or applying ultrasonic waves. A rotation orbital stirring device or a media type stirring device may be used.
 <断熱材>
 本発明の断熱材は、基材の表面および内部の少なくとも一部に、上述した本発明の断熱材用塗料の硬化物を有する。基材の材質は、不織布などの布、樹脂などが挙げられる。基材の形状は特に限定されず、フィルム状でも成形体でもよい。本発明の断熱材は、本発明の断熱材用塗料を基材の表面に塗布し、塗膜を乾燥して製造することができる。塗布には、バーコーター、ダイコーター、コンマコーター(登録商標)、ロールコーターなどの塗工機や、スプレーなどを使用すればよい。あるいは、本発明の断熱材用塗料に基材を浸漬した後、乾燥させてもよい。塗布、浸漬のいずれの方法においても、基材が布や多孔質な材料からなる場合には、塗布した塗料の一部が基材の内部に含浸する。
<Insulation material>
The heat insulating material of the present invention has a cured product of the above-described heat insulating material paint of the present invention on at least a part of the surface and inside of the base material. Examples of the material of the base material include a cloth such as a non-woven fabric and a resin. The shape of the substrate is not particularly limited, and may be a film or a molded product. The heat insulating material of the present invention can be produced by applying the heat insulating material coating material of the present invention to the surface of a substrate and drying the coating film. For the coating, a coating machine such as a bar coater, a die coater, a comma coater (registered trademark), a roll coater, or the like, or a spray may be used. Alternatively, the base material may be immersed in the heat insulating coating material of the present invention and then dried. In any method of coating and dipping, when the substrate is made of a cloth or a porous material, a part of the applied paint impregnates the inside of the substrate.
 断熱材用塗料の硬化物は、シリカエアロゲルと、水性エマルジョン系バインダーと、多糖類と、を有する。各々の成分については、本発明の断熱材用塗料において説明したとおりである。硬化物におけるシリカエアロゲルの含有量は、硬化物の断熱性を向上させるという観点から、硬化物全体の質量を100質量%とした場合の40質量%以上であることが望ましい。50質量%以上、65質量%以上であるとより好適である。一方、シリカエアロゲルが多すぎると脱落しやすくなるため、シリカエアロゲルの含有量は、硬化物全体の質量を100質量%とした場合の75質量%以下であることが望ましい。 硬化 The cured product of the heat insulating paint contains silica airgel, an aqueous emulsion binder, and a polysaccharide. Each component is as described in the heat insulating paint of the present invention. The content of the silica airgel in the cured product is desirably 40% by mass or more when the mass of the entire cured product is 100% by mass, from the viewpoint of improving the heat insulating properties of the cured product. More preferably, it is 50% by mass or more and 65% by mass or more. On the other hand, if the amount of the silica airgel is too large, the silica airgel easily falls off. Therefore, the content of the silica airgel is desirably 75% by mass or less when the mass of the entire cured product is 100% by mass.
 次に、実施例を挙げて本発明をより具体的に説明する。 Next, the present invention will be described more specifically with reference to examples.
 <塗料の調製>
 [実施例1~3]
 まず、水に、水性エマルジョン系バインダーとしてのウレタン樹脂エマルジョン(三洋化成工業(株)製「パーマリン(登録商標)UA-368」、固形分50質量%)と、多糖類としてのカルボキシルメチルセルロース(CMC:SP値34.4、分子量38万)を添加して撹拌した。そこに、球状のシリカエアロゲル(平均粒子径10μm)を添加して撹拌し、塗料を調製した。シリカエアロゲルは、上述した特許第4960534号公報に記載されている方法に準じて製造されたものであり、表面および内部に疎水部位を有する。CMCの添加量を変えて3種類の塗料を調製し、実施例1~3の塗料とした。実施例1~3の塗料は、本発明の断熱材用塗料の概念に含まれる。
<Preparation of paint>
[Examples 1 to 3]
First, in water, a urethane resin emulsion (“Permarin (registered trademark) UA-368, manufactured by Sanyo Chemical Industries, Ltd., solid content: 50% by mass)” as an aqueous emulsion-based binder, and carboxymethyl cellulose (CMC: (SP value 34.4, molecular weight 380,000) and stirred. Thereto, spherical silica airgel (average particle diameter: 10 μm) was added and stirred to prepare a coating. Silica airgel is produced according to the method described in the above-mentioned Japanese Patent No. 4960534, and has a hydrophobic portion on the surface and inside. Three types of paints were prepared by changing the amount of CMC added, and used as paints of Examples 1 to 3. The paints of Examples 1 to 3 are included in the concept of the paint for heat insulating material of the present invention.
 [実施例4]
 CMCの種類(分子量)を変更した点以外は、実施例1と同様にして、実施例4の塗料を調製した。実施例4においては、分子量が10万のCMCを使用した。実施例4の塗料は、本発明の断熱材用塗料の概念に含まれる。
[Example 4]
A coating material of Example 4 was prepared in the same manner as in Example 1 except that the type (molecular weight) of CMC was changed. In Example 4, CMC having a molecular weight of 100,000 was used. The paint of Example 4 is included in the concept of the paint for heat insulating material of the present invention.
 [実施例5]
 多糖類として、CMCではなくキサンタンガム(SP値34.7、分子量200万以上)を使用した点以外は、実施例3と同様にして、実施例5の塗料を調製した。実施例5の塗料は、本発明の断熱材用塗料の概念に含まれる。
[Example 5]
A coating material of Example 5 was prepared in the same manner as in Example 3 except that xanthan gum (SP value: 34.7, molecular weight: 2,000,000 or more) was used instead of CMC as a polysaccharide. The paint of Example 5 is included in the concept of the paint for heat insulating material of the present invention.
 [実施例6]
 多糖類として、CMCではなくヒドロキシエチルセルロース(HEC:アシュランド社製「Natrosol(登録商標) HH」、SP値31.7、分子量130万)を使用した点以外は、実施例1と同様にして、実施例6の塗料を調製した。実施例6の塗料は、本発明の断熱材用塗料の概念に含まれる。
[Example 6]
Except for using hydroxyethylcellulose (HEC: “Natrosol (registered trademark) HH” manufactured by Ashland, SP value 31.7, molecular weight 1.3 million) instead of CMC as the polysaccharide, A paint of Example 6 was prepared. The paint of Example 6 is included in the concept of the heat-insulating paint of the present invention.
 [実施例7]
 多糖類として、CMCではなくヒドロキシプロピルセルロース(HPC:アシュランド社製「Klucel(登録商標) H」、SP値28.5、分子量115万)を使用した点以外は、実施例1と同様にして、実施例7の塗料を調製した。実施例7の塗料は、本発明の断熱材用塗料の概念に含まれる。
[Example 7]
Except for using hydroxypropylcellulose (HPC: "Klucel (registered trademark) H" manufactured by Ashland, SP value 28.5, molecular weight 1.15 million) instead of CMC as the polysaccharide, the same procedure as in Example 1 was carried out. The coating material of Example 7 was prepared. The paint of Example 7 is included in the concept of the paint for heat insulating material of the present invention.
 [比較例1]
 多糖類ではなく、増粘剤1(非イオン性合成系会合型増粘剤:アシュランド社製「Aquaflow(登録商標) XLS-530」、SP値19.5)を9.89質量%添加した点以外は実施例1と同様にして、比較例1の塗料を調製した。
[Comparative Example 1]
Instead of polysaccharide, 9.89% by mass of thickener 1 (nonionic synthetic associative thickener: "Aquaflow (registered trademark) XLS-530" manufactured by Ashland, SP value 19.5) was added. A coating material of Comparative Example 1 was prepared in the same manner as in Example 1 except for the above points.
 [比較例2]
 多糖類ではなく、増粘剤2(非イオン性合成系会合型増粘剤:アシュランド社製「Aquaflow(登録商標) NHS-350」、SP値20.1)を9.89質量%添加した点以外は実施例1と同様にして、比較例2の塗料を調製した。増粘剤2は、疎水成分と会合することでネットワークを形成する増粘剤である。このため、単体ではあまり増粘しないが、疎水粒子を添加すると増粘する。
[Comparative Example 2]
Instead of polysaccharides, 9.89% by mass of thickener 2 (nonionic synthetic associative thickener: “Aquaflow (registered trademark) NHS-350” manufactured by Ashland, SP value 20.1) was added. A coating material of Comparative Example 2 was prepared in the same manner as in Example 1 except for the above points. The thickener 2 is a thickener that forms a network by associating with a hydrophobic component. For this reason, the viscosity does not increase much when used alone, but increases when hydrophobic particles are added.
 [比較例3]
 多糖類ではなく、ポリビニルピロリドン(PVP:SP値36.4、分子量200万)を2.67質量%添加した点以外は、実施例1と同様にして、比較例3の塗料を調製した。
[Comparative Example 3]
A coating material of Comparative Example 3 was prepared in the same manner as in Example 1, except that 2.67% by mass of polyvinylpyrrolidone (PVP: SP value: 36.4, molecular weight: 2,000,000) was added instead of the polysaccharide.
 <塗料の評価方法>
 調製した塗料の分離性、塗工性、および細孔への浸入性を次の方法により評価した。調製した塗料における各成分の含有量、および塗料の評価結果については、後出の表1にまとめて示す。
<Evaluation method of paint>
Separability, coatability, and penetration into pores of the prepared paint were evaluated by the following methods. The content of each component in the prepared paint and the evaluation results of the paint are summarized in Table 1 below.
 [分離性]
 調製した塗料を静置し、目視観察により分離するまでの時間を測定した。なお、比較例1、2については、シリカエアロゲルが塊状に凝集して分散しなかったため塗料化することができなかった。
[Separability]
The prepared paint was allowed to stand, and the time until separation was measured by visual observation. In addition, about Comparative Examples 1 and 2, since the silica airgel aggregated in a lump and did not disperse, it could not be formed into a paint.
 [塗工性]
 調製した塗料を、ポリエチレンテレフタレート(PET)フィルムにブレードコーティングした。そして、はじきや固形分の分離がなく塗工できた場合を塗工性良好(後出の表1中、〇印で示す)、塗工できたが、厚さが均一にならないなど若干の問題があった場合を塗工性普通(同表中、△印で示す)、はじきや固形分の分離があり塗工できなかった場合を塗工性不良(同表中、×印で示す)と評価した。
[Coating property]
The prepared paint was blade-coated on a polyethylene terephthalate (PET) film. In the case where coating was possible without repelling or solid content separation, good coating properties were obtained (indicated by a mark “〇” in Table 1 below), but coating was possible, but there were some problems such as uneven thickness. If there was, the coatability was normal (indicated by the symbol △ in the table), and if the coating could not be applied due to repelling or solid separation, the coatability was poor (indicated by the mark x in the table). evaluated.
 [細孔への浸入性]
 添加剤(実施例1~7においては多糖類、比較例1~3においては順に増粘剤1、増粘剤2、PVP)を水に溶解した水溶液に、シリカエアロゲルを添加、撹拌した。そして、シリカエアロゲルが沈まなかった場合を細孔への浸入なし(後出の表1中、〇印で示す)、シリカエアロゲルが沈んだ場合を細孔への浸入あり(同表中、×印で示す)と評価した。
[Penetration into pores]
Silica airgel was added to an aqueous solution in which additives (polysaccharides in Examples 1 to 7, and thickener 1, thickener 2, and PVP in Comparative Examples 1 to 3) were sequentially dissolved in water, followed by stirring. When the silica aerogel did not settle, there was no intrusion into the pores (indicated by a triangle in Table 1 below), and when the silica aerogel settled, there was intrusion into the pores (the crosses in the same table). ).
 <断熱材の製造および評価>
 調製した塗料を基材に塗布、乾燥して断熱材を製造し、その断熱性、塗膜におけるひび割れおよびシリカエアロゲルの脱落の有無を評価した。
<Manufacture and evaluation of insulation materials>
The prepared paint was applied to a substrate and dried to produce a heat insulating material, and the heat insulating property, cracks in the coating film and the presence or absence of silica airgel were evaluated.
 [断熱性]
 断熱性の評価用サンプルを、次のようにして製造した。まず、調製した塗料を不織布(倉敷繊維加工(株)製、厚さ5mm、目付け130g/m)の両面にブレードコーティングし、100℃下で1時間乾燥した。ブレードコーティングの際、不織布の内部に空気層ができないよう注意した。このようにして両面に塗膜が形成された不織布を2枚準備し、各々の一面に同じ塗料を重ねてブレードコーディングした後、当該一面同士を貼り合わせた。そして、重ね合わせた二枚の不織布に、1kgのおもりを載せ、その状態で100℃下で30分間乾燥した。その後、おもりを外して100℃下で2時間乾燥した。このようにして、積層された2枚の不織布の表面および内部に塗料の硬化物を有するサンプル(縦200mm、横200mm、厚さ10mmの正方形状)を製造した。実施例1~7の塗料を用いたサンプルは、本発明の断熱材の概念に含まれる。
[Thermal insulation properties]
A sample for evaluation of heat insulation was produced as follows. First, the prepared paint was blade-coated on both sides of a non-woven fabric (manufactured by Kurashiki Fiber Processing Co., Ltd., thickness 5 mm, basis weight 130 g / m 2 ), and dried at 100 ° C. for 1 hour. At the time of blade coating, care was taken not to form an air layer inside the nonwoven fabric. Two nonwoven fabrics each having a coating film formed on both surfaces in this way were prepared, and the same coating material was overlaid on each surface and blade-coded, and then the one surfaces were bonded to each other. Then, a weight of 1 kg was placed on the two nonwoven fabrics that were superimposed, and dried at 100 ° C. for 30 minutes in that state. Thereafter, the weight was removed, and drying was performed at 100 ° C. for 2 hours. In this way, a sample (square shape having a length of 200 mm, a width of 200 mm, and a thickness of 10 mm) having a cured product of the paint on the surface and inside of the two laminated nonwoven fabrics was manufactured. Samples using the paints of Examples 1 to 7 are included in the concept of the heat insulating material of the present invention.
 次に、製造したサンプルの熱伝導率を、JIS A1412-2(1999)の熱流計法に準拠した、英弘精機(株)製の熱流束計「HC-074」を用いて測定した。 Next, the thermal conductivity of the manufactured sample was measured using a heat flux meter “HC-074” manufactured by Eiko Seiki Co., Ltd., which complies with the heat flow meter method of JIS A1412-2 (1999).
 [塗膜のひび割れ、シリカエアロゲルの脱落性]
 調製した塗料を不織布(同上)の一面にブレードコーティングし、100℃下で1時間乾燥して、塗膜の評価用サンプルを製造した。実施例1~7の塗料を用いたサンプルは、本発明の断熱材の概念に含まれる。
[Cracking of coating film, falling off of silica airgel]
The prepared coating material was blade-coated on one surface of the nonwoven fabric (same as above), and dried at 100 ° C. for 1 hour to produce a coating evaluation sample. Samples using the paints of Examples 1 to 7 are included in the concept of the heat insulating material of the present invention.
 まず、製造したサンプルの塗膜を目視観察し、ひび割れの有無を調べた。後出の表1中、ひび割れがなかった場合を〇印で、あった場合を×印で示す。次に、サンプルの塗膜に、弱粘着テープ(スリーエム社製「スコッチ(登録商標)はってはがせるテープ」(製品番号:811-3-12))を貼り、それを剥がした時にシリカエアロゲルが付着するか否かを調べた。そして、シリカエアロゲルが付着しなかった場合を脱落なし(以下の表1中、〇印で示す)、一部付着した場合を若干の脱落あり(同表中、△印で示す)、多量に付着した場合を脱落多し(同表中、×印で示す)と評価した。 First, the coating film of the manufactured sample was visually observed to check for cracks. In Table 1 below, the case where there was no crack is indicated by a mark, and the case where there is no crack is indicated by a cross. Next, a weak adhesive tape ("Scotch (registered trademark) peelable tape" (product number: 811-3-12) manufactured by 3M) was applied to the coating film of the sample, and when the tape was peeled off, silica airgel was applied. It was examined whether or not it adhered. In the case where the silica airgel did not adhere, there was no detachment (indicated by the symbol “〇” in Table 1 below). In the case where the test was performed, it was evaluated that the sample dropped out (indicated by a cross in the same table).
 表1に、調製した塗料における各成分の含有量、塗料の評価結果、および断熱材の評価結果を示す。なお、断熱材の評価に使用したサンプルの塗膜におけるシリカエアロゲルの含有量は、以下のとおりである(塗膜全体を100質量%とする)。
実施例1、4、6、7:72.2質量%、実施例2:72.8質量%、実施例3、5:71.7質量%、比較例1、2:46.3質量%、比較例3:64.3質量%。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the content of each component in the prepared coating material, the evaluation result of the coating material, and the evaluation result of the heat insulating material. In addition, the content of the silica airgel in the coating film of the sample used for the evaluation of the heat insulating material is as follows (the entire coating film is 100% by mass).
Examples 1, 4, 6, 7: 72.2% by mass, Example 2: 72.8% by mass, Examples 3, 5: 71.7% by mass, Comparative Examples 1, 2: 46.3% by mass, Comparative Example 3: 64.3% by mass.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、多糖類を含む実施例1~7の塗料によると、比較例3の塗料と比較して、シリカエアロゲルが分離するまでの時間が長くなり、塗工性も向上した。比較例3の塗料に添加されたPVPは、分子鎖が短く、保護コロイド性を有しない。このため、シリカエアロゲルの分離を抑制したり分散性を向上させる効果は見られなかった。なお、比較例1、2の塗料については、SP値が21未満の増粘剤を添加した。このため、増粘剤がシリカエアロゲルの細孔に浸入し、シリカエアロゲルを分散させることができず、塗料としての体をなさなかった。結果、比較例1~3の塗料によると、塗膜を形成することができず、断熱材としての評価を行うことができなかった。 よ う As shown in Table 1, according to the coatings of Examples 1 to 7 containing the polysaccharide, the time until the silica airgel was separated was longer than that of the coating of Comparative Example 3, and the coatability was improved. PVP added to the paint of Comparative Example 3 has a short molecular chain and has no protective colloid. For this reason, the effect of suppressing the separation of the silica airgel or improving the dispersibility was not found. In addition, with respect to the paints of Comparative Examples 1 and 2, a thickener having an SP value of less than 21 was added. For this reason, the thickener penetrated into the pores of the silica airgel and could not disperse the silica airgel, and did not form a body as a paint. As a result, according to the paints of Comparative Examples 1 to 3, a coating film could not be formed, and evaluation as a heat insulating material could not be performed.
 実施例1~7の塗料を用いたサンプル(断熱材)においては、いずれも熱伝導率が小さくなった。例えば、40℃の空気の熱伝導率は0.0272W/m・K以下である。したがって、実施例1~7の塗料を用いたサンプルは、当該空気よりも高い断熱性を有していることがわかる。 サ ン プ ル The samples (heat insulating materials) using the paints of Examples 1 to 7 all had low thermal conductivity. For example, the thermal conductivity of air at 40 ° C. is 0.0272 W / m · K or less. Therefore, it is understood that the samples using the paints of Examples 1 to 7 have higher heat insulating properties than the air.
 塗膜にCMCを含む実施例1~4のサンプルにおいては、シリカエアロゲルの脱落はほとんどなく、ひび割れも見られなかった。実施例4のサンプルにおいて、若干の脱落が認められたが、これは、CMCの分子量が、実施例1~3のサンプルと比較して小さかったため、分子鎖による絡み合いが少なくなり、シリカエアロゲルの保持性が低下したためと考えられる。一方、塗膜にキサンタンガムを含む実施例5のサンプルにおいては、シリカエアロゲルの脱落が多く、ひび割れが生じてしまった。この理由は、キサンタンガムは主鎖が短く側鎖を有するため、分子鎖の絡み合いが少なくなり、シリカエアロゲルの保持性が低下したためと考えられる。同様に、塗膜にHECまたはHPCを含む実施例6、7のサンプルにおいても、シリカエアロゲルの脱落が多く、ひび割れが生じてしまった。この理由は、HEC、HPCは大きな分子量を有するが、それは側鎖が長いためであり、CMCと比較して主鎖の絡み合いが少ない分、シリカエアロゲルの保持性が低下したためと考えられる。 サ ン プ ル In the samples of Examples 1 to 4 containing the CMC in the coating film, the silica airgel hardly fell off, and no crack was observed. In the sample of Example 4, slight omission was observed. This was because the molecular weight of CMC was smaller than that of the samples of Examples 1 to 3, so that the entanglement due to the molecular chains was reduced, and the silica airgel was retained. It is considered that the property was reduced. On the other hand, in the sample of Example 5 in which xanthan gum was contained in the coating film, the silica airgel was largely dropped off and cracks occurred. It is considered that the reason for this is that xanthan gum has a short main chain and side chains, so that the entanglement of molecular chains is reduced and the retention of silica airgel is reduced. Similarly, also in the samples of Examples 6 and 7 in which the coating film contains HEC or HPC, the silica airgel was often dropped and cracked. It is considered that the reason for this is that HEC and HPC have large molecular weights, because the side chains are long, and the retention of silica airgel is reduced due to less entanglement of the main chain as compared with CMC.
 本発明の断熱材は、自動車用断熱内装材、住宅用断熱材、家電用断熱材、電子部品用断熱材、保温保冷容器用断熱材などに好適である。 断 熱 The heat insulating material of the present invention is suitable for heat insulating interior materials for automobiles, heat insulating materials for houses, heat insulating materials for home appliances, heat insulating materials for electronic components, heat insulating materials for heat insulation and cooling containers, and the like.

Claims (10)

  1.  シリカエアロゲルと、水性エマルジョン系バインダーと、多糖類と、を有する断熱材用塗料。 塗料 A heat insulating paint containing silica airgel, an aqueous emulsion binder, and a polysaccharide.
  2.  前記多糖類の溶解度パラメータ(SP値)は、21以上である請求項1に記載の断熱材用塗料。 The coating material for a heat insulating material according to claim 1, wherein the solubility parameter (SP value) of the polysaccharide is 21 or more.
  3.  前記多糖類は、親水部位および疎水部位を有する請求項1または請求項2に記載の断熱材用塗料。 The coating material for a heat insulating material according to claim 1 or 2, wherein the polysaccharide has a hydrophilic part and a hydrophobic part.
  4.  前記多糖類は、カルボキシメチルセルロースを有する請求項1ないし請求項3のいずれかに記載の断熱材用塗料。 塗料 The heat insulating coating material according to any one of claims 1 to 3, wherein the polysaccharide comprises carboxymethyl cellulose.
  5.  前記カルボキシメチルセルロースの含有量は、塗料全体を100質量%とした場合の0.08質量%以上4質量%以下である請求項4に記載の断熱材用塗料。 The coating material for a heat insulating material according to claim 4, wherein the content of the carboxymethylcellulose is 0.08% by mass or more and 4% by mass or less when the entire coating material is 100% by mass.
  6.  前記シリカエアロゲルは、少なくとも表面に疎水部位を有する請求項1ないし請求項5のいずれかに記載の断熱材用塗料。 The coating material for a heat insulating material according to any one of claims 1 to 5, wherein the silica airgel has a hydrophobic portion at least on a surface.
  7.  前記水性エマルジョン系バインダーは、ウレタン樹脂を有する請求項1ないし請求項6のいずれかに記載の断熱材用塗料。 The paint for thermal insulation according to any one of claims 1 to 6, wherein the aqueous emulsion-based binder has a urethane resin.
  8.  基材の表面および内部の少なくとも一部に、請求項1ないし請求項7のいずれかに記載の断熱材用塗料の硬化物を有する断熱材。 (8) A heat insulating material having a cured product of the heat insulating material coating material according to any one of (1) to (7) on at least a part of the surface and inside of the base material.
  9.  前記硬化物における前記シリカエアロゲルの含有量は、40質量%以上75質量%以下である請求項8に記載の断熱材。 The heat insulating material according to claim 8, wherein the content of the silica airgel in the cured product is from 40% by mass to 75% by mass.
  10.  前記基材は、樹脂または布である請求項8または請求項9に記載の断熱材。 The heat insulating material according to claim 8 or 9, wherein the base material is a resin or a cloth.
PCT/JP2019/032553 2018-08-24 2019-08-21 Coating material for heat insulation material and heat insulation material WO2020040171A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980039000.3A CN112272689B (en) 2018-08-24 2019-08-21 Coating material for heat insulating material and heat insulating material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018156903A JP6836556B2 (en) 2018-08-24 2018-08-24 Insulation paints and insulation
JP2018-156903 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020040171A1 true WO2020040171A1 (en) 2020-02-27

Family

ID=69593252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032553 WO2020040171A1 (en) 2018-08-24 2019-08-21 Coating material for heat insulation material and heat insulation material

Country Status (3)

Country Link
JP (1) JP6836556B2 (en)
CN (1) CN112272689B (en)
WO (1) WO2020040171A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190209A1 (en) * 2021-03-09 2022-09-15 昭和電工マテリアルズ株式会社 Method for producing coating liquid and method for producing thermal insulation material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702867B (en) * 2022-04-06 2023-03-21 湖南大途新材料有限公司 Aerogel thermal insulation decorative water-based paint, and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508049A (en) * 1994-10-20 1998-08-04 ヘキスト・アクチェンゲゼルシャフト Compositions comprising airgel, methods for their preparation and their use
WO2013141189A1 (en) * 2012-03-23 2013-09-26 井前工業株式会社 Heat insulator composition, heat insulator using same, and method for manufacturing heat insulator
CN107267010A (en) * 2017-07-27 2017-10-20 莱恩创科(北京)科技有限公司 A kind of multifunctional and composite type nanometer reflection heat insulating coatings and preparation method thereof
CN107556862A (en) * 2017-10-09 2018-01-09 江苏海晟涂料有限公司 A kind of heat-insulation energy-saving hull paint and preparation method thereof
CN108129628A (en) * 2017-12-20 2018-06-08 福建师范大学泉港石化研究院 From fire-retardant heat insulation aqueous polyurethane composition, foaming body and preparation method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279877A (en) * 2000-04-03 2001-10-10 Dainippon Printing Co Ltd Thermal insulation roof material
US9115025B2 (en) * 2009-04-27 2015-08-25 Rockwool International A/S Aerogel compositions and methods of making and using them
JP2011105855A (en) * 2009-11-18 2011-06-02 Nippon Paint Co Ltd Water-based foamable fireproof coating composition
CN103031049A (en) * 2012-12-21 2013-04-10 青岛格尔美环保涂料有限公司 Aqueous glass insulating paint and preparation method thereof
CN103333542A (en) * 2013-07-04 2013-10-02 河南工业大学 Silica aerogel microsphere composite thermal insulation coating
CN103589258B (en) * 2013-10-16 2015-12-23 纳诺科技有限公司 A kind of aerogel coating, production method and application
KR102023531B1 (en) * 2015-04-07 2019-09-24 주식회사 엘지화학 Aerogel containing composition and thermal insulation blanket prepared by using the same
CN104761936B (en) * 2015-04-07 2017-04-12 泉州三欣新材料科技有限公司 Waterborne inorganic heat-insulating and corrosion-resistant coating and preparation method thereof
CN105038495A (en) * 2015-07-08 2015-11-11 当涂县科辉商贸有限公司 Nanometer cellulose-loaded super thermal-insulation heat-preserving paint and preparation method thereof
CN105199521A (en) * 2015-09-22 2015-12-30 天长市开林化工有限公司 Hydrophobic silica aerogel modified acrylate emulsion coating
CN105368204A (en) * 2015-11-23 2016-03-02 宁波尚高新材料有限公司 Antistripping decorative building paint and preparation method thereof
JP6892807B2 (en) * 2016-09-12 2021-06-23 株式会社Kri Hydrophobic silica airgel particles aqueous dispersion as well as solid composites, insulation and sound absorbing materials
JP6932572B2 (en) * 2017-07-13 2021-09-08 株式会社トクヤマ Spherical silica airgel, its manufacturing method, and its use
JP7121595B2 (en) * 2017-09-28 2022-08-18 住友理工株式会社 Insulation coatings and insulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508049A (en) * 1994-10-20 1998-08-04 ヘキスト・アクチェンゲゼルシャフト Compositions comprising airgel, methods for their preparation and their use
WO2013141189A1 (en) * 2012-03-23 2013-09-26 井前工業株式会社 Heat insulator composition, heat insulator using same, and method for manufacturing heat insulator
CN107267010A (en) * 2017-07-27 2017-10-20 莱恩创科(北京)科技有限公司 A kind of multifunctional and composite type nanometer reflection heat insulating coatings and preparation method thereof
CN107556862A (en) * 2017-10-09 2018-01-09 江苏海晟涂料有限公司 A kind of heat-insulation energy-saving hull paint and preparation method thereof
CN108129628A (en) * 2017-12-20 2018-06-08 福建师范大学泉港石化研究院 From fire-retardant heat insulation aqueous polyurethane composition, foaming body and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190209A1 (en) * 2021-03-09 2022-09-15 昭和電工マテリアルズ株式会社 Method for producing coating liquid and method for producing thermal insulation material

Also Published As

Publication number Publication date
JP2020029528A (en) 2020-02-27
CN112272689A (en) 2021-01-26
JP6836556B2 (en) 2021-03-03
CN112272689B (en) 2022-08-30

Similar Documents

Publication Publication Date Title
JP7121595B2 (en) Insulation coatings and insulation
JP6892807B2 (en) Hydrophobic silica airgel particles aqueous dispersion as well as solid composites, insulation and sound absorbing materials
Zhang et al. Controlled silylation of nanofibrillated cellulose in water: reinforcement of a model polydimethylsiloxane network
US10428184B2 (en) Method for producing a superhydrophobic membrane or surface coating of a substrate
WO2020040171A1 (en) Coating material for heat insulation material and heat insulation material
JP7196854B2 (en) Coating liquid, method for producing coating film, and coating film
CN111154396A (en) Nano silicon dioxide modified silicon resin super-hydrophobic coating and preparation method and application thereof
Xu et al. Preparation of vinyl silica-based organic/inorganic nanocomposites and superhydrophobic polyester surfaces from it
CN108940148B (en) Preparation method of temperature-controlled slow-release essence microcapsule
CN111074675B (en) Hydrophobic slurry and preparation method and application thereof
CN105887491A (en) Super-hydrophobic spraying transparent solution as well as preparation method and application thereof
Domingues et al. Interfacial properties of cellulose nanoparticles obtained from acid and enzymatic hydrolysis of cellulose
JP7322479B2 (en) Coating fluids, composites and coatings
JP2011256389A (en) Novel stable aqueous dispersion liquid of nanoparticle of high-performance thermoplastic polymer, and use of the same as film-forming agent
Wu et al. Synthesis and characterization of novel epoxy resins‐filled microcapsules with organic/inorganic hybrid shell for the self‐healing of high performance resins
CN107474693A (en) Low-surface-energy metal water-base epoxy paint base composition and preparation method thereof
CN105566929A (en) Lignin microcapsule and method of producing the same
JP2014087786A (en) Method for manufacturing microcapsule and microcapsule
CN109679260B (en) Composite water-based conductive emulsion, preparation method thereof and water-based conductive ink
CN112980043B (en) Homogeneous core-shell structure porous chitosan microsphere and preparation method and application thereof
POLAT et al. Anticorrosion coating for magnesium alloys: electrospun superhydrophobic polystyrene/SiO $ _ {2} $ composite fibers
JP2022055295A (en) Composition for heat insulators and heat insulator
JP7285085B2 (en) Insulation material and its manufacturing method
KR20220133172A (en) Method of manufacturing insulation
TWI695856B (en) Composite material having modified aerogel powder with special function group

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851531

Country of ref document: EP

Kind code of ref document: A1