WO2020040132A1 - Light emission device, light emission method, exposure device and device manufacturing method - Google Patents

Light emission device, light emission method, exposure device and device manufacturing method Download PDF

Info

Publication number
WO2020040132A1
WO2020040132A1 PCT/JP2019/032423 JP2019032423W WO2020040132A1 WO 2020040132 A1 WO2020040132 A1 WO 2020040132A1 JP 2019032423 W JP2019032423 W JP 2019032423W WO 2020040132 A1 WO2020040132 A1 WO 2020040132A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting device
optical element
layer
Prior art date
Application number
PCT/JP2019/032423
Other languages
French (fr)
Japanese (ja)
Inventor
達郎 西根
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2020538404A priority Critical patent/JPWO2020040132A1/en
Publication of WO2020040132A1 publication Critical patent/WO2020040132A1/en
Priority to JP2022033901A priority patent/JP7380726B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Definitions

  • the present invention relates to, for example, the technical field of a light emitting device and a light emitting method for emitting light, an exposure apparatus and an exposure method for exposing a target, and a device manufacturing method for manufacturing a device.
  • solid-state light sources such as light-emitting diodes (LEDs) and laser diodes (LDs) have been proposed as light-emitting devices that emit light (for example, see Patent Document 1).
  • LEDs light-emitting diodes
  • LDs laser diodes
  • solid-state light sources it is an issue to generate light appropriately.
  • a light emitting device that emits light from a light exit surface, the light emitting device emitting light, the first optical element that receives light from the light emitting element, and the first optical element.
  • a second optical element for controlling the spread angle of the light emitted from the light exit surface through the light emitting element, wherein light incident on the second optical element has a wavelength different from the wavelength distribution of the light from the light emitting element.
  • a light emitting device having a distribution is provided.
  • a light emitting device that emits light from a light emitting surface, wherein the light emitting device emits light, a first optical element that resonates light from the light emitting device, and a light emitting device that emits light from the light emitting surface. And a second optical element for controlling the spread angle of the light.
  • a light-emitting element that emits light
  • a first optical element that receives light from the light-emitting element
  • a second optical element that diffracts light passing through the first optical element
  • a light emitting device is provided in which light incident on the second optical element has a wavelength distribution different from the wavelength distribution of the light from the light emitting element.
  • a light emitting device including a light emitting element that emits light, a first optical element that resonates the light from the light emitting element, and a second optical element that diffracts the resonated light. Provided.
  • a light-emitting element that emits light
  • a first optical element that receives light from the light-emitting element
  • a second optical element that refracts light passing through the first optical element
  • a light emitting device is provided in which light incident on the second optical element has a wavelength distribution different from the wavelength distribution of the light from the light emitting element.
  • a light emitting device including a light emitting element that emits light, a first optical element that resonates the light from the light emitting element, and a second optical element that refracts the resonated light.
  • a light emitting device that emits light from a light emitting surface, the light emitting device emitting light, a plurality of first optical elements provided to sandwich the light emitting element, and the light emitting device. And a second optical element provided on a surface and expanding a spread angle of laser-oscillated light between the plurality of first optical elements.
  • generating light with the light emitting element controlling the wavelength distribution of the generated light, and controlling the spread angle of the light whose wavelength distribution is controlled,
  • a light emitting method comprising:
  • an exposure comprising: the light emitting device provided by any one of the first to seventh aspects described above; and a projection optical system that irradiates a target with the light emitted by the light emitting device.
  • the light is emitted from the light emitting device provided by any one of the first to seventh aspects, and an image of a light emitting surface of the light emitting device is formed on a target.
  • an exposure method including:
  • a device manufacturing method including a lithography step, wherein the lithography step includes forming a line-and-space pattern on a target, and an exposure method provided by the tenth aspect. And cutting the line pattern constituting the line and space pattern using the method.
  • FIG. 1 is a sectional view showing the structure of the exposure apparatus of the present embodiment.
  • FIG. 2 is a block diagram showing a block structure of a control system in the exposure apparatus of the present embodiment.
  • FIG. 3A is a cross-sectional view illustrating a first structure of the electron beam generator
  • FIG. 3B is a cross-sectional view illustrating a second structure of the electron beam generator.
  • FIG. 4 is a cross-sectional view illustrating the structure of the light emitting device of the present embodiment.
  • FIGS. 5A and 5B are graphs showing spectral distributions with respect to the wavelength of light.
  • FIG. 6A is a cross-sectional view illustrating light emitted from the light emitting device of the present embodiment (that is, light whose light distribution characteristics are controlled by a diffraction layer), and FIG. 6B includes a diffraction layer.
  • FIG. 9 is a cross-sectional view showing light emitted from a light emitting device of a comparative example different from the light emitting device of the present embodiment in that light emission characteristics are not controlled by the diffraction layer.
  • FIG. 7A is a plan view showing a surface of the photonic crystal structure
  • FIG. 7B is a cross-sectional view showing a VII-VII ′ section of the photonic crystal structure layer shown in FIG. 7A. is there.
  • FIG. 8 is a sectional view showing the structure of the electron beam optical system.
  • FIG. 9 is a cross-sectional view illustrating a structure of a light emitting device according to a first modification.
  • FIG. 10 is a sectional view showing another example of the structure of the light emitting device of the first modification.
  • FIG. 11 is a cross-sectional view illustrating another example of the structure of the light emitting device of the first modification.
  • FIG. 12 is a cross-sectional view illustrating a structure of a light emitting device according to a second modification.
  • FIG. 13 is a cross-sectional view illustrating a structure of a light emitting device according to a third modification.
  • FIG. 14 is a cross-sectional view illustrating a structure of a light emitting device according to a fourth modification.
  • FIG. 15 is a cross-sectional view illustrating a structure of a light emitting device according to a fifth modification.
  • FIG. 16 is a cross-sectional view illustrating a structure of a light emitting device according to a sixth modification.
  • FIG. 17A is a cross-sectional view illustrating light emitted from the light emitting device of the sixth modification, and FIG. 17B is different from the light emitting device of the sixth modification in that the light emitting device does not include a diffraction layer. It is sectional drawing which shows the light which the light emitting device of a different comparative example emits.
  • FIGS. 18A and 18B are cross-sectional views illustrating another example of the structure of the light emitting device of the sixth modification.
  • FIG. 18A and 18B are cross-sectional views illustrating another example of the structure of the light emitting device of the sixth modification.
  • FIG. 19 is a perspective view showing an overall schematic configuration of an exposure apparatus of a seventh modification.
  • FIG. 20 is a diagram illustrating a projection optical device of an exposure apparatus according to a seventh modification.
  • FIG. 21 is a diagram showing an arrangement of each projection optical device of the exposure apparatus of the seventh modification.
  • FIG. 22 is a flowchart showing the flow of the device manufacturing method.
  • a light emitting device, a light emitting method, an exposure apparatus, an exposure method, and a device manufacturing method will be described with reference to the drawings.
  • a light emitting device, a light emitting method, an exposure apparatus, an exposure method, and a device manufacturing method will be described using an exposure apparatus (that is, an electron beam exposure apparatus) EX that exposes the wafer W by irradiating the wafer W with an electron beam EB.
  • An embodiment will be described.
  • the exposure apparatus EX is used for, for example, complementary lithography.
  • each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in a horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). And substantially in the vertical direction).
  • the Z-axis direction is also a direction parallel to each optical axis AX of a plurality of electron beam optical systems 8 described later provided in the exposure apparatus EX.
  • the Y-axis direction is a scanning direction in which the wafer W moves during exposure, which will be described later, in a plane perpendicular to the Z-axis.
  • rotation directions (in other words, tilt directions) around the X axis, the Y axis, and the Z axis are referred to as the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, respectively.
  • FIG. 1 is a sectional view showing the overall structure of the exposure apparatus EX of the present embodiment.
  • FIG. 2 is a block diagram showing a block structure of a control system in the exposure apparatus EX of the present embodiment.
  • the exposure apparatus EX includes a stage chamber 1 (however, not shown in FIG. 2), a stage system 2, an optical system 3, and a controller 4 (however, not shown in FIG. 1). ).
  • the stage chamber 1 is a vacuum chamber capable of evacuating the exposure chamber 14 formed therein.
  • FIG. 1 illustration of both ends in the X-axis direction of the stage chamber 1 is omitted for simplification of the drawing.
  • the stage chamber 1 includes a bottom wall 11, a side wall 12, and a frame 13, as shown in FIG.
  • the space surrounded by the bottom wall 11, the side wall 12, and the frame 13 is the exposure chamber 14.
  • the bottom wall 11 is arranged on the floor F.
  • the bottom wall 11 is, for example, a wall-shaped (or plate-shaped) member parallel to the XY plane.
  • the bottom wall 11 is a member that forms the bottom of the stage chamber 1.
  • the side wall 12 is formed on the bottom wall 11.
  • the side wall 12 is formed, for example, so as to surround the bottom wall 11 along the outer edge of the bottom wall 11.
  • the side wall 12 is, for example, a tubular member (for example, a cylindrical or rectangular tube) that intersects the XY plane.
  • the frame 13 is formed on the side wall 12.
  • the side wall 12 supports the frame 13 from below.
  • the frame 13 is, for example, a plate-shaped member parallel to the XY plane.
  • the frame 13 is a member that forms a ceiling wall (that is, an upper wall) of the stage chamber 1.
  • the frame 13 has a circular (or other shape) opening 131 formed therein.
  • the optical system 3 (particularly, the housing 6 included in the optical system 3) is arranged in the opening 131.
  • the housing 6 includes a flange portion 611 protruding outside of other portions at the upper end of the housing 6. The lower surface of the flange portion 611 contacts the upper surface of the frame 13 when the optical system 3 is inserted into the opening 131 from above.
  • the flange portion 611 is supported by the frame 13 from below. That is, the optical system 3 is supported by the frame 13 via the flange 611.
  • the space between the inner peripheral surface of the opening 131 and the outer peripheral surface of the housing 6 may be sealed by a seal member.
  • the stage system 2 is arranged in the exposure chamber 14 inside the stage chamber 1.
  • the stage system 2 is arranged on the bottom wall 11 of the stage chamber 1.
  • the stage system 2 includes a platen 21 (however, not shown in FIG. 2), a wafer stage 22 (however, not shown in FIG. 2), and a stage driving system 23 (however, 1 and a position measuring device 24 (however, not shown in FIG. 1).
  • the platen 21 is disposed on the bottom wall 11.
  • the surface plate 21 is supported from below by the bottom wall 11 via a plurality of vibration isolating devices 25.
  • the wafer stage 22 can hold the wafer W.
  • the wafer stage 22 can release the held wafer W.
  • the wafer stage 22 may include an electrostatic chuck capable of attracting the wafer W.
  • the wafer stage 22 is arranged on the surface plate 21.
  • the wafer stage 22 is supported from below by the surface plate 21 via a weight canceling device 26.
  • the weight canceling device 26 includes, for example, a metal bellows-type air spring 261 and a plate-shaped base slider 262.
  • the upper end of the air spring 261 is connected to the lower surface of the wafer stage 22.
  • the lower end of the air spring 261 is connected to the base slider 262.
  • the base slider 262 is provided with a bearing (not shown) for ejecting the air inside the air spring 261 onto the surface plate 22.
  • the weight of the weight canceling device 26, the wafer stage 22, and the wafer W is supported by the static pressure (that is, the pressure in the gap) between the bearing that ejects the pressurized air and the upper surface of the surface plate 22.
  • the base slider 262 is supported on the surface plate 22 in a non-contact manner, for example, via a differential exhaust type aerostatic bearing.
  • the wafer W is, for example, a semiconductor substrate for manufacturing a semiconductor device.
  • the wafer W is a circular semiconductor substrate having a diameter of 300 mm to which an electron beam resist is applied.
  • the wafer W is not limited to a semiconductor substrate, and may be any substrate as long as it can be irradiated with the electron beam EB.
  • the stage drive system 23 is a drive system for moving the wafer stage 22 under the control of the control device 4.
  • the stage drive system 23 moves the wafer stage 22 along each of the X-axis direction and the Y-axis direction.
  • the stage drive system 23 may move the wafer stage 22 at a predetermined stroke (for example, a stroke of 50 mm) along each of the X-axis direction and the Y-axis direction.
  • the stage drive system 23 may move the wafer stage 22 along at least one of the Z-axis direction, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction in addition to or instead of at least one of the X-axis direction and the Y-axis direction. Good.
  • the stage driving system 23 moves in at least one of the Z-axis direction, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction with a stroke shorter than the stroke in which the wafer stage 22 moves in at least one of the X-axis direction and the Y-axis direction.
  • the wafer stage 22 may be moved along.
  • the stage drive system 23 may finely move the wafer stage 22 along at least one of the Z-axis direction, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction.
  • the stage drive system 23 may include a motor (for example, a moving magnet type motor or an ultrasonic motor).
  • the stage drive system 23 includes a motor, the influence of magnetic field fluctuations (particularly, magnetic field fluctuations in the space above the wafer W) due to magnetic flux leakage from the motor on the positioning of the electron beam EB is negligible. is there.
  • the position measuring device 24 is a measuring device for measuring the position of the wafer stage 22. Specifically, the position measuring device 24 can measure the position of the wafer stage 22 in each of the X-axis direction and the Y-axis direction. The position measuring device 24 is configured to detect the position of the wafer stage 22 in at least one of the Z-axis direction, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction in addition to or instead of the position of the wafer stage 22 in at least one of the X-axis direction and the Y-axis direction. The position may be measurable. In order to measure the position of the wafer stage 22, the position measurement device 24 may include, for example, at least one of an encoder and a laser interferometer. The measurement result of the position measurement device 24 is output to the control device 4.
  • the optical system 3 is disposed above the stage system 2 (especially, above the wafer stage 22).
  • the optical system 3 is arranged at a position where the optical system 3 can face the wafer W while the stage system 2 holds the wafer W.
  • the optical system 3 includes a plurality (for example, 45) of electron beam devices 5 and a housing 6.
  • Each electron beam device 5 can emit an electron beam EB.
  • each electron beam device 5 can emit a plurality of electron beams EB. That is, in the following description, description will be given using an example in which each electron beam device 5 is a multi-beam electron beam device that exposes the wafer W using a plurality of electron beams EB. The electron beam device 5 can irradiate the wafer W with a plurality of emitted electron beams EB.
  • the electron beam device 5 includes an electron beam generating device 7 and an electron beam optical system 8 as shown in FIGS.
  • the electron beam generation device 7 can generate a plurality of electron beams EB under the control of the control device 4.
  • the electron beam optical system 8 emits a plurality of electron beams EB toward the wafer W under the control of the control device 4 such that the plurality of electron beams EB generated by the electron beam generating device 7 are irradiated on the wafer W. I do.
  • the respective structures of the electron beam generating device 7 and the electron beam optical system 8 will be described later in detail with reference to FIGS.
  • the housing 6 includes a base plate 61, a peripheral wall portion 62, and a cooling plate 63.
  • the base plate 61 is, for example, a plate-shaped member parallel to the XY plane.
  • the base plate 61 is a member that forms a ceiling wall (that is, an upper wall) of the housing 6.
  • the base plate 61 is provided with the above-described flange portion 611 on the outer edge thereof.
  • the peripheral wall portion 62 is formed so as to surround the base plate 61 along the outer edge of the base plate 61.
  • the upper end of the peripheral wall 62 is connected to the lower surface of the base plate 61.
  • the peripheral wall portion 62 is, for example, a cylindrical (or square tubular) member that intersects the XY plane.
  • the peripheral wall portion 62 is a member that forms a side wall of the housing 6.
  • the cooling plate 63 is connected to a lower end of the peripheral wall portion 62.
  • the cooling plate 63 is a member that forms a bottom wall of the housing 6.
  • a space surrounded by the base plate 61, the peripheral wall portion 62, and the cooling plate 63 becomes a vacuum chamber 64 in which a plurality of electron beam devices 5 (particularly, a plurality of electron beam optical systems 8) are arranged.
  • the cooling plate 63 may or may not have a cooling function.
  • the cooling plate 63 has a function of suppressing fogging, which is a phenomenon in which reflected electrons from the surface of the electron beam resist applied to the wafer W are reflected on the lower surface of the cooling plate 63 or the like to add a dose to the periphery. Or may not be possessed.
  • the base plate 61 has a plurality of through holes 612 that penetrate the base plate 61 along the Z-axis direction.
  • the number of the plurality of through holes 612 is the same as the number of the plurality of electron beam devices 5.
  • the plurality of through holes 612 may be distributed on the surface of the base plate 61, for example, in a matrix. For example, when the optical system 3 includes 45 electron beam devices 5 as described above, 45 through holes 612 form four corners of a matrix of 7 rows ⁇ 7 columns on the surface of the base plate 61. It may be distributed in an excluded array.
  • a plurality of electron beam generation devices 7 provided in the plurality of electron beam devices 5, respectively, are arranged.
  • the space between the through hole 612 and the electron beam generator 7 may be sealed by a seal member.
  • a plurality of electron beam optical systems 8 included in the plurality of electron beam devices 5 are arranged so as to surround the plurality of through holes 612.
  • the cooling plate 63 has a plurality of through holes 631 penetrating the base plate 61 along the Z-axis direction.
  • the number of the plurality of through holes 631 is the same as the number of the plurality of electron beam devices 5.
  • the plurality of through holes 631 may be distributed, for example, in a matrix on the surface of the cooling plate 63.
  • 45 through holes 631 are formed on the surface of the cooling plate 63 at four corners of a matrix of 7 rows ⁇ 7 columns. May be distributed in an array excluding.
  • the plurality of electron beams EB emitted from each electron beam device 5 pass through a through hole 612 corresponding to each electron beam device 5.
  • each electron beam device 5 irradiates the wafer W with a plurality of electron beams EB via the through holes 612 corresponding to each electron beam device 5.
  • each through-hole 612 has a size (particularly, a diameter) that allows a plurality of electron beams EB emitted from the electron beam device 5 corresponding to each through-hole 612 to pass.
  • the control device 4 controls the operation of the entire exposure apparatus EX.
  • the control device 4 may control the stage drive system 23 based on the measurement result of the position measurement device 24 so that the wafer W is appropriately exposed.
  • the control device 4 may control the plurality of electron beam devices 5 so that the wafer W is appropriately exposed.
  • the exposure apparatus EX includes a control device 4 that controls the operation of the entire exposure apparatus EX.
  • the exposure apparatus EX is controlled by the control device 4 that controls the entire operation of the exposure apparatus EX.
  • a plurality of sub-control devices for controlling the plurality of electron beam devices 5 may be provided.
  • the plurality of sub-control devices may respectively control the plurality of electron beam devices 5 under the control of the control device 4.
  • the control device 4 may be provided outside the exposure apparatus EX. In this case, the control device 4 may be connected to the exposure apparatus EX via a network.
  • FIG. 3A is a cross-sectional view illustrating a first structure of the electron beam generator 7.
  • FIG. 3B is a cross-sectional view illustrating a second structure of the electron beam generator 7.
  • the electron beam generator 7 includes a plurality of light emitting devices 71, a plurality of projection lenses 72, and a photoelectric conversion element 73.
  • the plurality of light emitting devices 71 are formed on a single substrate (not shown) (for example, a semiconductor substrate). However, the substrate on which a part of the plurality of light emitting devices 71 is formed may be separate from the substrate on which the other part of the plurality of light emitting devices 71 is formed.
  • the plurality of light emitting devices 71 are arranged in a predetermined arrangement pattern on the substrate. For example, the plurality of light emitting devices 71 may be arranged on the substrate in a two-dimensional array (or in a one-dimensional array). In this case, the plurality of light emitting devices 71 may be referred to as a light emitting device array.
  • the electron beam generating device 7 may include 72,000 light emitting devices 71.
  • the 72,000 light emitting devices 71 may be arranged in a two-dimensional array of 6000 rows ⁇ 12 columns on the substrate.
  • Such a plurality of light emitting devices 71 can be manufactured, for example, as follows. First, a structure (for example, a structure layer such as a quantum well layer 711 described later) constituting the light emitting device 71 is formed on a substrate by using an epitaxial growth technique or the like. Thereafter, the structure formed on the substrate is selectively removed according to the arrangement pattern of the plurality of light emitting devices 71 by using an etching technique or the like. The removal of the structure in this case is performed to leave the structure constituting each light emitting device 71 as a mesa structure or to separate a plurality of light emitting devices 71 integrated as a structure.
  • a structure for example, a structure layer such as a quantum well layer 711 described later
  • Each light emitting device 71 can emit light EL.
  • Each light emitting device 71 is, for example, a self-luminous type light emitting device. In this case, each light emitting device 71 emits the light EL generated by self-emission toward the outside of each light emitting device 71 (for example, toward the projection lens 72 corresponding to each light emitting device 71).
  • the light emission mode of the plurality of light emitting devices 71 can be individually controlled under the control of the control device 4.
  • the control device 4 can individually control the states of the plurality of light emitting devices 71 between a light emitting state where the light EL is emitted and a non-light emitting state where the light EL is not emitted.
  • the control device 4 can individually control the intensities of the plurality of lights EL emitted from the plurality of light emitting devices 71, respectively.
  • each light emitting device 71 may include an LED (for example, a micro LED).
  • each light emitting device 71 is not limited to a micro LED, and may include another type of LED. Examples of other types of LEDs include organic LEDs and polymer LEDs.
  • the light emission mode of the plurality of light emitting devices 71 can be individually controlled under the control of the control device 4.
  • the control device 4 can individually control the states of the plurality of light emitting devices 71 between a light emitting state where the light EL is emitted and a non-light emitting state where the light EL is not emitted.
  • the control device 4 can individually control the intensities of the plurality of lights EL emitted from the plurality of light emitting devices 71, respectively.
  • each light emitting device 71 is different from the existing LED in that the characteristics of the emitted light EL can be controlled.
  • the structure of the light emitting device 71 of the present embodiment which is different from the existing LED in that the characteristics of the emitted light EL can be controlled, will be described with reference to FIG.
  • FIG. 4 is a cross-sectional view illustrating the structure of the light emitting device 71 of the present embodiment.
  • the light emitting device 71 includes a quantum well layer (active layer) 711, a cladding layer 712, a cladding layer 713, a reflection layer 714, a reflection layer 715, and a diffraction layer 716.
  • the light-emitting device 71 includes a diffraction layer 716, a reflection layer 715, a cladding layer 713, a quantum well layer 711, a cladding layer 712, and a reflection layer 714 when viewed from a light emission surface 719 from which the light emission device 71 emits light EL to the outside.
  • the light emitting device 71 is a structure in which a quantum well layer 711, cladding layers 712 and 713, reflection layers 714 and 715, and a diffraction layer 716 are integrated.
  • the light emitting device 71 may further include a layer different from the quantum well layer 711, the cladding layers 712 and 713, the reflection layers 714 and 715, and the diffraction layer 716.
  • the quantum well layer 711 is a semiconductor layer having a smaller band gap than the cladding layers 712 and 713 (for example, a semiconductor layer containing at least one of AlGaAs and GaAs).
  • Each of the cladding layers 712 and 713 is a semiconductor layer having a larger band gap than the quantum well layer 711 (for example, a semiconductor layer containing AlGaAs, AlGaInP, or InGaN).
  • One of the cladding layers 712 and 713 is a p-type semiconductor layer.
  • the other of the cladding layers 712 and 713 is an n-type semiconductor layer.
  • the quantum well layer 711 is a layer that can form a potential well (that is, a quantum well (QW: Ouantum @ Well)) in which the moving direction of electrons is restricted. That is, the light emitting device 71 is a light emitting device having a double hetero structure using a quantum well.
  • the quantum well layer 711 has a multiple quantum well structure (MQW: Multi Quantum Well) in which a plurality of layers for forming the quantum well are stacked. However, the quantum well layer 711 may have a single quantum well structure including only one layer for forming a quantum well.
  • the reflection layers 714 and 715 are arranged so as to sandwich the quantum well layer 711 therebetween.
  • the reflection layer 714 is disposed on the side opposite to the light emission surface 719 when viewed from the quantum well layer 711, and the reflection layer 715 is disposed on the light emission surface 719 side when viewed from the quantum well layer 711.
  • Light EL0 generated in the quantum well layer 711 is incident on the reflection layer 714 via the cladding layer 712.
  • the reflective layer 714 reflects at least a part of the light EL0 incident on the reflective layer 714.
  • Light EL0 generated in the quantum well layer 711 is incident on the reflection layer 715 via the cladding layer 713.
  • the reflection layer 715 reflects at least a part of the light EL incident on the reflection layer 715.
  • the light EL0 reflected by the reflection layer 714 is incident on the reflection layer 715 via the cladding layer 712, the quantum well layer 711, and the cladding layer 713. Therefore, at least part of the light EL0 reflected by the reflective layer 714 is reflected again by the reflective layer 715.
  • the light EL0 reflected by the reflective layer 715 is incident on the reflective layer 714 via the clad layer 713, the quantum well layer 711, and the clad layer 712. Therefore, at least a part of the light EL0 reflected by the reflective layer 715 is reflected again by the reflective layer 714.
  • the light EL0 generated in the quantum well layer 711 is repeatedly reflected on the reflection layers 714 and 715.
  • the light EL0 repeatedly reflected on the reflection layers 714 and 715 forms a standing wave. Therefore, the light EL0 that has been repeatedly reflected on the reflection layers 714 and 715 has a resonance compared with the light EL0 that has not been repeatedly reflected on the reflection layers 714 and 715 (that is, the light EL0 that has just been generated in the quantum well layer 711). It is different in that it is in a state where it has been done. That is, the light EL0 traveling inside the quantum well layer 711 and the cladding layers 712 and 713 located between the reflection layers 714 and 715 resonates. The reflection layers 714 and 715 resonate the light EL0 between the reflection layer 714 and the diffraction layer 716 (or between the reflection layer 714 and the light exit surface 719).
  • the light EL0 repeatedly reflected on the reflection layers 714 and 715 is compared with the light EL0 not repeatedly reflected on the reflection layers 714 and 715 in a specific wavelength range (hereinafter referred to as a “resonance wavelength range”).
  • the light EL0 repeatedly reflected on the reflection layers 714 and 715 is compared with the light EL0 not repeatedly reflected on the reflection layers 714 and 715, and the intensity (for example, the average value) of the light component in a wavelength range other than the resonance wavelength range.
  • the reflection layers 714 and 715 can function as a resonator that resonates the light EL0.
  • the reflection layers 714 and 715 constitute a resonator that resonates the light EL0.
  • the DBR layer has a stacked structure in which a plurality of semiconductor layers having different refractive indexes are stacked.
  • the characteristics (eg, material, thickness, refractive index, number of layers, and the like) of the semiconductor layer are appropriately set according to the resonance wavelength range.
  • the arrangement positions of the reflection layers 714 and 715 are also appropriately set according to the resonance wavelength range.
  • a different type of reflective layer than the DBR layer may be used as the reflective layers 714 and 715.
  • the resonance wavelength range may be set according to the wavelength of the light EL to be emitted from the light emitting device 71 (that is, the wavelength of the light EL that the light emitting device 71 is set to emit by design). .
  • the resonance wavelength range may be set as a wavelength range centered on the wavelength of the light EL to be emitted from the light emitting device 71.
  • the “wavelength range” in the present embodiment means a range from one wavelength to another wavelength, but one wavelength and another wavelength may be different, or one wavelength may be different. Other wavelengths may be the same. If one wavelength is the same as another wavelength, the wavelength range will effectively indicate a particular wavelength.
  • the reflectance of the reflective layer 715 is less than 100% (for example, 50% to 60%).
  • the reflectance of the reflective layer 715 may be a reflectance with respect to the wavelength of the light EL to be emitted from the light emitting device 71.
  • the reflection layer 715 may constitute a so-called half mirror.
  • the light EL0 incident on the diffraction layer 716 is equivalent to the light obtained by controlling the wavelength distribution of the light EL0 generated in the quantum well layer 711. Therefore, it can be said that the light emitting device 71 substantially controls the wavelength distribution of the light EL0 generated in the quantum well layer 711 by using at least the reflection layers 714 and 715. It can be said that the light emitting device 71 substantially includes an optical element including at least the reflective layers 714 and 715 as an optical element for controlling the wavelength distribution of the light EL0 generated in the quantum well layer 711.
  • the light EL0 incident on the diffraction layer 716 is referred to as “light EL1”, and is distinguished from the light EL0 before entering the diffraction layer 716 (for example, the light EL0 generated in the quantum well layer 711).
  • FIG. 5A is a graph showing a spectrum distribution with respect to the wavelength of the light EL1.
  • FIG. 5B is a graph showing a spectrum distribution with respect to the wavelength of the light EL0.
  • the light EL1 may be narrower light than the light EL0.
  • the light EL1 may be light whose wavelength distribution is narrower than that of the light EL0.
  • the reflection layers 714 and 715 may reflect the light EL0 so that the light emitting device 71 emits the light EL having a band narrower than the light EL0.
  • the characteristics of the reflective layers 714 and 715 realize a state in which the light emitting device 71 emits the light EL having a band narrower than that of the light EL0. It may be set to possible desired characteristics.
  • the light EL ⁇ b> 1 whose band has been narrowed enters the diffraction layer 716.
  • “narrowing the band” here may mean that the wavelength range where the intensity is equal to or more than a predetermined value is narrowed.
  • “Narrowing the band” means that the wavelength range (so-called spectral line width) in which the intensity has a specific ratio value (for example, a value of ⁇ or 1/10) as compared with the peak value is narrowed. It may mean.
  • “narrowing of the band” may mean that the 95% energy purity width E95% is narrowed.
  • the 95% energy purity range E95% can be a width when the integrated value of the intensity distribution within the width becomes 95% of the total integrated value of the intensity distribution of the spectrum.
  • the light EL1 may have a smaller half-width of the spectrum distribution than the light EL0.
  • the reflective layers 714 and 715 may reflect the light EL0 such that the light emitting device 71 emits the light EL having a smaller half-width of the spectral distribution than the light EL0.
  • the characteristics of the reflective layers 714 and 715 may be set to desired characteristics capable of realizing a state in which the light emitting device 71 emits the light EL having a smaller half width of the spectral distribution than the light EL0.
  • the half width may be a full width at half maximum (FWHM: Full Width at at Half Maximum) or a half width at half maximum (HWHM: Half Width at at Half Half Maximum). Note that the above-mentioned “narrowing of the band” may mean that the half width is reduced.
  • the light EL1 may have a larger peak value Ip of intensity than the light EL0. That is, the peak value Ip1 of the intensity of the light EL1 may be larger than the peak value Ip0 of the intensity of the light EL0.
  • the reflection layers 714 and 715 may reflect the light EL0 such that the light emitting device 71 emits the light EL having the peak intensity Ip greater than that of the light EL0.
  • the characteristics of the reflective layers 714 and 715 may be set to desired characteristics capable of realizing a state in which the light emitting device 71 emits the light EL having a greater intensity peak value Ip than the light EL0.
  • the light EL1 whose peak value Ip of the intensity has increased enters the diffraction layer 716.
  • the above-mentioned “narrowing of the band” may mean that the peak value of the intensity increases.
  • the wavelength at which the intensity has the peak value Ip is likely to be included in the resonance wavelength range. In particular, there is a high possibility that the wavelength at which the intensity reaches the peak value Ip coincides with the center wavelength ⁇ c of the resonance wavelength range or a wavelength in the vicinity thereof.
  • the above-mentioned “narrow band” means that the intensity is a wavelength range centered on the center wavelength ⁇ c at which the intensity becomes the peak value Ip, and the intensity becomes a specific value or more as compared with the predetermined value or the peak value. It may mean that the wavelength range in which the value of the ratio is narrowed.
  • the diffraction layer 716 is disposed at the interface between the space in which the light EL emitted from the light emitting device 71 propagates and the light emitting device 71. For this reason, the light emitting device 71 emits the light EL from the diffraction layer 716 toward the space outside the light emitting device 71. Therefore, at least a part of the surface of the diffraction layer 716 (particularly, the lower surface facing the projection lens 72 side) forms a light exit surface 719 from which the light EL is emitted.
  • the surface (particularly, the lower surface facing the projection lens 72) of the diffraction layer 716 includes a light exit surface 719. In the example shown in FIG. 4, the light exit surface 719 includes a surface parallel to the XY plane.
  • the diffraction layer 716 diffracts light incident on the diffraction layer 716.
  • the diffraction layer 716 deflects light passing through the diffraction layer 716 by diffracting light incident on the diffraction layer 716.
  • the deflection angle of the light passing through the diffraction layer 716 differs depending on the wavelength of the light.
  • the diffractive layer 716 imparts a first deflection angle to light of a first wavelength, and a second deflection angle different from the first deflection angle to light of a second wavelength different from the first wavelength. May be provided.
  • the light of the first wavelength and the light of the second wavelength travel in different directions. That is, the diffraction layer 716 can substantially separate light of different wavelengths.
  • the deflection angle may be an angle between an axis along the traveling direction of the incident light and an axis along the traveling direction of the deflected light.
  • the light EL ⁇ b> 1 enters the diffraction layer 716 via the reflection layer 715. Therefore, the diffraction layer 716 diffracts the light EL1 incident on the diffraction layer 716 via the reflection layer 715. Therefore, the light EL1 diffracted by the diffraction layer 716 is emitted from the light emitting device 71 as the light EL.
  • the light emitting device 71 is an LED
  • the phase of the first light emitted as a part of the light EL from the first position of the light exit surface 719 is different from the first position of the light exit surface 719.
  • the phase of the second light emitted as another part of the light EL from the two positions may be different from each other. Stated another way, the first light from the first position on the light exit surface 719 and the second light from the second position on the light exit surface 719 may be mutually incoherent.
  • the diffraction layer 716 diffracts the light EL1 to control the light distribution characteristics (specifically, the light distribution) of the light EL from the light emitting device 71. That is, the diffraction layer 716 can function as an optical element for controlling the light distribution characteristics of the light EL using the diffraction of the light EL1.
  • FIGS. 6A and 6B the control of the light distribution characteristics of the light EL by the diffraction layer 716 will be described with reference to FIGS. 6A and 6B.
  • FIG. 6A is a cross-sectional view illustrating light EL emitted by the light emitting device 71 of the present embodiment (that is, light EL whose light distribution characteristics are controlled by the diffraction layer 716).
  • FIG. 6A is a cross-sectional view illustrating light EL emitted by the light emitting device 71 of the present embodiment (that is, light EL whose light distribution characteristics are controlled by the diffraction layer 716).
  • FIG. 6B shows light EL emitted from a light emitting device C71 of a comparative example different from the light emitting device 71 of the present embodiment in that the light emitting characteristic is controlled by the diffraction layer 716.
  • FIG. 13 is a cross-sectional view showing light EL not shown).
  • the spread angle ⁇ 1 of the light EL emitted from the light emitting device 71 may be smaller than the spread angle ⁇ 2 of the light EL emitted from the light emitting device C71. That is, the diffraction layer 716 may diffract the light EL1 such that the spread angle ⁇ of the light EL is smaller than when the light EL1 is not diffracted. The diffraction layer 716 may deflect the light EL1 so that the spread angle ⁇ of the light EL is smaller than when the light EL1 is not diffracted.
  • the characteristic of the diffractive layer 716 is set to a desired characteristic that allows the light EL1 to be diffracted (resulting in deflection) so that the spread angle ⁇ of the light EL is smaller than when the light EL1 is not diffracted. Is also good.
  • the “spread angle ⁇ ” may mean a divergence angle of the light EL emitted from the light emitting device 71.
  • the “spread angle ⁇ ” is twice the angle formed by the axis of the light EL emitted by the light emitting device 71 and the axis of the light beam having the maximum radiation intensity and the axis of the light beam having the predetermined radiation intensity. Value.
  • the predetermined value of the radiation intensity may be 1 / of the maximum radiation intensity.
  • the diffraction layer 716 may diffract the light EL1 such that the spread angle ⁇ of the light EL is reduced and the spread angle ⁇ of the light EL becomes a desired angle.
  • the diffraction layer 716 may deflect the light EL1 such that the spread angle ⁇ of the light EL is reduced and the spread angle ⁇ of the light EL becomes a desired angle.
  • the characteristic of the diffraction layer 716 is set to a desired characteristic that allows the light EL1 to be diffracted (and consequently deflected) so that the spread angle ⁇ of the light EL becomes small and the spread angle ⁇ of the light EL becomes a desired angle. It may be.
  • the diffractive layer 716 easily makes the spread angle ⁇ of the light component in the diffraction wavelength range relatively small by diffracting the light component in a specific wavelength range (hereinafter, referred to as “diffraction wavelength range”). In some cases, even when diffracting a light component in a wavelength range other than the diffraction wavelength range, the spread angle ⁇ of the light component in a wavelength range other than the diffraction wavelength range is difficult to be relatively small.
  • the diffractive layer 716 diffracts the light component in the diffraction wavelength range to easily set the spread angle ⁇ of the light component in the diffraction wavelength range to a desired angle, while diffracting the light component in the wavelength range other than the diffraction wavelength range. It is difficult to set the spread angle ⁇ of the light component in the wavelength range other than the diffraction wavelength range to a desired angle (for example, even if the light component in the wavelength range other than the diffraction wavelength range is diffracted, the wavelength range other than the diffraction wavelength range is difficult). (The spread angle ⁇ of the light component is set to an angle different from the desired angle).
  • the light EL1 incident on the diffraction layer 716 is the light EL0 resonated by the reflection layers 714 and 715 (that is, the light EL0 in which the light component in the resonance wavelength range is relatively amplified). is there.
  • the resonance wavelength range may at least partially overlap the diffraction wavelength range.
  • the characteristics of the reflection layers 714 and 715 and the diffraction layer 716 are set so that the resonance wavelength range and the diffraction wavelength range at least partially overlap, the resonance wavelength range and the diffraction wavelength range do not overlap.
  • the reflection layers 714 and 715 resonate the light EL0 so that the control efficiency of the light distribution characteristics of the light EL is improved.
  • the wavelength range of the light EL0 incident on the diffraction layer EL0 is the diffraction wavelength range. Does not necessarily overlap at least partially. Therefore, there is a possibility that the light EL0 in which the intensity of the light component in the diffraction wavelength range is not so high (for example, the intensity of the light component in the wavelength range different from the diffraction wavelength range is relatively high) enters the diffraction layer 716. .
  • the resonance wavelength for the light EL0 (for example, the intensity (for example, the average value) of the light component in the wavelength range other than the resonance wavelength range) in which the light component in the resonance wavelength range is relatively amplified.
  • the intensity of the light component in the diffraction wavelength range is not so high (for example, the intensity of the light component in the wavelength range different from the diffraction wavelength range). (Relatively high)
  • the possibility that the light EL0 is incident on the diffraction layer 716 is reduced. That is, there is a high possibility that the light EL0 in which the intensity of the light component in the diffraction wavelength range is relatively high (for example, the intensity of the light component in the wavelength range different from the diffraction wavelength range is relatively low) enters the diffraction layer 716. .
  • the reflective layers 714 and 715 are present, the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716 is improved.
  • the diffraction wavelength range may or may not match the resonance wavelength range.
  • the center wavelength of the diffraction wavelength range may or may not match the center wavelength of the resonance wavelength range.
  • the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716 is higher than when the diffraction wavelength range does not match the resonance wavelength range. It is highly likely that it will be further improved.
  • the center wavelength of the diffraction wavelength range coincides with the center wavelength of the resonance wavelength range, the light generated by the diffraction layer 716 is compared with the case where the center wavelength of the diffraction wavelength range does not match the center wavelength of the resonance wavelength range. There is a high possibility that the control efficiency of the light distribution characteristics of the EL is further improved.
  • the diffraction layer 716 may diffract the light EL1 so that the directivity of the light EL is higher than when the light EL1 is not diffracted.
  • the diffraction layer 716 may diffract the light EL1 using a photonic crystal structure. That is, the diffraction layer 716 may be a layer having a photonic crystal structure.
  • a photonic crystal structure is a structure that includes a microstructure having a periodic dielectric constant distribution therein (and thus also having a periodic refractive index distribution therein).
  • FIGS. 7A and 7B an example of the structure of the diffraction layer 716 will be described with reference to FIGS. 7A and 7B.
  • FIG. 7A is a plan view showing the surface of the diffraction layer 716 (particularly, the lower surface facing the projection lens 72).
  • FIG. 7B is a cross-sectional view showing a VII-VII 'cross section of the diffraction layer 716 shown in FIG. 7A.
  • the diffraction layer 716 includes a substrate 7161.
  • the substrate 7161 is a plate-like member that extends along the XY plane.
  • the substrate 7161 is, for example, a semiconductor substrate.
  • a plurality of holes 7162 are formed in the substrate 7161. The plurality of holes 7162 are periodically distributed along each of the X-axis direction and the Y-axis direction (or each of two directions orthogonal to each other and included in the XY plane).
  • the plurality of holes 7162 do not contain a material constituting the substrate 7161. Therefore, the dielectric constant of a region (in this case, a space) forming the plurality of holes 7162 is different from the dielectric constant of the substrate 7161.
  • the dielectric constant of the region (space) forming the plurality of holes 7162 can be set to the dielectric constant of the medium.
  • the dielectric constant of vacuum can be used. Therefore, in the photonic crystal structure element 716, the region portion having the first dielectric constant (that is, the plurality of holes 7162) is replaced with the region portion having a dielectric constant different from the first dielectric constant (that is, the substrate 7161).
  • the diffraction layer 716 shown in FIG. 7A is a layer having a two-dimensional photonic crystal structure in which the dielectric constant changes periodically along a two-dimensional plane.
  • the refractive index of the plurality of holes 7162 (specifically, the refractive index for light) is different from the refractive index of the substrate 7161.
  • the region portion having the first refractive index that is, the plurality of holes 7162
  • the region portion having a refractive index different from the first refractive index that is, the substrate 7161.
  • the diffraction layer 716 illustrated in FIG. 7A can be said to be a layer having a two-dimensional photonic crystal structure in which the refractive index periodically changes along a two-dimensional plane.
  • a material (for example, a semiconductor material) having a dielectric constant different from that of the substrate 7161 may be embedded in the plurality of holes 7162. Even in this case, in the photonic crystal structure element 716, the region portion having the first dielectric constant (that is, the plurality of materials embedded in the plurality of holes 7162) is different from the first dielectric constant. It can be said that it is periodically distributed in the region having the dielectric constant (that is, the substrate 7161).
  • the characteristics of the diffraction layer 716 mainly depend on characteristics of the photonic crystal structure. Therefore, the characteristics of the photonic crystal structure may be appropriately set so that the diffraction layer 716 has the above-described characteristics (that is, characteristics determined from the viewpoint of controlling the light distribution characteristics of the light EL).
  • the arrangement pitch P may be set based on, for example, the wavelength of the light EL to be emitted from the light emitting device 71.
  • the arrangement pitch P may be the same as the wavelength of the light EL.
  • the arrangement pitch P may be larger than the wavelength of the light EL.
  • the arrangement pitch P may be larger than the wavelength of the light EL by a predetermined length.
  • the arrangement pitch P may be larger than the wavelength of the light EL by a predetermined ratio.
  • the arrangement pitch P may be smaller than the wavelength of the light EL.
  • the arrangement pitch P may be smaller by a predetermined length than the wavelength of the light EL.
  • the arrangement pitch P may be smaller by a predetermined ratio than the wavelength of the light EL.
  • the arrangement pitch P may be set to a value that can improve the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716.
  • the arrangement pitch P may be set to a value that allows the diffraction wavelength range and the resonance wavelength range to at least partially overlap.
  • a plurality of holes 7162 are arranged at a first arrangement pitch along a first direction (for example, X direction), and are arranged in a second direction (for example, Y direction) intersecting with the first direction.
  • first arrangement pitch and the second arrangement pitch may be the same pitch or different pitches.
  • the first arrangement pitch may be larger than the second arrangement pitch.
  • the depth D of the plurality of holes 7162 may be set to a value that can improve the control efficiency of the light distribution characteristics of the light EL by the diffraction layer 716. It should be noted that as the depth D increases, the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716 is more likely to be improved. However, when the depth D is excessively large, the holes 7162 may penetrate the diffraction layer 716 (for example, the substrate 7161) along the Z-axis direction. As a result, another layer adjacent to the diffraction layer 716 (the reflective layer 715 in the example shown in FIG. 4) may be affected.
  • the depth D may be set to such a value that the hole 7162 does not penetrate the diffraction layer 716 along the Z-axis direction.
  • the hole 7162 may penetrate the diffraction layer 716 along the Z-axis direction.
  • the depth D of the plurality of holes 7162 may be different at different positions on the light emitting surface of the light emitting device 71, or may be the same at different positions on the light emitting surface of the light emitting device 71. Good.
  • the shape of the plurality of holes 7162 may be set to a desired shape capable of improving the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716.
  • the plurality of holes 7162 are cylindrical holes. That is, the plurality of holes 7162 are holes whose cross section along the XY plane has a circular shape and whose cross section including the Z axis has a rectangular shape.
  • the plurality of holes 7162 may have a shape different from the shapes shown in FIGS. 7A and 7B.
  • the plurality of holes 7162 may be prismatic holes (that is, holes in which both the cross-sectional shape along the XY plane and the cross-sectional shape including the Z axis are rectangular).
  • the plurality of holes 7162 may be tapered columnar holes.
  • the shapes of the plurality of holes 7162 may be the same as each other.
  • An example of the characteristics of the photonic crystal structure is an array pattern of a plurality of holes 7162.
  • the arrangement pattern of the plurality of holes 7162 may be set to a desired pattern that can improve the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716.
  • the plurality of holes 7162 are arranged in a plane lattice pattern on the surface of the substrate 7161 (that is, on the XY plane).
  • the plurality of holes 7162 are arranged in a triangular lattice (that is, hexagonal lattice) arrangement pattern.
  • the plurality of holes 7162 may be arranged in an arrangement pattern different from the arrangement patterns shown in FIGS. 7A and 7B.
  • the plurality of holes 7162 may be arranged in an oblique lattice (ie, isosceles triangular lattice) arrangement pattern, a rectangular lattice arrangement pattern, or a parallel body lattice arrangement pattern.
  • the plurality of projection lenses 72 are optical lenses arranged to correspond to the plurality of light emitting devices 71, respectively. Therefore, the number of the plurality of projection lenses 72 is the same as the number of the plurality of light emitting devices 71. That is, when the electron beam generator 7 includes 72,000 light emitting devices 71, the electron beam generator 7 may include 72000 projection lenses 72.
  • the electron beam generator 7 may include one or more projection lenses 720 corresponding to two or more light emitting devices 71.
  • the electron beam generation device 7 includes one projection lens 720 collectively corresponding to the plurality of light emitting devices 71 included in the electron beam generation device 7.
  • the electron beam generating device 7 is a projection lens 720 corresponding to a first group of light emitting device groups including two or more light emitting devices 71 among the plurality of light emitting devices 71 provided in the electron beam generating device 7.
  • One projection lens 720 corresponding to the second light emitting device group, and one projection lens 720 corresponding to the K th light emitting device group may be smaller than the number of the plurality of light emitting devices 71.
  • each projection lens 72 is, for example, a micro lens, but may be another optical element.
  • Each projection lens 72 irradiates the light EL emitted by the light emitting device 71 corresponding to each projection lens 72 to a photoelectric conversion element 73 (particularly, a specific area corresponding to each projection lens 72 in the photoelectric conversion element 73).
  • Each projection lens 72 converts an image of a light emitting surface (e.g., light emission surface 719) of a light emitting device 71 corresponding to each projection lens 72 into a photoelectric conversion element 73 (particularly, corresponding to each projection lens 72 of the photoelectric conversion elements 73). In a specific area to be formed).
  • a plurality of lights EL emitted from the plurality of light emitting devices 71 enter the projection lens 720.
  • the projection lens 720 irradiates the plurality of lights EL emitted from the plurality of light emitting devices 71 to the photoelectric conversion element 73 (particularly, a specific area corresponding to each light emitting device 71 in the photoelectric conversion element 73).
  • the projection lens 720 forms images of the light emitting surfaces (for example, the light emitting surfaces 719) of the plurality of light emitting devices 71 on the photoelectric conversion elements 73 (particularly, specific regions corresponding to each light emitting device among the photoelectric conversion elements 73). .
  • Each of the projection lens 72 and the projection lens 720 is a reduction optical system having a reduction magnification.
  • each projection lens 72 forms a reduced image of the light emitting surface of the light emitting device 71 corresponding to each projection lens 72 on the photoelectric conversion element 73.
  • the projection lens 720 forms reduced images of the light emitting surfaces of the plurality of light emitting devices 71 on the photoelectric conversion element 73.
  • Each of the projection lens 72 and the projection lens 720 may be a 1 ⁇ optical system having a 1 ⁇ magnification (ie, ⁇ 1 ⁇ ).
  • Each of the projection lens 72 and the projection lens 720 may be an enlargement optical system having an enlargement magnification.
  • each projection lens 72 on the light emitting device 71 side is smaller than the numerical aperture of each projection lens 72 on the photoelectric conversion element 73 side. However, the numerical aperture of each projection lens 72 on the light emitting device 71 side may be larger than the numerical aperture of each projection lens 72 on the photoelectric conversion element 73 side. The numerical aperture of each projection lens 72 on the light emitting device 71 side may be the same as the numerical aperture of each projection lens 72 on the photoelectric conversion element 73 side.
  • the numerical aperture of the projection lens 720 on the light emitting device 71 side is smaller than the numerical aperture of the projection lens 720 on the photoelectric conversion element 73 side.
  • the numerical aperture of the projection lens 720 on the light emitting device 71 side may be larger than the numerical aperture of the projection lens 720 on the photoelectric conversion element 73 side.
  • the numerical aperture of the projection lens 720 on the light emitting device 71 side may be the same as the numerical aperture of the projection lens 720 on the photoelectric conversion element 73 side.
  • the photoelectric conversion element 73 is capable of converting a plurality of lights EL from the plurality of projection lenses 72 or 720 into a plurality of electron beams EB.
  • the photoelectric conversion element 73 can generate a plurality of electron beams EB from a plurality of lights EL from the plurality of projection lenses 72 or 720.
  • the photoelectric conversion element 73 includes a plate member 731, a light shielding film 732, and an alkali photoelectric layer 733.
  • the photoelectric conversion element 73 is a structure in which a plate member 731, a light shielding film 732, and an alkali photoelectric layer 733 are integrated.
  • the plate member 731 is a plate-like member through which a plurality of lights EL can pass.
  • the plate member 731 is a member made of, for example, quartz glass, but may be a member made of another material.
  • the light shielding film 732 is formed on the lower surface of the plate member 731.
  • the light shielding film 732 can shield a plurality of lights EL.
  • the light shielding film 732 is, for example, a film of chromium or the like.
  • a plurality of apertures 7321 corresponding to the plurality of projection lenses 72 are formed in the light shielding film 732. Therefore, the number of the plurality of apertures 7321 is equal to the number of the plurality of projection lenses 72. That is, when the electron beam generation device 7 includes 72,000 projection lenses 72, the light shielding film 732 may have 72,000 apertures 7321.
  • FIG. 3A a plurality of apertures 7321 corresponding to the plurality of projection lenses 72 are formed in the light shielding film 732. Therefore, the number of the plurality of apertures 7321 is equal to the number of the plurality of projection lenses 72. That is, when the electron beam generation device 7 includes 72,000 projection lenses 72, the light shielding film 732 may have 72,000
  • a plurality of apertures 7321 corresponding to the plurality of light emitting devices 71 are formed in the light shielding film 732. Therefore, the number of the plurality of apertures 7321 is equal to the number of the plurality of light emitting devices 71. That is, when the electron beam generation device 7 includes 72,000 light emitting devices 71, the light shielding film 732 may have 72,000 apertures 7321.
  • each aperture 7321 is formed at a position where the light EL from the projection lens 72 corresponding to each aperture 7321 is incident.
  • the light EL from each projection lens 72 enters the aperture 7321 corresponding to each projection lens 72 via the plate member 731. That is, each projection lens 72 projects the light EL onto the photoelectric conversion element 73 such that the light EL from each projection lens 72 enters the aperture 7321 corresponding to the projection lens 72.
  • each projection lens 72 projects the light EL onto the photoelectric conversion element 73 such that the light EL having a cross section slightly larger than the aperture 7321 is incident on the aperture 7321.
  • one projection lens 720 corresponds to two or more light emitting devices 71 as shown in FIG. 3B
  • two or more lights EL from one projection lens 720 The light may be incident on one or more apertures 7321, respectively.
  • one light EL from one projection lens 72 or 720 is applied to each of two or more apertures 7321. It may be incident.
  • each projection lens 72 or the projection lens 720 converts the light EL from the photoelectric conversion element 73 so that the light EL from the projection lens 72 or the projection lens 720 forms a beam spot over two or more apertures 7321. May be projected.
  • the number of the plurality of apertures 7321 may be larger than the number of the plurality of projection lenses 72 or the projection lenses 720.
  • the alkaline photoelectric layer 733 is formed on the lower surface of the plate member 731 where the aperture 7321 is formed (that is, the portion where the light shielding film 732 is not formed) and on the lower surface of the light shielding film 732.
  • the alkali photoelectric layer 733 is a multi-alkali photocathode using two or more kinds of alkali metals.
  • the multi-alkali photocathode is a photocathode having high durability, capable of generating electrons with green light having a wavelength of 500 nm, and having a high quantum efficiency QE of the photoelectric effect (for example, about 10%).
  • the alkali photoelectric layer 733 is used as an electron gun that generates the electron beam EB by the photoelectric effect of the light EL, a high-efficiency one having a conversion efficiency of about 10 [mA / W] is used. Is also good.
  • the electron emission surface of the alkali photoelectric layer 733 is the lower surface of the alkali photoelectric layer 733 (that is, the surface opposite to the surface facing the plate member 731).
  • each projection lens 72 transfers the image of the light emitting surface (for example, light emission surface 719) of the light emitting device 71 corresponding to each projection lens 72 via the plate member 731 and the aperture 7321 corresponding to each projection lens 72. Is formed on the alkaline photoelectric layer 733.
  • the electron beam EB having a cross section corresponding to the shape of the aperture 7321 is emitted downward from the alkali photoelectric layer 733 by the photoelectric effect (that is, photoelectric conversion).
  • the alkali photoelectric layer 733 can emit a plurality of electron beams EB. That is, the electron emission surface (substantially, photoelectric conversion surface) 7330 of the alkali photoelectric layer 733 has a plurality of electron emission regions capable of emitting a plurality of electron beams EB at positions corresponding to the plurality of apertures 7321, respectively. 7331 is set. On the electron emission surface 7330, a plurality of electron emission regions 7331 each of which can function as an electron beam source are set.
  • 72000 electron emission regions 7331 may be set on the electron emission surface 7330.
  • a first electron emission region 7331 is set at a first position on the electron emission surface 7330 corresponding to the first aperture 7321
  • a second electron emission region 7331 on the electron emission surface 7330 corresponding to the second aperture 7321 is set.
  • the second electron-emitting region 7331 is set at a position (that is, a position different from (that is, distant from) the first position), and a second position (on the electron-emitting surface 7330 corresponding to the third aperture 7321).
  • the third electron-emitting region 7331 is set at a position different from (ie, separated from) the first and second positions,..., K-th (where K indicates the number of apertures 7321). ) Is set at the K-th position on the electron-emitting surface 7330 corresponding to the aperture 7321 (that is, a position different from (ie, distant from) the first to (K ⁇ 1) -th positions). Is .
  • Each electron emission region 7331 emits an electron beam EB when the light emitting device 71 corresponding to each electron emission region 7331 emits light EL.
  • each electron emission region 7331 does not emit the electron beam EB when the light emitting device 71 corresponding to each electron emission region 7331 does not emit light EL. Therefore, if the control device 4 individually controls the light emitting states of the plurality of light emitting devices 71, the on / off states of the plurality of electron beams EB can be individually controlled.
  • FIG. 8 is a sectional view showing the structure of the electron beam optical system 8.
  • the electron beam optical system 8 includes a housing 81, an accelerator 82, a focusing lens 83, an aperture plate 84, an objective lens 85, and a reflected electron detection device 86.
  • the housing 81 is a cylindrical housing (in other words, a column cell) that can shield an electromagnetic field.
  • the upper end of the housing 81 is connected to the lower surface of the base plate 61.
  • An accelerator 82, a focusing lens 83, an aperture plate 84, and an objective lens 85 are housed in an internal space 811 of the housing 81.
  • at least a part of the accelerator 82, the focusing lens 83, the aperture plate 84, and the objective lens 85 may be arranged outside the housing 81.
  • the internal space 811 of the housing 81 at least a part (particularly, the alkali photoelectric layer 733) of the above-described electron beam generator 7 is arranged. Further, the internal space 811 is a space in which a plurality of electron beams EB emitted from the electron beam generation device 7 propagate. For this reason, the internal space 811 of the housing 81 is a vacuum space so that the alkali photoelectric layer 73 and the electron beam EB are not exposed to the atmospheric pressure environment.
  • the degree of vacuum in the internal space 811 may be higher than the degree of vacuum in the vacuum chamber 64 outside the housing 81. The evacuation of the internal space 811 and the evacuation of the vacuum chamber 64 may be performed separately.
  • the electron beam generating device 7 arranged in the through hole 612 of the base plate 61 serves as a vacuum partition between the internal space 811 and the external space of the housing 81 (particularly, the external space of the stage chamber 1 and a non-vacuum space). May also be used.
  • the accelerator 82 is an extraction electrode for accelerating a plurality of electron beams EB emitted from the electron beam generator 7. However, when it is not necessary to accelerate a plurality of electron beams EB, the electron beam optical system 8 may not include the accelerator 82.
  • the focusing lens 83 is an electronic lens for converging a plurality of electron beams EB.
  • the focusing lens 83 may be an electric field lens that applies an electric field to the plurality of electron beams EB, or may be a magnetic lens that applies a magnetic field to the plurality of electron beams EB.
  • the aperture plate 84 is a diaphragm mechanism in which an opening 841 through which a plurality of electron beams EB converged by the focusing lens 83 can pass is formed.
  • the objective lens 85 is an electronic lens capable of forming an image of the plurality of electron beams EB on the surface of the wafer W at a predetermined reduction magnification.
  • the plurality of electron beams EB are emitted toward the wafer W from the electron beam optical system 8 via the emission ports 811 formed at the lower end of the housing 81.
  • the plurality of electron beams EB emitted from the electron beam optical system 8 are applied to the wafer W through the through holes 631 of the cooling plate 63.
  • the objective lens 85 may be an electric field lens that applies an electric field to the plurality of electron beams EB, or a magnetic field lens that applies a magnetic field to the plurality of electron beams EB.
  • the reduction magnification of the electron beam optical system 8 including the objective lens 85 is arbitrary, but may be, for example, 1/200, 1/120 or 1/80.
  • the backscattered electron detection device 86 is arranged below the emission port 811 of the housing 81 at a position that does not overlap with the paths of the plurality of electron beams EB. In the example shown in FIG. 8, the backscattered electron detection device 86 is arranged inside the through hole 631 of the cooling plate 63.
  • the backscattered electron detector 86 is a semiconductor backscattered electron detector using a pn junction or pin junction semiconductor.
  • the backscattered electron detector 86 detects, for example, backscattered electrons generated from an alignment mark or the like formed on the wafer W in order to align the wafer W.
  • the detection result of the backscattered electron detection device 86 is output to the control device 4.
  • the electron beam optical system 8 determines the amount of rotation (that is, the position in the ⁇ Z direction) of an image formed by the electron beam EB on a predetermined optical surface (for example, an optical surface that intersects the optical path of the electron beam EB).
  • An adjuster for example, an electromagnetic lens
  • the electron beam optical system 8 may include, for example, a deflector capable of deflecting the electron beam EB.
  • the optical system 3 since the optical system 3 includes the plurality of electron beam devices 5 (that is, the plurality of electron beam optical systems 8), the irradiation of the electron beam EB is performed by the plurality of electron beam devices 5. Performed in parallel.
  • the plurality of electron beam devices 5 correspond one-to-one to a plurality of shot areas on the wafer W.
  • the number of the electron beam devices 5 may be larger or smaller than the number of the shot areas S.
  • Each electron beam device 5 can irradiate a plurality of electron beams EB in a rectangular (or other shape) irradiation region.
  • the plurality of electron beam devices 5 can simultaneously irradiate a plurality of electron beams EB to a plurality of irradiation regions respectively set on a plurality of shot regions on the wafer W.
  • the exposure apparatus EX can expose the wafer W at a relatively high throughput.
  • the optical axis of the electron beam device 5 ( That is, the arrangement interval of the optical axis AX) of the electron beam optical system 8 may be 43 mm.
  • the shot area exposed by one electron beam device 5 is a rectangular area having a maximum size of 43 mm ⁇ 43 mm. Therefore, as described above, if the movement stroke of the wafer stage 22 is as large as 50 mm, all the shot areas can be appropriately exposed.
  • the number of the electron beam devices 5 is not limited to 45, and may be set based on the diameter of the wafer W, the stroke of the wafer stage 22, and the like.
  • an exposure operation that is, an exposure method by the exposure apparatus EX will be described.
  • the exposure apparatus EX is used for complementary lithography. Therefore, prior to exposure of the wafer W by the exposure apparatus EX, an exposure apparatus that exposes the wafer W using light (for example, a liquid that exposes the wafer W using light from an ArF light source, a KrF light source, or another light source).
  • a line and space pattern (hereinafter, referred to as an “L / S pattern”) is formed on the wafer W by an immersion exposure apparatus or a dry exposure apparatus.
  • an electron beam resist is applied to the wafer W on which the L / S pattern has been formed by a coater or the like.
  • the exposure apparatus EX exposes the wafer W on which the L / S pattern is formed and the electron beam resist is applied.
  • the wafer stage 22 In exposing the wafer W, first, the wafer stage 22 is loaded with the wafer W in the stage chamber 1.
  • the wafer stage 22 holds (eg, sucks) the loaded wafer W.
  • the backscattered electron detection device 86 detects backscattered electrons from at least one alignment mark.
  • the control device 4 performs all-point alignment measurement of the wafer W based on the detection result of the backscattered electron detection device 86 (that is, the detection result of the alignment mark).
  • the exposure apparatus EX starts exposure of a plurality of shot areas on the wafer W by the plurality of electron beam devices 5 based on the result of the all-point alignment measurement.
  • the exposure apparatus EX starts exposure for forming a cut pattern on the L / S pattern formed on the wafer W and cutting the L / S pattern. For example, when forming a cut pattern for an L / S pattern having a periodic direction in the X-axis direction formed on the wafer W, the exposure apparatus EX moves the wafer W in the Y-axis direction under the control of the controller 4. The irradiation timing of the plurality of electron beams EB is controlled while scanning. Note that the exposure apparatus EX detects alignment marks formed corresponding to some shot areas of the wafer W without performing all-point alignment measurement, and performs exposure of a plurality of shot areas based on the detection result. You may start. Further, the detection of the alignment mark may be performed outside the stage chamber 1. In this case, the exposure apparatus EX does not need to detect the alignment mark inside the stage chamber 1.
  • an exposure sequence using the electron beam generator 7 (particularly, a plurality of light emitting devices 71) will be described.
  • a large number of pixel areas for example, light EL passing through each aperture 7321
  • a pixel region for example, a region of 10 nm square
  • all the pixel regions are exposed.
  • the electron beam generator 7 includes 72,000 light emitting devices 71, and a light emitting device array including 6000 light emitting devices 71 arranged at a predetermined pitch in the X-axis direction has a predetermined pitch in the Y-axis direction.
  • a light emitting device array including 6000 light emitting devices 71 arranged at a predetermined pitch in the X-axis direction has a predetermined pitch in the Y-axis direction.
  • the description will be given using an example in which 72000 light emitting devices 71 are arranged so that 12 light emitting devices are arranged.
  • the twelve light emitting device arrays are referred to as light emitting device array A, light emitting device array B,..., And light emitting device array L, respectively.
  • the exposure using the light emitting device array A is started for 6000 continuous pixel regions of a certain row (referred to as a k-th row) arranged in the X-axis direction on the wafer W. Is done.
  • the electron beam EB corresponding to the light EL from the light emitting device array A is at the home position.
  • the exposure apparatus EX deflects the electron beam EB from the home position to the + Y direction by following the movement (ie, scanning) of the wafer stage 22 in the + Y direction (or the ⁇ Y direction, the same applies hereinafter) from the start of exposure. Exposure to the same 6000 pixel regions is continued.
  • the wafer stage 22 is moving at V nanometers per second, for example, Ta ⁇ V nanometers.
  • Ta ⁇ V 96 nanometers for simplification of the description.
  • the exposure apparatus EX returns the electron beam EB to the home position while the wafer stage 22 is moving at a speed of V nanometers per second by 24 nanometers in the + Y direction.
  • the electron beam device 5 does not actually irradiate the electron beam EB so that the electron beam resist actually applied to the wafer W is not exposed.
  • the exposure apparatus EX exposes 6000 consecutive pixel regions in the (k + 12) th row in the same manner as when exposing 6000 pixel regions in the kth row.
  • the 6000 pixel regions in the (k + 1) -th to (k + 11) -th rows are shifted from the light-emitting device array B to the light-emitting device array. L respectively.
  • the 6000 pixel regions in the (k + 13) th to (k + 23) th rows are shifted from the light emitting device array B to the light emitting device. Each is exposed by the array L.
  • the exposure apparatus EX moves the wafer stage 22 in the Y-axis direction with respect to a region having a width of 60 micrometers in the X-axis direction on the wafer W (that is, a region in which 6000 pixel regions are distributed). Exposure can be performed while scanning. After that, the exposure apparatus EX moves the wafer stage 22 stepwise by 60 micrometers in the X-axis direction and then performs the same scan exposure, so that the exposed region having a width of 60 micrometers in the X-axis direction is exposed. Can be exposed to a new 60 micrometer wide area adjacent to.
  • the exposure apparatus EX alternately performs scanning exposure for exposing the wafer W by deflecting the electron beam EB while moving the wafer stage 22 in the Y-axis direction, and stepping for moving the wafer stage 22 in the X-axis direction. By repeating this, exposure of one shot area on the wafer W can be performed using one electron beam device 5. In addition, since the plurality of electron beam devices 5 actually expose different shot areas on the wafer W in parallel, the exposure device EX can expose the entire surface of the wafer W.
  • the exposure apparatus EX switches the light emitting state (that is, on / off) of each of the plurality of light emitting devices 71 as appropriate, so that the cut pattern is formed on the L / S pattern. While irradiating the electron beam EB, the electron beam EB is not irradiated to a portion where a cut pattern is not required to be formed for the L / S pattern. In other words, while the electron emission region 7331 corresponding to the position where the cut pattern is to be formed among the plurality of electron emission regions 7331 emits the electron beam EB, the cut pattern may not be formed among the plurality of electron emission regions 7331. The electron emission region 7331 corresponding to a good place does not emit the electron beam EB. As a result, the exposure apparatus EX can appropriately form a cut pattern for the L / S pattern formed on the wafer W. That is, the exposure apparatus EX can appropriately cut the L / S pattern formed on the wafer W.
  • the exposure apparatus EX can switch on / off the plurality of electron beams EB by switching on / off of the plurality of light emitting devices 71. For this reason, the exposure apparatus EX can appropriately form a cut pattern for the L / S pattern formed on the wafer W. For example, the exposure apparatus EX can appropriately form a cut pattern at a desired position on a desired line among L / S patterns formed in each of a plurality of shot areas set on the wafer W. .
  • the exposure apparatus EX does not have to switch on / off the plurality of electron beams EB by deflecting the plurality of electron beams EB using the blanking aperture. For this reason, generation of unnecessary electrons (for example, electrons that do not contribute to exposure of the wafer W) in the blanking aperture is suppressed. Furthermore, a blanking aperture that can be a source of complicated distortion due to charge-up or magnetization is fundamentally eliminated. Therefore, a long-term unstable element caused by the presence of the blanking aperture is eliminated from the exposure apparatus EX.
  • the light emitting device 71 included in the exposure apparatus EX can control the light distribution characteristics (in particular, the spread angle ⁇ ) of the emitted light EL by using the diffraction layer 716. More specifically, the light emitting device 71 can emit the light EL at an appropriate spread angle ⁇ by making the spread angle ⁇ smaller than when the spread angle ⁇ is not controlled. For this reason, the electron beam generation device 7 generates a plurality of electron beams EB as compared with the case where the light distribution characteristics of the light EL are not controlled (specifically, the case where the light emitting device 71 does not include the diffraction layer 716). Properly (eg, efficiently) generated. Hereinafter, the reason will be described.
  • the light emitting device 71 emits the light EL at the spread angle ⁇ larger than the appropriate spread angle ⁇
  • the light-emitting device 71 emits light EL at the appropriate spread angle ⁇
  • the ratio of the light EL that is not irradiated to a desired region of the element 73 increases.
  • the light emitting device 71 emits the light EL at the spread angle ⁇ larger than the appropriate spread angle ⁇ , the light emitting device 71 emits the light EL at the appropriate spread angle ⁇ , This is because there is a high possibility that the ratio of the light EL emitted in a direction in which the lens 72 or 720 cannot capture the light EL increases. Further, when the projection lens 72 or 720 (or a condensing optical system such as a projection optical system) is not interposed between the light emitting device 71 and the photoelectric conversion element 73, the light emitting device 71 is set at an appropriate spread angle ⁇ .
  • the light EL When the light EL is emitted at a large divergence angle ⁇ , the light EL is emitted in a direction in which a desired region of the photoelectric conversion element 73 does not exist, as compared with the case where the light emitting device 71 emits the light EL at an appropriate divergence angle ⁇ .
  • the possibility that the ratio of the light EL increases is increased. Therefore, when the light emitting device 71 emits the light EL at the spread angle ⁇ larger than the appropriate spread angle ⁇ , the possibility that the ratio of the light EL that is not irradiated to the alkali photoelectric layer 733 increases is increased.
  • the exposure apparatus EX can appropriately (for example, efficiently) generate the plurality of electron beams EB.
  • the light EL emitted from the light emitting device 71 enters the photoelectric conversion element 73 via the projection lens 72. Therefore, the light EL emitted so as to diverge from the light emitting device 71 enters the photoelectric conversion element 73 via the projection lens 72 so as to converge toward the photoelectric conversion element 73. In this case, it is desired that the light emitting device 71 emits the light EL so that the beam profile of the light EL has desired characteristics at the position of the photoelectric conversion element 73.
  • the light-emitting device 71 is configured such that the beamlet shape of the light EL at the position of the photoelectric conversion element 73 has a desired shape (for example, a top-hat shape at which the intensity is substantially equal at the position corresponding to the aperture 7321). It is desired to emit light EL. For this purpose, it is necessary to satisfy the restriction on the convergence angle of the light EL from the projection lens 72 toward the photoelectric conversion element 73 (substantially, the numerical aperture of the projection lens 72 on the photoelectric conversion element 73 side). The numerical aperture of the projection lens 72 on the photoelectric conversion element 73 side depends on the magnification of the projection lens 72 and the numerical aperture of the projection lens 72 on the light emitting device 71 side.
  • the numerical aperture of the projection lens 72 on the photoelectric conversion element 73 side and the magnification of the projection lens 72 are determined, the numerical aperture of the projection lens 72 on the light emitting device 71 side is also uniquely determined.
  • the light emitting device 71 does not emit the light EL at the spread angle ⁇ corresponding to the numerical aperture of the projection lens 72 on the light emitting device 71 side, the ratio of the light EL that does not contribute to the generation of the electron beam EB as described above. Is likely to increase.
  • the spread angle ⁇ of the light EL emitted from the light emitting device 71 can be controlled.
  • the light emitting device 71 can emit the light EL at the spread angle ⁇ corresponding to the numerical aperture of the projection lens 72 on the light emitting device 71 side. That is, the light emitting device 71 can emit the light EL such that the beam profile of the light EL has desired characteristics at the position of the photoelectric conversion element 73.
  • the exposure apparatus EX can appropriately (for example, efficiently) generate the plurality of electron beams EB.
  • the wavelength distribution of the light EL1 incident on the diffraction layer 716 via the reflection layers 714 and 715 is the wavelength distribution of the light EL0 generated in the quantum well layer 711.
  • the light EL1 is light having a narrower band than the light EL0.
  • the light emitting device 71 can emit the light EL having a narrow band via the diffraction layer 716. For this reason, the influence of chromatic aberration on the projection lens 72 and the photoelectric conversion element 73 is reduced.
  • the exposure apparatus EX can generate the electron beam EB with small energy fluctuation (that is, stable). That is, the exposure apparatus EX can appropriately expose the wafer W by irradiating the wafer W with the stable electron beam EB.
  • the diffractive layer 716 diffracts the light component in the diffraction wavelength range to easily set the divergence angle ⁇ of the light component in the diffraction wavelength range to a desired angle. Diffraction of the light component in the wavelength range makes it difficult to set the spread angle ⁇ of the light component in the wavelength range other than the diffraction wavelength range to a desired angle (for example, even if the light component in the wavelength range other than the diffraction wavelength range is diffracted). (The spread angle ⁇ of the light component in a wavelength range other than the diffraction wavelength range is set to an angle different from the desired angle) in some cases.
  • the control efficiency of the light distribution characteristics of the light EL by the diffraction layer 716 may be deteriorated.
  • the light EL1 that is, the light EL1 in which the light component in the resonance wavelength range is relatively amplified enters the diffraction layer 716 via the reflection layers 714 and 715. come.
  • the diffraction layer 716 appropriately diffracts the light EL1 incident from the reflection layer 715 and emits the light EL1 from the light emitting device 71.
  • the spread angle ⁇ of the light EL can be appropriately set to a desired angle. That is, the reflection layers 714 and 715 contribute to the improvement of the control efficiency of the light distribution characteristics of the light EL by the diffraction layer 716 while contributing to the resonance (that is, narrowing of the band) of the light EL.
  • the exposure apparatus EX including the light emitting device 71 including both the reflection layers 714 and 715 and the diffraction layer 716 is compared with the exposure apparatus of the comparative example including the diffraction layer 716 but not including the reflection layers 714 and 715.
  • the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716 is further improved.
  • the exposure apparatus EX can more appropriately receive the above-described technical effects caused by the diffraction layer 716 as compared with the exposure apparatus of the comparative example. That is, the exposure apparatus EX can generate the plurality of electron beams EB more appropriately (for example, more efficiently) than the exposure apparatus of the comparative example.
  • FIG. 9 is a cross-sectional view illustrating a structure of a light emitting device 71a according to a first modification.
  • FIG. 10 is a cross-sectional view illustrating another example of the structure of the light emitting device 71a according to the first modified example.
  • the light emitting device 71a of the first modified example utilizes the refraction of the light EL1 instead of controlling the light distribution characteristics of the light EL using the diffraction of the light EL1 as compared with the light emitting device 71 described above. The difference is that the light distribution characteristics of the light EL are controlled.
  • the light emitting device 71a differs from the light emitting device 71a in that a microlens 716a is provided instead of the diffraction layer 716 as shown in FIG. I have.
  • Other features of the light emitting device 71a may be the same as other features of the light emitting device 71.
  • the microlens 716a is arranged at the interface between the space in which the light EL emitted from the light emitting device 71a propagates and the light emitting device 71a. Therefore, the light emitting device 71a emits the light EL from the micro lens 716a toward the space outside the light emitting device 71a. Therefore, at least a part of the surface of the microlens 716a (particularly, the lower surface facing the projection lens 72 side) forms a light exit surface 719 from which the light EL is emitted.
  • the surface of the microlens 716a (particularly, the lower surface facing the projection lens 72) includes a light exit surface 719.
  • the microlens 716a is arranged such that the light EL0 from the adjacent reflective layer 715 enters the microlens 716a without passing through a space (for example, at least one of a vacuum space and a gas space).
  • the light EL0 incident on the microlens 716a is referred to as “light EL1” and is distinguished from the light EL0 before entering the microlens 716a (for example, the light EL0 generated in the quantum well layer 711). I do.
  • the microlens 716a is arranged so that a space (for example, at least one of a vacuum space and a gas space) does not intervene with the adjacent reflective layer 715.
  • a space for example, at least one of a vacuum space and a gas space
  • the microlenses 716a are arranged such that the light EL1 from the adjacent reflective layer 715 enters the microlenses 716a via a space (for example, at least one of a vacuum space and a gas space). It may be.
  • the microlenses 716a may be arranged so that a space (for example, at least one of a vacuum space and a gas space) is interposed between the microlens 716a and the adjacent reflective layer 715.
  • the microlens 716a refracts the light EL1 and controls the light distribution characteristics of the light EL from the light emitting device 71a. That is, the microlens 716a can function as an optical element for controlling the light distribution characteristics of the light EL using the refraction of the light EL1.
  • the control mode of the light distribution characteristics by the microlenses 716a in the first modification is the same as the control mode of the light distribution characteristics by the diffraction layer 716 described above. That is, the microlens 716a may refract the light EL1 such that the spread angle ⁇ of the light EL is smaller than when the light EL1 is not refracted.
  • the microlens 716a may refract the light EL1 such that the light EL1 has a desired divergence angle by reducing the divergence angle ⁇ of the light EL as compared with a case where the light EL1 is not refracted. For this reason, a detailed description of the manner of controlling the light distribution characteristics by the microlenses 716a is omitted.
  • the light emitting device 71 includes a single microlens 716a. However, as shown in FIG. 11, the light emitting device 71a may include a plurality of microlenses 716a. In this case, the plurality of microlenses 716a cooperate to control the light distribution characteristics of the light EL. FIG. 11 shows an example in which the light emitting device 71a includes two microlenses 716a.
  • the exposure apparatus EX including the light emitting device 71a of the first modified example in place of the light emitting device 71 can also enjoy the same effects as the above-described exposure apparatus EX including the light emitting device 71. .
  • the light EL1 is light whose wavelength distribution is narrower than that of the light EL0, it is difficult to control the light distribution characteristics due to the chromatic aberration of the microlens 716a. The effect of being reduced can also be enjoyed.
  • the light emitting device 71a may include a diffraction layer 716 in addition to the micro lens 716a. In this case, the light emitting device 71a may be able to more appropriately control the light distribution characteristics of the light EL.
  • FIG. 12 is a cross-sectional view illustrating a structure of a light emitting device 71b according to a second modification.
  • the light emitting device 71b of the second modified example utilizes the reflection of the light EL1 instead of controlling the light distribution characteristics of the light EL using the diffraction of the light EL1 as compared with the light emitting device 71 described above. The difference is that the light distribution characteristics of the light EL are controlled.
  • the light emitting device 71b differs from the light emitting device 71b in that the light emitting device 71b includes a reflection layer 716b instead of the diffraction layer 716 as shown in FIG. I have.
  • Other features of the light emitting device 71b may be the same as other features of the light emitting device 71.
  • the light emitting surface 719 of the light emitting device 71b is configured by at least a part of the surface of the reflective layer 715 (particularly, the lower surface facing the projection lens 72). .
  • the surface of the reflective layer 715 (particularly, the lower surface facing the projection lens 72) includes a light exit surface 719.
  • the light exit surface 719 may be constituted by at least a part of another layer (not shown) formed on the surface of the reflective layer 715.
  • Another layer (not shown) formed on the surface of the reflective layer 715 may include the light exit surface 719.
  • the reflection layer 716b reflects the light EL0 generated in the quantum well layer 711 and / or the light EL0 reflected by the reflection layer 715, and controls the light distribution characteristics of the light EL from the light emitting device 71b. That is, the reflective layer 716b can function as an optical element for controlling the light distribution characteristics of the light EL using the reflection of the light EL0. Note that the control mode of the light distribution characteristics by the reflective layer 716b in the second modification is the same as the control mode of the light distribution characteristics by the diffraction layer 716 described above. That is, the reflection layer 716b may reflect the light EL0 so that the spread angle ⁇ of the light EL is smaller than that in the case where the light EL0 is not reflected.
  • the reflection layer 716b may reflect the light EL0 such that the spread angle ⁇ of the light EL becomes smaller than the case where the light EL0 is not reflected, so that the light EL0 has a desired angle. Therefore, a detailed description of the manner of controlling the light distribution characteristics by the reflective layer 716b is omitted.
  • the reflection layer 716b may be arranged at a position where the light EL0 can be reflected such that the spread angle ⁇ of the light EL becomes small (and further, becomes a desired angle).
  • the reflection layer 716b is disposed on the side opposite to the light exit surface 719 when viewed from the quantum well layer 711.
  • the reflective layer 716b may be arranged at a position different from the position shown in FIG.
  • the reflection layer 716b since the reflection layer 716b is arranged on the opposite side to the light exit surface 719 when viewed from the quantum well layer 711, the reflection layer 716b reflects the light EL0 to resonate as described above.
  • the reflective layer 714 may be used. That is, the reflection layer 716b is used as an optical element for reflecting the light EL0 to resonate (that is, an optical element for narrowing the band of the light EL) and an optical element for controlling the light distribution characteristics of the light EL. They may be combined. For this reason, in the example shown in FIG. 12, the light emitting device 71b does not include the above-described reflective layer 714. Of course, the light emitting device 71b may include the reflection layer 714 separately from the reflection layer 716b.
  • the reflective layer 716b may be made of any material as long as it can reflect the light EL0.
  • the reflective layer 716b may be made of a metal material.
  • the reflective layer 716b may be made of a semiconductor material, like the reflective layer 715 (further, the reflective layer 714 described above).
  • the reflective layer 716b may have a shape capable of reflecting the light EL0 such that the spread angle ⁇ of the light EL is reduced (and further, becomes a desired angle).
  • the reflection surface of the reflection layer 716b may include a flat surface.
  • the reflection surface of the reflection layer 716b may include a plane orthogonal to the optical axis of the electron beam device 5 (typically, the optical axis AX of the electron beam optical system 8).
  • the reflection surface of the reflection layer 716b may include a plane inclined with respect to the optical axis of the electron beam device 5.
  • the reflection surface of the reflection layer 716b may include a plane parallel to the optical axis of the electron beam device 5.
  • the reflection surface of the reflection layer 716b may include a curved surface.
  • the exposure apparatus EX including the light emitting device 71b of the second modification in place of the light emitting device 71 can also enjoy the same effects as those that can be enjoyed by the exposure apparatus EX including the light emitting device 71 described above. .
  • the light emitting device 71b may include at least one of the diffraction layer 716 and the microlens 716a in addition to the reflection layer 716b. In this case, the light emitting device 71b may be able to more appropriately control the light distribution characteristics of the light EL.
  • FIG. 13 is a cross-sectional view illustrating a structure of a light emitting device 71c according to a third modification.
  • the light emitting device 71c of the third modification is different from the light emitting device 71 described above in that the light emitting device 71c does not need to include the reflective layer 715.
  • Other features of the light emitting device 71c may be the same as other features of the light emitting device 71.
  • the exposure apparatus EX including the light emitting device 71c of the third modified example in place of the light emitting device 71 also receives the same effects as those that can be obtained by the exposure apparatus EX including the light emitting device 71 described above. be able to.
  • the light emitting device 71c may include at least one of the microlens 716a and the reflection layer 716b in addition to or instead of the diffraction layer 716. Good.
  • FIG. 14 is a cross-sectional view illustrating a structure of a light emitting device 71d according to a fourth modification.
  • the light emitting device 71d according to the fourth modification includes a quantum well layer 711, a cladding layer 712, and a reflective layer 714, similarly to the light emitting device 71 described above.
  • the light emitting device 71d is different from the light emitting device 71 described above in that the light emitting device 71d includes a clad layer 713d instead of the clad layer 713.
  • the light emitting device 71d is different from the light emitting device 71 described above in that the light emitting device 71d does not need to include the reflection layer 715 and the diffraction layer 716.
  • the light emitting device 71d has a stacked structure in which a clad layer 713d, a quantum well layer 711, a clad layer 712, and a reflective layer 714 are stacked in this order when viewed from a light emitting surface 719 from which the light emitting device 71d emits light EL. I have. Other features of the light emitting device 71d may be the same as other features of the light emitting device 71. However, since the light emitting device 71d does not include the reflection layer 715 and the diffraction layer 716, the light emitting surface 719 of the light emitting device 71d is at least partially provided on the surface of the cladding layer 713d (in particular, the lower surface facing the projection lens 72 side). Composed of The cladding layer 713d includes a light exit surface 719.
  • the cladding layer 713d is different from the cladding layer 713 in that the cladding layer 713d includes an emission portion 7131d including a light emission surface 719 on the surface.
  • the emission section 7131d is a part of the cladding layer 713d.
  • the emitting portion 7131d is a portion of the cladding layer 713d facing the interface between the space in which the light EL emitted from the light emitting device 71d propagates and the light emitting device 71d.
  • the emission unit 7131d has a function similar to that of the diffraction unit 716 described above. That is, the emission unit 7131d can control the light distribution characteristics of the light EL from the light emitting device 71d by diffracting the light EL0 incident on the emission unit 7131d. Note that the control mode of the light distribution characteristics by the emission unit 7131d in the fourth modification is the same as the control mode of the light distribution characteristics by the diffraction layer 716 described above. That is, the emission unit 7131d may diffract the light EL0 so that the spread angle ⁇ of the light EL is smaller than when the light EL0 is not diffracted. Therefore, a detailed description of a mode of controlling the light distribution characteristics by the emission unit 7131d is omitted.
  • the emission unit 7131d may have the same structure as the above-described diffraction unit 716 in order to diffract the light EL0. That is, the emission section 7131d may have a photonic crystal structure.
  • the cladding layer 713d is substantially integrated with the cladding layer 713d and the diffraction layer 716 as compared with the cladding layer 713. It can be said that they are different. It can be said that the clad layer 713d is different from the clad layer 713 in that the clad layer 713d includes the diffraction layer 716. It can be said that the cladding layer 713d is different from the cladding layer 713 in that a part of the cladding layer 713d functions as the diffraction layer 716.
  • the exposure apparatus EX including the light emitting device 71d of the fourth modified example in place of the light emitting device 71 can also enjoy the same effects as the above-described exposure apparatus EX including the light emitting device 71. .
  • FIG. 15 is a cross-sectional view illustrating a structure of a light emitting device 71e according to a fifth modification.
  • the reflection layers 714 and 715 are used to change the wavelength distribution of the light EL1 incident on the diffraction layer 716 and the wavelength distribution of the light EL0 generated in the quantum well layer 711.
  • the light emitting device 71 changes the wavelength distribution of the light EL1 and the wavelength distribution of the light EL0 by utilizing the reflection of the light EL0.
  • the light emitting device 71e of the fifth modification uses the diffraction of the light EL0 to change the wavelength distribution of the light EL1 incident on the diffraction layer 716 and the wavelength distribution of the light EL0 generated in the quantum well layer 711. I have.
  • the light emitting device 71e In order to change the wavelength distribution of the light EL1 incident on the diffraction layer 716 using the diffraction of the light EL0 and the wavelength distribution of the light EL0 generated in the quantum well layer 711, the light emitting device 71e has a structure as shown in FIG. The difference is that a diffraction layer 714e is provided instead of the reflection layers 714 and 715. Other features of the light emitting device 71e may be the same as other features of the light emitting device 71.
  • the diffraction layer 714 e changes the wavelength distribution of the light EL ⁇ b> 1 incident on the diffraction layer 716 by diffracting the light EL ⁇ b> 0 generated in the quantum well layer 711.
  • the diffraction layer 714 e diffracts the light EL ⁇ b> 0 so that the light EL ⁇ b> 0 whose band has been narrowed as compared with the case where the light EL ⁇ b> 0 is not diffracted enters the diffraction layer 716.
  • the diffractive layer 714e imparts one deflection angle to the light component in the resonance wavelength range and makes the light component incident on the diffraction layer 716, while imparting another deflection angle to the light component in a wavelength range different from the resonance wavelength range.
  • the light EL0 may be diffracted so as not to be incident on the diffraction layer 716.
  • the wavelength distribution of the light EL1 incident on the diffraction layer 716 using the diffraction of the light EL0 and the wavelength distribution of the light EL0 generated in the quantum well layer 711. The wavelength distribution is different.
  • the diffraction layer 714e may diffract the light EL0 using a photonic crystal structure. That is, the diffraction layer 714e may be a layer having a photonic crystal structure. Since the photonic crystal structure has already been described with reference to FIGS. 7A and 7B when describing the diffraction layer 716, the detailed description thereof will be omitted.
  • the diffraction layer 714e has The characteristic of the photonic crystal structure is that the wavelength distribution of the light EL1 incident on the diffraction layer 716 is different from the wavelength distribution of the light EL0 generated in the quantum well layer 711 by diffracting the light EL0 by the diffraction layer 714f. It is set from the viewpoint of. Therefore, the characteristics of the photonic crystal structure included in the diffraction layer 714e may be different from those of the diffraction layer 716.
  • the characteristic of the photonic crystal structure included in the diffraction layer 714e is that the light EL0 can be diffracted so that the light EL1 incident on the diffraction layer 716 becomes light with a narrower band than the light EL0. It may be set to possible desired characteristics.
  • the diffraction layer 714b is arranged at a position where the light EL0 can be diffracted so that the wavelength distribution of the light EL1 incident on the diffraction layer 716 can be appropriately controlled.
  • the diffraction layer 714e is arranged on the side opposite to the light exit surface 719 when viewed from the quantum well layer 711.
  • the diffraction layer 714e may be arranged at a position different from the position shown in FIG.
  • the exposure apparatus EX including the light emitting device 71e of the fifth modified example in place of the light emitting device 71 can also enjoy the same effects as the above-described exposure apparatus EX including the light emitting device 71. .
  • the light emitting device 71e may include at least one of the reflection layers 714 and 715 in addition to the diffraction layer 714e.
  • the light emitting device 71e utilizes the reflection of the light EL in addition to the diffraction of the light EL0 to change the wavelength distribution of the light EL1 incident on the diffraction layer 716 and the wavelength distribution of the light EL0 generated in the quantum well layer 711. Is also good.
  • the light emitting device 71e may use the diffraction of the light EL0 in addition to or instead of using the diffraction of the light EL0 to change the wavelength distribution of the light EL1 incident on the diffraction layer 716 and the wavelength distribution of the light EL0 generated in the quantum well layer 711.
  • the refraction of the light EL0 may be used.
  • the light emitting device 71a of the first modified example to the light emitting device 71d of the fourth modified example also change the wavelength distribution of the light EL1 incident on the diffraction layer 716 and the wavelength distribution of the light EL0 generated in the quantum well layer 711.
  • at least one of diffraction and refraction of the light EL0 may be used.
  • the light emitting device 71a of the first modification to the light emitting device 71d of the fourth modification described above may also include a diffraction layer 714e in addition to or instead of at least one of the reflective layers 714 and / or 715. .
  • the light emitting device 71f according to the sixth modification is different from the above-described light emitting device 71 including an LED in that the light emitting device 71f includes a laser diode (LD). That is, the light emitting device 71f is different from the above-described light emitting device 71 and the like which does not emit the laser-oscillated light EL in that it emits the laser-oscillated light EL.
  • FIG. 16 is a cross-sectional view illustrating a structure of a light emitting device 71f according to a sixth modification.
  • the light emitting device 71f includes a quantum well layer 711f, a cladding layer 712f, a cladding layer 713f, a reflection layer 714f, a reflection layer 715f, and a diffraction layer 716f. That is, the laminated structure of the light emitting device 71f may be the same as the laminated structure of the light emitting device 71f described above. In this case, the light emitting device 71f may include a laser diode that can emit light EL in a direction perpendicular to the substrate.
  • a vertical cavity surface emitting laser (VCSEL) and a vertical external cavity emitting laser (VECSEL) are examples of a VCSEL (Vertical Cavity Surface Emitting Laser).
  • the features of the quantum well layer 711f, the cladding layer 712f, the cladding layer 713f, the reflection layer 714f, the reflection layer 715f, and the diffraction layer 716f are the same as those of the quantum well layer 711, the cladding layer 712, and the cladding layer described above.
  • the characteristics of the layers 713, the reflection layers 714, the reflection layers 715, and the diffraction layers 716 may be the same. Therefore, the following description focuses on features that are particularly different from the light emitting device 71.
  • the reflection layers 714f and 715f mainly function as resonators for causing the light EL0 generated in the quantum well layer 711f to resonate (in particular, to cause laser oscillation). Therefore, the light-emitting device 71f emits the laser-emitted light EL (that is, laser light). Therefore, it can be said that the light emitting device 71f includes a laser oscillation element including the quantum well layer 711f, the cladding layer 712f, the cladding layer 713f, the reflection layer 714f, and the reflection layer 715f.
  • the reflection layers 714f and 715f transmit the light EL0 in a narrow band similarly to the reflection layers 714 and 715. It may also function as an optical element to be formed. Therefore, also in the sixth modified example, the wavelength distribution of the light EL0 incident on the diffraction layer 716f via the reflection layer 715f is different from the wavelength distribution of the light EL0 generated in the quantum well layer 711.
  • the light EL0 incident on the diffraction layer 716f is referred to as “light EL1” and is distinguished from the light EL0 before entering the diffraction layer 716f (for example, the light EL0 generated in the quantum well layer 711). I do.
  • the laser EL light EL1 is emitted toward the space outside the light emitting device 71f via the diffraction layer 716f. That is, the light EL1 diffracted by the diffraction layer 716f (that is, the light distribution characteristics are controlled) is emitted from the light emitting device 71f as the light EL.
  • the light emitting device 71 is a laser diode
  • the phase of the first light emitted as a part of the light EL from the first position of the light emitting surface 719 is different from the first position of the light emitting surface 719.
  • the phase of the second light emitted from the second position as another part of the light EL may have a correlation with each other.
  • the phase of the second light may have a correlation such that the first light and the second light are mutually coherent light.
  • the diffractive layer 716f is configured so that the light EL1 from the reflective layer 715f (that is, the laser-oscillated light EL1) does not diffract the light EL1 so that the divergence angle ⁇ of the light EL increases. Diffract EL1. That is, FIG. 17A is a cross-sectional view showing light EL emitted from the light emitting device 71f of the sixth modification (that is, light EL whose light distribution characteristics are controlled by the diffraction layer 716f), and the diffraction layer 716f is provided.
  • FIG. 17A is a cross-sectional view showing light EL emitted from the light emitting device 71f of the sixth modification (that is, light EL whose light distribution characteristics are controlled by the diffraction layer 716f), and the diffraction layer 716f is provided.
  • FIG. 17A is a cross-sectional view showing light EL emitted from the light emitting device 71f of the sixth modification (that
  • FIG. 27 is a cross-sectional view showing light EL emitted from a light emitting device C71f of a comparative example different from the light emitting device 71f of the sixth modification in that no light distribution characteristics are controlled by the diffraction layer 716f.
  • the spread angle ⁇ a of the light EL emitted from the light emitting device 71f is larger than the spread angle ⁇ b of the light EL emitted from the light emitting device C71f.
  • the diffraction layer 716f may diffract the light EL1 such that the spread angle ⁇ of the light EL is increased and the spread angle ⁇ of the light EL becomes a desired angle.
  • the characteristic of the diffraction layer 716f may be set to a desired characteristic that allows the light EL1 to be diffracted so that the spread angle ⁇ of the light EL is larger than when the light EL1 is not diffracted.
  • the characteristic of the diffraction layer 716f may be set to a desired characteristic capable of increasing the spread angle ⁇ of the light EL and diffracting the light EL1 such that the spread angle ⁇ of the light EL becomes a desired angle.
  • the diffraction layer 716f can easily set the spread angle ⁇ of the light component in the diffraction wavelength range to a desired angle by diffracting the light component in the diffraction wavelength range. Even if the light components in the range are diffracted, it is difficult to set the spread angle ⁇ of the light components in the wavelength range other than the diffraction wavelength range to a desired angle (for example, even if the light components in the wavelength range other than the diffraction wavelength range are diffracted, (The spread angle ⁇ of the light component in a wavelength range other than the diffraction wavelength range is set to a different angle from the desired angle) in some cases.
  • the resonance wavelength range (that is, the wavelength range including the oscillation wavelength of the laser diode) may at least partially overlap the diffraction wavelength range.
  • the characteristics of the reflection layers 714f and 715f and the diffraction layer 716f are set so that the resonance wavelength range and the diffraction wavelength range at least partially overlap, the resonance wavelength range and the diffraction wavelength range do not overlap. As compared with the case, improvement in the control efficiency of the light distribution characteristics of the light EL by the diffraction layer 716 can be expected.
  • the light EL0 repeatedly reflected by the reflective layers 714f and 715f also corresponds to light in a resonated state.
  • the light EL0 that is repeatedly reflected by the reflection layers 714f and 715f is laser-oscillated light, so that the light EL0 relatively includes the wavelength of laser oscillation (that is, the oscillation wavelength of the laser diode).
  • the wavelength of laser oscillation that is, the oscillation wavelength of the laser diode
  • the diffraction layer 716f diffracts the light EL1 using a photonic crystal structure.
  • the characteristics of the photonic crystal structure included in the diffraction layer 716f may be appropriately set so that the diffraction layer 716f has the above-described characteristics. That is, the characteristics of the photonic crystal structure included in the diffraction layer 716f may be different from the characteristics of the photonic crystal structure included in the diffraction layer 716 described above.
  • the exposure apparatus EX including the light emitting device 71f of the sixth modification in place of the light emitting device 71 can also enjoy the same effects as those that can be enjoyed by the exposure apparatus EX including the light emitting device 71 described above. . Further, in the sixth modification, the exposure apparatus EX can generate the electron beam EB using the light emitting device 71f including the laser diode. Therefore, the degree of freedom in selecting the type of the light source of the light EL is increased. For this reason, if the type of the light source of the light EL is appropriately selected according to the characteristics of the exposure apparatus EX, the exposure apparatus EX can efficiently perform photoelectric conversion using the light EL and have a relatively high energy. To the wafer W.
  • the light EL1 that is oscillating by laser becomes light with a very small spread angle ⁇ unless diffracted by the diffraction layer 716f.
  • a technical problem may occur that the beam profile of the light EL at the position of the photoelectric conversion element 73 does not have desired characteristics or the restriction on the numerical aperture of the projection lens 72 is not satisfied. Absent.
  • the diffraction layer 716f can diffract the light EL1 such that the spread angle ⁇ of the light EL increases, considering that such a technical problem may occur.
  • the exposure apparatus EX includes a plurality of light emitting devices.
  • the electron beam EB can be generated appropriately (for example, efficiently).
  • the light emitting device 71f including the laser diode capable of emitting the light EL in a direction perpendicular to the substrate is described.
  • the exposure apparatus EX may include a light emitting device 71f 'different from the light emitting device 71f in that it includes a laser diode that emits the light EL in a direction parallel to the substrate.
  • the same effect as the above-described effect can be obtained as long as the laser beam oscillated light EL1 is diffracted by the diffraction layer 716f.
  • the light EL emitted in a direction parallel to the substrate is extracted out of the plane by an appropriate extraction method. (That is, the light EL may be extracted out of the plane so as to propagate in a direction perpendicular to the substrate).
  • the light emitting device 71f including the laser diode that emits the light EL in the direction parallel to the substrate is used, the light EL emitted in the direction parallel to the substrate propagates in the direction parallel to the substrate. Out of the plane.
  • a method for extracting the light EL for example, as shown in FIG.
  • an optical waveguide 717f for guiding the light EL0 emitted from the end face of the quantum well layer 711f (that is, the mirror end face constituting the resonator) 7111f. Is curved. Also in this case, as long as the light EL0 from the optical waveguide 717f is diffracted by the diffraction layer 716f, the same effect as the above-described effect can be obtained.
  • a method of extracting the light EL for example, as shown in FIG. 18B, a method of forming a planar diffraction grating type coupler at an end of an optical waveguide, and a method of forming an end of an optical waveguide.
  • the exposure apparatus EXg has exposed the wafer W with the electron beam EB.
  • the exposure apparatus EXg may expose a workpiece such as the wafer W or the plate P with the light EL from the light emitting device 71.
  • FIG. 19 is a perspective view showing an overall schematic configuration of an exposure apparatus EXg of a seventh modification.
  • a case will be described as an example in which a plate P which is a square substrate is exposed.
  • the positional relationship of each member will be described with reference to the XYZ orthogonal coordinate system in FIG.
  • the XYZ rectangular coordinate system the X axis and the Y axis are set to be parallel to the plate P, and the Z axis is set to a direction orthogonal to the plate P.
  • the XY plane is actually set to a plane parallel to the horizontal plane, and the Z axis is set vertically upward.
  • the direction in which the plate P is moved is set in the X-axis direction.
  • the exposure apparatus EXg of the seventh modification includes a plurality of projection optical devices 50.
  • an image of a transfer pattern such as a pattern of a liquid crystal display element is formed as a photosensitive substrate coated with a photosensitive material (resist) while relatively moving the plate P with respect to the plurality of projection optical devices 50.
  • a step-and-scan type exposure apparatus for transferring an image onto the plate P will be described as an example.
  • FIG. 20 is a diagram showing a schematic configuration of a projection optical device 50 provided in an exposure apparatus EXg of a seventh modification.
  • each projection optical device 50 has a barrel 54 having a cylindrical shape, and includes a variable pattern generating device 56 that forms a transfer pattern on the top of the barrel 54.
  • a projection optical system PL for projecting a transfer pattern formed by the variable pattern generation device 56 in the lens barrel 54 onto a plate P held on a plate stage (not shown) is provided.
  • the projection optical system PL has a reduction magnification. Note that the magnification of the projection optical system PL may be the same magnification or may be an enlargement magnification.
  • the projection optical device 50 may have the same configuration as the projection lens 720 shown in FIG. 3B, and the variable pattern generation device 56 includes a plurality of light emitting devices 71 arranged on the XY plane. It may be a light-emitting image display device.
  • the variable pattern generation device 56 forms a light emitting pattern based on a transfer pattern transferred onto the plate P.
  • each projection optical device 50 may include an oblique incidence autofocus system (not shown).
  • FIG. 21 is a diagram for explaining an arrangement state of each projection optical device 50.
  • the seven projection optical devices 50 are arranged at equal intervals in the Y direction in the first row (the foremost row in FIG. 21), and at equal intervals in the Y direction in the second to sixth rows.
  • the seventh column seven are arranged at regular intervals in the Y direction.
  • each projection optical device 50 is arranged so that the exposure area 51 overlaps with the exposure area 51 of any other projection optical unit 2 adjacent in the Y direction, that is, so that overlap exposure can be performed.
  • the transfer pattern generated by the variable pattern generation device 56 of each projection optical device 50 is projected onto the plate P by the projection optical system PL of each projection optical device 50 to form an image of the transfer pattern.
  • the exposure apparatus EXg has a scanning drive system (not shown) having a long stroke for moving the plate stage along the X-axis direction, which is the scanning direction, and a Y-axis direction, which is a scanning orthogonal direction. And a pair of alignment driving systems (not shown) for moving by a minute amount along the axis and rotating by a minute amount about the Z axis.
  • the position coordinates of the plate stage are measured by a stage position measuring system (not shown) such as a laser interferometer using the movable mirror 52, and the position is controlled.
  • variable pattern generation device 56 the scanning drive system, the alignment drive system, and the stage position measurement system are controlled by a control device (not shown).
  • This control device sequentially outputs the transfer patterns to be generated in the variable pattern generation devices 56 of the respective projection optical devices 50 to the variable pattern generation devices 56 in synchronization with the scanning of the plate stage.
  • the liquid crystal is generated by the variable pattern generation device 56 of each projection optical device 50 in synchronization with the scanning of the plate P.
  • a transfer pattern such as a display element pattern is sequentially generated, and each projection optical device 50 sequentially transfers an image of the generated transfer pattern onto a plate P as a photosensitive substrate coated with a photosensitive material (resist). .
  • the entire transfer pattern stored in the mask pattern storage device (not shown) is transferred (scanned and exposed) to the entire exposure area on the plate P.
  • the transfer pattern is sequentially generated in the variable pattern generation device 56 in synchronization with the scanning of the plate P, so that the cost is significantly reduced as compared with the case where a large-area mask is prepared. Can be reduced.
  • the size of the mask in the multi-lens system is sufficient only for the exposure area of each projection optical device 50, and the exposure area is set to be smaller.
  • the exposure area is set to be smaller.
  • the narrow band light EL from the light emitting device 71 since the narrow band light EL from the light emitting device 71 is used, the deterioration of the pattern image due to the chromatic aberration of the projection optical system PL can be reduced. In addition, since the light EL from the light emitting device 71 whose divergence angle is limited is used, light that cannot be captured by the projection optical system can be reduced, and the light amount loss can be reduced.
  • the optical system 3 is a multi-column optical system including a plurality of electron beam devices 5.
  • the optical system 3 may be a single column type optical system including a single electron beam device 5.
  • the optical system 3 is supported on the floor F via the frame 13 constituting the ceiling of the stage chamber 1.
  • the optical system 3 may be suspended and supported on a ceiling surface of a clean room or a ceiling surface of a vacuum chamber by a suspension support mechanism having an anti-vibration function.
  • the housing 6 of the optical system 3 includes the base plate 61, the peripheral wall 62, and the cooling plate 63.
  • the housing 6 need not include at least one of the base plate 61, the peripheral wall portion 62, and the cooling plate 63.
  • at least some members of the stage chamber 1 may function as at least one of the base plate 61, the peripheral wall 62, and the cooling plate 63.
  • the vacuum chamber 64 and the exposure chamber 14 may communicate with each other.
  • the optical system 3 may not include the housing 6.
  • a plurality of electron beam devices 5 may be arranged in the exposure chamber 14 of the stage chamber 1.
  • the opening 131 may not be formed in the frame 13 of the stage chamber 1 in order to maintain the degree of vacuum in the exposure chamber 14.
  • each of the electron beam devices 5 includes the electron beam generator 7 (that is, a surface emission type electron beam source having a plurality of electron emission regions 7331) that respectively emits the plurality of electron beams EB.
  • An exposure apparatus that is, the exposure apparatus EX generates a plurality of electron beams EB via a blanking aperture array having a plurality of openings, and individually turns on / off the plurality of electron beams EB in accordance with a drawing pattern to change the pattern to the wafer W. It may be an exposure device that draws images on the surface.
  • the electron beam device 5 is a multi-beam electron beam device that exposes the wafer W using a plurality of electron beams EB.
  • the electron beam device 5 is a single-beam type electron beam device that exposes the wafer W using a single electron beam EB.
  • the electron beam generator 7 may include a single light emitting device 71 and a single projection lens 72.
  • the exposure apparatus EX may be a variable-shaped exposure apparatus that shapes the cross section of the electron beam EB that each electron beam device 5 irradiates the wafer W into a variable-size rectangular.
  • the exposure apparatus EX may be a point beam type exposure apparatus in which each electron beam device 5 irradiates the wafer W with a spot-shaped electron beam EB.
  • the exposure apparatus EX may be a stencil mask type exposure apparatus in which each electron beam device 5 shapes the electron beam EB into a desired shape using a stencil mask in which a beam passing hole having a desired shape is formed.
  • the electron beam generator 7 is arranged in the through hole 612 of the base plate 61. However, at least a part of the electron beam generator 7 does not have to be arranged in the through-hole 612.
  • the photoelectric conversion element 73 of the electron beam generator 7 is located below the through hole 612 (that is, the internal space 811 of the housing 81). It may be arranged.
  • the light emitting device 71 may be used also as a vacuum partition separating the internal space 811 of the housing 81 and the external space of the housing 81.
  • the light emitting device 71 may be disposed above the through hole 612, while the photoelectric conversion element 73 may be disposed below the through hole 612 or the through hole 612.
  • the photoelectric conversion element 73 may be used as a vacuum partition separating the internal space 811 of the housing 81 from the external space of the housing 81.
  • a vacuum partition separating the internal space 811 of the housing 81 and the external space of the housing 81 (however, a vacuum partition through which the light EL can pass). May be arranged in the through-hole 612.
  • the electron beam generating device 7 may be arranged in the housing 81 (for example, on the lower surface of the base plate 61) without forming the through hole 612 in the base plate 61.
  • the electron beam generation device 7 does not have to include the plurality of projection lenses 72.
  • the plurality of lights EL emitted by the plurality of light emitting devices 71 may enter the photoelectric conversion element 73 without passing through the plurality of projection lenses 72.
  • the plurality of light emitting devices 71 may be integrated with the photoelectric conversion element 73.
  • the plurality of light emitting devices 71 may be configured such that the light EL from the plurality of light emitting devices 71 enters the photoelectric conversion element 73 without passing through a space (for example, at least one of a vacuum space and a gas space). And may be integrated.
  • the light emitting device 71 emits light of a wavelength that is less absorbed by gas molecules (for example, a wavelength that exists in a part of the visible light region to the infrared light region and is called an atmospheric window). Not only a light-emitting device but also a light-emitting device that emits light of another wavelength can be used.
  • the degree of freedom of the wavelength of the light EL emitted from the light emitting device 71 increases. For this reason, if the wavelength of the light EL is appropriately selected, the exposure apparatus EX can efficiently perform photoelectric conversion using the light EL, and irradiate the wafer W with the electron beam EB having a relatively high energy. can do.
  • the light emitting device 71 is a light emitting device having a quantum well structure.
  • the light emitting device 71 may be a light emitting device having a double hetero junction structure that does not use a quantum well.
  • the light emitting device 71 may be a light emitting device having a homojunction structure.
  • the diffraction layer 716 included in the light emitting device 71 is a layer having a two-dimensional photonic crystal structure in which the dielectric constant periodically changes along each of the X-axis direction and the Y-axis direction.
  • the diffraction layer 716 has a one-dimensional photonic crystal structure in which the dielectric constant periodically changes along one of the X-axis direction and the Y-axis direction (or one direction included in the XY plane). It may be a layer.
  • the diffraction layer 716 has a three-dimensional photonic crystal structure in which the dielectric constant periodically changes along each of the X-axis direction, the Y-axis direction, and the Z-axis direction (or each of three directions orthogonal to each other). Layer.
  • the diffraction layer 716 controls the light distribution characteristics of the light EL by diffracting the light EL1 using the photonic crystal structure.
  • the diffraction layer 716 may be a layer having a structure different from the photonic crystal structure as long as the light distribution characteristics of the light EL can be controlled by diffracting the incident light EL1. That is, the diffraction layer 716 may be a layer having no photonic crystal structure.
  • the diffraction layer 714e of the fifth modification that is, the diffraction layer 714e that diffracts the light EL0 to change the wavelength distribution of the light EL1 incident on the diffraction layer 716 and the wavelength distribution of the light EL0 generated in the quantum well layer 711)
  • a layer having a structure different from the photonic crystal structure may be used as long as the wavelength distribution of the light EL0 and the wavelength distribution of the light EL1 can be changed by diffracting the light EL0.
  • the photoelectric conversion element 73 converts the light EL into the electron beam EB using the alkali photoelectric layer 733.
  • the photoelectric conversion element 73 may convert the light EL into the electron beam EB using a different type of photoelectric layer than the alkali photoelectric layer 733.
  • An example of such a photoelectric layer is a metal photoelectric layer.
  • the light emitting device 71 is used for generating the electron beam EB.
  • the light emitting device 71 is provided in the electron beam generator 7.
  • the light emitting device 71 may be used for a purpose different from the purpose for generating the electron beam EB.
  • the light emitting device 71 may be used in the same application as a normal LED (or any light source).
  • the light emitting device 71 may be used for applications such as a lighting device, a display, and a projector.
  • the electron beam generator 7 irradiates the alkali photoelectric layer 733 with the light EL from the light emitting device 71 via the aperture 7321.
  • the electron beam generation device 7 may irradiate the light EL from the light emitting device 71 to the alkali photoelectric layer 733 without passing through the aperture 7321.
  • the light emitting device 71 can emit light EL having a desired cross-sectional shape (for example, a shape corresponding to the aperture 7321)
  • the electron beam generation device 7 outputs the light beam from the light emitting device 71 without passing through the aperture 7321. May be applied to the alkali photoelectric layer 733.
  • the photoelectric conversion element 73 does not need to include the light shielding film 732.
  • the photoelectric conversion element 73 is an optical element in which the plate member 731, the light shielding film 732, and the alkali photoelectric layer 733 are integrated. That is, the photoelectric conversion element 73 is an optical element in which a member for forming the aperture 7321 (that is, the light-shielding film 732) and a member for performing photoelectric conversion (that is, the alkali photoelectric layer 733) are integrated.
  • a member for forming the aperture 7321 and a member for performing photoelectric conversion may be separate members.
  • a member for forming the aperture 7321 may be movable along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction.
  • a member for performing photoelectric conversion may be movable along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction.
  • the light emitting device 71 may be movable along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction.
  • the electron beam optical system 8 includes the housing 81, the accelerator 82, the focusing lens 83, the aperture plate 84, the objective lens 85, and the backscattered electron detection device 86.
  • the electron beam optical system 8 need not include at least one of the housing 81, the accelerator 82, the electron lens 83, the aperture plate 84, the objective lens 85, and the backscattered electron detection device 86.
  • the exposure apparatus EX is used for complementary lithography.
  • the exposure apparatus EX may be used for applications other than complementary lithography.
  • the exposure apparatus EX may be used for exposing the wafer W so that a pattern (for example, a pattern of one semiconductor chip or a pattern of a plurality of semiconductor chips) is drawn on the wafer W with the electron beam EB.
  • it may be used for exposing the wafer W so that the pattern of the minute mask is transferred to the wafer W by the electron beam EB.
  • the exposure apparatus EX may be a batch transfer type exposure apparatus that collectively transfers a certain pattern from the mask to the wafer W.
  • the exposure apparatus EX may be a division transfer type exposure apparatus capable of performing exposure at a higher throughput than the batch transfer type.
  • the division transfer type exposure apparatus divides a pattern to be transferred to a wafer W into a plurality of small areas smaller than a size corresponding to one shot area on a mask, and transfers the patterns of the plurality of small areas to the wafer W. I do.
  • a certain area of a mask having a certain pattern is irradiated with an electron beam EB, and an image of the pattern in the area irradiated with the EB of the electron beam is reduced and transferred by a projection lens.
  • the exposure apparatus EX may be a scanning stepper.
  • the exposure apparatus EX may be a stationary exposure apparatus such as a stepper.
  • the exposure apparatus EX may be a step-and-stitch type reduction projection exposure apparatus that combines at least a part of one shot area and at least a part of another shot area.
  • the wafer W is loaded alone on the wafer stage 22.
  • the transfer member may be loaded on the wafer stage 22 in a state where the wafer W is held by the transfer member (for example, a shuttle).
  • the exposure target of the exposure apparatus EX is the wafer W (for example, a semiconductor substrate for manufacturing a semiconductor device).
  • the exposure target of the exposure apparatus EX may be any substrate.
  • the exposure apparatus EX may be an exposure apparatus for manufacturing an organic EL, a thin-film magnetic head, an image sensor (such as a CCD), a micromachine, or a DNA chip.
  • the exposure apparatus EX may be an exposure apparatus for drawing a pattern on a square glass plate or a silicon wafer.
  • the electron beam device 5 is used to expose the wafer W.
  • the electron beam device 5 may be used for a purpose different from the purpose of exposing the wafer W.
  • any device that irradiates the target with the electron beam EB may include the electron beam device 5.
  • any device that irradiates the target with the electron beam EB and performs a predetermined process (for example, processing) on the target may include the electron beam device 5.
  • an electron microscope, a three-dimensional printer that performs additional manufacturing, or the like may include the electron beam device 5.
  • a device such as a semiconductor device may be manufactured through the steps shown in FIG.
  • the steps for manufacturing the device include a step S201 for designing the function and performance of the device, a step S202 for generating an exposure pattern (that is, an exposure pattern by the electron beam EB) based on the function and performance design, and a device base.
  • Step S203 of manufacturing the wafer W step S204 of exposing the wafer W using the electron beam EB according to the generated exposure pattern and developing the exposed wafer W, device assembly processing (dicing processing, bonding processing, package processing) And the like, and step S206 for performing device inspection.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed within a scope not contrary to the gist or idea of the invention which can be read from the claims and the entire specification, and a light emitting device with such a change,
  • the light emitting method, the exposure apparatus, the exposure method, and the device manufacturing method are also included in the technical scope of the present invention.
  • Electron beam device 1 Stage chamber 2 Stage system 3 Optical system 5 Electron beam device 6 Housing 7 Electron beam generation device 71 Light emitting device 711 Quantum well layer 712, 713 Cladding layer 7131d Emission section 714, 715 Reflection layer 716 Diffraction layer 716a Micro lens 716b Reflection layer 719 Light emission surface 72 Projection lens 73 Photoelectric conversion layer 731 Plate member 732 Light shielding film 7321 Aperture 733 Alkaline photoelectric layer 8 Electron beam optical system EL light EB Electron beam

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Provided is a light emission device which ejects light from a light ejection surface and includes: a light emission element which emits light; a first optical element to which light is incident from the light emission element; and a second optical element which controls a spread angle of light ejected from a light ejection surface through the first optical element, wherein the light incident to the second optical light has a wavelength distribution that is different from the wavelength distribution of the light from the light emission element.

Description

発光デバイス、発光方法、露光装置、露光方法及びデバイス製造方法Light emitting device, light emitting method, exposure apparatus, exposure method, and device manufacturing method
 本発明は、例えば、光を発する発光デバイス及び発光方法、ターゲットを露光する露光装置及び露光方法、並びに、デバイスを製造するデバイス製造方法の技術分野に関する。 The present invention relates to, for example, the technical field of a light emitting device and a light emitting method for emitting light, an exposure apparatus and an exposure method for exposing a target, and a device manufacturing method for manufacturing a device.
 近年、光を発する発光デバイスとして、発光ダイオード(LED)やレーザダイオード(LD)等の固体素子光源が提案されている(例えば、特許文献1参照)。固体素子光源では、適切に光を生成することが課題となる。 In recent years, solid-state light sources such as light-emitting diodes (LEDs) and laser diodes (LDs) have been proposed as light-emitting devices that emit light (for example, see Patent Document 1). In solid-state light sources, it is an issue to generate light appropriately.
国際特許公開第WO99/45558号パンフレットInternational Patent Publication No. WO99 / 45558 pamphlet
 第1の態様によれば、光射出面から光を射出する発光デバイスであって、光を発する発光素子と、前記発光素子からの光が入射する第1光学素子と、前記第1光学素子を介して前記光射出面から射出される前記光の広がり角を制御する第2光学素子とを備え、前記第2光学素子に入射する光は、前記発光素子からの前記光の波長分布と異なる波長分布を有する発光デバイスが提供される。 According to the first aspect, there is provided a light emitting device that emits light from a light exit surface, the light emitting device emitting light, the first optical element that receives light from the light emitting element, and the first optical element. A second optical element for controlling the spread angle of the light emitted from the light exit surface through the light emitting element, wherein light incident on the second optical element has a wavelength different from the wavelength distribution of the light from the light emitting element. A light emitting device having a distribution is provided.
 第2の態様によれば、光射出面から光を射出する発光デバイスであって、光を発する発光素子と、前記発光素子からの光を共振させる第1光学素子と、前記光射出面から射出される前記光の広がり角を制御する第2光学素子とを備える発光デバイスが提供される。 According to the second aspect, there is provided a light emitting device that emits light from a light emitting surface, wherein the light emitting device emits light, a first optical element that resonates light from the light emitting device, and a light emitting device that emits light from the light emitting surface. And a second optical element for controlling the spread angle of the light.
 第3の態様によれば、光を発する発光素子と、前記発光素子からの光が入射する第1光学素子と、前記第1光学素子を介した光を回折させる第2光学素子とを備え、前記第2光学素子に入射する光は、前記発光素子からの前記光の波長分布と異なる波長分布を有する発光デバイスが提供される。 According to the third aspect, a light-emitting element that emits light, a first optical element that receives light from the light-emitting element, and a second optical element that diffracts light passing through the first optical element, A light emitting device is provided in which light incident on the second optical element has a wavelength distribution different from the wavelength distribution of the light from the light emitting element.
 第4の態様によれば、光を発する発光素子と、前記発光素子からの前記光を共振させる第1光学素子と、前記共振された前記光を回折させる第2光学素子とを備える発光デバイスが提供される。 According to a fourth aspect, there is provided a light emitting device including a light emitting element that emits light, a first optical element that resonates the light from the light emitting element, and a second optical element that diffracts the resonated light. Provided.
 第5の態様によれば、光を発する発光素子と、前記発光素子からの光が入射する第1光学素子と、前記第1光学素子を介した光を屈折させる第2光学素子とを備え、前記第2光学素子に入射する光は、前記発光素子からの前記光の波長分布と異なる波長分布を有する発光デバイスが提供される。 According to the fifth aspect, a light-emitting element that emits light, a first optical element that receives light from the light-emitting element, and a second optical element that refracts light passing through the first optical element, A light emitting device is provided in which light incident on the second optical element has a wavelength distribution different from the wavelength distribution of the light from the light emitting element.
 第6の態様によれば、光を発する発光素子と、前記発光素子からの前記光を共振させる第1光学素子と、前記共振された前記光を屈折させる第2光学素子とを備える発光デバイスが提供される。 According to a sixth aspect, there is provided a light emitting device including a light emitting element that emits light, a first optical element that resonates the light from the light emitting element, and a second optical element that refracts the resonated light. Provided.
 第7の態様によれば、光射出面から光を射出する発光デバイスであって、光を発する発光素子と、前記発光素子を挟むように設けられた複数の第1光学素子と、前記光射出面に設けられ、前記複数の第1光学素子の間でレーザ発振された光の広がり角を広げる第2光学素子とを備える発光デバイスが提供される。 According to the seventh aspect, there is provided a light emitting device that emits light from a light emitting surface, the light emitting device emitting light, a plurality of first optical elements provided to sandwich the light emitting element, and the light emitting device. And a second optical element provided on a surface and expanding a spread angle of laser-oscillated light between the plurality of first optical elements.
 第8の態様によれば、発光素子で光を発生させることと、前記発生された前記光の波長分布を制御することと、前記波長分布が制御された前記光の広がり角を制御することとを含む発光方法が提供される。 According to the eighth aspect, generating light with the light emitting element, controlling the wavelength distribution of the generated light, and controlling the spread angle of the light whose wavelength distribution is controlled, There is provided a light emitting method comprising:
 第9の態様によれば、上述した第1の態様から第7の態様のいずれかによって提供される発光デバイスと、前記発光デバイスが射出する前記光をターゲットに照射する投影光学系とを備える露光装置が提供される。 According to a ninth aspect, an exposure comprising: the light emitting device provided by any one of the first to seventh aspects described above; and a projection optical system that irradiates a target with the light emitted by the light emitting device. An apparatus is provided.
 第10の態様によれば、上述した第1の態様から第7の態様のいずれかによって提供される発光デバイスから前記光を放出することと、前記発光デバイスの発光面の像をターゲットに形成することとを含む露光方法が提供される。 According to a tenth aspect, the light is emitted from the light emitting device provided by any one of the first to seventh aspects, and an image of a light emitting surface of the light emitting device is formed on a target. And an exposure method including:
 第11の態様によれば、リソグラフィ工程を含むデバイス製造方法であって、前記リソグラフィ工程は、ターゲット上にラインアンドスペースパターンを形成することと、上述した第10の態様によって提供される露光方方法を用いて、前記ラインアンドスペースパターンを構成するラインパターンの切断を行うこととを含むデバイス製造方法が提供される。 According to an eleventh aspect, there is provided a device manufacturing method including a lithography step, wherein the lithography step includes forming a line-and-space pattern on a target, and an exposure method provided by the tenth aspect. And cutting the line pattern constituting the line and space pattern using the method.
図1は、本実施形態の露光装置の構造を示す断面図である。FIG. 1 is a sectional view showing the structure of the exposure apparatus of the present embodiment. 図2は、本実施形態の露光装置における制御系のブロック構造を示すブロック図である。FIG. 2 is a block diagram showing a block structure of a control system in the exposure apparatus of the present embodiment. 図3(a)は、電子ビーム生成装置の第1の構造を示す断面図であり、図3(b)は、電子ビーム生成装置の第2の構造を示す断面図である。FIG. 3A is a cross-sectional view illustrating a first structure of the electron beam generator, and FIG. 3B is a cross-sectional view illustrating a second structure of the electron beam generator. 図4は、本実施形態の発光デバイスの構造を示す断面図である。FIG. 4 is a cross-sectional view illustrating the structure of the light emitting device of the present embodiment. 図5(a)及び図5(b)のそれぞれは、光の波長に関するスペクトル分布を示すグラフである。FIGS. 5A and 5B are graphs showing spectral distributions with respect to the wavelength of light. 図6(a)は、本実施形態の発光デバイスが射出する光(つまり、回折層によって配光特性が制御された光)を示す断面図であり、図6(b)は、回折層を備えていないという点で本実施形態の発光デバイスとは異なる比較例の発光デバイスが射出する光(つまり、回折層によって配光特性が制御されていない光)を示す断面図である。FIG. 6A is a cross-sectional view illustrating light emitted from the light emitting device of the present embodiment (that is, light whose light distribution characteristics are controlled by a diffraction layer), and FIG. 6B includes a diffraction layer. FIG. 9 is a cross-sectional view showing light emitted from a light emitting device of a comparative example different from the light emitting device of the present embodiment in that light emission characteristics are not controlled by the diffraction layer. 図7(a)は、フォトニック結晶構造の表面を示す平面図であり、図7(b)は、図7(a)に示すフォトニック結晶構造層のVII-VII’断面を示す断面図である。FIG. 7A is a plan view showing a surface of the photonic crystal structure, and FIG. 7B is a cross-sectional view showing a VII-VII ′ section of the photonic crystal structure layer shown in FIG. 7A. is there. 図8は、電子ビーム光学系の構造を示す断面図である。FIG. 8 is a sectional view showing the structure of the electron beam optical system. 図9は、第1変形例の発光デバイスの構造を示す断面図である。FIG. 9 is a cross-sectional view illustrating a structure of a light emitting device according to a first modification. 図10は、第1変形例の発光デバイスの構造の他の例を示す断面図である。FIG. 10 is a sectional view showing another example of the structure of the light emitting device of the first modification. 図11は、第1変形例の発光デバイスの構造の他の例を示す断面図である。FIG. 11 is a cross-sectional view illustrating another example of the structure of the light emitting device of the first modification. 図12は、第2変形例の発光デバイスの構造を示す断面図である。FIG. 12 is a cross-sectional view illustrating a structure of a light emitting device according to a second modification. 図13は、第3変形例の発光デバイスの構造を示す断面図である。FIG. 13 is a cross-sectional view illustrating a structure of a light emitting device according to a third modification. 図14は、第4変形例の発光デバイスの構造を示す断面図である。FIG. 14 is a cross-sectional view illustrating a structure of a light emitting device according to a fourth modification. 図15は、第5変形例の発光デバイスの構造を示す断面図である。FIG. 15 is a cross-sectional view illustrating a structure of a light emitting device according to a fifth modification. 図16は、第6変形例の発光デバイスの構造を示す断面図である。FIG. 16 is a cross-sectional view illustrating a structure of a light emitting device according to a sixth modification. 図17(a)は、第6変形例の発光デバイスが射出する光を示す断面図であり、図17(b)は、回折層を備えていないという点で第6変形例の発光デバイスとは異なる比較例の発光デバイスが射出する光を示す断面図である。FIG. 17A is a cross-sectional view illustrating light emitted from the light emitting device of the sixth modification, and FIG. 17B is different from the light emitting device of the sixth modification in that the light emitting device does not include a diffraction layer. It is sectional drawing which shows the light which the light emitting device of a different comparative example emits. 図18(a)及び図18(b)のそれぞれは、第6変形例の発光デバイスの構造の他の例を示す断面図である。FIGS. 18A and 18B are cross-sectional views illustrating another example of the structure of the light emitting device of the sixth modification. 図19は、第7変形例の露光装置の全体の概略構成を示す斜視図である。FIG. 19 is a perspective view showing an overall schematic configuration of an exposure apparatus of a seventh modification. 図20は、第7変形例の露光装置の投影光学装置を示す図である。FIG. 20 is a diagram illustrating a projection optical device of an exposure apparatus according to a seventh modification. 図21は、第7変形例の露光装置の各投影光学装置の配列を示す図である。FIG. 21 is a diagram showing an arrangement of each projection optical device of the exposure apparatus of the seventh modification. 図22は、デバイス製造方法の流れを示すフローチャートである。FIG. 22 is a flowchart showing the flow of the device manufacturing method.
 以下、図面を参照しながら、発光デバイス、発光方法、露光装置、露光方法及びデバイス製造方法の実施形態について説明する。以下では、電子ビームEBをウェハWに照射して当該ウェハWを露光する露光装置(つまり、電子ビーム露光装置)EXを用いて、発光デバイス、発光方法、露光装置、露光方法及びデバイス製造方法の実施形態を説明する。露光装置EXは、例えば、コンプリメンタリ・リソグラフィに用いられる。 Hereinafter, embodiments of a light emitting device, a light emitting method, an exposure apparatus, an exposure method, and a device manufacturing method will be described with reference to the drawings. Hereinafter, a light emitting device, a light emitting method, an exposure apparatus, an exposure method, and a device manufacturing method will be described using an exposure apparatus (that is, an electron beam exposure apparatus) EX that exposes the wafer W by irradiating the wafer W with an electron beam EB. An embodiment will be described. The exposure apparatus EX is used for, for example, complementary lithography.
 また、以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系を用いて、露光装置EXを構成する各種構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向)であるものとする。尚、Z軸方向は、露光装置EXが備える後述の複数の電子ビーム光学系8のそれぞれの光軸AXに平行な方向でもある。更に、Y軸方向は、Z軸に垂直な平面内で後述する露光時にウェハWが移動する走査方向である。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称する。 In the following description, the positional relationship between various components constituting the exposure apparatus EX will be described using an XYZ orthogonal coordinate system defined by mutually orthogonal X, Y, and Z axes. In the following description, for convenience of explanation, each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in a horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). And substantially in the vertical direction). Note that the Z-axis direction is also a direction parallel to each optical axis AX of a plurality of electron beam optical systems 8 described later provided in the exposure apparatus EX. Further, the Y-axis direction is a scanning direction in which the wafer W moves during exposure, which will be described later, in a plane perpendicular to the Z-axis. In addition, rotation directions (in other words, tilt directions) around the X axis, the Y axis, and the Z axis are referred to as the θX direction, the θY direction, and the θZ direction, respectively.
 (1)露光装置EXの構造
 (1-1)露光装置EXの全体構造
 初めに、図1及び図2を参照しながら、本実施形態の露光装置EXの全体構造について説明する。図1は、本実施形態の露光装置EXの全体構造を示す断面図である。図2は、本実施形態の露光装置EXにおける制御系のブロック構造を示すブロック図である。
(1) Structure of exposure apparatus EX
(1-1) Overall Structure of Exposure Apparatus EX First, the overall structure of the exposure apparatus EX of the present embodiment will be described with reference to FIGS. FIG. 1 is a sectional view showing the overall structure of the exposure apparatus EX of the present embodiment. FIG. 2 is a block diagram showing a block structure of a control system in the exposure apparatus EX of the present embodiment.
 図1及び図2に示すように、露光装置EXは、ステージチャンバ1(但し、図2では不図示)と、ステージシステム2と、光学システム3と、制御装置4(但し、図1では不図示)とを備える。 As shown in FIGS. 1 and 2, the exposure apparatus EX includes a stage chamber 1 (however, not shown in FIG. 2), a stage system 2, an optical system 3, and a controller 4 (however, not shown in FIG. 1). ).
 ステージチャンバ1は、その内部に形成される露光室14を真空引き可能な真空チャンバである。尚、図1では、図面の簡略化のために、ステージチャンバ1のX軸方向の両端部の図示が省略されている。ステージチャンバ1は、図1に示すように、底壁11と、側壁12と、フレーム13とを備える。底壁11と側壁12とフレーム13とによって囲まれた空間が、露光室14となる。 The stage chamber 1 is a vacuum chamber capable of evacuating the exposure chamber 14 formed therein. In FIG. 1, illustration of both ends in the X-axis direction of the stage chamber 1 is omitted for simplification of the drawing. The stage chamber 1 includes a bottom wall 11, a side wall 12, and a frame 13, as shown in FIG. The space surrounded by the bottom wall 11, the side wall 12, and the frame 13 is the exposure chamber 14.
 底壁11は、床面F上に配置されている。底壁11は、例えば、XY平面に平行な壁状(或いは、板状)の部材である。底壁11は、ステージチャンバ1の底部を構成する部材である。 The bottom wall 11 is arranged on the floor F. The bottom wall 11 is, for example, a wall-shaped (or plate-shaped) member parallel to the XY plane. The bottom wall 11 is a member that forms the bottom of the stage chamber 1.
 側壁12は、底壁11上に形成されている。側壁12は、例えば、底壁11の外縁に沿って底壁11を取り囲むように形成されている。側壁12は、例えば、XY平面に交差する筒状(例えば、円筒状又は角筒状)の部材である。 The side wall 12 is formed on the bottom wall 11. The side wall 12 is formed, for example, so as to surround the bottom wall 11 along the outer edge of the bottom wall 11. The side wall 12 is, for example, a tubular member (for example, a cylindrical or rectangular tube) that intersects the XY plane.
 フレーム13は、側壁12上に形成されている。この場合、側壁12は、フレーム13を下方から支持している。フレーム13は、例えば、XY平面に平行な板状の部材である。フレーム13は、ステージチャンバ1の天井壁(つまり、上壁)を構成する部材である。フレーム13には、円形の(或いは、その他の形状の)開口131が形成されている。開口131内には、光学システム3(特に、光学システム3が備える筐体6)が配置されている。具体的には、筐体6は、筐体6の上端部に、他の部分よりも外側に突き出たフランジ部611を備えている。フランジ部611の下面は、光学システム3が上方から開口131に挿入された状態において、フレーム13の上面に接触する。その結果、フランジ部611は、フレーム13によって下方から支持される。つまり、光学システム3は、フランジ部611を介して、フレーム13によって支持される。尚、開口131の内周面と筐体6の外周面との間は、シール部材によってシールされていてもよい。 The frame 13 is formed on the side wall 12. In this case, the side wall 12 supports the frame 13 from below. The frame 13 is, for example, a plate-shaped member parallel to the XY plane. The frame 13 is a member that forms a ceiling wall (that is, an upper wall) of the stage chamber 1. The frame 13 has a circular (or other shape) opening 131 formed therein. The optical system 3 (particularly, the housing 6 included in the optical system 3) is arranged in the opening 131. Specifically, the housing 6 includes a flange portion 611 protruding outside of other portions at the upper end of the housing 6. The lower surface of the flange portion 611 contacts the upper surface of the frame 13 when the optical system 3 is inserted into the opening 131 from above. As a result, the flange portion 611 is supported by the frame 13 from below. That is, the optical system 3 is supported by the frame 13 via the flange 611. The space between the inner peripheral surface of the opening 131 and the outer peripheral surface of the housing 6 may be sealed by a seal member.
 ステージシステム2は、ステージチャンバ1の内部の露光室14に配置される。ステージシステム2は、ステージチャンバ1の底壁11上に配置される。ステージシステム2は、図1及び図2に示すように、定盤21(但し、図2では不図示)と、ウェハステージ22(但し、図2では不図示)と、ステージ駆動系23(但し、図1では不図示)と、位置計測装置24(但し、図1では不図示)とを備える。 The stage system 2 is arranged in the exposure chamber 14 inside the stage chamber 1. The stage system 2 is arranged on the bottom wall 11 of the stage chamber 1. As shown in FIGS. 1 and 2, the stage system 2 includes a platen 21 (however, not shown in FIG. 2), a wafer stage 22 (however, not shown in FIG. 2), and a stage driving system 23 (however, 1 and a position measuring device 24 (however, not shown in FIG. 1).
 定盤21は、底壁11上に配置される。定盤21は、複数の防振装置25を介して底壁11によって下方から支持されている。 The platen 21 is disposed on the bottom wall 11. The surface plate 21 is supported from below by the bottom wall 11 via a plurality of vibration isolating devices 25.
 ウェハステージ22は、ウェハWを保持可能である。ウェハステージ22は、保持したウェハWをリリース可能である。ウェハWを保持するために、ウェハステージ22は、ウェハWを吸着可能な静電チャックを備えていてもよい。 The wafer stage 22 can hold the wafer W. The wafer stage 22 can release the held wafer W. In order to hold the wafer W, the wafer stage 22 may include an electrostatic chuck capable of attracting the wafer W.
 ウェハステージ22は、定盤21上に配置される。ウェハステージ22は、重量キャンセル装置26を介して定盤21によって下方から支持されている。重量キャンセル装置26は、例えば、金属製のベローズ型空気バネ261と、板状のベーススライダ262とを備える。空気ばね261の上端は、ウェハステージ22の下面に接続されている。空気ばね261の下端は、ベーススライダ262に接続されている。ベーススライダ262には、空気ばね261内部の空気を定盤22上に噴出する不図示の軸受部が形成されている。加圧空気を噴出する軸受部と定盤22の上面との間における静圧(つまり、隙間内圧力)により、重量キャンセル装置26、ウェハステージ22及びウェハWの自重が支持されている。尚、ベーススライダ262は、例えば差動排気型の空気静圧軸受を介して定盤22上に非接触で支持される。 The wafer stage 22 is arranged on the surface plate 21. The wafer stage 22 is supported from below by the surface plate 21 via a weight canceling device 26. The weight canceling device 26 includes, for example, a metal bellows-type air spring 261 and a plate-shaped base slider 262. The upper end of the air spring 261 is connected to the lower surface of the wafer stage 22. The lower end of the air spring 261 is connected to the base slider 262. The base slider 262 is provided with a bearing (not shown) for ejecting the air inside the air spring 261 onto the surface plate 22. The weight of the weight canceling device 26, the wafer stage 22, and the wafer W is supported by the static pressure (that is, the pressure in the gap) between the bearing that ejects the pressurized air and the upper surface of the surface plate 22. The base slider 262 is supported on the surface plate 22 in a non-contact manner, for example, via a differential exhaust type aerostatic bearing.
 ウェハWは、例えば、半導体デバイスを製造するための半導体基板である。一例として、ウェハWは、電子線レジストが塗布された直径300mmの円形の半導体基板である。もちろん、ウェハWは、半導体基板に限らず、電子ビームEBの照射対象となり得る限りは、どのような基板であってもよい。 The wafer W is, for example, a semiconductor substrate for manufacturing a semiconductor device. As an example, the wafer W is a circular semiconductor substrate having a diameter of 300 mm to which an electron beam resist is applied. Of course, the wafer W is not limited to a semiconductor substrate, and may be any substrate as long as it can be irradiated with the electron beam EB.
 ステージ駆動系23は、制御装置4の制御下でウェハステージ22を移動させるための駆動系である。ステージ駆動系23は、X軸方向及びY軸方向のそれぞれに沿ってウェハステージ22を移動させる。例えば、ステージ駆動系23は、X軸方向及びY軸方向のそれぞれに沿って、所定のストローク(例えば、50mmのストローク)でウェハステージ22を移動させてもよい。ステージ駆動系23は、X軸方向及びY軸方向の少なくとも一方に加えて又は代えて、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つに沿ってウェハステージ22を移動させてもよい。この場合、ステージ駆動系23は、X軸方向及びY軸方向の少なくとも一方においてウェハステージ22が移動するストロークよりも短いストロークで、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つに沿ってウェハステージ22を移動させてもよい。ステージ駆動系23は、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つに沿ってウェハステージ22を微動させてもよい。ウェハステージ22を移動させるために、ステージ駆動系23は、モータ(例えば、ムービングマグネット型のモータ又は超音波モータ)を備えていてもよい。尚、ステージ駆動系23がモータを備える場合、モータからの磁束漏れに起因する磁場変動(特に、ウェハWの上方の空間における磁場変動)が電子ビームEBの位置決めに与える影響は、無視できるレベルである。 The stage drive system 23 is a drive system for moving the wafer stage 22 under the control of the control device 4. The stage drive system 23 moves the wafer stage 22 along each of the X-axis direction and the Y-axis direction. For example, the stage drive system 23 may move the wafer stage 22 at a predetermined stroke (for example, a stroke of 50 mm) along each of the X-axis direction and the Y-axis direction. The stage drive system 23 may move the wafer stage 22 along at least one of the Z-axis direction, the θX direction, the θY direction, and the θZ direction in addition to or instead of at least one of the X-axis direction and the Y-axis direction. Good. In this case, the stage driving system 23 moves in at least one of the Z-axis direction, the θX direction, the θY direction, and the θZ direction with a stroke shorter than the stroke in which the wafer stage 22 moves in at least one of the X-axis direction and the Y-axis direction. The wafer stage 22 may be moved along. The stage drive system 23 may finely move the wafer stage 22 along at least one of the Z-axis direction, the θX direction, the θY direction, and the θZ direction. In order to move the wafer stage 22, the stage drive system 23 may include a motor (for example, a moving magnet type motor or an ultrasonic motor). When the stage drive system 23 includes a motor, the influence of magnetic field fluctuations (particularly, magnetic field fluctuations in the space above the wafer W) due to magnetic flux leakage from the motor on the positioning of the electron beam EB is negligible. is there.
 位置計測装置24は、ウェハステージ22の位置を計測するための計測装置である。具体的には、位置計測装置24は、X軸方向及びY軸方向のそれぞれにおけるウェハステージ22の位置を計測可能である。位置計測装置24は、X軸方向及びY軸方向の少なくとも一方におけるウェハステージ22の位置に加えて又は代えて、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つにおけるウェハステージ22の位置を計測可能であってもよい。ウェハステージ22の位置を計測するために、位置計測装置24は、例えば、エンコーダ及びレーザ干渉計のうちの少なくとも一方を含んでいてもよい。位置計測装置24の計測結果は、制御装置4に出力される。 The position measuring device 24 is a measuring device for measuring the position of the wafer stage 22. Specifically, the position measuring device 24 can measure the position of the wafer stage 22 in each of the X-axis direction and the Y-axis direction. The position measuring device 24 is configured to detect the position of the wafer stage 22 in at least one of the Z-axis direction, the θX direction, the θY direction, and the θZ direction in addition to or instead of the position of the wafer stage 22 in at least one of the X-axis direction and the Y-axis direction. The position may be measurable. In order to measure the position of the wafer stage 22, the position measurement device 24 may include, for example, at least one of an encoder and a laser interferometer. The measurement result of the position measurement device 24 is output to the control device 4.
 光学システム3は、ステージシステム2の上方(特に、ウェハステージ22の上方)に配置されている。光学システム3は、ステージシステム2がウェハWを保持している状態でウェハWに対向可能な位置に配置されている。光学システム3は、図1に示すように、複数の(例えば、45個の)電子ビーム装置5と、筐体6とを備える。 The optical system 3 is disposed above the stage system 2 (especially, above the wafer stage 22). The optical system 3 is arranged at a position where the optical system 3 can face the wafer W while the stage system 2 holds the wafer W. As shown in FIG. 1, the optical system 3 includes a plurality (for example, 45) of electron beam devices 5 and a housing 6.
 各電子ビーム装置5は、電子ビームEBを射出可能である。以下の説明では、各電子ビーム装置5は、複数の電子ビームEBを射出可能である例を用いて説明を進める。つまり、以下の説明では、各電子ビーム装置5が、複数の電子ビームEBを用いてウェハWを露光するマルチビーム型の電子ビーム装置である例を用いて説明を進める。電子ビーム装置5は、射出した複数の電子ビームEBをウェハWに照射可能である。 Each electron beam device 5 can emit an electron beam EB. In the following description, the description will be given using an example in which each electron beam device 5 can emit a plurality of electron beams EB. That is, in the following description, description will be given using an example in which each electron beam device 5 is a multi-beam electron beam device that exposes the wafer W using a plurality of electron beams EB. The electron beam device 5 can irradiate the wafer W with a plurality of emitted electron beams EB.
 複数の電子ビームEBをウェハWに照射するために、電子ビーム装置5は、図1及び図2に示すように、電子ビーム生成装置7と、電子ビーム光学系8とを備える。電子ビーム生成装置7は、制御装置4の制御下で、複数の電子ビームEBを生成可能である。電子ビーム光学系8は、制御装置4の制御下で、電子ビーム生成装置7が生成した複数の電子ビームEBがウェハWに照射されるように、複数の電子ビームEBをウェハWに向けて射出する。尚、電子ビーム生成装置7及び電子ビーム光学系8のそれぞれの構造については、図3から図8を参照しながら後に詳述するため、ここでの説明を省略する。 In order to irradiate the wafer W with the plurality of electron beams EB, the electron beam device 5 includes an electron beam generating device 7 and an electron beam optical system 8 as shown in FIGS. The electron beam generation device 7 can generate a plurality of electron beams EB under the control of the control device 4. The electron beam optical system 8 emits a plurality of electron beams EB toward the wafer W under the control of the control device 4 such that the plurality of electron beams EB generated by the electron beam generating device 7 are irradiated on the wafer W. I do. The respective structures of the electron beam generating device 7 and the electron beam optical system 8 will be described later in detail with reference to FIGS.
 筐体6は、ベースプレート61と、周壁部62と、クーリングプレート63とを備える。ベースプレート61は、例えば、XY平面に平行な板状の部材である。ベースプレート61は、筐体6の天井壁(つまり、上壁)を構成する部材である。尚、ベースプレート61は、その外縁に、上述したフランジ部611を備えている。周壁部62は、ベースプレート61の外縁に沿ってベースプレート61を取り囲むように形成されている。周壁部62の上端は、ベースプレート61の下面に接続されている。周壁部62は、例えば、XY平面に交差する円筒状(或いは、角筒状)の部材である。周壁部62は、筐体6の側壁を構成する部材である。クーリングプレート63は、周壁部62の下端に接続されている。クーリングプレート63は、筐体6の底壁を構成する部材である。ベースプレート61と周壁部62とクーリングプレート63とによって囲まれた空間は、複数の電子ビーム装置5(特に、複数の電子ビーム光学系8)が配置される真空室64となる。尚、クーリングプレート63は、冷却機能を有していてもよいし、有していなくてもよい。クーリングプレート63は、ウェハWに塗布された電子線レジストの表面からの反射電子がクーリングプレート63等の下面で反射することで周辺にドーズを加える現象であるフォギングを抑制する機能を有していてもよいし、有していなくてもよい。 The housing 6 includes a base plate 61, a peripheral wall portion 62, and a cooling plate 63. The base plate 61 is, for example, a plate-shaped member parallel to the XY plane. The base plate 61 is a member that forms a ceiling wall (that is, an upper wall) of the housing 6. In addition, the base plate 61 is provided with the above-described flange portion 611 on the outer edge thereof. The peripheral wall portion 62 is formed so as to surround the base plate 61 along the outer edge of the base plate 61. The upper end of the peripheral wall 62 is connected to the lower surface of the base plate 61. The peripheral wall portion 62 is, for example, a cylindrical (or square tubular) member that intersects the XY plane. The peripheral wall portion 62 is a member that forms a side wall of the housing 6. The cooling plate 63 is connected to a lower end of the peripheral wall portion 62. The cooling plate 63 is a member that forms a bottom wall of the housing 6. A space surrounded by the base plate 61, the peripheral wall portion 62, and the cooling plate 63 becomes a vacuum chamber 64 in which a plurality of electron beam devices 5 (particularly, a plurality of electron beam optical systems 8) are arranged. Note that the cooling plate 63 may or may not have a cooling function. The cooling plate 63 has a function of suppressing fogging, which is a phenomenon in which reflected electrons from the surface of the electron beam resist applied to the wafer W are reflected on the lower surface of the cooling plate 63 or the like to add a dose to the periphery. Or may not be possessed.
 ベースプレート61には、Z軸方向に沿ってベースプレート61を貫通する複数の貫通孔612が形成されている。複数の貫通孔612の数は、複数の電子ビーム装置5の数と同一である。複数の貫通孔612は、ベースプレート61の表面において、例えばマトリクス状に分布していてもよい。例えば、上述したように光学システム3が45個の電子ビーム装置5を備えている場合には、45個の貫通孔612が、ベースプレート61の表面において、7行×7列のマトリクスの4隅を除いた配列で分布していてもよい。複数の貫通孔612には、それぞれ、複数の電子ビーム装置5がそれぞれ備える複数の電子ビーム生成装置7が配置されている。この場合、貫通孔612と電子ビーム生成装置7との間が、シール部材によってシールされていてもよい。更に、ベースプレート61の下面には、複数の貫通孔612を取り囲むように、複数の電子ビーム装置5がそれぞれ備える複数の電子ビーム光学系8が配置されている。 The base plate 61 has a plurality of through holes 612 that penetrate the base plate 61 along the Z-axis direction. The number of the plurality of through holes 612 is the same as the number of the plurality of electron beam devices 5. The plurality of through holes 612 may be distributed on the surface of the base plate 61, for example, in a matrix. For example, when the optical system 3 includes 45 electron beam devices 5 as described above, 45 through holes 612 form four corners of a matrix of 7 rows × 7 columns on the surface of the base plate 61. It may be distributed in an excluded array. In the plurality of through holes 612, a plurality of electron beam generation devices 7 provided in the plurality of electron beam devices 5, respectively, are arranged. In this case, the space between the through hole 612 and the electron beam generator 7 may be sealed by a seal member. Further, on the lower surface of the base plate 61, a plurality of electron beam optical systems 8 included in the plurality of electron beam devices 5 are arranged so as to surround the plurality of through holes 612.
 クーリングプレート63には、Z軸方向に沿ってベースプレート61を貫通する複数の貫通孔631が形成されている。複数の貫通孔631の数は、複数の電子ビーム装置5の数と同一である。複数の貫通孔631は、クーリングプレート63の表面において、例えばマトリクス状に分布していてもよい。例えば、上述したように光学システム3が45個の電子ビーム装置5を備えている場合には、45個の貫通孔631が、クーリングプレート63の表面において、7行×7列のマトリクスの4隅を除いた配列で分布していてもよい。各電子ビーム装置5が射出した複数の電子ビームEBは、各電子ビーム装置5に対応する貫通孔612を通過する。つまり、各電子ビーム装置5は、各電子ビーム装置5に対応する貫通孔612を介して、複数の電子ビームEBをウェハWに照射する。このため、各貫通孔612は、各貫通孔612に対応する電子ビーム装置5が射出する複数の電子ビームEBが通過できる程度のサイズ(特に、径)を有している。 The cooling plate 63 has a plurality of through holes 631 penetrating the base plate 61 along the Z-axis direction. The number of the plurality of through holes 631 is the same as the number of the plurality of electron beam devices 5. The plurality of through holes 631 may be distributed, for example, in a matrix on the surface of the cooling plate 63. For example, when the optical system 3 includes 45 electron beam devices 5 as described above, 45 through holes 631 are formed on the surface of the cooling plate 63 at four corners of a matrix of 7 rows × 7 columns. May be distributed in an array excluding. The plurality of electron beams EB emitted from each electron beam device 5 pass through a through hole 612 corresponding to each electron beam device 5. That is, each electron beam device 5 irradiates the wafer W with a plurality of electron beams EB via the through holes 612 corresponding to each electron beam device 5. For this reason, each through-hole 612 has a size (particularly, a diameter) that allows a plurality of electron beams EB emitted from the electron beam device 5 corresponding to each through-hole 612 to pass.
 制御装置4は、露光装置EX全体の動作を制御する。例えば、制御装置4は、ウェハWが適切に露光されるように、位置計測装置24の計測結果に基づいてステージ駆動系23を制御してもよい。例えば、制御装置4は、ウェハWが適切に露光されるように、複数の電子ビーム装置5を制御してもよい。尚、図2に示す例では、露光装置EXは、露光装置EX全体の動作を制御する制御装置4を備えているが、露光装置EXは、露光装置EX全体の動作を制御する制御装置4に加えて、複数の電子ビーム装置5をそれぞれ制御する複数のサブ制御装置を備えていてもよい。この場合、複数のサブ制御装置は、制御装置4の制御下で、複数の電子ビーム装置5をそれぞれ制御してもよい。また、制御装置4が露光装置EXの外部に設けられていてもよい。この場合、制御装置4は、露光装置EXとネットワークを介して接続されていてもよい。 (4) The control device 4 controls the operation of the entire exposure apparatus EX. For example, the control device 4 may control the stage drive system 23 based on the measurement result of the position measurement device 24 so that the wafer W is appropriately exposed. For example, the control device 4 may control the plurality of electron beam devices 5 so that the wafer W is appropriately exposed. In the example shown in FIG. 2, the exposure apparatus EX includes a control device 4 that controls the operation of the entire exposure apparatus EX. However, the exposure apparatus EX is controlled by the control device 4 that controls the entire operation of the exposure apparatus EX. In addition, a plurality of sub-control devices for controlling the plurality of electron beam devices 5 may be provided. In this case, the plurality of sub-control devices may respectively control the plurality of electron beam devices 5 under the control of the control device 4. Further, the control device 4 may be provided outside the exposure apparatus EX. In this case, the control device 4 may be connected to the exposure apparatus EX via a network.
 (1-2)電子ビーム生成装置7の構造
 続いて、図3(a)及び図3(b)を参照しながら、電子ビーム生成装置7の構造について更に説明する。図3(a)は、電子ビーム生成装置7の第1の構造を示す断面図である。図3(b)は、電子ビーム生成装置7の第2の構造を示す断面図である。
(1-2) Structure of Electron Beam Generating Apparatus 7 Next, the structure of the electron beam generating apparatus 7 will be further described with reference to FIGS. 3 (a) and 3 (b). FIG. 3A is a cross-sectional view illustrating a first structure of the electron beam generator 7. FIG. 3B is a cross-sectional view illustrating a second structure of the electron beam generator 7.
 図3(a)に示すように、電子ビーム生成装置7は、複数の発光デバイス71と、複数の投影レンズ72と、光電変換素子73とを備える。 As shown in FIG. 3A, the electron beam generator 7 includes a plurality of light emitting devices 71, a plurality of projection lenses 72, and a photoelectric conversion element 73.
 複数の発光デバイス71は、不図示の1枚の基板(例えば、半導体基板)上に形成される。但し、複数の発光デバイス71の一部が形成される基板と、複数の発光デバイス71の他の一部が形成される基板とが別体であってもよい。複数の発光デバイス71は、基板上において、所定の配列パターンで配列されている。例えば、複数の発光デバイス71は、基板上において、2次元アレイ状に(或いは、1次元アレイ状に)配列されていてもよい。この場合、複数の発光デバイス71は、発光デバイスアレイと称してもよい。尚、発光デバイス71の数は任意であるが、一例として、電子ビーム生成装置7は、72000個の発光デバイス71を備えていてもよい。この場合、72000個の発光デバイス71は、基板上において、6000行×12列の2次元アレイ状に配列されていてもよい。 The plurality of light emitting devices 71 are formed on a single substrate (not shown) (for example, a semiconductor substrate). However, the substrate on which a part of the plurality of light emitting devices 71 is formed may be separate from the substrate on which the other part of the plurality of light emitting devices 71 is formed. The plurality of light emitting devices 71 are arranged in a predetermined arrangement pattern on the substrate. For example, the plurality of light emitting devices 71 may be arranged on the substrate in a two-dimensional array (or in a one-dimensional array). In this case, the plurality of light emitting devices 71 may be referred to as a light emitting device array. Note that the number of light emitting devices 71 is arbitrary, but as an example, the electron beam generating device 7 may include 72,000 light emitting devices 71. In this case, the 72,000 light emitting devices 71 may be arranged in a two-dimensional array of 6000 rows × 12 columns on the substrate.
 このような複数の発光デバイス71は、例えば、以下のように製造可能である。まず、エピタキシャル成長技術等を用いて、基板上に、発光デバイス71を構成する構造物(例えば、後述する量子井戸層711等の構造層)が形成される。その後、エッチング技術等を用いて、基板上に形成した構造物が複数の発光デバイス71の配列パターンに応じて選択的に除去される。この場合の構造物の除去は、各発光デバイス71を構成する構造体をメサ構造として残したり、構造物として一体化されている複数の発光デバイス71を分離したりするために行われる。 Such a plurality of light emitting devices 71 can be manufactured, for example, as follows. First, a structure (for example, a structure layer such as a quantum well layer 711 described later) constituting the light emitting device 71 is formed on a substrate by using an epitaxial growth technique or the like. Thereafter, the structure formed on the substrate is selectively removed according to the arrangement pattern of the plurality of light emitting devices 71 by using an etching technique or the like. The removal of the structure in this case is performed to leave the structure constituting each light emitting device 71 as a mesa structure or to separate a plurality of light emitting devices 71 integrated as a structure.
 各発光デバイス71は、光ELを射出可能である。各発光デバイス71は、例えば、自発光型の発光デバイスである。この場合、各発光デバイス71は、自発光によって生じた光ELを、各発光デバイス71の外部に向けて(例えば、各発光デバイス71に対応する投影レンズ72に向けて)射出する。 Each light emitting device 71 can emit light EL. Each light emitting device 71 is, for example, a self-luminous type light emitting device. In this case, each light emitting device 71 emits the light EL generated by self-emission toward the outside of each light emitting device 71 (for example, toward the projection lens 72 corresponding to each light emitting device 71).
 複数の発光デバイス71の発光態様は、制御装置4の制御下で個別に制御可能である。例えば、制御装置4は、複数の発光デバイス71の状態を、光ELを射出している発光状態と光ELを射出していない非発光状態との間で個別に制御可能である。例えば、制御装置4は、複数の発光デバイス71がそれぞれ射出する複数の光ELの強度を個別に制御可能である。 The light emission mode of the plurality of light emitting devices 71 can be individually controlled under the control of the control device 4. For example, the control device 4 can individually control the states of the plurality of light emitting devices 71 between a light emitting state where the light EL is emitted and a non-light emitting state where the light EL is not emitted. For example, the control device 4 can individually control the intensities of the plurality of lights EL emitted from the plurality of light emitting devices 71, respectively.
 LED(Light Emitting Diode)は、自発光型の発光デバイスの一例である。従って、各発光デバイス71は、LED(一例として、マイクロLED)を含んでいてもよい。但し、各発光デバイス71は、マイクロLEDに限らず、他の種類のLEDを含んでいてもよい。他の種類のLEDの一例として、有機LED及び高分子LEDがあげられる。 An LED (Light Emitting Diode) is an example of a self-luminous light emitting device. Accordingly, each light emitting device 71 may include an LED (for example, a micro LED). However, each light emitting device 71 is not limited to a micro LED, and may include another type of LED. Examples of other types of LEDs include organic LEDs and polymer LEDs.
 複数の発光デバイス71の発光態様は、制御装置4の制御下で個別に制御可能である。例えば、制御装置4は、複数の発光デバイス71の状態を、光ELを射出している発光状態と光ELを射出していない非発光状態との間で個別に制御可能である。例えば、制御装置4は、複数の発光デバイス71がそれぞれ射出する複数の光ELの強度を個別に制御可能である。 The light emission mode of the plurality of light emitting devices 71 can be individually controlled under the control of the control device 4. For example, the control device 4 can individually control the states of the plurality of light emitting devices 71 between a light emitting state where the light EL is emitted and a non-light emitting state where the light EL is not emitted. For example, the control device 4 can individually control the intensities of the plurality of lights EL emitted from the plurality of light emitting devices 71, respectively.
 本実施形態では、各発光デバイス71は、射出する光ELの特性を制御可能であるという点で、既存のLEDとは異なる。以下、射出する光ELの特性を制御可能であるという点で既存のLEDとは異なる本実施形態の発光デバイス71の構造について、図4を参照しながら説明する。図4は、本実施形態の発光デバイス71の構造を示す断面図である。 In the present embodiment, each light emitting device 71 is different from the existing LED in that the characteristics of the emitted light EL can be controlled. Hereinafter, the structure of the light emitting device 71 of the present embodiment, which is different from the existing LED in that the characteristics of the emitted light EL can be controlled, will be described with reference to FIG. FIG. 4 is a cross-sectional view illustrating the structure of the light emitting device 71 of the present embodiment.
 図4に示すように、発光デバイス71は、量子井戸層(活性層)711と、クラッド層712と、クラッド層713と、反射層714と、反射層715と、回折層716とを備える。発光デバイス71は、発光デバイス71が光ELを外部に向けて射出する光射出面719から見て、回折層716、反射層715、クラッド層713、量子井戸層711、クラッド層712及び反射層714がこの順に積層された積層構造を有している。つまり、量子井戸層711、クラッド層712及び713、反射層714及び715、並びに、回折層716は、一体化されている。発光デバイス71は、量子井戸層711、クラッド層712及び713、反射層714及び715、並びに、回折層716が一体化されている構造体である。尚、発光デバイス71は、量子井戸層711、クラッド層712及び713、反射層714及び715、並びに、回折層716とは異なる層を更に備えていてもよい。 As shown in FIG. 4, the light emitting device 71 includes a quantum well layer (active layer) 711, a cladding layer 712, a cladding layer 713, a reflection layer 714, a reflection layer 715, and a diffraction layer 716. The light-emitting device 71 includes a diffraction layer 716, a reflection layer 715, a cladding layer 713, a quantum well layer 711, a cladding layer 712, and a reflection layer 714 when viewed from a light emission surface 719 from which the light emission device 71 emits light EL to the outside. Have a laminated structure laminated in this order. That is, the quantum well layer 711, the cladding layers 712 and 713, the reflection layers 714 and 715, and the diffraction layer 716 are integrated. The light emitting device 71 is a structure in which a quantum well layer 711, cladding layers 712 and 713, reflection layers 714 and 715, and a diffraction layer 716 are integrated. The light emitting device 71 may further include a layer different from the quantum well layer 711, the cladding layers 712 and 713, the reflection layers 714 and 715, and the diffraction layer 716.
 量子井戸層711は、クラッド層712及び713と比較して、バンドギャップが小さい半導体層(例えば、AlGaAs及びGaAsの少なくとも一方を含む半導体層)である。クラッド層712及び713のそれぞれは、量子井戸層711と比較して、バンドギャップが大きい半導体層(例えば、AlGaAs、AlGaInP又はInGaNを含む半導体層)である。クラッド層712及び713のうちの一方は、p型半導体層である。クラッド層712及び713のうちの他方は、n型半導体層である。 The quantum well layer 711 is a semiconductor layer having a smaller band gap than the cladding layers 712 and 713 (for example, a semiconductor layer containing at least one of AlGaAs and GaAs). Each of the cladding layers 712 and 713 is a semiconductor layer having a larger band gap than the quantum well layer 711 (for example, a semiconductor layer containing AlGaAs, AlGaInP, or InGaN). One of the cladding layers 712 and 713 is a p-type semiconductor layer. The other of the cladding layers 712 and 713 is an n-type semiconductor layer.
 量子井戸層711は、電子の移動方向が束縛されたポテンシャルの井戸(つまり、量子井戸(QW:Ouantum Well))を形成可能な層である。つまり、発光デバイス71は、量子井戸を利用したダブルへテロ構造を有する発光デバイスである。量子井戸層711は、この量子井戸を形成するための層が複数積層された多重量子井戸構造(MQW:Multi Quantum Well)を有する。但し、量子井戸層711は、量子井戸を形成するための層をただ一つ備える単一量子井戸構造を有していてもよい。 The quantum well layer 711 is a layer that can form a potential well (that is, a quantum well (QW: Ouantum @ Well)) in which the moving direction of electrons is restricted. That is, the light emitting device 71 is a light emitting device having a double hetero structure using a quantum well. The quantum well layer 711 has a multiple quantum well structure (MQW: Multi Quantum Well) in which a plurality of layers for forming the quantum well are stacked. However, the quantum well layer 711 may have a single quantum well structure including only one layer for forming a quantum well.
 不図示の電極を介してクラッド層712とクラッド層713との間に電圧が印加されると、量子井戸層711層において電子と正孔とが再結合する。その結果、再結合に起因したエネルギーが光として放出される。つまり、量子井戸層711において光EL0が発生する。 (4) When a voltage is applied between the clad layer 712 and the clad layer 713 via an electrode (not shown), electrons and holes are recombined in the quantum well layer 711. As a result, energy resulting from the recombination is emitted as light. That is, light EL0 is generated in the quantum well layer 711.
 反射層714及び715は、量子井戸層711を間に挟みこむように配置される。図4に示す例では、反射層714は、量子井戸層711から見て光射出面719とは反対側に配置されており、反射層715は、量子井戸層711から見て光射出面719側に配置されている。 The reflection layers 714 and 715 are arranged so as to sandwich the quantum well layer 711 therebetween. In the example illustrated in FIG. 4, the reflection layer 714 is disposed on the side opposite to the light emission surface 719 when viewed from the quantum well layer 711, and the reflection layer 715 is disposed on the light emission surface 719 side when viewed from the quantum well layer 711. Are located in
 反射層714には、量子井戸層711において発生した光EL0が、クラッド層712を介して入射する。反射層714は、反射層714に入射してきた光EL0の少なくとも一部を反射する。反射層715には、量子井戸層711において発生した光EL0が、クラッド層713を介して入射する。反射層715は、反射層715に入射してきた光ELの少なくとも一部を反射する。反射層714が反射した光EL0は、クラッド層712、量子井戸層711及びクラッド層713を介して、反射層715に入射する。このため、反射層714が反射した光EL0の少なくとも一部は、反射層715によって再度反射される。反射層715が反射した光EL0は、クラッド層713、量子井戸層711及びクラッド層712を介して、反射層714に入射する。このため、反射層715が反射した光EL0の少なくとも一部は、反射層714によって再度反射される。 光 Light EL0 generated in the quantum well layer 711 is incident on the reflection layer 714 via the cladding layer 712. The reflective layer 714 reflects at least a part of the light EL0 incident on the reflective layer 714. Light EL0 generated in the quantum well layer 711 is incident on the reflection layer 715 via the cladding layer 713. The reflection layer 715 reflects at least a part of the light EL incident on the reflection layer 715. The light EL0 reflected by the reflection layer 714 is incident on the reflection layer 715 via the cladding layer 712, the quantum well layer 711, and the cladding layer 713. Therefore, at least part of the light EL0 reflected by the reflective layer 714 is reflected again by the reflective layer 715. The light EL0 reflected by the reflective layer 715 is incident on the reflective layer 714 via the clad layer 713, the quantum well layer 711, and the clad layer 712. Therefore, at least a part of the light EL0 reflected by the reflective layer 715 is reflected again by the reflective layer 714.
 このように、量子井戸層711において発生した光EL0は、反射層714及び715において繰り返し反射される。その結果、反射層714及び715において繰り返し反射された光EL0は、定在波を形成することになる。従って、反射層714及び715において繰り返し反射された光EL0は、反射層714及び715において繰り返し反射されていない光EL0(つまり、量子井戸層711において発生したばかりの光EL0)と比較して、共振した状態にあると言う点で異なる。つまり、反射層714及び715の間に位置する量子井戸層711並びにクラッド層712及び713の内部を進行する光EL0は、共振する。反射層714及び715は、反射層714と回折層716との間において(或いは、反射層714と光射出面719との間において)、光EL0を共振させる。 光 Thus, the light EL0 generated in the quantum well layer 711 is repeatedly reflected on the reflection layers 714 and 715. As a result, the light EL0 repeatedly reflected on the reflection layers 714 and 715 forms a standing wave. Therefore, the light EL0 that has been repeatedly reflected on the reflection layers 714 and 715 has a resonance compared with the light EL0 that has not been repeatedly reflected on the reflection layers 714 and 715 (that is, the light EL0 that has just been generated in the quantum well layer 711). It is different in that it is in a state where it has been done. That is, the light EL0 traveling inside the quantum well layer 711 and the cladding layers 712 and 713 located between the reflection layers 714 and 715 resonates. The reflection layers 714 and 715 resonate the light EL0 between the reflection layer 714 and the diffraction layer 716 (or between the reflection layer 714 and the light exit surface 719).
 光EL0が共振した結果、反射層714及び715において繰り返し反射された光EL0は、反射層714及び715において繰り返し反射されていない光EL0と比較して、特定の波長範囲(以降、“共振波長範囲”と称する)の光成分が相対的に増幅された状態にあると言う点で異なる。反射層714及び715において繰り返し反射された光EL0は、反射層714及び715において繰り返し反射されていない光EL0と比較して、共振波長範囲以外の波長範囲の光成分の強度(例えば、平均値)に対する共振波長範囲の光成分の強度(例えば、ピーク値)の比率が高くなっていると言う点で異なる。つまり、反射層714及び715は、光EL0を共振させる共振器として機能することが可能である。反射層714及び715は、光EL0を共振させる共振器を構成する。 As a result of the resonance of the light EL0, the light EL0 repeatedly reflected on the reflection layers 714 and 715 is compared with the light EL0 not repeatedly reflected on the reflection layers 714 and 715 in a specific wavelength range (hereinafter referred to as a “resonance wavelength range”). ) Are different in that the light component is relatively amplified. The light EL0 repeatedly reflected on the reflection layers 714 and 715 is compared with the light EL0 not repeatedly reflected on the reflection layers 714 and 715, and the intensity (for example, the average value) of the light component in a wavelength range other than the resonance wavelength range. In that the ratio of the intensity (eg, peak value) of the light component in the resonance wavelength range to the resonance wavelength range is high. That is, the reflection layers 714 and 715 can function as a resonator that resonates the light EL0. The reflection layers 714 and 715 constitute a resonator that resonates the light EL0.
 このような反射層714及び715の一例として、分布反射型の反射層(いわゆる、DBR(Distributed Brag Reflector)層)があげられる。DBR層は、屈折率の異なる複数の半導体層が積層された積層構造を有する。半導体層の特性(例えば、材料、厚み、屈折率及び積層数等)は、共振波長範囲に応じて適宜設定される。反射層714及び715の配置位置(特に、量子井戸層711に対する相対位置であり、典型的には距離)もまた、共振波長範囲に応じて適宜設定される。もちろん、反射層714及び715として、DBR層とは異なるタイプの反射層が用いられてもよい。 分布 As an example of such reflection layers 714 and 715, there is a distributed reflection type reflection layer (a so-called DBR (Distributed Bragg Reflector) layer). The DBR layer has a stacked structure in which a plurality of semiconductor layers having different refractive indexes are stacked. The characteristics (eg, material, thickness, refractive index, number of layers, and the like) of the semiconductor layer are appropriately set according to the resonance wavelength range. The arrangement positions of the reflection layers 714 and 715 (particularly, relative positions to the quantum well layer 711, typically the distances) are also appropriately set according to the resonance wavelength range. Of course, a different type of reflective layer than the DBR layer may be used as the reflective layers 714 and 715.
 尚、共振波長範囲は、発光デバイス71が射出するべき光ELの波長(つまり、発光デバイス71が設計上射出するべきであると設定されている光ELの波長)に応じて設定されてもよい。例えば、共振波長範囲は、発光デバイス71が射出するべき光ELの波長を中心とする波長範囲として設定されてもよい。また、本実施形態における「波長範囲」は、一の波長から他の波長までの範囲を意味するものであるが、一の波長と他の波長とが異なっていてもよいし、一の波長と他の波長とが同一であってもよい。一の波長と他の波長とが同一である場合には、波長範囲は、実質的には、ある特定の波長を示すことになる。 Note that the resonance wavelength range may be set according to the wavelength of the light EL to be emitted from the light emitting device 71 (that is, the wavelength of the light EL that the light emitting device 71 is set to emit by design). . For example, the resonance wavelength range may be set as a wavelength range centered on the wavelength of the light EL to be emitted from the light emitting device 71. Further, the “wavelength range” in the present embodiment means a range from one wavelength to another wavelength, but one wavelength and another wavelength may be different, or one wavelength may be different. Other wavelengths may be the same. If one wavelength is the same as another wavelength, the wavelength range will effectively indicate a particular wavelength.
 共振した光EL0は、反射層715を介して回折層716に入射する。このため、反射層715の反射率は、100%未満(例えば、50%乃至60%)である。ここで、反射層715の反射率は、発光デバイス71が射出するべき光ELの波長に対する反射率であってもよい。尚、反射層715は、いわゆるハーフミラーを構成していてもよい。共振した光EL0が回折層716に入射した結果、回折層716に入射する光EL0の波長分布は、量子井戸層711において発生した光EL0の波長分布とは異なるものとなっている。このため、回折層716に入射する光EL0は、量子井戸層711において発生した光EL0の波長分布を制御することで得られる光と等価である。従って、発光デバイス71は、実質的には、少なくとも反射層714及び715を用いて、量子井戸層711において発生した光EL0の波長分布を制御しているとも言える。発光デバイス71は、実質的には、量子井戸層711において発生した光EL0の波長分布を制御するための光学素子として、少なくとも反射層714及び715を含む光学素子を備えているとも言える。以降、回折層716に入射する光EL0を、“光EL1”と称し、回折層716に入射する前の光EL0(例えば、量子井戸層711において発生した光EL0)と区別する。 光 The resonated light EL0 enters the diffraction layer 716 via the reflection layer 715. Therefore, the reflectance of the reflective layer 715 is less than 100% (for example, 50% to 60%). Here, the reflectance of the reflective layer 715 may be a reflectance with respect to the wavelength of the light EL to be emitted from the light emitting device 71. Note that the reflection layer 715 may constitute a so-called half mirror. As a result of the resonated light EL0 being incident on the diffraction layer 716, the wavelength distribution of the light EL0 incident on the diffraction layer 716 is different from the wavelength distribution of the light EL0 generated in the quantum well layer 711. Therefore, the light EL0 incident on the diffraction layer 716 is equivalent to the light obtained by controlling the wavelength distribution of the light EL0 generated in the quantum well layer 711. Therefore, it can be said that the light emitting device 71 substantially controls the wavelength distribution of the light EL0 generated in the quantum well layer 711 by using at least the reflection layers 714 and 715. It can be said that the light emitting device 71 substantially includes an optical element including at least the reflective layers 714 and 715 as an optical element for controlling the wavelength distribution of the light EL0 generated in the quantum well layer 711. Hereinafter, the light EL0 incident on the diffraction layer 716 is referred to as “light EL1”, and is distinguished from the light EL0 before entering the diffraction layer 716 (for example, the light EL0 generated in the quantum well layer 711).
 ここで、図5(a)及び図5(b)を参照しながら、回折層716に入射する光EL1の波長分布と量子井戸層711において発生した光EL0の波長分布との違いについて説明する。図5(a)は、光EL1の波長に関するスペクトル分布を示すグラフである。図5(b)は、光EL0の波長に関するスペクトル分布を示すグラフである。 Here, the difference between the wavelength distribution of the light EL1 incident on the diffraction layer 716 and the wavelength distribution of the light EL0 generated in the quantum well layer 711 will be described with reference to FIGS. 5A and 5B. FIG. 5A is a graph showing a spectrum distribution with respect to the wavelength of the light EL1. FIG. 5B is a graph showing a spectrum distribution with respect to the wavelength of the light EL0.
 図5(a)及び図5(b)に示すように、光EL1は、光EL0と比較して、狭帯域化された光となっていてもよい。具体的には、光EL1は、光EL0と比較して、波長分布が狭帯域化された光となっていてもよい。この場合、反射層714及び715は、光EL0よりも狭帯域化された光ELを発光デバイス71が射出するように、光EL0を反射してもよい。反射層714及び715の特性(例えば、上述した半導体層の特性や、反射層714及び715の配置位置)は、光EL0よりも狭帯域化された光ELを発光デバイス71が射出する状態を実現可能な所望特性に設定されていてもよい。その結果、狭帯域化された(つまり、狭帯域化されるように波長分布が制御された)光EL1が回折層716に入射する。尚、ここで言う「狭帯域化」は、強度が所定値以上となる波長範囲が狭くなることを意味していてもよい。「狭帯域化」は、ピーク値と比較して強度が特定の割合の値(例えば、1/2や1/10の値等)となる波長範囲(いわゆる、スペクトル線幅)が狭くなることを意味していてもよい。また、「狭帯域化」は、95%エネルギー純度幅E95%が狭くなることを意味していてもよい。ここで、95%エネルギー純度幅E95%は、その幅内の強度分布の積分値がそのスペクトルの強度分布の全積分値に対して95%になるときの幅であるとすることができる。 光 As shown in FIGS. 5A and 5B, the light EL1 may be narrower light than the light EL0. Specifically, the light EL1 may be light whose wavelength distribution is narrower than that of the light EL0. In this case, the reflection layers 714 and 715 may reflect the light EL0 so that the light emitting device 71 emits the light EL having a band narrower than the light EL0. The characteristics of the reflective layers 714 and 715 (for example, the characteristics of the semiconductor layer described above and the positions of the reflective layers 714 and 715) realize a state in which the light emitting device 71 emits the light EL having a band narrower than that of the light EL0. It may be set to possible desired characteristics. As a result, the light EL <b> 1 whose band has been narrowed (that is, the wavelength distribution has been controlled so as to be narrowed) enters the diffraction layer 716. Note that “narrowing the band” here may mean that the wavelength range where the intensity is equal to or more than a predetermined value is narrowed. “Narrowing the band” means that the wavelength range (so-called spectral line width) in which the intensity has a specific ratio value (for example, a value of や or 1/10) as compared with the peak value is narrowed. It may mean. Further, “narrowing of the band” may mean that the 95% energy purity width E95% is narrowed. Here, the 95% energy purity range E95% can be a width when the integrated value of the intensity distribution within the width becomes 95% of the total integrated value of the intensity distribution of the spectrum.
 図5(a)及び図5(b)に示すように、光EL1は、光EL0と比較して、スペクトル分布の半値幅が小さくなっていてもよい。この場合、反射層714及び715は、光EL0よりもスペクトル分布の半値幅が小さい光ELを発光デバイス71が射出するように、光EL0を反射してもよい。反射層714及び715の特性は、光EL0よりもスペクトル分布の半値幅が小さい光ELを発光デバイス71が射出する状態を実現可能な所望特性に設定されていてもよい。その結果、スペクトル分布の半値幅が小さくなった(つまり、スペクトル分布の半値幅が小さくなるように波長分布が制御された)光EL1が回折層716に入射する。尚、半値幅は、半値全幅(FWHM:Full Width at Half Maximum)であってもよいし、半値半幅(HWHM:Half Width at Half Maximum)であってもよい。尚、上述した「狭帯域化」は、半値幅が小さくなることを意味していてもよい。 光 As shown in FIGS. 5A and 5B, the light EL1 may have a smaller half-width of the spectrum distribution than the light EL0. In this case, the reflective layers 714 and 715 may reflect the light EL0 such that the light emitting device 71 emits the light EL having a smaller half-width of the spectral distribution than the light EL0. The characteristics of the reflective layers 714 and 715 may be set to desired characteristics capable of realizing a state in which the light emitting device 71 emits the light EL having a smaller half width of the spectral distribution than the light EL0. As a result, light EL <b> 1 whose half width of the spectrum distribution is reduced (that is, the wavelength distribution is controlled so that the half width of the spectrum distribution is reduced) is incident on the diffraction layer 716. The half width may be a full width at half maximum (FWHM: Full Width at at Half Maximum) or a half width at half maximum (HWHM: Half Width at at Half Half Maximum). Note that the above-mentioned “narrowing of the band” may mean that the half width is reduced.
 図5(a)及び図5(b)に示すように、光EL1は、光EL0と比較して、強度のピーク値Ipが大きくなっていてもよい。つまり、光EL1の強度のピーク値Ip1は、光EL0の強度のピーク値Ip0よりも大きくなっていてもよい。この場合、反射層714及び715は、光EL0よりも強度のピーク値Ipが大きい光ELを発光デバイス71が射出するように、光EL0を反射してもよい。反射層714及び715の特性は、光EL0よりも強度のピーク値Ipが大きい光ELを発光デバイス71が射出する状態を実現可能な所望特性に設定されていてもよい。その結果、強度のピーク値Ipが大きくなった(つまり、強度のピーク値Ipが大きくなるように波長分布が制御された)光EL1が回折層716に入射する。尚、上述した「狭帯域化」は、強度のピーク値が大きくなることを意味していてもよい。また、強度がピーク値Ipとなる波長は、共振波長範囲に含まれる可能性が高い。特に、強度がピーク値Ipとなる波長は、共振波長範囲の中心波長λc又はその近傍の波長と一致する可能性が高い。このため、上述した「狭帯域化」は、強度がピーク値Ipとなる中心波長λcを中心とする波長範囲であって且つ強度が所定値以上となる若しくはピーク値と比較して強度が特定の割合の値となる波長範囲が狭くなることを意味していてもよい。 (5) As shown in FIGS. 5A and 5B, the light EL1 may have a larger peak value Ip of intensity than the light EL0. That is, the peak value Ip1 of the intensity of the light EL1 may be larger than the peak value Ip0 of the intensity of the light EL0. In this case, the reflection layers 714 and 715 may reflect the light EL0 such that the light emitting device 71 emits the light EL having the peak intensity Ip greater than that of the light EL0. The characteristics of the reflective layers 714 and 715 may be set to desired characteristics capable of realizing a state in which the light emitting device 71 emits the light EL having a greater intensity peak value Ip than the light EL0. As a result, the light EL1 whose peak value Ip of the intensity has increased (that is, whose wavelength distribution has been controlled so as to increase the peak value Ip of the intensity) enters the diffraction layer 716. In addition, the above-mentioned “narrowing of the band” may mean that the peak value of the intensity increases. The wavelength at which the intensity has the peak value Ip is likely to be included in the resonance wavelength range. In particular, there is a high possibility that the wavelength at which the intensity reaches the peak value Ip coincides with the center wavelength λc of the resonance wavelength range or a wavelength in the vicinity thereof. For this reason, the above-mentioned “narrow band” means that the intensity is a wavelength range centered on the center wavelength λc at which the intensity becomes the peak value Ip, and the intensity becomes a specific value or more as compared with the predetermined value or the peak value. It may mean that the wavelength range in which the value of the ratio is narrowed.
 再び図4において、回折層716は、発光デバイス71から射出された光ELが伝搬する空間と発光デバイス71との界面に配置される。このため、発光デバイス71は、回折層716から発光デバイス71の外部の空間に向けて、光ELを射出する。このため、回折層716の表面(特に、投影レンズ72側を向いた下面)の少なくとも一部は、光ELが射出される光射出面719を構成する。回折層716の表面(特に、投影レンズ72側を向いた下面)は、光射出面719を含む。尚、図4に示す例では、光射出面719は、XY平面に平行な面を含んでいる。 4 again, the diffraction layer 716 is disposed at the interface between the space in which the light EL emitted from the light emitting device 71 propagates and the light emitting device 71. For this reason, the light emitting device 71 emits the light EL from the diffraction layer 716 toward the space outside the light emitting device 71. Therefore, at least a part of the surface of the diffraction layer 716 (particularly, the lower surface facing the projection lens 72 side) forms a light exit surface 719 from which the light EL is emitted. The surface (particularly, the lower surface facing the projection lens 72) of the diffraction layer 716 includes a light exit surface 719. In the example shown in FIG. 4, the light exit surface 719 includes a surface parallel to the XY plane.
 回折層716は、回折層716に入射してきた光を回折させる。回折層716は、回折層716に入射してきた光を回折させることで、回折層716を通過する光を偏向する。このとき、回折層716を通過する光の偏向角度は、光の波長によって異なる。例えば、回折層716は、第1の波長の光に第1の偏向角度を付与し、第1の波長とは異なる第2の波長の光に第1の偏向角度とは異なる第2の偏向角度を付与してもよい。この場合、第1の波長の光と第2の波長の光とは異なる方向に進む。つまり、回折層716は、実質的には、異なる波長の光を分離可能である。なお、偏向角度は、入射光の進行方向に沿った軸に対する偏向された後の光の進行方向に沿った軸のなす角度とすることができる。 The diffraction layer 716 diffracts light incident on the diffraction layer 716. The diffraction layer 716 deflects light passing through the diffraction layer 716 by diffracting light incident on the diffraction layer 716. At this time, the deflection angle of the light passing through the diffraction layer 716 differs depending on the wavelength of the light. For example, the diffractive layer 716 imparts a first deflection angle to light of a first wavelength, and a second deflection angle different from the first deflection angle to light of a second wavelength different from the first wavelength. May be provided. In this case, the light of the first wavelength and the light of the second wavelength travel in different directions. That is, the diffraction layer 716 can substantially separate light of different wavelengths. The deflection angle may be an angle between an axis along the traveling direction of the incident light and an axis along the traveling direction of the deflected light.
 上述したように、回折層716には、反射層715を介して光EL1が入射してくる。このため、回折層716は、反射層715を介して回折層716に入射してくる光EL1を回折させる。従って、発光デバイス71からは、回折層716が回折させた光EL1が光ELとして射出される。尚、発光デバイス71がLEDである場合には、光射出面719の第1位置から光ELの一部として射出される第1光の位相と、光射出面719の第1位置とは異なる第2位置から光ELの他の一部として射出される第2光の位相とが互いに異なっていてもよい。別の言い方をすると、光射出面719の第1位置からの第1光と、光射出面719の第2位置からの第2光とが互いにインコヒーレントであってもよい。 光 As described above, the light EL <b> 1 enters the diffraction layer 716 via the reflection layer 715. Therefore, the diffraction layer 716 diffracts the light EL1 incident on the diffraction layer 716 via the reflection layer 715. Therefore, the light EL1 diffracted by the diffraction layer 716 is emitted from the light emitting device 71 as the light EL. When the light emitting device 71 is an LED, the phase of the first light emitted as a part of the light EL from the first position of the light exit surface 719 is different from the first position of the light exit surface 719. The phase of the second light emitted as another part of the light EL from the two positions may be different from each other. Stated another way, the first light from the first position on the light exit surface 719 and the second light from the second position on the light exit surface 719 may be mutually incoherent.
 本実施形態では特に、回折層716は、光EL1を回折させて、発光デバイス71からの光ELの配光特性(具体的には、配光分布)を制御する。つまり、回折層716は、光EL1の回折を利用して光ELの配光特性を制御するための光学素子として機能することが可能である。以下、図6(a)及び図6(b)を参照しながら、回折層716による光ELの配光特性の制御について説明する。図6(a)は、本実施形態の発光デバイス71が射出する光EL(つまり、回折層716によって配光特性が制御された光EL)を示す断面図である。図6(b)は、回折層716を備えていないという点で本実施形態の発光デバイス71とは異なる比較例の発光デバイスC71が射出する光EL(つまり、回折層716によって配光特性が制御されていない光EL)を示す断面図である。 In the present embodiment, particularly, the diffraction layer 716 diffracts the light EL1 to control the light distribution characteristics (specifically, the light distribution) of the light EL from the light emitting device 71. That is, the diffraction layer 716 can function as an optical element for controlling the light distribution characteristics of the light EL using the diffraction of the light EL1. Hereinafter, the control of the light distribution characteristics of the light EL by the diffraction layer 716 will be described with reference to FIGS. 6A and 6B. FIG. 6A is a cross-sectional view illustrating light EL emitted by the light emitting device 71 of the present embodiment (that is, light EL whose light distribution characteristics are controlled by the diffraction layer 716). FIG. 6B shows light EL emitted from a light emitting device C71 of a comparative example different from the light emitting device 71 of the present embodiment in that the light emitting characteristic is controlled by the diffraction layer 716. FIG. 13 is a cross-sectional view showing light EL not shown).
 図6(a)及び図6(b)に示すように、発光デバイス71が射出する光ELの広がり角θ1は、発光デバイスC71が射出する光ELの広がり角θ2よりも小さくてもよい。つまり、回折層716は、光EL1を回折させない場合と比較して光ELの広がり角θが小さくなるように、光EL1を回折させてもよい。回折層716は、光EL1を回折させない場合と比較して光ELの広がり角θが小さくなるように、光EL1を偏向してもよい。回折層716の特性は、光EL1を回折させない場合と比較して光ELの広がり角θが小さくなるように光EL1を回折させる(その結果、偏向する)ことができる所望特性に設定されていてもよい。尚、ここで言う「広がり角θ」は、発光デバイス71が射出する光ELの発散角を意味していてもよい。また、「広がり角θ」は、発光デバイス71が射出する光ELのうち、最大放射強度の光線が進行する軸と、放射強度が所定値となる光線が進行する軸とのなす角度の2倍の値とすることができる。尚、放射強度の所定値は、最大放射強度の1/2としてもよい。 6A and 6B, the spread angle θ1 of the light EL emitted from the light emitting device 71 may be smaller than the spread angle θ2 of the light EL emitted from the light emitting device C71. That is, the diffraction layer 716 may diffract the light EL1 such that the spread angle θ of the light EL is smaller than when the light EL1 is not diffracted. The diffraction layer 716 may deflect the light EL1 so that the spread angle θ of the light EL is smaller than when the light EL1 is not diffracted. The characteristic of the diffractive layer 716 is set to a desired characteristic that allows the light EL1 to be diffracted (resulting in deflection) so that the spread angle θ of the light EL is smaller than when the light EL1 is not diffracted. Is also good. Here, the “spread angle θ” may mean a divergence angle of the light EL emitted from the light emitting device 71. The “spread angle θ” is twice the angle formed by the axis of the light EL emitted by the light emitting device 71 and the axis of the light beam having the maximum radiation intensity and the axis of the light beam having the predetermined radiation intensity. Value. Note that the predetermined value of the radiation intensity may be 1 / of the maximum radiation intensity.
 特に、回折層716は、光ELの広がり角θを小さくして光ELの広がり角θが所望の角度となるように、光EL1を回折させてもよい。回折層716は、光ELの広がり角θを小さくして光ELの広がり角θが所望の角度となるように、光EL1を偏向してもよい。回折層716の特性は、光ELの広がり角θを小さくして光ELの広がり角θが所望の角度となるように光EL1を回折させる(その結果、偏向する)ことができる所望特性に設定されていてもよい。 In particular, the diffraction layer 716 may diffract the light EL1 such that the spread angle θ of the light EL is reduced and the spread angle θ of the light EL becomes a desired angle. The diffraction layer 716 may deflect the light EL1 such that the spread angle θ of the light EL is reduced and the spread angle θ of the light EL becomes a desired angle. The characteristic of the diffraction layer 716 is set to a desired characteristic that allows the light EL1 to be diffracted (and consequently deflected) so that the spread angle θ of the light EL becomes small and the spread angle θ of the light EL becomes a desired angle. It may be.
 上述したように、回折層716が光EL1を回折させて偏向する際には、回折層716を通過する光の偏向角度は、光の波長によって異なる。このため、回折層716は、ある特定の波長範囲(以降、“回折波長範囲”と称する)の光成分を回折させることで回折波長範囲の光成分の広がり角θを相対的に小さくしやすい一方で、回折波長範囲以外の波長範囲の光成分を回折させても回折波長範囲以外の波長範囲の光成分の広がり角θを相対的に小さくしにくいという特性を有している場合がある。回折層716は、回折波長範囲の光成分を回折させることで回折波長範囲の光成分の広がり角θを所望の角度に設定しやすい一方で、回折波長範囲以外の波長範囲の光成分を回折させても回折波長範囲以外の波長範囲の光成分の広がり角θを所望の角度に設定しにくい(例えば、回折波長範囲以外の波長範囲の光成分を回折させても、回折波長範囲以外の波長範囲の光成分の広がり角θが所望の角度とは異なる角度に設定されてしまう)という特性を有している場合がある。このため、回折層716に入射してくる光EL1の波長範囲と回折波長範囲との重複率が高くなればなるほど、回折層716による光ELの配光特性の制御効率が向上するはずである。つまり、回折層716に入射してくる光EL1の波長範囲と回折波長範囲との重複率が高くなればなるほど、回折層716は、光EL1を回折させて光ELの広がり角θを所望の角度に設定しやすくなるはずである。 As described above, when the diffraction layer 716 diffracts and deflects the light EL1, the deflection angle of the light passing through the diffraction layer 716 differs depending on the wavelength of the light. For this reason, the diffractive layer 716 easily makes the spread angle θ of the light component in the diffraction wavelength range relatively small by diffracting the light component in a specific wavelength range (hereinafter, referred to as “diffraction wavelength range”). In some cases, even when diffracting a light component in a wavelength range other than the diffraction wavelength range, the spread angle θ of the light component in a wavelength range other than the diffraction wavelength range is difficult to be relatively small. The diffractive layer 716 diffracts the light component in the diffraction wavelength range to easily set the spread angle θ of the light component in the diffraction wavelength range to a desired angle, while diffracting the light component in the wavelength range other than the diffraction wavelength range. It is difficult to set the spread angle θ of the light component in the wavelength range other than the diffraction wavelength range to a desired angle (for example, even if the light component in the wavelength range other than the diffraction wavelength range is diffracted, the wavelength range other than the diffraction wavelength range is difficult). (The spread angle θ of the light component is set to an angle different from the desired angle). Therefore, the higher the overlap ratio between the wavelength range of the light EL1 incident on the diffraction layer 716 and the diffraction wavelength range, the higher the control efficiency of the light distribution characteristics of the light EL by the diffraction layer 716 should be. That is, the higher the overlap ratio between the wavelength range of the light EL1 incident on the diffraction layer 716 and the diffraction wavelength range, the more the diffraction layer 716 diffracts the light EL1 and sets the spread angle θ of the light EL to a desired angle. Should be easier to set.
 ここで、回折層716に入射してくる光EL1は、反射層714及び715によって共振させられた光EL0(つまり、共振波長範囲の光成分が相対的に増幅された状態にある光EL0)である。この場合、回折層716による光ELの配光特性の制御効率を向上させる観点から、共振波長範囲は、回折波長範囲と少なくとも部分的に重複していてもよい。逆に、共振波長範囲と回折波長範囲とが少なくとも部分的に重複するように反射層714及び715並びに回折層716の特性が設定されれば、共振波長範囲と回折波長範囲とが重複していない場合と比較して、回折層716による光ELの配光特性の制御効率の向上が期待できる。この場合、反射層714及び715は、光ELの配光特性の制御効率が向上するように、光EL0を共振させているとも言える。 Here, the light EL1 incident on the diffraction layer 716 is the light EL0 resonated by the reflection layers 714 and 715 (that is, the light EL0 in which the light component in the resonance wavelength range is relatively amplified). is there. In this case, from the viewpoint of improving the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716, the resonance wavelength range may at least partially overlap the diffraction wavelength range. Conversely, if the characteristics of the reflection layers 714 and 715 and the diffraction layer 716 are set so that the resonance wavelength range and the diffraction wavelength range at least partially overlap, the resonance wavelength range and the diffraction wavelength range do not overlap. As compared with the case, improvement in the control efficiency of the light distribution characteristics of the light EL by the diffraction layer 716 can be expected. In this case, it can be said that the reflection layers 714 and 715 resonate the light EL0 so that the control efficiency of the light distribution characteristics of the light EL is improved.
 反射層714及び715が存在しなければ回折層716には量子井戸層711において発生した光EL0が入射することになるが、この場合、回折層EL0に入射する光EL0の波長範囲が回折波長範囲と少なくとも部分的に重複するとは限らない。このため、回折波長範囲の光成分の強度がそれほど高くない(例えば、回折波長範囲とは異なる波長範囲の光成分の強度が相対的に高い)光EL0が回折層716に入射する可能性がある。その結果、反射層714及び715が存在しなければ、回折層716による光ELの配光特性の制御効率が悪化する可能性がある。一方で、本実施形態では、共振波長範囲の光成分が相対的に増幅された状態にある光EL0(例えば、共振波長範囲以外の波長範囲の光成分の強度(例えば、平均値)に対する共振波長範囲の光成分の強度(例えば、ピーク値)の比率が高くない状態にある光EL0)が、回折層716に入射する。このため、共振波長範囲と回折波長範囲とが少なくとも部分的に重複していれば、回折波長範囲の光成分の強度がそれほど高くない(例えば、回折波長範囲とは異なる波長範囲の光成分の強度が相対的に高い)光EL0が回折層716に入射する可能性は低くなる。つまり、回折波長範囲の光成分の強度が相対的に高い(例えば、回折波長範囲とは異なる波長範囲の光成分の強度が相対的に低い)光EL0が回折層716に入射する可能性が高い。その結果、反射層714及び715が存在するがゆえに、回折層716による光ELの配光特性の制御効率が向上する。 If the reflection layers 714 and 715 are not present, the light EL0 generated in the quantum well layer 711 will be incident on the diffraction layer 716. In this case, the wavelength range of the light EL0 incident on the diffraction layer EL0 is the diffraction wavelength range. Does not necessarily overlap at least partially. Therefore, there is a possibility that the light EL0 in which the intensity of the light component in the diffraction wavelength range is not so high (for example, the intensity of the light component in the wavelength range different from the diffraction wavelength range is relatively high) enters the diffraction layer 716. . As a result, if the reflection layers 714 and 715 are not present, the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716 may be deteriorated. On the other hand, in the present embodiment, the resonance wavelength for the light EL0 (for example, the intensity (for example, the average value) of the light component in the wavelength range other than the resonance wavelength range) in which the light component in the resonance wavelength range is relatively amplified. The light EL0 in a state where the ratio of the intensity (for example, peak value) of the light components in the range is not high enters the diffraction layer 716. For this reason, if the resonance wavelength range and the diffraction wavelength range at least partially overlap, the intensity of the light component in the diffraction wavelength range is not so high (for example, the intensity of the light component in the wavelength range different from the diffraction wavelength range). (Relatively high) The possibility that the light EL0 is incident on the diffraction layer 716 is reduced. That is, there is a high possibility that the light EL0 in which the intensity of the light component in the diffraction wavelength range is relatively high (for example, the intensity of the light component in the wavelength range different from the diffraction wavelength range is relatively low) enters the diffraction layer 716. . As a result, since the reflective layers 714 and 715 are present, the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716 is improved.
 尚、回折波長範囲は、共振波長範囲と一致していてもよいし、一致していなくてもよい。回折波長範囲の中心波長は、共振波長範囲の中心波長と一致していてもよいし、一致していなくてもよい。但し、回折波長範囲が共振波長範囲と一致している場合は、回折波長範囲が共振波長範囲と一致していない場合と比較して、回折層716による光ELの配光特性の制御効率がより一層向上する可能性が高い。回折波長範囲の中心波長が共振波長範囲の中心波長と一致している場合は、回折波長範囲の中心波長が共振波長範囲の中心波長と一致していない場合と比較して、回折層716による光ELの配光特性の制御効率がより一層向上する可能性が高い。 Note that the diffraction wavelength range may or may not match the resonance wavelength range. The center wavelength of the diffraction wavelength range may or may not match the center wavelength of the resonance wavelength range. However, when the diffraction wavelength range matches the resonance wavelength range, the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716 is higher than when the diffraction wavelength range does not match the resonance wavelength range. It is highly likely that it will be further improved. When the center wavelength of the diffraction wavelength range coincides with the center wavelength of the resonance wavelength range, the light generated by the diffraction layer 716 is compared with the case where the center wavelength of the diffraction wavelength range does not match the center wavelength of the resonance wavelength range. There is a high possibility that the control efficiency of the light distribution characteristics of the EL is further improved.
 光ELの広がり角θが小さくなるほど、光ELの指向性は高くなる。このため、発光デバイス71が射出する光ELの指向性は、発光デバイスC71が射出する光ELの指向性よりも高くなるとも言える。従って、回折層716は、光EL1を回折させない場合と比較して光ELの指向性が高くなるように、光EL1を回折させてもよい。 (4) The smaller the spread angle θ of the light EL, the higher the directivity of the light EL. Therefore, it can be said that the directivity of the light EL emitted by the light emitting device 71 is higher than the directivity of the light EL emitted by the light emitting device C71. Therefore, the diffraction layer 716 may diffract the light EL1 so that the directivity of the light EL is higher than when the light EL1 is not diffracted.
 本実施形態では、回折層716は、フォトニック結晶構造を利用して光EL1を回折させてもよい。つまり、回折層716は、フォトニック結晶構造を有する層であってもよい。フォトニック結晶構造は、内部に周期的な誘電率分布を有する(その結果、内部に周期的な屈折率分布もまた有する)微小構造体を含む構造である。以下、図7(a)及び図7(b)を参照しながら、回折層716の構造の一例について説明する。図7(a)は、回折層716の表面(特に、投影レンズ72側を向いた下面)を示す平面図である。図7(b)は、図7(a)に示す回折層716のVII-VII’断面を示す断面図である。 In the present embodiment, the diffraction layer 716 may diffract the light EL1 using a photonic crystal structure. That is, the diffraction layer 716 may be a layer having a photonic crystal structure. A photonic crystal structure is a structure that includes a microstructure having a periodic dielectric constant distribution therein (and thus also having a periodic refractive index distribution therein). Hereinafter, an example of the structure of the diffraction layer 716 will be described with reference to FIGS. 7A and 7B. FIG. 7A is a plan view showing the surface of the diffraction layer 716 (particularly, the lower surface facing the projection lens 72). FIG. 7B is a cross-sectional view showing a VII-VII 'cross section of the diffraction layer 716 shown in FIG. 7A.
 図7(a)及び図7(b)に示すように、回折層716は、基板7161を備える。基板7161は、XY平面に沿って広がる板状の部材である。基板7161は、例えば半導体基板である。基板7161には、複数の孔7162が形成されている。複数の孔7162は、X軸方向及びY軸方向のそれぞれ(或いは、互いに直交する共にXY平面に含まれる2つの方向のそれぞれ)に沿って周期的に分布する。 回 折 As shown in FIGS. 7A and 7B, the diffraction layer 716 includes a substrate 7161. The substrate 7161 is a plate-like member that extends along the XY plane. The substrate 7161 is, for example, a semiconductor substrate. A plurality of holes 7162 are formed in the substrate 7161. The plurality of holes 7162 are periodically distributed along each of the X-axis direction and the Y-axis direction (or each of two directions orthogonal to each other and included in the XY plane).
 複数の孔7162には、基板7161を構成する材料が含まれていない。このため、複数の孔7162を構成する領域(ここでは、空間)の誘電率は、基板7161の誘電率とは異なる。ここで、複数の孔7162を構成する領域(空間)の誘電率は、当該領域(空間)に媒質が存在する場合にはその媒質の誘電率とすることができ、当該領域(空間)が真空である場合には真空の誘電率とすることができる。このため、フォトニック結晶構造素子716では、第1の誘電率を有する領域部分(つまり、複数の孔7162)が、第1の誘電率とは異なる誘電率を有する領域部分(つまり、基板7161)内において周期的に分布していると言える。特に、複数の孔7162がX軸方向及びY軸方向のそれぞれに沿って周期的に形成されている。このため、図7(a)に示す回折層716は、誘電率が2次元平面に沿って周期的に変化する2次元フォトニック結晶構造を有する層である。 材料 The plurality of holes 7162 do not contain a material constituting the substrate 7161. Therefore, the dielectric constant of a region (in this case, a space) forming the plurality of holes 7162 is different from the dielectric constant of the substrate 7161. Here, when a medium is present in the region (space), the dielectric constant of the region (space) forming the plurality of holes 7162 can be set to the dielectric constant of the medium. In this case, the dielectric constant of vacuum can be used. Therefore, in the photonic crystal structure element 716, the region portion having the first dielectric constant (that is, the plurality of holes 7162) is replaced with the region portion having a dielectric constant different from the first dielectric constant (that is, the substrate 7161). Can be said to be periodically distributed in the. In particular, a plurality of holes 7162 are periodically formed along each of the X-axis direction and the Y-axis direction. For this reason, the diffraction layer 716 shown in FIG. 7A is a layer having a two-dimensional photonic crystal structure in which the dielectric constant changes periodically along a two-dimensional plane.
 複数の孔7162の誘電率と基板7161の誘電率が異なる場合には、複数の孔7162の屈折率(具体的には、光に対する屈折率)は、基板7161の屈折率とは異なる。このため、フォトニック結晶構造素子716では、第1の屈折率を有する領域部分(つまり、複数の孔7162)が、第1の屈折率とは異なる屈折率を有する領域部分(つまり、基板7161)内において周期的に分布しているとも言える。図7(a)に示す回折層716は、屈折率が2次元平面に沿って周期的に変化する2次元フォトニック結晶構造を有する層であるとも言える。 When the dielectric constant of the plurality of holes 7162 and the dielectric constant of the substrate 7161 are different, the refractive index of the plurality of holes 7162 (specifically, the refractive index for light) is different from the refractive index of the substrate 7161. For this reason, in the photonic crystal structure element 716, the region portion having the first refractive index (that is, the plurality of holes 7162) is replaced with the region portion having a refractive index different from the first refractive index (that is, the substrate 7161). Can also be said to be periodically distributed within. The diffraction layer 716 illustrated in FIG. 7A can be said to be a layer having a two-dimensional photonic crystal structure in which the refractive index periodically changes along a two-dimensional plane.
 複数の孔7162には、基板7161とは異なる誘電率を有する材料(例えば、半導体材料)が埋め込まれていてもよい。この場合であっても、フォトニック結晶構造素子716では、第1の誘電率を有する領域部分(つまり、複数の孔7162にそれぞれ埋め込まれた複数の材料)が、第1の誘電率とは異なる誘電率を有する領域部分(つまり、基板7161)内において周期的に分布していると言える。 材料 A material (for example, a semiconductor material) having a dielectric constant different from that of the substrate 7161 may be embedded in the plurality of holes 7162. Even in this case, in the photonic crystal structure element 716, the region portion having the first dielectric constant (that is, the plurality of materials embedded in the plurality of holes 7162) is different from the first dielectric constant. It can be said that it is periodically distributed in the region having the dielectric constant (that is, the substrate 7161).
 このようなフォトニック結晶構造を回折層716が有する場合には、回折層716の特性は、主としてフォトニック結晶構造の特性に依存する。このため、フォトニック結晶構造の特性は、回折層716が上述した特性(つまり、光ELの配光特性を制御するという観点から定まる特性)を有するように適切に設定されていてもよい。 When the diffraction layer 716 has such a photonic crystal structure, characteristics of the diffraction layer 716 mainly depend on characteristics of the photonic crystal structure. Therefore, the characteristics of the photonic crystal structure may be appropriately set so that the diffraction layer 716 has the above-described characteristics (that is, characteristics determined from the viewpoint of controlling the light distribution characteristics of the light EL).
 フォトニック結晶構造の特性の一例として、複数の孔7162の配列ピッチP(つまり、複数の孔7162の周期)があげられる。配列ピッチPは、例えば、発光デバイス71が射出するべき光ELの波長に基づいて設定されていてもよい。例えば、配列ピッチPは、光ELの波長と同じであってもよい。例えば、配列ピッチPは、光ELの波長よりも大きくてもよい。例えば、配列ピッチPは、光ELの波長よりも所定長さだけ大きくてもよい。例えば、配列ピッチPは、光ELの波長よりも所定割合だけ大きくてもよい。例えば、配列ピッチPは、光ELの波長よりも小さくてもよい。例えば、配列ピッチPは、光ELの波長よりも所定長さだけ小さくてもよい。例えば、配列ピッチPは、光ELの波長よりも所定割合だけ小さくてもよい。いずれの場合においても、配列ピッチPは、回折層716による光ELの配光特性の制御効率を向上させることが可能な値に設定されてもよい。配列ピッチPは、回折波長範囲と共振波長範囲とを少なくとも部分的に重複させることが可能な値に設定されてもよい。 An example of the characteristics of the photonic crystal structure is an arrangement pitch P of the plurality of holes 7162 (that is, the period of the plurality of holes 7162). The arrangement pitch P may be set based on, for example, the wavelength of the light EL to be emitted from the light emitting device 71. For example, the arrangement pitch P may be the same as the wavelength of the light EL. For example, the arrangement pitch P may be larger than the wavelength of the light EL. For example, the arrangement pitch P may be larger than the wavelength of the light EL by a predetermined length. For example, the arrangement pitch P may be larger than the wavelength of the light EL by a predetermined ratio. For example, the arrangement pitch P may be smaller than the wavelength of the light EL. For example, the arrangement pitch P may be smaller by a predetermined length than the wavelength of the light EL. For example, the arrangement pitch P may be smaller by a predetermined ratio than the wavelength of the light EL. In any case, the arrangement pitch P may be set to a value that can improve the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716. The arrangement pitch P may be set to a value that allows the diffraction wavelength range and the resonance wavelength range to at least partially overlap.
 尚、図7に示すように複数の孔7162が第1方向(例えば、X方向)に沿って第1の配列ピッチで配列され、第1方向と交差する第2方向(例えば、Y方向)に沿って第2の配列ピッチで配列される場合、第1の配列ピッチと第2の配列ピッチとは同じピッチであってもよいし、異なるピッチであってもよい。一例として、第1の配列ピッチが第2の配列ピッチよりも大きなピッチであってもよい。 As shown in FIG. 7, a plurality of holes 7162 are arranged at a first arrangement pitch along a first direction (for example, X direction), and are arranged in a second direction (for example, Y direction) intersecting with the first direction. When the second arrangement pitch is arranged along the first arrangement pitch, the first arrangement pitch and the second arrangement pitch may be the same pitch or different pitches. As an example, the first arrangement pitch may be larger than the second arrangement pitch.
 フォトニック結晶構造の特性の一例として、複数の孔7162の深さDがあげられる。深さDは、回折層716による光ELの配光特性の制御効率を向上させることが可能な値に設定されてもよい。尚、深さDが大きくなるほど、回折層716による光ELの配光特性の制御効率がより向上する可能性が高い。但し、深さDが過度に大きくなると、Z軸方向に沿って孔7162が回折層716(例えば、基板7161)を貫通してしまう可能性がある。その結果、回折層716に隣接する他の層(図4に示す例では、反射層715)が影響を受ける可能性がある。このため、深さDは、Z軸方向に沿って孔7162が回折層716を貫通しない程度の値に設定されていてもよい。もちろん、回折層716に隣接する他の層に対する影響が小さければ、Z軸方向に沿って孔7162が回折層716を貫通していてもよい。 An example of the characteristics of the photonic crystal structure is the depth D of the plurality of holes 7162. The depth D may be set to a value that can improve the control efficiency of the light distribution characteristics of the light EL by the diffraction layer 716. It should be noted that as the depth D increases, the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716 is more likely to be improved. However, when the depth D is excessively large, the holes 7162 may penetrate the diffraction layer 716 (for example, the substrate 7161) along the Z-axis direction. As a result, another layer adjacent to the diffraction layer 716 (the reflective layer 715 in the example shown in FIG. 4) may be affected. Therefore, the depth D may be set to such a value that the hole 7162 does not penetrate the diffraction layer 716 along the Z-axis direction. Of course, as long as the influence on other layers adjacent to the diffraction layer 716 is small, the hole 7162 may penetrate the diffraction layer 716 along the Z-axis direction.
 尚、複数の孔7162の深さDは、発光デバイス71の発光面上の異なる位置で異なる深さであってもよく、発光デバイス71の発光面上の異なる位置で同じ深さであってもよい。 The depth D of the plurality of holes 7162 may be different at different positions on the light emitting surface of the light emitting device 71, or may be the same at different positions on the light emitting surface of the light emitting device 71. Good.
 フォトニック結晶構造の特性の一例として、複数の孔7162の形状があげられる。複数の孔7162の形状は、回折層716による光ELの配光特性の制御効率を向上させることが可能な所望形状に設定されてもよい。図7(a)及び図7(b)に示す例では、複数の孔7162は、円柱形状の孔となっている。つまり、複数の孔7162は、XY平面に沿った断面の形状が円形となり且つZ軸を含む断面の形状が矩形の形状となる孔となっている。しかしながら、複数の孔7162は、図7(a)及び図7(b)に示す形状とは異なる形状を有していてもよい。例えば、複数の孔7162は、角柱形状の孔(つまり、XY平面に沿った断面の形状及びZ軸を含む断面の形状の双方が矩形の形状となる孔)であってもよい。例えば、複数の孔7162は、テーパ柱形状の孔であってもよい。複数の孔7162の形状は互いに同一であってもよい。 形状 One example of the characteristics of the photonic crystal structure is the shape of the plurality of holes 7162. The shape of the plurality of holes 7162 may be set to a desired shape capable of improving the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716. In the example illustrated in FIGS. 7A and 7B, the plurality of holes 7162 are cylindrical holes. That is, the plurality of holes 7162 are holes whose cross section along the XY plane has a circular shape and whose cross section including the Z axis has a rectangular shape. However, the plurality of holes 7162 may have a shape different from the shapes shown in FIGS. 7A and 7B. For example, the plurality of holes 7162 may be prismatic holes (that is, holes in which both the cross-sectional shape along the XY plane and the cross-sectional shape including the Z axis are rectangular). For example, the plurality of holes 7162 may be tapered columnar holes. The shapes of the plurality of holes 7162 may be the same as each other.
 フォトニック結晶構造の特性の一例として、複数の孔7162の配列パターンがあげられる。複数の孔7162の配列パターンは、回折層716による光ELの配光特性の制御効率を向上させることが可能な所望パターンに設定されてもよい。図7(a)及び図7(b)に示す例では、複数の孔7162は、基板7161の表面上において(つまり、XY平面上において)、平面格子状の配列パターンで配列している。特に、図7(a)及び図7(b)に示す例では、複数の孔7162は、三角格子状(つまり、六角格子状)の配列パターンで配列している。しかしながら、複数の孔7162は、図7(a)及び図7(b)に示す配列パターンとは異なる配列パターンで配列していてもよい。例えば、複数の孔7162は、斜方格子状(つまり、二等辺三角格子状)の配列パターン、矩形格子状の配列パターン又は平行体格子状の配列パターンで配列していてもよい。 配 列 An example of the characteristics of the photonic crystal structure is an array pattern of a plurality of holes 7162. The arrangement pattern of the plurality of holes 7162 may be set to a desired pattern that can improve the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716. In the example shown in FIGS. 7A and 7B, the plurality of holes 7162 are arranged in a plane lattice pattern on the surface of the substrate 7161 (that is, on the XY plane). Particularly, in the example shown in FIGS. 7A and 7B, the plurality of holes 7162 are arranged in a triangular lattice (that is, hexagonal lattice) arrangement pattern. However, the plurality of holes 7162 may be arranged in an arrangement pattern different from the arrangement patterns shown in FIGS. 7A and 7B. For example, the plurality of holes 7162 may be arranged in an oblique lattice (ie, isosceles triangular lattice) arrangement pattern, a rectangular lattice arrangement pattern, or a parallel body lattice arrangement pattern.
 再び図3(a)において、複数の投影レンズ72は、複数の発光デバイス71にそれぞれ対応するように配置される光学レンズである。このため、複数の投影レンズ72の数は、複数の発光デバイス71の数と同じである。つまり、電子ビーム生成装置7が72000個の発光デバイス71を備えている場合には、電子ビーム生成装置7は、72000個の投影レンズ72を備えていてもよい。 3A again, the plurality of projection lenses 72 are optical lenses arranged to correspond to the plurality of light emitting devices 71, respectively. Therefore, the number of the plurality of projection lenses 72 is the same as the number of the plurality of light emitting devices 71. That is, when the electron beam generator 7 includes 72,000 light emitting devices 71, the electron beam generator 7 may include 72000 projection lenses 72.
 但し、図3(b)に示すように、電子ビーム生成装置7は、2つ以上の発光デバイス71に対応する投影レンズ720を一つ又は複数備えていてもよい。図3(b)に示す例では、電子ビーム生成装置7が、電子ビーム生成装置7が備える複数の発光デバイス71にまとめて対応する一つの投影レンズ720を備えている。もちろん、電子ビーム生成装置7は、電子ビーム生成装置7が備える複数の発光デバイス71のうちの2つ以上の発光デバイス71から構成される第1群の発光デバイス群に対応する一つの投影レンズ720と、第2群の発光デバイス群に対応する一つの投影レンズ720と、・・・、第K群の発光デバイス群に対応する一つの投影レンズ720とを備えていてもよい。この場合、投影レンズ720の数は、複数の発光デバイス71の数よりも少なくてもよい。 However, as shown in FIG. 3B, the electron beam generator 7 may include one or more projection lenses 720 corresponding to two or more light emitting devices 71. In the example illustrated in FIG. 3B, the electron beam generation device 7 includes one projection lens 720 collectively corresponding to the plurality of light emitting devices 71 included in the electron beam generation device 7. Of course, the electron beam generating device 7 is a projection lens 720 corresponding to a first group of light emitting device groups including two or more light emitting devices 71 among the plurality of light emitting devices 71 provided in the electron beam generating device 7. , One projection lens 720 corresponding to the second light emitting device group, and one projection lens 720 corresponding to the K th light emitting device group. In this case, the number of the projection lenses 720 may be smaller than the number of the plurality of light emitting devices 71.
 図3(a)において、各投影レンズ72には、各投影レンズ72に対応する発光デバイス71が射出した光ELが入射する。各投影レンズ72は、例えばマイクロレンズであるが、その他の光学素子であってもよい。各投影レンズ72は、各投影レンズ72に対応する発光デバイス71が射出した光ELを、光電変換素子73(特に、光電変換素子73のうち各投影レンズ72に対応する特定領域)に照射する。各投影レンズ72は、各投影レンズ72に対応する発光デバイス71の発光面(例えば、光射出面719)の像を、光電変換素子73(特に、光電変換素子73のうち各投影レンズ72に対応する特定領域)に形成する。 In FIG. 3A, light EL emitted from the light emitting device 71 corresponding to each projection lens 72 is incident on each projection lens 72. Each projection lens 72 is, for example, a micro lens, but may be another optical element. Each projection lens 72 irradiates the light EL emitted by the light emitting device 71 corresponding to each projection lens 72 to a photoelectric conversion element 73 (particularly, a specific area corresponding to each projection lens 72 in the photoelectric conversion element 73). Each projection lens 72 converts an image of a light emitting surface (e.g., light emission surface 719) of a light emitting device 71 corresponding to each projection lens 72 into a photoelectric conversion element 73 (particularly, corresponding to each projection lens 72 of the photoelectric conversion elements 73). In a specific area to be formed).
 図3(b)においては、投影レンズ720には、複数の発光デバイス71が射出した複数の光ELが入射する。投影レンズ720は、複数の発光デバイス71が射出した複数の光ELを、光電変換素子73(特に、光電変換素子73のうち各発光デバイス71に対応する特定領域)に照射する。投影レンズ720は、複数の発光デバイス71の発光面(例えば、光射出面719)の像を、光電変換素子73(特に、光電変換素子73のうち各発光デバイスに対応する特定領域)に形成する。 In FIG. 3B, a plurality of lights EL emitted from the plurality of light emitting devices 71 enter the projection lens 720. The projection lens 720 irradiates the plurality of lights EL emitted from the plurality of light emitting devices 71 to the photoelectric conversion element 73 (particularly, a specific area corresponding to each light emitting device 71 in the photoelectric conversion element 73). The projection lens 720 forms images of the light emitting surfaces (for example, the light emitting surfaces 719) of the plurality of light emitting devices 71 on the photoelectric conversion elements 73 (particularly, specific regions corresponding to each light emitting device among the photoelectric conversion elements 73). .
 各投影レンズ72及び投影レンズ720のそれぞれは、縮小倍率を有する縮小光学系である。この場合、各投影レンズ72は、各投影レンズ72に対応する発光デバイス71の発光面の縮小像を、光電変換素子73に形成する。また、投影レンズ720は、複数の発光デバイス71の発光面の縮小像を光電変換素子73に形成する。各投影レンズ72および投影レンズ720のそれぞれは、等倍(つまり、±1倍)の倍率を有する等倍光学系であってもよい。各投影レンズ72及び投影レンズ720のそれぞれは、拡大倍率を有する拡大光学系であってもよい。 Each of the projection lens 72 and the projection lens 720 is a reduction optical system having a reduction magnification. In this case, each projection lens 72 forms a reduced image of the light emitting surface of the light emitting device 71 corresponding to each projection lens 72 on the photoelectric conversion element 73. Further, the projection lens 720 forms reduced images of the light emitting surfaces of the plurality of light emitting devices 71 on the photoelectric conversion element 73. Each of the projection lens 72 and the projection lens 720 may be a 1 × optical system having a 1 × magnification (ie, ± 1 ×). Each of the projection lens 72 and the projection lens 720 may be an enlargement optical system having an enlargement magnification.
 各投影レンズ72の発光デバイス71側の開口数は、各投影レンズ72の光電変換素子73側の開口数よりも小さい。但し、各投影レンズ72の発光デバイス71側の開口数は、各投影レンズ72の光電変換素子73側の開口数よりも大きくてもよい。各投影レンズ72の発光デバイス71側の開口数は、各投影レンズ72の光電変換素子73側の開口数と同じであってもよい。 The numerical aperture of each projection lens 72 on the light emitting device 71 side is smaller than the numerical aperture of each projection lens 72 on the photoelectric conversion element 73 side. However, the numerical aperture of each projection lens 72 on the light emitting device 71 side may be larger than the numerical aperture of each projection lens 72 on the photoelectric conversion element 73 side. The numerical aperture of each projection lens 72 on the light emitting device 71 side may be the same as the numerical aperture of each projection lens 72 on the photoelectric conversion element 73 side.
 同様に、投影レンズ720の発光デバイス71側の開口数は、投影レンズ720の光電変換素子73側の開口数よりも小さい。但し、投影レンズ720の発光デバイス71側の開口数は、投影レンズ720の光電変換素子73側の開口数よりも大きくてもよい。投影レンズ720の発光デバイス71側の開口数は、投影レンズ720の光電変換素子73側の開口数と同じであってもよい。 Similarly, the numerical aperture of the projection lens 720 on the light emitting device 71 side is smaller than the numerical aperture of the projection lens 720 on the photoelectric conversion element 73 side. However, the numerical aperture of the projection lens 720 on the light emitting device 71 side may be larger than the numerical aperture of the projection lens 720 on the photoelectric conversion element 73 side. The numerical aperture of the projection lens 720 on the light emitting device 71 side may be the same as the numerical aperture of the projection lens 720 on the photoelectric conversion element 73 side.
 光電変換素子73は、複数の投影レンズ72又は投影レンズ720からの複数の光ELを、複数の電子ビームEBに変換可能である。光電変換素子73は、複数の投影レンズ72又は投影レンズ720からの複数の光ELから、複数の電子ビームEBを生成可能である。複数の光ELを複数の電子ビームEBに変換するために、光電変換素子73は、板部材731と、遮光膜732と、アルカリ光電層733とを備える。光電変換素子73は、板部材731と遮光膜732とアルカリ光電層733とが一体化された構造体である。 The photoelectric conversion element 73 is capable of converting a plurality of lights EL from the plurality of projection lenses 72 or 720 into a plurality of electron beams EB. The photoelectric conversion element 73 can generate a plurality of electron beams EB from a plurality of lights EL from the plurality of projection lenses 72 or 720. In order to convert the plurality of lights EL into the plurality of electron beams EB, the photoelectric conversion element 73 includes a plate member 731, a light shielding film 732, and an alkali photoelectric layer 733. The photoelectric conversion element 73 is a structure in which a plate member 731, a light shielding film 732, and an alkali photoelectric layer 733 are integrated.
 板部材731は、複数の光ELが通過可能な板状の部材である。板部材731は、例えば石英ガラスから構成される部材であるが、その他の材料から構成される部材であってもよい。 The plate member 731 is a plate-like member through which a plurality of lights EL can pass. The plate member 731 is a member made of, for example, quartz glass, but may be a member made of another material.
 遮光膜732は、板部材731の下面に形成されている。遮光膜732は、複数の光ELを遮光可能である。遮光膜732は、例えば、クロム等の膜である。図3(a)の例では、遮光膜732には、複数の投影レンズ72にそれぞれ対応する複数のアパーチャ7321が形成されている。このため、複数のアパーチャ7321の数は、複数の投影レンズ72の数と同一である。つまり、電子ビーム生成装置7が72000個の投影レンズ72を備えている場合には、遮光膜732には、72000個のアパーチャ7321が形成されていてもよい。また、図3(b)の例では、遮光膜732には、複数の発光デバイス71にそれぞれ対応する複数のアパーチャ7321が形成されている。このため、複数のアパーチャ7321の数は、複数の発光デバイス71の数と同一である。つまり、電子ビーム生成装置7が72000個の発光デバイス71を備えている場合には、遮光膜732には、72000個のアパーチャ7321が形成されていてもよい。 The light shielding film 732 is formed on the lower surface of the plate member 731. The light shielding film 732 can shield a plurality of lights EL. The light shielding film 732 is, for example, a film of chromium or the like. In the example of FIG. 3A, a plurality of apertures 7321 corresponding to the plurality of projection lenses 72 are formed in the light shielding film 732. Therefore, the number of the plurality of apertures 7321 is equal to the number of the plurality of projection lenses 72. That is, when the electron beam generation device 7 includes 72,000 projection lenses 72, the light shielding film 732 may have 72,000 apertures 7321. In the example of FIG. 3B, a plurality of apertures 7321 corresponding to the plurality of light emitting devices 71 are formed in the light shielding film 732. Therefore, the number of the plurality of apertures 7321 is equal to the number of the plurality of light emitting devices 71. That is, when the electron beam generation device 7 includes 72,000 light emitting devices 71, the light shielding film 732 may have 72,000 apertures 7321.
 図3(a)に戻って、各アパーチャ7321は、各アパーチャ7321に対応する投影レンズ72からの光ELが入射する位置に形成される。その結果、各投影レンズ72からの光ELは、板部材731を介して各投影レンズ72に対応するアパーチャ7321に入射する。つまり、各投影レンズ72は、各投影レンズ72からの光ELが各投影レンズ72に対応するアパーチャ7321に入射するように、光ELを光電変換素子73に投影する。この際、各投影レンズ72は、パーチャ7321よりも一回り大きい断面を有する光ELがアパーチャ7321に入射するように、光ELを光電変換素子73に投影する。 3A, each aperture 7321 is formed at a position where the light EL from the projection lens 72 corresponding to each aperture 7321 is incident. As a result, the light EL from each projection lens 72 enters the aperture 7321 corresponding to each projection lens 72 via the plate member 731. That is, each projection lens 72 projects the light EL onto the photoelectric conversion element 73 such that the light EL from each projection lens 72 enters the aperture 7321 corresponding to the projection lens 72. At this time, each projection lens 72 projects the light EL onto the photoelectric conversion element 73 such that the light EL having a cross section slightly larger than the aperture 7321 is incident on the aperture 7321.
 但し、図3(b)に示したように1つの投影レンズ720が2つ以上の発光デバイス71に対応している場合には、1つの投影レンズ720からの2つ以上の光ELが、2つ以上のアパーチャ7321にそれぞれ入射してもよい。或いは、1つの投影レンズ72又は720が1つの発光デバイス71に対応している場合であっても、1つの投影レンズ72又は720からの1つの光ELが、2つ以上のアパーチャ7321のそれぞれに入射してもよい。この場合、各投影レンズ72又は投影レンズ720は、各投影レンズ72又は投影レンズ720からの光ELが、2つ以上のアパーチャ7321にまたがるビームスポットを形成するように、光ELを光電変換素子73に投影してもよい。これらの場合、複数のアパーチャ7321の数は、複数の投影レンズ72又は投影レンズ720の数よりも多くてもよい。 However, when one projection lens 720 corresponds to two or more light emitting devices 71 as shown in FIG. 3B, two or more lights EL from one projection lens 720 The light may be incident on one or more apertures 7321, respectively. Alternatively, even when one projection lens 72 or 720 corresponds to one light emitting device 71, one light EL from one projection lens 72 or 720 is applied to each of two or more apertures 7321. It may be incident. In this case, each projection lens 72 or the projection lens 720 converts the light EL from the photoelectric conversion element 73 so that the light EL from the projection lens 72 or the projection lens 720 forms a beam spot over two or more apertures 7321. May be projected. In these cases, the number of the plurality of apertures 7321 may be larger than the number of the plurality of projection lenses 72 or the projection lenses 720.
 アルカリ光電層733は、板部材731の下面のうちアパーチャ7321が形成されている部分(つまり、遮光膜732が形成されていない部分)及び遮光膜732の下面に形成されている。アルカリ光電層733は、2種類以上のアルカリ金属を用いたマルチアルカリフォトカソードである。マルチアルカリフォトカソードは、耐久性が高く、波長が500nm帯の緑色光で電子を発生可能であり、光電効果の量子効率QEが高い(例えば、10%程度)フォトカソードである。本実施形態では、アルカリ光電層733は、光ELによる光電効果によって電子ビームEBを生成する電子銃として用いられるため、変換効率が10[mA/W]程度になる高効率のものが用いられてもよい。アルカリ光電層733の電子放出面は、アルカリ光電層733の下面(つまり、板部材731に対向する側の面とは逆側の面)である。 The alkaline photoelectric layer 733 is formed on the lower surface of the plate member 731 where the aperture 7321 is formed (that is, the portion where the light shielding film 732 is not formed) and on the lower surface of the light shielding film 732. The alkali photoelectric layer 733 is a multi-alkali photocathode using two or more kinds of alkali metals. The multi-alkali photocathode is a photocathode having high durability, capable of generating electrons with green light having a wavelength of 500 nm, and having a high quantum efficiency QE of the photoelectric effect (for example, about 10%). In the present embodiment, since the alkali photoelectric layer 733 is used as an electron gun that generates the electron beam EB by the photoelectric effect of the light EL, a high-efficiency one having a conversion efficiency of about 10 [mA / W] is used. Is also good. The electron emission surface of the alkali photoelectric layer 733 is the lower surface of the alkali photoelectric layer 733 (that is, the surface opposite to the surface facing the plate member 731).
 各投影レンズ72又は投影レンズ720からの光ELは、板部材731及び各投影レンズ72に対応するアパーチャ7321を介して、アルカリ光電層733に入射する。このとき、各投影レンズ72は、各投影レンズ72に対応する発光デバイス71の発光面(例えば、光射出面719)の像を、板部材731及び各投影レンズ72に対応するアパーチャ7321を介して、アルカリ光電層733に形成する。その結果、光電効果(つまり、光電変換)により、アパーチャ7321の形状に対応する断面を有する電子ビームEBが、アルカリ光電層733から下方に向けて放出される。このとき、アルカリ光電層733が複数のアパーチャ7321を備え且つ複数のアパーチャ7321のそれぞれに光ELが照射されるため、アルカリ光電層733は、複数の電子ビームEBを放出可能である。つまり、アルカリ光電層733の電子放出面(実質的には、光電変換面)7330には、複数のアパーチャ7321にそれぞれ対応する位置において、複数の電子ビームEBをそれぞれ放出可能な複数の電子放出領域7331が設定される。電子放出面7330には、それぞれが電子ビーム源として機能可能な複数の電子放出領域7331が設定される。例えば、72000個のアパーチャ7321が形成されている場合には、72000個の電子放出領域7331が電子放出面7330に設定されていてもよい。この場合、第1のアパーチャ7321に対応する電子放出面7330上の第1の位置に第1の電子放出領域7331が設定され、第2のアパーチャ7321に対応する電子放出面7330上の第2の位置(つまり、第1の位置とは異なる(つまり、離れた)位置)に第2の電子放出領域7331が設定され、第3のアパーチャ7321に対応する電子放出面7330上の第2の位置(つまり、第1から第2の位置とは異なる(つまり、離れた)位置)に第3の電子放出領域7331が設定され、・・・、第K(但し、Kは、アパーチャ7321の数を示す)のアパーチャ7321に対応する電子放出面7330上の第Kの位置(つまり、第1から第K-1の位置とは異なる(つまり、離れた)位置)に第Kの電子放出領域7331が設定される。 The light EL from each projection lens 72 or the projection lens 720 is incident on the alkali photoelectric layer 733 via the plate member 731 and the aperture 7321 corresponding to each projection lens 72. At this time, each projection lens 72 transfers the image of the light emitting surface (for example, light emission surface 719) of the light emitting device 71 corresponding to each projection lens 72 via the plate member 731 and the aperture 7321 corresponding to each projection lens 72. Is formed on the alkaline photoelectric layer 733. As a result, the electron beam EB having a cross section corresponding to the shape of the aperture 7321 is emitted downward from the alkali photoelectric layer 733 by the photoelectric effect (that is, photoelectric conversion). At this time, since the alkali photoelectric layer 733 includes the plurality of apertures 7321 and each of the plurality of apertures 7321 is irradiated with light EL, the alkali photoelectric layer 733 can emit a plurality of electron beams EB. That is, the electron emission surface (substantially, photoelectric conversion surface) 7330 of the alkali photoelectric layer 733 has a plurality of electron emission regions capable of emitting a plurality of electron beams EB at positions corresponding to the plurality of apertures 7321, respectively. 7331 is set. On the electron emission surface 7330, a plurality of electron emission regions 7331 each of which can function as an electron beam source are set. For example, when 72,000 apertures 7321 are formed, 72000 electron emission regions 7331 may be set on the electron emission surface 7330. In this case, a first electron emission region 7331 is set at a first position on the electron emission surface 7330 corresponding to the first aperture 7321, and a second electron emission region 7331 on the electron emission surface 7330 corresponding to the second aperture 7321 is set. The second electron-emitting region 7331 is set at a position (that is, a position different from (that is, distant from) the first position), and a second position (on the electron-emitting surface 7330 corresponding to the third aperture 7321). That is, the third electron-emitting region 7331 is set at a position different from (ie, separated from) the first and second positions,..., K-th (where K indicates the number of apertures 7321). ) Is set at the K-th position on the electron-emitting surface 7330 corresponding to the aperture 7321 (that is, a position different from (ie, distant from) the first to (K−1) -th positions). Is .
 各電子放出領域7331は、各電子放出領域7331に対応する発光デバイス71が光ELを射出している場合には、電子ビームEBを放出する。一方で、各電子放出領域7331は、各電子放出領域7331に対応する発光デバイス71が光ELを射出していない場合には、電子ビームEBを放出しない。従って、制御装置4が複数の発光デバイス71の発光状態を個別に制御すれば、複数の電子ビームEBのオン・オフ状態が個別に制御可能となる。 Each electron emission region 7331 emits an electron beam EB when the light emitting device 71 corresponding to each electron emission region 7331 emits light EL. On the other hand, each electron emission region 7331 does not emit the electron beam EB when the light emitting device 71 corresponding to each electron emission region 7331 does not emit light EL. Therefore, if the control device 4 individually controls the light emitting states of the plurality of light emitting devices 71, the on / off states of the plurality of electron beams EB can be individually controlled.
 (1-3)電子ビーム光学系8の構造
 続いて、図8を参照しながら、電子ビーム光学系8の構造について説明する。図8は、電子ビーム光学系8の構造を示す断面図である。
(1-3) Structure of Electron Beam Optical System 8 Next, the structure of the electron beam optical system 8 will be described with reference to FIG. FIG. 8 is a sectional view showing the structure of the electron beam optical system 8.
 図8に示すように、電子ビーム光学系8は、筐体81と、加速器82と、集束レンズ83と、アパーチャ板84と、対物レンズ85と、反射電子検出装置86とを備える。 As shown in FIG. 8, the electron beam optical system 8 includes a housing 81, an accelerator 82, a focusing lens 83, an aperture plate 84, an objective lens 85, and a reflected electron detection device 86.
 筐体81は、電磁場を遮蔽可能な円筒状の筐体(言い換えれば、カラムセル)である。筐体81の上端は、ベースプレート61の下面に接続されている。筐体81の内部空間811には、加速器82と、集束レンズ83と、アパーチャ板84と、対物レンズ85とが収容されている。但し、加速器82、集束レンズ83、アパーチャ板84及び対物レンズ85の少なくとも一部が筐体81の外部に配置されていてもよい。 The housing 81 is a cylindrical housing (in other words, a column cell) that can shield an electromagnetic field. The upper end of the housing 81 is connected to the lower surface of the base plate 61. An accelerator 82, a focusing lens 83, an aperture plate 84, and an objective lens 85 are housed in an internal space 811 of the housing 81. However, at least a part of the accelerator 82, the focusing lens 83, the aperture plate 84, and the objective lens 85 may be arranged outside the housing 81.
 筐体81の内部空間811には、上述した電子ビーム生成装置7の少なくとも一部(特に、アルカリ光電層733)が配置されている。更に、内部空間811は、電子ビーム生成装置7が放出する複数の電子ビームEBが伝搬する空間となる。このため、筐体81の内部空間811は、アルカリ光電層73及び電子ビームEBが大気圧環境下に暴露されないように、真空空間となっている。内部空間811の真空度は、筐体81の外部の真空室64の真空度よりも高くてもよい。内部空間811の真空引きと、真空室64の真空引きとが別々に行われてもよい。尚、ベースプレート61の貫通孔612に配置される電子ビーム生成装置7が、内部空間811と筐体81の外部空間(特に、ステージチャンバ1の外部空間であって、非真空空間)との真空隔壁としても用いられてもよい。 少 な く と も In the internal space 811 of the housing 81, at least a part (particularly, the alkali photoelectric layer 733) of the above-described electron beam generator 7 is arranged. Further, the internal space 811 is a space in which a plurality of electron beams EB emitted from the electron beam generation device 7 propagate. For this reason, the internal space 811 of the housing 81 is a vacuum space so that the alkali photoelectric layer 73 and the electron beam EB are not exposed to the atmospheric pressure environment. The degree of vacuum in the internal space 811 may be higher than the degree of vacuum in the vacuum chamber 64 outside the housing 81. The evacuation of the internal space 811 and the evacuation of the vacuum chamber 64 may be performed separately. Note that the electron beam generating device 7 arranged in the through hole 612 of the base plate 61 serves as a vacuum partition between the internal space 811 and the external space of the housing 81 (particularly, the external space of the stage chamber 1 and a non-vacuum space). May also be used.
 加速器82は、電子ビーム生成装置7が放出する複数の電子ビームEBを加速するための引き出し電極である。但し、複数の電子ビームEBを加速させなくてもよい場合には、電子ビーム光学系8は、加速器82を備えていなくてもよい。 The accelerator 82 is an extraction electrode for accelerating a plurality of electron beams EB emitted from the electron beam generator 7. However, when it is not necessary to accelerate a plurality of electron beams EB, the electron beam optical system 8 may not include the accelerator 82.
 集束レンズ83は、複数の電子ビームEBを収束させるための電子レンズである。集束レンズ83は、複数の電子ビームEBに電場を作用させる電場レンズであってもよいし、複数の電子ビームEBに磁場を作用させる磁場レンズであってもよい。 The focusing lens 83 is an electronic lens for converging a plurality of electron beams EB. The focusing lens 83 may be an electric field lens that applies an electric field to the plurality of electron beams EB, or may be a magnetic lens that applies a magnetic field to the plurality of electron beams EB.
 アパーチャ板84は、集束レンズ83によって収束した複数の電子ビームEBが通過可能な開口841が形成された絞り機構である。 The aperture plate 84 is a diaphragm mechanism in which an opening 841 through which a plurality of electron beams EB converged by the focusing lens 83 can pass is formed.
 対物レンズ85は、複数の電子ビームEBを所定の縮小倍率でウェハWの表面に結像可能な電子レンズである。その結果、複数の電子ビームEBは、筐体81の下方端に形成される射出口811を介して電子ビーム光学系8からウェハWに向けて射出される。電子ビーム光学系8が射出した複数の電子ビームEBは、クーリングプレート63の貫通孔631を介してウェハWに照射される。尚、対物レンズ85は、複数の電子ビームEBに電場を作用させる電場レンズであってもよいし、複数の電子ビームEBに磁場を作用させる磁場レンズであってもよい。対物レンズ85を含む電子ビーム光学系8の縮小倍率は任意であるが、例えば、1/200、1/120又は1/80であってもよい。 The objective lens 85 is an electronic lens capable of forming an image of the plurality of electron beams EB on the surface of the wafer W at a predetermined reduction magnification. As a result, the plurality of electron beams EB are emitted toward the wafer W from the electron beam optical system 8 via the emission ports 811 formed at the lower end of the housing 81. The plurality of electron beams EB emitted from the electron beam optical system 8 are applied to the wafer W through the through holes 631 of the cooling plate 63. Note that the objective lens 85 may be an electric field lens that applies an electric field to the plurality of electron beams EB, or a magnetic field lens that applies a magnetic field to the plurality of electron beams EB. The reduction magnification of the electron beam optical system 8 including the objective lens 85 is arbitrary, but may be, for example, 1/200, 1/120 or 1/80.
 反射電子検出装置86は、筐体81の射出口811の下方において、複数の電子ビームEBの経路とは重複しない位置に配置される。図8に示す例では、反射電子検出装置86は、クーリングプレート63の貫通孔631の内部に配置されている。反射電子検出装置86は、pn接合やpin接合の半導体を使用した半導体形反射電子検出装置である。反射電子検出装置86は、例えば、ウェハWのアライメントを行うために、ウェハW上に形成されたアライメントマーク等から発生する反射電子を検出する。反射電子検出装置86の検出結果は、制御装置4に出力される。 The backscattered electron detection device 86 is arranged below the emission port 811 of the housing 81 at a position that does not overlap with the paths of the plurality of electron beams EB. In the example shown in FIG. 8, the backscattered electron detection device 86 is arranged inside the through hole 631 of the cooling plate 63. The backscattered electron detector 86 is a semiconductor backscattered electron detector using a pn junction or pin junction semiconductor. The backscattered electron detector 86 detects, for example, backscattered electrons generated from an alignment mark or the like formed on the wafer W in order to align the wafer W. The detection result of the backscattered electron detection device 86 is output to the control device 4.
 尚、電子ビーム光学系8は、電子ビームEBが所定の光学面(例えば、電子ビームEBの光路に交差する光学面)上に形成する像の回転量(つまり、θZ方向の位置)、当該像の倍率、及び、結像位置に対応する焦点位置のいずれか一つを調整可能な調整器(例えば、電磁レンズ)を含んでいてもよい。電子ビーム光学系8は、例えば、電子ビームEBを偏向可能な偏向器を備えていてもよい。 The electron beam optical system 8 determines the amount of rotation (that is, the position in the θZ direction) of an image formed by the electron beam EB on a predetermined optical surface (for example, an optical surface that intersects the optical path of the electron beam EB). An adjuster (for example, an electromagnetic lens) that can adjust any one of the magnification and the focal position corresponding to the imaging position may be included. The electron beam optical system 8 may include, for example, a deflector capable of deflecting the electron beam EB.
 本実施形態では、光学システム3は複数の電子ビーム装置5を備えている(つまり、複数の電子ビーム光学系8)を備えているため、電子ビームEBの照射が、複数の電子ビーム装置5によって並列して行われる。ここで、複数の電子ビーム装置5は、ウェハW上の複数のショット領域に1対1で対応している。但し、電子ビーム装置5の数は、ショット領域Sの数よりも多くてもよいし、少なくてもよい。各電子ビーム装置5は、複数の電子ビームEBを、矩形の(或いは、その他の形状の)照射領域内に照射可能である。このため、複数の電子ビーム装置5は、ウェハW上の複数のショット領域上にそれぞれ設定される複数の照射領域に対して、複数の電子ビームEBを同時に照射可能である。このような照射領域に対してウェハWを相対的に移動させながら、複数の電子ビーム装置5のそれぞれが電子ビームEBを照射すれば、ウェハW上の複数のショット領域が並列に露光される。その結果、露光装置EXは、相対的に高いスループットでウェハWを露光することができる。 In the present embodiment, since the optical system 3 includes the plurality of electron beam devices 5 (that is, the plurality of electron beam optical systems 8), the irradiation of the electron beam EB is performed by the plurality of electron beam devices 5. Performed in parallel. Here, the plurality of electron beam devices 5 correspond one-to-one to a plurality of shot areas on the wafer W. However, the number of the electron beam devices 5 may be larger or smaller than the number of the shot areas S. Each electron beam device 5 can irradiate a plurality of electron beams EB in a rectangular (or other shape) irradiation region. Therefore, the plurality of electron beam devices 5 can simultaneously irradiate a plurality of electron beams EB to a plurality of irradiation regions respectively set on a plurality of shot regions on the wafer W. When each of the plurality of electron beam devices 5 irradiates the electron beam EB while relatively moving the wafer W to such an irradiation region, a plurality of shot regions on the wafer W are exposed in parallel. As a result, the exposure apparatus EX can expose the wafer W at a relatively high throughput.
 一例として、上述したように、露光装置EXが、45個の電子ビーム装置5を備えており、且つ、直径が300mmのウェハWを露光対象としている場合には、電子ビーム装置5の光軸(つまり、電子ビーム光学系8の光軸AX)の配置間隔は、43mmであってもよい。この場合、1つの電子ビーム装置5が露光するショット領域は、最大で43mm×43mmの矩形領域となる。このため、上述したように、ウェハステージ22の移動ストロークが50mmもあれば、全てのショット領域を適切に露光可能となる。但し、電子ビーム装置5の数は、45個に限られず、ウェハWの直径及びウェハステージ22のストローク等に基づいて設定されてもよい。 As an example, as described above, when the exposure apparatus EX includes 45 electron beam devices 5 and targets a wafer W having a diameter of 300 mm as an exposure target, the optical axis of the electron beam device 5 ( That is, the arrangement interval of the optical axis AX) of the electron beam optical system 8 may be 43 mm. In this case, the shot area exposed by one electron beam device 5 is a rectangular area having a maximum size of 43 mm × 43 mm. Therefore, as described above, if the movement stroke of the wafer stage 22 is as large as 50 mm, all the shot areas can be appropriately exposed. However, the number of the electron beam devices 5 is not limited to 45, and may be set based on the diameter of the wafer W, the stroke of the wafer stage 22, and the like.
 (2)露光装置EXによる露光動作
 続いて、露光装置EXによる露光動作(つまり、露光方法)について説明する。上述したように、露光装置EXは、コンプリメンタリ・リソグラフィに用いられる。このため、露光装置EXによるウェハWの露光に先立って、光を用いてウェハWを露光する露光装置(例えば、ArF光源、KrF光源若しくはその他の光源からの光を用いてウェハWを露光する液浸露光装置又はドライ露光装置)等によって、ウェハWにラインアンドスペースパターン(以降、“L/Sパターン”と称する)が形成される。その後、コータ等によって、L/Sパターンが形成されたウェハWに、電子線レジストが塗布される。露光装置EXは、このL/Sパターンが形成され且つ電子線レジストが塗布されたウェハWを露光対象としている。
(2) Exposure Operation by Exposure Apparatus Next, an exposure operation (that is, an exposure method) by the exposure apparatus EX will be described. As described above, the exposure apparatus EX is used for complementary lithography. Therefore, prior to exposure of the wafer W by the exposure apparatus EX, an exposure apparatus that exposes the wafer W using light (for example, a liquid that exposes the wafer W using light from an ArF light source, a KrF light source, or another light source). A line and space pattern (hereinafter, referred to as an “L / S pattern”) is formed on the wafer W by an immersion exposure apparatus or a dry exposure apparatus. Thereafter, an electron beam resist is applied to the wafer W on which the L / S pattern has been formed by a coater or the like. The exposure apparatus EX exposes the wafer W on which the L / S pattern is formed and the electron beam resist is applied.
 ウェハWを露光するにあたって、まず、ステージチャンバ1内において、ウェハステージ22がウェハWをロードされる。ウェハステージ22は、ロードしたウェハWを保持(例えば、吸着)する。 In exposing the wafer W, first, the wafer stage 22 is loaded with the wafer W in the stage chamber 1. The wafer stage 22 holds (eg, sucks) the loaded wafer W.
 その後、ウェハW上の複数のショット領域のそれぞれに対応してスクライブライン(つまり、ストリートライン)に形成された少なくとも1つのアライメントマークに対して、各ショット領域に対応する電子ビーム装置5が電子ビームEBを照射する。その後、反射電子検出装置86は、少なくとも1つのアライメントマークからの反射電子を検出する。その後、制御装置4は、反射電子検出装置86の検出結果(つまり、アライメントマークの検出結果)に基づいて、ウェハWの全点アライメント計測を行う。露光装置EXは、この全点アライメント計測の結果に基づいて、ウェハW上の複数のショット領域に対する複数の電子ビーム装置5による露光を開始する。つまり、露光装置EXは、ウェハW上に形成されたL/Sパターンにカットパターンを形成してL/Sパターンを切断するための露光を開始する。例えば、ウェハW上に形成されたX軸方向を周期方向とするL/Sパターンに対するカットパターンを形成する際に、露光装置EXは、制御装置4の制御下で、ウェハWをY軸方向に走査しつつ、複数の電子ビームEBの照射タイミングを制御する。尚、露光装置EXは、全点アライメント計測を行わずに、ウェハWの一部のショット領域に対応して形成されたアライメントマークの検出を行い、その結果に基づいて複数のショット領域の露光を開始してもよい。また、ステージチャンバ1の外部でアライメントマークの検出が行われてもよい。この場合、露光装置EXは、ステージチャンバ1の内部でアライメントマークの検出を行わなくてもよい。 After that, the electron beam device 5 corresponding to each shot area, with respect to at least one alignment mark formed on a scribe line (that is, a street line) corresponding to each of the plurality of shot areas on the wafer W, Irradiate EB. Thereafter, the backscattered electron detection device 86 detects backscattered electrons from at least one alignment mark. Thereafter, the control device 4 performs all-point alignment measurement of the wafer W based on the detection result of the backscattered electron detection device 86 (that is, the detection result of the alignment mark). The exposure apparatus EX starts exposure of a plurality of shot areas on the wafer W by the plurality of electron beam devices 5 based on the result of the all-point alignment measurement. That is, the exposure apparatus EX starts exposure for forming a cut pattern on the L / S pattern formed on the wafer W and cutting the L / S pattern. For example, when forming a cut pattern for an L / S pattern having a periodic direction in the X-axis direction formed on the wafer W, the exposure apparatus EX moves the wafer W in the Y-axis direction under the control of the controller 4. The irradiation timing of the plurality of electron beams EB is controlled while scanning. Note that the exposure apparatus EX detects alignment marks formed corresponding to some shot areas of the wafer W without performing all-point alignment measurement, and performs exposure of a plurality of shot areas based on the detection result. You may start. Further, the detection of the alignment mark may be performed outside the stage chamber 1. In this case, the exposure apparatus EX does not need to detect the alignment mark inside the stage chamber 1.
 ここで、電子ビーム生成装置7(特に、複数の発光デバイス71)を用いた露光シーケンスについて説明する。ここでは、ウェハW上のある領域内に互いに隣接してX軸方向及びY軸方向のそれぞれに沿って並ぶように2次元配置された多数の画素領域(例えば、各アパーチャ7321を介した光ELに起因した電子ビームEBの照射領域と一致する領域であって、例えば10nm角の領域)の画素領域を仮想的に設定し、その全ての画素領域を露光対象とする露光シーケンスについて説明する。また、ここでは、電子ビーム生成装置7が72000個の発光デバイス71を備えており、且つ、X軸方向に所定ピッチで並ぶ6000個の発光デバイス71を含む発光デバイスアレイがY軸方向に所定ピッチで12個並ぶように72000個の発光デバイス71が配列されている例を用いて説明を進める。尚、以下では、12個の発光デバイスアレイを、それぞれ、発光デバイスアレイA、発光デバイスアレイB、・・・、及び、発光デバイスアレイLと称する。 Here, an exposure sequence using the electron beam generator 7 (particularly, a plurality of light emitting devices 71) will be described. Here, a large number of pixel areas (for example, light EL passing through each aperture 7321) are two-dimensionally arranged adjacent to each other in a certain area on the wafer W so as to be arranged along the X-axis direction and the Y-axis direction. An exposure sequence will be described in which a pixel region (for example, a region of 10 nm square) which coincides with the irradiation region of the electron beam EB caused by the above is virtually set and all the pixel regions are exposed. Further, here, the electron beam generator 7 includes 72,000 light emitting devices 71, and a light emitting device array including 6000 light emitting devices 71 arranged at a predetermined pitch in the X-axis direction has a predetermined pitch in the Y-axis direction. The description will be given using an example in which 72000 light emitting devices 71 are arranged so that 12 light emitting devices are arranged. Hereinafter, the twelve light emitting device arrays are referred to as light emitting device array A, light emitting device array B,..., And light emitting device array L, respectively.
 発光デバイスアレイAに着目して説明すると、ウェハW上にX軸方向に並ぶある行(第k行とする)の連続した6000個の画素領域に対して発光デバイスアレイAを用いた露光が開始される。この露光開始の時点では、発光デバイスアレイAからの光ELに対応する電子ビームEBは、ホームポジションにあるものとする。そして、露光装置EXは、露光開始からウェハステージ22の+Y方向(或いは、-Y方向、以下同じ)の移動(つまり、スキャン)に追従させて、電子ビームEBをホームポジションから+Y方向に偏向しながら同一の6000個の画素領域に対する露光を続行する。その結果、例えばTa秒で6000個の画素領域の露光が完了したとすると、その間にウェハステージ22は、秒速Vナノメートルで、例えばTa×Vナノメートルだけ進んでいる。ここで、説明の簡略化のため、Ta×V=96ナノメートルであるものとする。 Explaining by focusing on the light emitting device array A, exposure using the light emitting device array A is started for 6000 continuous pixel regions of a certain row (referred to as a k-th row) arranged in the X-axis direction on the wafer W. Is done. At the start of the exposure, the electron beam EB corresponding to the light EL from the light emitting device array A is at the home position. Then, the exposure apparatus EX deflects the electron beam EB from the home position to the + Y direction by following the movement (ie, scanning) of the wafer stage 22 in the + Y direction (or the −Y direction, the same applies hereinafter) from the start of exposure. Exposure to the same 6000 pixel regions is continued. As a result, for example, if exposure of 6000 pixel regions is completed in Ta seconds, the wafer stage 22 is moving at V nanometers per second, for example, Ta × V nanometers. Here, it is assumed that Ta × V = 96 nanometers for simplification of the description.
 続いて、ウェハステージ22が秒速Vナノメートルで+Y方向に24ナノメートルだけ移動している間に、露光装置EXは、電子ビームEBをホームポジションに戻す。このとき、実際にウェハWに塗布された電子線レジストが感光しないように、電子ビーム装置5は、電子ビームEBを実際には照射しない。 Subsequently, the exposure apparatus EX returns the electron beam EB to the home position while the wafer stage 22 is moving at a speed of V nanometers per second by 24 nanometers in the + Y direction. At this time, the electron beam device 5 does not actually irradiate the electron beam EB so that the electron beam resist actually applied to the wafer W is not exposed.
 このとき、露光開始時点からウェハステージ22は+Y方向に120ナノメートル進んでいるので、この時点で、第(k+12)行の連続した6000個の画素領域が、露光開始時点における第k行の6000個の画素領域と同じ位置にある。そこで、露光装置EXは、第k行の6000個の画素領域を露光する場合と同様に、第(k+12)行の連続した6000個の画素領域を露光する。 At this time, since the wafer stage 22 has advanced by 120 nanometers in the + Y direction from the exposure start time, at this time, the 6000 pixel regions in the (k + 12) th row are replaced by 6000 pixels in the kth row at the exposure start time. At the same position as the pixel areas. Thus, the exposure apparatus EX exposes 6000 consecutive pixel regions in the (k + 12) th row in the same manner as when exposing 6000 pixel regions in the kth row.
 発光デバイスアレイAによる第k行の6000個の画素領域の露光と並行して、第(k+1)行から第(k+11)行のそれぞれの6000個の画素領域は、発光デバイスアレイBから発光デバイスアレイLによってそれぞれ露光される。デバイスアレイAによる第(k+12)行の6000個の画素領域の露光と並行して、第(k+13)行から第(k+23)行のそれぞれの6000個の画素領域は、発光デバイスアレイBから発光デバイスアレイLによってそれぞれ露光される。 In parallel with the exposure of the 6000 pixel regions in the k-th row by the light-emitting device array A, the 6000 pixel regions in the (k + 1) -th to (k + 11) -th rows are shifted from the light-emitting device array B to the light-emitting device array. L respectively. In parallel with the exposure of the 6000 pixel regions in the (k + 12) th row by the device array A, the 6000 pixel regions in the (k + 13) th to (k + 23) th rows are shifted from the light emitting device array B to the light emitting device. Each is exposed by the array L.
 このようにして、露光装置EXは、ウェハW上のX軸方向の長さ60マイクロメートルの幅の領域(つまり、6000個の画素領域が分布する領域)については、ウェハステージ22をY軸方向にスキャンさせながらの露光することができる。その後、露光装置EXは、ウェハステージ22を60マイクロメートルだけX軸方向にステップ移動させた後に同様のスキャン露光を行えば、露光済みの長さ60マイクロメートルの幅の領域に対してX軸方向に隣接する新たな長さ60マイクロメートルの幅の領域を露光することができる。従って、露光装置EXは、ウェハステージ22をY軸方向に移動させながら電子ビームEBを偏向することでウェハWを露光するスキャン露光と、ウェハステージ22をX軸方向に移動させるステッピングとを交互に繰り返すことで、ウェハW上の1つのショット領域の露光を、1つの電子ビーム装置5を用いて行うことができる。また、実際には、複数の電子ビーム装置5が並行してウェハW上の互いに異なるショット領域を露光しているため、露光装置EXは、ウェハW全面を露光することができる。 In this manner, the exposure apparatus EX moves the wafer stage 22 in the Y-axis direction with respect to a region having a width of 60 micrometers in the X-axis direction on the wafer W (that is, a region in which 6000 pixel regions are distributed). Exposure can be performed while scanning. After that, the exposure apparatus EX moves the wafer stage 22 stepwise by 60 micrometers in the X-axis direction and then performs the same scan exposure, so that the exposed region having a width of 60 micrometers in the X-axis direction is exposed. Can be exposed to a new 60 micrometer wide area adjacent to. Therefore, the exposure apparatus EX alternately performs scanning exposure for exposing the wafer W by deflecting the electron beam EB while moving the wafer stage 22 in the Y-axis direction, and stepping for moving the wafer stage 22 in the X-axis direction. By repeating this, exposure of one shot area on the wafer W can be performed using one electron beam device 5. In addition, since the plurality of electron beam devices 5 actually expose different shot areas on the wafer W in parallel, the exposure device EX can expose the entire surface of the wafer W.
 更にスキャン露光中には、露光装置EXは、複数の発光デバイス71のそれぞれの発光状態(つまり、オン・オフ)を適宜切り替えることで、L/Sパターンに対してカットパターンを形成するべき箇所に電子ビームEBを照射する一方で、L/Sパターンに対してカットパターンを形成しなくてもよい箇所に電子ビームEBを照射しない。つまり、複数の電子放出領域7331のうちカットパターンを形成するべき箇所に対応する電子放出領域7331が電子ビームEBを放出する一方で、複数の電子放出領域7331のうちカットパターンを形成しなくてもよい箇所に対応する電子放出領域7331が電子ビームEBを放出しない。その結果、露光装置EXは、ウェハW上に形成されたL/Sパターンに対してカットパターンを適切に形成することができる。つまり、露光装置EXは、ウェハW上に形成されたL/Sパターンを適切に切断することができる。 Further, during the scanning exposure, the exposure apparatus EX switches the light emitting state (that is, on / off) of each of the plurality of light emitting devices 71 as appropriate, so that the cut pattern is formed on the L / S pattern. While irradiating the electron beam EB, the electron beam EB is not irradiated to a portion where a cut pattern is not required to be formed for the L / S pattern. In other words, while the electron emission region 7331 corresponding to the position where the cut pattern is to be formed among the plurality of electron emission regions 7331 emits the electron beam EB, the cut pattern may not be formed among the plurality of electron emission regions 7331. The electron emission region 7331 corresponding to a good place does not emit the electron beam EB. As a result, the exposure apparatus EX can appropriately form a cut pattern for the L / S pattern formed on the wafer W. That is, the exposure apparatus EX can appropriately cut the L / S pattern formed on the wafer W.
 (3)露光装置EXの技術的効果
 本実施形態では、露光装置EXは、複数の発光デバイス71のオン・オフを切り替えることで、複数の電子ビームEBのオン・オフを切り替えることができる。このため、露光装置EXは、ウェハW上に形成されたL/Sパターンに対してカットパターンを適切に形成することができる。例えば、露光装置EXは、ウェハW上に設定された複数のショット領域のそれぞれに形成されたL/Sパターンのうちの所望のライン上の所望の位置にカットパターンを適切に形成することができる。
(3) Technical Effect of Exposure Apparatus EX In the present embodiment, the exposure apparatus EX can switch on / off the plurality of electron beams EB by switching on / off of the plurality of light emitting devices 71. For this reason, the exposure apparatus EX can appropriately form a cut pattern for the L / S pattern formed on the wafer W. For example, the exposure apparatus EX can appropriately form a cut pattern at a desired position on a desired line among L / S patterns formed in each of a plurality of shot areas set on the wafer W. .
 更に、本実施形態では、露光装置EXは、ブランキング・アパーチャを用いて複数の電子ビームEBを偏向させることで複数の電子ビームEBのオン・オフを切り替えなくてもよい。このため、ブランキング・アパーチャにおける不要な電子(例えば、ウェハWの露光に寄与しない電子)の生成が抑制される。更に、チャージアップや磁化による複雑なディストーションの発生源となり得るブランキング・アパーチャが根本的になくなる。このため、露光装置EXから、ブランキング・アパーチャが存在することで生ずる長期的な不安定要素が排除される。 {Furthermore, in this embodiment, the exposure apparatus EX does not have to switch on / off the plurality of electron beams EB by deflecting the plurality of electron beams EB using the blanking aperture. For this reason, generation of unnecessary electrons (for example, electrons that do not contribute to exposure of the wafer W) in the blanking aperture is suppressed. Furthermore, a blanking aperture that can be a source of complicated distortion due to charge-up or magnetization is fundamentally eliminated. Therefore, a long-term unstable element caused by the presence of the blanking aperture is eliminated from the exposure apparatus EX.
 更に、本実施形態では、露光装置EXが備える発光デバイス71は、回折層716を用いて、射出する光ELの配光特性(特に、広がり角θ)を制御することができる。より具体的には、発光デバイス71は、広がり角θを制御しない場合と比較して広がり角θを小さくすることで、適切な広がり角θで光ELを射出することができる。このため、電子ビーム生成装置7は、光ELの配光特性が制御されない場合(具体的には、発光デバイス71が回折層716を備えていない場合)と比較して、複数の電子ビームEBを適切に(例えば、効率的に)生成することができる。以下、その理由について説明する。 Further, in the present embodiment, the light emitting device 71 included in the exposure apparatus EX can control the light distribution characteristics (in particular, the spread angle θ) of the emitted light EL by using the diffraction layer 716. More specifically, the light emitting device 71 can emit the light EL at an appropriate spread angle θ by making the spread angle θ smaller than when the spread angle θ is not controlled. For this reason, the electron beam generation device 7 generates a plurality of electron beams EB as compared with the case where the light distribution characteristics of the light EL are not controlled (specifically, the case where the light emitting device 71 does not include the diffraction layer 716). Properly (eg, efficiently) generated. Hereinafter, the reason will be described.
 まず、発光デバイス71が適切な広がり角θよりも大きい広がり角θで光ELを射出する場合には、発光デバイス71が適切な広がり角θで光ELを射出する場合と比較して、光電変換素子73の所望の領域(例えば、アパーチャ7321に対応する領域)に照射されなくなる光ELの割合が多くなる可能性が高い。なぜならば、発光デバイス71が適切な広がり角θよりも大きい広がり角θで光ELを射出する場合には、発光デバイス71が適切な広がり角θで光ELを射出する場合と比較して、投影レンズ72又は720が光ELを取りこむことができない方向に向けて射出される光ELの割合が多くなる可能性が高いからである。また、発光デバイス71と光電変換素子73との間に投影レンズ72又は720(或いは、投影光学系等の集光光学系)が介在しない場合には、発光デバイス71が適切な広がり角θよりも大きい広がり角θで光ELを射出すると、発光デバイス71が適切な広がり角θで光ELを射出する場合と比較して、光電変換素子73の所望の領域が存在しない方向に向けて射出される光ELの割合が多くなる可能性が高くなる。従って、発光デバイス71が適切な広がり角θよりも大きい広がり角θで光ELを射出する場合には、アルカリ光電層733に照射されなくなる光ELの割合が多くなる可能性が高くなる。つまり、発光デバイス71が適切な広がり角θよりも大きい広がり角θで光ELを射出する場合には、電子ビームEBの生成に寄与しない光ELの割合が多くなる可能性が高くなる。逆に言えば、発光デバイス71が適切な広がり角θで光ELを射出すれば、電子ビームEBの生成に寄与する光ELの割合が多くなるはずである。電子ビームEBの生成に寄与する光ELの割合が多くなればなるほど、電子ビームEBの生成効率が高くなる。このため、露光装置EXは、複数の電子ビームEBを適切に(例えば、効率的に)生成することができる。 First, when the light emitting device 71 emits the light EL at the spread angle θ larger than the appropriate spread angle θ, the light-emitting device 71 emits light EL at the appropriate spread angle θ, and There is a high possibility that the ratio of the light EL that is not irradiated to a desired region of the element 73 (for example, a region corresponding to the aperture 7321) increases. This is because when the light emitting device 71 emits the light EL at the spread angle θ larger than the appropriate spread angle θ, the light emitting device 71 emits the light EL at the appropriate spread angle θ, This is because there is a high possibility that the ratio of the light EL emitted in a direction in which the lens 72 or 720 cannot capture the light EL increases. Further, when the projection lens 72 or 720 (or a condensing optical system such as a projection optical system) is not interposed between the light emitting device 71 and the photoelectric conversion element 73, the light emitting device 71 is set at an appropriate spread angle θ. When the light EL is emitted at a large divergence angle θ, the light EL is emitted in a direction in which a desired region of the photoelectric conversion element 73 does not exist, as compared with the case where the light emitting device 71 emits the light EL at an appropriate divergence angle θ. The possibility that the ratio of the light EL increases is increased. Therefore, when the light emitting device 71 emits the light EL at the spread angle θ larger than the appropriate spread angle θ, the possibility that the ratio of the light EL that is not irradiated to the alkali photoelectric layer 733 increases is increased. That is, when the light emitting device 71 emits the light EL at the spread angle θ larger than the appropriate spread angle θ, the possibility that the proportion of the light EL not contributing to the generation of the electron beam EB increases. Conversely, if the light emitting device 71 emits the light EL at an appropriate spread angle θ, the proportion of the light EL that contributes to the generation of the electron beam EB should increase. The higher the proportion of the light EL that contributes to the generation of the electron beam EB, the higher the efficiency of generating the electron beam EB. Therefore, the exposure apparatus EX can appropriately (for example, efficiently) generate the plurality of electron beams EB.
 加えて、上述したように、電子ビーム生成装置7では、発光デバイス71が射出した光ELは、投影レンズ72を介して光電変換素子73に入射する。このため、発光デバイス71から発散するように射出される光ELは、投影レンズ72を介して、光電変換素子73に向かって収束するように光電変換素子73に入射する。この場合、発光デバイス71は、光電変換素子73の位置において光ELのビームプロファイルが所望の特性を有するように、光ELを射出することが望まれる。例えば、発光デバイス71は、光電変換素子73の位置において光ELのビームレット形状が所望の形状(例えば、アパーチャ7321に対応する位置において強度がほぼ等しくなるトップハット型の形状)となるように、光ELを射出することが望まれる。このためには、投影レンズ72から光電変換素子73に向かう光ELの収束角(実質的には、投影レンズ72の光電変換素子73側の開口数)の制約を満たす必要がある。投影レンズ72の光電変換素子73側の開口数は、投影レンズ72の倍率及び投影レンズ72の発光デバイス71側の開口数に依存する。従って、投影レンズ72の光電変換素子73側の開口数及び投影レンズ72の倍率が決定された時点で、投影レンズ72の発光デバイス71側の開口数も一義的に決まる。この場合、発光デバイス71は、投影レンズ72の発光デバイス71側の開口数に応じた広がり角θで光ELを射出しなければ、上述したように電子ビームEBの生成に寄与しない光ELの割合が多くなる可能性が高くなる。このような状況において、本実施形態では、発光デバイス71から射出される光ELの広がり角θを制御可能である。このため、発光デバイス71は、投影レンズ72の発光デバイス71側の開口数に応じた広がり角θで光ELを射出することができる。つまり、発光デバイス71は、光電変換素子73の位置において光ELのビームプロファイルが所望の特性を有するように、光ELを射出することができる。その結果、露光装置EXは、複数の電子ビームEBを適切に(例えば、効率的に)生成することができる。 In addition, as described above, in the electron beam generator 7, the light EL emitted from the light emitting device 71 enters the photoelectric conversion element 73 via the projection lens 72. Therefore, the light EL emitted so as to diverge from the light emitting device 71 enters the photoelectric conversion element 73 via the projection lens 72 so as to converge toward the photoelectric conversion element 73. In this case, it is desired that the light emitting device 71 emits the light EL so that the beam profile of the light EL has desired characteristics at the position of the photoelectric conversion element 73. For example, the light-emitting device 71 is configured such that the beamlet shape of the light EL at the position of the photoelectric conversion element 73 has a desired shape (for example, a top-hat shape at which the intensity is substantially equal at the position corresponding to the aperture 7321). It is desired to emit light EL. For this purpose, it is necessary to satisfy the restriction on the convergence angle of the light EL from the projection lens 72 toward the photoelectric conversion element 73 (substantially, the numerical aperture of the projection lens 72 on the photoelectric conversion element 73 side). The numerical aperture of the projection lens 72 on the photoelectric conversion element 73 side depends on the magnification of the projection lens 72 and the numerical aperture of the projection lens 72 on the light emitting device 71 side. Therefore, when the numerical aperture of the projection lens 72 on the photoelectric conversion element 73 side and the magnification of the projection lens 72 are determined, the numerical aperture of the projection lens 72 on the light emitting device 71 side is also uniquely determined. In this case, if the light emitting device 71 does not emit the light EL at the spread angle θ corresponding to the numerical aperture of the projection lens 72 on the light emitting device 71 side, the ratio of the light EL that does not contribute to the generation of the electron beam EB as described above. Is likely to increase. In such a situation, in the present embodiment, the spread angle θ of the light EL emitted from the light emitting device 71 can be controlled. For this reason, the light emitting device 71 can emit the light EL at the spread angle θ corresponding to the numerical aperture of the projection lens 72 on the light emitting device 71 side. That is, the light emitting device 71 can emit the light EL such that the beam profile of the light EL has desired characteristics at the position of the photoelectric conversion element 73. As a result, the exposure apparatus EX can appropriately (for example, efficiently) generate the plurality of electron beams EB.
 更に、本実施形態では、露光装置EXが備える発光デバイス71では、反射層714及び715を介して回折層716に入射する光EL1の波長分布が、量子井戸層711において発生した光EL0の波長分布とは異なる。具体的には、光EL1は、光EL0よりも狭帯域化された光となっている。その結果、発光デバイス71は、回折層716を介して、狭帯域化された光ELを射出することができる。このため、投影レンズ72及び光電変換素子73における色収差の影響が低減される。 Further, in the present embodiment, in the light emitting device 71 provided in the exposure apparatus EX, the wavelength distribution of the light EL1 incident on the diffraction layer 716 via the reflection layers 714 and 715 is the wavelength distribution of the light EL0 generated in the quantum well layer 711. And different. Specifically, the light EL1 is light having a narrower band than the light EL0. As a result, the light emitting device 71 can emit the light EL having a narrow band via the diffraction layer 716. For this reason, the influence of chromatic aberration on the projection lens 72 and the photoelectric conversion element 73 is reduced.
 加えて、光ELのエネルギーが波長に反比例することを考慮すれば、狭帯域化されていない光ELのエネルギーのばらつきと比較して、狭帯域化された光ELのエネルギーのばらつきが小さくなる。このため、このようなエネルギーのばらつきの小さい光ELから生成される電子ビームEBのエネルギーのばらつきもまた小さくなる。従って、露光装置EXは、エネルギーのばらつきの小さい(つまり、安定した)電子ビームEBを生成することができる。つまり、露光装置EXは、安定した電子ビームEBをウェハWに照射することで、ウェハWを適切に露光することができる。 In addition, considering that the energy of the light EL is inversely proportional to the wavelength, the variation in the energy of the narrowed light EL is smaller than the variation in the energy of the light EL not narrowed. For this reason, the energy variation of the electron beam EB generated from the light EL having the small energy variation is also small. Therefore, the exposure apparatus EX can generate the electron beam EB with small energy fluctuation (that is, stable). That is, the exposure apparatus EX can appropriately expose the wafer W by irradiating the wafer W with the stable electron beam EB.
 加えて、上述したように、回折層716は、回折波長範囲の光成分を回折させることで回折波長範囲の光成分の広がり角θを所望の角度に設定しやすい一方で、回折波長範囲以外の波長範囲の光成分を回折させても回折波長範囲以外の波長範囲の光成分の広がり角θを所望の角度に設定しにくい(例えば、回折波長範囲以外の波長範囲の光成分を回折させても、回折波長範囲以外の波長範囲の光成分の広がり角θが所望の角度とは異なる角度に設定されてしまう)という特性を有している場合がある。このため、仮に反射層714及び715を介することなく量子井戸層711において発生した光EL0が回折層716に入射すると、回折層716による光ELの配光特性の制御効率が悪化する可能性がある。一方で、本実施形態では、回折層716には、反射層714及び715を介して光EL1(つまり、共振波長範囲の光成分が相対的に増幅された状態にある光EL1)が入射してくる。このため、共振波長範囲と回折波長範囲とが少なくとも部分的に重複していれば、回折層716は、反射層715から入射してくる光EL1を適切に回折させて、発光デバイス71から射出される光ELの広がり角θを所望の角度に適切に設定することができる。つまり、反射層714及び715は、光ELの共振(つまり、狭帯域化)に寄与しつつも、回折層716による光ELの配光特性の制御効率の向上にも寄与している。従って、反射層714及び715と回折層716との双方を備える発光デバイス71を備える露光装置EXでは、回折層716を備える一方で反射層714及び715を備えない比較例の露光装置と比較して、回折層716による光ELの配光特性の制御効率がより一層向上する。このため、露光装置EXは、比較例の露光装置と比較して、回折層716に起因した上述した技術的効果をより適切に享受することができる。つまり、露光装置EXは、比較例の露光装置と比較して、複数の電子ビームEBをより一層適切に(例えば、より一層効率的に)生成することができる。 In addition, as described above, the diffractive layer 716 diffracts the light component in the diffraction wavelength range to easily set the divergence angle θ of the light component in the diffraction wavelength range to a desired angle. Diffraction of the light component in the wavelength range makes it difficult to set the spread angle θ of the light component in the wavelength range other than the diffraction wavelength range to a desired angle (for example, even if the light component in the wavelength range other than the diffraction wavelength range is diffracted). (The spread angle θ of the light component in a wavelength range other than the diffraction wavelength range is set to an angle different from the desired angle) in some cases. Therefore, if the light EL0 generated in the quantum well layer 711 does not pass through the reflection layers 714 and 715 and enters the diffraction layer 716, the control efficiency of the light distribution characteristics of the light EL by the diffraction layer 716 may be deteriorated. . On the other hand, in the present embodiment, the light EL1 (that is, the light EL1 in which the light component in the resonance wavelength range is relatively amplified) enters the diffraction layer 716 via the reflection layers 714 and 715. come. Therefore, if the resonance wavelength range and the diffraction wavelength range at least partially overlap, the diffraction layer 716 appropriately diffracts the light EL1 incident from the reflection layer 715 and emits the light EL1 from the light emitting device 71. The spread angle θ of the light EL can be appropriately set to a desired angle. That is, the reflection layers 714 and 715 contribute to the improvement of the control efficiency of the light distribution characteristics of the light EL by the diffraction layer 716 while contributing to the resonance (that is, narrowing of the band) of the light EL. Therefore, the exposure apparatus EX including the light emitting device 71 including both the reflection layers 714 and 715 and the diffraction layer 716 is compared with the exposure apparatus of the comparative example including the diffraction layer 716 but not including the reflection layers 714 and 715. In addition, the efficiency of controlling the light distribution characteristics of the light EL by the diffraction layer 716 is further improved. For this reason, the exposure apparatus EX can more appropriately receive the above-described technical effects caused by the diffraction layer 716 as compared with the exposure apparatus of the comparative example. That is, the exposure apparatus EX can generate the plurality of electron beams EB more appropriately (for example, more efficiently) than the exposure apparatus of the comparative example.
 (4)変形例
 続いて、発光デバイス71の変形例について説明する。
(4) Modified Example Next, a modified example of the light emitting device 71 will be described.
 (4-1)第1変形例
 はじめに、図9から図11を参照しながら、第1変形例の発光デバイス71aについて説明する。図9は、第1変形例の発光デバイス71aの構造を示す断面図である。図10は、図10及び図11のそれぞれは、第1変形例の発光デバイス71aの構造の他の例を示す断面図である。
(4-1) First Modification First , a light emitting device 71a according to a first modification will be described with reference to FIGS. FIG. 9 is a cross-sectional view illustrating a structure of a light emitting device 71a according to a first modification. FIG. 10 is a cross-sectional view illustrating another example of the structure of the light emitting device 71a according to the first modified example.
 第1変形例の発光デバイス71aは、上述した発光デバイス71と比較して、光EL1の回折を利用して光ELの配光特性を制御することに代えて、光EL1の屈折を利用して光ELの配光特性を制御するという点で異なっている。 The light emitting device 71a of the first modified example utilizes the refraction of the light EL1 instead of controlling the light distribution characteristics of the light EL using the diffraction of the light EL1 as compared with the light emitting device 71 described above. The difference is that the light distribution characteristics of the light EL are controlled.
 光EL1の屈折を利用して光ELの配光特性を制御するために、発光デバイス71aは、図9に示すように、回折層716に代えてマイクロレンズ716aを備えているという点で異なっている。発光デバイス71aのその他の特徴は、発光デバイス71のその他の特徴と同一であってもよい。 In order to control the light distribution characteristics of the light EL using the refraction of the light EL1, the light emitting device 71a differs from the light emitting device 71a in that a microlens 716a is provided instead of the diffraction layer 716 as shown in FIG. I have. Other features of the light emitting device 71a may be the same as other features of the light emitting device 71.
 マイクロレンズ716aは、発光デバイス71aから射出された光ELが伝搬する空間と発光デバイス71aとの界面に配置される。このため、発光デバイス71aは、マイクロレンズ716aから発光デバイス71aの外部の空間に向けて、光ELを射出する。このため、マイクロレンズ716aの表面(特に、投影レンズ72側を向いた下面)の少なくとも一部は、光ELが射出される光射出面719を構成する。マイクロレンズ716aの表面(特に、投影レンズ72側を向いた下面)は、光射出面719を含む。 The microlens 716a is arranged at the interface between the space in which the light EL emitted from the light emitting device 71a propagates and the light emitting device 71a. Therefore, the light emitting device 71a emits the light EL from the micro lens 716a toward the space outside the light emitting device 71a. Therefore, at least a part of the surface of the microlens 716a (particularly, the lower surface facing the projection lens 72 side) forms a light exit surface 719 from which the light EL is emitted. The surface of the microlens 716a (particularly, the lower surface facing the projection lens 72) includes a light exit surface 719.
 マイクロレンズ716aは、隣接する反射層715からの光EL0が、空間(例えば、真空空間及び気体空間の少なくとも一方)を介さずにマイクロレンズ716aに入射するように配置される。尚、第1変形例では、マイクロレンズ716aに入射する光EL0を、“光EL1”と称し、マイクロレンズ716aに入射する前の光EL0(例えば、量子井戸層711において発生した光EL0)と区別する。この場合、例えば、マイクロレンズ716aは、隣接する反射層715との間に空間(例えば、真空空間及び気体空間の少なくとも一方)が介在しないように配置される。但し、図10に示すように、マイクロレンズ716aは、隣接する反射層715からの光EL1が、空間(例えば、真空空間及び気体空間の少なくとも一方)を介してマイクロレンズ716aに入射するように配置されていてもよい。この場合、例えば、マイクロレンズ716aは、隣接する反射層715との間に空間(例えば、真空空間及び気体空間の少なくとも一方)が介在するように配置されてもよい。 The microlens 716a is arranged such that the light EL0 from the adjacent reflective layer 715 enters the microlens 716a without passing through a space (for example, at least one of a vacuum space and a gas space). In the first modification, the light EL0 incident on the microlens 716a is referred to as “light EL1” and is distinguished from the light EL0 before entering the microlens 716a (for example, the light EL0 generated in the quantum well layer 711). I do. In this case, for example, the microlens 716a is arranged so that a space (for example, at least one of a vacuum space and a gas space) does not intervene with the adjacent reflective layer 715. However, as shown in FIG. 10, the microlenses 716a are arranged such that the light EL1 from the adjacent reflective layer 715 enters the microlenses 716a via a space (for example, at least one of a vacuum space and a gas space). It may be. In this case, for example, the microlenses 716a may be arranged so that a space (for example, at least one of a vacuum space and a gas space) is interposed between the microlens 716a and the adjacent reflective layer 715.
 マイクロレンズ716aは、光EL1を屈折させて、発光デバイス71aからの光ELの配光特性を制御する。つまり、マイクロレンズ716aは、光EL1の屈折を利用して光ELの配光特性を制御するための光学素子として機能することが可能である。尚、第1変形例におけるマイクロレンズ716aによる配光特性の制御態様は、上述した回折層716による配光特性の制御態様と同様である。つまり、マイクロレンズ716aは、光EL1を屈折させない場合と比較して光ELの広がり角θが小さくなるように、光EL1を屈折させてもよい。マイクロレンズ716aは、光EL1を屈折させない場合と比較して光ELの広がり角θが小さくなることで所望の角度になるように、光EL1を屈折させてもよい。このため、マイクロレンズ716aによる配光特性の制御態様の詳細な説明は省略する。 The microlens 716a refracts the light EL1 and controls the light distribution characteristics of the light EL from the light emitting device 71a. That is, the microlens 716a can function as an optical element for controlling the light distribution characteristics of the light EL using the refraction of the light EL1. The control mode of the light distribution characteristics by the microlenses 716a in the first modification is the same as the control mode of the light distribution characteristics by the diffraction layer 716 described above. That is, the microlens 716a may refract the light EL1 such that the spread angle θ of the light EL is smaller than when the light EL1 is not refracted. The microlens 716a may refract the light EL1 such that the light EL1 has a desired divergence angle by reducing the divergence angle θ of the light EL as compared with a case where the light EL1 is not refracted. For this reason, a detailed description of the manner of controlling the light distribution characteristics by the microlenses 716a is omitted.
 発光デバイス71は、単一のマイクロレンズ716aを備えている。但し、図11に示すように、発光デバイス71aは、複数のマイクロレンズ716aを備えていてもよい。この場合、複数のマイクロレンズ716aが協働して、光ELの配光特性を制御する。尚、図11は、発光デバイス71aが2個のマイクロレンズ716aを備える例を示している。 The light emitting device 71 includes a single microlens 716a. However, as shown in FIG. 11, the light emitting device 71a may include a plurality of microlenses 716a. In this case, the plurality of microlenses 716a cooperate to control the light distribution characteristics of the light EL. FIG. 11 shows an example in which the light emitting device 71a includes two microlenses 716a.
 このような第1変形例の発光デバイス71aを発光デバイス71に代えて備える露光装置EXもまた、上述した発光デバイス71を備える露光装置EXが享受可能な効果と同様の効果を享受することができる。また、第1変型例においては、光EL1が光EL0と比較して波長分布が狭帯域化された光となっているため、マイクロレンズ716aの色収差に起因する配光特性の制御の困難さが低減されるという効果も享受可能である。 The exposure apparatus EX including the light emitting device 71a of the first modified example in place of the light emitting device 71 can also enjoy the same effects as the above-described exposure apparatus EX including the light emitting device 71. . Further, in the first modified example, since the light EL1 is light whose wavelength distribution is narrower than that of the light EL0, it is difficult to control the light distribution characteristics due to the chromatic aberration of the microlens 716a. The effect of being reduced can also be enjoyed.
 尚、発光デバイス71aは、マイクロレンズ716aに加えて回折層716を備えていてもよい。この場合、発光デバイス71aは、光ELの配光特性をより適切に制御できる可能性がある。 The light emitting device 71a may include a diffraction layer 716 in addition to the micro lens 716a. In this case, the light emitting device 71a may be able to more appropriately control the light distribution characteristics of the light EL.
 (4-2)第2変形例
 続いて、図12を参照しながら、第2変形例の発光デバイス71bについて説明する。図12は、第2変形例の発光デバイス71bの構造を示す断面図である。
(4-2) Second Modification Next, a light emitting device 71b according to a second modification will be described with reference to FIG. FIG. 12 is a cross-sectional view illustrating a structure of a light emitting device 71b according to a second modification.
 第2変形例の発光デバイス71bは、上述した発光デバイス71と比較して、光EL1の回折を利用して光ELの配光特性を制御することに代えて、光EL1の反射を利用して光ELの配光特性を制御するという点で異なっている。 The light emitting device 71b of the second modified example utilizes the reflection of the light EL1 instead of controlling the light distribution characteristics of the light EL using the diffraction of the light EL1 as compared with the light emitting device 71 described above. The difference is that the light distribution characteristics of the light EL are controlled.
 光EL1の反射を利用して光ELの配光特性を制御するために、発光デバイス71bは、図12に示すように、回折層716に代えて反射層716bを備えているという点で異なっている。発光デバイス71bのその他の特徴は、発光デバイス71のその他の特徴と同一であってもよい。但し、発光デバイス71bが回折層716を備えていないため、発光デバイス71bの光射出面719は、反射層715の表面(特に、投影レンズ72側を向いた下面)の少なくとも一部によって構成される。反射層715の表面(特に、投影レンズ72側を向いた下面)は、光射出面719を含む。或いは、光射出面719は、反射層715の表面に形成される不図示の他の層の少なくとも一部によって構成されてもよい。反射層715の表面に形成される不図示の他の層が、光射出面719を含んでいてもよい。 In order to control the light distribution characteristics of the light EL using the reflection of the light EL1, the light emitting device 71b differs from the light emitting device 71b in that the light emitting device 71b includes a reflection layer 716b instead of the diffraction layer 716 as shown in FIG. I have. Other features of the light emitting device 71b may be the same as other features of the light emitting device 71. However, since the light emitting device 71b does not include the diffraction layer 716, the light emitting surface 719 of the light emitting device 71b is configured by at least a part of the surface of the reflective layer 715 (particularly, the lower surface facing the projection lens 72). . The surface of the reflective layer 715 (particularly, the lower surface facing the projection lens 72) includes a light exit surface 719. Alternatively, the light exit surface 719 may be constituted by at least a part of another layer (not shown) formed on the surface of the reflective layer 715. Another layer (not shown) formed on the surface of the reflective layer 715 may include the light exit surface 719.
 反射層716bは、量子井戸層711において発生した光EL0及び/又は反射層715が反射した光EL0を反射して、発光デバイス71bからの光ELの配光特性を制御する。つまり、反射層716bは、光EL0の反射を利用して光ELの配光特性を制御するための光学素子として機能することが可能である。尚、第2変形例における反射層716bによる配光特性の制御態様は、上述した回折層716による配光特性の制御態様と同様である。つまり、反射層716bは、光EL0を反射しない場合と比較して光ELの広がり角θが小さくなるように、光EL0を反射してもよい。反射層716bは、光EL0を反射しない場合と比較して光ELの広がり角θが小さくなることで所望の角度となるように、光EL0を反射してもよい。このため、反射層716bによる配光特性の制御態様の詳細な説明は省略する。 The reflection layer 716b reflects the light EL0 generated in the quantum well layer 711 and / or the light EL0 reflected by the reflection layer 715, and controls the light distribution characteristics of the light EL from the light emitting device 71b. That is, the reflective layer 716b can function as an optical element for controlling the light distribution characteristics of the light EL using the reflection of the light EL0. Note that the control mode of the light distribution characteristics by the reflective layer 716b in the second modification is the same as the control mode of the light distribution characteristics by the diffraction layer 716 described above. That is, the reflection layer 716b may reflect the light EL0 so that the spread angle θ of the light EL is smaller than that in the case where the light EL0 is not reflected. The reflection layer 716b may reflect the light EL0 such that the spread angle θ of the light EL becomes smaller than the case where the light EL0 is not reflected, so that the light EL0 has a desired angle. Therefore, a detailed description of the manner of controlling the light distribution characteristics by the reflective layer 716b is omitted.
 反射層716bは、光ELの広がり角θが小さくなる(更には、所望の角度となる)ように光EL0を反射可能な位置に配置されていてもよい。図12に示す例では、反射層716bは、量子井戸層711から見て光射出面719とは反対側に配置されている。もちろん、反射層716bは、図12に示す位置とは異なる位置に配置されていてもよい。 The reflection layer 716b may be arranged at a position where the light EL0 can be reflected such that the spread angle θ of the light EL becomes small (and further, becomes a desired angle). In the example shown in FIG. 12, the reflection layer 716b is disposed on the side opposite to the light exit surface 719 when viewed from the quantum well layer 711. Of course, the reflective layer 716b may be arranged at a position different from the position shown in FIG.
 図12に示す例では、反射層716bが量子井戸層711から見て光射出面719とは反対側に配置されているため、反射層716bを、光EL0を反射して共振させるための上述した反射層714としても用いてもよい。つまり、反射層716bを、光EL0を反射して共振させるための光学素子(つまり、光ELを狭帯域化するための光学素子)と、光ELの配光特性を制御するための光学素子として兼用してもよい。このため、図12に示す例では、発光デバイス71bは、上述した反射層714を備えていない。もちろん、発光デバイス71bは、反射層716bとは別に反射層714を備えていてもよい。 In the example shown in FIG. 12, since the reflection layer 716b is arranged on the opposite side to the light exit surface 719 when viewed from the quantum well layer 711, the reflection layer 716b reflects the light EL0 to resonate as described above. The reflective layer 714 may be used. That is, the reflection layer 716b is used as an optical element for reflecting the light EL0 to resonate (that is, an optical element for narrowing the band of the light EL) and an optical element for controlling the light distribution characteristics of the light EL. They may be combined. For this reason, in the example shown in FIG. 12, the light emitting device 71b does not include the above-described reflective layer 714. Of course, the light emitting device 71b may include the reflection layer 714 separately from the reflection layer 716b.
 反射層716bは、光EL0を反射可能である限りは、どのような材料から構成されていてもよい。例えば、反射層716bは、金属材料から構成されていてもよい。例えば、反射層716bは、反射層715(更には、上述した反射層714)と同様に、半導体材料から構成されていてもよい。 The reflective layer 716b may be made of any material as long as it can reflect the light EL0. For example, the reflective layer 716b may be made of a metal material. For example, the reflective layer 716b may be made of a semiconductor material, like the reflective layer 715 (further, the reflective layer 714 described above).
 反射層716bは、光ELの広がり角θが小さくなる(更には、所望の角度となる)ように光EL0を反射可能な形状を有していてもよい。例えば、反射層716bの反射面は、平面を含んでいてもよい。例えば、反射層716bの反射面は、電子ビーム装置5の光軸(典型的には、電子ビーム光学系8の光軸AX)に直交する平面を含んでいてもよい。例えば、反射層716bの反射面は、電子ビーム装置5の光軸に対して傾斜した平面を含んでいてもよい。例えば、反射層716bの反射面は、電子ビーム装置5の光軸に平行な平面を含んでいてもよい。例えば、反射層716bの反射面は、曲面を含んでいてもよい。 The reflective layer 716b may have a shape capable of reflecting the light EL0 such that the spread angle θ of the light EL is reduced (and further, becomes a desired angle). For example, the reflection surface of the reflection layer 716b may include a flat surface. For example, the reflection surface of the reflection layer 716b may include a plane orthogonal to the optical axis of the electron beam device 5 (typically, the optical axis AX of the electron beam optical system 8). For example, the reflection surface of the reflection layer 716b may include a plane inclined with respect to the optical axis of the electron beam device 5. For example, the reflection surface of the reflection layer 716b may include a plane parallel to the optical axis of the electron beam device 5. For example, the reflection surface of the reflection layer 716b may include a curved surface.
 このような第2変形例の発光デバイス71bを発光デバイス71に代えて備える露光装置EXもまた、上述した発光デバイス71を備える露光装置EXが享受可能な効果と同様の効果を享受することができる。 The exposure apparatus EX including the light emitting device 71b of the second modification in place of the light emitting device 71 can also enjoy the same effects as those that can be enjoyed by the exposure apparatus EX including the light emitting device 71 described above. .
 尚、発光デバイス71bは、反射層716bに加えて、回折層716及びマイクロレンズ716aの少なくとも一方を備えていてもよい。この場合、発光デバイス71bは、光ELの配光特性をより適切に制御できる可能性がある。 The light emitting device 71b may include at least one of the diffraction layer 716 and the microlens 716a in addition to the reflection layer 716b. In this case, the light emitting device 71b may be able to more appropriately control the light distribution characteristics of the light EL.
 (4-3)第3変形例
 続いて、図13を参照しながら、第3変形例の発光デバイス71cについて説明する。図13は、第3変形例の発光デバイス71cの構造を示す断面図である。
(4-3) Third Modification Next, a light emitting device 71c according to a third modification will be described with reference to FIG. FIG. 13 is a cross-sectional view illustrating a structure of a light emitting device 71c according to a third modification.
 図13に示すように、第3変形例の発光デバイス71cは、上述した発光デバイス71と比較して、反射層715を備えていなくてもよいという点で異なっている。発光デバイス71cのその他の特徴は、発光デバイス71のその他の特徴と同一であってもよい。 発 光 As shown in FIG. 13, the light emitting device 71c of the third modification is different from the light emitting device 71 described above in that the light emitting device 71c does not need to include the reflective layer 715. Other features of the light emitting device 71c may be the same as other features of the light emitting device 71.
 発光デバイス71cが反射層715を備えていない場合であっても、量子井戸層711において発生した光EL0が反射層714において反射されることに変わりはない。このため、反射層714は、反射層715と組み合わせられていない場合であっても、共振器として機能することが可能である。つまり、反射層714は、反射層715と組み合わせられていない場合であっても、光ELを狭帯域化することが可能である。このため、このような第3変形例の発光デバイス71cを発光デバイス71に代えて備える露光装置EXもまた、上述した発光デバイス71を備える露光装置EXが享受可能な効果と同様の効果を享受することができる。 (4) Even when the light emitting device 71c does not include the reflection layer 715, the light EL0 generated in the quantum well layer 711 is still reflected by the reflection layer 714. Therefore, the reflective layer 714 can function as a resonator even when not combined with the reflective layer 715. That is, even when the reflective layer 714 is not combined with the reflective layer 715, it is possible to narrow the band of the light EL. Therefore, the exposure apparatus EX including the light emitting device 71c of the third modified example in place of the light emitting device 71 also receives the same effects as those that can be obtained by the exposure apparatus EX including the light emitting device 71 described above. be able to.
 尚、第3変形例においても、第1又は第2変形例と同様に、発光デバイス71cは、回折層716に加えて又は代えて、マイクロレンズ716a及び反射層716bの少なくとも一方を備えていてもよい。 In the third modification, similarly to the first or second modification, the light emitting device 71c may include at least one of the microlens 716a and the reflection layer 716b in addition to or instead of the diffraction layer 716. Good.
 (4-4)第4変形例
 続いて、図14を参照しながら、第4変形例の発光デバイス71dについて説明する。図14は、第4変形例の発光デバイス71dの構造を示す断面図である。
(4-4) Fourth Modification Next, a light emitting device 71d according to a fourth modification will be described with reference to FIG. FIG. 14 is a cross-sectional view illustrating a structure of a light emitting device 71d according to a fourth modification.
 図14に示すように、第4変形例の発光デバイス71dは、上述した発光デバイス71と同様に、量子井戸層711と、クラッド層712と、反射層714とを備える。発光デバイス71dは特に、上述した発光デバイス71と比較して、クラッド層713に代えて、クラッド層713dを備えているという点で異なっている。更に、発光デバイス71dは、上述した発光デバイス71と比較して、反射層715及び回折層716を備えていなくてもよいという点で異なっている。発光デバイス71dは、発光デバイス71dが光ELを射出する光射出面719から見て、クラッド層713d、量子井戸層711、クラッド層712及び反射層714がこの順に積層された積層構造を有している。発光デバイス71dのその他の特徴は、発光デバイス71のその他の特徴と同一であってもよい。但し、発光デバイス71dが反射層715及び回折層716を備えていないため、発光デバイス71dの光射出面719は、クラッド層713dの表面(特に、投影レンズ72側を向いた下面)の少なくとも一部によって構成される。クラッド層713dは、光射出面719を含む。 As shown in FIG. 14, the light emitting device 71d according to the fourth modification includes a quantum well layer 711, a cladding layer 712, and a reflective layer 714, similarly to the light emitting device 71 described above. The light emitting device 71d is different from the light emitting device 71 described above in that the light emitting device 71d includes a clad layer 713d instead of the clad layer 713. Furthermore, the light emitting device 71d is different from the light emitting device 71 described above in that the light emitting device 71d does not need to include the reflection layer 715 and the diffraction layer 716. The light emitting device 71d has a stacked structure in which a clad layer 713d, a quantum well layer 711, a clad layer 712, and a reflective layer 714 are stacked in this order when viewed from a light emitting surface 719 from which the light emitting device 71d emits light EL. I have. Other features of the light emitting device 71d may be the same as other features of the light emitting device 71. However, since the light emitting device 71d does not include the reflection layer 715 and the diffraction layer 716, the light emitting surface 719 of the light emitting device 71d is at least partially provided on the surface of the cladding layer 713d (in particular, the lower surface facing the projection lens 72 side). Composed of The cladding layer 713d includes a light exit surface 719.
 クラッド層713dは、クラッド層713と比較して、光射出面719を表面に含む射出部7131dを備えているという点で異なっている。射出部7131dは、クラッド層713dの一部である。射出部7131dは、クラッド層713dのうち発光デバイス71dから射出された光ELが伝搬する空間と発光デバイス71dとの界面に面する部分である。 The cladding layer 713d is different from the cladding layer 713 in that the cladding layer 713d includes an emission portion 7131d including a light emission surface 719 on the surface. The emission section 7131d is a part of the cladding layer 713d. The emitting portion 7131d is a portion of the cladding layer 713d facing the interface between the space in which the light EL emitted from the light emitting device 71d propagates and the light emitting device 71d.
 射出部7131dは、上述した回折部716と同様の機能を有している。つまり、射出部7131dは、射出部7131dに入射してくる光EL0を回折させて、発光デバイス71dからの光ELの配光特性を制御可能である。尚、第4変形例における射出部7131dによる配光特性の制御態様は、上述した回折層716による配光特性の制御態様と同様である。つまり、射出部7131dは、光EL0を回折させない場合と比較して光ELの広がり角θが小さくなるように、光EL0を回折させてもよい。このため、射出部7131dによる配光特性の制御態様の詳細な説明は省略する。 The emission unit 7131d has a function similar to that of the diffraction unit 716 described above. That is, the emission unit 7131d can control the light distribution characteristics of the light EL from the light emitting device 71d by diffracting the light EL0 incident on the emission unit 7131d. Note that the control mode of the light distribution characteristics by the emission unit 7131d in the fourth modification is the same as the control mode of the light distribution characteristics by the diffraction layer 716 described above. That is, the emission unit 7131d may diffract the light EL0 so that the spread angle θ of the light EL is smaller than when the light EL0 is not diffracted. Therefore, a detailed description of a mode of controlling the light distribution characteristics by the emission unit 7131d is omitted.
 射出部7131dは、光EL0を回折させるために、上述した回折部716と同様の構造を有していてもよい。つまり、射出部7131dは、フォトニック結晶構造を有していてもよい。 The emission unit 7131d may have the same structure as the above-described diffraction unit 716 in order to diffract the light EL0. That is, the emission section 7131d may have a photonic crystal structure.
 射出部7131dが回折層716と同様の機能を有していることを踏まえると、クラッド層713dは、クラッド層713と比較して、クラッド層713dと回折層716が実質的には一体化されているという点で異なっているとも言える。クラッド層713dは、クラッド層713と比較して、クラッド層713dが回折層716を備えているという点で異なっているとも言える。クラッド層713dは、クラッド層713と比較して、クラッド層713dの一部が回折層716として機能するという点で異なっているとも言える。 Considering that the emission section 7131d has the same function as the diffraction layer 716, the cladding layer 713d is substantially integrated with the cladding layer 713d and the diffraction layer 716 as compared with the cladding layer 713. It can be said that they are different. It can be said that the clad layer 713d is different from the clad layer 713 in that the clad layer 713d includes the diffraction layer 716. It can be said that the cladding layer 713d is different from the cladding layer 713 in that a part of the cladding layer 713d functions as the diffraction layer 716.
 このような第4変形例の発光デバイス71dを発光デバイス71に代えて備える露光装置EXもまた、上述した発光デバイス71を備える露光装置EXが享受可能な効果と同様の効果を享受することができる。 The exposure apparatus EX including the light emitting device 71d of the fourth modified example in place of the light emitting device 71 can also enjoy the same effects as the above-described exposure apparatus EX including the light emitting device 71. .
 (4-5)第5変形例
 続いて、図15を参照しながら、第5変形例の発光デバイス71eについて説明する。図15は、第5変形例の発光デバイス71eの構造を示す断面図である。
(4-5) Fifth Modification Next, a light emitting device 71e according to a fifth modification will be described with reference to FIG. FIG. 15 is a cross-sectional view illustrating a structure of a light emitting device 71e according to a fifth modification.
 上述した発光デバイス71では、回折層716に入射する光EL1の波長分布と量子井戸層711において発生した光EL0の波長分布とを変えるために、反射層714及び715が用いられている。つまり、発光デバイス71は、光EL0の反射を利用して、光EL1の波長分布と光EL0の波長分布とを変えている。一方で、第5変形例の発光デバイス71eは、光EL0の回折を利用して、回折層716に入射する光EL1の波長分布と量子井戸層711において発生した光EL0の波長分布とを変えている。 In the light emitting device 71 described above, the reflection layers 714 and 715 are used to change the wavelength distribution of the light EL1 incident on the diffraction layer 716 and the wavelength distribution of the light EL0 generated in the quantum well layer 711. In other words, the light emitting device 71 changes the wavelength distribution of the light EL1 and the wavelength distribution of the light EL0 by utilizing the reflection of the light EL0. On the other hand, the light emitting device 71e of the fifth modification uses the diffraction of the light EL0 to change the wavelength distribution of the light EL1 incident on the diffraction layer 716 and the wavelength distribution of the light EL0 generated in the quantum well layer 711. I have.
 光EL0の回折を利用して回折層716に入射する光EL1の波長分布と量子井戸層711において発生した光EL0の波長分布とを変えるために、発光デバイス71eは、図15に示すように、反射層714及び715に代えて回折層714eを備えているという点で異なっている。発光デバイス71eのその他の特徴は、発光デバイス71のその他の特徴と同一であってもよい。 In order to change the wavelength distribution of the light EL1 incident on the diffraction layer 716 using the diffraction of the light EL0 and the wavelength distribution of the light EL0 generated in the quantum well layer 711, the light emitting device 71e has a structure as shown in FIG. The difference is that a diffraction layer 714e is provided instead of the reflection layers 714 and 715. Other features of the light emitting device 71e may be the same as other features of the light emitting device 71.
 回折層714eは、量子井戸層711において発生した光EL0を回折させることで、回折層716に入射する光EL1の波長分布を変えている。回折層714eは、光EL0を回折させない場合と比較して狭帯域化された光EL0が回折層716に入射するように、光EL0を回折させる。例えば、回折層714eは、共振波長範囲の光成分に一の偏向角度を付与して回折層716に入射させる一方で、共振波長範囲とは異なる波長範囲の光成分に他の偏向角度を付与して回折層716に入射させないように、光EL0を回折させてもよい。その結果、第5変形例においても、これまでの発光デバイス71と同様に、光EL0の回折を利用して回折層716に入射する光EL1の波長分布と量子井戸層711において発生した光EL0の波長分布とが異なるものとなる。 The diffraction layer 714 e changes the wavelength distribution of the light EL <b> 1 incident on the diffraction layer 716 by diffracting the light EL <b> 0 generated in the quantum well layer 711. The diffraction layer 714 e diffracts the light EL <b> 0 so that the light EL <b> 0 whose band has been narrowed as compared with the case where the light EL <b> 0 is not diffracted enters the diffraction layer 716. For example, the diffractive layer 714e imparts one deflection angle to the light component in the resonance wavelength range and makes the light component incident on the diffraction layer 716, while imparting another deflection angle to the light component in a wavelength range different from the resonance wavelength range. The light EL0 may be diffracted so as not to be incident on the diffraction layer 716. As a result, also in the fifth modification, similarly to the light emitting device 71, the wavelength distribution of the light EL1 incident on the diffraction layer 716 using the diffraction of the light EL0 and the wavelength distribution of the light EL0 generated in the quantum well layer 711. The wavelength distribution is different.
 回折層714eは、フォトニック結晶構造を利用して光EL0を回折させてもよい。つまり、回折層714eは、フォトニック結晶構造を有する層であってもよい。尚、フォトニック結晶構造については、回折層716について説明する際に図7(a)及び図7(b)を参照して既に説明済みであるため、その詳細な説明を省略する。但し、回折層716が有するフォトニック結晶構造の特性は、光EL1を回折層716が回折させることで、光ELの配光特性を制御するという観点から設定される一方で、回折層714eが有するフォトニック結晶構造の特性は、光EL0を回折層714fが回折させることで、回折層716に入射する光EL1の波長分布と量子井戸層711において発生した光EL0の波長分布とが異なるものとなるという観点から設定される。このため、回折層714eが有するフォトニック結晶構造の特性は、回折層716が有するフォトニック結晶構造と異なっていてもよい。具体的には、回折層714eが有するフォトニック結晶構造の特性は、光EL0と比較して回折層716に入射する光EL1が狭帯域化された光となるように光EL0を回折させることが可能な所望特性に設定されてもよい。 The diffraction layer 714e may diffract the light EL0 using a photonic crystal structure. That is, the diffraction layer 714e may be a layer having a photonic crystal structure. Since the photonic crystal structure has already been described with reference to FIGS. 7A and 7B when describing the diffraction layer 716, the detailed description thereof will be omitted. However, while the characteristics of the photonic crystal structure of the diffraction layer 716 are set from the viewpoint of controlling the light distribution characteristics of the light EL by diffracting the light EL1 by the diffraction layer 716, the diffraction layer 714e has The characteristic of the photonic crystal structure is that the wavelength distribution of the light EL1 incident on the diffraction layer 716 is different from the wavelength distribution of the light EL0 generated in the quantum well layer 711 by diffracting the light EL0 by the diffraction layer 714f. It is set from the viewpoint of. Therefore, the characteristics of the photonic crystal structure included in the diffraction layer 714e may be different from those of the diffraction layer 716. Specifically, the characteristic of the photonic crystal structure included in the diffraction layer 714e is that the light EL0 can be diffracted so that the light EL1 incident on the diffraction layer 716 becomes light with a narrower band than the light EL0. It may be set to possible desired characteristics.
 回折層714bは、回折層716に入射する光EL1の波長分布を適切に制御することができるように光EL0を回折可能な位置に配置される。図15に示す例では、回折層714eは、量子井戸層711から見て光射出面719とは反対側に配置されている。もちろん、回折層714eは、図15に示す位置とは異なる位置に配置されていてもよい。 The diffraction layer 714b is arranged at a position where the light EL0 can be diffracted so that the wavelength distribution of the light EL1 incident on the diffraction layer 716 can be appropriately controlled. In the example shown in FIG. 15, the diffraction layer 714e is arranged on the side opposite to the light exit surface 719 when viewed from the quantum well layer 711. Of course, the diffraction layer 714e may be arranged at a position different from the position shown in FIG.
 このような第5変形例の発光デバイス71eを発光デバイス71に代えて備える露光装置EXもまた、上述した発光デバイス71を備える露光装置EXが享受可能な効果と同様の効果を享受することができる。 The exposure apparatus EX including the light emitting device 71e of the fifth modified example in place of the light emitting device 71 can also enjoy the same effects as the above-described exposure apparatus EX including the light emitting device 71. .
 尚、発光デバイス71eは、回折層714eに加えて反射層714及び715の少なくとも一方を備えていてもよい。発光デバイス71eは、回折層716に入射する光EL1の波長分布と量子井戸層711において発生した光EL0の波長分布とを変えるために、光EL0の回折に加えて光ELの反射を利用してもよい。或いは、発光デバイス71eは、回折層716に入射する光EL1の波長分布と量子井戸層711において発生した光EL0の波長分布とを変えるために、光EL0の回折を利用することに加えて又は代えて、光EL0の屈折を利用してもよい。上述した第1変形例の発光デバイス71aから第4変形例の発光デバイス71dもまた、回折層716に入射する光EL1の波長分布と量子井戸層711において発生した光EL0の波長分布とを変えるために、光EL0の反射を利用することに加えて又は代えて、光EL0の回折及び屈折の少なくとも一方を利用してもよい。 The light emitting device 71e may include at least one of the reflection layers 714 and 715 in addition to the diffraction layer 714e. The light emitting device 71e utilizes the reflection of the light EL in addition to the diffraction of the light EL0 to change the wavelength distribution of the light EL1 incident on the diffraction layer 716 and the wavelength distribution of the light EL0 generated in the quantum well layer 711. Is also good. Alternatively, the light emitting device 71e may use the diffraction of the light EL0 in addition to or instead of using the diffraction of the light EL0 to change the wavelength distribution of the light EL1 incident on the diffraction layer 716 and the wavelength distribution of the light EL0 generated in the quantum well layer 711. Thus, the refraction of the light EL0 may be used. The light emitting device 71a of the first modified example to the light emitting device 71d of the fourth modified example also change the wavelength distribution of the light EL1 incident on the diffraction layer 716 and the wavelength distribution of the light EL0 generated in the quantum well layer 711. Alternatively, in addition to or instead of using the reflection of the light EL0, at least one of diffraction and refraction of the light EL0 may be used.
 また、上述した第1変形例の発光デバイス71aから第4変形例の発光デバイス71dもまた、反射層714及び/又は715の少なくとも一方に加えて又は代えて、回折層714eを備えていてもよい。 Further, the light emitting device 71a of the first modification to the light emitting device 71d of the fourth modification described above may also include a diffraction layer 714e in addition to or instead of at least one of the reflective layers 714 and / or 715. .
 (4-6)第6変形例
 続いて、第6変形例の発光デバイス71fについて説明する。第6変形例の発光デバイス71fは、レーザダイオード(LD:Laser Diode)を含むという点で、LEDを含む上述した発光デバイス71等とは異なる。つまり、発光デバイス71fは、レーザ発振した光ELを射出するという点で、レーザ発振した光ELを射出しない上述した発光デバイス71等とは異なる。以下、図16を参照しながら、このような第6変形例の発光デバイス71fの構造について説明する。図16は、第6変形例の発光デバイス71fの構造を示す断面図である。
(4-6) Sixth Modification Next, a light emitting device 71f according to a sixth modification will be described. The light emitting device 71f according to the sixth modification is different from the above-described light emitting device 71 including an LED in that the light emitting device 71f includes a laser diode (LD). That is, the light emitting device 71f is different from the above-described light emitting device 71 and the like which does not emit the laser-oscillated light EL in that it emits the laser-oscillated light EL. Hereinafter, the structure of the light emitting device 71f according to the sixth modification will be described with reference to FIG. FIG. 16 is a cross-sectional view illustrating a structure of a light emitting device 71f according to a sixth modification.
 図16に示すように、発光デバイス71fは、量子井戸層711fと、クラッド層712fと、クラッド層713fと、反射層714fと、反射層715fと、回折層716fとを備える。つまり、発光デバイス71fの積層構造そのものは、上述した発光デバイス71fの積層構造と同一であってもよい。この場合、発光デバイス71fは、基板に垂直な方向に光ELを射出可能なレーザダイオードを含んでいてもよい。基板に垂直な方向に光ELを射出可能なレーザダイオードの一例として、垂直共振器面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)及び垂直外部共振器面発光レーザ(VECSEL:Vertical External Cavity Surface Emitting Laser)の少なくとも一方があげられる。 As shown in FIG. 16, the light emitting device 71f includes a quantum well layer 711f, a cladding layer 712f, a cladding layer 713f, a reflection layer 714f, a reflection layer 715f, and a diffraction layer 716f. That is, the laminated structure of the light emitting device 71f may be the same as the laminated structure of the light emitting device 71f described above. In this case, the light emitting device 71f may include a laser diode that can emit light EL in a direction perpendicular to the substrate. As an example of a laser diode capable of emitting light EL in a direction perpendicular to the substrate, a vertical cavity surface emitting laser (VCSEL) and a vertical external cavity emitting laser (VECSEL) are examples of a VCSEL (Vertical Cavity Surface Emitting Laser). ).
 尚、特段の表記がない場合は、量子井戸層711f、クラッド層712f、クラッド層713f、反射層714f、反射層715f及び回折層716fの特徴は、上述した量子井戸層711、クラッド層712、クラッド層713、反射層714、反射層715及び回折層716の特徴と同一であってもよい。このため、以下では、特に発光デバイス71とは異なる特徴について重点的に説明する。 Unless otherwise specified, the features of the quantum well layer 711f, the cladding layer 712f, the cladding layer 713f, the reflection layer 714f, the reflection layer 715f, and the diffraction layer 716f are the same as those of the quantum well layer 711, the cladding layer 712, and the cladding layer described above. The characteristics of the layers 713, the reflection layers 714, the reflection layers 715, and the diffraction layers 716 may be the same. Therefore, the following description focuses on features that are particularly different from the light emitting device 71.
 反射層714f及び715fは、主として、量子井戸層711fにおいて発生した光EL0を共振させる(特に、レーザ発振させる)ための共振器として機能する。従って、発光デバイス71fは、レーザ発振した光EL(つまり、レーザ光)を射出する。このため、発光デバイス71fは、量子井戸層711f、クラッド層712f、クラッド層713f、反射層714f及び反射層715fから構成されるレーザ発振素子を備えていると言える。尚、反射層714f及び715fによって光EL0がレーザ発振させられる(つまり、定在波が形成される)ことから、反射層714f及び715fは、反射層714及び715と同様に、光EL0を狭帯域化する光学素子としても機能してもよい。このため、第6変形例においても、反射層715fを介して回折層716fに入射する光EL0の波長分布は、量子井戸層711において発生した光EL0の波長分布とは異なる。以降、第6変形例では、回折層716fに入射する光EL0を、“光EL1”と称し、回折層716fに入射する前の光EL0(例えば、量子井戸層711において発生した光EL0)と区別する。 The reflection layers 714f and 715f mainly function as resonators for causing the light EL0 generated in the quantum well layer 711f to resonate (in particular, to cause laser oscillation). Therefore, the light-emitting device 71f emits the laser-emitted light EL (that is, laser light). Therefore, it can be said that the light emitting device 71f includes a laser oscillation element including the quantum well layer 711f, the cladding layer 712f, the cladding layer 713f, the reflection layer 714f, and the reflection layer 715f. Note that, since the light EL0 is laser-oscillated (that is, a standing wave is formed) by the reflection layers 714f and 715f, the reflection layers 714f and 715f transmit the light EL0 in a narrow band similarly to the reflection layers 714 and 715. It may also function as an optical element to be formed. Therefore, also in the sixth modified example, the wavelength distribution of the light EL0 incident on the diffraction layer 716f via the reflection layer 715f is different from the wavelength distribution of the light EL0 generated in the quantum well layer 711. Hereinafter, in the sixth modification, the light EL0 incident on the diffraction layer 716f is referred to as “light EL1” and is distinguished from the light EL0 before entering the diffraction layer 716f (for example, the light EL0 generated in the quantum well layer 711). I do.
 第6変形例においても、レーザ発振した光EL1は、回折層716fを介して、発光デバイス71fの外部の空間に向けて射出される。つまり、発光デバイス71fからは、回折層716fが回折させた(つまり、配光特性が制御された)光EL1が、光ELとして射出される。尚、発光デバイス71がレーザダイオードである場合には、光射出面719の第1位置から光ELの一部として射出される第1光の位相と、光射出面719の第1位置とは異なる第2位置から光ELの他の一部として射出される第2光の位相とは、互いに相関を有していてもよい。光射出面719の第1位置から光ELの一部として射出される第1光の位相と、光射出面719の第1位置とは異なる第2位置から光ELの他の一部として射出される第2光の位相とは、第1の光と第2の光とが互いにコヒーレントな光となるような相関を有していてもよい。 も Also in the sixth modification, the laser EL light EL1 is emitted toward the space outside the light emitting device 71f via the diffraction layer 716f. That is, the light EL1 diffracted by the diffraction layer 716f (that is, the light distribution characteristics are controlled) is emitted from the light emitting device 71f as the light EL. When the light emitting device 71 is a laser diode, the phase of the first light emitted as a part of the light EL from the first position of the light emitting surface 719 is different from the first position of the light emitting surface 719. The phase of the second light emitted from the second position as another part of the light EL may have a correlation with each other. The phase of the first light emitted from the first position of the light emission surface 719 as a part of the light EL and the second light emitted from the second position different from the first position of the light emission surface 719 as another part of the light EL. The phase of the second light may have a correlation such that the first light and the second light are mutually coherent light.
 但し、第6変形例では、回折層716fは、反射層715fからの光EL1(つまり、レーザ発振した光EL1)を回折させない場合と比較して光ELの広がり角θが大きくなるように、光EL1を回折させる。つまり、第6変形例の発光デバイス71fが射出する光EL(つまり、回折層716fによって配光特性が制御された光EL)を示す断面図である図17(a)及び回折層716fを備えていないという点で第6変形例の発光デバイス71fとは異なる比較例の発光デバイスC71fが射出する光EL(つまり、回折層716fによって配光特性が制御されていない光EL)を示す断面図である図17(b)に示すように、発光デバイス71fが射出する光ELの広がり角θaは、発光デバイスC71fが射出する光ELの広がり角θbよりも大きくなる。特に、回折層716fは、光ELの広がり角θを大きくして光ELの広がり角θが所望の角度となるように、光EL1を回折させてもよい。回折層716fの特性は、光EL1を回折させない場合と比較して光ELの広がり角θが大きくなるように光EL1を回折させることができる所望特性に設定されていてもよい。回折層716fの特性は、光ELの広がり角θを大きくして光ELの広がり角θが所望の角度となるように光EL1を回折させることができる所望特性に設定されていてもよい。 However, in the sixth modified example, the diffractive layer 716f is configured so that the light EL1 from the reflective layer 715f (that is, the laser-oscillated light EL1) does not diffract the light EL1 so that the divergence angle θ of the light EL increases. Diffract EL1. That is, FIG. 17A is a cross-sectional view showing light EL emitted from the light emitting device 71f of the sixth modification (that is, light EL whose light distribution characteristics are controlled by the diffraction layer 716f), and the diffraction layer 716f is provided. FIG. 27 is a cross-sectional view showing light EL emitted from a light emitting device C71f of a comparative example different from the light emitting device 71f of the sixth modification in that no light distribution characteristics are controlled by the diffraction layer 716f. As shown in FIG. 17B, the spread angle θa of the light EL emitted from the light emitting device 71f is larger than the spread angle θb of the light EL emitted from the light emitting device C71f. In particular, the diffraction layer 716f may diffract the light EL1 such that the spread angle θ of the light EL is increased and the spread angle θ of the light EL becomes a desired angle. The characteristic of the diffraction layer 716f may be set to a desired characteristic that allows the light EL1 to be diffracted so that the spread angle θ of the light EL is larger than when the light EL1 is not diffracted. The characteristic of the diffraction layer 716f may be set to a desired characteristic capable of increasing the spread angle θ of the light EL and diffracting the light EL1 such that the spread angle θ of the light EL becomes a desired angle.
 回折層716fは、回折層716と同様に、回折波長範囲の光成分を回折させることで回折波長範囲の光成分の広がり角θを所望の角度に設定しやすい一方で、回折波長範囲以外の波長範囲の光成分を回折させても回折波長範囲以外の波長範囲の光成分の広がり角θを所望の角度に設定しにくい(例えば、回折波長範囲以外の波長範囲の光成分を回折させても、回折波長範囲以外の波長範囲の光成分の広がり角θが所望の角度とは異なる角度に設定されてしまう)という特性を有している場合がある。回折層716による光ELの配光特性の制御効率を向上させる観点から、共振波長範囲(つまり、レーザダイオードの発振波長を含む波長範囲)は、回折波長範囲と少なくとも部分的に重複していてもよい。逆に、共振波長範囲と回折波長範囲とが少なくとも部分的に重複するように反射層714f及び715f並びに回折層716fの特性が設定されれば、共振波長範囲と回折波長範囲とが重複していない場合と比較して、回折層716による光ELの配光特性の制御効率の向上が期待できる。 Similar to the diffraction layer 716, the diffraction layer 716f can easily set the spread angle θ of the light component in the diffraction wavelength range to a desired angle by diffracting the light component in the diffraction wavelength range. Even if the light components in the range are diffracted, it is difficult to set the spread angle θ of the light components in the wavelength range other than the diffraction wavelength range to a desired angle (for example, even if the light components in the wavelength range other than the diffraction wavelength range are diffracted, (The spread angle θ of the light component in a wavelength range other than the diffraction wavelength range is set to a different angle from the desired angle) in some cases. From the viewpoint of improving the control efficiency of the light distribution characteristics of the light EL by the diffraction layer 716, the resonance wavelength range (that is, the wavelength range including the oscillation wavelength of the laser diode) may at least partially overlap the diffraction wavelength range. Good. Conversely, if the characteristics of the reflection layers 714f and 715f and the diffraction layer 716f are set so that the resonance wavelength range and the diffraction wavelength range at least partially overlap, the resonance wavelength range and the diffraction wavelength range do not overlap. As compared with the case, improvement in the control efficiency of the light distribution characteristics of the light EL by the diffraction layer 716 can be expected.
 尚、上述した反射層714及び715によって繰り返し反射された光EL0と同様に、反射層714f及び715fによって繰り返し反射された光EL0もまた、共振した状態にある光に相当する。特に、第6変形例では、反射層714f及び715fによって繰り返し反射された光EL0は、レーザ発振した光となっているため、レーザ発振する波長(つまり、レーザダイオードの発振波長)を含む相対的に狭い共振波長範囲の光成分がレーザ発振した状態にある光に相当する。 Note that, like the light EL0 repeatedly reflected by the reflective layers 714 and 715, the light EL0 repeatedly reflected by the reflective layers 714f and 715f also corresponds to light in a resonated state. In particular, in the sixth modification, the light EL0 that is repeatedly reflected by the reflection layers 714f and 715f is laser-oscillated light, so that the light EL0 relatively includes the wavelength of laser oscillation (that is, the oscillation wavelength of the laser diode). Light components in a narrow resonance wavelength range correspond to light in a state of laser oscillation.
 回折層716fは、回折層716と同様に、フォトニック結晶構造を利用して光EL1を回折させる。回折層716fが備えるフォトニック結晶構造の特性は、回折層716fが上述した特性を有するように適切に設定されていてもよい。つまり、回折層716fが備えるフォトニック結晶構造の特性は、上述した回折層716が備えるフォトニック結晶構造の特性とは異なっていてもよい。 Similar to the diffraction layer 716, the diffraction layer 716f diffracts the light EL1 using a photonic crystal structure. The characteristics of the photonic crystal structure included in the diffraction layer 716f may be appropriately set so that the diffraction layer 716f has the above-described characteristics. That is, the characteristics of the photonic crystal structure included in the diffraction layer 716f may be different from the characteristics of the photonic crystal structure included in the diffraction layer 716 described above.
 このような第6変形例の発光デバイス71fを発光デバイス71に代えて備える露光装置EXもまた、上述した発光デバイス71を備える露光装置EXが享受可能な効果と同様の効果を享受することができる。更に、第6変形例では、露光装置EXは、レーザダイオードを含む発光デバイス71fを用いて、電子ビームEBを生成することができる。このため、光ELの光源の種類の選択の自由度が高くなる。このため、露光装置EXの特性に応じて光ELの光源の種類が適切に選択されれば、露光装置EXは、光ELを用いて効率よく光電変換を行うことができ、相対的に高いエネルギーを有する電子ビームEBをウェハWに照射することができる。 The exposure apparatus EX including the light emitting device 71f of the sixth modification in place of the light emitting device 71 can also enjoy the same effects as those that can be enjoyed by the exposure apparatus EX including the light emitting device 71 described above. . Further, in the sixth modification, the exposure apparatus EX can generate the electron beam EB using the light emitting device 71f including the laser diode. Therefore, the degree of freedom in selecting the type of the light source of the light EL is increased. For this reason, if the type of the light source of the light EL is appropriately selected according to the characteristics of the exposure apparatus EX, the exposure apparatus EX can efficiently perform photoelectric conversion using the light EL and have a relatively high energy. To the wafer W.
 加えて、図17(b)に示すように、レーザ発振している光EL1は、回折層716fによって回折しなければ、広がり角θが極めて小さい光となる。このため、このまままでは、光電変換素子73の位置において光ELのビームプロファイルが所望の特性を有さなくなったり、投影レンズ72の開口数の制約が満たされなくなったりするという技術的問題が生じかねない。第6変形例では、このような技術的問題が生じかねないことを踏まえて、回折層716fは、光ELの広がり角θが大きくなるように光EL1を回折させることができる。このため、レーザダイオードを含む発光デバイス71fが光ELの光源として用いられる場合であっても、LEDを含む発光デバイス71が光ELの光源として用いられる場合と同様に、露光装置EXは、複数の電子ビームEBを適切に(例えば、効率的に)生成することができる。 In addition, as shown in FIG. 17B, the light EL1 that is oscillating by laser becomes light with a very small spread angle θ unless diffracted by the diffraction layer 716f. Until this situation, a technical problem may occur that the beam profile of the light EL at the position of the photoelectric conversion element 73 does not have desired characteristics or the restriction on the numerical aperture of the projection lens 72 is not satisfied. Absent. In the sixth modification, the diffraction layer 716f can diffract the light EL1 such that the spread angle θ of the light EL increases, considering that such a technical problem may occur. For this reason, even when the light emitting device 71f including the laser diode is used as the light source of the light EL, similarly to the case where the light emitting device 71 including the LED is used as the light source of the light EL, the exposure apparatus EX includes a plurality of light emitting devices. The electron beam EB can be generated appropriately (for example, efficiently).
 尚、上述した説明では、基板に垂直な方向に光ELを射出可能なレーザダイオードを含む発光デバイス71fについて説明されている。しかしながら、露光装置EXは、基板に平行な方向に光ELを射出するレーザダイオードを含むという点で発光デバイス71fとは異なる発光デバイス71f’を備えていてもよい。この場合においても、レーザ発振した光EL1が回折層716fによって回折する限りは、上述した効果と同様の効果を享受可能である。但し、基板に平行な方向に光ELを射出するレーザダイオードを含む発光デバイス71fが用いられる場合には、基板に平行な方向に射出する光ELが、適切な取り出し方法で面外に取り出されてもよい(つまり、基板に垂直な方向に光ELが伝搬するように面外に取り出されてもよい)。もちろん、基板に平行な方向に光ELを射出するレーザダイオードを含む発光デバイス71fが用いられる場合において、基板に平行な方向に射出する光ELが、基板に平行な方向に光ELが伝搬するように面外に取り出されてもよい。光ELの取り出し方法の一例として、例えば、図18(a)に示すように、量子井戸層711fの端面(つまり、共振器を構成するミラー端面)7111fから射出される光EL0を導く光導波路717fを湾曲させる方法があげられる。この場合も、光導波路717fからの光EL0が回折層716fによって回折する限りは、上述した効果と同様の効果を享受可能である。また、光ELの取り出し方法の他の一例として、例えば、図18(b)に示すように、光導波路の末端部に平面回折格子型結合器を形成する方法、及び、光導波路の末端部の先に斜めミラーを形成して光ELを基板の面に垂直な方向に反射させる方法があげられる。平面回折格子型結合器又は斜めミラーからの光EL0が回折層716fによって回折する限りは、上述した効果と同様の効果を享受可能である。 In the above description, the light emitting device 71f including the laser diode capable of emitting the light EL in a direction perpendicular to the substrate is described. However, the exposure apparatus EX may include a light emitting device 71f 'different from the light emitting device 71f in that it includes a laser diode that emits the light EL in a direction parallel to the substrate. Also in this case, the same effect as the above-described effect can be obtained as long as the laser beam oscillated light EL1 is diffracted by the diffraction layer 716f. However, when a light emitting device 71f including a laser diode that emits light EL in a direction parallel to the substrate is used, the light EL emitted in a direction parallel to the substrate is extracted out of the plane by an appropriate extraction method. (That is, the light EL may be extracted out of the plane so as to propagate in a direction perpendicular to the substrate). Of course, when the light emitting device 71f including the laser diode that emits the light EL in the direction parallel to the substrate is used, the light EL emitted in the direction parallel to the substrate propagates in the direction parallel to the substrate. Out of the plane. As an example of a method for extracting the light EL, for example, as shown in FIG. 18A, an optical waveguide 717f for guiding the light EL0 emitted from the end face of the quantum well layer 711f (that is, the mirror end face constituting the resonator) 7111f. Is curved. Also in this case, as long as the light EL0 from the optical waveguide 717f is diffracted by the diffraction layer 716f, the same effect as the above-described effect can be obtained. As another example of a method of extracting the light EL, for example, as shown in FIG. 18B, a method of forming a planar diffraction grating type coupler at an end of an optical waveguide, and a method of forming an end of an optical waveguide. There is a method of forming an oblique mirror first and reflecting the light EL in a direction perpendicular to the surface of the substrate. As long as the light EL0 from the plane diffraction grating coupler or the oblique mirror is diffracted by the diffraction layer 716f, the same effects as those described above can be obtained.
 (4-7)第7変形例
 続いて、第7変形例の露光装置EXgについて説明する。上述した説明では、露光装置EXは、電子ビームEBでウェハWを露光していた。しかしながら、露光装置EXgは、発光デバイス71からの光ELでウェハWやプレートP等のワークピースを露光してもよい。
(4-7) Seventh Modified Example Next, an exposure apparatus EXg according to a seventh modified example will be described. In the above description, the exposure apparatus EX has exposed the wafer W with the electron beam EB. However, the exposure apparatus EXg may expose a workpiece such as the wafer W or the plate P with the light EL from the light emitting device 71.
 以下、図19及び図20を用いて説明する。 Hereinafter, description will be made with reference to FIGS. 19 and 20.
 図19は、第7変形例の露光装置EXgの全体の概略構成を示す斜視図である。図19に示す第7変形例では、角形の基板であるプレートPを露光する場合を例にとって説明する。以下の説明においては、図19中のXYZ直交座標系を参照しつつ各部材の位置関係について説明する。XYZ直交座標系は、X軸及びY軸がプレートPに対して平行となるよう設定され、Z軸がプレートPに対して直交する方向に設定されている。図中のXYZ座標系は、実際にはXY平面が水平面に平行な面に設定され、Z軸が鉛直上方向に設定される。また、この実施の形態ではプレートPを移動させる方向(走査方向)をX軸方向に設定している。 FIG. 19 is a perspective view showing an overall schematic configuration of an exposure apparatus EXg of a seventh modification. In the seventh modification shown in FIG. 19, a case will be described as an example in which a plate P which is a square substrate is exposed. In the following description, the positional relationship of each member will be described with reference to the XYZ orthogonal coordinate system in FIG. In the XYZ rectangular coordinate system, the X axis and the Y axis are set to be parallel to the plate P, and the Z axis is set to a direction orthogonal to the plate P. In the XYZ coordinate system in the figure, the XY plane is actually set to a plane parallel to the horizontal plane, and the Z axis is set vertically upward. In this embodiment, the direction in which the plate P is moved (scanning direction) is set in the X-axis direction.
 第7変形例の露光装置EXgは、複数の投影光学装置50を備えている。第7変形例では、複数の投影光学装置50に対してプレートPを相対的に移動させつつ液晶表示素子のパターン等の転写パターンの像を感光性材料(レジスト)が塗布された感光性基板としてのプレートP上に転写するステップ・アンド・スキャン方式の露光装置を例に挙げて説明する。 The exposure apparatus EXg of the seventh modification includes a plurality of projection optical devices 50. In a seventh modification, an image of a transfer pattern such as a pattern of a liquid crystal display element is formed as a photosensitive substrate coated with a photosensitive material (resist) while relatively moving the plate P with respect to the plurality of projection optical devices 50. A step-and-scan type exposure apparatus for transferring an image onto the plate P will be described as an example.
 図20は、第7変形例の露光装置EXgに備えられている投影光学装置50の概略構成を示す図である。図20に示すように、各投影光学装置50は、円筒形状を有する鏡筒54を有し、鏡筒54の上部に転写パターンを形成する可変パターン生成装置56を備える。そして、鏡筒54内に可変パターン生成装置56により形成された転写パターンをプレートステージ(図示せず)上に保持されたプレートP上に投影する投影光学系PLを備えている。ここで、この投影光学系PLは縮小倍率を有する。尚、投影光学系PLの倍率は等倍であってもよく、拡大倍率であってもよい。ここで、投影光学系PLが縮小倍率である場合、投影光学系PLの発光デバイス71側(可変パターン生成装置56側)の開口数は、プレートP側の開口数よりも小さくなる。また、投影光学装置50は、図3(b)に示した投影レンズ720と同じ構成であってもよく、可変パターン生成装置56は、XY平面上に並べられた複数の発光デバイス71を有する自発光型画像表示素子であってもよい。 FIG. 20 is a diagram showing a schematic configuration of a projection optical device 50 provided in an exposure apparatus EXg of a seventh modification. As shown in FIG. 20, each projection optical device 50 has a barrel 54 having a cylindrical shape, and includes a variable pattern generating device 56 that forms a transfer pattern on the top of the barrel 54. Further, a projection optical system PL for projecting a transfer pattern formed by the variable pattern generation device 56 in the lens barrel 54 onto a plate P held on a plate stage (not shown) is provided. Here, the projection optical system PL has a reduction magnification. Note that the magnification of the projection optical system PL may be the same magnification or may be an enlargement magnification. Here, when the projection optical system PL has a reduction magnification, the numerical aperture of the projection optical system PL on the light emitting device 71 side (variable pattern generation device 56 side) is smaller than the numerical aperture on the plate P side. Further, the projection optical device 50 may have the same configuration as the projection lens 720 shown in FIG. 3B, and the variable pattern generation device 56 includes a plurality of light emitting devices 71 arranged on the XY plane. It may be a light-emitting image display device.
 可変パターン生成装置56は、プレートP上に転写する転写パターンに基づいて発光パターンを形成する。 The variable pattern generation device 56 forms a light emitting pattern based on a transfer pattern transferred onto the plate P.
 また、各投影光学装置50は、斜入射オートフォーカス系(図示せず)を備えていてもよい。 各 Also, each projection optical device 50 may include an oblique incidence autofocus system (not shown).
 図21は、各投影光学装置50の配置状態を説明するための図である。投影光学装置50は、第1列目(図21における最も手前の列)にY方向に等間隔で7個配置されており、第2列目~第6列目のそれぞれにY方向に等間隔で各6個配置されており、第7列目にY方向に等間隔で7個配置されている。ここで、各投影光学装置50は、露光エリア51がY方向に隣り合う他の何れかの投影光学ユニット2の露光エリア51と重なるように、即ちオーバラップ露光が行えるように配置されている。 FIG. 21 is a diagram for explaining an arrangement state of each projection optical device 50. The seven projection optical devices 50 are arranged at equal intervals in the Y direction in the first row (the foremost row in FIG. 21), and at equal intervals in the Y direction in the second to sixth rows. In the seventh column, seven are arranged at regular intervals in the Y direction. Here, each projection optical device 50 is arranged so that the exposure area 51 overlaps with the exposure area 51 of any other projection optical unit 2 adjacent in the Y direction, that is, so that overlap exposure can be performed.
 各投影光学装置50の可変パターン生成装置56において生成された転写パターンは、各投影光学装置50の投影光学系PLによりプレートP上に投影され転写パターンの像が形成される。 The transfer pattern generated by the variable pattern generation device 56 of each projection optical device 50 is projected onto the plate P by the projection optical system PL of each projection optical device 50 to form an image of the transfer pattern.
 また、この露光装置EXgには、プレートステージを走査方向であるX軸方向に沿って移動させるための長いストロークを有する走査駆動系(図示せず)、プレートステージを走査直交方向であるY軸方向に沿って微小量だけ移動させると共にZ軸廻りに微小量だけ回転させるための一対のアライメント駆動系(図示せず)が設けられている。そして、プレートステージの位置座標が移動鏡52を用いたレーザ干渉計等のステージ位置計測系(図示せず)によって計測され、かつ位置制御されるように構成されている。 The exposure apparatus EXg has a scanning drive system (not shown) having a long stroke for moving the plate stage along the X-axis direction, which is the scanning direction, and a Y-axis direction, which is a scanning orthogonal direction. And a pair of alignment driving systems (not shown) for moving by a minute amount along the axis and rotating by a minute amount about the Z axis. The position coordinates of the plate stage are measured by a stage position measuring system (not shown) such as a laser interferometer using the movable mirror 52, and the position is controlled.
 そして、上述した可変パターン生成装置56、走査駆動系、アライメント駆動系、ステージ位置計測系は、制御装置(図示せず)によって制御される。この制御装置は、プレートステージの走査に同期して、各投影光学装置50の可変パターン生成装置56において生成するべき転写パターンを、当該可変パターン生成装置56に対して順次出力する。 The variable pattern generation device 56, the scanning drive system, the alignment drive system, and the stage position measurement system are controlled by a control device (not shown). This control device sequentially outputs the transfer patterns to be generated in the variable pattern generation devices 56 of the respective projection optical devices 50 to the variable pattern generation devices 56 in synchronization with the scanning of the plate stage.
 第7変形例の露光装置EXgにおいては、各投影光学装置50に対してプレートPを相対的に移動させつつ、プレートPの走査に同期して各投影光学装置50の可変パターン生成装置56において液晶表示素子のパターン等の転写パターンを順次生成し、各投影光学装置50は、生成された転写パターンの像を感光性材料(レジスト)が塗布された感光性基板としてのプレートP上に順次転写する。 In the exposure apparatus EXg of the seventh modification, while the plate P is relatively moved with respect to each projection optical device 50, the liquid crystal is generated by the variable pattern generation device 56 of each projection optical device 50 in synchronization with the scanning of the plate P. A transfer pattern such as a display element pattern is sequentially generated, and each projection optical device 50 sequentially transfers an image of the generated transfer pattern onto a plate P as a photosensitive substrate coated with a photosensitive material (resist). .
 こうして、マスクパターン記憶装置(図示せず)に記憶されている転写パターンの全体がプレートP上の露光領域の全体に転写(走査露光)される。 In this way, the entire transfer pattern stored in the mask pattern storage device (not shown) is transferred (scanned and exposed) to the entire exposure area on the plate P.
 この第7変形例の露光装置によれば、可変パターン生成装置56において転写パターンをプレートPの走査に同期して順次生成するため、大面積のマスクを用意する場合に比較してコストを大幅に削減することができる。 According to the exposure apparatus of the seventh modification, the transfer pattern is sequentially generated in the variable pattern generation device 56 in synchronization with the scanning of the plate P, so that the cost is significantly reduced as compared with the case where a large-area mask is prepared. Can be reduced.
 また、スキャン方向に電気的にパターンを変化させていくことで、マルチレンズ方式においてマスクの大きさが各投影光学装置50の露光領域分だけで充分になり、さらにこの露光領域を小さく設定することで、マスクのコストダウンはもとより、マスク面のたわみ、うねりといった問題を低減することができる。 Further, by electrically changing the pattern in the scanning direction, the size of the mask in the multi-lens system is sufficient only for the exposure area of each projection optical device 50, and the exposure area is set to be smaller. Thus, it is possible to reduce not only the cost of the mask but also problems such as bending and undulation of the mask surface.
 そして、第7変形例の露光装置EXgでは、上述した発光デバイス71からの狭帯域化された光ELを用いるため投影光学系PLの色収差に起因するパターン像の劣化を低減することができる。また、上述した発光デバイス71からの広がり角が制限された光ELを用いるため投影光学系によって取りこむことができない光を少なくでき、光量損失を低減できる。 In the exposure apparatus EXg of the seventh modified example, since the narrow band light EL from the light emitting device 71 is used, the deterioration of the pattern image due to the chromatic aberration of the projection optical system PL can be reduced. In addition, since the light EL from the light emitting device 71 whose divergence angle is limited is used, light that cannot be captured by the projection optical system can be reduced, and the light amount loss can be reduced.
 (4-8)その他の変形例
 上述した説明では、光学システム3は、複数の電子ビーム装置5を備えるマルチカラム型の光学システムである。しかしながら、光学システム3は、単一の電子ビーム装置5を備えるシングルカラム型の光学システムであってもよい。
(4-8) Other Modifications In the above description, the optical system 3 is a multi-column optical system including a plurality of electron beam devices 5. However, the optical system 3 may be a single column type optical system including a single electron beam device 5.
 上述した説明では、光学システム3は、ステージチャンバ1の天井を構成するフレーム13を介して床面F上で支持されている。しかしながら、光学システム3は、クリーンルームの天井面又は真空チャンバの天井面に、防振機能を備えた吊り下げ支持機構によって吊り下げ支持されてもよい。 In the above description, the optical system 3 is supported on the floor F via the frame 13 constituting the ceiling of the stage chamber 1. However, the optical system 3 may be suspended and supported on a ceiling surface of a clean room or a ceiling surface of a vacuum chamber by a suspension support mechanism having an anti-vibration function.
 上述した説明では、光学システム3の筐体6は、ベースプレート61と周壁部62とクーリングプレート63とを備えている。しかしながら、筐体6は、ベースプレート61、周壁部62及びクーリングプレート63の少なくとも一つを備えていなくてもよい。この場合、ステージチャンバ1の少なくとも一部の部材が、ベースプレート61、周壁部62及びクーリングプレート63の少なくとも一つとして機能してもよい。更に、真空室64と露光室14とが連通していてもよい。或いは、光学システム3は、筐体6を備えていなくてもよい。この場合、ステージチャンバ1の露光室14に複数の電子ビーム装置5が配置されてもよい。露光室14の真空度を維持するために、ステージチャンバ1のフレーム13には、開口131が形成されていなくてもよい。 In the above description, the housing 6 of the optical system 3 includes the base plate 61, the peripheral wall 62, and the cooling plate 63. However, the housing 6 need not include at least one of the base plate 61, the peripheral wall portion 62, and the cooling plate 63. In this case, at least some members of the stage chamber 1 may function as at least one of the base plate 61, the peripheral wall 62, and the cooling plate 63. Further, the vacuum chamber 64 and the exposure chamber 14 may communicate with each other. Alternatively, the optical system 3 may not include the housing 6. In this case, a plurality of electron beam devices 5 may be arranged in the exposure chamber 14 of the stage chamber 1. The opening 131 may not be formed in the frame 13 of the stage chamber 1 in order to maintain the degree of vacuum in the exposure chamber 14.
 上述した説明では、露光装置EXは、複数の電子ビームEBをそれぞれ射出する電子ビーム生成装置7(つまり、複数の電子放出領域7331を有する面放出型電子ビーム源)を各電子ビーム装置5が備える露光装置である。しかしながら、露光装置EXは、複数の開口を有するブランキングアパーチャアレイを介して複数の電子ビームEBを生成し、描画パターンに応じて複数の電子ビームEBを個別にON/OFFしてパターンをウェハWに描画する露光装置であってもよい。 In the above description, each of the electron beam devices 5 includes the electron beam generator 7 (that is, a surface emission type electron beam source having a plurality of electron emission regions 7331) that respectively emits the plurality of electron beams EB. An exposure apparatus. However, the exposure apparatus EX generates a plurality of electron beams EB via a blanking aperture array having a plurality of openings, and individually turns on / off the plurality of electron beams EB in accordance with a drawing pattern to change the pattern to the wafer W. It may be an exposure device that draws images on the surface.
 上述した説明では、電子ビーム装置5は、複数の電子ビームEBを用いてウェハWを露光するマルチビーム型の電子ビーム装置である。しかしながら、電子ビーム装置5は、単一の電子ビームEBを用いてウェハWを露光するシングルビーム型の電子ビーム装置である。この場合、電子ビーム生成装置7は、単一の発光デバイス71と、単一の投影レンズ72とを備えていてもよい。露光装置EXは、各電子ビーム装置5がウェハWに照射する電子ビームEBの断面をサイズ可変の矩形に成形する可変成形型の露光装置であってもよい。露光装置EXは、各電子ビーム装置5がスポット状の電子ビームEBをウェハWに照射するポイントビーム型の露光装置であってもよい。露光装置EXは、各電子ビーム装置5が所望形状のビーム通過孔が形成されたステンシルマスクを用いて電子ビームEBを所望形状に成形するステンシルマスク型の露光装置であってもよい。 In the above description, the electron beam device 5 is a multi-beam electron beam device that exposes the wafer W using a plurality of electron beams EB. However, the electron beam device 5 is a single-beam type electron beam device that exposes the wafer W using a single electron beam EB. In this case, the electron beam generator 7 may include a single light emitting device 71 and a single projection lens 72. The exposure apparatus EX may be a variable-shaped exposure apparatus that shapes the cross section of the electron beam EB that each electron beam device 5 irradiates the wafer W into a variable-size rectangular. The exposure apparatus EX may be a point beam type exposure apparatus in which each electron beam device 5 irradiates the wafer W with a spot-shaped electron beam EB. The exposure apparatus EX may be a stencil mask type exposure apparatus in which each electron beam device 5 shapes the electron beam EB into a desired shape using a stencil mask in which a beam passing hole having a desired shape is formed.
 上述した説明では、電子ビーム生成装置7は、ベースプレート61の貫通孔612に配置されている。しかしながら、電子ビーム生成装置7の少なくとも一部が貫通孔612に配置されていなくてもよい。例えば、電子ビーム生成装置7の発光デバイス71が貫通孔612に配置される一方で、電子ビーム生成装置7の光電変換素子73が貫通孔612の下方(つまり、筐体81の内部空間811)に配置されてもよい。この場合、発光デバイス71が、筐体81の内部空間811と筐体81の外部空間とを隔離する真空隔壁としても用いられてもよい。或いは、例えば、発光デバイス71が貫通孔612の上方に配置される一方で、光電変換素子73が貫通孔612又は貫通孔612の下方に配置されてもよい。光電変換素子73が貫通孔612に配置される場合には、光電変換素子73が、筐体81の内部空間811と筐体81の外部空間とを隔離する真空隔壁としても用いられてもよい。光電変換素子73が貫通孔612の下方に配置される場合には、筐体81の内部空間811と筐体81の外部空間とを隔離する真空隔壁(但し、光ELが通過可能な真空隔壁)が貫通孔612に配置されてもよい。或いは、例えば、ベースプレート61に貫通孔612を形成することなく、筐体81内に(例えば、ベースプレート61の下面に)電子ビーム生成装置7が配置されてもよい。 In the above description, the electron beam generator 7 is arranged in the through hole 612 of the base plate 61. However, at least a part of the electron beam generator 7 does not have to be arranged in the through-hole 612. For example, while the light emitting device 71 of the electron beam generator 7 is disposed in the through hole 612, the photoelectric conversion element 73 of the electron beam generator 7 is located below the through hole 612 (that is, the internal space 811 of the housing 81). It may be arranged. In this case, the light emitting device 71 may be used also as a vacuum partition separating the internal space 811 of the housing 81 and the external space of the housing 81. Alternatively, for example, the light emitting device 71 may be disposed above the through hole 612, while the photoelectric conversion element 73 may be disposed below the through hole 612 or the through hole 612. When the photoelectric conversion element 73 is arranged in the through hole 612, the photoelectric conversion element 73 may be used as a vacuum partition separating the internal space 811 of the housing 81 from the external space of the housing 81. When the photoelectric conversion element 73 is arranged below the through-hole 612, a vacuum partition separating the internal space 811 of the housing 81 and the external space of the housing 81 (however, a vacuum partition through which the light EL can pass). May be arranged in the through-hole 612. Alternatively, for example, the electron beam generating device 7 may be arranged in the housing 81 (for example, on the lower surface of the base plate 61) without forming the through hole 612 in the base plate 61.
 電子ビーム生成装置7は、複数の投影レンズ72を備えていなくてもよい。この場合、複数の発光デバイス71が射出した複数の光ELは、複数の投影レンズ72を介することなく、光電変換素子73に入射してもよい。電子ビーム生成装置7が複数の投影レンズ72を備えていない場合には、複数の発光デバイス71は、光電変換素子73と一体化されていてもよい。例えば、複数の発光デバイス71は、複数の発光デバイス71からの光ELが空間(例えば、真空空間及び気体空間の少なくとも一方)を介することなく光電変換素子73に入射するように、光電変換素子73と一体化されていてもよい。複数の発光デバイス71からの光ELが空間(例えば、真空空間及び気体空間の少なくとも一方)を介することなく光電変換素子73に入射する場合には、光ELの気体分子による吸収や散乱による影響がなくなる。このため、発光デバイス71として、気体分子による吸収の少ない波長(例えば、可視光領域から赤外光領域の一部に存在する波長であって、大気の窓と称される)の光を射出する発光デバイスのみならず、その他の波長の光を射出する発光デバイスを用いることができる。その結果、発光デバイス71が射出する光ELの波長の自由度が高くなる。このため、光ELの波長が適切に選択されれば、露光装置EXは、光ELを用いて効率よく光電変換を行うことができ、相対的に高いエネルギーを有する電子ビームEBをウェハWに照射することができる。 The electron beam generation device 7 does not have to include the plurality of projection lenses 72. In this case, the plurality of lights EL emitted by the plurality of light emitting devices 71 may enter the photoelectric conversion element 73 without passing through the plurality of projection lenses 72. When the electron beam generator 7 does not include the plurality of projection lenses 72, the plurality of light emitting devices 71 may be integrated with the photoelectric conversion element 73. For example, the plurality of light emitting devices 71 may be configured such that the light EL from the plurality of light emitting devices 71 enters the photoelectric conversion element 73 without passing through a space (for example, at least one of a vacuum space and a gas space). And may be integrated. When the light EL from the plurality of light emitting devices 71 is incident on the photoelectric conversion element 73 without passing through a space (for example, at least one of a vacuum space and a gas space), the influence of the absorption and scattering of the light EL by gas molecules is caused. Disappears. Therefore, the light emitting device 71 emits light of a wavelength that is less absorbed by gas molecules (for example, a wavelength that exists in a part of the visible light region to the infrared light region and is called an atmospheric window). Not only a light-emitting device but also a light-emitting device that emits light of another wavelength can be used. As a result, the degree of freedom of the wavelength of the light EL emitted from the light emitting device 71 increases. For this reason, if the wavelength of the light EL is appropriately selected, the exposure apparatus EX can efficiently perform photoelectric conversion using the light EL, and irradiate the wafer W with the electron beam EB having a relatively high energy. can do.
 上述した説明では、発光デバイス71は、量子井戸構造を有する発光デバイスである。しかしながら、発光デバイス71は、量子井戸を利用しないダブルへテロ接合構造を有する発光デバイスであってもよい。或いは、発光デバイス71は、ホモ接合構造を有する発光デバイスであってもよい。 In the above description, the light emitting device 71 is a light emitting device having a quantum well structure. However, the light emitting device 71 may be a light emitting device having a double hetero junction structure that does not use a quantum well. Alternatively, the light emitting device 71 may be a light emitting device having a homojunction structure.
 上述した説明では、発光デバイス71が備える回折層716は、誘電率がX軸方向及びY軸方向のそれぞれに沿って周期的に変化する2次元フォトニック結晶構造を有する層である。しかしながら、回折層716は、誘電率がX軸方向及びY軸方向のいずれか一方(或いは、XY平面に含まれるある1つの方向)に沿って周期的に変化する1次元フォトニック結晶構造を有する層であってもよい。或いは、回折層716は、誘電率がX軸方向、Y軸方向及びZ軸方向のそれぞれ(或いは、互いに直交する3つの方向のそれぞれ)に沿って周期的に変化する3次元フォトニック結晶構造を有する層であってもよい。 In the above description, the diffraction layer 716 included in the light emitting device 71 is a layer having a two-dimensional photonic crystal structure in which the dielectric constant periodically changes along each of the X-axis direction and the Y-axis direction. However, the diffraction layer 716 has a one-dimensional photonic crystal structure in which the dielectric constant periodically changes along one of the X-axis direction and the Y-axis direction (or one direction included in the XY plane). It may be a layer. Alternatively, the diffraction layer 716 has a three-dimensional photonic crystal structure in which the dielectric constant periodically changes along each of the X-axis direction, the Y-axis direction, and the Z-axis direction (or each of three directions orthogonal to each other). Layer.
 上述した説明では、回折層716は、フォトニック結晶構造を利用して光EL1を回折することで、光ELの配光特性を制御している。しかしながら、回折層716は、入射してくる光EL1を回折させて光ELの配光特性を制御可能である限りは、フォトニック結晶構造とは異なる構造を有する層であってもよい。つまり、回折層716は、フォトニック結晶構造を有していない層であってもよい。第5変形例の回折層714e(つまり、回折層716に入射する光EL1の波長分布と量子井戸層711において発生した光EL0の波長分布とを変えるために光EL0を回折させる回折層714e)についても同様に、光EL0を回折させて光EL0の波長分布と光EL1の波長分布とを変えることができる限りは、フォトニック結晶構造とは異なる構造を有する層であってもよい。 In the above description, the diffraction layer 716 controls the light distribution characteristics of the light EL by diffracting the light EL1 using the photonic crystal structure. However, the diffraction layer 716 may be a layer having a structure different from the photonic crystal structure as long as the light distribution characteristics of the light EL can be controlled by diffracting the incident light EL1. That is, the diffraction layer 716 may be a layer having no photonic crystal structure. Regarding the diffraction layer 714e of the fifth modification (that is, the diffraction layer 714e that diffracts the light EL0 to change the wavelength distribution of the light EL1 incident on the diffraction layer 716 and the wavelength distribution of the light EL0 generated in the quantum well layer 711) Similarly, a layer having a structure different from the photonic crystal structure may be used as long as the wavelength distribution of the light EL0 and the wavelength distribution of the light EL1 can be changed by diffracting the light EL0.
 上述した説明では、光電変換素子73は、アルカリ光電層733を用いて、光ELを電子ビームEBに変換している。しかしながら、光電変換素子73は、アルカリ光電層733とは異なる種類の光電層を用いて、光ELを電子ビームEBに変換してもよい。このような光電層の一例として、金属光電層が挙げられる。 In the above description, the photoelectric conversion element 73 converts the light EL into the electron beam EB using the alkali photoelectric layer 733. However, the photoelectric conversion element 73 may convert the light EL into the electron beam EB using a different type of photoelectric layer than the alkali photoelectric layer 733. An example of such a photoelectric layer is a metal photoelectric layer.
 上述した説明では、発光デバイス71は、電子ビームEBを生成する用途で使用されている。発光デバイス71は、電子ビーム生成装置7が備えている。しかしながら、発光デバイス71は、電子ビームEBを生成する用途とは異なる用途で使用されてもよい。例えば、発光デバイス71は、通常のLED(或いは、任意の光源)と同じ用途で使用されてもよい。一例として、発光デバイス71は、照明装置、ディスプレイ、プロジェクタ等の用途で使用されてもよい。 In the above description, the light emitting device 71 is used for generating the electron beam EB. The light emitting device 71 is provided in the electron beam generator 7. However, the light emitting device 71 may be used for a purpose different from the purpose for generating the electron beam EB. For example, the light emitting device 71 may be used in the same application as a normal LED (or any light source). As an example, the light emitting device 71 may be used for applications such as a lighting device, a display, and a projector.
 上述した説明では、電子ビーム生成装置7は、アパーチャ7321を介して発光デバイス71からの光ELを、アルカリ光電層733に照射している。しかしながら、電子ビーム生成装置7は、アパーチャ7321を介することなく、発光デバイス71からの光ELを、アルカリ光電層733に照射してもよい。例えば、発光デバイス71が所望の断面形状(例えば、アパーチャ7321に対応する形状)の光ELを射出可能である場合には、電子ビーム生成装置7は、アパーチャ7321を介することなく、発光デバイス71からの光ELを、アルカリ光電層733に照射してもよい。この場合、光電変換素子73は、遮光膜732を備えていなくてもよい。 In the above description, the electron beam generator 7 irradiates the alkali photoelectric layer 733 with the light EL from the light emitting device 71 via the aperture 7321. However, the electron beam generation device 7 may irradiate the light EL from the light emitting device 71 to the alkali photoelectric layer 733 without passing through the aperture 7321. For example, when the light emitting device 71 can emit light EL having a desired cross-sectional shape (for example, a shape corresponding to the aperture 7321), the electron beam generation device 7 outputs the light beam from the light emitting device 71 without passing through the aperture 7321. May be applied to the alkali photoelectric layer 733. In this case, the photoelectric conversion element 73 does not need to include the light shielding film 732.
 上述した説明では、光電変換素子73では、板部材731と遮光膜732とアルカリ光電層733とが一体化された光学素子である。つまり、光電変換素子73は、アパーチャ7321を形成するための部材(つまり、遮光膜732)と光電変換を行うための部材(つまり、アルカリ光電層733)とが一体化された光学素子である。しかしながら、アパーチャ7321を形成するための部材と光電変換を行うための部材とが別体であってもよい。この場合、アパーチャ7321を形成するための部材が、X軸方向、Y軸方向、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つに沿って移動可能であってもよい。光電変換を行うための部材が、X軸方向、Y軸方向、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つに沿って移動可能であってもよい。発光デバイス71が、X軸方向、Y軸方向、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つに沿って移動可能であってもよい。 In the above description, the photoelectric conversion element 73 is an optical element in which the plate member 731, the light shielding film 732, and the alkali photoelectric layer 733 are integrated. That is, the photoelectric conversion element 73 is an optical element in which a member for forming the aperture 7321 (that is, the light-shielding film 732) and a member for performing photoelectric conversion (that is, the alkali photoelectric layer 733) are integrated. However, a member for forming the aperture 7321 and a member for performing photoelectric conversion may be separate members. In this case, a member for forming the aperture 7321 may be movable along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the θX direction, the θY direction, and the θZ direction. A member for performing photoelectric conversion may be movable along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the θX direction, the θY direction, and the θZ direction. The light emitting device 71 may be movable along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the θX direction, the θY direction, and the θZ direction.
 上述した説明では、電子ビーム光学系8は、筐体81と、加速器82と、集束レンズ83と、アパーチャ板84と、対物レンズ85と、反射電子検出装置86とを備えている。しかしながら、電子ビーム光学系8は、筐体81、加速器82、電子レンズ83、アパーチャ板84、対物レンズ85及び反射電子検出装置86の少なくとも一つを備えていなくてもよい。 In the above description, the electron beam optical system 8 includes the housing 81, the accelerator 82, the focusing lens 83, the aperture plate 84, the objective lens 85, and the backscattered electron detection device 86. However, the electron beam optical system 8 need not include at least one of the housing 81, the accelerator 82, the electron lens 83, the aperture plate 84, the objective lens 85, and the backscattered electron detection device 86.
 上述した説明では、露光装置EXは、コンプリメンタリ・リソグラフィに用いられる。しかしながら、露光装置EXは、コンプリメンタリ・リソグラフィ以外の用途で用いられてもよい。例えば、露光装置EXは、電子ビームEBでウェハWにパターン(例えば、一つの半導体チップのパターン又は複数の半導体チップのパターン)を描画するようにウェハWを露光する用途で用いられてもよいし、微小マスクのパターンを電子ビームEBでウェハWに転写するようにウェハWを露光する用途で用いられてもよい。この場合、露光装置EXは、あるパターンをマスクからウェハWへ一括して転写する一括転写方式の露光装置であってもよい。或いは、露光装置EXは、一括転写方式よりも高いスループットで露光が可能な分割転写方式の露光装置であってもよい。分割転写方式の露光装置は、ウェハWに転写すべきパターンをマスク上で1つのショット領域に相当する大きさよりも小さい複数の小領域に分割し、これら複数の小領域のパターンをウェハWに転写する。尚、分割転写方式の露光装置としては、あるパターンを備えたマスクのある範囲に電子ビームEBを照射し、当該電子ビームのEBが照射された範囲のパターンの像を投影レンズで縮小転写する縮小転写型の露光装置もある。 In the above description, the exposure apparatus EX is used for complementary lithography. However, the exposure apparatus EX may be used for applications other than complementary lithography. For example, the exposure apparatus EX may be used for exposing the wafer W so that a pattern (for example, a pattern of one semiconductor chip or a pattern of a plurality of semiconductor chips) is drawn on the wafer W with the electron beam EB. Alternatively, it may be used for exposing the wafer W so that the pattern of the minute mask is transferred to the wafer W by the electron beam EB. In this case, the exposure apparatus EX may be a batch transfer type exposure apparatus that collectively transfers a certain pattern from the mask to the wafer W. Alternatively, the exposure apparatus EX may be a division transfer type exposure apparatus capable of performing exposure at a higher throughput than the batch transfer type. The division transfer type exposure apparatus divides a pattern to be transferred to a wafer W into a plurality of small areas smaller than a size corresponding to one shot area on a mask, and transfers the patterns of the plurality of small areas to the wafer W. I do. Note that, as an exposure apparatus of the division transfer system, a certain area of a mask having a certain pattern is irradiated with an electron beam EB, and an image of the pattern in the area irradiated with the EB of the electron beam is reduced and transferred by a projection lens. There is also a transfer type exposure apparatus.
 露光装置EXは、スキャニング・ステッパであってもよい。露光装置EXは、ステッパなどの静止型露光装置であってもよい。露光装置EXは、一のショット領域の少なくとも一部と他のショット領域の少なくとも一部とを合成するステップ・アンド・スティッチ型の縮小投影露光装置であってもよい。 The exposure apparatus EX may be a scanning stepper. The exposure apparatus EX may be a stationary exposure apparatus such as a stepper. The exposure apparatus EX may be a step-and-stitch type reduction projection exposure apparatus that combines at least a part of one shot area and at least a part of another shot area.
 上述した説明では、露光装置EXでは、ウェハWが単独でウェハステージ22にロードされる。しかしながら、ウェハWが搬送部材(例えば、シャトル)によって保持された状態で当該搬送部材がウェハステージ22にロードされてもよい。 In the above description, in the exposure apparatus EX, the wafer W is loaded alone on the wafer stage 22. However, the transfer member may be loaded on the wafer stage 22 in a state where the wafer W is held by the transfer member (for example, a shuttle).
 上述した説明では、露光装置EXの露光対象が、ウェハW(例えば、半導体デバイスを製造するための半導体基板)である。しかしながら、露光装置EXの露光対象は、任意の基板であってもよい。例えば、露光装置EXは、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン又はDNAチップを製造するための露光装置であってもよい。例えば、露光装置EXは、角型のガラスプレートやシリコンウェハにパターンを描画するための露光装置であってもよい。 In the above description, the exposure target of the exposure apparatus EX is the wafer W (for example, a semiconductor substrate for manufacturing a semiconductor device). However, the exposure target of the exposure apparatus EX may be any substrate. For example, the exposure apparatus EX may be an exposure apparatus for manufacturing an organic EL, a thin-film magnetic head, an image sensor (such as a CCD), a micromachine, or a DNA chip. For example, the exposure apparatus EX may be an exposure apparatus for drawing a pattern on a square glass plate or a silicon wafer.
 上述した説明では、ウェハWを露光するために電子ビーム装置5が用いられている。しかしながら、電子ビーム装置5は、ウェハWを露光する目的とは異なる目的で用いられてもよい。具体的には、ターゲットに電子ビームEBを照射する任意の装置が電子ビーム装置5を備えていてもよい。例えば、ターゲットに電子ビームEBを照射してターゲットに対して所定の処理(例えば、加工処理)を行う任意の装置が電子ビーム装置5を備えていてもよい。例えば、電子顕微鏡や付加製造を行う3次元プリンタ等が電子ビーム装置5を備えていてもよい。 In the above description, the electron beam device 5 is used to expose the wafer W. However, the electron beam device 5 may be used for a purpose different from the purpose of exposing the wafer W. Specifically, any device that irradiates the target with the electron beam EB may include the electron beam device 5. For example, any device that irradiates the target with the electron beam EB and performs a predetermined process (for example, processing) on the target may include the electron beam device 5. For example, an electron microscope, a three-dimensional printer that performs additional manufacturing, or the like may include the electron beam device 5.
 半導体デバイス等のデバイスは、図22に示す各ステップを経て製造されてもよい。デバイスを製造するためのステップは、デバイスの機能及び性能設計を行うステップS201、機能及び性能設計に基づく露光パターン(つまり、電子ビームEBによる露光パターン)を生成するステップS202、デバイスの基材であるウェハWを製造するステップS203、生成した露光パターンに応じた電子ビームEBを用いてウェハWを露光し且つ露光されたウェハWを現像するステップS204、デバイス組み立て処理(ダイシング処理、ボンディング処理、パッケージ処理等の加工処理)を含むステップS205及びデバイスの検査を行うステップS206を含んでいてもよい。 デ バ イ ス A device such as a semiconductor device may be manufactured through the steps shown in FIG. The steps for manufacturing the device include a step S201 for designing the function and performance of the device, a step S202 for generating an exposure pattern (that is, an exposure pattern by the electron beam EB) based on the function and performance design, and a device base. Step S203 of manufacturing the wafer W, step S204 of exposing the wafer W using the electron beam EB according to the generated exposure pattern and developing the exposed wafer W, device assembly processing (dicing processing, bonding processing, package processing) And the like, and step S206 for performing device inspection.
 上述の各実施形態の構成要件の少なくとも一部は、上述の各実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の各実施形態の構成要件のうちの一部が用いられなくてもよい。また、法令で許容される限りにおいて、上述の各実施形態で引用した全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 少 な く と も At least a part of the constituent elements of each of the above embodiments can be appropriately combined with at least another part of the constituent elements of each of the above embodiments. Some of the components of the above embodiments may not be used. In addition, as far as permitted by law, the disclosures of all the publications and U.S. patents cited in the above embodiments are incorporated herein by reference.
 本発明は、上述した実施例に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う発光デバイス、発光方法、露光装置、露光方法及びデバイス製造方法もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately changed within a scope not contrary to the gist or idea of the invention which can be read from the claims and the entire specification, and a light emitting device with such a change, The light emitting method, the exposure apparatus, the exposure method, and the device manufacturing method are also included in the technical scope of the present invention.
 EX 露光装置
 1 ステージチャンバ
 2 ステージシステム
 3 光学システム
 5 電子ビーム装置
 6 筐体
 7 電子ビーム生成装置
 71 発光デバイス
 711 量子井戸層
 712、713 クラッド層
 7131d 射出部
 714、715 反射層
 716 回折層
 716a マイクロレンズ
 716b 反射層
 719 光射出面
 72 投影レンズ
 73 光電変換層
 731 板部材
 732 遮光膜
 7321 アパーチャ
 733 アルカリ光電層
 8 電子ビーム光学系
 EL 光
 EB 電子ビーム
EX Exposure device 1 Stage chamber 2 Stage system 3 Optical system 5 Electron beam device 6 Housing 7 Electron beam generation device 71 Light emitting device 711 Quantum well layer 712, 713 Cladding layer 7131d Emission section 714, 715 Reflection layer 716 Diffraction layer 716a Micro lens 716b Reflection layer 719 Light emission surface 72 Projection lens 73 Photoelectric conversion layer 731 Plate member 732 Light shielding film 7321 Aperture 733 Alkaline photoelectric layer 8 Electron beam optical system EL light EB Electron beam

Claims (74)

  1.  光射出面から光を射出する発光デバイスであって、
     光を発する発光素子と、
     前記発光素子からの光が入射する第1光学素子と、
     前記第1光学素子を介して前記光射出面から射出される前記光の広がり角を制御する第2光学素子と
     を備え、
     前記第2光学素子に入射する光は、前記発光素子からの前記光の波長分布と異なる波長分布を有する
     発光デバイス。
    A light emitting device that emits light from a light exit surface,
    A light emitting element that emits light,
    A first optical element on which light from the light emitting element is incident;
    A second optical element for controlling a spread angle of the light emitted from the light exit surface via the first optical element;
    A light emitting device, wherein the light incident on the second optical element has a wavelength distribution different from the wavelength distribution of the light from the light emitting element.
  2.  前記第2光学素子は、前記第2光学素子を通過する光を偏向し、
     前記第2光学素子を通過する前記光の偏向角度は前記光の波長により異なる
     請求項1に記載の発光デバイス。
    The second optical element deflects light passing through the second optical element;
    The light emitting device according to claim 1, wherein a deflection angle of the light passing through the second optical element varies depending on a wavelength of the light.
  3.  前記第1光学素子は、前記発光素子からの前記光を狭帯域化し、
     前記第2光学素子は、前記第1光学素子によって狭帯化された光の第1波長範囲と少なくとも部分的に重複する第2波長範囲の光成分の広がり角を制御可能である
     請求項1又は2に記載の発光デバイス。
    The first optical element narrows the band of the light from the light emitting element,
    The said 2nd optical element can control the spread angle of the light component of the 2nd wavelength range which at least partially overlaps with the 1st wavelength range of the light narrowed by the 1st optical element. 3. The light emitting device according to 2.
  4.  前記第1光学素子と前記光射出面との間に設けられる第1部分と、
     前記第1部分と前記光射出面との間に設けられる第2部分とを備え、
     前記発光素子は、前記第1部分と前記第2部分との間に位置する
     請求項1から3のいずれか一項に記載の発光デバイス。
    A first portion provided between the first optical element and the light exit surface;
    A second portion provided between the first portion and the light exit surface;
    The light emitting device according to claim 1, wherein the light emitting element is located between the first portion and the second portion.
  5.  前記第1及び第2部分は半導体で構成される
     請求項4に記載の発光デバイス。
    The light emitting device according to claim 4, wherein the first and second portions are made of a semiconductor.
  6.  前記第1及び第2部分、並びに前記発光素子の内部を進行する光は共振する
     請求項4又は5に記載の発光デバイス。
    The light emitting device according to claim 4, wherein light traveling inside the first and second portions and the inside of the light emitting element resonates.
  7.  前記第1光学素子は、前記発光素子からの前記光の波長に関するスペクトル分布に対して、前記第1光学素子からの前記光の波長に関するスペクトル分布が狭帯域化されるように、前記波長分布を制御する
     請求項1から6のいずれか一項に記載の発光デバイス。
    The first optical element, the spectral distribution of the wavelength of the light from the light emitting element, with respect to the spectral distribution of the wavelength of the light from the first optical element, the wavelength distribution, such that the narrow band. The light emitting device according to any one of claims 1 to 6.
  8.  前記第1光学素子は、前記発光素子からの前記光の波長に関するスペクトル分布の半値幅に対して、前記第1光学素子からの前記光のスペクトル分布の半値幅が小さくなるように、前記波長分布を制御する
     請求項1から7のいずれか一項に記載の発光デバイス。
    The first optical element has a wavelength distribution such that a half width of a spectrum distribution of the light from the first optical element is smaller than a half width of a spectrum distribution of the light from the light emitting element with respect to a wavelength of the light. The light emitting device according to any one of claims 1 to 7.
  9.  前記第1光学素子は、前記発光素子からの前記光の波長に関するスペクトル分布のピーク値に対して、前記第1光学素子からの前記光の波長に関するスペクトル分布のピーク値が大きくなるように、前記波長分布を制御する
     請求項1から8のいずれか一項に記載の発光デバイス。
    The first optical element, the peak value of the spectral distribution related to the wavelength of the light from the first optical element, relative to the peak value of the spectral distribution related to the wavelength of the light from the light emitting element, the The light emitting device according to claim 1, wherein the light emitting device controls a wavelength distribution.
  10.  前記第1光学素子と前記第2光学素子との間で、前記光は共振する
     請求項1から9のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 9, wherein the light resonates between the first optical element and the second optical element.
  11.  光射出面から光を射出する発光デバイスであって、
     光を発する発光素子と、
     前記発光素子からの光を共振させる第1光学素子と、
     前記光射出面から射出される前記光の広がり角を制御する第2光学素子と
     を備える
     発光デバイス。
    A light emitting device that emits light from a light exit surface,
    A light emitting element that emits light,
    A first optical element that resonates light from the light emitting element;
    A second optical element that controls a spread angle of the light emitted from the light exit surface.
  12.  前記第1光学素子は、前記第1光学素子と前記光射出面との間で前記光を共振させる
     請求項11に記載の発光デバイス。
    The light emitting device according to claim 11, wherein the first optical element resonates the light between the first optical element and the light exit surface.
  13.  前記第1光学素子は、前記光を共振させる共振器を含む
     請求項1から12のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 12, wherein the first optical element includes a resonator that resonates the light.
  14.  前記共振器は、反射光学素子を含む
     請求項13に記載の発光デバイス。
    The light emitting device according to claim 13, wherein the resonator includes a reflective optical element.
  15.  前記共振器は、前記反射光学素子で前記光を反射して前記光を共振させる
     請求項14に記載の発光デバイス。
    The light emitting device according to claim 14, wherein the resonator reflects the light with the reflective optical element to resonate the light.
  16.  前記光射出面と前記反射光学素子との間に、前記発光素子が配置される
     請求項14又は15に記載の発光デバイス。
    The light emitting device according to claim 14, wherein the light emitting element is disposed between the light exit surface and the reflective optical element.
  17.  前記光共振器は、少なくとも二つの反射光学素子を含み、
     前記少なくとも二つの反射光学素子の間に前記発光素子が配置される
     請求項14から16のいずれか一項に記載の発光デバイス。
    The optical resonator includes at least two reflective optical elements,
    The light emitting device according to any one of claims 14 to 16, wherein the light emitting element is disposed between the at least two reflective optical elements.
  18.  前記光射出面と前記少なくとも二つの反射光学素子のうちの第1の反射光学素子との間に、前記発光素子が配置され、
     前記光射出面と前記発光素子との間に、前記少なくとも二つの反射光学素子のうちの第2の反射光学素子が配置される
     請求項17に記載の発光デバイス。
    The light emitting element is disposed between the light exit surface and a first reflective optical element of the at least two reflective optical elements,
    The light emitting device according to claim 17, wherein a second reflective optical element of the at least two reflective optical elements is disposed between the light exit surface and the light emitting element.
  19.  前記第1光学素子は、前記光の回折を利用して、前記光の波長分布を制御する
     請求項1から18のいずれか一項に記載の発光デバイス。
    The light emitting device according to claim 1, wherein the first optical element controls a wavelength distribution of the light using diffraction of the light.
  20.  前記第1光学素子は、前記光を回折させる回折素子を含む
     請求項1から19のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 19, wherein the first optical element includes a diffraction element that diffracts the light.
  21.  前記回折素子は、所定方向に沿って誘電率が周期的に変化する素子を含む
     請求項20に記載の発光デバイス。
    The light emitting device according to claim 20, wherein the diffractive element includes an element whose permittivity changes periodically along a predetermined direction.
  22.  前記回折素子は、所定方向に沿って屈折率が周期的に変化する素子を含む
     請求項20又は21に記載の発光デバイス。
    22. The light emitting device according to claim 20, wherein the diffraction element includes an element whose refractive index changes periodically along a predetermined direction.
  23.  前記回折素子は、フォトニック結晶構造を有する素子を含む
     請求項20から22のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 20 to 22, wherein the diffraction element includes an element having a photonic crystal structure.
  24.  前記発光素子と前記第1光学素子とを含む構造体を有する
     請求項1から23のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 23, further comprising a structure including the light emitting element and the first optical element.
  25.  前記発光素子と前記第1光学素子とが積層された積層構造を有する
     請求項1から24のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 24, wherein the light emitting device has a stacked structure in which the light emitting element and the first optical element are stacked.
  26.  前記第2光学素子は、前記広がり角を制御する前と比較して前記広がり角が小さくなるように、前記広がり角を制御する
     請求項1から25のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 25, wherein the second optical element controls the divergence angle such that the divergence angle is smaller than before the divergence angle is controlled.
  27.  前記第2光学素子の表面は、前記光射出面を含む
     請求項1から26のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 26, wherein a surface of the second optical element includes the light exit surface.
  28.  前記発光デバイスは、前記第2光学素子から前記光を射出する
     請求項1から27のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 27, wherein the light emitting device emits the light from the second optical element.
  29.  前記第2光学素子は、前記光の回折現象を利用して、前記広がり角を制御する
     請求項1から28のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 28, wherein the second optical element controls the divergence angle using a diffraction phenomenon of the light.
  30.  光を発する発光素子と、
     前記発光素子からの光が入射する第1光学素子と、
     前記第1光学素子を介した光を回折させる第2光学素子と
     を備え、
     前記第2光学素子に入射する光は、前記発光素子からの前記光の波長分布と異なる波長分布を有する
     発光デバイス。
    A light emitting element that emits light,
    A first optical element on which light from the light emitting element is incident;
    A second optical element for diffracting the light passing through the first optical element,
    A light emitting device, wherein the light incident on the second optical element has a wavelength distribution different from the wavelength distribution of the light from the light emitting element.
  31.  光を発する発光素子と、
     前記発光素子からの前記光を共振させる第1光学素子と、
     前記共振された前記光を回折させる第2光学素子と
     を備える発光デバイス。
    A light emitting element that emits light,
    A first optical element that resonates the light from the light emitting element;
    A second optical element that diffracts the resonated light.
  32.  前記第2光学素子は、前記光を回折させる回折素子を含む
     請求項1から31のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 31, wherein the second optical element includes a diffraction element that diffracts the light.
  33.  前記回折素子は、所定方向に沿って誘電率が周期的に変化する素子を含む
     請求項32に記載の発光デバイス。
    The light emitting device according to claim 32, wherein the diffractive element includes an element whose permittivity changes periodically along a predetermined direction.
  34.  前記回折素子は、第1方向、第1方向に交差する第2方向、並びに、第1及び第2方向に交差する第3方向の少なくとも一つに沿って誘電率が周期的に変化する素子を含む
     請求項32又は33に記載の発光デバイス。
    The diffraction element includes an element whose dielectric constant periodically changes in at least one of a first direction, a second direction intersecting the first direction, and a third direction intersecting the first and second directions. The light emitting device according to claim 32 or 33.
  35.  前記回折素子は、第1の誘電率を有する第1領域部分が、前記第1の誘電率とは異なる誘電率を有する第2領域部分内において、前記第1及び第2方向のそれぞれに沿って周期的に分布する素子を含み、
     前記第1領域部分は、前記第1及び第2方向のそれぞれに沿った平面内において格子状に分布する
     請求項34に記載の発光デバイス。
    In the diffraction element, a first region portion having a first dielectric constant has a second region portion having a dielectric constant different from the first dielectric constant along each of the first and second directions. Including periodically distributed elements,
    The light emitting device according to claim 34, wherein the first region portions are distributed in a grid pattern in a plane along each of the first and second directions.
  36.  前記回折素子は、第1の誘電率を有する第1領域部分が、前記第1の誘電率とは異なる誘電率を有する第2領域部分内において、前記第1及び第2方向のそれぞれに沿って周期的に分布する素子を含み、
     前記第1領域部分は、前記第1及び第2方向のそれぞれに沿った平面内において三角格子状に分布する
     請求項34又は35に記載の発光デバイス。
    In the diffraction element, a first region portion having a first dielectric constant has a second region portion having a dielectric constant different from the first dielectric constant along each of the first and second directions. Including periodically distributed elements,
    The light emitting device according to claim 34 or 35, wherein the first region portions are distributed in a triangular lattice shape in a plane along each of the first and second directions.
  37.  前記第1及び第2方向は、前記光射出面の面内方向と平行である
     請求項35または36に記載の発光デバイス。
    The light emitting device according to claim 35 or 36, wherein the first and second directions are parallel to an in-plane direction of the light emitting surface.
  38.  前記誘電率は、前記第1光学素子を介した前記光の波長に関するスペクトル分布のピーク値に対応する所望波長に応じて定まる周期で周期的に変化する
     請求項33から37のいずれか一項に記載の発光デバイス。
    The said dielectric constant changes periodically with the period determined according to the desired wavelength corresponding to the peak value of the spectrum distribution regarding the wavelength of the light via the said 1st optical element. The light-emitting device according to claim 1.
  39.  前記第1光学素子は、前記波長分布を制御する前と比較して、前記光の波長に関するスペクトル分布を、特定波長範囲に含まれるピーク値を中心に狭帯域化し、
     前記誘電率は、前記特定波長範囲に応じて定まる周期で周期的に変化する
     請求項33から38のいずれか一項に記載の発光デバイス。
    Compared to before controlling the wavelength distribution, the first optical element narrows a band around a peak value included in a specific wavelength range, with respect to the spectral distribution of the wavelength of the light,
    The light emitting device according to any one of claims 33 to 38, wherein the dielectric constant periodically changes at a period determined according to the specific wavelength range.
  40.  前記回折素子は、フォトニック結晶構造を有する素子を含む
     請求項32から39のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 32 to 39, wherein the diffraction element includes an element having a photonic crystal structure.
  41.  前記回折素子は、1次元フォトニック結晶構造を有する素子、2次元フォトニック結晶構造を有する素子、及び、3次元フォトニック結晶構造を有する素子の少なくとも一つを含む
     請求項32から40のいずれか一項に記載の発光デバイス。
    41. The diffractive element includes at least one of an element having a one-dimensional photonic crystal structure, an element having a two-dimensional photonic crystal structure, and an element having a three-dimensional photonic crystal structure. A light emitting device according to claim 1.
  42.  前記第2光学素子は、前記光の屈折現象を利用して、前記光の広がり角を制御する
     請求項1から41のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 41, wherein the second optical element controls a spread angle of the light by using a refraction phenomenon of the light.
  43.  光を発する発光素子と、
     前記発光素子からの光が入射する第1光学素子と、
     前記第1光学素子を介した前記光を屈折させる第2光学素子と
     を備え、
     前記第2光学素子に入射する光は、前記発光素子からの前記光の波長分布と異なる波長分布を有する発光デバイス。
    A light emitting element that emits light,
    A first optical element on which light from the light emitting element is incident;
    A second optical element that refracts the light through the first optical element,
    A light-emitting device in which light incident on the second optical element has a wavelength distribution different from the wavelength distribution of the light from the light-emitting element.
  44.  光を発する発光素子と、
     前記発光素子からの前記光を共振させる第1光学素子と、
     前記共振された前記光を屈折させる第2光学素子と
     を備える発光デバイス。
    A light emitting element that emits light,
    A first optical element that resonates the light from the light emitting element;
    A second optical element that refracts the resonated light.
  45.  前記第2光学素子は、前記光を屈折させる屈折素子を含む
     請求項1から44のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 44, wherein the second optical element includes a refraction element that refracts the light.
  46.  前記第2光学素子は、レンズを含む
     請求項1から45のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 45, wherein the second optical element includes a lens.
  47.  前記第2光学素子は、前記光の反射現象を利用して、前記光の広がり角を制御する
     請求項1から46のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 46, wherein the second optical element controls a spread angle of the light using a reflection phenomenon of the light.
  48.  前記第2光学素子は、前記光を反射させる反射素子を含む
     請求項1から47のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 47, wherein the second optical element includes a reflective element that reflects the light.
  49.  前記発光素子と前記第2光学素子とを含む構造体を有する
     請求項1から48のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 48, further comprising a structure including the light emitting element and the second optical element.
  50.  前記発光素子と前記第2光学素子とが積層された積層構造を有する
     請求項1から49のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 49, wherein the light emitting device has a stacked structure in which the light emitting element and the second optical element are stacked.
  51.  前記発光デバイスは、LED(Light Emitting Diode)である
     請求項1から50のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 1 to 50, wherein the light emitting device is an LED (Light Emitting Diode).
  52.  前記光射出面上の第1位置から射出される光の位相と、前記光射出面上で前記第1位置と異なる第2位置から射出される光の位相とは互いに異なる
     請求項1から51のいずれか一項に記載の発光デバイス。
    52. The phase of light emitted from a first position on the light emitting surface and the phase of light emitted from a second position different from the first position on the light emitting surface are different from each other. A light emitting device according to any one of the preceding claims.
  53.  第1及び第2層を備え、
     前記発光素子は、前記第1および第2層の間に設けられた活性層を備える
     請求項1から52のいずれか一項に記載の発光デバイス。
    Comprising first and second layers,
    The light emitting device according to any one of claims 1 to 52, wherein the light emitting element includes an active layer provided between the first and second layers.
  54.  前記発光素子及び前記第1光学素子を含み、前記光としてレーザ発振したレーザ光を射出するレーザ発振素子を備え、
     前記第2光学素子は、前記広がり角を制御する前と比較して前記広がり角が大きくなるように、前記広がり角を制御する
     請求項1から53に記載の発光デバイス。
    A laser oscillation element that includes the light emitting element and the first optical element, and that emits laser light that is laser-oscillated as the light;
    The light emitting device according to any one of claims 1 to 53, wherein the second optical element controls the divergence angle such that the divergence angle becomes larger than before the divergence angle is controlled.
  55.  光射出面から光を射出する発光デバイスであって、
     光を発する発光素子と、
     前記発光素子を挟むように設けられた複数の第1光学素子と、
     前記光射出面に設けられ、前記複数の第1光学素子の間でレーザ発振された光の広がり角を広げる第2光学素子と
     を備える
     発光デバイス。
    A light emitting device that emits light from a light exit surface,
    A light emitting element that emits light,
    A plurality of first optical elements provided so as to sandwich the light emitting element;
    A second optical element provided on the light exit surface, the second optical element increasing a spread angle of laser-oscillated light between the plurality of first optical elements.
  56.  前記第2光学素子は、前記光の回折を利用して、前記広がり角を制御する
     請求項54又は55に記載の発光デバイス。
    The light emitting device according to claim 54 or 55, wherein the second optical element controls the spread angle using diffraction of the light.
  57.  前記第2光学素子は、前記光を回折させる回折素子を含む
     請求項54から56のいずれか一項に記載の発光デバイス。
    The light emitting device according to any one of claims 54 to 56, wherein the second optical element includes a diffraction element that diffracts the light.
  58.  前記回折素子は、所定方向に沿って誘電率が周期的に変化する素子を含む
     請求項57に記載の発光デバイス。
    The light emitting device according to claim 57, wherein the diffractive element includes an element whose permittivity changes periodically along a predetermined direction.
  59.  前記回折素子は、フォトニック結晶構造を有する素子を含む
     請求項57又は58に記載の発光デバイス。
    The light emitting device according to claim 57 or 58, wherein the diffraction element includes an element having a photonic crystal structure.
  60.  前記光射出面上の第1位置から射出される光の位相と、前記光射出面上で前記第1位置と異なる第2位置から射出される光の位相とは互いに相関がある
     請求項54から59のいずれか一項に記載の発光デバイス。
    55. The phase of light emitted from a first position on the light emission surface and the phase of light emitted from a second position different from the first position on the light emission surface have a correlation with each other. 60. The light emitting device according to any one of 59.
  61.  発光素子で光を発生させることと、
     前記発生された前記光の波長分布を制御することと、
     前記波長分布が制御された前記光の広がり角を制御することと
     を含む発光方法。
    Generating light with a light emitting element;
    Controlling the wavelength distribution of the generated light;
    Controlling the spread angle of the light whose wavelength distribution is controlled.
  62.  前記波長分布を制御することは、前記波長分布を制御する前と比較して前記光の波長に関するスペクトル分布が狭帯域化される、前記光の波長に関するスペクトル分布の半値幅が小さくなる及び/又は前記光の波長に関するスペクトル分布のピーク値が大きくなるように、前記波長分布を制御することを含む
     請求項61に記載の発光方法。
    Controlling the wavelength distribution is that the spectral distribution related to the wavelength of the light is narrower than before controlling the wavelength distribution, and the half width of the spectral distribution related to the wavelength of the light is reduced and / or 62. The light emitting method according to claim 61, further comprising controlling the wavelength distribution such that a peak value of a spectrum distribution with respect to a wavelength of the light increases.
  63.  前記波長分布を制御することは、共振器を用いて前記波長分布を制御することを含む
     請求項61又は62に記載の発光方法。
    63. The light emitting method according to claim 61 or 62, wherein controlling the wavelength distribution includes controlling the wavelength distribution using a resonator.
  64.  前記広がり角を制御することは、前記広がり角を制御する前と比較して前記広がり角が小さくなるように、前記広がり角を制御することを含む
     請求項61から63のいずれか一項に記載の発光方法。
    The controlling of the divergence angle includes controlling the divergence angle so that the divergence angle is smaller than before controlling the divergence angle. The method according to any one of claims 61 to 63. Light emission method.
  65.  前記広がり角を制御することは、回折素子及び/又は屈折素子を用いて前記広がり角を制御することを含む
     請求項61から64のいずれか一項に記載の発光方法。
    The light emitting method according to any one of claims 61 to 64, wherein controlling the divergence angle includes controlling the divergence angle using a diffraction element and / or a refraction element.
  66.  前記回折素子は、フォトニック結晶構造を有する素子を含む
     請求項65に記載の発光方法。
    The light emitting method according to claim 65, wherein the diffraction element includes an element having a photonic crystal structure.
  67.  請求項1から60のいずれか一項に記載の発光デバイスと、
     前記発光デバイスが射出する前記光をターゲットに照射する投影光学系と
     を備える露光装置。
    A light emitting device according to any one of claims 1 to 60,
    A projection optical system for irradiating the target with the light emitted by the light emitting device.
  68.  前記投影光学系は、前記発光デバイスの発光面の像を前記ターゲット上に形成する
     請求項67に記載の露光装置。
    The exposure apparatus according to claim 67, wherein the projection optical system forms an image of a light emitting surface of the light emitting device on the target.
  69.  前記投影光学系は縮小倍率を有する
     請求項67又は68に記載の露光装置。
    69. The exposure apparatus according to claim 67, wherein the projection optical system has a reduction magnification.
  70.  前記投影光学系の前記発光デバイス側の開口数は、前記投影光学系の前記ターゲット側の開口数よりも小さい
     請求項67から69のいずれか一項に記載の露光装置。
    The exposure apparatus according to any one of claims 67 to 69, wherein a numerical aperture of the projection optical system on the light emitting device side is smaller than a numerical aperture of the projection optical system on the target side.
  71.  前記発光デバイスを複数有し、
     複数の前記発光デバイスのうち第1発光デバイスからの光が前記ターゲットの第1位置に照射され、且つ複数の前記発光デバイスのうち前記第1発光デバイスと異なる第2発光デバイスからの光が前記ターゲットの前記第1位置と異なる第2位置に照射される
     請求項67から70のいずれか一項に記載の露光装置。
    Having a plurality of the light emitting devices,
    Light from a first light emitting device among the plurality of light emitting devices is irradiated to a first position of the target, and light from a second light emitting device different from the first light emitting device among the plurality of light emitting devices is emitted from the target. The exposure apparatus according to any one of claims 67 to 70, wherein the light is irradiated to a second position different from the first position.
  72.  前記投影光学系を複数備える 
     請求項67から71のいずれか一項に記載の露光装置。
    A plurality of projection optical systems
    The exposure apparatus according to any one of claims 67 to 71.
  73.  請求項1から60のいずれか一項に記載の発光デバイスから前記光を放出することと、
     前記発光デバイスの発光面の像をターゲットに形成すること
     を含む露光方法。
    Emitting the light from the light emitting device according to any one of claims 1 to 60;
    Forming an image of the light emitting surface of the light emitting device on a target.
  74.  リソグラフィ工程を含むデバイス製造方法であって、
     前記リソグラフィ工程は、
     ターゲット上にラインアンドスペースパターンを形成することと、
     請求項73に記載の露光方法を用いて、前記ラインアンドスペースパターンを構成するラインパターンの切断を行うことと
     を含むデバイス製造方法。
    A device manufacturing method including a lithography step,
    The lithography step
    Forming a line and space pattern on the target;
    A device manufacturing method, comprising: using the exposure method according to claim 73, to cut a line pattern constituting the line and space pattern.
PCT/JP2019/032423 2018-08-23 2019-08-20 Light emission device, light emission method, exposure device and device manufacturing method WO2020040132A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020538404A JPWO2020040132A1 (en) 2018-08-23 2019-08-20 Light emitting device, light emitting method, exposure device, exposure method and device manufacturing method
JP2022033901A JP7380726B2 (en) 2018-08-23 2022-03-04 Light emitting device, light emitting method, exposure apparatus, exposure method and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-156621 2018-08-23
JP2018156621 2018-08-23

Publications (1)

Publication Number Publication Date
WO2020040132A1 true WO2020040132A1 (en) 2020-02-27

Family

ID=69592648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032423 WO2020040132A1 (en) 2018-08-23 2019-08-20 Light emission device, light emission method, exposure device and device manufacturing method

Country Status (3)

Country Link
JP (2) JPWO2020040132A1 (en)
TW (1) TWI841585B (en)
WO (1) WO2020040132A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11798783B2 (en) 2020-01-06 2023-10-24 Asml Netherlands B.V. Charged particle assessment tool, inspection method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002185071A (en) * 2000-10-20 2002-06-28 Samsung Electronics Co Ltd Microlens integrated surface emission laser
US20040013157A1 (en) * 2002-07-18 2004-01-22 Hongyu Deng High power single mode vertical cavity surface emitting laser
WO2005071808A1 (en) * 2004-01-23 2005-08-04 Nec Corporation Surface emitting laser
WO2006035925A1 (en) * 2004-09-30 2006-04-06 Nikon Corporation Measurement method, exposure method, and device manufacturing method
JP2007234835A (en) * 2006-02-28 2007-09-13 Canon Inc Vertical resonator type surface-emitting laser
JP2007234724A (en) * 2006-02-28 2007-09-13 Canon Inc Vertical resonator type surface-emitting laser, and manufacturing method of two-dimensional photonic crystal therein
JP2008041777A (en) * 2006-08-02 2008-02-21 Seiko Epson Corp Surface-emitting semiconductor laser
JP2008117880A (en) * 2006-11-02 2008-05-22 Canon Inc Miller using photonic crystal and surface-emitting laser using the same
JP2011243650A (en) * 2010-05-14 2011-12-01 Furukawa Electric Co Ltd:The Semiconductor laser element

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250794A (en) * 1995-03-13 1996-09-27 Ishikawajima Harima Heavy Ind Co Ltd Mthod for controlling spreading of laser beam
JP3965848B2 (en) * 1999-12-02 2007-08-29 富士ゼロックス株式会社 Optical element, laser array, and method of manufacturing optical element
JP2002260981A (en) * 2001-02-28 2002-09-13 Hitachi Ltd Method and device for electron beam lithography
JP2004056010A (en) * 2002-07-23 2004-02-19 Toyota Central Res & Dev Lab Inc Nitride semiconductor light emitting device
JP2005340319A (en) * 2004-05-25 2005-12-08 Nikon Corp Light source device, lighting apparatus, exposure apparatus, exposure method, and method for adjustment
JP2006059864A (en) * 2004-08-17 2006-03-02 Yokohama National Univ Light emitting element
FI117492B (en) * 2004-10-26 2006-10-31 Jukka Vanhala Light emitting device and method for directing light
JP2006344667A (en) * 2005-06-07 2006-12-21 Seiko Epson Corp Surface-emissive semiconductor laser and its manufacturing method, optical module, and light transmission device
JP2007109689A (en) * 2005-10-11 2007-04-26 Seiko Epson Corp Light emitting element, manufacturing method thereof, and image display device
JP2010192650A (en) * 2009-02-18 2010-09-02 Fuji Xerox Co Ltd Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission apparatus, and optical information processing apparatus
JP6211435B2 (en) * 2014-02-26 2017-10-11 株式会社アドバンテスト Manufacturing method of semiconductor device
JP2016134501A (en) * 2015-01-20 2016-07-25 スタンレー電気株式会社 Semiconductor light emitting device
WO2016191142A2 (en) * 2015-05-27 2016-12-01 Verily Life Sciences Llc Nanophotonic hyperspectral/lightfield superpixel imager

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002185071A (en) * 2000-10-20 2002-06-28 Samsung Electronics Co Ltd Microlens integrated surface emission laser
US20040013157A1 (en) * 2002-07-18 2004-01-22 Hongyu Deng High power single mode vertical cavity surface emitting laser
WO2005071808A1 (en) * 2004-01-23 2005-08-04 Nec Corporation Surface emitting laser
WO2006035925A1 (en) * 2004-09-30 2006-04-06 Nikon Corporation Measurement method, exposure method, and device manufacturing method
JP2007234835A (en) * 2006-02-28 2007-09-13 Canon Inc Vertical resonator type surface-emitting laser
JP2007234724A (en) * 2006-02-28 2007-09-13 Canon Inc Vertical resonator type surface-emitting laser, and manufacturing method of two-dimensional photonic crystal therein
JP2008041777A (en) * 2006-08-02 2008-02-21 Seiko Epson Corp Surface-emitting semiconductor laser
JP2008117880A (en) * 2006-11-02 2008-05-22 Canon Inc Miller using photonic crystal and surface-emitting laser using the same
JP2011243650A (en) * 2010-05-14 2011-12-01 Furukawa Electric Co Ltd:The Semiconductor laser element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11798783B2 (en) 2020-01-06 2023-10-24 Asml Netherlands B.V. Charged particle assessment tool, inspection method
US11984295B2 (en) 2020-01-06 2024-05-14 Asml Netherlands B.V. Charged particle assessment tool, inspection method

Also Published As

Publication number Publication date
TWI841585B (en) 2024-05-11
JP2022075761A (en) 2022-05-18
TW202023065A (en) 2020-06-16
JPWO2020040132A1 (en) 2021-09-24
JP7380726B2 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
JP5531090B2 (en) Beam shaper
TWI448026B (en) Method and apparatus for driving semiconductor lasers, and method and apparatus for deriving drive current patterns for semiconductor lasers
JP7380726B2 (en) Light emitting device, light emitting method, exposure apparatus, exposure method and device manufacturing method
WO2021235162A1 (en) Light-emitting device and ranging device
JP2020031156A (en) Electron beam apparatus, exposure apparatus, exposure method and device manufacturing method
JP6393078B2 (en) Light emitting element
JP6093140B2 (en) Light emitting element
WO2018155537A1 (en) Electron beam apparatus and exposure method, and device production method
TW202307899A (en) Charged particle assessment system and method
JP2000123716A (en) Micro electron source
WO2019146027A1 (en) Electron beam device, device production method, and photoelectric element unit
TW201923830A (en) Electron beam apparatus and device manufacturing method
US9910268B2 (en) Spatial light modulator, photolithographing apparatus, exposure apparatus, and method of manufacturing device
TW201921404A (en) Electron beam apparatus and device manufacturing method
TW201921411A (en) Electron beam apparatus and device manufacturing method
WO2015001736A1 (en) Exposure device and lighting unit
WO2018155545A1 (en) Electron beam apparatus and exposure method, and device production method
WO2018155539A1 (en) Electron beam apparatus and device production method, and photoelectric element holding container
TW201921405A (en) Electron beam apparatus and device manufacturing method
TW201923808A (en) Electron beam apparatus and exposure method, and device manufacturing method
TW201923807A (en) Electron beam apparatus and exposure method, and device manufacturing method
WO2019064530A1 (en) Electron beam apparatus, device manufacturing method, exposure method, and photoelectric element
JP6055316B2 (en) Light emitting element
WO2018155542A1 (en) Electron beam apparatus and exposure method, and device production method
WO2018155543A1 (en) Electronic beam apparatus and device production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538404

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851812

Country of ref document: EP

Kind code of ref document: A1