WO2020039964A1 - Vehicle lamp - Google Patents

Vehicle lamp Download PDF

Info

Publication number
WO2020039964A1
WO2020039964A1 PCT/JP2019/031394 JP2019031394W WO2020039964A1 WO 2020039964 A1 WO2020039964 A1 WO 2020039964A1 JP 2019031394 W JP2019031394 W JP 2019031394W WO 2020039964 A1 WO2020039964 A1 WO 2020039964A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phase modulation
modulation element
projection lens
emitted
Prior art date
Application number
PCT/JP2019/031394
Other languages
French (fr)
Japanese (ja)
Inventor
和也 本橋
壮宜 鬼頭
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to CN201980041570.6A priority Critical patent/CN112368510B/en
Priority to JP2020538308A priority patent/JP7285260B2/en
Publication of WO2020039964A1 publication Critical patent/WO2020039964A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/12Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of emitted light
    • F21S41/125Coloured light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/63Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates
    • F21S41/64Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates by changing their light transmissivity, e.g. by liquid crystal or electrochromic devices

Definitions

  • the present invention relates to a vehicle lamp, and more specifically, to a vehicle lamp having a projection lens.
  • Patent Literature 1 describes that a predetermined light distribution pattern is formed using a hologram element which is a kind of a phase modulation element.
  • phase modulation element described in Patent Document 1 it tends to be difficult to increase the divergence angle due to the manufacturing convenience and the properties of the phase modulation element. Therefore, when a low beam is generated via such a phase modulation element, for example, it may be preferable to separately arrange a projection lens in order to adjust the divergence angle of light emitted from the phase modulation element. However, when light is transmitted through such a projection lens, there is a concern that chromatic aberration of the projection lens may cause color fringing at the outer edge of the light.
  • the vehicle lamp according to the first aspect of the present invention includes a plurality of light sources that emit light having different wavelengths from each other, and diffracts the light emitted from each of the plurality of light sources, At least one phase modulation element that sets each of the plurality of lights to a predetermined light distribution pattern, and a projection lens that adjusts a divergence angle of the plurality of lights emitted from the phase modulation element, is provided by the phase modulation element.
  • the plurality of lights having the predetermined light distribution pattern are formed such that light having a shorter wavelength forms an image closer to the projection lens.
  • outer edges of the plurality of lights emitted from the projection lens are parallel to each other.
  • the light bleeding can be effectively suppressed.
  • each of the plurality of lights may form an image at a focal point of the projection lens.
  • the outer edges of the plurality of lights emitted from the projection lens are parallel to each other.
  • the predetermined light distribution patterns of the plurality of lights have the same outer shape.
  • the light distribution pattern of each light has the same outer shape, the outer edges of the light emitted from the projection lens can easily become parallel and can easily overlap each other.
  • the vehicle lamp according to the second aspect of the present invention includes a plurality of light sources that emit light having different wavelengths from each other, and diffracts the light emitted from each of the plurality of light sources.
  • each light enters the projection lens in a state where the outer edges of the light distribution pattern of each light overlap.
  • the chromatic aberration of the projection lens due to the chromatic aberration of the projection lens, light having a shorter wavelength is refracted inward and the distance between the outer edges of the light distribution pattern of each light is widened, so that color fringing tends to occur at the outer edge of the light.
  • the light image having a shorter wavelength is enlarged.
  • the outer edge of the image of the light having the shorter wavelength is located outside the outer edge of the image of the light having the longer wavelength, so that the light having the shorter wavelength can enter the projection lens at the outer side. Therefore, in the plurality of lights emitted from the projection lens, the outer edges of the light distribution patterns of the plurality of lights can be almost parallel, and the color blur can be suppressed.
  • outer edges of the plurality of lights emitted from the projection lens are parallel to each other.
  • the color fringing can be more effectively suppressed by overlapping the outer edges of the light.
  • the phase modulation element may be provided for each of the plurality of light sources.
  • phase modulation elements are provided in a one-to-one correspondence with the plurality of light sources, it is easy to form a light distribution pattern according to the light emitted from each light source.
  • At least two of the plurality of light sources switch the emission of the light from each light source at a predetermined cycle, and the at least two light sources A plurality of the lights emitted from the light are incident on the common phase modulation element, and the phase modulation element on which the light from the at least two light sources is incident changes a diffraction pattern according to a wavelength of the incident light. May be.
  • phase modulation element that receives light from at least two light sources can be a common phase modulation element, the number of phase modulation elements provided in the vehicle lamp can be reduced, and the number of parts and the cost can be reduced. Down can be realized.
  • the cycle is 1/30 s or less.
  • the phase modulation element may be an LCOS (Liquid Crystal On Silicon).
  • LCOS causes a difference in the refractive index of the liquid crystal layer by changing the arrangement of the liquid crystal molecules according to the voltage. Therefore, by adjusting the voltage applied to the LCOS, it may be possible to change the light distribution pattern of light and adjust the light imaging position.
  • the light emitted from the phase modulation element may be imaged through at least one imaging lens.
  • the light By passing through the imaging lens, the light can be easily imaged at the imaging position.
  • the imaging lens may be arranged for each phase modulation element.
  • the convergence angle of the light emitted from each phase modulation element can be adjusted separately, so that the image forming position of light having a shorter wavelength can be easily brought closer to the projection lens.
  • the convergence angles of the lights emitted from the respective phase modulation elements can be individually adjusted, so that it is easy to form an image of each of the plurality of lights.
  • the plurality of light sources may include three light sources.
  • a vehicular lamp provided with a projection lens and capable of suppressing color fringing is provided.
  • FIG. 1 is a longitudinal sectional view schematically showing a vehicular lamp according to a first embodiment of the present invention. It is an enlarged view of the lamp unit shown in FIG.
  • FIG. 3 is a front view of the phase modulation element shown in FIG. 2.
  • FIG. 4 is a diagram schematically showing a cross section in a thickness direction of a part of the phase modulation element shown in FIG. 3.
  • FIG. 2 is an enlarged view schematically showing the vicinity of an imaging lens and a projection lens in the vehicle lamp shown in FIG. 1. It is a figure which shows the light distribution pattern of a low beam. It is a figure showing a lamp unit of a vehicular lamp concerning a 2nd embodiment of the present invention like FIG. FIG.
  • FIG. 8 is a diagram showing the vicinity of a projection lens in the vehicle lamp shown in FIG. 7, similarly to FIG. 5. It is an enlarged drawing which shows roughly the vicinity of the imaging lens and the projection lens in the vehicle lamp concerning 3rd Embodiment of this invention.
  • FIG. 10 is a diagram schematically showing the vicinity of the focal point on the focal plane shown in FIG. 9. It is a figure which shows the vicinity of the projection lens in the vehicle lamp concerning 4th Embodiment of this invention similarly to FIG. It is a figure showing a lamp unit of a vehicular lamp concerning a 5th embodiment of the present invention like FIG. It is a figure which shows the lamp unit of the vehicle lamp concerning 6th Embodiment of this invention similarly to FIG. It is a figure which shows the light distribution pattern of a high beam.
  • Drawing 1 is a figure showing an example of the vehicular lamp concerning this embodiment, and is a longitudinal section showing roughly the section of the vertical direction of the vehicular lamp.
  • the vehicular lamp is the vehicular headlamp 1.
  • the vehicle headlamp 1 is provided with a housing 10, a lamp unit 20, an imaging lens 81 disposed in front of the lamp unit 20, and disposed in front of the imaging lens 81.
  • Projection lens 80 as a main configuration.
  • the housing 10 includes a lamp housing 11, a front cover 12, and a back cover 13 as main components.
  • the front of the lamp housing 11 is open, and the front cover 12 is fixed to the lamp housing 11 so as to close the opening.
  • An opening smaller than the front is formed behind the lamp housing 11, and the back cover 13 is fixed to the lamp housing 11 so as to close the opening.
  • the space formed by the lamp housing 11, the front cover 12 closing the front opening of the lamp housing 11, and the back cover 13 closing the rear opening of the lamp housing 11 is a lamp room R.
  • the lamp unit 20, the imaging lens 81, and the projection lens 80 are housed therein.
  • the lamp unit 20 of the present embodiment includes the heat sink 30, the cooling fan 35, the cover 59, and the optical system unit 50 as main components.
  • the lamp unit 20 is fixed to the housing 10 by a configuration (not shown).
  • the heat sink 30 has a metal base plate 31 extending in a substantially horizontal direction, and a plurality of heat radiation fins 32 are provided integrally with the base plate 31 on the lower surface side of the base plate 31. I have.
  • the cooling fan 35 is arranged with a gap from the radiation fin 32 and is fixed to the heat sink 30.
  • the heat sink 30 is cooled by the airflow generated by the rotation of the cooling fan 35.
  • a cover 59 is arranged on the upper surface of the base plate 31 of the heat sink 30.
  • the cover 59 of the present embodiment is made of a metal such as aluminum, for example, and is fixed to the upper surface of the base plate 31 of the heat sink 30.
  • An optical system unit 50 for generating light forming a low beam or the like is accommodated inside the cover 59.
  • An opening 59H is formed at the front of the cover 59, and the light from the optical system unit 50 is emitted forward through the opening 59H.
  • the inner walls of the cover 59 have a light absorbing property
  • these inner walls are subjected to black alumite processing or the like. Since the inner wall of the cover 59 has a light absorbing property, even when the inner wall is irradiated with light due to unintended reflection or refraction, the irradiated light is reflected and emitted from the opening 59H in an unintended direction. Can be suppressed.
  • the imaging lens 81 is a lens for imaging the light emitted from the opening 59H at a predetermined imaging position.
  • the imaging lens 81 is disposed in front of the opening 59H of the cover 59, and is fixed to the housing 10 by a configuration (not shown).
  • the imaging lens 81 is a lens in which the entrance surface and the exit surface are formed in a convex shape, and is formed such that the focal point is located between the imaging lens 81 and the projection lens 80. ing.
  • the projection lens 80 is a lens for adjusting the divergence angle of the light imaged at the image forming position. That is, when the light passes through the projection lens 80, the divergence angle of the light is adjusted, and the low beam or the like is formed into a predetermined size.
  • the projection lens 80 is arranged in front of the imaging lens 81, and is fixed to the housing 10 by a configuration (not shown).
  • the projection lens 80 is a lens in which the entrance surface and the exit surface are formed in a convex shape.
  • FIG. 2 is an enlarged view of a lamp unit 20 included in the vehicle headlight 1 shown in FIG.
  • the optical system unit 50 includes a first light source 52R, a second light source 52G, a third light source 52B, a first phase modulation element 54R, and a second phase modulation element 54G.
  • the phase modulation elements 54R, 54G, and 54B are reflection-type phase modulation elements that diffract and emit incident light while reflecting the light, and are, for example, reflection-type LCOS (Liquid Crystal On Silicon). You.
  • LCOS Liquid Crystal On Silicon
  • the first light source 52R is a laser element that emits a laser beam having a predetermined wavelength.
  • the first light source 52R emits a red laser beam having a power peak wavelength of, for example, 638 nm upward.
  • Each of the second light source 52G and the third light source 52B is a laser element that emits a laser beam having a predetermined wavelength.
  • the second light source 52G transmits a green laser beam having a peak wavelength of power of, for example, 515 nm backward.
  • the third light source 52B emits blue laser light having a power peak wavelength of, for example, 445 nm backward.
  • the optical system unit 50 has a circuit board (not shown) fixed to the cover 59.
  • the first light source 52R, the second light source 52G, and the third light source 52B are respectively mounted on the circuit board, and power is supplied to these light sources via the circuit board.
  • the first collimating lens 53R is disposed above the first light source 52R, and collimates the laser light emitted from the first light source 52R in the fast axis direction and the slow axis direction.
  • the second collimating lens 53G is arranged behind the second light source 52G, and collimates the laser light emitted from the second light source 52G in the fast axis direction and the slow axis direction.
  • the third collimating lens 53B is disposed behind the third light source 52B, and collimates the laser light emitted from the third light source 52B in the fast axis direction and the slow axis direction.
  • the collimating lens for collimating the fast axis direction of the laser light and the collimating lens for collimating the slow axis direction may be separately provided, so that the fast axis direction and the slow axis direction of the laser light may be collimated.
  • the first phase modulation element 54R is disposed above the first collimator lens 53R. Further, the first phase modulating element 54R is arranged at an angle of approximately 45 ° with respect to the front-rear direction and the vertical direction. Accordingly, the red laser light emitted from the first collimating lens 53R is incident on the first phase modulation element 54R, is diffracted, changes its direction by approximately 90 °, and forwards as the red first light DLR, ie, Are emitted toward the combining optical system 55.
  • the second phase modulation element 54G is disposed behind the second collimating lens 53G.
  • the second phase modulating element 54G is disposed at an angle of approximately 45 ° in the direction opposite to the first phase modulating element 54R with respect to the front-rear direction and the vertical direction. Accordingly, the green laser light emitted from the second collimating lens 53G is incident on the second phase modulation element 54G and is diffracted, changes its direction by approximately 90 °, and moves upward as the green second light DLG, that is, Are emitted toward the combining optical system 55.
  • the third phase modulation element 54B is disposed behind the third collimating lens 53B.
  • the third phase modulating element 54B is arranged at an angle of approximately 45 ° in the direction opposite to the first phase modulating element 54R with respect to the front-rear direction and the vertical direction. Accordingly, the blue laser light emitted from the third collimating lens 53B is incident on the third phase modulation element 54B and is diffracted, changes its direction by approximately 90 °, and rises upward as blue third light DLB, ie, Are emitted toward the combining optical system 55.
  • the combining optical system 55 has a first optical element 55f and a second optical element 55s.
  • the first optical element 55f is disposed in front of the first phase modulation element 54R and above the second phase modulation element 54G, and is inclined by approximately 45 ° in the same direction as the first phase modulation element 54R with respect to the front-rear direction and the up-down direction. It is arranged in the state that it was.
  • the first optical element 55f is, for example, a wavelength selection filter in which an oxide film is laminated on a glass substrate, transmits light having a wavelength longer than a predetermined wavelength, and reflects light having a wavelength shorter than the predetermined wavelength. Thus, the type and thickness of the oxide film are adjusted.
  • the first optical element 55f is configured to transmit red light having a wavelength of 638 nm emitted from the first light source 52R and reflect green light having a wavelength of 515 nm emitted from the second light source 52G.
  • the second optical element 55s is disposed in front of the first optical element 55f and above the third phase modulation element 54B, and is inclined by approximately 45 ° in the same direction as the first phase modulation element 54R with respect to the front-rear direction and the vertical direction. It is arranged in a state.
  • the second optical element 55s is a wavelength selection filter, like the first optical element.
  • the second optical element 55s transmits red light having a wavelength of 638 nm emitted from the first light source 52R and green light having a wavelength of 515 nm emitted from the second light source 52G, and has a wavelength of 445 nm emitted from the third light source 52B. Is configured to reflect blue light.
  • phase modulation elements 54R, 54G, and 54B have the same configuration. Therefore, hereinafter, only the first phase modulation element 54R will be described in detail, and description of the second phase modulation element 54G and the third phase modulation element 54B will be omitted as appropriate.
  • FIG. 3 is a front view of the first phase modulation element 54R.
  • the first phase modulation element 54R is formed in a substantially rectangular shape when viewed from the front, and includes a substantially circular incident area 53A into which red laser light emitted from the first collimating lens 53R is incident. .
  • the first phase modulation element 54R has a plurality of modulation units arranged in a matrix in the rectangle.
  • the incident area 53A includes at least one modulation unit.
  • Each modulation unit includes a plurality of dots arranged in a matrix, diffracts while reflecting the incident red laser light, and emits the diffracted light.
  • the drive circuit 60R is electrically connected to the phase modulation element 54R.
  • the driving circuit 60R includes a scanning line driving circuit connected to the side of the phase modulation element 54R and a data line driving circuit connected to one side of the phase modulation element 54R in the vertical direction.
  • FIG. 4 is a diagram schematically showing a cross section in the thickness direction of a part of the phase modulation element shown in FIG.
  • the phase modulation element 54R of the present embodiment includes a silicon substrate 62, a drive circuit layer 63, a plurality of electrodes 64, a reflective film 65, a liquid crystal layer 66, a transparent electrode 67, and a transparent electrode 67. And an optical substrate 68 as a main configuration.
  • the plurality of electrodes 64 are arranged on one surface of the silicon substrate 62 in a matrix corresponding to the dots. That is, each dot includes a corresponding electrode 64.
  • the drive circuit layer 63 is a layer in which circuits connected to the scan line drive circuit and the data line drive circuit of the drive circuit 60R shown in FIG. 3 are arranged, and is arranged between the silicon substrate 62 and the plurality of electrodes 64.
  • the translucent substrate 68 is arranged on one side of the silicon substrate 62 so as to face the silicon substrate 62, and is, for example, a glass substrate.
  • the transparent electrode 67 is disposed on the surface of the light transmitting substrate 68 on the silicon substrate 62 side.
  • the liquid crystal layer 66 has liquid crystal molecules 66 a and is arranged between the plurality of electrodes 64 and the transparent electrode 67.
  • the reflection film 65 is disposed between the plurality of electrodes 64 and the liquid crystal layer 66, and is, for example, a dielectric multilayer film.
  • the laser light emitted from the collimator lens 53R enters from the surface of the translucent substrate 68 opposite to the silicon substrate 62 side.
  • the refractive index of the liquid crystal layer 66 located between the electrode 64 and the transparent electrode 67 changes, and the optical path length of the light RL transmitted through the liquid crystal layer 66 changes. Therefore, when the light RL passes through the liquid crystal layer 66 and exits from the liquid crystal layer 66, the phase of the light RL exiting from the liquid crystal layer 66 can be changed from the phase of the light RL entering the liquid crystal layer 66.
  • the plurality of electrodes 64 are arranged corresponding to each dot of the modulation unit, the voltage applied between the electrode 64 corresponding to each dot and the transparent electrode 67 is controlled.
  • the orientation of the liquid crystal molecules 66a changes, and the amount of change in the phase of light emitted from each dot can be adjusted according to each dot.
  • the refractive index of the liquid crystal layer 66 in each dot in this manner, light emitted from the first phase modulation element 54R can be formed into a predetermined light distribution pattern, and the divergence angle and convergence angle of the light can be adjusted. It can be at a predetermined angle.
  • the first phase modulation element 54R is configured such that the same light distribution pattern is formed in each modulation unit. As described above, since at least one modulation unit is included in the incident area 53A, when the red laser light is incident on the first phase modulation element 54R, a predetermined divergence angle or a predetermined convergence angle is obtained. May be generated.
  • the second phase modulation element 54G is configured so that the same light distribution pattern is formed in each modulation unit, and at least one modulation unit is included in the incident area of the second phase modulation element 54G. ing.
  • the second light DLG having a predetermined light distribution pattern having a predetermined divergence angle or a predetermined convergence angle
  • the third phase modulation element 54B is configured such that the same light distribution pattern is formed in each modulation unit, and at least one modulation unit is included in the incident area of the third phase modulation element 54B. ing. Therefore, when the blue laser light is incident on the third phase modulation element 54B, the third light DLB having a predetermined light distribution pattern having a predetermined divergence angle or a predetermined convergence angle can be generated.
  • the voltages applied to the phase modulation elements 54R, 54G, and 54B are controlled so that the light distribution patterns of the lights DLR, DLG, and DLB have the same shape, respectively.
  • DLG and DLB are controlled to be emitted from the phase modulation elements 54R, 54G and 54B at different divergence angles.
  • the divergence angle of the light DLR is minimized, and the divergence angle of the light DLB is maximized.
  • the divergence of the light DLR, DLG, and DLB is set such that the outer edge of the light DLR is located at the innermost position and the outer edge of the light DLB is located at the outermost position on the emission surface of the second optical element 55s. The corner is adjusted.
  • the red laser light is emitted upward.
  • This red laser light is collimated by a first collimating lens 53R disposed above the first light source 52R.
  • the green laser light is emitted backward.
  • This green laser light is collimated by a second collimating lens 53G disposed behind the second light source 52G.
  • the third light source 52B is supplied with power from a power supply (not shown), the third light source 52B emits blue laser light backward. This blue laser light is collimated by a third collimating lens 53B disposed behind the third light source 52B.
  • a first phase modulating element 54R is disposed above the first collimating lens 53R so as to be inclined at approximately 45 ° with respect to the optical axis of the red laser light emitted from the first light source 52R. Therefore, when this red laser light enters the first phase modulation element 54R, it becomes the first light DLR having a predetermined light distribution pattern, and the first light DLR is emitted forward from the first phase modulation element 54R.
  • a second phase modulating element 54G is disposed behind the second collimating lens 53G in a state where the second phase modulating element 54G is inclined at approximately 45 ° with respect to the optical axis of the green laser light emitted from the second light source 52G. Therefore, when this green laser light is incident on the second phase modulation element 54G, it becomes a second light DLG having a predetermined light distribution pattern, and this second light DLG is emitted upward from the second phase modulation element 54G.
  • a third phase modulating element 54B is disposed behind the third collimating lens 53B in a state of being inclined at approximately 45 ° with respect to the optical axis of the blue laser light emitted from the third light source 52B. Therefore, when this blue laser light enters the third phase modulation element 54B, it becomes the third light DLB having a predetermined light distribution pattern, and the third light DLB is emitted upward from the third phase modulation element 54B.
  • the shape of the light distribution pattern of the light DLR, DLG, and DLB is similar to the shape of the low beam light distribution pattern and is reduced in a similar manner.
  • first optical element 55f of the combining optical system 55 is disposed in front of the first phase modulation element 54R.
  • the first optical element 55f is configured to transmit red light. Therefore, the first light DLR emitted from the first phase modulation element passes through the first optical element 55f and propagates forward.
  • a first optical element 55f is disposed above the second phase modulation element 54G.
  • the first optical element 55f is configured to reflect green light, and is inclined by approximately 45 ° with respect to the front-back direction and the up-down direction.
  • the second light DLG is reflected by the first optical element 55f and propagates forward. That is, the first combined light LS1 including the first light DLR and the second light DLG propagates toward the second optical element 55s.
  • second optical element 55s of the combining optical system 55 is disposed in front of the first optical element 55f.
  • the second optical element 55s is configured to transmit red light and green light. Therefore, the first combined light LS1 passes through the second optical element 55s.
  • a second optical element 55s is arranged above the third phase modulation element 54B.
  • the second optical element 55s is configured to reflect blue light, and is inclined by approximately 45 ° with respect to the front-rear direction and the up-down direction, so that the second optical element 55s is emitted from the third phase modulation element 54B.
  • the third light DLB is reflected by the second optical element 55s and propagates forward. That is, the second combined light LS2 including the first light DLR, the second light DLG, and the third light DLB propagates toward the opening 59H of the cover 59.
  • the light DLR, DLG, and DLB are arranged such that the outer edge of the light DLR is located on the innermost side and the outer edge of the light DLB is located on the outermost side on the emission surface of the second optical element 55s. Is adjusted.
  • the divergence angle of the light DLR is minimized, and the divergence angle of the third light DLB is maximized. Therefore, the second combined light LS2 propagating forward from the second optical element 55s is a combined light in which the outer edge of the first light DLR is located on the innermost side and the outer edge of the third light DLB is located on the outermost side.
  • the second combined light LS2 exits from the opening 59H of the cover 59 and enters the imaging lens 81 disposed in front of the cover 59. Therefore, as shown in FIG. 5, on the incident surface of the imaging lens 81, the outer edge of the first light DLR may be located on the innermost side, and the outer edge of the third light DLB may be located on the outermost side.
  • FIG. 5 is an enlarged view schematically showing the vicinity of the imaging lens 81 and the projection lens 80. For easy understanding, light transmitted through the lens is refracted at the center in the width direction of the lens. Is shown in
  • the light incident on the lens tends to be refracted more as the wavelength is shorter. Therefore, if the outer edges of the first light DLR, the second light DLG, and the third light DLB overlap each other in the second combined light LS2, the third light DLB having the shortest wavelength is the most light.
  • the first light DLR having the longest wavelength can be refracted the least and form an image at a position farthest from the imaging lens 81 by refracting greatly and forming an image at a position closest to the imaging lens 81.
  • the outer edge of the first light DLR is located on the innermost side
  • the outer edge of the third light DLB is located on the outermost side on the incident surface of the imaging lens 81. ing. Therefore, by transmitting the second combined light LS2 through the imaging lens 81, the third light DLB is focused on the imaging position CPB farthest from the imaging lens 81, that is, the imaging light closest to the projection lens 80. An image can be formed at the position CPB.
  • the first light DLR can form an image at an imaging position CPR closest to the imaging lens 81, that is, an imaging position CPR farthest from the projection lens 80.
  • the second light DLG can form an image at an image forming position CPG between the image forming position CPB and the image forming position CPR.
  • the third light DLB is imaged at the imaging position CPB closest to the incident surface 80A of the projection lens 80, and the first light DLR is imaged at the imaging position CPB farthest from the incident surface 80A of the projection lens 80. Is imaged. Therefore, in the present embodiment, the incident angle of the third light DLB on the incident surface 80A can be the largest, and the incident angle of the first light DLR on the incident surface 80A can be the smallest. That is, the third light DLB incident on the incident surface 80A at the largest incident angle is refracted most by the projection lens 80, and the first light DLR incident on the incident surface 80A at the smallest incident angle is most reflected by the projection lens 80. Refracts small. As a result, in the second combined light LS2 emitted from the projection lens 80, the respective outer edges of the lights DLR, DLG, and DLB may be nearly parallel.
  • the low beam L as shown in FIG. 6 can be formed by propagating the second combined light LS2 in which the outer edges of the lights DLR, DLG, and DLB are nearly parallel from the headlight 1 for a vehicle.
  • the light distribution pattern is indicated by a thick line, and the straight line S indicates a horizontal line.
  • the area LA1 is the area having the highest light intensity, and the light intensity decreases in the order of the area LA2 and the area LA3.
  • the divergence angle of the light generated by the lamp unit 20 can be adjusted by the projection lens 80 and the light can be emitted, so that the low beam L is formed. That can be easy.
  • the vehicle headlamp 1 of the present embodiment of the light having a predetermined light distribution pattern formed by the phase modulation elements 54R, 54G, and 54B, light having a shorter wavelength is formed at a position closer to the projection lens 80. Imaged. As the light having a shorter wavelength is imaged at a position closer to the projection lens 80 as described above, the incident angle of the third light DLB on the incident surface 80A can be maximized, and the incident surface 80A of the first light DLR can be formed. Can be the smallest.
  • the outer edges of the lights having different wavelengths become almost parallel to each other, so that the color blur at the outer edge of the combined light emitted from the projection lens 80 can be suppressed. That is, according to the present embodiment, even when the projection lens 80 is used, the low beam L in which color fringing at the outer edge is suppressed can be generated.
  • the color bleeding can be effectively suppressed.
  • the imaging position CPR matches the focus of red light on the projection lens 80
  • the imaging position CPG matches the focus of green light on the projection lens 80
  • the imaging position CPB matches the blue light on the projection lens 80.
  • the outer edges of the light beams DLR, DLG, and DLB emitted from the projection lens 80 are parallel to each other.
  • the color bleeding can be more effectively suppressed.
  • the shapes of the light distribution patterns of the lights DLR, DLG, and DLB are made identical by the phase modulation elements 54R, 54G, and 54B, the outer edges of the lights DLR, DLG, and DLB tend to be parallel. Further, the outer edges of the light DLR, DLG, and DLB are likely to overlap each other. Therefore, the color blur can be effectively suppressed.
  • the light DLR, DLG, and DLB having a desired light distribution pattern can be easily generated by adjusting the voltage applied to the phase modulation element. I can do it. Further, the light imaging position can be appropriately adjusted.
  • the first light source 52R, the second light source 52G, and the third light source 52B that emit light of different wavelengths are provided, light of a desired color can be generated.
  • FIG. 7 is a diagram showing a lamp unit 20 of the vehicle headlamp 1 according to the second embodiment of the present invention, similarly to FIG. As shown in FIG. 7, the lamp unit 20 in the second embodiment includes a first imaging lens 81R, a second imaging lens 81G, and a third imaging lens near the phase modulation elements 54R, 54G, and 54B, respectively.
  • This embodiment differs from the lamp unit 20 in the first embodiment in which one imaging lens 81 is disposed outside the lamp unit 20 in that the 81B is disposed.
  • this point will be described.
  • the lamp unit 20 includes a first imaging lens 81R disposed between the first phase modulation element 54R and the first optical element 55f in the front-back direction, and a vertical imaging direction.
  • the second imaging lens 81G disposed between the second phase modulation element 54G and the first optical element 55f, and the second imaging lens 81G disposed between the third phase modulation element 54B and the second optical element 55s in the vertical direction.
  • three imaging lenses 81B that is, the lamp unit 20 in the present embodiment has a configuration in which an imaging lens is arranged for each of the phase modulation elements 54R, 54G, and 54B, that is, in one-to-one correspondence with the phase modulation elements 54R, 54G, and 54B. .
  • the imaging lenses 81R, 81G, and 81B are lenses each having an incident surface and an exit surface formed in a convex shape.
  • Lights DLR, DLG, and DLB emitted from the phase modulation elements 54R, 54G, and 54B propagate through the imaging lenses 81R, 81G, and 81B while converging at predetermined convergence angles.
  • the convergence angle of the light DLR is maximized, and the convergence angle of the light DLB is minimized.
  • the convergence angles of the light DLR, DLG, and DLB are adjusted such that the outer edge of the light DLR is located on the innermost side and the outer edge of the light DLB is located on the outermost side on the emission surface of the second optical element 55s.
  • a first light DLR having a predetermined light distribution pattern is generated.
  • the first light DLR is reflected by the first phase modulation element 54R and propagates forward.
  • the green laser light emitted backward from the second collimating lens 53G enters the second phase modulation element 54G
  • the second light DLG having a predetermined light distribution pattern is generated.
  • This second light DLG is reflected by the second phase modulation element 54G and propagates upward.
  • the blue laser light emitted backward from the third collimating lens 53B is incident on the third phase modulation element 54B, the third light DLB having a predetermined light distribution pattern is generated.
  • the third light DLB is reflected by the third phase modulation element 54B and propagates upward.
  • each of the light distribution patterns of these lights DLR, DLG, and DLB has a similar shape that is obtained by inverting the shape of the low beam light distribution pattern and reducing the same.
  • the light distribution pattern of the second light DLG on the emission surface of the two-phase modulation element 54G has the same size.
  • the first light DLR is incident on the first imaging lens 81R disposed in front of the first phase modulation element 54R, and is transmitted through the first imaging lens 81R, so that the first light DLR converges at a predetermined convergence angle and moves forward. Propagation to.
  • the second light DLG is incident on the second imaging lens 81G disposed above the second phase modulation element 54G and passes through the second imaging lens 81G, so that the second light DLG converges at a predetermined convergence angle and Propagation to.
  • the third light DLB is incident on the third imaging lens 81B disposed above the third phase modulation element 54B, passes through the third imaging lens 81B, and converges at a predetermined convergent angle. Propagation to.
  • the first light DLR emitted from the first imaging lens 81R passes through the first optical element 55f of the combining optical system 55. Further, the second light DLG emitted from the second imaging lens 81G is reflected forward by the first optical element 55f. Thereby, the first combined light LS1 is generated.
  • the first combined light LS1 emitted from the first optical element 55f passes through the second optical element 55s. Further, the third light DLB emitted from the third imaging lens 81B is reflected forward by the second optical element 55s. Thereby, the second combined light LS2 is generated.
  • the convergence angles of the light DLR, DLG, and DLB are adjusted such that the outer edge of the light DLR is located on the innermost side and the outer edge of the light DLB is located on the outermost side on the exit surface of the second optical element 55s. Is done. Further, the convergence angle of the light DLR is maximized, and the convergence angle of the third light DLB is minimized. Therefore, the second combined light LS2 propagating forward from the second optical element 55s is a combined light in which the outer edge of the first light DLR is located at the innermost position and the outer edge of the third light DLB is located at the outermost position. You. Such a second combined light LS2 is emitted from the opening 59H of the cover 59.
  • the incident angle of the third light DLB on the incident surface 80A can be the largest, and the incident angle of the first light DLR on the incident surface 80A can be the smallest.
  • FIG. 8 is an enlarged view schematically showing the vicinity of the projection lens 80. For easy understanding, light transmitted through the lens is shown to be refracted at the center in the width direction of the lens. .
  • the imaging lenses 81R, 81G, and 81B are provided in one-to-one correspondence with the light sources 52R, 52G, and 52B.
  • the convergence angles of the lights emitted from the respective light sources can be adjusted individually. Therefore, it can be easier to make the image forming position of light having a shorter wavelength closer to the projection lens 80 as compared with the first embodiment.
  • a vertical cross section of the vehicle headlamp 1 of the present embodiment is represented in the same manner as FIG.
  • the lamp unit 20 of the vehicle headlamp 1 according to the present embodiment is represented in the same manner as in FIG.
  • the phase modulation elements 54R, 54G, 54B of the present embodiment are represented in the same manner as in FIG.
  • cross sections in the thickness direction of the phase modulation elements 54R, 54G, and 54B of the present embodiment are represented in the same manner as in FIG.
  • the projection lens 80 is a lens in which the entrance surface and the exit surface are formed in a convex shape, and is formed so that the focal point is located between the projection lens 80 and the imaging lens 81.
  • the projection lens 80 and the imaging lens 81 are arranged such that the focal point of the projection lens 80 and the focal point of the imaging lens 81 are at the same position.
  • the light distribution patterns of the light DLR, DLG, and DLB of the present embodiment have the same shape.
  • the divergence angles of the light DLR, DLG, and DLB are such that the outer edge of the light DLR is located on the innermost side and the outer edge of the light DLB is located on the outermost side on the exit surface of the second optical element 55s. Is adjusted. Therefore, on the exit surface of the second optical element 55s, the light distribution pattern of the light DLR, the light distribution pattern of the light DLG in which the light distribution pattern of the light DLR is similarly enlarged, and the light DLG are similarly enlarged. The light distribution pattern of the light DLB is superimposed.
  • the second combined light LS2 emitted from the second optical element 55s is a combined light in which the outer edge of the first light DLR is located on the innermost side and the outer edge of the third light DLB is located on the outermost side.
  • the second combined light LS2 exits from the opening 59H of the cover 59 and enters the imaging lens 81 disposed in front of the cover 59.
  • the outer edge of the first light DLR may be located on the innermost side, and the outer edge of the third light DLB may be located on the outermost side.
  • the second combined light LS2 emitted from the imaging lens 81 is formed with the outer edge of the first light DLR positioned at the innermost position and the outer edge of the third light DLB positioned at the outermost position.
  • Converge towards the focal point of FIG. 9 is an enlarged view schematically showing the vicinity of the imaging lens 81 and the projection lens 80. For easy understanding, light transmitted through the lens is refracted at the center in the width direction of the lens. Is shown in
  • the projection lens 80 in the present embodiment is formed so that the focal point F is located between the projection lens 80 and the imaging lens 81.
  • the focal point F of the projection lens 80 and the focal point of the imaging lens 81 are at the same position.
  • a plane passing through the focal point F and perpendicular to the optical axis direction of the projection lens 80 is referred to as a “focal plane SF”.
  • FIG. 10 is a diagram schematically showing the vicinity of the focal point F on the focal plane SF.
  • the second combined light LS2 converges toward the focal point F in a state where the outer edge of the first light DLR is located at the innermost position and the outer edge of the third light DLB is located at the outermost position.
  • the image of the light DLB having the shortest wavelength is the largest, and the image of the light DLR having the longest wavelength is the smallest.
  • the shape of the light distribution pattern of the lights DLR, DLG, and DLB is formed by inverting the shape of the light distribution pattern of the low beam
  • the lights DLR, DLG, and DLB formed on the focal plane SF Also has a shape obtained by inverting the shape of the low beam light distribution pattern.
  • the second combined light LS2 after passing through the focal plane SF, the second combined light LS2 has the outer edge of the first light DLR located at the innermost position, and the outer edge of the third light DLB located at the outermost position.
  • the light propagates toward the projection lens 80 while diverging in the state. Therefore, on the incident surface 80A of the projection lens 80, the outer edge of the first light DLR may be located on the innermost side, and the outer edge of the third light DLB may be located on the outermost side.
  • the shape of the light distribution pattern of the lights DLB, DLG, and DLR is inverted from the shape before passing through the focal point F, and the light distribution pattern of the low beam is incident on the incident surface 80A. Is similarly reduced.
  • the light DLB is incident on the outermost surface of the incident surface 80A of the projection lens 80, and the light DLR is incident on the innermost surface of the incident surface 80A. That is, the incident angle of the light DLB on the incident surface 80A can be the largest, and the incident angle of the light DLR on the incident surface 80A can be the smallest.
  • the light DLB incident on the projection lens 80 at the largest incident angle can be refracted the most by the projection lens 80, and the light DLB incident on the projection lens 80 can be projected at the smallest incident angle.
  • the light DLR incident on the lens 80 can be refracted the least. Therefore, in the second combined light LS2 emitted from the projection lens 80, the outer edges of the lights DLR, DLG, and DLB may be nearly parallel.
  • the low beam L as shown in FIG. 6 can be formed by propagating the second combined light LS2 in which the outer edges of the lights DLR, DLG, and DLB are nearly parallel from the headlight 1 for a vehicle.
  • the divergence angle of the light generated by the lamp unit 20 can be adjusted by the projection lens 80 and the light can be emitted, so that the low beam L is formed. That can be easy.
  • the image of the light DLR is formed to be the smallest, and the image of the light DLB is formed the most. Due to the large size, the light DLR can be incident on the innermost side of the incident surface 80A of the projection lens 80, and the light DLB having the longest wavelength can be incident on the outermost side of the incident surface 80A. That is, the incident angle of the light DLB having the shortest wavelength on the incident surface 80A can be the largest, and the incident angle of the light DLR having the longest wavelength on the incident surface 80A can be the smallest.
  • the outer edges of the lights DLR, DLG, and DLB are nearly parallel to each other, and color blurring at the outer edge of the combined light emitted from the projection lens 80 can be suppressed. Therefore, according to the present embodiment, even when the projection lens 80 is used, it is possible to generate the low beam L and the like in which color fringing at the outer edge is suppressed.
  • the color bleeding can be effectively suppressed.
  • the color bleeding can be more effectively suppressed.
  • the LCOS is used as the phase modulation element
  • the light DLR, DLG, and DLB having a desired light distribution pattern can be easily generated by adjusting the voltage applied to the phase modulation element. I can do it. Further, the size of the light image on the focal plane SF can be appropriately adjusted.
  • the first light source 52R, the second light source 52G, and the third light source 52B that emit light of different wavelengths are provided, light of a desired color can be generated.
  • a longitudinal section of the vehicle headlamp 1 of the present embodiment is represented in the same manner as FIG.
  • the convergence angle of the light DLR is maximized, and the convergence angle of the light DLB is minimized.
  • the convergence angles of the light DLR, DLG, and DLB are adjusted such that the outer edge of the light DLR is located on the innermost side and the outer edge of the light DLB is located on the outermost side on the emission surface of the second optical element 55s.
  • the convergence angles are adjusted so that the lights DLR, DLG, and DLB converge on the focal point of the projection lens 80, respectively.
  • the second combined light LS2 propagating forward from the second optical element 55s is a combined light in which the outer edge of the first light DLR is located at the innermost position and the outer edge of the third light DLB is located at the outermost position. You. Such second combined light LS2 is emitted from the opening 59H of the cover 59 while converging.
  • the outer edge of the first light DLR is located at the innermost position, and the outer edge of the third light DLB is located at the outermost position. Therefore, as in the third embodiment, among the images of the light DLR, DLG, and DLB formed on the focal plane SF, the image of the light DLB having the shortest wavelength can be the largest, and the image of the light DLR having the longest wavelength can be obtained. May be the smallest. Therefore, similarly to the third embodiment, the incident angle of the third light DLB on the incident surface 80A can be the largest, and the incident angle of the first light DLR on the incident surface 80A can be the smallest.
  • the outer edges of the lights DLR, DLG, and DLB become nearly parallel, respectively, and color blur at the outer edge of the combined light LS2 emitted from the projection lens 80 can be suppressed.
  • the imaging lenses 81R, 81G, and 81B are provided in one-to-one correspondence with the light sources 52R, 52G, and 52B.
  • the convergence angles of the lights emitted from the respective light sources can be adjusted individually. Therefore, of the light images formed on the focal plane SF, it can be easier to increase the size of the light image having a shorter wavelength as compared with the third embodiment.
  • FIG. 12 is a view showing a lamp unit 20 of the vehicle headlamp 1 according to the fifth embodiment of the present invention, similarly to FIG. As shown in FIG. 12, the lamp unit 20 according to the fifth embodiment is different from the lamp unit 20 according to the first embodiment in that the phase modulation element is configured by a transmission-type phase modulation element.
  • the phase modulation element is configured by a transmission-type phase modulation element.
  • the lamp unit 20 includes a first light source 52R, a second light source 52G, and a third light source 52B that are arranged in the vertical direction, and the light sources 52R, 52G, and 52B.
  • An element 54R, a second phase modulation element 54G, a third phase modulation element 54B, a combining optical system 55, a first reflection mirror 58G, and a second reflection mirror 58B are provided as main components.
  • the inclination directions of the first optical element 55f and the second optical element 55s of the combining optical system 55 are opposite to each other.
  • the first light source 52R is disposed near the center in the vertical direction
  • the second light source 52G is disposed above the first light source 52R
  • the third light source 52B is disposed below the first light source 52R.
  • the first reflection mirror 58G is disposed in front of the second phase modulation element 54G and above the first optical element 55f in a state in which the first reflection mirror 58G is inclined by approximately 45 ° in the same direction as the first optical element 55f with respect to the front-rear direction and the vertical direction. Is done.
  • the second reflection mirror 58B is disposed in front of the first optical element 55f and above the third phase modulation element 54B in a state where the second reflection mirror 58B is inclined at approximately 45 ° in the same direction as the second optical element 55s with respect to the front-rear direction and the vertical direction. Is done.
  • phase modulation elements 54R, 54G, 54B are transmission LCOSs, unlike the phase modulation elements 54R, 54G, 54B in the first embodiment. These phase modulation elements 54R, 54G, 54B are arranged at predetermined intervals in the vertical direction corresponding to the three light sources 52R, 52G, 52B.
  • the red laser light emitted from the first collimating lens 53R passes through the first phase modulation element 54R, the phase of the red laser light changes, and the first light DLR having a predetermined light distribution pattern is generated. Is done. Further, the green laser light emitted from the second collimating lens 53G passes through the second phase modulation element 54G, so that the phase of the green laser light changes, and the second light DLG having a predetermined light distribution pattern is generated. Is done. Further, the blue laser light emitted from the third collimating lens 53B passes through the third phase modulation element 54B, so that the phase of the blue laser light changes, and the third light DLB having a predetermined light distribution pattern is generated. Is done.
  • the divergence angles of the light DLR, DLG, and DLB are increased in the order of the light DLR, the light DLG, and the light DLB.
  • the divergence angles of the lights DLR, DLG, and DLB are angles at which the outer edge of the light DLR is located at the innermost position and the outer edge of the light DLB is located at the outermost position on the emission surface of the second optical element 55s.
  • red laser light When red laser light is emitted from the first light source 52R, the red laser light is collimated by the first collimating lens 53R and then enters the incident area of the first phase modulation element 54R. This red laser light is transmitted through the phase modulation element 54R to generate a first light DLR having a predetermined light distribution pattern. The first light DLR is emitted forward from the first phase modulation element 54R at the smallest divergence angle.
  • this green laser light is collimated by the second collimating lens 53G and then enters the incident area of the phase modulation element 54G.
  • This green laser light is transmitted through the phase modulation element 54G, and a second light DLG having a predetermined light distribution pattern is generated.
  • the second light DLG is emitted forward from the second phase modulation element 54G at a larger divergence angle than the first light DLR.
  • a first reflection mirror 58G is disposed at an angle of approximately 45 ° in the front-rear direction and the vertical direction in front of the emission direction of the second light DLG. For this reason, the second light DLG is reflected by the first reflection mirror 58G and exits downward from the first reflection mirror 58G.
  • first optical element 55f of the combining optical system 55 is disposed in front of the emission direction of the first light DLR. Therefore, like the first embodiment, the first light DLR transmits through the first optical element 55f and propagates forward.
  • the first optical element 55f is disposed below the first reflecting mirror 58G in a state where the first optical element 55f is inclined in the same direction as the first reflecting mirror 58G. Therefore, the second light DLG emitted from the first reflection mirror 58G is reflected by the first optical element 55f and propagates forward. Thereby, the first combined light LS1 is generated, and the first combined light LS1 propagates toward the second optical element 55s of the combined optical system 55.
  • the divergence angle of the second light DLG is set to be larger than the divergence angle of the first light DLR, so that the first combined light LS1 has the divergence angle of the second light DLG.
  • the outer edge is located slightly outside the outer edge of the first light DLR.
  • a second reflection mirror 58B is disposed at an angle of approximately 45 ° in the front-rear direction and the vertical direction in front of the emission direction of the third light DLB.
  • the inclination direction of the second reflection mirror 58B is opposite to the inclination direction of the first reflection mirror 58G. Therefore, the third light DLB is reflected by the second reflection mirror 58B and is emitted upward from the second reflection mirror 58B.
  • a second optical element 55s of the combining optical system 55 is disposed in front of the emission direction of the first combined light LS1. Therefore, like the first embodiment, the first combined light LS1 passes through the second optical element 55s and propagates forward.
  • the second optical element 55s is disposed above the second reflection mirror 58B in a state where the second optical element 55s is inclined in the same direction as the second reflection mirror 58B. Therefore, the third light DLB emitted from the second reflection mirror 58B is reflected by the second optical element 55s and propagates forward. Thereby, the second combined light LS2 is generated.
  • the second combined light LS2 propagates through the opening 59H of the cover 59 toward the imaging lens 81 as in the first embodiment.
  • the divergence angle of the third light DLB is set to be larger than the divergence angle of the second light DLG.
  • the outer edge is located on the outermost side, and the outer edge of the first light DLR is located on the innermost side.
  • the first light DLR is focused on the imaging position closest to the projection lens 80.
  • An image is formed on the CPB, and the third light is formed on the image forming position CPR farthest from the projection lens 80. Therefore, similarly to the first embodiment, in the second combined light LS2 emitted from the projection lens 80, the outer edges of the lights DLR, DLG, and DLB can be nearly parallel. Therefore, color bleeding at the outer edge of light can be suppressed.
  • the second combined light LS2 is converged by the imaging lens 81 as shown in FIG. 9, and as a result, as shown in FIG. May be the smallest, and the image of the third light DLB may be the largest. Therefore, similarly to the third embodiment, in the second combined light LS2 emitted from the projection lens 80, the outer edges of the lights DLR, DLG, and DLB may be nearly parallel. Therefore, color bleeding at the outer edge of light can be suppressed.
  • the same effects as those of the first and third embodiments can be realized using the transmission type phase modulation element.
  • FIG. 13 is a view showing a lamp unit 20 of the vehicle headlamp 1 according to the fourth embodiment of the present invention, similarly to FIG. In FIG. 13, the heat sink 30, the cover 59, and the like of the lamp unit 20 are omitted for easy understanding.
  • the lamp unit 20 according to the fourth embodiment is different from the optical system unit 50 in that the number of phase modulation elements is one, and three phase modulation elements are provided for each light source. This is different from the lamp unit 20 in the first to third embodiments in which the optical system unit 50 is constituted by 54R, 54G, 54B.
  • the configuration of the lamp unit 20 according to the fourth embodiment will be described.
  • the first light source 52R emits red laser light upward
  • the second light source 52G emits green laser light backward
  • the third light source 52B emits blue laser light backward.
  • These three light sources 52R, 52G, 52B are connected to a control unit (not shown).
  • This control unit does not emit light from the light sources 52G and 52B while the light source 52R emits red laser light, and emits light from the light sources 52R and 52B while the light source 52G emits green laser light.
  • the operation of the light sources 52R, 52G, 52B is controlled such that the light from the light sources 52R, 52G is not emitted while the light source 52B emits the blue laser light. That is, the light sources 52R, 52G, and 52B in the present embodiment switch the light emission from each light source at a predetermined cycle based on the control of the control unit.
  • the laser beams emitted from the light sources 52R, 52G, 52B are collimated by the collimating lenses 53R, 53G, 53B.
  • a combining optical system 55 is provided above the collimating lens 53R and behind the collimating lenses 53G and 53B. That is, the first optical element 55f is provided above the collimator lens 53R and behind the collimator lens 53G, and the second optical element 55s is provided above the first optical element 55f and behind the collimator lens 53B. These optical elements 55f and 55s are arranged at an angle of approximately 45 ° in the front-rear direction and the vertical direction.
  • phase modulation element 54S is provided above the second optical element 55s.
  • the phase modulation element 54S is disposed at a position where the red laser light, the green laser light, and the blue laser light that have passed through the combining optical system 55 can enter.
  • the phase modulation element 54S is arranged such that the red laser light, the green laser light, and the blue laser light are incident on the same region on the incident surface of the phase modulation element 54S. Note that the red laser light, the green laser light, and the blue laser light do not necessarily need to be incident on the same area on the incident surface.
  • the phase modulation element 54S in the present embodiment is, for example, a reflection type LCOS.
  • the phase modulation element 54S is arranged to be inclined at approximately 45 ° in the front-rear direction and the vertical direction, and the inclination direction is opposite to the optical elements 55f and 55s.
  • the voltage applied to the phase modulation element 54S is adjusted so that the diffraction pattern of the phase modulation element 54S changes according to the wavelength of the incident light. Specifically, the voltage is controlled so that the light distribution patterns of the red laser light, the green laser light, and the blue laser light emitted from the phase modulation element 54S have the same shape.
  • the convergence angle of the red laser light is controlled to be the largest, and the convergence angle of the blue laser light emitted from the phase modulation element 54S is minimized.
  • the light sources 52R, 52G, and 52B in the present embodiment switch the emission of light from each light source at a predetermined cycle based on the control of the control unit. For example, first, a red laser beam is emitted from the first light source 52R for a predetermined time. During this time, the laser beams from the light sources 52G and 52B are not emitted. After being collimated by the collimator lens 53R, the red laser light passes through the combining optical system 55 and enters the phase modulation element 54S. Note that, as described above, the red laser light, the green laser light, and the blue laser light in the present embodiment are incident on the same region on the incident surface of the phase modulation element 54S.
  • the voltage applied to the phase modulation element 54S is adjusted so that a diffraction pattern corresponding to the red laser light is obtained. That is, as described above, the diffraction pattern of the phase modulation element 54S changes so that the light distribution pattern has a predetermined shape and the convergence angle of the red laser light is maximized.
  • the red laser light diffracted by this diffraction pattern becomes the first light DLR and propagates forward.
  • the light from the light source 52R is in a non-emission state, and instead of the light from the light source 52R, the green laser light is emitted from the light source 52G for a predetermined time.
  • the green laser light is collimated by the collimator lens 53G, passes through the combining optical system 55, and enters the phase modulation element 54S.
  • the voltage applied to the phase modulation element 54S is adjusted so that a diffraction pattern corresponding to the green laser light is obtained. That is, as described above, the phase modulation element is formed so that the light distribution pattern has the same shape as the first light DLR, and the convergence angle of the green laser light is smaller than that of the red laser light.
  • the 54S diffraction pattern changes. The green laser light diffracted by this diffraction pattern becomes the second light DLG and propagates forward.
  • the light from the light source 52G is in a non-emission state, and instead of the light from the light source 52G, the blue laser light is emitted from the light source 52B for a predetermined time. After being collimated by the collimator lens 53B, this blue laser light passes through the combining optical system 55 and enters the phase modulation element 54S.
  • the voltage applied to the phase modulation element 54S is adjusted so that a diffraction pattern corresponding to the blue laser light is obtained. That is, as described above, the diffraction pattern of the phase modulation element 54S is changed so that the light distribution pattern has the same shape as the light DLR and DLG and the convergence angle of the blue laser light is the smallest convergence angle. Change.
  • the blue laser light diffracted by this diffraction pattern becomes the third light DLB and propagates forward.
  • the light emission cycle as described above is repeated at a predetermined cycle.
  • the convergence angle of the first light DLR emitted from the phase modulation element 54S is maximized, and the convergence angle of the third light DLB emitted from the phase modulation element 54S is minimized.
  • the outer edge of the light DLR is located at the innermost position, and the outer edge of the light DLB is located at the outermost position.
  • the outer edge is located at the innermost side as shown in FIG.
  • the first light DLR forms an image at an imaging position CPR farthest from the projection lens 80, and the third light DLB having the outer edge positioned at the outermost forms an image at an imaging position CPB closest to the projection lens 80. Therefore, similarly to the first embodiment, the incident angle of the third light DLB on the incident surface 80A can be the largest, and the incident angle of the first light DLR on the incident surface 80A can be the smallest. Therefore, the light DLR, DLG, and DLB each pass through the projection lens 80, so that the outer edges of the light DLR, DLG, and DLB can be nearly parallel.
  • the convergence angle of the first light DLR emitted from the phase modulation element 54S is maximized, and the convergence angle of the third light DLB emitted from the phase modulation element 54S is minimized.
  • the outer edge of the light DLR is located at the innermost position, and the outer edge of the light DLB is located at the outermost position.
  • the lights DLR, DLG, and DLB are alternately emitted to the outside of the optical system unit 50. , An image is formed alternately at the focal point F.
  • the shapes of the light distribution patterns of the light DLR, DLG, and DLB are the same, and the outer edge of the light DLR is located at the innermost position, and the outer edge of the light DLB is located at the outermost position.
  • the formed images of the light DLR, DLG, and DLB are superimposed such that the outer edge of the image of the light DLR is the innermost and the outer edge of the image of the light DLR is the outermost (see FIG. 10).
  • the incident angle of the third light DLB on the incident surface 80A of the projection lens 80 can be the largest, and the incident angle of the first light DLR on the incident surface 80A. May be the smallest. Therefore, when the lights DLR, DLG, and DLB pass through the projection lens 80, the outer edges of the lights DLR, DLG, and DLB can be nearly parallel (see FIG. 9).
  • the light sources 52R, 52G, and 52B in the present embodiment switch the light emission at a predetermined cycle
  • the light DLR, DLG, and light DLB are alternately emitted from the projection lens 80 at a predetermined cycle. You. If this period is shorter than the temporal resolution of human vision, an afterimage effect occurs, and the human can perceive that light of different colors is synthesized and emitted. Therefore, by making the period shorter than the time resolution of a person in the present embodiment, the person can obtain white light obtained by combining the light DLR that is red light, the light DLG that is green light, and the DLB that is blue light. It can be recognized that the light is emitted from the lamp unit 20.
  • the above cycle is preferably set to 1/30 s or less, more preferably 1/60 s or less. Note that the afterimage effect can occur even when the period is longer than 1/30 s. For example, even if the period is 1/15 s, the afterimage effect may occur.
  • the number of phase modulation elements can be reduced to one, so that the number of components can be reduced and the cost can be reduced.
  • the light sources 52R, 52G, and 52B switch light emission.
  • at least two of the light sources 52R, 52G, and 52B may switch light emission at a predetermined cycle.
  • the fourth embodiment may be modified so that the light sources 52R and 52G switch light emission at a predetermined cycle.
  • the optical system is composed of two phase modulation elements, a phase modulation element that receives red laser light and green laser light from the light sources 52R and 52G, and a phase modulation element 54B that receives blue laser light from the light source 52B.
  • Unit 50 may be configured.
  • phase modulation element an example in which light is converged by the phase modulation element has been described, but light may be diverged by the phase modulation element.
  • a converging lens may be provided between the phase modulation element and the projection lens as in the first and third embodiments.
  • phase modulation element is of a reflection type.
  • the phase modulation element may be of a transmission type.
  • the first, second, third, fourth, fifth, and sixth embodiments have been described as examples of the present invention, but the present invention is not limited to these embodiments. Not something.
  • phase modulation element LCOS
  • a desired light distribution pattern can be obtained by adjusting the applied voltage, so that a desired light distribution pattern can be formed as compared with a case where a diffraction grating is used as the phase modulation element. Can be easier.
  • GLV Gram @ Light @ Valve
  • This GLV is a reflection-type phase modulation element in which a plurality of reflectors are provided on a silicon substrate. According to the GLV, different diffraction patterns can be formed by electrically controlling the deflection of the plurality of reflectors. Therefore, for example, the phase modulation element of the fourth embodiment may be a GLV instead of the LCOS.
  • the vehicle headlamp 1 as a vehicle lamp emits a low beam L.
  • the vehicular lamp according to another embodiment is configured to irradiate a region indicated by a broken line in FIG. 6, that is, a region above a region irradiated with the low beam L with light having a lower intensity than the low beam L. May be done.
  • Such low-intensity light is, for example, light OHS for sign recognition.
  • the light distribution pattern for night illumination is formed by the low beam L and the light OHS for sign recognition.
  • the “nighttime” here is not limited to simply “nighttime” but includes a dark place such as a tunnel.
  • a vehicle lamp according to another embodiment may be configured to emit a high beam H as shown in FIG. In FIG. 14, the light distribution pattern of the high beam H is indicated by a bold line, and the straight line S is a horizontal line.
  • the area HA1 is an area where the light intensity is high
  • the area HA2 is an area where the light intensity is lower than that of the HA1.
  • the vehicular lamp according to the present invention may be applied as an image. In such a case, the direction of light emitted from the vehicle lamp and the mounting position of the vehicle lamp in the vehicle are not particularly limited.
  • the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment, and the sixth embodiment, examples in which three light sources 52R, 52G, and 52B are provided have been described. It is sufficient that at least one light source emits light of different wavelengths, that is, at least two light sources. However, as in the first embodiment, the second embodiment, the third embodiment, and the fourth embodiment, one light source that emits light of different wavelengths is provided, that is, three light sources are provided. It may be possible to generate light of any color.
  • the projection lens 80 in which the entrance surface and the exit surface are formed in a convex shape is used.
  • the present invention is not limited to this, and a lens having an incident surface formed in a planar shape and an exit surface formed in a convex shape may be used as the projection lens.
  • the divergence angle of the plurality of lights and the The convergence angle can be appropriately changed.
  • a divergence angle and a convergence angle of a plurality of lights may be the same.
  • the divergence angle and the convergence angle of the plurality of lights are appropriately changed as long as the shorter the wavelength of the light image among the plurality of light images formed on the focal plane, the larger the image. be able to.
  • a divergence angle and a convergence angle of a plurality of lights may be the same.
  • a vehicle lamp provided with a projection lens and capable of suppressing color fringing is provided, and can be used in the field of vehicle lamps such as automobiles.
  • Vehicle headlight (vehicle lamp) 20 lamp unit 50, optical system unit 52R, first light source 52G, second light source 52B, third light source 54R, first phase modulation element 54G, second phase Modulating element 54B Third phase modulating element 54S Phase modulating element 55 Synthetic optical system 80 Projection lens 81 Imaging lens 81R First imaging lens 81G .2nd imaging lens 81B... 3rd imaging lens

Abstract

A vehicle headlamp (1) serving as a vehicle lamp comprises: light sources (52R, 52G, 52B) that emit beams of light of mutually different wavelengths; phase modulation elements (54R, 54G, 54B) in which the beams of light emitted from each of the light sources (52R, 52G, 52B) are diffracted, thereby imparting each of the plurality of beams of light with a prescribed light distribution pattern; and a projection lens (80) that adjusts the divergence angle of beams of light DLR, DLG, DLB emitted from the phase modulation elements (54R, 54G, 54B). Of the beams of light DLR, DLG, DLB imparted with the prescribed light distribution pattern by the phase modulation elements (54R, 54G, 54B), the beam of light DLB having the shortest wavelength is imaged at an imaging position CPB closest to the projection lens (80).

Description

車両用灯具Vehicle lighting
 本発明は、車両用灯具に関し、具体的には、投影レンズを有する車両用灯具に関する。 The present invention relates to a vehicle lamp, and more specifically, to a vehicle lamp having a projection lens.
 自動車用ヘッドライトに代表する車両用灯具としての車両用前照灯に関して、出射する光を所望の配光パターンとし得る様々な構成が検討されている。例えば、下記特許文献1には、位相変調素子の一種であるホログラム素子を用いて所定の配光パターンを形成することが記載されている。 構成 Vehicle headlights, which are representative of automotive headlights, are being studied for various configurations that allow emitted light to have a desired light distribution pattern. For example, Patent Literature 1 below describes that a predetermined light distribution pattern is formed using a hologram element which is a kind of a phase modulation element.
特開2012-146621号公報JP 2012-146621 A
 ところで、上記特許文献1に記載の位相変調素子は、製作上の都合や位相変調素子の性質等から、発散角を大きくすることが難しい傾向がある。そのため、このような位相変調素子を介して例えばロービームを生成する際、位相変調素子から出射された光の発散角を調整するために、投影レンズを別途配置することが好ましい場合がある。しかし、このような投影レンズに光を透過させると、投影レンズの色収差によって光の外縁に色にじみが発生する懸念がある。 By the way, in the phase modulation element described in Patent Document 1, it tends to be difficult to increase the divergence angle due to the manufacturing convenience and the properties of the phase modulation element. Therefore, when a low beam is generated via such a phase modulation element, for example, it may be preferable to separately arrange a projection lens in order to adjust the divergence angle of light emitted from the phase modulation element. However, when light is transmitted through such a projection lens, there is a concern that chromatic aberration of the projection lens may cause color fringing at the outer edge of the light.
 そこで、本発明は、投影レンズを備える色にじみが抑制され得る車両用灯具を提供しようとすることを目的とする。 Accordingly, it is an object of the present invention to provide a vehicle lamp having a projection lens and capable of suppressing color fringing.
 上記目的の達成のため、本発明の第1の態様による車両用灯具は、互いに波長の異なる光を出射する複数の光源と、前記複数の光源のそれぞれから出射する前記光を回折することにより、複数の前記光をそれぞれ所定の配光パターンとする少なくとも1つの位相変調素子と、前記位相変調素子から出射する複数の前記光の発散角を調整する投影レンズと、を備え、前記位相変調素子により前記所定の配光パターンとされた複数の前記光は、波長の短い光ほど前記投影レンズに近い位置に結像することを特徴とするものである。 In order to achieve the above object, the vehicle lamp according to the first aspect of the present invention includes a plurality of light sources that emit light having different wavelengths from each other, and diffracts the light emitted from each of the plurality of light sources, At least one phase modulation element that sets each of the plurality of lights to a predetermined light distribution pattern, and a projection lens that adjusts a divergence angle of the plurality of lights emitted from the phase modulation element, is provided by the phase modulation element. The plurality of lights having the predetermined light distribution pattern are formed such that light having a shorter wavelength forms an image closer to the projection lens.
 波長の短い光は、レンズに入射した際に波長の長い光に比べて大きく屈折する傾向がある。この車両用灯具では、波長の短い光ほど投影レンズに近い位置に結像するため、これらの光が投影レンズを透過した際、これらの光の外縁が互いに平行に近くなり得、光の外縁における色にじみが抑制され得る。 光 Light having a short wavelength tends to be refracted more greatly when it enters a lens than light having a long wavelength. In this vehicle lamp, since light with a shorter wavelength forms an image at a position closer to the projection lens, when these lights pass through the projection lens, the outer edges of these lights can be closer to parallel to each other, and the Color bleeding can be suppressed.
 また、上記第1の態様による車両用灯具において、前記投影レンズから出射する複数の前記光の外縁がそれぞれ平行にされることが好ましい。 In addition, in the vehicle lamp according to the first aspect, it is preferable that outer edges of the plurality of lights emitted from the projection lens are parallel to each other.
 この場合、上記光のにじみが効果的に抑制され得る。 In this case, the light bleeding can be effectively suppressed.
 また、上記第1の態様による車両用灯具において、複数の前記光のそれぞれは、前記投影レンズの焦点に結像してもよい。 In the vehicle lighting device according to the first aspect, each of the plurality of lights may form an image at a focal point of the projection lens.
 この場合、投影レンズから出射する複数の光の外縁がそれぞれ平行になる。 In this case, the outer edges of the plurality of lights emitted from the projection lens are parallel to each other.
 また、上記第1の態様による車両用灯具において、前記投影レンズから出射する複数の前記光の外縁がそれぞれ重なることが好ましい。 In addition, in the vehicle lamp according to the first aspect, it is preferable that outer edges of the plurality of lights emitted from the projection lens overlap each other.
 この場合、上記色にじみがより効果的に抑制され得る。 In this case, the color bleeding can be more effectively suppressed.
 また、上記第1の態様による車両用灯具において、複数の前記光のそれぞれの前記所定の配光パターンが同一の外形とされることが好ましい。 In the vehicle lighting device according to the first aspect, it is preferable that the predetermined light distribution patterns of the plurality of lights have the same outer shape.
 この場合、各光の配光パターンが同一の外形とされるため、投影レンズから出射する光の外縁が平行になり易くなり得、また、互いに重なり易くなり得る。 In this case, since the light distribution pattern of each light has the same outer shape, the outer edges of the light emitted from the projection lens can easily become parallel and can easily overlap each other.
 上記目的の達成のため、本発明の第2の態様による車両用灯具は、互いに波長の異なる光を出射する複数の光源と、前記複数の光源のそれぞれから出射する前記光を回折することにより、複数の前記光をそれぞれ同一形状の配光パターンとする少なくとも1つの位相変調素子と、前記位相変調素子から出射する複数の前記光の発散角を調整する投影レンズと、を備え、前記投影レンズの焦点を通り前記投影レンズの光軸方向に垂直な焦点面に形成される複数の前記光の像のうち、波長の短い光の像ほど大きくされることを特徴とするものである。 To achieve the above object, the vehicle lamp according to the second aspect of the present invention includes a plurality of light sources that emit light having different wavelengths from each other, and diffracts the light emitted from each of the plurality of light sources. At least one phase modulation element having a plurality of light beams each having the same shape light distribution pattern, and a projection lens for adjusting a divergence angle of the plurality of light beams emitted from the phase modulation element, comprising: Among the plurality of light images formed on the focal plane passing through the focal point and perpendicular to the optical axis direction of the projection lens, the light image having a shorter wavelength is enlarged.
 波長の異なる光の像が上記焦点面において重なる場合、各光の配光パターンの外縁が重なった状態で各光が投影レンズに入射する。この場合、投影レンズの色収差により波長の短い光ほど内側に屈折して各光の配光パターンの外縁間の距離が広がり、光の外縁に色にじみが発生する傾向がある。これに対し、この車両用灯具では、上記焦点面に結像される光の像のうち、波長の短い光の像ほど大きくされる。すなわち、上記焦点面において、波長の短い光の像の外縁が、波長の長い光の像の外縁の外側に位置するため、波長の短い光ほど外側で投影レンズに入射し得る。したがって、投影レンズから出射する複数の光において、複数の光の配光パターンの外縁が平行に近くなり得、上記色にじみが抑制され得る。 像 When images of light having different wavelengths overlap on the focal plane, each light enters the projection lens in a state where the outer edges of the light distribution pattern of each light overlap. In this case, due to the chromatic aberration of the projection lens, light having a shorter wavelength is refracted inward and the distance between the outer edges of the light distribution pattern of each light is widened, so that color fringing tends to occur at the outer edge of the light. On the other hand, in this vehicular lamp, of the light images formed on the focal plane, the light image having a shorter wavelength is enlarged. That is, in the focal plane, the outer edge of the image of the light having the shorter wavelength is located outside the outer edge of the image of the light having the longer wavelength, so that the light having the shorter wavelength can enter the projection lens at the outer side. Therefore, in the plurality of lights emitted from the projection lens, the outer edges of the light distribution patterns of the plurality of lights can be almost parallel, and the color blur can be suppressed.
 また、上記第2の態様による車両用灯具において、前記投影レンズから出射する複数の前記光の外縁がそれぞれ平行であることが好ましい。 In addition, in the vehicle lamp according to the second aspect, it is preferable that outer edges of the plurality of lights emitted from the projection lens are parallel to each other.
 この場合、上記色にじみがより効果的に抑制され得る。 In this case, the color bleeding can be more effectively suppressed.
 また、上記第2の態様による車両用灯具において、前記投影レンズから出射する複数の前記光の外縁がそれぞれ重なることが好ましい。 In addition, in the vehicle lamp according to the second aspect, it is preferable that outer edges of the plurality of lights emitted from the projection lens overlap each other.
 この場合、光の外縁が重なることにより、上記色にじみがより効果的に抑制され得る。 In this case, the color fringing can be more effectively suppressed by overlapping the outer edges of the light.
 また、上記第1の態様及び第2の態様による車両用灯具において、前記位相変調素子は、前記複数の光源ごとに設けられてもよい。 In the vehicle lighting device according to the first and second aspects, the phase modulation element may be provided for each of the plurality of light sources.
 この場合、複数の光源に対して位相変調素子が1対1対応で設けられるため、各光源から出射される光に応じた配光パターンを形成することが容易になり得る。 In this case, since the phase modulation elements are provided in a one-to-one correspondence with the plurality of light sources, it is easy to form a light distribution pattern according to the light emitted from each light source.
 また、上記第1の態様及び第2の態様による車両用灯具において、前記複数の光源のうち少なくとも2つの光源は、各光源からの前記光の出射を所定の周期で切り替え、前記少なくとも2つの光源から出射する複数の前記光は、共通の前記位相変調素子に入射し、前記少なくとも2つの光源からの前記光が入射する前記位相変調素子は、入射する前記光の波長に応じて回折パターンを変化させてもよい。 Further, in the vehicular lamp according to the first and second aspects, at least two of the plurality of light sources switch the emission of the light from each light source at a predetermined cycle, and the at least two light sources A plurality of the lights emitted from the light are incident on the common phase modulation element, and the phase modulation element on which the light from the at least two light sources is incident changes a diffraction pattern according to a wavelength of the incident light. May be.
 この場合、少なくとも2つの光源からの光を受光する位相変調素子を共通の位相変調素子とすることができるため、車両用灯具に設ける位相変調素子の数を削減し得、部品数の削減やコストダウンを実現し得る。 In this case, since the phase modulation element that receives light from at least two light sources can be a common phase modulation element, the number of phase modulation elements provided in the vehicle lamp can be reduced, and the number of parts and the cost can be reduced. Down can be realized.
 また、上記第1の態様及び第2の態様による車両用灯具において、前記周期は1/30s以下であることが好ましい。 In the vehicle lighting device according to the first and second aspects, it is preferable that the cycle is 1/30 s or less.
 人の視覚の時間分解能よりも短い時間間隔で、波長の異なる光が繰り返し照射される場合、人は、残像効果によって、異なる色の光が合された光が照射されていると認識し得る。人の視覚の時間分解能は概ね1/30sとされる。したがって、少なくとも2つの光源の切り替えの周期が1/30s以下であれば、人は、異なる色の光の合成光が照射されていると容易に認識し得る。 (4) When light having different wavelengths is repeatedly irradiated at a time interval shorter than the temporal resolution of human vision, a person can recognize that light combined with light of different colors is being irradiated due to an afterimage effect. The temporal resolution of human vision is approximately 1/30 s. Therefore, if the switching cycle of at least two light sources is 1/30 s or less, a person can easily recognize that the combined light of the lights of different colors is being irradiated.
 また、上記第1の態様及び第2の態様による車両用灯具において、前記位相変調素子はLCOS(Liquid Crystal On Silicon)とされてもよい。 In the vehicle lighting device according to the first and second embodiments, the phase modulation element may be an LCOS (Liquid Crystal On Silicon).
 LCOSは、電圧に応じて液晶分子の並び方を変えることで液晶層に屈折率差を生じさせる。したがって、LCOSに印加される電圧を調整することで、光の配光パターンを変化させることや、光の結像位置を調整することが可能となり得る。 LCOS causes a difference in the refractive index of the liquid crystal layer by changing the arrangement of the liquid crystal molecules according to the voltage. Therefore, by adjusting the voltage applied to the LCOS, it may be possible to change the light distribution pattern of light and adjust the light imaging position.
 また、上記第1の態様及び第2の態様による車両用灯具において、前記位相変調素子から出射する前記光の結像が少なくとも1つの結像レンズを介して行われてもよい。 In addition, in the vehicular lamp according to the first and second aspects, the light emitted from the phase modulation element may be imaged through at least one imaging lens.
 結像レンズを介することで、上記光を上記結像位置に結像させることが容易になり得る。 By passing through the imaging lens, the light can be easily imaged at the imaging position.
 また、上記第1の態様及び第2の態様による車両用灯具において、それぞれの位相変調素子毎に前記結像レンズが配置されてもよい。 In the vehicle lighting device according to the first and second aspects, the imaging lens may be arranged for each phase modulation element.
 この場合、第1の態様では、各位相変調素子から出射する光の収束角をそれぞれ別個に調整できるため、波長の短い光の結像位置ほど投影レンズに近くすることが容易になり得る。 In this case, in the first aspect, the convergence angle of the light emitted from each phase modulation element can be adjusted separately, so that the image forming position of light having a shorter wavelength can be easily brought closer to the projection lens.
 また、この場合、第2の態様では、各位相変調素子から出射する光の収束角をそれぞれ別個に調整できるため、複数の上記光のそれぞれを結像させることが容易になり得る。 In addition, in this case, in the second aspect, the convergence angles of the lights emitted from the respective phase modulation elements can be individually adjusted, so that it is easy to form an image of each of the plurality of lights.
 また、上記第1の態様及び第2の態様による車両用灯具において、前記複数の光源は3つの光源からなってもよい。 In addition, in the vehicle lighting device according to the first and second aspects, the plurality of light sources may include three light sources.
 この場合、所望の色の光を生成することが可能となる。 In this case, light of a desired color can be generated.
 以上のように、本発明の第1の態様及び第2の態様によれば、投影レンズを備える色にじみが抑制され得る車両用灯具が提供される。 As described above, according to the first and second aspects of the present invention, a vehicular lamp provided with a projection lens and capable of suppressing color fringing is provided.
本発明の第1実施形態に係る車両用灯具を概略的に示す縦断面図である。1 is a longitudinal sectional view schematically showing a vehicular lamp according to a first embodiment of the present invention. 図1に示す灯具ユニットの拡大図である。It is an enlarged view of the lamp unit shown in FIG. 図2に示す位相変調素子の正面図である。FIG. 3 is a front view of the phase modulation element shown in FIG. 2. 図3に示す位相変調素子の一部の厚さ方向の断面を概略的に示す図である。FIG. 4 is a diagram schematically showing a cross section in a thickness direction of a part of the phase modulation element shown in FIG. 3. 図1に示す車両用灯具における結像レンズ及び投影レンズの近傍を概略的に示す拡大図である。FIG. 2 is an enlarged view schematically showing the vicinity of an imaging lens and a projection lens in the vehicle lamp shown in FIG. 1. ロービームの配光パターンを示す図である。It is a figure which shows the light distribution pattern of a low beam. 本発明の第2実施形態に係る車両用灯具の灯具ユニットを図2と同様に示す図である。It is a figure showing a lamp unit of a vehicular lamp concerning a 2nd embodiment of the present invention like FIG. 図7に示す車両用灯具における投影レンズの近傍を図5と同様に示す図である。FIG. 8 is a diagram showing the vicinity of a projection lens in the vehicle lamp shown in FIG. 7, similarly to FIG. 5. 本発明の第3実施形態に係る車両用灯具における結像レンズ及び投影レンズの近傍を概略的に示す拡大図である。It is an enlarged drawing which shows roughly the vicinity of the imaging lens and the projection lens in the vehicle lamp concerning 3rd Embodiment of this invention. 図9に示す焦点面の焦点近傍を概略的に示す図である。FIG. 10 is a diagram schematically showing the vicinity of the focal point on the focal plane shown in FIG. 9. 本発明の第4実施形態に係る車両用灯具における投影レンズの近傍を図5と同様に示す図である。It is a figure which shows the vicinity of the projection lens in the vehicle lamp concerning 4th Embodiment of this invention similarly to FIG. 本発明の第5実施形態に係る車両用灯具の灯具ユニットを図2と同様に示す図である。It is a figure showing a lamp unit of a vehicular lamp concerning a 5th embodiment of the present invention like FIG. 本発明の第6実施形態に係る車両用灯具の灯具ユニットを図2と同様に示す図である。It is a figure which shows the lamp unit of the vehicle lamp concerning 6th Embodiment of this invention similarly to FIG. ハイビームの配光パターンを示す図である。It is a figure which shows the light distribution pattern of a high beam.
 以下、本発明に係る車両用灯具を実施するための形態が添付図面とともに例示される。以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、以下の実施形態から変更、改良することができる。なお、以下に参照する図面では、理解を容易にするために、各部材の寸法を変えて示す場合がある。 Hereinafter, embodiments for implementing the vehicular lamp according to the present invention will be exemplified with the accompanying drawings. The embodiments illustrated below are for the purpose of facilitating the understanding of the present invention, and are not intended to limit the present invention. The present invention can be modified and improved from the following embodiments without departing from the gist thereof. In the drawings referred to below, the dimensions of each member may be changed in order to facilitate understanding.
 まず、本発明の第1の態様について、第1実施形態及び第2実施形態に係る車両用前照灯を例として説明する。 First, a first aspect of the present invention will be described using the vehicle headlight according to the first embodiment and the second embodiment as an example.
(第1実施形態)
 図1は、本実施形態に係る車両用灯具の一例を示す図であり、車両用灯具の鉛直方向の断面を概略的に示す縦断面図である。本実施形態では、車両用灯具は車両用前照灯1とされる。図1に示すように、この車両用前照灯1は、筐体10と、灯具ユニット20と、灯具ユニット20の前方に配置される結像レンズ81と、結像レンズ81の前方に配置される投影レンズ80と、を主な構成として備える。
(1st Embodiment)
Drawing 1 is a figure showing an example of the vehicular lamp concerning this embodiment, and is a longitudinal section showing roughly the section of the vertical direction of the vehicular lamp. In the present embodiment, the vehicular lamp is the vehicular headlamp 1. As shown in FIG. 1, the vehicle headlamp 1 is provided with a housing 10, a lamp unit 20, an imaging lens 81 disposed in front of the lamp unit 20, and disposed in front of the imaging lens 81. Projection lens 80 as a main configuration.
 筐体10は、ランプハウジング11、フロントカバー12、及びバックカバー13を主な構成として備える。ランプハウジング11の前方は開口しており、当該開口を塞ぐようにフロントカバー12がランプハウジング11に固定されている。また、ランプハウジング11の後方には前方よりも小さな開口が形成されており、当該開口を塞ぐようにバックカバー13がランプハウジング11に固定されている。 The housing 10 includes a lamp housing 11, a front cover 12, and a back cover 13 as main components. The front of the lamp housing 11 is open, and the front cover 12 is fixed to the lamp housing 11 so as to close the opening. An opening smaller than the front is formed behind the lamp housing 11, and the back cover 13 is fixed to the lamp housing 11 so as to close the opening.
 ランプハウジング11と、当該ランプハウジング11の前方の開口を塞ぐフロントカバー12と、当該ランプハウジング11の後方の開口を塞ぐバックカバー13とによって形成される空間は灯室Rであり、この灯室R内に灯具ユニット20、結像レンズ81、及び投影レンズ80が収容されている。 The space formed by the lamp housing 11, the front cover 12 closing the front opening of the lamp housing 11, and the back cover 13 closing the rear opening of the lamp housing 11 is a lamp room R. The lamp unit 20, the imaging lens 81, and the projection lens 80 are housed therein.
 本実施形態の灯具ユニット20は、ヒートシンク30と、冷却ファン35と、カバー59と、光学系ユニット50とを主な構成要素として備える。なお、灯具ユニット20は、不図示の構成により筐体10に固定されている。 The lamp unit 20 of the present embodiment includes the heat sink 30, the cooling fan 35, the cover 59, and the optical system unit 50 as main components. The lamp unit 20 is fixed to the housing 10 by a configuration (not shown).
 本実施形態では、ヒートシンク30は、概ね水平方向に延在する金属製のベース板31を有し、当該ベース板31の下面側には複数の放熱フィン32がベース板31と一体に設けられている。また、冷却ファン35は、放熱フィン32と隙間を隔てて配置され、ヒートシンク30に固定されている。この冷却ファン35の回転による気流によりヒートシンク30は冷却される。また、ヒートシンク30におけるベース板31の上面にはカバー59が配置されている。 In the present embodiment, the heat sink 30 has a metal base plate 31 extending in a substantially horizontal direction, and a plurality of heat radiation fins 32 are provided integrally with the base plate 31 on the lower surface side of the base plate 31. I have. In addition, the cooling fan 35 is arranged with a gap from the radiation fin 32 and is fixed to the heat sink 30. The heat sink 30 is cooled by the airflow generated by the rotation of the cooling fan 35. A cover 59 is arranged on the upper surface of the base plate 31 of the heat sink 30.
 本実施形態のカバー59は、例えばアルミニウム等の金属からなり、ヒートシンク30のベース板31の上面に固定される。カバー59の内部には、ロービームなどを形成する光を生成するための光学系ユニット50が収容されている。カバー59の前部には開口59Hが形成されており、光学系ユニット50からの上記光は、この開口59Hを介して前方に出射される。 The cover 59 of the present embodiment is made of a metal such as aluminum, for example, and is fixed to the upper surface of the base plate 31 of the heat sink 30. An optical system unit 50 for generating light forming a low beam or the like is accommodated inside the cover 59. An opening 59H is formed at the front of the cover 59, and the light from the optical system unit 50 is emitted forward through the opening 59H.
 なお、カバー59の内壁に光吸収性を持たせるために、これらの内壁に黒アルマイト加工等を施すことが好ましい。カバー59の内壁が光吸収性を持つことで、意図しない反射や屈折等によりこれらの内壁に光が照射された場合であっても、照射光が反射して開口59Hから意図しない方向に出射することが抑制され得る。 In order to make the inner walls of the cover 59 have a light absorbing property, it is preferable that these inner walls are subjected to black alumite processing or the like. Since the inner wall of the cover 59 has a light absorbing property, even when the inner wall is irradiated with light due to unintended reflection or refraction, the irradiated light is reflected and emitted from the opening 59H in an unintended direction. Can be suppressed.
 結像レンズ81は、開口59Hから出射された上記光を所定の結像位置に結像させるためのレンズである。この結像レンズ81は、カバー59の開口59Hの前方に配置されており、不図示の構成により筐体10に固定されている。本実施形態の例では、結像レンズ81は、入射面及び出射面が凸状に形成されたレンズとされ、焦点が当該結像レンズ81と投影レンズ80との間に位置するように形成されている。 The imaging lens 81 is a lens for imaging the light emitted from the opening 59H at a predetermined imaging position. The imaging lens 81 is disposed in front of the opening 59H of the cover 59, and is fixed to the housing 10 by a configuration (not shown). In the example of the present embodiment, the imaging lens 81 is a lens in which the entrance surface and the exit surface are formed in a convex shape, and is formed such that the focal point is located between the imaging lens 81 and the projection lens 80. ing.
 投影レンズ80は、上記結像位置に結像した光の発散角を調整するためのレンズである。すなわち、光が投影レンズ80を透過することで、当該光の発散角が調整され、上記ロービーム等が所定の大きさに形成される。この投影レンズ80は、結像レンズ81の前方に配置されており、不図示の構成により筐体10に固定されている。本実施形態の例では、投影レンズ80は、入射面及び出射面が凸状に形成されたレンズとされる。 The projection lens 80 is a lens for adjusting the divergence angle of the light imaged at the image forming position. That is, when the light passes through the projection lens 80, the divergence angle of the light is adjusted, and the low beam or the like is formed into a predetermined size. The projection lens 80 is arranged in front of the imaging lens 81, and is fixed to the housing 10 by a configuration (not shown). In the example of the present embodiment, the projection lens 80 is a lens in which the entrance surface and the exit surface are formed in a convex shape.
 図2は、図1に示す車両用前照灯1が備える灯具ユニット20の拡大図である。図2に示すように、本実施形態における光学系ユニット50は、第1光源52Rと、第2光源52Gと、第3光源52Bと、第1位相変調素子54Rと、第2位相変調素子54Gと、第3位相変調素子54Bと、合成光学系55と、を主な構成として備える。本実施形態において、位相変調素子54R,54G,54Bは、入射する光を反射しつつ回折して出射する反射型の位相変調素子とされ、例えば、反射型のLCOS(Liquid Crystal On Silicon)とされる。 FIG. 2 is an enlarged view of a lamp unit 20 included in the vehicle headlight 1 shown in FIG. As shown in FIG. 2, the optical system unit 50 according to the present embodiment includes a first light source 52R, a second light source 52G, a third light source 52B, a first phase modulation element 54R, and a second phase modulation element 54G. , A third phase modulation element 54 </ b> B, and a combining optical system 55 as main components. In the present embodiment, the phase modulation elements 54R, 54G, and 54B are reflection-type phase modulation elements that diffract and emit incident light while reflecting the light, and are, for example, reflection-type LCOS (Liquid Crystal On Silicon). You.
 第1光源52Rは、所定波長のレーザ光を出射するレーザ素子とされ、本実施形態では、パワーのピーク波長が例えば638nmの赤色レーザ光を上方に出射する。第2光源52Gと第3光源52Bとは、それぞれ所定波長のレーザ光を出射するレーザ素子とされ、本実施形態では、第2光源52Gはパワーのピーク波長が例えば515nmの緑色レーザ光を後方に出射し、第3光源52Bはパワーのピーク波長が例えば445nmの青色レーザ光を後方に出射する。また、光学系ユニット50は、カバー59に固定される不図示の回路基板を有している。第1光源52R、第2光源52G、及び第3光源52Bは、それぞれ該回路基板に実装されており、この回路基板を介してこれら光源に電力が供給される。 The first light source 52R is a laser element that emits a laser beam having a predetermined wavelength. In the present embodiment, the first light source 52R emits a red laser beam having a power peak wavelength of, for example, 638 nm upward. Each of the second light source 52G and the third light source 52B is a laser element that emits a laser beam having a predetermined wavelength. In the present embodiment, the second light source 52G transmits a green laser beam having a peak wavelength of power of, for example, 515 nm backward. The third light source 52B emits blue laser light having a power peak wavelength of, for example, 445 nm backward. The optical system unit 50 has a circuit board (not shown) fixed to the cover 59. The first light source 52R, the second light source 52G, and the third light source 52B are respectively mounted on the circuit board, and power is supplied to these light sources via the circuit board.
 第1コリメートレンズ53Rは、第1光源52Rの上方に配置されており、第1光源52Rから出射するレーザ光のファスト軸方向及びスロー軸方向をコリメートする。第2コリメートレンズ53Gは、第2光源52Gの後方に配置されており、第2光源52Gから出射するレーザ光のファスト軸方向及びスロー軸方向をコリメートする。第3コリメートレンズ53Bは、第3光源52Bの後方に配置されており、第3光源52Bから出射するレーザ光のファスト軸方向及びスロー軸方向をコリメートする。これらコリメートレンズ53R,53G,53Bは、それぞれ不図示の構成によりカバー59に固定されている。 The first collimating lens 53R is disposed above the first light source 52R, and collimates the laser light emitted from the first light source 52R in the fast axis direction and the slow axis direction. The second collimating lens 53G is arranged behind the second light source 52G, and collimates the laser light emitted from the second light source 52G in the fast axis direction and the slow axis direction. The third collimating lens 53B is disposed behind the third light source 52B, and collimates the laser light emitted from the third light source 52B in the fast axis direction and the slow axis direction. These collimating lenses 53R, 53G, 53B are fixed to the cover 59 by a configuration not shown.
 なお、レーザ光のファスト軸方向をコリメートするコリメートレンズと、スロー軸方向をコリメートするコリメートレンズとが個別に設けられることで、上記レーザ光のファスト軸方向及びスロー軸方向がコリメートされてもよい。 Note that the collimating lens for collimating the fast axis direction of the laser light and the collimating lens for collimating the slow axis direction may be separately provided, so that the fast axis direction and the slow axis direction of the laser light may be collimated.
 第1位相変調素子54Rは、第1コリメートレンズ53Rの上方に配置されている。また、この第1位相変調素子54Rは、前後方向及び上下方向に対して略45°傾斜して配置されている。したがって、第1コリメートレンズ53Rから出射する赤色レーザ光は、この第1位相変調素子54Rに入射して回折されるとともに、略90°方向転換し、赤色の第1の光DLRとして前方に、すなわち、合成光学系55に向けて出射する。 The first phase modulation element 54R is disposed above the first collimator lens 53R. Further, the first phase modulating element 54R is arranged at an angle of approximately 45 ° with respect to the front-rear direction and the vertical direction. Accordingly, the red laser light emitted from the first collimating lens 53R is incident on the first phase modulation element 54R, is diffracted, changes its direction by approximately 90 °, and forwards as the red first light DLR, ie, Are emitted toward the combining optical system 55.
 第2位相変調素子54Gは、第2コリメートレンズ53Gの後方に配置されている。また、この第2位相変調素子54Gは、前後方向及び上下方向に対して第1位相変調素子54Rとは反対方向に略45°傾斜して配置されている。したがって、第2コリメートレンズ53Gから出射する緑色レーザ光は、この第2位相変調素子54Gに入射して回折されるとともに、略90°方向転換し、緑色の第2の光DLGとして上方に、すなわち、合成光学系55に向けて出射する。 The second phase modulation element 54G is disposed behind the second collimating lens 53G. The second phase modulating element 54G is disposed at an angle of approximately 45 ° in the direction opposite to the first phase modulating element 54R with respect to the front-rear direction and the vertical direction. Accordingly, the green laser light emitted from the second collimating lens 53G is incident on the second phase modulation element 54G and is diffracted, changes its direction by approximately 90 °, and moves upward as the green second light DLG, that is, Are emitted toward the combining optical system 55.
 第3位相変調素子54Bは、第3コリメートレンズ53Bの後方に配置されている。また、この第3位相変調素子54Bは、前後方向及び上下方向に対して第1位相変調素子54Rとは反対方向に略45°に傾斜して配置されている。したがって、第3コリメートレンズ53Bから出射する青色レーザ光は、この第3位相変調素子54Bに入射して回折されるとともに、略90°方向転換し、青色の第3の光DLBとして上方に、すなわち、合成光学系55に向けて出射する。 The third phase modulation element 54B is disposed behind the third collimating lens 53B. The third phase modulating element 54B is arranged at an angle of approximately 45 ° in the direction opposite to the first phase modulating element 54R with respect to the front-rear direction and the vertical direction. Accordingly, the blue laser light emitted from the third collimating lens 53B is incident on the third phase modulation element 54B and is diffracted, changes its direction by approximately 90 °, and rises upward as blue third light DLB, ie, Are emitted toward the combining optical system 55.
 合成光学系55は、第1光学素子55fと第2光学素子55sとを有する。第1光学素子55fは、第1位相変調素子54Rの前方かつ第2位相変調素子54Gの上方に配置され、前後方向及び上下方向に対して第1位相変調素子54Rと同一方向に略45°傾いた状態で配置される。この第1光学素子55fは、例えば、ガラス基板上に酸化膜が積層された波長選択フィルタとされ、所定波長よりも長い波長の光を透過し、該所定波長よりも短い波長の光を反射するように上記酸化膜の種類や厚みが調整される。本実施形態において、第1光学素子55fは、第1光源52Rから出射する波長638nmの赤色光を透過し、第2光源52Gから出射する波長515nmの緑色光を反射するように構成される。 The combining optical system 55 has a first optical element 55f and a second optical element 55s. The first optical element 55f is disposed in front of the first phase modulation element 54R and above the second phase modulation element 54G, and is inclined by approximately 45 ° in the same direction as the first phase modulation element 54R with respect to the front-rear direction and the up-down direction. It is arranged in the state that it was. The first optical element 55f is, for example, a wavelength selection filter in which an oxide film is laminated on a glass substrate, transmits light having a wavelength longer than a predetermined wavelength, and reflects light having a wavelength shorter than the predetermined wavelength. Thus, the type and thickness of the oxide film are adjusted. In the present embodiment, the first optical element 55f is configured to transmit red light having a wavelength of 638 nm emitted from the first light source 52R and reflect green light having a wavelength of 515 nm emitted from the second light source 52G.
 第2光学素子55sは、第1光学素子55fの前方かつ第3位相変調素子54Bの上方に配置され、前後方向及び上下方向に対して第1位相変調素子54Rと同一方向に略45°傾いた状態で配置される。この第2光学素子55sは、第1光学素子と同様に、波長選択フィルタとされる。本実施形態において、第2光学素子55sは、第1光源52Rから出射する波長638nmの赤色光及び第2光源52Gから出射する波長515nmの緑色光を透過し、第3光源52Bから出射する波長445nmの青色光を反射するように構成される。 The second optical element 55s is disposed in front of the first optical element 55f and above the third phase modulation element 54B, and is inclined by approximately 45 ° in the same direction as the first phase modulation element 54R with respect to the front-rear direction and the vertical direction. It is arranged in a state. The second optical element 55s is a wavelength selection filter, like the first optical element. In the present embodiment, the second optical element 55s transmits red light having a wavelength of 638 nm emitted from the first light source 52R and green light having a wavelength of 515 nm emitted from the second light source 52G, and has a wavelength of 445 nm emitted from the third light source 52B. Is configured to reflect blue light.
 次に、上記第1位相変調素子54R、第2位相変調素子54G、及び第3位相変調素子54Bの構成について詳細に説明する。 Next, the configurations of the first phase modulation element 54R, the second phase modulation element 54G, and the third phase modulation element 54B will be described in detail.
 本実施形態では、位相変調素子54R,54G,54Bは同様の構成とされる。このため、以下では第1位相変調素子54Rについてのみ詳細に説明し、第2位相変調素子54G及び第3位相変調素子54Bについては説明を適宜省略する。 In the present embodiment, the phase modulation elements 54R, 54G, and 54B have the same configuration. Therefore, hereinafter, only the first phase modulation element 54R will be described in detail, and description of the second phase modulation element 54G and the third phase modulation element 54B will be omitted as appropriate.
 図3は、第1位相変調素子54Rの正面図である。図3に示すように、第1位相変調素子54Rは、正面視において略長方形に形成されており、第1コリメートレンズ53Rから出射する赤色レーザ光が入射する略円形の入射領域53Aを含んでいる。また、第1位相変調素子54Rは、上記長方形内にマトリックス状に配置された複数の変調ユニットを有している。入射領域53A内には、少なくとも1つの変調ユニットが含まれる。各変調ユニットは、マトリックス状に配置された複数のドットを含んでおり、入射する赤色レーザ光を反射しつつ回折し、回折された光を出射する。また、位相変調素子54Rには駆動回路60Rが電気的に接続されている。この駆動回路60Rは、位相変調素子54Rの横側に接続される走査線駆動回路と、位相変調素子54Rの上下方向の一方側に接続されるデータ線駆動回路とを有する。 FIG. 3 is a front view of the first phase modulation element 54R. As shown in FIG. 3, the first phase modulation element 54R is formed in a substantially rectangular shape when viewed from the front, and includes a substantially circular incident area 53A into which red laser light emitted from the first collimating lens 53R is incident. . The first phase modulation element 54R has a plurality of modulation units arranged in a matrix in the rectangle. The incident area 53A includes at least one modulation unit. Each modulation unit includes a plurality of dots arranged in a matrix, diffracts while reflecting the incident red laser light, and emits the diffracted light. The drive circuit 60R is electrically connected to the phase modulation element 54R. The driving circuit 60R includes a scanning line driving circuit connected to the side of the phase modulation element 54R and a data line driving circuit connected to one side of the phase modulation element 54R in the vertical direction.
 図4は、図3に示す位相変調素子の一部の厚さ方向の断面を概略的に示す図である。本実施形態の位相変調素子54Rは、図4に示すように、シリコン基板62と、駆動回路層63と、複数の電極64と、反射膜65と、液晶層66と、透明電極67と、透光性基板68と、を主な構成として備える。 FIG. 4 is a diagram schematically showing a cross section in the thickness direction of a part of the phase modulation element shown in FIG. As shown in FIG. 4, the phase modulation element 54R of the present embodiment includes a silicon substrate 62, a drive circuit layer 63, a plurality of electrodes 64, a reflective film 65, a liquid crystal layer 66, a transparent electrode 67, and a transparent electrode 67. And an optical substrate 68 as a main configuration.
 複数の電極64は、シリコン基板62の一方の面側に上記各ドットに対応してマトリックス状に配置されている。すなわち、各ドットは対応する電極64を含んでいる。駆動回路層63は、図3に示す駆動回路60Rの走査線駆動回路及びデータ線駆動回路に接続される回路が配置される層であり、シリコン基板62と複数の電極64との間に配置される。透光性基板68は、シリコン基板62の一方の側で当該シリコン基板62と対向するように配置され、例えばガラス基板とされる。透明電極67は、透光性基板68のシリコン基板62側の面上に配置される。液晶層66は、液晶分子66aを有し、複数の電極64と透明電極67との間に配置される。反射膜65は、複数の電極64と液晶層66との間に配置され、例えば誘電体多層膜とされる。コリメートレンズ53Rから出射するレーザ光は、透光性基板68におけるシリコン基板62側と反対側の面から入射する。 (4) The plurality of electrodes 64 are arranged on one surface of the silicon substrate 62 in a matrix corresponding to the dots. That is, each dot includes a corresponding electrode 64. The drive circuit layer 63 is a layer in which circuits connected to the scan line drive circuit and the data line drive circuit of the drive circuit 60R shown in FIG. 3 are arranged, and is arranged between the silicon substrate 62 and the plurality of electrodes 64. You. The translucent substrate 68 is arranged on one side of the silicon substrate 62 so as to face the silicon substrate 62, and is, for example, a glass substrate. The transparent electrode 67 is disposed on the surface of the light transmitting substrate 68 on the silicon substrate 62 side. The liquid crystal layer 66 has liquid crystal molecules 66 a and is arranged between the plurality of electrodes 64 and the transparent electrode 67. The reflection film 65 is disposed between the plurality of electrodes 64 and the liquid crystal layer 66, and is, for example, a dielectric multilayer film. The laser light emitted from the collimator lens 53R enters from the surface of the translucent substrate 68 opposite to the silicon substrate 62 side.
 図4に示すように、透光性基板68におけるシリコン基板62側と反対側の面から入射する光RLは、透明電極67及び液晶層66を透過し、反射膜65で反射され、液晶層66及び透明電極67を透過して透光性基板68から出射される。ここで、特定の電極64と透明電極67との間に電圧が印加されると、当該電極64と透明電極67との間に位置する液晶層66の液晶分子66aの配向が変化する。この液晶分子66aの配光の変化により、当該電極64と透明電極67との間に位置する液晶層66の屈折率が変化し、液晶層66を透過する光RLの光路長が変化する。したがって、光RLが液晶層66を透過して液晶層66から出射することで、液晶層66から出射する光RLの位相が液晶層66に入射する光RLの位相から変化し得る。上記のように、複数の電極64は、変調ユニットの各ドットに対応して配置されているため、各ドットに対応する電極64と透明電極67との間に印加される電圧が制御されることで、液晶分子66aの配向が変化し、各ドットから出射する光の位相の変化量が各ドットに応じて調整され得る。このように各ドットにおける液晶層66の屈折率が調整されることで、第1位相変調素子54Rから出射する光が所定の配光パターンにされ得、また、当該光の発散角や収束角が所定の角度にされ得る。 As shown in FIG. 4, light RL entering from a surface of the light-transmitting substrate 68 opposite to the silicon substrate 62 side passes through the transparent electrode 67 and the liquid crystal layer 66, is reflected by the reflection film 65, and is reflected by the liquid crystal layer 66. The light passes through the transparent electrode 67 and is emitted from the light-transmitting substrate 68. Here, when a voltage is applied between the specific electrode 64 and the transparent electrode 67, the orientation of the liquid crystal molecules 66a of the liquid crystal layer 66 located between the electrode 64 and the transparent electrode 67 changes. Due to the change in the light distribution of the liquid crystal molecules 66a, the refractive index of the liquid crystal layer 66 located between the electrode 64 and the transparent electrode 67 changes, and the optical path length of the light RL transmitted through the liquid crystal layer 66 changes. Therefore, when the light RL passes through the liquid crystal layer 66 and exits from the liquid crystal layer 66, the phase of the light RL exiting from the liquid crystal layer 66 can be changed from the phase of the light RL entering the liquid crystal layer 66. As described above, since the plurality of electrodes 64 are arranged corresponding to each dot of the modulation unit, the voltage applied between the electrode 64 corresponding to each dot and the transparent electrode 67 is controlled. Thus, the orientation of the liquid crystal molecules 66a changes, and the amount of change in the phase of light emitted from each dot can be adjusted according to each dot. By adjusting the refractive index of the liquid crystal layer 66 in each dot in this manner, light emitted from the first phase modulation element 54R can be formed into a predetermined light distribution pattern, and the divergence angle and convergence angle of the light can be adjusted. It can be at a predetermined angle.
 本実施形態において、第1位相変調素子54Rは、各変調ユニットにおいて同じ配光パターンが形成されるように構成されている。上述のように、入射領域53A内には少なくとも1つの変調ユニットが含まれているため、赤色レーザ光が第1位相変調素子54Rに入射することで、所定の発散角又は収束角とされた所定の配光パターンの第1の光DLRが生成され得る。同様に、第2位相変調素子54Gは、各変調ユニットにおいて同じ配光パターンが形成されるように構成されており、第2位相変調素子54Gの入射領域内には少なくとも1つの変調ユニットが含まれている。そのため、緑色レーザ光が第2位相変調素子54Gに入射することで、所定の発散角又は収束角とされた所定の配光パターンの第2の光DLGが生成され得る。同様に、第3位相変調素子54Bは、各変調ユニットにおいて同じ配光パターンが形成されるように構成されており、第3位相変調素子54Bの入射領域内には少なくとも1つの変調ユニットが含まれている。そのため、青色レーザ光が第3位相変調素子54Bに入射することで、所定の発散角又は収束角とされた所定の配光パターンの第3の光DLBが生成され得る。 In the present embodiment, the first phase modulation element 54R is configured such that the same light distribution pattern is formed in each modulation unit. As described above, since at least one modulation unit is included in the incident area 53A, when the red laser light is incident on the first phase modulation element 54R, a predetermined divergence angle or a predetermined convergence angle is obtained. May be generated. Similarly, the second phase modulation element 54G is configured so that the same light distribution pattern is formed in each modulation unit, and at least one modulation unit is included in the incident area of the second phase modulation element 54G. ing. Therefore, when the green laser light is incident on the second phase modulation element 54G, the second light DLG having a predetermined light distribution pattern having a predetermined divergence angle or a predetermined convergence angle can be generated. Similarly, the third phase modulation element 54B is configured such that the same light distribution pattern is formed in each modulation unit, and at least one modulation unit is included in the incident area of the third phase modulation element 54B. ing. Therefore, when the blue laser light is incident on the third phase modulation element 54B, the third light DLB having a predetermined light distribution pattern having a predetermined divergence angle or a predetermined convergence angle can be generated.
 本実施形態の例では、位相変調素子54R,54G,54Bに印加される電圧は、上記光DLR,DLG,DLBの配光パターンがそれぞれ同一の形状になるように制御され、また、光DLR,DLG,DLBが位相変調素子54R,54G,54Bからそれぞれ異なる発散角で出射するように制御される。本実施形態の例では、光DLRの発散角が最も小さくされ、光DLBの発散角が最も大きくされる。また、本実施形態の例では、第2光学素子55sの出射面において光DLRの外縁が最も内側に位置し、光DLBの外縁が最も外側に位置するように、光DLR,DLG,DLBの発散角が調整される。 In the example of the present embodiment, the voltages applied to the phase modulation elements 54R, 54G, and 54B are controlled so that the light distribution patterns of the lights DLR, DLG, and DLB have the same shape, respectively. DLG and DLB are controlled to be emitted from the phase modulation elements 54R, 54G and 54B at different divergence angles. In the example of the present embodiment, the divergence angle of the light DLR is minimized, and the divergence angle of the light DLB is maximized. In the example of the present embodiment, the divergence of the light DLR, DLG, and DLB is set such that the outer edge of the light DLR is located at the innermost position and the outer edge of the light DLB is located at the outermost position on the emission surface of the second optical element 55s. The corner is adjusted.
 次に、車両用前照灯1における光の出射について説明する。具体的には、車両用前照灯1からロービームが出射される場合を説明する。 Next, the emission of light from the vehicle headlamp 1 will be described. Specifically, a case where a low beam is emitted from the vehicle headlamp 1 will be described.
 図2に示すように、第1光源52Rが不図示の電源から電力を供給されると、赤色レーザ光が上方に出射する。この赤色レーザ光は、第1光源52Rの上方に配置された第1コリメートレンズ53Rでコリメートされる。また、第2光源52Gが不図示の電源から電力を供給されると、緑色レーザ光が後方に出射する。この緑色レーザ光は、第2光源52Gの後方に配置された第2コリメートレンズ53Gでコリメートされる。また、第3光源52Bが不図示の電源から電力を供給されると、第3光源52Bから青色レーザ光が後方に出射する。この青色レーザ光は、第3光源52Bの後方に配置された第3コリメートレンズ53Bでコリメートされる。 As shown in FIG. 2, when the first light source 52R is supplied with power from a power supply (not shown), the red laser light is emitted upward. This red laser light is collimated by a first collimating lens 53R disposed above the first light source 52R. When the second light source 52G is supplied with power from a power supply (not shown), the green laser light is emitted backward. This green laser light is collimated by a second collimating lens 53G disposed behind the second light source 52G. When the third light source 52B is supplied with power from a power supply (not shown), the third light source 52B emits blue laser light backward. This blue laser light is collimated by a third collimating lens 53B disposed behind the third light source 52B.
 第1コリメートレンズ53Rの上方には、第1光源52Rから出射する赤色レーザ光の光軸に対して概ね45°傾いた状態で第1位相変調素子54Rが配置されている。したがって、この赤色レーザ光は、第1位相変調素子54Rに入射すると、所定の配光パターンの第1の光DLRとなり、この第1の光DLRが第1位相変調素子54Rから前方に出射する。 第 A first phase modulating element 54R is disposed above the first collimating lens 53R so as to be inclined at approximately 45 ° with respect to the optical axis of the red laser light emitted from the first light source 52R. Therefore, when this red laser light enters the first phase modulation element 54R, it becomes the first light DLR having a predetermined light distribution pattern, and the first light DLR is emitted forward from the first phase modulation element 54R.
 第2コリメートレンズ53Gの後方には、第2光源52Gから出射する緑色レーザ光の光軸に対して概ね45°傾いた状態で第2位相変調素子54Gが配置されている。したがって、この緑色レーザ光は、第2位相変調素子54Gに入射すると、所定の配光パターンの第2の光DLGとなり、この第2の光DLGが第2位相変調素子54Gから上方に出射する。 A second phase modulating element 54G is disposed behind the second collimating lens 53G in a state where the second phase modulating element 54G is inclined at approximately 45 ° with respect to the optical axis of the green laser light emitted from the second light source 52G. Therefore, when this green laser light is incident on the second phase modulation element 54G, it becomes a second light DLG having a predetermined light distribution pattern, and this second light DLG is emitted upward from the second phase modulation element 54G.
 第3コリメートレンズ53Bの後方には、第3光源52Bから出射する青色レーザ光の光軸に対して概ね45°傾いた状態で第3位相変調素子54Bが配置されている。したがって、この青色レーザ光は、第3位相変調素子54Bに入射すると、所定の配光パターンの第3の光DLBとなり、この第3の光DLBが第3位相変調素子54Bから上方に出射する。 A third phase modulating element 54B is disposed behind the third collimating lens 53B in a state of being inclined at approximately 45 ° with respect to the optical axis of the blue laser light emitted from the third light source 52B. Therefore, when this blue laser light enters the third phase modulation element 54B, it becomes the third light DLB having a predetermined light distribution pattern, and the third light DLB is emitted upward from the third phase modulation element 54B.
 なお、本実施形態の例では、光DLR,DLG,DLBの配光パターンの形状は、それぞれロービームの配光パターンの形状が反転されて相似的に縮小された形状とされる。 In the example of this embodiment, the shape of the light distribution pattern of the light DLR, DLG, and DLB is similar to the shape of the low beam light distribution pattern and is reduced in a similar manner.
 第1位相変調素子54Rの前方には、合成光学系55の第1光学素子55fが配置されている。上述のように、この第1光学素子55fは、赤色の光を透過するように構成されている。したがって、第1位相変調素子から出射する第1の光DLRは、第1光学素子55fを透過して前方に伝搬していく。また、第2位相変調素子54Gの上方には、第1光学素子55fが配置されている。上述のように、この第1光学素子55fは、緑色の光を反射するように構成されており、前後方向及び上下方向に対して略45°傾いているため、第2位相変調素子54Gから出射する第2の光DLGは、第1光学素子55fで反射して、前方に伝搬していく。すなわち、第1の光DLRと第2の光DLGとからなる第1合成光LS1が第2光学素子55sに向かって伝搬していく。 1A first optical element 55f of the combining optical system 55 is disposed in front of the first phase modulation element 54R. As described above, the first optical element 55f is configured to transmit red light. Therefore, the first light DLR emitted from the first phase modulation element passes through the first optical element 55f and propagates forward. In addition, a first optical element 55f is disposed above the second phase modulation element 54G. As described above, the first optical element 55f is configured to reflect green light, and is inclined by approximately 45 ° with respect to the front-back direction and the up-down direction. The second light DLG is reflected by the first optical element 55f and propagates forward. That is, the first combined light LS1 including the first light DLR and the second light DLG propagates toward the second optical element 55s.
 第1光学素子55fの前方には、合成光学系55の第2光学素子55sが配置されている。上述のように、第2光学素子55sは、赤色の光及び緑色の光を透過するように構成されている。したがって、第1合成光LS1は第2光学素子55sを透過する。また、第3位相変調素子54Bの上方には、第2光学素子55sが配置されている。上述のように、第2光学素子55sは、青色の光を反射するように構成されており、前後方向及び上下方向に対して略45°傾いているため、第3位相変調素子54Bから出射する第3の光DLBは、第2光学素子55sで反射して前方に伝搬していく。すなわち、第1の光DLR、第2の光DLG、及び第3の光DLBからなる第2合成光LS2がカバー59の開口59Hに向かって伝搬していく。 2A second optical element 55s of the combining optical system 55 is disposed in front of the first optical element 55f. As described above, the second optical element 55s is configured to transmit red light and green light. Therefore, the first combined light LS1 passes through the second optical element 55s. Further, a second optical element 55s is arranged above the third phase modulation element 54B. As described above, the second optical element 55s is configured to reflect blue light, and is inclined by approximately 45 ° with respect to the front-rear direction and the up-down direction, so that the second optical element 55s is emitted from the third phase modulation element 54B. The third light DLB is reflected by the second optical element 55s and propagates forward. That is, the second combined light LS2 including the first light DLR, the second light DLG, and the third light DLB propagates toward the opening 59H of the cover 59.
 本実施形態の例では、上述のように、第2光学素子55sの出射面において光DLRの外縁が最も内側に位置し、光DLBの外縁が最も外側に位置するように光DLR,DLG,DLBの発散角が調整される。また、上述のように、光DLRの発散角が最も小さくされ、第3の光DLBの発散角が最も大きくされる。そのため、第2光学素子55sから前方に伝搬する第2合成光LS2は、第1の光DLRの外縁が最も内側に位置し、第3の光DLBの外縁が最も外側に位置する合成光とされる。このような第2合成光LS2が、カバー59の開口59Hから出射して、カバー59の前方に配置された結像レンズ81に入射する。したがって、図5に示すように、結像レンズ81の入射面では、第1の光DLRの外縁が最も内側に位置し、第3の光DLBの外縁が最も外側に位置し得る。なお、図5は、結像レンズ81及び投影レンズ80の近傍を概略的に示す拡大図であり、理解を容易にするために、レンズを透過する光がレンズの幅方向の中央で屈折するように示されている。 In the example of the present embodiment, as described above, the light DLR, DLG, and DLB are arranged such that the outer edge of the light DLR is located on the innermost side and the outer edge of the light DLB is located on the outermost side on the emission surface of the second optical element 55s. Is adjusted. In addition, as described above, the divergence angle of the light DLR is minimized, and the divergence angle of the third light DLB is maximized. Therefore, the second combined light LS2 propagating forward from the second optical element 55s is a combined light in which the outer edge of the first light DLR is located on the innermost side and the outer edge of the third light DLB is located on the outermost side. You. The second combined light LS2 exits from the opening 59H of the cover 59 and enters the imaging lens 81 disposed in front of the cover 59. Therefore, as shown in FIG. 5, on the incident surface of the imaging lens 81, the outer edge of the first light DLR may be located on the innermost side, and the outer edge of the third light DLB may be located on the outermost side. FIG. 5 is an enlarged view schematically showing the vicinity of the imaging lens 81 and the projection lens 80. For easy understanding, light transmitted through the lens is refracted at the center in the width direction of the lens. Is shown in
 ところで、レンズに入射する光は、波長の短い光ほど大きく屈折する傾向がある。したがって、仮に、第2合成光LS2において、第1の光DLR、第2の光DLG、及び第3の光DLBのそれぞれの外縁が重なっている場合、波長の最も短い第3の光DLBが最も大きく屈折して結像レンズ81に最も近い位置に結像し、波長の最も長い第1の光DLRが最も小さく屈折して結像レンズ81から最も遠い位置に結像し得る。 By the way, the light incident on the lens tends to be refracted more as the wavelength is shorter. Therefore, if the outer edges of the first light DLR, the second light DLG, and the third light DLB overlap each other in the second combined light LS2, the third light DLB having the shortest wavelength is the most light. The first light DLR having the longest wavelength can be refracted the least and form an image at a position farthest from the imaging lens 81 by refracting greatly and forming an image at a position closest to the imaging lens 81.
 しかし、上述のように、本実施形態では、結像レンズ81の入射面において、第1の光DLRの外縁は最も内側に位置しており、第3の光DLBの外縁は最も外側に位置している。したがって、このような第2合成光LS2が結像レンズ81を透過することで、第3の光DLBは、結像レンズ81から最も遠い結像位置CPB、すなわち、投影レンズ80に最も近い結像位置CPBに結像し得る。一方、第1の光DLRは、結像レンズ81に最も近い結像位置CPR、すなわち、投影レンズ80から最も遠い結像位置CPRに結像し得る。また、第2の光DLGは、結像位置CPBと結像位置CPRとの間の結像位置CPGに結像し得る。 However, as described above, in the present embodiment, the outer edge of the first light DLR is located on the innermost side, and the outer edge of the third light DLB is located on the outermost side on the incident surface of the imaging lens 81. ing. Therefore, by transmitting the second combined light LS2 through the imaging lens 81, the third light DLB is focused on the imaging position CPB farthest from the imaging lens 81, that is, the imaging light closest to the projection lens 80. An image can be formed at the position CPB. On the other hand, the first light DLR can form an image at an imaging position CPR closest to the imaging lens 81, that is, an imaging position CPR farthest from the projection lens 80. In addition, the second light DLG can form an image at an image forming position CPG between the image forming position CPB and the image forming position CPR.
 結像位置CPB,CPG,CPRに結像した光DLB,DLG,DLRは、結像位置CPB,CPG,CPRからそれぞれ発散しながら投影レンズ80に入射する。したがって、投影レンズ80に入射する光DLB,DLG,DLRの配光パターンの形状は、結像する前の形状から反転しており、ロービームの配光パターンの形状が相似的に縮小した形状とされる。 (4) Lights DLB, DLG, and DLR imaged at the image forming positions CPB, CPG, and CPR enter the projection lens 80 while diverging from the image forming positions CPB, CPG, and CPR, respectively. Therefore, the shape of the light distribution pattern of the light beams DLB, DLG, and DLR incident on the projection lens 80 is inverted from the shape before the image is formed, and the shape of the light distribution pattern of the low beam is reduced to a similar shape. You.
 上述のように、第3の光DLBは投影レンズ80の入射面80Aに最も近い結像位置CPBに結像され、第1の光DLRは投影レンズ80の入射面80Aから最も遠い結像位置CPBに結像される。そのため、本実施形態では、第3の光DLBの入射面80Aへの入射角が最も大きくなり得、第1の光DLRの入射面80Aへの入射角が最も小さくなり得る。すなわち、最も大きな入射角で入射面80Aに入射した第3の光DLBが投影レンズ80で最も大きく屈折し、最も小さな入射角で入射面80Aに入射した第1の光DLRが投影レンズ80で最も小さく屈折する。その結果、投影レンズ80から出射する第2合成光LS2において、光DLR,DLG,DLBのそれぞれの外縁が平行に近くなり得る。 As described above, the third light DLB is imaged at the imaging position CPB closest to the incident surface 80A of the projection lens 80, and the first light DLR is imaged at the imaging position CPB farthest from the incident surface 80A of the projection lens 80. Is imaged. Therefore, in the present embodiment, the incident angle of the third light DLB on the incident surface 80A can be the largest, and the incident angle of the first light DLR on the incident surface 80A can be the smallest. That is, the third light DLB incident on the incident surface 80A at the largest incident angle is refracted most by the projection lens 80, and the first light DLR incident on the incident surface 80A at the smallest incident angle is most reflected by the projection lens 80. Refracts small. As a result, in the second combined light LS2 emitted from the projection lens 80, the respective outer edges of the lights DLR, DLG, and DLB may be nearly parallel.
 光DLR,DLG,DLBの外縁が平行に近くされた第2合成光LS2が車両用前照灯1から前方に伝搬していくことで、図6に示すようなロービームLが形成され得る。なお、図6において、配光パターンは太線で示されており、直線Sは水平線を示す。また、領域LA1は最も光強度が大きい領域であり、領域LA2、領域LA3の順に光強度が小さくなる。 The low beam L as shown in FIG. 6 can be formed by propagating the second combined light LS2 in which the outer edges of the lights DLR, DLG, and DLB are nearly parallel from the headlight 1 for a vehicle. In FIG. 6, the light distribution pattern is indicated by a thick line, and the straight line S indicates a horizontal line. The area LA1 is the area having the highest light intensity, and the light intensity decreases in the order of the area LA2 and the area LA3.
 以上のように、本実施形態における車両用前照灯1によれば、灯具ユニット20で生成された光の発散角を投影レンズ80で調整して当該光を出射できるため、ロービームLを形成することが容易になり得る。 As described above, according to the vehicle headlamp 1 of the present embodiment, the divergence angle of the light generated by the lamp unit 20 can be adjusted by the projection lens 80 and the light can be emitted, so that the low beam L is formed. That can be easy.
 また、本実施形態における車両用前照灯1によれば、位相変調素子54R,54G,54Bで所定の配光パターンとされた光のうち、波長の短い光ほど投影レンズ80に近い位置で結像される。このように波長の短い光ほど投影レンズ80に近い位置で結像されることで、第3の光DLBの入射面80Aへの入射角が最も大きくなり得、第1の光DLRの入射面80Aへの入射角が最も小さくなり得る。その結果、投影レンズ80から出射する第2合成光LS2において、波長の異なる光の外縁が互いに平行に近くなり、投影レンズ80から出射する合成光の外縁における色にじみが抑制され得る。すなわち、本実施形態によれば、投影レンズ80を用いた場合でも外縁の色にじみが抑制されたロービームLを生成し得る。 Further, according to the vehicle headlamp 1 of the present embodiment, of the light having a predetermined light distribution pattern formed by the phase modulation elements 54R, 54G, and 54B, light having a shorter wavelength is formed at a position closer to the projection lens 80. Imaged. As the light having a shorter wavelength is imaged at a position closer to the projection lens 80 as described above, the incident angle of the third light DLB on the incident surface 80A can be maximized, and the incident surface 80A of the first light DLR can be formed. Can be the smallest. As a result, in the second combined light LS2 emitted from the projection lens 80, the outer edges of the lights having different wavelengths become almost parallel to each other, so that the color blur at the outer edge of the combined light emitted from the projection lens 80 can be suppressed. That is, according to the present embodiment, even when the projection lens 80 is used, the low beam L in which color fringing at the outer edge is suppressed can be generated.
 なお、投影レンズ80から出射する波長の異なる光の外縁が互いに平行である場合、上記色にじみが効果的に抑制され得る。例えば、上記結像位置CPRが投影レンズ80における赤色光の焦点に一致し、上記結像位置CPGが投影レンズ80における緑色光の焦点に一致し、上記結像位置CPBが投影レンズ80における青色光の焦点に一致する場合、投影レンズ80から出射する光DLR,DLG,DLBの外縁がそれぞれ平行になる。また、波長の異なる光の外縁が互いに重なる場合、上記色にじみがより効果的に抑制され得る。 In the case where the outer edges of the lights having different wavelengths emitted from the projection lens 80 are parallel to each other, the color bleeding can be effectively suppressed. For example, the imaging position CPR matches the focus of red light on the projection lens 80, the imaging position CPG matches the focus of green light on the projection lens 80, and the imaging position CPB matches the blue light on the projection lens 80. , The outer edges of the light beams DLR, DLG, and DLB emitted from the projection lens 80 are parallel to each other. In addition, when the outer edges of lights having different wavelengths overlap with each other, the color bleeding can be more effectively suppressed.
 また、本実施形態では、位相変調素子54R,54G,54Bによって光DLR,DLG,DLBの配光パターンの形状がそれぞれ同一とされるため、光DLR,DLG,DLBの外縁が平行になり易く、また、光DLR,DLG,DLBの外縁が互いに重なり易い。したがって、上記色にじみが効果的に抑制され得る。 Further, in the present embodiment, since the shapes of the light distribution patterns of the lights DLR, DLG, and DLB are made identical by the phase modulation elements 54R, 54G, and 54B, the outer edges of the lights DLR, DLG, and DLB tend to be parallel. Further, the outer edges of the light DLR, DLG, and DLB are likely to overlap each other. Therefore, the color blur can be effectively suppressed.
 また、本実施形態では、位相変調素子としてLCOSを用いているため、位相変調素子に印加される電圧を調整することで、所望の配光パターンとされた光DLR,DLG,DLBを容易に生成し得る。また、光の結像位置を適宜調整し得る。 In this embodiment, since the LCOS is used as the phase modulation element, the light DLR, DLG, and DLB having a desired light distribution pattern can be easily generated by adjusting the voltage applied to the phase modulation element. I can do it. Further, the light imaging position can be appropriately adjusted.
 また、本実施形態では、それぞれ波長の異なる光を出射する第1光源52R、第2光源52G、及び第3光源52Bを備えるため、所望の色の光を生成し得る。 In addition, in the present embodiment, since the first light source 52R, the second light source 52G, and the third light source 52B that emit light of different wavelengths are provided, light of a desired color can be generated.
(第2実施形態)
 次に、本発明の第2実施形態について説明する。なお、第1実施形態と同一又は同等の構成要素について、特に説明する場合を除き、同一の参照符号を付して重複する説明を省略する。
(2nd Embodiment)
Next, a second embodiment of the present invention will be described. It should be noted that components that are the same as or equivalent to those of the first embodiment are denoted by the same reference numerals unless otherwise specified, and duplicate descriptions are omitted.
 図7は、本発明の第2実施形態における車両用前照灯1の灯具ユニット20を図2と同様に示す図である。図7に示すように、第2実施形態における灯具ユニット20は、位相変調素子54R,54G,54Bの近傍に、それぞれ第1結像レンズ81R、第2結像レンズ81G、及び第3結像レンズ81Bが配置されている点において、1つの結像レンズ81が灯具ユニット20の外側に配置される第1実施形態における灯具ユニット20と相違する。以下、この点について説明する。 FIG. 7 is a diagram showing a lamp unit 20 of the vehicle headlamp 1 according to the second embodiment of the present invention, similarly to FIG. As shown in FIG. 7, the lamp unit 20 in the second embodiment includes a first imaging lens 81R, a second imaging lens 81G, and a third imaging lens near the phase modulation elements 54R, 54G, and 54B, respectively. This embodiment differs from the lamp unit 20 in the first embodiment in which one imaging lens 81 is disposed outside the lamp unit 20 in that the 81B is disposed. Hereinafter, this point will be described.
 図7に示すように、第2実施形態における灯具ユニット20は、前後方向において第1位相変調素子54Rと第1光学素子55fとの間に配置された第1結像レンズ81Rと、上下方向において第2位相変調素子54Gと第1光学素子55fとの間に配置された第2結像レンズ81Gと、上下方向において第3位相変調素子54Bと第2光学素子55sとの間に配置された第3結像レンズ81Bと、を備える。すなわち、本実施形態における灯具ユニット20は、それぞれの位相変調素子54R,54G,54B毎に、すなわち位相変調素子54R,54G,54Bと1対1対応で結像レンズが配置された構成とされる。 As shown in FIG. 7, the lamp unit 20 according to the second embodiment includes a first imaging lens 81R disposed between the first phase modulation element 54R and the first optical element 55f in the front-back direction, and a vertical imaging direction. The second imaging lens 81G disposed between the second phase modulation element 54G and the first optical element 55f, and the second imaging lens 81G disposed between the third phase modulation element 54B and the second optical element 55s in the vertical direction. And three imaging lenses 81B. That is, the lamp unit 20 in the present embodiment has a configuration in which an imaging lens is arranged for each of the phase modulation elements 54R, 54G, and 54B, that is, in one-to-one correspondence with the phase modulation elements 54R, 54G, and 54B. .
 結像レンズ81R,81G,81Bは、それぞれ入射面及び出射面が凸状に形成されたレンズとされる。位相変調素子54R,54G,54Bから出射する光DLR,DLG,DLBは、それぞれ結像レンズ81R,81G,81Bを透過することで所定の収束角で収束しながら伝搬していく。本実施形態の例では、光DLRの収束角が最も大きくされ、光DLBの収束角が最も小さくされる。また、第2光学素子55sの出射面において光DLRの外縁が最も内側に位置し、光DLBの外縁が最も外側に位置するように、光DLR,DLG,DLBの収束角が調整される。 (4) The imaging lenses 81R, 81G, and 81B are lenses each having an incident surface and an exit surface formed in a convex shape. Lights DLR, DLG, and DLB emitted from the phase modulation elements 54R, 54G, and 54B propagate through the imaging lenses 81R, 81G, and 81B while converging at predetermined convergence angles. In the example of the present embodiment, the convergence angle of the light DLR is maximized, and the convergence angle of the light DLB is minimized. In addition, the convergence angles of the light DLR, DLG, and DLB are adjusted such that the outer edge of the light DLR is located on the innermost side and the outer edge of the light DLB is located on the outermost side on the emission surface of the second optical element 55s.
 次に本実施形態の灯具ユニット20における光の出射について説明する。具体的には、車両用前照灯1からロービームが出射される場合を説明する。 Next, light emission from the lamp unit 20 of the present embodiment will be described. Specifically, a case where a low beam is emitted from the vehicle headlamp 1 will be described.
 第1コリメートレンズ53Rから上方に出射した赤色レーザ光が第1位相変調素子54Rに入射すると、所定の配光パターンの第1の光DLRが生成される。この第1の光DLRは、第1位相変調素子54Rで反射して前方に伝搬していく。また、第2コリメートレンズ53Gから後方に出射された緑色レーザ光が第2位相変調素子54Gに入射すると、所定の配光パターンの第2の光DLGが生成される。この第2の光DLGは、第2位相変調素子54Gで反射して上方に伝搬していく。また、第3コリメートレンズ53Bから後方に出射された青色レーザ光が第3位相変調素子54Bに入射すると、所定の配光パターンの第3の光DLBが生成される。この第3の光DLBは、第3位相変調素子54Bで反射して上方に伝搬していく。これらの光DLR,DLG,DLBの配光パターンのそれぞれは、第1実施形態と同様に、ロービームの配光パターンの形状を反転させて相似的に縮小した形状とされる。また、本実施形態において、第3位相変調素子54Bの出射面における第3の光DLBの配光パターンと、第1位相変調素子54Rの出射面における第1の光DLRの配光パターンと、第2位相変調素子54Gの出射面における第2の光DLGの配光パターンとは、それぞれの同一の大きさとされる。 (4) When the red laser light emitted upward from the first collimating lens 53R enters the first phase modulation element 54R, a first light DLR having a predetermined light distribution pattern is generated. The first light DLR is reflected by the first phase modulation element 54R and propagates forward. Further, when the green laser light emitted backward from the second collimating lens 53G enters the second phase modulation element 54G, the second light DLG having a predetermined light distribution pattern is generated. This second light DLG is reflected by the second phase modulation element 54G and propagates upward. Further, when the blue laser light emitted backward from the third collimating lens 53B is incident on the third phase modulation element 54B, the third light DLB having a predetermined light distribution pattern is generated. The third light DLB is reflected by the third phase modulation element 54B and propagates upward. As in the first embodiment, each of the light distribution patterns of these lights DLR, DLG, and DLB has a similar shape that is obtained by inverting the shape of the low beam light distribution pattern and reducing the same. Further, in the present embodiment, the light distribution pattern of the third light DLB on the emission surface of the third phase modulation element 54B, the light distribution pattern of the first light DLR on the emission surface of the first phase modulation element 54R, The light distribution pattern of the second light DLG on the emission surface of the two-phase modulation element 54G has the same size.
 第1の光DLRは、第1位相変調素子54Rの前方に配置された第1結像レンズ81Rに入射し、第1結像レンズ81Rを透過することで、所定の収束角で収束しながら前方に伝搬していく。第2の光DLGは、第2位相変調素子54Gの上方に配置された第2結像レンズ81Gに入射し、第2結像レンズ81Gを透過することで、所定の収束角で収束しながら上方に伝搬していく。第3の光DLBは、第3位相変調素子54Bの上方に配置された第3結像レンズ81Bに入射し、第3結像レンズ81Bを透過することで、所定の収束角で収束しながら上方に伝搬していく。 The first light DLR is incident on the first imaging lens 81R disposed in front of the first phase modulation element 54R, and is transmitted through the first imaging lens 81R, so that the first light DLR converges at a predetermined convergence angle and moves forward. Propagation to. The second light DLG is incident on the second imaging lens 81G disposed above the second phase modulation element 54G and passes through the second imaging lens 81G, so that the second light DLG converges at a predetermined convergence angle and Propagation to. The third light DLB is incident on the third imaging lens 81B disposed above the third phase modulation element 54B, passes through the third imaging lens 81B, and converges at a predetermined convergent angle. Propagation to.
 第1実施形態と同様に、第1結像レンズ81Rから出射する第1の光DLRは、合成光学系55の第1光学素子55fを透過する。また、第2結像レンズ81Gから出射する第2の光DLGは、第1光学素子55fで前方に反射する。これにより、第1合成光LS1が生成される。 同 様 Similar to the first embodiment, the first light DLR emitted from the first imaging lens 81R passes through the first optical element 55f of the combining optical system 55. Further, the second light DLG emitted from the second imaging lens 81G is reflected forward by the first optical element 55f. Thereby, the first combined light LS1 is generated.
 第1実施形態と同様に、第1光学素子55fから出射する第1合成光LS1は、第2光学素子55sを透過する。また、第3結像レンズ81Bから出射する第3の光DLBは、第2光学素子55sで前方に反射する。これにより、第2合成光LS2が生成される。 同 様 Similar to the first embodiment, the first combined light LS1 emitted from the first optical element 55f passes through the second optical element 55s. Further, the third light DLB emitted from the third imaging lens 81B is reflected forward by the second optical element 55s. Thereby, the second combined light LS2 is generated.
 本実施形態の例では、第2光学素子55sの出射面において光DLRの外縁が最も内側に位置し、光DLBの外縁が最も外側に位置するように光DLR,DLG,DLBの収束角が調整される。また、光DLRの収束角が最も大きくされ、第3の光DLBの収束角が最も小さくされる。したがって、第2光学素子55sから前方に伝搬する第2合成光LS2は、第1の光DLRの外縁が最も内側に位置し、第3の光DLBの外縁が最も外側に位置する合成光とされる。このような第2合成光LS2が、カバー59の開口59Hから出射する。 In the example of the present embodiment, the convergence angles of the light DLR, DLG, and DLB are adjusted such that the outer edge of the light DLR is located on the innermost side and the outer edge of the light DLB is located on the outermost side on the exit surface of the second optical element 55s. Is done. Further, the convergence angle of the light DLR is maximized, and the convergence angle of the third light DLB is minimized. Therefore, the second combined light LS2 propagating forward from the second optical element 55s is a combined light in which the outer edge of the first light DLR is located at the innermost position and the outer edge of the third light DLB is located at the outermost position. You. Such a second combined light LS2 is emitted from the opening 59H of the cover 59.
 このような第2合成光LS2が、カバー59の開口59Hから収束しながらカバー59の外側に出射すると、図8に示すように、外縁が最も内側に位置する第1の光DLRが投影レンズ80から最も遠い結像位置CPRに結像し、外縁が最も外側に位置する第3の光DLBが投影レンズ80から最も近い結像位置CPBに結像する。このため、第1実施形態と同様に、第3の光DLBの入射面80Aへの入射角が最も大きくなり得、第1の光DLRの入射面80Aへの入射角が最も小さくなり得る。したがって、第2合成光LS2が投影レンズ80を透過することで光DLR,DLG,DLBの外縁がそれぞれ平行に近くなり、投影レンズ80から出射する合成光LS2の外縁における色にじみが抑制され得る。なお、図8は、投影レンズ80の近傍を概略的に示す拡大図であり、理解を容易にするために、レンズを透過する光がレンズの幅方向の中央で屈折するように示されている。 When the second combined light LS2 is emitted to the outside of the cover 59 while being converged from the opening 59H of the cover 59, as shown in FIG. , And the third light DLB whose outer edge is located at the outermost position forms an image at an imaging position CPB closest to the projection lens 80. Therefore, similarly to the first embodiment, the incident angle of the third light DLB on the incident surface 80A can be the largest, and the incident angle of the first light DLR on the incident surface 80A can be the smallest. Therefore, when the second combined light LS2 passes through the projection lens 80, the outer edges of the lights DLR, DLG, and DLB become nearly parallel to each other, and color blur at the outer edge of the combined light LS2 emitted from the projection lens 80 can be suppressed. FIG. 8 is an enlarged view schematically showing the vicinity of the projection lens 80. For easy understanding, light transmitted through the lens is shown to be refracted at the center in the width direction of the lens. .
 本実施形態によれば、第1実施形態と異なり、結像レンズ81R,81G,81Bが光源52R,52G,52Bに1対1対応で設けられる。このように結像レンズを1対1対応で設けることで、各光源から出射する光の収束角をそれぞれ別個に調整できる。そのため、波長の短い光の結像位置ほど投影レンズ80に近くすることが、第1実施形態と比べて容易になり得る。 According to the present embodiment, unlike the first embodiment, the imaging lenses 81R, 81G, and 81B are provided in one-to-one correspondence with the light sources 52R, 52G, and 52B. By providing the imaging lenses in a one-to-one correspondence in this manner, the convergence angles of the lights emitted from the respective light sources can be adjusted individually. Therefore, it can be easier to make the image forming position of light having a shorter wavelength closer to the projection lens 80 as compared with the first embodiment.
 次に、本発明の第2の態様について、第3実施形態及び第4実施形態に係る車両用前照灯を例として説明する。 Next, a second embodiment of the present invention will be described with reference to the vehicle headlights according to the third and fourth embodiments as examples.
(第3実施形態)
 まず、第2の態様における第3実施形態について説明する。なお、第1実施形態と同一又は同等の構成要素について、特に説明する場合を除き、同一の参照符号を付して重複する説明を省略する。
(Third embodiment)
First, a third embodiment of the second aspect will be described. It should be noted that components that are the same as or equivalent to those of the first embodiment are denoted by the same reference numerals unless otherwise specified, and duplicate descriptions are omitted.
 本実施形態の車両用前照灯1の縦断面は図1と同様に表される。また、本実施形態の車両用前照灯1の灯具ユニット20は図2と同様に表される。また、本実施形態の位相変調素子54R,54G,54Bは図3と同様に表される。また、本実施形態の位相変調素子54R,54G,54Bの厚さ方向の断面は図4と同様に表される。 縦 A vertical cross section of the vehicle headlamp 1 of the present embodiment is represented in the same manner as FIG. The lamp unit 20 of the vehicle headlamp 1 according to the present embodiment is represented in the same manner as in FIG. Further, the phase modulation elements 54R, 54G, 54B of the present embodiment are represented in the same manner as in FIG. In addition, cross sections in the thickness direction of the phase modulation elements 54R, 54G, and 54B of the present embodiment are represented in the same manner as in FIG.
 また、本実施形態の例では、投影レンズ80は、入射面及び出射面が凸状に形成されたレンズとされ、焦点が当該投影レンズ80と結像レンズ81との間に位置するように形成されている。本実施形態では、投影レンズ80の焦点と結像レンズ81の焦点とが同一位置になるように投影レンズ80及び結像レンズ81が配置される。 Further, in the example of the present embodiment, the projection lens 80 is a lens in which the entrance surface and the exit surface are formed in a convex shape, and is formed so that the focal point is located between the projection lens 80 and the imaging lens 81. Have been. In the present embodiment, the projection lens 80 and the imaging lens 81 are arranged such that the focal point of the projection lens 80 and the focal point of the imaging lens 81 are at the same position.
 このような構成により、第1実施形態と同様に、本実施形態の光DLR,DLG,DLBの配光パターンは同一形状とされる。また、図2に示すように、第2光学素子55sの出射面において光DLRの外縁が最も内側に位置し、光DLBの外縁が最も外側に位置するように光DLR,DLG,DLBの発散角が調整される。したがって、第2光学素子55sの出射面では、光DLRの配光パターンと、光DLRの配光パターンが相似的に拡大された光DLGの配光パターンと、光DLGが相似的に拡大された光DLBの配光パターンとが重畳された状態になっている。このような状態とされた第2合成光LS2において、上述のように、光DLRの発散角が最も小さくされ、第3の光DLBの発散角が最も大きくされる。そのため、第2光学素子55sから出射する第2合成光LS2は、第1の光DLRの外縁が最も内側に位置し、第3の光DLBの外縁が最も外側に位置する合成光とされる。このような第2合成光LS2が、カバー59の開口59Hから出射して、カバー59の前方に配置された結像レンズ81に入射する。 With such a configuration, similarly to the first embodiment, the light distribution patterns of the light DLR, DLG, and DLB of the present embodiment have the same shape. Further, as shown in FIG. 2, the divergence angles of the light DLR, DLG, and DLB are such that the outer edge of the light DLR is located on the innermost side and the outer edge of the light DLB is located on the outermost side on the exit surface of the second optical element 55s. Is adjusted. Therefore, on the exit surface of the second optical element 55s, the light distribution pattern of the light DLR, the light distribution pattern of the light DLG in which the light distribution pattern of the light DLR is similarly enlarged, and the light DLG are similarly enlarged. The light distribution pattern of the light DLB is superimposed. In the second combined light LS2 in such a state, as described above, the divergence angle of the light DLR is minimized, and the divergence angle of the third light DLB is maximized. Therefore, the second combined light LS2 emitted from the second optical element 55s is a combined light in which the outer edge of the first light DLR is located on the innermost side and the outer edge of the third light DLB is located on the outermost side. The second combined light LS2 exits from the opening 59H of the cover 59 and enters the imaging lens 81 disposed in front of the cover 59.
 したがって、図9に示すように、結像レンズ81の入射面では、第1の光DLRの外縁が最も内側に位置し、第3の光DLBの外縁が最も外側に位置し得る。このため、結像レンズ81から出射する第2合成光LS2は、第1の光DLRの外縁が最も内側に位置し、第3の光DLBの外縁が最も外側に位置した状態で結像レンズ81の焦点に向かって収束する。なお、図9は、結像レンズ81及び投影レンズ80の近傍を概略的に示す拡大図であり、理解を容易にするために、レンズを透過する光がレンズの幅方向の中央で屈折するように示されている。 Therefore, as shown in FIG. 9, on the incident surface of the imaging lens 81, the outer edge of the first light DLR may be located on the innermost side, and the outer edge of the third light DLB may be located on the outermost side. For this reason, the second combined light LS2 emitted from the imaging lens 81 is formed with the outer edge of the first light DLR positioned at the innermost position and the outer edge of the third light DLB positioned at the outermost position. Converge towards the focal point of FIG. 9 is an enlarged view schematically showing the vicinity of the imaging lens 81 and the projection lens 80. For easy understanding, light transmitted through the lens is refracted at the center in the width direction of the lens. Is shown in
 上述のように、及び、図9に示すように、本実施形態における投影レンズ80は、該投影レンズ80と結像レンズ81との間に焦点Fが位置するように形成されている。本実施形態の例では、上述のように、投影レンズ80の焦点Fと結像レンズ81の焦点とは同一位置とされる。なお、この焦点Fを通り投影レンズ80の光軸方向に垂直な面を「焦点面SF」と呼ぶ。 As described above and as shown in FIG. 9, the projection lens 80 in the present embodiment is formed so that the focal point F is located between the projection lens 80 and the imaging lens 81. In the example of the present embodiment, as described above, the focal point F of the projection lens 80 and the focal point of the imaging lens 81 are at the same position. A plane passing through the focal point F and perpendicular to the optical axis direction of the projection lens 80 is referred to as a “focal plane SF”.
 図10は、焦点面SFの焦点Fの近傍を概略的に示す図である。第2合成光LS2は、第1の光DLRの外縁が最も内側に位置し、第3の光DLBの外縁が最も外側に位置した状態で焦点Fに向かって収束するため、図10に示すように、焦点面SFに形成される光DLR,DLG,DLBの像のうち、波長の短い光DLBの像が最も大きくなり、波長の最も長い光DLRの像が最も小さくなる。また、上述のように、光DLR,DLG,DLBの配光パターンの形状はロービームの配光パターンの形状を反転させた形状とされるため、焦点面SFに形成される光DLR,DLG,DLBの像も、ロービームの配光パターンの形状を反転させた形状となる。 FIG. 10 is a diagram schematically showing the vicinity of the focal point F on the focal plane SF. The second combined light LS2 converges toward the focal point F in a state where the outer edge of the first light DLR is located at the innermost position and the outer edge of the third light DLB is located at the outermost position. In addition, among the images of the light DLR, DLG, and DLB formed on the focal plane SF, the image of the light DLB having the shortest wavelength is the largest, and the image of the light DLR having the longest wavelength is the smallest. Further, as described above, since the shape of the light distribution pattern of the lights DLR, DLG, and DLB is formed by inverting the shape of the light distribution pattern of the low beam, the lights DLR, DLG, and DLB formed on the focal plane SF. Also has a shape obtained by inverting the shape of the low beam light distribution pattern.
 図9に示すように、第2合成光LS2は、上記焦点面SFを通過した後、第1の光DLRの外縁が最も内側に位置し、第3の光DLBの外縁が最も外側に位置した状態で発散しながら投影レンズ80に向かって伝搬していく。そのため、投影レンズ80の入射面80Aでは、第1の光DLRの外縁は最も内側に位置し得、第3の光DLBの外縁が最も外側に位置し得る。また、第2合成光LS2が焦点Fを通ることで、光DLB,DLG,DLRの配光パターンの形状が、焦点Fを通る前の形状から反転し、入射面80Aでは、ロービームの配光パターンの形状が相似的に縮小した形状となる。 As shown in FIG. 9, after passing through the focal plane SF, the second combined light LS2 has the outer edge of the first light DLR located at the innermost position, and the outer edge of the third light DLB located at the outermost position. The light propagates toward the projection lens 80 while diverging in the state. Therefore, on the incident surface 80A of the projection lens 80, the outer edge of the first light DLR may be located on the innermost side, and the outer edge of the third light DLB may be located on the outermost side. Further, when the second combined light LS2 passes through the focal point F, the shape of the light distribution pattern of the lights DLB, DLG, and DLR is inverted from the shape before passing through the focal point F, and the light distribution pattern of the low beam is incident on the incident surface 80A. Is similarly reduced.
 上述のように、光DLBが投影レンズ80の入射面80Aの最も外側に入射し、光DLRが入射面80Aの最も内側に入射する。すなわち、光DLBの入射面80Aへの入射角が最も大きくなり得、光DLRの入射面80Aへの入射角が最も小さくなり得る。レンズでは波長の短い光ほど大きく屈折する傾向があるため、本実施形態では、最も大きな入射角で投影レンズ80に入射した光DLBが投影レンズ80で最も大きく屈折し得、最も小さな入射角で投影レンズ80に入射した光DLRが最も小さく屈折し得る。したがって、投影レンズ80から出射する第2合成光LS2において、光DLR,DLG,DLBのそれぞれの外縁が平行に近くなり得る。 As described above, the light DLB is incident on the outermost surface of the incident surface 80A of the projection lens 80, and the light DLR is incident on the innermost surface of the incident surface 80A. That is, the incident angle of the light DLB on the incident surface 80A can be the largest, and the incident angle of the light DLR on the incident surface 80A can be the smallest. In the lens, the light DLB incident on the projection lens 80 at the largest incident angle can be refracted the most by the projection lens 80, and the light DLB incident on the projection lens 80 can be projected at the smallest incident angle. The light DLR incident on the lens 80 can be refracted the least. Therefore, in the second combined light LS2 emitted from the projection lens 80, the outer edges of the lights DLR, DLG, and DLB may be nearly parallel.
 光DLR,DLG,DLBの外縁が平行に近くされた第2合成光LS2が車両用前照灯1から前方に伝搬していくことで、図6に示すようなロービームLが形成され得る。 The low beam L as shown in FIG. 6 can be formed by propagating the second combined light LS2 in which the outer edges of the lights DLR, DLG, and DLB are nearly parallel from the headlight 1 for a vehicle.
 以上のように、本実施形態における車両用前照灯1によれば、灯具ユニット20で生成された光の発散角を投影レンズ80で調整して当該光を出射できるため、ロービームLを形成することが容易になり得る。 As described above, according to the vehicle headlamp 1 of the present embodiment, the divergence angle of the light generated by the lamp unit 20 can be adjusted by the projection lens 80 and the light can be emitted, so that the low beam L is formed. That can be easy.
 また、本実施形態における車両用前照灯1によれば、焦点面SFに形成される光DLR,DLG,DLBの像のうち、光DLRの像が最も小さく形成され、光DLBの像が最も大きく形成されるため、光DLRが投影レンズ80の入射面80Aの最も内側に入射し得、波長の最も長い光DLBが入射面80Aの最も外側に入射し得る。すなわち、波長の最も短い光DLBの入射面80Aへの入射角が最も大きくなり得、波長の最も長い光DLRの入射面80Aへの入射角が最も小さくなり得る。このため、投影レンズ80から出射する第2合成光LS2において、光DLR,DLG,DLBの外縁が互いに平行に近くなり、投影レンズ80から出射する合成光の外縁における色にじみが抑制され得る。したがって、本実施形態によれば、投影レンズ80を用いた場合でも外縁の色にじみが抑制されたロービームLなどを生成し得る。なお、波長の異なる光の外縁が互いに平行である場合、上記色にじみが効果的に抑制され得る。また、波長の異なる光の外縁が互いに重なる場合、上記色にじみがより効果的に抑制され得る。 Further, according to the vehicle headlamp 1 of the present embodiment, among the images of the light DLR, DLG, and DLB formed on the focal plane SF, the image of the light DLR is formed to be the smallest, and the image of the light DLB is formed the most. Due to the large size, the light DLR can be incident on the innermost side of the incident surface 80A of the projection lens 80, and the light DLB having the longest wavelength can be incident on the outermost side of the incident surface 80A. That is, the incident angle of the light DLB having the shortest wavelength on the incident surface 80A can be the largest, and the incident angle of the light DLR having the longest wavelength on the incident surface 80A can be the smallest. For this reason, in the second combined light LS2 emitted from the projection lens 80, the outer edges of the lights DLR, DLG, and DLB are nearly parallel to each other, and color blurring at the outer edge of the combined light emitted from the projection lens 80 can be suppressed. Therefore, according to the present embodiment, even when the projection lens 80 is used, it is possible to generate the low beam L and the like in which color fringing at the outer edge is suppressed. When the outer edges of the lights having different wavelengths are parallel to each other, the color bleeding can be effectively suppressed. In addition, when the outer edges of lights having different wavelengths overlap with each other, the color bleeding can be more effectively suppressed.
 また、本実施形態では、位相変調素子としてLCOSを用いているため、位相変調素子に印加される電圧を調整することで、所望の配光パターンとされた光DLR,DLG,DLBを容易に生成し得る。また、焦点面SFにおける光の像の大きさを適宜調整し得る。 In this embodiment, since the LCOS is used as the phase modulation element, the light DLR, DLG, and DLB having a desired light distribution pattern can be easily generated by adjusting the voltage applied to the phase modulation element. I can do it. Further, the size of the light image on the focal plane SF can be appropriately adjusted.
 また、本実施形態では、それぞれ波長の異なる光を出射する第1光源52R、第2光源52G、及び第3光源52Bを備えるため、所望の色の光を生成し得る。 In addition, in the present embodiment, since the first light source 52R, the second light source 52G, and the third light source 52B that emit light of different wavelengths are provided, light of a desired color can be generated.
(第4実施形態)
 次に、第2の態様における第4実施形態について説明する。なお、第1実施形態と同一又は同等の構成要素について、特に説明する場合を除き、同一の参照符号を付して重複する説明を省略する。
(Fourth embodiment)
Next, a fourth embodiment of the second aspect will be described. It should be noted that components that are the same as or equivalent to those of the first embodiment are denoted by the same reference numerals unless otherwise specified, and duplicate descriptions are omitted.
 本実施形態の車両用前照灯1の縦断面は図7と同様に表される。本実施形態の例では、図7に示すように、光DLRの収束角が最も大きくされ、光DLBの収束角が最も小さくされる。また、第2光学素子55sの出射面において光DLRの外縁が最も内側に位置し、光DLBの外縁が最も外側に位置するように、光DLR,DLG,DLBの収束角が調整される。また、本実施形態では、光DLR,DLG,DLBがそれぞれ投影レンズ80の焦点に収束するように収束角が調整される。 縦 A longitudinal section of the vehicle headlamp 1 of the present embodiment is represented in the same manner as FIG. In the example of the present embodiment, as shown in FIG. 7, the convergence angle of the light DLR is maximized, and the convergence angle of the light DLB is minimized. In addition, the convergence angles of the light DLR, DLG, and DLB are adjusted such that the outer edge of the light DLR is located on the innermost side and the outer edge of the light DLB is located on the outermost side on the emission surface of the second optical element 55s. In the present embodiment, the convergence angles are adjusted so that the lights DLR, DLG, and DLB converge on the focal point of the projection lens 80, respectively.
 したがって、第2光学素子55sから前方に伝搬する第2合成光LS2は、第1の光DLRの外縁が最も内側に位置し、第3の光DLBの外縁が最も外側に位置する合成光とされる。このような第2合成光LS2が、カバー59の開口59Hから収束しながら出射する。 Therefore, the second combined light LS2 propagating forward from the second optical element 55s is a combined light in which the outer edge of the first light DLR is located at the innermost position and the outer edge of the third light DLB is located at the outermost position. You. Such second combined light LS2 is emitted from the opening 59H of the cover 59 while converging.
 図11に示すように、開口59Hから出射する合成光LS2において、第1の光DLRの外縁が最も内側に位置し、第3の光DLBの外縁が最も外側に位置している。このため、第3実施形態と同様に、焦点面SFに形成される光DLR,DLG,DLBの像のうち、波長の短い光DLBの像が最も大きくなり得、波長の最も長い光DLRの像が最も小さくなり得る。このため、第3実施形態と同様に、第3の光DLBの入射面80Aへの入射角が最も大きくなり得、第1の光DLRの入射面80Aへの入射角が最も小さくなり得る。したがって、第2合成光LS2が投影レンズ80を透過することで光DLR,DLG,DLBの外縁がそれぞれ平行に近くなり、投影レンズ80から出射する合成光LS2の外縁における色にじみが抑制され得る。 As shown in FIG. 11, in the combined light LS2 emitted from the opening 59H, the outer edge of the first light DLR is located at the innermost position, and the outer edge of the third light DLB is located at the outermost position. Therefore, as in the third embodiment, among the images of the light DLR, DLG, and DLB formed on the focal plane SF, the image of the light DLB having the shortest wavelength can be the largest, and the image of the light DLR having the longest wavelength can be obtained. May be the smallest. Therefore, similarly to the third embodiment, the incident angle of the third light DLB on the incident surface 80A can be the largest, and the incident angle of the first light DLR on the incident surface 80A can be the smallest. Therefore, when the second combined light LS2 passes through the projection lens 80, the outer edges of the lights DLR, DLG, and DLB become nearly parallel, respectively, and color blur at the outer edge of the combined light LS2 emitted from the projection lens 80 can be suppressed.
 本実施形態によれば、第3実施形態と異なり、結像レンズ81R,81G,81Bが光源52R,52G,52Bに1対1対応で設けられる。このように結像レンズを1対1対応で設けることで、各光源から出射する光の収束角をそれぞれ別個に調整できる。そのため、焦点面SFに形成される光の像のうち、波長の短い光の像ほど大きくすることが、第3実施形態と比べて容易になり得る。 According to the present embodiment, unlike the third embodiment, the imaging lenses 81R, 81G, and 81B are provided in one-to-one correspondence with the light sources 52R, 52G, and 52B. By providing the imaging lenses in a one-to-one correspondence in this manner, the convergence angles of the lights emitted from the respective light sources can be adjusted individually. Therefore, of the light images formed on the focal plane SF, it can be easier to increase the size of the light image having a shorter wavelength as compared with the third embodiment.
(第5実施形態)
 次に、本発明の第5実施形態について説明する。なお、第1実施形態と同一又は同等の構成要素について、特に説明する場合を除き、同一の参照符号を付して重複する説明を省略する。
(Fifth embodiment)
Next, a fifth embodiment of the present invention will be described. It should be noted that components that are the same as or equivalent to those of the first embodiment are denoted by the same reference numerals unless otherwise specified, and duplicate descriptions are omitted.
 図12は、本発明の第5実施形態における車両用前照灯1の灯具ユニット20を図2と同様に示す図である。図12に示すように、第5実施形態における灯具ユニット20は、位相変調素子が透過型の位相変調素子から構成されている点において、第1実施形態における灯具ユニット20と相違する。以下、この点について説明する。 FIG. 12 is a view showing a lamp unit 20 of the vehicle headlamp 1 according to the fifth embodiment of the present invention, similarly to FIG. As shown in FIG. 12, the lamp unit 20 according to the fifth embodiment is different from the lamp unit 20 according to the first embodiment in that the phase modulation element is configured by a transmission-type phase modulation element. Hereinafter, this point will be described.
 図12に示すように、本実施形態における灯具ユニット20は、上下方向に整列して配置された第1光源52R、第2光源52G、及び第3光源52Bと、これら光源52R,52G,52Bに対応して前方にそれぞれ配置された第1コリメートレンズ53R、第2コリメートレンズ53G、及び第3コリメートレンズ53Bと、コリメートレンズ53R,53G,53Bに対応して前方にそれぞれ配置された第1位相変調素子54R、第2位相変調素子54G、及び第3位相変調素子54Bと、合成光学系55と、第1反射ミラー58Gと、第2反射ミラー58Bと、を主な構成要素として備える。本実施形態において、合成光学系55の第1光学素子55fと第2光学素子55sとの傾斜方向は互いに反対方向とされる。また、本実施形態において、第1光源52Rは上下方向の中央近傍に配置され、第2光源52Gは第1光源52Rの上方に配置され、第3光源52Bは第1光源52Rの下方に配置される。 As shown in FIG. 12, the lamp unit 20 according to the present embodiment includes a first light source 52R, a second light source 52G, and a third light source 52B that are arranged in the vertical direction, and the light sources 52R, 52G, and 52B. A first collimating lens 53R, a second collimating lens 53G, and a third collimating lens 53B respectively correspondingly disposed on the front side, and a first phase modulation disposed respectively forwardly corresponding to the collimating lenses 53R, 53G, 53B. An element 54R, a second phase modulation element 54G, a third phase modulation element 54B, a combining optical system 55, a first reflection mirror 58G, and a second reflection mirror 58B are provided as main components. In the present embodiment, the inclination directions of the first optical element 55f and the second optical element 55s of the combining optical system 55 are opposite to each other. In the present embodiment, the first light source 52R is disposed near the center in the vertical direction, the second light source 52G is disposed above the first light source 52R, and the third light source 52B is disposed below the first light source 52R. You.
 第1反射ミラー58Gは、前後方向及び上下方向に対して第1光学素子55fと同一方向に略45°傾けた状態で、第2位相変調素子54Gの前方かつ第1光学素子55fの上方に配置される。第2反射ミラー58Bは、前後方向及び上下方向に対して第2光学素子55sと同一方向に略45°傾けた状態で、第1光学素子55fの前方かつ第3位相変調素子54Bの上方に配置される。 The first reflection mirror 58G is disposed in front of the second phase modulation element 54G and above the first optical element 55f in a state in which the first reflection mirror 58G is inclined by approximately 45 ° in the same direction as the first optical element 55f with respect to the front-rear direction and the vertical direction. Is done. The second reflection mirror 58B is disposed in front of the first optical element 55f and above the third phase modulation element 54B in a state where the second reflection mirror 58B is inclined at approximately 45 ° in the same direction as the second optical element 55s with respect to the front-rear direction and the vertical direction. Is done.
 本実施形態において、位相変調素子54R,54G,54Bは、第1実施形態における位相変調素子54R,54G,54Bと異なり、透過型のLCOSとされる。これら位相変調素子54R,54G、54Bは、3つの光源52R,52G,52Bに対応して、上下方向に所定の間隔を空けて配置されている。 In the present embodiment, the phase modulation elements 54R, 54G, 54B are transmission LCOSs, unlike the phase modulation elements 54R, 54G, 54B in the first embodiment. These phase modulation elements 54R, 54G, 54B are arranged at predetermined intervals in the vertical direction corresponding to the three light sources 52R, 52G, 52B.
 すなわち、第1コリメートレンズ53Rから出射する赤色レーザ光が第1位相変調素子54Rを透過することで、赤色レーザ光の位相が変化し、所定の配光パターンとされた第1の光DLRが生成される。また、第2コリメートレンズ53Gから出射する緑色レーザ光が第2位相変調素子54Gを透過することで、緑色レーザ光の位相が変化し、所定の配光パターンとされた第2の光DLGが生成される。また、第3コリメートレンズ53Bから出射する青色レーザ光が第3位相変調素子54Bを透過することで、青色レーザ光の位相が変化し、所定の配光パターンとされた第3の光DLBが生成される。 That is, when the red laser light emitted from the first collimating lens 53R passes through the first phase modulation element 54R, the phase of the red laser light changes, and the first light DLR having a predetermined light distribution pattern is generated. Is done. Further, the green laser light emitted from the second collimating lens 53G passes through the second phase modulation element 54G, so that the phase of the green laser light changes, and the second light DLG having a predetermined light distribution pattern is generated. Is done. Further, the blue laser light emitted from the third collimating lens 53B passes through the third phase modulation element 54B, so that the phase of the blue laser light changes, and the third light DLB having a predetermined light distribution pattern is generated. Is done.
 本実施形態の例では、第1実施形態と同様に、光DLR,DLG,DLBの発散角は、光DLR、光DLG、光DLBの順で大きくされる。また、光DLR,DLG,DLBの発散角は、それぞれ、第2光学素子55sの出射面において光DLRの外縁を最も内側に位置させ、光DLBの外縁を最も外側に位置させる角度とされる。 In the example of the present embodiment, as in the first embodiment, the divergence angles of the light DLR, DLG, and DLB are increased in the order of the light DLR, the light DLG, and the light DLB. The divergence angles of the lights DLR, DLG, and DLB are angles at which the outer edge of the light DLR is located at the innermost position and the outer edge of the light DLB is located at the outermost position on the emission surface of the second optical element 55s.
 次に本実施形態の灯具ユニット20における光の出射について説明する。 Next, light emission from the lamp unit 20 of the present embodiment will be described.
 第1光源52Rから赤色レーザ光が出射すると、この赤色レーザ光は、第1コリメートレンズ53Rでコリメートされた後、第1位相変調素子54Rの入射領域に入射する。この赤色レーザ光は位相変調素子54Rを透過し、所定の配光パターンとされた第1の光DLRが生成される。この第1の光DLRは、最も小さい発散角で第1位相変調素子54Rから前方に出射する。 When red laser light is emitted from the first light source 52R, the red laser light is collimated by the first collimating lens 53R and then enters the incident area of the first phase modulation element 54R. This red laser light is transmitted through the phase modulation element 54R to generate a first light DLR having a predetermined light distribution pattern. The first light DLR is emitted forward from the first phase modulation element 54R at the smallest divergence angle.
 第2光源52Gから緑色レーザ光が出射すると、この緑色レーザ光は、第2コリメートレンズ53Gでコリメートされた後、位相変調素子54Gの入射領域に入射する。この緑色レーザ光は位相変調素子54Gを透過し、所定の配光パターンとされた第2の光DLGが生成される。この第2の光DLGは、第1の光DLRよりも大きな発散角で第2位相変調素子54Gから前方に出射する。 (4) When green laser light is emitted from the second light source 52G, this green laser light is collimated by the second collimating lens 53G and then enters the incident area of the phase modulation element 54G. This green laser light is transmitted through the phase modulation element 54G, and a second light DLG having a predetermined light distribution pattern is generated. The second light DLG is emitted forward from the second phase modulation element 54G at a larger divergence angle than the first light DLR.
 第3光源52Bから青色レーザ光が出射すると、この青色レーザ光は、第3コリメートレンズ53Bでコリメートされた後、位相変調素子54Bの入射領域に入射する。この青色レーザ光は位相変調素子54Bを透過し、所定の配光パターンとされた第3の光DLBが生成される。この第3の光DLBは、第2の光DLGよりも大きな発散角で第3位相変調素子54Bから前方に出射する。 (4) When blue laser light is emitted from the third light source 52B, this blue laser light is collimated by the third collimating lens 53B and then enters the incident area of the phase modulation element 54B. The blue laser light passes through the phase modulation element 54B, and generates a third light DLB having a predetermined light distribution pattern. The third light DLB is emitted forward from the third phase modulation element 54B at a larger divergence angle than the second light DLG.
 第2の光DLGの出射方向前方には、第1反射ミラー58Gが前後方向及び上下方向に略45°傾けて配置されている。このため、第2の光DLGは、第1反射ミラー58Gで反射し、第1反射ミラー58Gから下方に出射する。 に は A first reflection mirror 58G is disposed at an angle of approximately 45 ° in the front-rear direction and the vertical direction in front of the emission direction of the second light DLG. For this reason, the second light DLG is reflected by the first reflection mirror 58G and exits downward from the first reflection mirror 58G.
 第1の光DLRの出射方向前方には、合成光学系55の第1光学素子55fが配置されている。したがって、第1の光DLRは、第1実施形態と同様に、第1光学素子55fを透過し、前方に伝搬していく。また、この第1光学素子55fは、第1反射ミラー58Gと同一方向に傾けられた状態で、第1反射ミラー58Gの下方に配置されている。したがって、第1反射ミラー58Gから出射する第2の光DLGは、第1光学素子55fで反射し、前方に伝搬していく。これにより、第1合成光LS1が生成され、この第1合成光LS1が合成光学系55の第2光学素子55sに向かって伝搬していく。本実施形態の例では、上述のように、第2の光DLGの発散角が第1の光DLRの発散角よりも大きくされることで、第1合成光LS1において、第2の光DLGの外縁が第1の光DLRの外縁のやや外側に位置した状態とされる。 1A first optical element 55f of the combining optical system 55 is disposed in front of the emission direction of the first light DLR. Therefore, like the first embodiment, the first light DLR transmits through the first optical element 55f and propagates forward. The first optical element 55f is disposed below the first reflecting mirror 58G in a state where the first optical element 55f is inclined in the same direction as the first reflecting mirror 58G. Therefore, the second light DLG emitted from the first reflection mirror 58G is reflected by the first optical element 55f and propagates forward. Thereby, the first combined light LS1 is generated, and the first combined light LS1 propagates toward the second optical element 55s of the combined optical system 55. In the example of the present embodiment, as described above, the divergence angle of the second light DLG is set to be larger than the divergence angle of the first light DLR, so that the first combined light LS1 has the divergence angle of the second light DLG. The outer edge is located slightly outside the outer edge of the first light DLR.
 第3の光DLBの出射方向前方には、第2反射ミラー58Bが前後方向及び上下方向に略45°傾けて配置されている。この第2反射ミラー58Bの傾斜方向は、第1反射ミラー58Gの傾斜方向と逆になっている。このため、第3の光DLBは、第2反射ミラー58Bで反射し、第2反射ミラー58Bから上方に出射する。 前方 A second reflection mirror 58B is disposed at an angle of approximately 45 ° in the front-rear direction and the vertical direction in front of the emission direction of the third light DLB. The inclination direction of the second reflection mirror 58B is opposite to the inclination direction of the first reflection mirror 58G. Therefore, the third light DLB is reflected by the second reflection mirror 58B and is emitted upward from the second reflection mirror 58B.
 第1合成光LS1の出射方向前方には、合成光学系55の第2光学素子55sが配置されている。したがって、第1合成光LS1は、第1実施形態と同様に、第2光学素子55sを透過し、前方に伝搬していく。また、この第2光学素子55sは、第2反射ミラー58Bと同一方向に傾けられた状態で、第2反射ミラー58Bの上方に配置されている。したがって、第2反射ミラー58Bから出射する第3の光DLBは、第2光学素子55sで反射し、前方に伝搬していく。これにより、第2合成光LS2が生成される。この第2合成光LS2は、第1実施形態と同様に、カバー59の開口59Hを通過して結像レンズ81に向かって伝搬していく。本実施形態の例では、上述のように、第3の光DLBの発散角が第2の光DLGの発散角よりも大きくされることで、第2合成光LS2において、第3の光DLBの外縁が最も外側に位置し、第1の光DLRの外縁が最も内側に位置した状態とされる。 に は A second optical element 55s of the combining optical system 55 is disposed in front of the emission direction of the first combined light LS1. Therefore, like the first embodiment, the first combined light LS1 passes through the second optical element 55s and propagates forward. The second optical element 55s is disposed above the second reflection mirror 58B in a state where the second optical element 55s is inclined in the same direction as the second reflection mirror 58B. Therefore, the third light DLB emitted from the second reflection mirror 58B is reflected by the second optical element 55s and propagates forward. Thereby, the second combined light LS2 is generated. The second combined light LS2 propagates through the opening 59H of the cover 59 toward the imaging lens 81 as in the first embodiment. In the example of the present embodiment, as described above, the divergence angle of the third light DLB is set to be larger than the divergence angle of the second light DLG. The outer edge is located on the outermost side, and the outer edge of the first light DLR is located on the innermost side.
 上記第1の態様においては、図5に示すように、このような第2合成光LS2が結像レンズ81で結像される結果、第1の光DLRが投影レンズ80に最も近い結像位置CPBに結像し、第3の光が投影レンズ80から最も遠い結像位置CPRに結像する。このため、第1実施形態と同様に、投影レンズ80から出射する第2合成光LS2において、光DLR,DLG,DLBの外縁がそれぞれ平行に近くなり得る。そのため、光の外縁における色にじみが抑制され得る。 In the first embodiment, as shown in FIG. 5, as a result of forming such a second combined light LS <b> 2 by the imaging lens 81, the first light DLR is focused on the imaging position closest to the projection lens 80. An image is formed on the CPB, and the third light is formed on the image forming position CPR farthest from the projection lens 80. Therefore, similarly to the first embodiment, in the second combined light LS2 emitted from the projection lens 80, the outer edges of the lights DLR, DLG, and DLB can be nearly parallel. Therefore, color bleeding at the outer edge of light can be suppressed.
 上記第2の態様においては、図9に示すように、このような第2合成光LS2が結像レンズ81で収束される結果、図10に示すように、焦点面SFに形成される第1の光DLRの像が最も小さくなり得、第3の光DLBの像が最も大きくなり得る。このため、第3実施形態と同様に、投影レンズ80から出射する第2合成光LS2において、光DLR,DLG,DLBの外縁がそれぞれ平行に近くなり得る。そのため、光の外縁における色にじみが抑制され得る。 In the second embodiment, as shown in FIG. 9, the second combined light LS2 is converged by the imaging lens 81 as shown in FIG. 9, and as a result, as shown in FIG. May be the smallest, and the image of the third light DLB may be the largest. Therefore, similarly to the third embodiment, in the second combined light LS2 emitted from the projection lens 80, the outer edges of the lights DLR, DLG, and DLB may be nearly parallel. Therefore, color bleeding at the outer edge of light can be suppressed.
 以上のように、本発明の第5実施形態によれば、透過型の位相変調素子を用いて第1実施形態及び第3実施形態と同様の効果を実現し得る。 As described above, according to the fifth embodiment of the present invention, the same effects as those of the first and third embodiments can be realized using the transmission type phase modulation element.
(第6実施形態)
 次に、本発明の第6実施形態について説明する。なお、第1実施形態と同一又は同等の構成要素について、特に説明する場合を除き、同一の参照符号を付して重複する説明を省略する。
(Sixth embodiment)
Next, a sixth embodiment of the present invention will be described. It should be noted that components that are the same as or equivalent to those of the first embodiment are denoted by the same reference numerals unless otherwise specified, and duplicate descriptions are omitted.
 図13は、本発明の第4実施形態における車両用前照灯1の灯具ユニット20を図2と同様に示す図である。なお、図13では、理解を容易にするために、灯具ユニット20のヒートシンク30、カバー59等が省略されている。図13に示すように、第4実施形態における灯具ユニット20は、光学系ユニット50の位相変調素子の数が1つである点において、光源ごとに位相変調素子が設けられて3つの位相変調素子54R,54G,54Bから光学系ユニット50が構成される第1から第3実施形態における灯具ユニット20と相違する。以下、第4実施形態における灯具ユニット20の構成について説明する。 FIG. 13 is a view showing a lamp unit 20 of the vehicle headlamp 1 according to the fourth embodiment of the present invention, similarly to FIG. In FIG. 13, the heat sink 30, the cover 59, and the like of the lamp unit 20 are omitted for easy understanding. As shown in FIG. 13, the lamp unit 20 according to the fourth embodiment is different from the optical system unit 50 in that the number of phase modulation elements is one, and three phase modulation elements are provided for each light source. This is different from the lamp unit 20 in the first to third embodiments in which the optical system unit 50 is constituted by 54R, 54G, 54B. Hereinafter, the configuration of the lamp unit 20 according to the fourth embodiment will be described.
 本実施形態において、第1光源52Rは赤色レーザ光を上方に出射し、第2光源52Gは緑色レーザ光を後方に出射し、第3光源52Bは青色レーザ光を後方に出射する。これら3つの光源52R,52G,52Bは、不図示の制御部に接続されている。この制御部は、光源52Rが赤色レーザ光を出射している間は光源52G,52Bからの光を非出射とし、光源52Gが緑色レーザ光を出射している間は光源52R,52Bからの光を非出射とし、光源52Bが青色レーザ光を出射している間は光源52R,52Gからの光を非出射とするように、光源52R,52G,52Bの動作を制御する。すなわち、本実施形態における光源52R,52G,52Bは、上記制御部の制御に基づいて、所定の周期で各光源からの光の出射を切り替える。 In the present embodiment, the first light source 52R emits red laser light upward, the second light source 52G emits green laser light backward, and the third light source 52B emits blue laser light backward. These three light sources 52R, 52G, 52B are connected to a control unit (not shown). This control unit does not emit light from the light sources 52G and 52B while the light source 52R emits red laser light, and emits light from the light sources 52R and 52B while the light source 52G emits green laser light. Are not emitted, and the operation of the light sources 52R, 52G, 52B is controlled such that the light from the light sources 52R, 52G is not emitted while the light source 52B emits the blue laser light. That is, the light sources 52R, 52G, and 52B in the present embodiment switch the light emission from each light source at a predetermined cycle based on the control of the control unit.
 なお、他の実施形態と同様に、光源52R,52G,52Bから出射したレーザ光は、コリメートレンズ53R,53G,53Bでコリメートされる。 As in the other embodiments, the laser beams emitted from the light sources 52R, 52G, 52B are collimated by the collimating lenses 53R, 53G, 53B.
 コリメートレンズ53Rの上方かつコリメートレンズ53G,53Bの後方には、合成光学系55が設けられている。すなわち、コリメートレンズ53Rの上方かつコリメートレンズ53Gの後方に第1光学素子55fが設けられ、第1光学素子55fの上方かつコリメートレンズ53Bの後方に第2光学素子55sが設けられる。これら光学素子55f,55sは、前後方向及び上下方向において略45°傾いて配置される。 合成 A combining optical system 55 is provided above the collimating lens 53R and behind the collimating lenses 53G and 53B. That is, the first optical element 55f is provided above the collimator lens 53R and behind the collimator lens 53G, and the second optical element 55s is provided above the first optical element 55f and behind the collimator lens 53B. These optical elements 55f and 55s are arranged at an angle of approximately 45 ° in the front-rear direction and the vertical direction.
 第2光学素子55sの上方には、1つの位相変調素子54Sが設けられている。この位相変調素子54Sは、合成光学系55を通過した赤色レーザ光、緑色レーザ光、及び青色レーザ光が入射可能な位置に配置される。本実施形態において、位相変調素子54Sは、位相変調素子54Sの入射面のうち同じ領域に赤色レーザ光、緑色レーザ光、及び青色レーザ光が入射するように配置される。なお、必ずしも赤色レーザ光、緑色レーザ光、青色レーザ光が上記入射面の同じ領域に入射する必要はない。本実施形態における位相変調素子54Sは、例えば反射型のLCOSとされる。この位相変調素子54Sは、前後方向及び上下方向において略45°傾いて配置されており、その傾き方向は光学素子55f,55sと反対方向とされる。 位相 One phase modulation element 54S is provided above the second optical element 55s. The phase modulation element 54S is disposed at a position where the red laser light, the green laser light, and the blue laser light that have passed through the combining optical system 55 can enter. In the present embodiment, the phase modulation element 54S is arranged such that the red laser light, the green laser light, and the blue laser light are incident on the same region on the incident surface of the phase modulation element 54S. Note that the red laser light, the green laser light, and the blue laser light do not necessarily need to be incident on the same area on the incident surface. The phase modulation element 54S in the present embodiment is, for example, a reflection type LCOS. The phase modulation element 54S is arranged to be inclined at approximately 45 ° in the front-rear direction and the vertical direction, and the inclination direction is opposite to the optical elements 55f and 55s.
 また、本実施形態において、位相変調素子54Sに印加される電圧は、入射する光の波長に応じて位相変調素子54Sの回折パターンが変化するように調整される。具体的に、上記電圧は、位相変調素子54Sから出射する赤色レーザ光、緑色レーザ光、及び青色レーザ光の配光パターンがそれぞれ同一形状になるように制御されるとともに、位相変調素子54Sから出射する赤色レーザ光の収束角が最も大きくなるように、かつ、位相変調素子54Sから出射する青色レーザ光の収束角が最も小さくなるように制御される。 In addition, in the present embodiment, the voltage applied to the phase modulation element 54S is adjusted so that the diffraction pattern of the phase modulation element 54S changes according to the wavelength of the incident light. Specifically, the voltage is controlled so that the light distribution patterns of the red laser light, the green laser light, and the blue laser light emitted from the phase modulation element 54S have the same shape. The convergence angle of the red laser light is controlled to be the largest, and the convergence angle of the blue laser light emitted from the phase modulation element 54S is minimized.
 次に、本実施形態の灯具ユニット20における光の出射について説明する。 Next, light emission from the lamp unit 20 of the present embodiment will be described.
 上述のように、本実施形態における光源52R,52G,52Bは、上記制御部の制御に基づいて、所定の周期で各光源からの光の出射を切り替える。例えば、まず、第1光源52Rから赤色レーザ光が所定時間にわたって出射する。この間、光源52G,52Bからのレーザ光は非出射とされる。この赤色レーザ光は、コリメートレンズ53Rでコリメートされた後、合成光学系55を透過して位相変調素子54Sに入射する。なお、上述のように、本実施形態における赤色レーザ光、緑色レーザ光、及び青色レーザ光は、位相変調素子54Sの入射面における同じ領域に入射する。 As described above, the light sources 52R, 52G, and 52B in the present embodiment switch the emission of light from each light source at a predetermined cycle based on the control of the control unit. For example, first, a red laser beam is emitted from the first light source 52R for a predetermined time. During this time, the laser beams from the light sources 52G and 52B are not emitted. After being collimated by the collimator lens 53R, the red laser light passes through the combining optical system 55 and enters the phase modulation element 54S. Note that, as described above, the red laser light, the green laser light, and the blue laser light in the present embodiment are incident on the same region on the incident surface of the phase modulation element 54S.
 位相変調素子54Sに赤色レーザ光が入射すると、この赤色レーザ光に対応する回折パターンになるように位相変調素子54Sに印加される電圧が調整される。すなわち、上述のように、所定の形状の配光パターンになるように、かつ、赤色レーザ光の収束角が最も大きくなるように、位相変調素子54Sの回折パターンが変化する。この回折パターンで回折した赤色レーザ光が第1の光DLRとなって前方に伝搬する。 (4) When red laser light is incident on the phase modulation element 54S, the voltage applied to the phase modulation element 54S is adjusted so that a diffraction pattern corresponding to the red laser light is obtained. That is, as described above, the diffraction pattern of the phase modulation element 54S changes so that the light distribution pattern has a predetermined shape and the convergence angle of the red laser light is maximized. The red laser light diffracted by this diffraction pattern becomes the first light DLR and propagates forward.
 所定の時間が経過すると、光源52Rからの光が非出射の状態になり、光源52Rから光が出射する代わりに、光源52Gから緑色レーザ光が所定の時間にわたって出射する。この緑色レーザ光は、コリメートレンズ53Gでコリメートされた後、合成光学系55を透過して、位相変調素子54Sに入射する。 (4) After a lapse of a predetermined time, the light from the light source 52R is in a non-emission state, and instead of the light from the light source 52R, the green laser light is emitted from the light source 52G for a predetermined time. The green laser light is collimated by the collimator lens 53G, passes through the combining optical system 55, and enters the phase modulation element 54S.
 位相変調素子54Sに緑色レーザ光が入射すると、この緑色レーザ光に対応する回折パターンになるように位相変調素子54Sに印加される電圧が調整される。すなわち、上述のように、第1の光DLRと同一の形状の配光パターンになるように、かつ、緑色レーザ光の収束角が赤色レーザ光よりも小さな収束角になるように、位相変調素子54Sの回折パターンが変化する。この回折パターンで回折した緑色レーザ光が第2の光DLGとなって前方に伝搬する。 (4) When green laser light is incident on the phase modulation element 54S, the voltage applied to the phase modulation element 54S is adjusted so that a diffraction pattern corresponding to the green laser light is obtained. That is, as described above, the phase modulation element is formed so that the light distribution pattern has the same shape as the first light DLR, and the convergence angle of the green laser light is smaller than that of the red laser light. The 54S diffraction pattern changes. The green laser light diffracted by this diffraction pattern becomes the second light DLG and propagates forward.
 さらに所定の時間が経過すると、光源52Gからの光が非出射の状態になり、光源52Gから光が出射する代わりに、光源52Bから青色レーザ光が所定の時間にわたって出射する。この青色レーザ光は、コリメートレンズ53Bでコリメートされた後、合成光学系55を透過して、位相変調素子54Sに入射する。 (4) After a further predetermined time, the light from the light source 52G is in a non-emission state, and instead of the light from the light source 52G, the blue laser light is emitted from the light source 52B for a predetermined time. After being collimated by the collimator lens 53B, this blue laser light passes through the combining optical system 55 and enters the phase modulation element 54S.
 位相変調素子54Sに青色レーザ光が入射すると、この青色レーザ光に対応する回折パターンになるように位相変調素子54Sに印加される電圧が調整される。すなわち、上述のように、光DLR,DLGと同一の形状の配光パターンになるように、かつ、青色レーザ光の収束角が最も小さな収束角になるように、位相変調素子54Sの回折パターンが変化する。この回折パターンで回折した青色レーザ光が第3の光DLBとなって前方に伝搬する。 (4) When blue laser light enters the phase modulation element 54S, the voltage applied to the phase modulation element 54S is adjusted so that a diffraction pattern corresponding to the blue laser light is obtained. That is, as described above, the diffraction pattern of the phase modulation element 54S is changed so that the light distribution pattern has the same shape as the light DLR and DLG and the convergence angle of the blue laser light is the smallest convergence angle. Change. The blue laser light diffracted by this diffraction pattern becomes the third light DLB and propagates forward.
 以上のような光の出射サイクルが所定の周期で繰り返される。 The light emission cycle as described above is repeated at a predetermined cycle.
 上述のように、位相変調素子54Sから出射する第1の光DLRの収束角が最も大きくされ、また、位相変調素子54Sから出射する第3の光DLBの収束角が最も小さくされるため、位相変調素子54Sから出射する光DLR,DLG,DLBのそれぞれの外縁のうち、光DLRの外縁は最も内側に位置し、光DLBの外縁は最も外側に位置することとなる。上記第1の態様においては、このような光DLR,DLG,DLBがそれぞれカバー59の開口59Hから収束しながらカバー59の外側に出射すると、図8に示すように、外縁が最も内側に位置する第1の光DLRが投影レンズ80から最も遠い結像位置CPRに結像し、外縁が最も外側に位置する第3の光DLBが投影レンズ80から最も近い結像位置CPBに結像する。このため、第1実施形態と同様に、第3の光DLBの入射面80Aへの入射角が最も大きくなり得、第1の光DLRの入射面80Aへの入射角が最も小さくなり得る。したがって、光DLR,DLG,DLBがそれぞれ投影レンズ80を透過することで、光DLR,DLG,DLBの外縁がそれぞれ平行に近くなり得る。 As described above, the convergence angle of the first light DLR emitted from the phase modulation element 54S is maximized, and the convergence angle of the third light DLB emitted from the phase modulation element 54S is minimized. Outer edges of the light DLR, DLG, and DLB emitted from the modulation element 54S, the outer edge of the light DLR is located at the innermost position, and the outer edge of the light DLB is located at the outermost position. In the first embodiment, when such lights DLR, DLG, and DLB exit the cover 59 while converging from the openings 59H of the cover 59, the outer edge is located at the innermost side as shown in FIG. The first light DLR forms an image at an imaging position CPR farthest from the projection lens 80, and the third light DLB having the outer edge positioned at the outermost forms an image at an imaging position CPB closest to the projection lens 80. Therefore, similarly to the first embodiment, the incident angle of the third light DLB on the incident surface 80A can be the largest, and the incident angle of the first light DLR on the incident surface 80A can be the smallest. Therefore, the light DLR, DLG, and DLB each pass through the projection lens 80, so that the outer edges of the light DLR, DLG, and DLB can be nearly parallel.
 上述のように、位相変調素子54Sから出射する第1の光DLRの収束角が最も大きくされ、また、位相変調素子54Sから出射する第3の光DLBの収束角が最も小さくされるため、位相変調素子54Sから出射する光DLR,DLG,DLBのそれぞれの外縁のうち、光DLRの外縁は最も内側に位置し、光DLBの外縁は最も外側に位置することとなる。上記第2の態様においては、上述のように、光源52R,52G,52Bは所定の周期で光の出射を切り替えるため、光DLR,DLG,DLBは、光学系ユニット50の外部に交互に出射し、焦点Fに交互に結像する。上述のように、光DLR,DLG,DLBの配光パターンの形状は同一であり、光DLRの外縁が最も内側に位置し、光DLBの外縁が最も外側に位置するため、上記焦点面SFに形成される光DLR,DLG,DLBの像は、光DLRの像の外縁が最も内側に、光DLRの像の外縁が最も外側になるように重畳する(図10参照)。 As described above, the convergence angle of the first light DLR emitted from the phase modulation element 54S is maximized, and the convergence angle of the third light DLB emitted from the phase modulation element 54S is minimized. Outer edges of the light DLR, DLG, and DLB emitted from the modulation element 54S, the outer edge of the light DLR is located at the innermost position, and the outer edge of the light DLB is located at the outermost position. In the second aspect, as described above, since the light sources 52R, 52G, and 52B switch the light emission at a predetermined cycle, the lights DLR, DLG, and DLB are alternately emitted to the outside of the optical system unit 50. , An image is formed alternately at the focal point F. As described above, the shapes of the light distribution patterns of the light DLR, DLG, and DLB are the same, and the outer edge of the light DLR is located at the innermost position, and the outer edge of the light DLB is located at the outermost position. The formed images of the light DLR, DLG, and DLB are superimposed such that the outer edge of the image of the light DLR is the innermost and the outer edge of the image of the light DLR is the outermost (see FIG. 10).
 このため、第3から第5実施形態と同様に、投影レンズ80の入射面80Aへの第3の光DLBの入射角が最も大きくなり得、入射面80Aへの第1の光DLRの入射角が最も小さくなり得る。したがって、光DLR,DLG,DLBが投影レンズ80を透過することで光DLR,DLG,DLBの外縁がそれぞれ平行に近くなり得る(図9参照)。 Therefore, similarly to the third to fifth embodiments, the incident angle of the third light DLB on the incident surface 80A of the projection lens 80 can be the largest, and the incident angle of the first light DLR on the incident surface 80A. May be the smallest. Therefore, when the lights DLR, DLG, and DLB pass through the projection lens 80, the outer edges of the lights DLR, DLG, and DLB can be nearly parallel (see FIG. 9).
 また、上述のように、本実施形態における光源52R,52G,52Bは所定の周期で光の出射を切り替えるため、光DLR,DLG,光DLBは、投影レンズ80から所定の周期で交互に出射される。この周期が人の視覚の時間分解能よりも短い場合、残像効果が生じ、人は異なる色の光があたかも合成されて照射されていると認識し得る。したがって、本実施形態における上記周期を人の時間分解能よりも短くすることで、人は、赤色光である光DLR、緑色光である光DLG、及び青色光であるDLBが合成された白色光が灯具ユニット20から出射されていると認識し得る。上述のように、この白色光を構成する光DLR,DLG,DLBの外縁は互いに平行に近くなっているため、人は、外縁の色にじみが抑制された白色光が照射されていると認識し得る。 Further, as described above, since the light sources 52R, 52G, and 52B in the present embodiment switch the light emission at a predetermined cycle, the light DLR, DLG, and light DLB are alternately emitted from the projection lens 80 at a predetermined cycle. You. If this period is shorter than the temporal resolution of human vision, an afterimage effect occurs, and the human can perceive that light of different colors is synthesized and emitted. Therefore, by making the period shorter than the time resolution of a person in the present embodiment, the person can obtain white light obtained by combining the light DLR that is red light, the light DLG that is green light, and the DLB that is blue light. It can be recognized that the light is emitted from the lamp unit 20. As described above, since the outer edges of the lights DLR, DLG, and DLB constituting the white light are close to being parallel to each other, a person recognizes that the white light in which the color fringing of the outer edge is suppressed is irradiated. obtain.
 なお、人の視覚の時間分解能は概ね1/30sであるため、上記周期を1/30s以下とすることが好ましく、1/60s以下とすることがさらに好ましい。なお、上記周期が1/30sよりも大きい場合であっても上記残像効果が生じ得る。例えば、上記周期が1/15sであっても上記残像効果が生じ得る。 Since the time resolution of human vision is approximately 1/30 s, the above cycle is preferably set to 1/30 s or less, more preferably 1/60 s or less. Note that the afterimage effect can occur even when the period is longer than 1/30 s. For example, even if the period is 1/15 s, the afterimage effect may occur.
 本実施形態によれば、上記第1から第5実施形態と異なり、位相変調素子の数を1つにすることができるため、部品数を削減し得、コストダウンを図り得る。 According to this embodiment, unlike the first to fifth embodiments, the number of phase modulation elements can be reduced to one, so that the number of components can be reduced and the cost can be reduced.
 なお、本実施形態では、光源52R,52G,52Bが光の出射を切り替える例を説明したが、光源52R,52G,52Bのうち少なくとも2つが所定の周期で光の出射を切り替えてもよい。例えば、光源52R,52Gが所定の周期で光の出射を切り替えるように第4実施形態を変形してもよい。この変形例では、光源52R,52Gからの赤色レーザ光及び緑色レーザ光を受光する位相変調素子と、光源52Bからの青色レーザ光を受光する位相変調素子54Bとの2つの位相変調素子から光学系ユニット50を構成し得る。 In the present embodiment, an example has been described in which the light sources 52R, 52G, and 52B switch light emission. However, at least two of the light sources 52R, 52G, and 52B may switch light emission at a predetermined cycle. For example, the fourth embodiment may be modified so that the light sources 52R and 52G switch light emission at a predetermined cycle. In this modification, the optical system is composed of two phase modulation elements, a phase modulation element that receives red laser light and green laser light from the light sources 52R and 52G, and a phase modulation element 54B that receives blue laser light from the light source 52B. Unit 50 may be configured.
 また、本実施形態では、位相変調素子により光が収束する例を説明したが、位相変調素子により光が発散するようにしてもよい。この場合、位相変調素子と投影レンズとの間に、第1実施形態及び第3実施形態と同様に収束レンズを設けてもよい。 Also, in the present embodiment, an example in which light is converged by the phase modulation element has been described, but light may be diverged by the phase modulation element. In this case, a converging lens may be provided between the phase modulation element and the projection lens as in the first and third embodiments.
 また、本実施形態では、位相変調素子が反射型である例を説明したが、第5実施形態と同様に、位相変調素子を透過型としてもよい。 Also, in the present embodiment, an example in which the phase modulation element is of a reflection type has been described. However, as in the fifth embodiment, the phase modulation element may be of a transmission type.
 以上、本発明について、第1実施形態、第2実施形態、第3実施形態、第4実施形態、第5実施形態、及び第6実施形態を例に説明したが、本発明はこれらに限定されるものではない。 The first, second, third, fourth, fifth, and sixth embodiments have been described as examples of the present invention, but the present invention is not limited to these embodiments. Not something.
 例えば、第1実施形態、第2実施形態、第3実施形態、及び第4実施形態では、位相変調素子としてLCOSを用いた例を説明したが、位相変調素子として回折格子を用いてもよい。しかし、位相変調素子がLCOSであれば、印加する電圧を調整することで所望の配光パターンとし得るため、位相変調素子として回折格子を用いる場合に比べて、所望の配光パターンを形成することが容易になり得る。また、位相変調素子としてGLV(Grating Light Valve)を用いてもよい。このGLVは、シリコン基板上に複数の反射体が設けられた反射型の位相変調素子とされる。GLVによれば、複数の反射体のたわみを電気的に制御することによって、異なる回折パターンを形成することができる。このため、例えば、第4実施形態の位相変調素子をLCOSに代えてGLVとし得る。 For example, in the first, second, third, and fourth embodiments, examples in which LCOS is used as the phase modulation element have been described, but a diffraction grating may be used as the phase modulation element. However, if the phase modulation element is LCOS, a desired light distribution pattern can be obtained by adjusting the applied voltage, so that a desired light distribution pattern can be formed as compared with a case where a diffraction grating is used as the phase modulation element. Can be easier. Further, GLV (Grating @ Light @ Valve) may be used as the phase modulation element. This GLV is a reflection-type phase modulation element in which a plurality of reflectors are provided on a silicon substrate. According to the GLV, different diffraction patterns can be formed by electrically controlling the deflection of the plurality of reflectors. Therefore, for example, the phase modulation element of the fourth embodiment may be a GLV instead of the LCOS.
 また、第1実施形態、第2実施形態、第3実施形態、第4実施形態、第5実施形態、及び第6実施形態では、車両用灯具としての車両用前照灯1はロービームLを照射するものとされたが、本発明は特に限定されない。例えば、他の実施形態における車両用灯具は、図6において破線で示す領域、すなわち、ロービームLが照射される領域よりも上方の領域に、ロービームLよりも強度の低い光を照射するように構成されてもよい。このような低強度の光は、例えば標識認識用の光OHSとされる。この場合、それぞれの位相変調素子54R,54G,54Bから出射する光に標識認識用の光OHSが含まれていることが好ましい。また、このような実施形態では、ロービームLと標識認識用の光OHSとで夜間照明用の配光パターンが形成されると理解することができる。なお、ここでいう「夜間」とは、単に「夜間」という意味に限定されず、トンネル等の暗所を含むものとする。また、他の別の実施形態における車両用灯具は、図14に示すようなハイビームHを照射するように構成されてもよい。なお、図14において、ハイビームHの配光パターンは太線で示されており、直線Sは水平線を表している。このハイビームHの配光パターンにおいて、領域HA1は光強度が強い領域であり、HA2はHA1よりも光強度が低い領域である。また、さらに別の実施形態では、本発明における車両用灯具を、画像を構成するものとして適用してもよい。このような場合、車両用灯具から出射する光の方向や、該車両における車両用灯具の取り付け位置は特に限定されない。 In the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment, and the sixth embodiment, the vehicle headlamp 1 as a vehicle lamp emits a low beam L. However, the present invention is not particularly limited. For example, the vehicular lamp according to another embodiment is configured to irradiate a region indicated by a broken line in FIG. 6, that is, a region above a region irradiated with the low beam L with light having a lower intensity than the low beam L. May be done. Such low-intensity light is, for example, light OHS for sign recognition. In this case, it is preferable that the light emitted from each of the phase modulation elements 54R, 54G, and 54B contains light OHS for label recognition. Further, in such an embodiment, it can be understood that the light distribution pattern for night illumination is formed by the low beam L and the light OHS for sign recognition. It should be noted that the “nighttime” here is not limited to simply “nighttime” but includes a dark place such as a tunnel. Further, a vehicle lamp according to another embodiment may be configured to emit a high beam H as shown in FIG. In FIG. 14, the light distribution pattern of the high beam H is indicated by a bold line, and the straight line S is a horizontal line. In the light distribution pattern of the high beam H, the area HA1 is an area where the light intensity is high, and the area HA2 is an area where the light intensity is lower than that of the HA1. In still another embodiment, the vehicular lamp according to the present invention may be applied as an image. In such a case, the direction of light emitted from the vehicle lamp and the mounting position of the vehicle lamp in the vehicle are not particularly limited.
 また、第1実施形態、第2実施形態、第3実施形態、第4実施形態、第5実施形態、及び第6実施形態では、3つの光源52R,52G,52Bを備える例を説明したが、異なる波長の光を出射する光源が少なくとも1つずつ、すなわち、少なくとも2つの光源があればよい。ただし、第1実施形態、第2実施形態、第3実施形態、及び第4実施形態のように、異なる波長の光を出射する光源が1つずつ、すなわち、3つの光源を備えることで、所望の色の光を生成することが可能となり得る。 In the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment, and the sixth embodiment, examples in which three light sources 52R, 52G, and 52B are provided have been described. It is sufficient that at least one light source emits light of different wavelengths, that is, at least two light sources. However, as in the first embodiment, the second embodiment, the third embodiment, and the fourth embodiment, one light source that emits light of different wavelengths is provided, that is, three light sources are provided. It may be possible to generate light of any color.
 また、第1実施形態、第2実施形態、第3実施形態、第4実施形態、第5実施形態、及び第6実施形態では、入射面及び出射面が凸状に形成された投影レンズ80を使用した例を説明したが、これに限られず、入射面が平面状に形成され、出射面が凸状に形成されたレンズを投影レンズとして使用してもよい。 In the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment, and the sixth embodiment, the projection lens 80 in which the entrance surface and the exit surface are formed in a convex shape is used. Although the example of use has been described, the present invention is not limited to this, and a lens having an incident surface formed in a planar shape and an exit surface formed in a convex shape may be used as the projection lens.
 また、上記第1の態様において、位相変調素子により所定の配光パターンとされた複数の光のうち波長の短い光ほど投影レンズに近く結像されるのであれば、複数の光の発散角や収束角は適宜変更することができる。例えば、複数の光の発散角や収束角がそれぞれ同じであってもよい。 In the first aspect, if the shorter the wavelength of the plurality of lights in the predetermined light distribution pattern by the phase modulation element, the closer the image is formed to the projection lens, the divergence angle of the plurality of lights and the The convergence angle can be appropriately changed. For example, a divergence angle and a convergence angle of a plurality of lights may be the same.
 また、上記第2の態様において、焦点面に形成される複数の光の像のうち、波長の短い光の像ほど大きくされるのであれば、複数の光の発散角や収束角は適宜変更することができる。例えば、複数の光の発散角や収束角がそれぞれ同じであってもよい。 In the second aspect, the divergence angle and the convergence angle of the plurality of lights are appropriately changed as long as the shorter the wavelength of the light image among the plurality of light images formed on the focal plane, the larger the image. be able to. For example, a divergence angle and a convergence angle of a plurality of lights may be the same.
 本発明によれば、投影レンズを備える色にじみが抑制され得る車両用灯具が提供され、自動車等の車両用灯具の分野などにおいて利用可能である。 According to the present invention, a vehicle lamp provided with a projection lens and capable of suppressing color fringing is provided, and can be used in the field of vehicle lamps such as automobiles.
1・・・車両用前照灯(車両用灯具)
20・・・灯具ユニット
50・・・光学系ユニット
52R・・・第1光源
52G・・・第2光源
52B・・・第3光源
54R・・・第1位相変調素子
54G・・・第2位相変調素子
54B・・・第3位相変調素子
54S・・・位相変調素子
55・・・合成光学系
80・・・投影レンズ
81・・・結像レンズ
81R・・・第1結像レンズ
81G・・・第2結像レンズ
81B・・・第3結像レンズ
1 ... Vehicle headlight (vehicle lamp)
20, lamp unit 50, optical system unit 52R, first light source 52G, second light source 52B, third light source 54R, first phase modulation element 54G, second phase Modulating element 54B Third phase modulating element 54S Phase modulating element 55 Synthetic optical system 80 Projection lens 81 Imaging lens 81R First imaging lens 81G .2nd imaging lens 81B... 3rd imaging lens

Claims (15)

  1.  互いに波長の異なる光を出射する複数の光源と、
     前記複数の光源のそれぞれから出射する前記光を回折することにより、複数の前記光をそれぞれ所定の配光パターンとする少なくとも1つの位相変調素子と、
     前記位相変調素子から出射する複数の前記光の発散角を調整する投影レンズと、
    を備え、
     前記位相変調素子により前記所定の配光パターンとされた複数の前記光は、波長の短い光ほど前記投影レンズに近い位置に結像する
    ことを特徴とする車両用灯具。
    A plurality of light sources that emit light having different wavelengths from each other;
    By diffracting the light emitted from each of the plurality of light sources, at least one phase modulation element that sets each of the plurality of lights to a predetermined light distribution pattern,
    A projection lens for adjusting a divergence angle of the plurality of lights emitted from the phase modulation element,
    With
    A plurality of the light beams having the predetermined light distribution pattern formed by the phase modulation element form an image at a position closer to the projection lens as light having a shorter wavelength.
  2.  前記投影レンズから出射する複数の前記光の外縁がそれぞれ平行にされる
    ことを特徴とする請求項1に記載の車両用灯具。
    The vehicular lamp according to claim 1, wherein outer edges of the plurality of lights emitted from the projection lens are parallel to each other.
  3.  複数の前記光のそれぞれは、前記投影レンズの焦点に結像する
    ことを特徴とする請求項2に記載の車両用灯具。
    The vehicular lamp according to claim 2, wherein each of the plurality of lights forms an image at a focal point of the projection lens.
  4.  前記投影レンズから出射する複数の前記光の外縁がそれぞれ重なる
    ことを特徴とする請求項2又は3に記載の車両用灯具。
    The vehicular lamp according to claim 2, wherein outer edges of the plurality of lights emitted from the projection lens overlap with each other.
  5.  複数の前記光のそれぞれの前記所定の配光パターンが同一の外形とされる
    ことを特徴とする請求項1から4のいずれか1項に記載の車両用灯具。
    5. The vehicular lamp according to claim 1, wherein the predetermined light distribution patterns of the plurality of lights have the same outer shape. 6.
  6.  互いに波長の異なる光を出射する複数の光源と、
     前記複数の光源のそれぞれから出射する前記光を回折することにより、複数の前記光をそれぞれ同一形状の配光パターンとする少なくとも1つの位相変調素子と、
     前記位相変調素子から出射する複数の前記光の発散角を調整する投影レンズと、
    を備え、
     前記投影レンズの焦点を通り前記投影レンズの光軸方向に垂直な焦点面に形成される複数の前記光の像のうち、波長の短い光の像ほど大きくされる
    ことを特徴とする車両用灯具。
    A plurality of light sources that emit light having different wavelengths from each other;
    By diffracting the light emitted from each of the plurality of light sources, at least one phase modulation element that makes the plurality of lights have the same shape light distribution pattern,
    A projection lens for adjusting a divergence angle of the plurality of lights emitted from the phase modulation element,
    With
    A vehicular lamp characterized in that, among a plurality of light images formed on a focal plane that passes through the focal point of the projection lens and is perpendicular to the optical axis direction of the projection lens, an image of light with a shorter wavelength is enlarged. .
  7.  前記投影レンズから出射する複数の前記光の外縁がそれぞれ平行である
    ことを特徴とする請求項6に記載の車両用灯具。
    The vehicular lamp according to claim 6, wherein outer edges of the plurality of lights emitted from the projection lens are parallel to each other.
  8.  前記投影レンズから出射する複数の前記光の外縁がそれぞれ重なる
    ことを特徴とする請求項7に記載の車両用灯具。
    The vehicular lamp according to claim 7, wherein outer edges of the plurality of lights emitted from the projection lens overlap each other.
  9.  前記位相変調素子は、前記複数の光源ごとに設けられる
    請求項1から8のいずれか1項に記載の車両用灯具。
    The vehicular lamp according to any one of claims 1 to 8, wherein the phase modulation element is provided for each of the plurality of light sources.
  10.  前記複数の光源のうち少なくとも2つの光源は、各光源からの前記光の出射を所定の周期で切り替え、
     前記少なくとも2つの光源から出射する複数の前記光は、共通の前記位相変調素子に入射し、
     前記少なくとも2つの光源からの前記光が入射する前記位相変調素子は、入射する前記光の波長に応じて回折パターンを変化させる
    ことを特徴とする請求項1から8のいずれか1項に記載の車両用灯具。
    At least two light sources among the plurality of light sources switch the emission of the light from each light source at a predetermined cycle,
    The plurality of lights emitted from the at least two light sources are incident on a common phase modulation element,
    9. The device according to claim 1, wherein the phase modulation element on which the light from the at least two light sources is incident changes a diffraction pattern according to a wavelength of the incident light. Vehicle lighting.
  11.  前記周期は1/30s以下である
    ことを特徴とする請求項10に記載の車両用灯具。
    The vehicular lamp according to claim 10, wherein the cycle is 1 / 30s or less.
  12.  前記位相変調素子はLCOS(Liquid Crystal On Silicon)とされる
    ことを特徴とする請求項1から11のいずれか1項に記載の車両用灯具。
    The vehicular lamp according to any one of claims 1 to 11, wherein the phase modulation element is a liquid crystal on silicon (LCOS).
  13.  前記位相変調素子から出射する前記光の結像が少なくとも1つの結像レンズを介して行われる
    ことを特徴とする請求項1から12のいずれか1項に記載の車両用灯具。
    The vehicular lamp according to any one of claims 1 to 12, wherein the light emitted from the phase modulation element is imaged through at least one imaging lens.
  14.  それぞれの位相変調素子毎に前記結像レンズが配置される
    ことを特徴とする請求項13に記載の車両用灯具。
    14. The vehicular lamp according to claim 13, wherein the imaging lens is arranged for each phase modulation element.
  15.  前記複数の光源は3つの光源からなる
    ことを特徴とする請求項1から14のいずれか1項に記載の車両用灯具。
    The vehicular lamp according to any one of claims 1 to 14, wherein the plurality of light sources includes three light sources.
PCT/JP2019/031394 2018-08-21 2019-08-08 Vehicle lamp WO2020039964A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980041570.6A CN112368510B (en) 2018-08-21 2019-08-08 Vehicle lamp
JP2020538308A JP7285260B2 (en) 2018-08-21 2019-08-08 vehicle lamp

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-154972 2018-08-21
JP2018154971 2018-08-21
JP2018154972 2018-08-21
JP2018-154971 2018-08-21

Publications (1)

Publication Number Publication Date
WO2020039964A1 true WO2020039964A1 (en) 2020-02-27

Family

ID=69593204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031394 WO2020039964A1 (en) 2018-08-21 2019-08-08 Vehicle lamp

Country Status (3)

Country Link
JP (1) JP7285260B2 (en)
CN (1) CN112368510B (en)
WO (1) WO2020039964A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103801A (en) * 1988-10-12 1990-04-16 Stanley Electric Co Ltd Projector type headlamp
JP2012146621A (en) * 2010-12-20 2012-08-02 Stanley Electric Co Ltd Vehicular lamp
JP2015204272A (en) * 2014-04-16 2015-11-16 株式会社小糸製作所 Vehicular lighting tool
JP2015222687A (en) * 2014-05-23 2015-12-10 株式会社小糸製作所 Lamp for vehicle
WO2017199841A1 (en) * 2016-05-16 2017-11-23 スタンレー電気株式会社 Projector-type headlamp
WO2018092834A1 (en) * 2016-11-17 2018-05-24 大日本印刷株式会社 Illumination device and method for manufacturing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4019939B2 (en) * 2002-12-27 2007-12-12 市光工業株式会社 VEHICLE DIGITAL LIGHTING DEVICE, ITS CONTROL DEVICE, AND CONTROL PROGRAM
JP2013125693A (en) 2011-12-15 2013-06-24 Koito Mfg Co Ltd Vehicular lamp
JP6087788B2 (en) * 2013-10-31 2017-03-01 アルプス電気株式会社 In-vehicle projector
GB2547929B (en) * 2016-03-03 2018-02-21 Daqri Holographics Ltd Display system
WO2017154371A1 (en) 2016-03-07 2017-09-14 ソニー株式会社 Light source device and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103801A (en) * 1988-10-12 1990-04-16 Stanley Electric Co Ltd Projector type headlamp
JP2012146621A (en) * 2010-12-20 2012-08-02 Stanley Electric Co Ltd Vehicular lamp
JP2015204272A (en) * 2014-04-16 2015-11-16 株式会社小糸製作所 Vehicular lighting tool
JP2015222687A (en) * 2014-05-23 2015-12-10 株式会社小糸製作所 Lamp for vehicle
WO2017199841A1 (en) * 2016-05-16 2017-11-23 スタンレー電気株式会社 Projector-type headlamp
WO2018092834A1 (en) * 2016-11-17 2018-05-24 大日本印刷株式会社 Illumination device and method for manufacturing same

Also Published As

Publication number Publication date
JP7285260B2 (en) 2023-06-01
JPWO2020039964A1 (en) 2021-08-26
CN112368510B (en) 2022-10-11
CN112368510A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP7453278B2 (en) headlight device
US9903555B2 (en) Vehicle lighting fixture
KR102155080B1 (en) Vehicle headlamp
CN109937321B (en) Front light device
JP7285260B2 (en) vehicle lamp
CN210801005U (en) Vehicle lamp
CN210801006U (en) Vehicle lamp
JP7397849B2 (en) Vehicle lights
US20210317967A1 (en) Lamp for vehicle and vehicle including same
JP2021190344A (en) Vehicular lighting fixture
CN210801003U (en) Vehicle lamp
JP7216540B2 (en) vehicle lamp
CN110953542B (en) Vehicle lamp
CN211083943U (en) Vehicle lamp
CN110566896A (en) Vehicle lamp
WO2021006281A1 (en) Vehicle lamp
WO2020226129A1 (en) Vehicular lamp
JP2024057095A (en) vehicle
JP2020044875A (en) Vehicular lighting fixture
WO2019230664A1 (en) Lamp for vehicles
JP2022179096A (en) Vehicular lighting tool
JP2020123489A (en) Vehicular head light
JP2020118920A (en) Fly-eye lens and illumination optical device
JPWO2019082697A1 (en) Vehicle lighting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852215

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020538308

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852215

Country of ref document: EP

Kind code of ref document: A1