WO2019230664A1 - Lamp for vehicles - Google Patents

Lamp for vehicles Download PDF

Info

Publication number
WO2019230664A1
WO2019230664A1 PCT/JP2019/020943 JP2019020943W WO2019230664A1 WO 2019230664 A1 WO2019230664 A1 WO 2019230664A1 JP 2019020943 W JP2019020943 W JP 2019020943W WO 2019230664 A1 WO2019230664 A1 WO 2019230664A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phase modulation
emitted
modulation element
distribution pattern
Prior art date
Application number
PCT/JP2019/020943
Other languages
French (fr)
Japanese (ja)
Inventor
壮宜 鬼頭
和也 本橋
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2020522188A priority Critical patent/JPWO2019230664A1/en
Publication of WO2019230664A1 publication Critical patent/WO2019230664A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/63Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates
    • F21S41/64Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates by changing their light transmissivity, e.g. by liquid crystal or electrochromic devices

Definitions

  • the present invention relates to a vehicular lamp.
  • Patent Document 1 uses a hologram element which is a kind of diffraction grating to determine a predetermined light distribution pattern. The formation of a light distribution pattern is described.
  • the vehicle headlamp includes a hologram element and a light source for irradiating the hologram element with reference light.
  • the hologram element is calculated so that the diffracted light reproduced by irradiating the reference light forms a low beam light distribution pattern.
  • the vehicle headlamp forms a low beam light distribution pattern by the hologram element as described above, and therefore does not require a shade and can be miniaturized.
  • the vehicular lamp according to the first aspect of the present invention includes a phase modulation element capable of diffracting and emitting incident light and changing a light distribution pattern of the emitted light, and time-dividing a plurality of laser beams having different wavelengths.
  • the laser light of each wavelength emitted from the light source is incident on the phase modulation element, and the phase modulation element is a phase modulation pattern corresponding to the laser light of each wavelength
  • the laser light is diffracted and emitted, and regions irradiated with light emitted from the phase modulation element corresponding to the laser light having the respective wavelengths are overlapped with each other.
  • a plurality of laser beams having different wavelengths emitted from a light source in a time division manner are diffracted by the phase modulation element and emitted from the phase modulation element.
  • regions irradiated with light emitted from the phase modulation elements corresponding to the laser beams having the respective wavelengths overlap each other. For this reason, light with different wavelengths is sequentially irradiated to the region irradiated with light.
  • the vehicular lamp is a light in which the plurality of laser beams emitted from the light source are combined. Can be irradiated by an afterimage phenomenon.
  • the phase modulation element diffracts and emits the laser beam with a phase modulation pattern corresponding to the laser beam of each wavelength. Therefore, the phase modulation element corresponds to the laser beam of each wavelength.
  • the light distribution pattern of the light emitted from each can be changed to a desired light distribution pattern. Therefore, the vehicular lamp can suppress the outer shape of the region irradiated with the light emitted from the phase modulation element corresponding to the laser light of each wavelength from being shifted, and the edge of the light distribution pattern formed by the afterimage phenomenon. It is possible to suppress the occurrence of color bleeding in the vicinity.
  • At least a part of the outer shape of the region irradiated with the light emitted from the phase modulation element corresponding to the laser light of each wavelength matches.
  • the phase modulation element may be a transmission type phase modulation element, and the phase modulation element may be a reflection type phase modulation element.
  • the light source emits at least three laser beams having different wavelengths.
  • laser beams of three primary colors can be used. Therefore, by adjusting the intensity of each laser beam emitted from the light source, light of a desired color can be irradiated by the afterimage phenomenon.
  • the vehicular lamp according to the second aspect of the present invention diffracts light emitted from the light source with a light source that emits light of a predetermined wavelength and a phase modulation pattern that changes at a time interval shorter than the predetermined time interval. And a phase modulation element that emits light, and regions irradiated with light emitted from the phase modulation elements having different phase modulation patterns are overlapped with each other.
  • the phase modulation element diffracts and emits light emitted from the light source with a phase modulation pattern that changes at a time interval shorter than a predetermined time interval. For this reason, at least one of the light distribution pattern of the light emitted from the phase modulation element and the region irradiated with the light can change corresponding to the change of the phase modulation pattern. Further, as described above, regions irradiated with light emitted from phase modulation elements having different phase modulation patterns overlap each other. For this reason, visually overlapped light occurs in the part of the irradiated object where these regions overlap each other, and the optical path from the phase modulation element to this part changes the phase modulation pattern. It changes corresponding to.
  • the phase modulation pattern indicates a pattern for modulating the phase of light incident on the phase modulation element.
  • the region irradiated with the light emitted from the phase modulation element may vibrate in a predetermined direction corresponding to the change of the phase modulation pattern.
  • the intensity distribution in the light distribution pattern of the light emitted from the phase modulation element may change corresponding to the change in the phase modulation pattern.
  • the intensity distribution and the outer shape of the light distribution pattern of the light emitted from the phase modulation element may change corresponding to the change of the phase modulation pattern, or only the intensity distribution may change. Further, only the intensity distribution may be changed without changing the region irradiated with the light emitted from the phase modulation element, corresponding to the change of the phase modulation pattern.
  • the predetermined time interval is 1/15 s or less.
  • the time interval of visual light superposition is 1/15 s or less.
  • the human visual temporal resolution is approximately 1/30 s.
  • the phase modulation element may be a transmission type phase modulation element, and the phase modulation element is a reflection type phase modulation element. May be.
  • the vehicular lamp according to the third aspect of the present invention includes a light source that emits light having a predetermined wavelength and an arrangement that generates light having a predetermined light distribution pattern by changing a traveling direction of at least a part of the light.
  • An optical pattern forming element and a movable reflecting member having a movable reflecting surface and moving the movable reflecting surface to vibrate the optical path of the light are provided.
  • the vehicular lamp according to the third aspect includes a light distribution pattern forming element formed of, for example, a diffraction grating, a predetermined light distribution can be achieved without using a shade, similar to the vehicular headlamp described in Patent Document 1. Pattern light can be emitted. Therefore, it can be reduced in size as compared with the vehicular lamp using the shade as in the vehicular headlamp disclosed in Patent Document 1.
  • the vehicle lamp according to the third aspect includes a movable reflecting member that moves the movable reflecting surface to vibrate the optical path of light having a predetermined light distribution pattern.
  • the incident angle and phase of light having a predetermined light distribution pattern incident on the irradiated object can be changed with time in accordance with the vibration of the optical path.
  • the change in the incident angle of the light and the phase of the light continuously occur to generate various interference patterns, and the respective lights of these interference patterns are superimposed.
  • speckle becomes inconspicuous and light flicker can be suppressed.
  • the movable reflecting surface of the movable reflecting member reflects the light emitted from the light source toward the light distribution pattern forming element.
  • the movable reflecting member can be arranged closer to the light source than the light distribution pattern forming element, the movable reflecting surface can be made small.
  • the movable reflecting surface of the movable reflecting member may reflect the light emitted from the light distribution pattern forming element.
  • the reflecting member may be a MEMS mirror or a polygon mirror, for example.
  • the movable reflecting member vibrates the optical path of the light in two or more directions.
  • the movable reflecting member vibrate the optical path of the light at a frequency of 15 Hz or more.
  • the human visual temporal resolution is approximately 30 Hz.
  • flickering of light can be suppressed if the frequency of vibration of the optical path of light irradiated on the irradiated object is about half the frequency (about 30 Hz) of human visual time resolution.
  • the frequency of the vibration of the optical path of the light is 30 Hz or more, the temporal resolution of human vision is generally exceeded. Therefore, the flickering of light can be more effectively suppressed.
  • this frequency is 60 Hz or more, the flickering of light can be more effectively suppressed.
  • the light distribution pattern forming element is a diffraction grating formed of a diffraction grating pattern formed in each of a plurality of divided areas
  • the movable reflecting member is the light May be oscillated at least one of the diffraction grating patterns on the incident surface of the light distribution pattern forming element.
  • the optical path of the light vibrates at least one of the diffraction grating patterns, the incident angle and phase change of the light incident on the irradiated surface are increased. For this reason, the flicker of light can be suppressed more effectively.
  • the diffraction grating pattern is formed of a plurality of diffraction grating patterns, even if the optical path of the light vibrates less than one diffraction grating pattern, the light flicker can be suppressed.
  • the diffraction grating is not necessarily formed from a plurality of diffraction grating patterns, and may be formed from a single diffraction grating pattern.
  • the movable reflecting member may vibrate the optical path of the light by swinging the movable reflecting surface around at least one axis.
  • the movable reflecting member may vibrate the optical path of the light by changing the curvature of the movable reflecting surface.
  • FIG. 1st Embodiment shows an example of the vehicle lamp in 1st Embodiment as a 1st aspect of this invention. It is a front view of the phase modulation element shown in FIG. It is a figure which shows roughly the cross section of the thickness direction of a part of phase modulation element shown in FIG. It is a figure which shows a light distribution pattern. It is a figure which shows the vehicle lamp in 2nd Embodiment as a 1st aspect of this invention similarly to FIG. It is a figure which shows schematically the cross section of the thickness direction of a part of phase modulation element shown in FIG. It is a figure which shows an example of the vehicle lamp in 3rd Embodiment as a 2nd aspect of this invention.
  • FIG. 9 is a front view of the phase modulation element shown in FIG. 8. It is a figure which shows the optical system unit in 4th Embodiment as a 2nd aspect of this invention similarly to FIG. It is a figure which shows the optical system unit in 5th Embodiment as a 2nd aspect of this invention similarly to FIG. It is a longitudinal cross-sectional view which shows roughly an example of the vehicle lamp which concerns on 6th Embodiment as a 3rd aspect of this invention. It is an enlarged view of the optical system unit shown by FIG. It is a figure which shows roughly an example of the MEMS mirror shown by FIG.
  • FIG. 1 is a diagram illustrating an example of a vehicular lamp according to the first embodiment as a first aspect, and is a diagram schematically illustrating a vertical cross section of the vehicular lamp.
  • the vehicular lamp of this embodiment is a vehicular headlamp 1.
  • the vehicular headlamp 1 of this embodiment has a casing 10 and a lamp unit 20 as main components. Prepare.
  • the housing 10 includes a lamp housing 11, a front cover 12, and a back cover 13 as main components.
  • the front of the lamp housing 11 is open, and the front cover 12 is fixed to the lamp housing 11 so as to close the opening.
  • an opening smaller than the front is formed at the rear of the lamp housing 11, and the back cover 13 is fixed to the lamp housing 11 so as to close the opening.
  • a space formed by the lamp housing 11, the front cover 12 that closes the front opening of the lamp housing 11, and the back cover 13 that closes the rear opening of the lamp housing 11 is a lamp chamber R.
  • the lamp unit 20 of this embodiment includes a light source 21, a phase modulation element 22, a control unit 70, and an input unit 72 as main components.
  • the light source 21, the phase modulation element 22, and the control unit 70 are It is accommodated in the chamber R and fixed to the housing 10 by means (not shown).
  • the light source 21 emits a plurality of laser beams having different wavelengths from each other in a time-sharing manner.
  • the light source 21 of the present embodiment includes a light emitting element (not shown) that emits red laser light with a power peak wavelength of 638 nm, for example, and a light emitting element (not shown) that emits green laser light with a power peak wavelength of 515 nm, for example. And a light emitting element (not shown) that emits blue laser light having a power peak wavelength of, for example, 445 nm. Electric power is supplied to these light emitting elements via a drive circuit.
  • the light source 21 of this embodiment has a collimating lens (not shown) corresponding to each of these light emitting elements.
  • the collimating lens is a lens that collimates the fast axis direction and the slow axis direction of the light emitted from the corresponding light emitting element, and the laser light emitted from these light emitting elements and transmitted through the collimating lens corresponding to each light emitting element is a light source. 21 is emitted.
  • the light source 21 can emit the red laser light LR, the green laser light LG, and the blue laser light LB in a time-sharing manner by adjusting the power supplied to each light emitting element.
  • LR, LG, and LB are applied to substantially the same region of the phase modulation element 22.
  • the light source 21 of the present embodiment switches between the red laser light LR, the green laser light LG, and the blue laser light LB, and the laser light LR, LG, LB of any color is desired at a desired timing. It is configured to be able to emit time.
  • the red laser beam LR is indicated by a solid line
  • the green laser beam LG is indicated by a broken line
  • the blue laser beam LB is indicated by a one-dot chain line
  • the laser beams LR, LG, LB are shifted. Is shown.
  • the light source 21 can adjust the intensity
  • the intensities of the laser beams LR, LG, and LB are adjusted so that the color of the combined light of the laser beams LR, LG, and LB is white as an initial state.
  • the light source 21 for example, a semiconductor laser in which a light emitting element is a laser element that emits laser light can be used.
  • the phase modulation element 22 is configured to diffract and emit incident light and to change the light distribution pattern of the emitted light.
  • the phase modulation element 22 of the present embodiment is a reflection type phase modulation element that diffracts and emits incident light while reflecting incident light, and is, for example, a liquid crystal panel LCOS (Liquid Crystal On On Silicon). .
  • Laser light LR, LG, LB emitted from the light source 21 is incident on the phase modulation element 22 in a time division manner.
  • FIG. 2 is a front view of the phase modulation element 22 shown in FIG.
  • a region 21A where the laser beams LR, LG, and LB emitted from the light source 21 are incident is indicated by broken lines.
  • the phase modulation element 22 has a rectangular outer shape, and has a plurality of modulation units arranged in a matrix within the rectangle. Each modulation unit diffracts light incident on the modulation unit. Exit. Each modulation unit includes a plurality of dots arranged in a matrix.
  • the modulation unit is formed so as to be positioned one or more in the region 21A where the laser light emitted from the light source 21 is incident.
  • a scanning line driving circuit 22H is arranged on the lateral side of the phase modulation element 22, and a data line driving circuit 22V is arranged on one side in the vertical direction of the phase modulation element 22. Yes.
  • FIG. 3 is a diagram schematically showing a section in the thickness direction of a part of the phase modulation element 22 shown in FIG.
  • the phase modulation element 22 of the present embodiment mainly includes a silicon substrate 23, a drive circuit layer 24, a plurality of electrodes 25, a reflective film 26, a liquid crystal layer 27, a transparent electrode 28, and a translucent substrate 29.
  • a silicon substrate 23 a drive circuit layer 24, a plurality of electrodes 25, a reflective film 26, a liquid crystal layer 27, a transparent electrode 28, and a translucent substrate 29.
  • the plurality of electrodes 25 are arranged in a matrix corresponding to each dot of the modulation unit on one surface side of the silicon substrate 23, and each dot includes the electrode 25.
  • the drive circuit layer 24 is a layer in which circuits connected to the scanning line drive circuit 22H and the data line drive circuit 22V shown in FIG. 2 are arranged, and is arranged between the silicon substrate 23 and the plurality of electrodes 25.
  • the translucent substrate 29 is disposed on one side of the silicon substrate 23 so as to face the silicon substrate 23, and is a glass substrate, for example.
  • the laser light emitted from the light source 21 is incident from the surface of the translucent substrate 29 opposite to the silicon substrate 23 side.
  • the transparent electrode 28 is disposed on the surface of the translucent substrate 29 on the silicon substrate 23 side.
  • the liquid crystal layer 27 includes liquid crystal molecules 27 a and is disposed between the plurality of electrodes 25 and the transparent electrode 28.
  • the reflective film 26 is disposed between the plurality of electrodes 25 and the liquid crystal layer 27 and is, for example, a dielectric multilayer film.
  • the laser light emitted from the light source 21 is incident from the surface of the translucent substrate 29 opposite to the silicon substrate 23 side.
  • the light LR incident from the surface opposite to the silicon substrate 23 side of the translucent substrate 29 passes through the transparent electrode 28 and the liquid crystal layer 27, is reflected by the reflective film 26, and is reflected by the liquid crystal layer 27
  • the light passes through the transparent electrode 28 and is emitted from the translucent substrate 29.
  • a voltage is applied between the specific electrode 25 and the transparent electrode 28
  • the orientation of the liquid crystal molecules 27 a of the liquid crystal layer 27 located between the electrode 25 and the transparent electrode 28 changes, and the electrode
  • the refractive index of the liquid crystal layer 27 located between 25 and the transparent electrode 28 changes. Since the orientation of the liquid crystal molecules 27a changes according to the applied voltage, the refractive index also changes according to this voltage.
  • the optical path length of the light LR transmitted through the liquid crystal layer 27 is changed as described above. Therefore, the light transmitted through the liquid crystal layer 27 and emitted from the phase modulation element 22 is changed.
  • the phase can be changed.
  • the plurality of electrodes 25 are arranged corresponding to each dot of the modulation unit, the voltage applied between the electrode 25 corresponding to each dot and the transparent electrode 28 is controlled. Thus, the amount of change in the phase of the light emitted from each dot is adjusted.
  • the phase modulation element 22 can diffract and emit the incident light and can change the light distribution pattern of the emitted light to a desired light distribution pattern. Moreover, the phase modulation element 22 can change the light distribution pattern of the emitted light by changing the refractive index of the liquid crystal layer 27 in each dot.
  • the same phase modulation pattern is formed in each modulation unit.
  • the phase modulation pattern indicates a pattern for modulating the phase of incident light.
  • the phase modulation pattern is a pattern of the refractive index of the liquid crystal layer 27 in each dot, and can be understood as a pattern of a voltage applied between the electrode 25 and the transparent electrode 28 corresponding to each dot.
  • the phase modulation element 22 of the present embodiment converts the modulation pattern into a phase modulation pattern corresponding to the red laser beam LR, a phase modulation pattern corresponding to the green laser beam LG, and a phase modulation pattern corresponding to the blue laser beam LB. It can be changed.
  • the phase modulation element 22 diffracts and emits each laser beam LR, LG, LB with a phase modulation pattern corresponding to each laser beam LR, LG, LB.
  • the phase modulation patterns corresponding to the laser beams LR, LG, and LB are different from each other.
  • the light DLR diffracted by the phase modulation element 22 and emitted from the phase modulation element 22 is red, and the green laser light LG is diffracted by the phase modulation element 22 and emitted from the phase modulation element 22.
  • the light DLG is green, and the light DLB emitted from the phase modulation element 22 after the blue laser light LB is diffracted by the phase modulation element 22 is blue.
  • the red light DLR is indicated by a solid line
  • the green light DLG is indicated by a broken line
  • the blue light DLG is indicated by an alternate long and short dash line
  • the lights DLR, DLG, and DLB are shifted from each other. Yes.
  • the phase modulation patterns corresponding to the laser beams LR, LG, and LB are arranged so that the regions irradiated with the light DLR, DLG, and DLB are overlapped with each other at a focal position separated from the vehicle by a predetermined distance.
  • the phase modulation pattern diffracts LG and LB.
  • This focal position is, for example, a position 25 m away from the vehicle.
  • the phase modulation element 22 is configured such that the light distribution pattern of the emitted light DLR, the light distribution pattern of the emitted light DLG, and the light distribution pattern of the emitted light DLB are at a focal position at a predetermined distance from the vehicle. Lights DLR, DLG, and DLB are emitted so as to overlap each other.
  • the phase modulation element 22 has a plurality of modulation units that form the same phase modulation pattern, and the laser beams LR that are incident so that each modulation unit has such a light distribution pattern, LG and LB are diffracted, respectively.
  • the phase modulation element 22 emits red light emitted from the light source 21 so that light obtained by combining the respective lights DLR, DLG, and DLB emitted from the phase modulation element 22 has a low beam distribution pattern.
  • the laser beam LR, the green laser beam LG, and the blue laser beam LB are diffracted, respectively.
  • Each light distribution pattern includes an intensity distribution.
  • the phase modulation element 22 of the present embodiment has the light distribution DLR, DLG, DLB emitted from the phase modulation element 22 superimposed on the light distribution pattern of the low beam and the intensity distribution based on the intensity distribution of the light distribution pattern of the low beam.
  • the red laser light LR, the green laser light LG, and the blue laser light LB that are emitted from the light source 21 and incident on the phase modulation element 22 are diffracted, respectively.
  • the phase modulation element 22 emits the red component light DLR of the low beam light distribution pattern, the green component light DLG of the low beam light distribution pattern, and the blue component light DLB of the low beam light distribution pattern.
  • the intensity distribution based on the intensity distribution of the low beam light distribution pattern is that the intensity of the light DLR, DLG, and DLB emitted from the phase modulation element 22 is high at a portion where the intensity of the low beam light distribution pattern is high. It means that.
  • the input unit 72 shown in FIG. 1 outputs information such as a command and a set value input according to a user's operation using an electrical signal.
  • the information input to the input unit 72 includes the intensity of each of the laser beams LR, LG, LB emitted from the light source 21 and the length of each emission time of the laser beams LR, LG, LB.
  • the Examples of the input unit 72 include a switch group in which a plurality of rotary switches are mounted on a circuit board.
  • control unit 70 is electrically connected to the scanning line driving circuit 22H and the data line driving circuit 22V of the phase modulation element 22, and controls the refractive index of the liquid crystal layer 27 in each dot.
  • the control unit 70 is electrically connected to the light source 21 and controls the emission state of the laser light from the light source 21.
  • the control unit 70 performs these controls based on a signal input to the control unit 70 from the outside.
  • the control unit 70 is electrically connected to a control device 71 such as an ECU (electronic control device) of the vehicle, an input unit 72, and the like.
  • control unit 70 detects a signal indicating low beam irradiation from the vehicle control device 71 and the signal is input to the control unit 70, the laser light emission state of the light source 21 is detected. And the refractive index of the liquid crystal layer 27 at each dot of the phase modulation element 22 are controlled to emit light from the vehicle headlamp 1.
  • the controller 70 controls the state of laser light emitted from the light source 21 by driving the drive circuit of the light source 21.
  • control unit 70 controls the refractive index of the liquid crystal layer 27 in each dot of the phase modulation element 22 by adjusting the voltage applied between the electrode 25 corresponding to each dot and the transparent electrode 28. .
  • the control unit 70 of the present embodiment uses the phase modulation pattern in which the red laser light LR emitted from the light source 21 is a phase modulation pattern in which the phase modulation pattern in the modulation unit corresponds to the red laser light LR.
  • the light source 21 and the phase modulation element 22 are controlled so as to enter the element 22. That is, the control unit 70 emits the red laser light LR from the light source 21 for a predetermined time while making the phase modulation pattern in the modulation unit of the phase modulation element 22 a phase modulation pattern corresponding to the red laser light LR.
  • the control unit 70 may change the phase modulation pattern of the phase modulation element 22 and emit the red laser light LR from the light source 21 at the same timing, or may perform them at different timings.
  • the red laser light LR emitted from the light source 21 in this manner is diffracted as described above by the phase modulation element 22 in this state, and the red component light DLR of the low beam light distribution pattern is given from the phase modulation element 22 to a predetermined value. Emits time.
  • the red component light DLR of the low beam light distribution pattern is emitted from the vehicle headlamp 1 through the front cover 12 for a predetermined time.
  • the control unit 70 causes the green laser light LG emitted from the light source 21 to enter the phase modulation element 22 whose phase modulation pattern in the modulation unit is a phase modulation pattern corresponding to the green laser light LG.
  • the light source 21 and the phase modulation element 22 are controlled. That is, the control unit 70 emits the green laser light LG from the light source 21 for a predetermined time while making the phase modulation pattern in the modulation unit of the phase modulation element 22 a phase modulation pattern corresponding to the green laser light LG. Similar to the case where the red component light DLR of the low beam distribution pattern is emitted from the phase modulation element 22, the control unit 70 changes the phase modulation pattern of the phase modulation element 22 and emits the green laser light LG from the light source 21.
  • the green laser light LG emitted from the light source 21 in this manner is diffracted as described above by the phase modulation element 22 in this state, and the green component light DLG of the low beam light distribution pattern is predetermined from the phase modulation element 22. Emits time.
  • the green component light DLG of the low beam light distribution pattern is emitted from the vehicle headlamp 1 through the front cover 12 for a predetermined time.
  • the control unit 70 causes the blue laser light LB emitted from the light source 21 to enter the phase modulation element 22 in which the phase modulation pattern in the modulation unit is a phase modulation pattern corresponding to the blue laser light LB.
  • the light source 21 and the phase modulation element 22 are controlled. That is, the control unit 70 emits the blue laser light LB from the light source 21 for a predetermined time while making the phase modulation pattern in the modulation unit of the phase modulation element 22 a phase modulation pattern corresponding to the blue laser light LB.
  • the control unit 70 changes the phase modulation pattern of the phase modulation element 22 and emits the blue laser light LB from the light source 21. May be performed at the same timing, or may be performed at different timings.
  • the blue laser light LB emitted from the light source 21 in this manner is diffracted as described above by the phase modulation element 22 in this state, and the blue component light DLB of the low beam light distribution pattern is predetermined from the phase modulation element 22. Emits time.
  • the blue component light DLB of the low beam light distribution pattern is emitted from the vehicle headlamp 1 through the front cover 12 for a predetermined time.
  • the control unit 70 changes the phase modulation pattern of the phase modulation element 22 and emits the red laser light LR from the light source 21, changes the phase modulation pattern of the phase modulation element 22, and the green laser light LG from the light source 21.
  • the change of the phase modulation pattern of the phase modulation element 22, and the emission of the blue laser light LB from the light source 21 are sequentially repeated, and the refractive index of the liquid crystal layer 27 in each dot of the phase modulation element 22 and the light source 21. Controls the state of laser light emission. That is, the emission of the red laser light LR, the green laser light LG, and the blue laser light LB in the time division of the light source 21 and the change of the phase modulation pattern of the phase modulation element 22 are synchronized.
  • the red component light DLR of the low beam light distribution pattern, the green component light DLG of the low beam light distribution pattern, and the blue component light DLB of the low beam light distribution pattern are sequentially repeated. Are emitted.
  • the lengths of the emission times of the laser beams LR, LG, and LB are substantially the same, the lengths of the emission times of the lights DLR, DLG, and DLB are also substantially the same.
  • the person can recognize that the light of the different colors is irradiated by the afterimage phenomenon.
  • the temporal resolution of human vision when the time from when the laser beam of a predetermined color is emitted until the laser beam of the predetermined color is emitted again is shorter than the temporal resolution of human vision, the temporal resolution of human vision
  • the light DLR, DLG, DLB emitted from the phase modulation element 22 with a shorter cycle is repeatedly irradiated, and the red light DLR, the green light DLG, and the blue light DLB are combined by an afterimage phenomenon.
  • the lengths of the emission times of the light DLR, DLG, and DLB are substantially the same.
  • the intensities of the respective laser beams LR, LG, and LB are adjusted so that the color of the combined light of the laser beams LR, LG, and LB becomes white as described above. For this reason, the color of the light synthesized by the afterimage phenomenon is white.
  • Each of the lights DLR, DLG, DLB overlaps with the low beam light distribution pattern as described above, and has an intensity distribution based on the intensity distribution of the low beam light distribution pattern. For this reason, the light distribution pattern of light in which the light DLR, DLG, and DLB are combined by the afterimage phenomenon becomes a low beam light distribution pattern.
  • emits said laser beam LR, LG, LB is set to 1/15 s or less from a viewpoint of suppressing feeling of the flicker of the light synthesize
  • the human visual temporal resolution is approximately 1/30 s. If it is a vehicle lamp, if the light emission cycle is about twice, it is possible to suppress the feeling of flickering of light. If this period is 1/30 s or less, it substantially exceeds the temporal resolution of human vision. Therefore, it is possible to further suppress the feeling of light flicker. Further, from the viewpoint of further suppressing the feeling of flickering of light, this period is preferably 1/60 s or less.
  • the vehicle headlamp 1 can irradiate light having a low beam light distribution pattern by an afterimage phenomenon.
  • FIG. 4 is a diagram showing a light distribution pattern for night illumination.
  • FIG. 4A is a diagram showing a low beam light distribution pattern
  • FIG. 4B is a diagram showing a high beam light distribution pattern.
  • S indicates a horizontal line
  • a light distribution pattern is indicated by a thick line.
  • the region LA1 is the region with the highest intensity, and the intensity decreases in the order of the region LA2 and the region LA3. That is, the phase modulation element 22 diffracts the light so that the light synthesized by the afterimage phenomenon forms a light distribution pattern including a low beam intensity distribution.
  • light having a lower intensity than the low beam may be emitted from the vehicle headlamp 1 above the position where the low beam is irradiated by the afterimage phenomenon.
  • This light is used as a light OHS for visually recognizing a sign.
  • the light distribution pattern of the light DLR, DLG, and DLB emitted from the phase modulation element 22 overlaps with the region irradiated with the marker visual recognition light OHS and includes an intensity distribution of the optical signal OHS for visual recognition of the marker.
  • a light pattern is preferably included.
  • the light distribution pattern of the light DLR, DLG, DLB includes an intensity distribution of the light OHS for visually recognizing the sign so that the external shape matches at least a part of the external shape of the region irradiated with the light OHS for visually recognizing the sign. More preferably, a light pattern is included. Furthermore, it is more preferable that this outer shape matches the entire outer shape of the region irradiated with the light OHS for visually recognizing the sign. In this case, it can be understood that a light distribution pattern for night illumination is formed by the low beam and the light OHS for visually recognizing the sign. The light distribution pattern for night illumination is not used only at night, but is also used in a dark place such as a tunnel.
  • the input unit 72 is electrically connected to the control unit 70, and the control unit 70 has the intensities of the laser beams LR, LG, and LB emitted from the light source 21 and the laser beam LR. , LG, and LB are input from the input unit 72 as electrical signals.
  • the light synthesized by the afterimage phenomenon as described above changes the color balance of the light by changing the intensity of the synthesized light and the length of the emission time of the synthesized light.
  • the input unit 72 can adjust the intensity of each of the laser beams LR, LG, LB emitted from the light source 21 and the length of each emission time of the laser beams LR, LG, LB. . For this reason, the color balance of the irradiated light can be adjusted without taking measures such as replacing the light source 21.
  • the intensity of the red laser light LR is greater than the intensity in a state in which light having the low beam light distribution pattern PTN L is irradiated from the vehicle headlamp 1 by the afterimage phenomenon.
  • the color of the white light having the low beam light distribution pattern PTN L irradiated from the vehicle headlamp 1 is changed to a color in which red is enhanced.
  • the intensity of the green laser beam LG is increased, the color of the white light is changed to a color in which green is increased, and when the intensity of the blue laser beam LB is increased, the white color of white light is changed. The color of the light is changed to a color in which blue is enhanced.
  • the intensity of the red laser light LR is lowered, the color of the white light is changed to a color in which bluish green is enhanced, and when the intensity of the green laser light LG is lowered, the white light is changed. Is changed to a color in which reddish purple is enhanced, and when the intensity of the blue laser beam LB is lowered, the color of white light is changed to a color in which yellow is enhanced.
  • the length of the emission time of the red laser light LR is set to the length of the emission time in a state where the light having the low beam distribution pattern PTN L is irradiated from the vehicle headlamp 1 by the afterimage phenomenon. If it is longer than this, the color of the white light having the low beam distribution pattern PTN L emitted from the vehicle headlamp 1 is changed to a color in which red is enhanced. Similarly, when the emission time of the green laser beam LG is increased, the color of the white light is changed to a color in which green is enhanced, and when the emission time of the blue laser beam LB is increased, The color of white light is changed to a color in which blue is enhanced.
  • the color of the white light is changed to a color in which blue-green is enhanced
  • the emission time of the green laser beam LG is shortened
  • the white color is changed to white.
  • the color of the light is changed to a color in which reddish purple is enhanced
  • the emission time of the blue laser light LB is shortened
  • the color of the white light is changed to a color in which yellow is enhanced.
  • white reference light is incident from the light source on the hologram element of the vehicle lamp disclosed in Patent Document 1, and a predetermined light distribution pattern such as a low beam or a high beam is formed by the diffracted light.
  • white light is light obtained by combining light of a plurality of wavelengths.
  • a hologram element which is a kind of diffraction grating has wavelength dependency. Therefore, light of different wavelengths contained in white tends to have different light distribution patterns depending on the hologram element. For this reason, in the vehicular lamp described in Patent Document 1, bleeding of light from which different colors of light emerge near the edge of the formed light distribution pattern.
  • the vehicle headlamp 1 of the present embodiment includes a light source 21 and a phase modulation element 22.
  • the phase modulation element 22 can change the light distribution pattern of the emitted light while diffracting and emitting the incident light.
  • the light source 21 emits red laser light LR, green laser light LG, and blue laser light LB in a time-sharing manner.
  • the laser beams LR, LG, and LB emitted from the light source 21 are incident on the phase modulation element 22, and the phase modulation element 22 has a phase modulation pattern corresponding to each of the laser beams LR, LG, and LB.
  • LG and LB are diffracted and emitted.
  • the regions irradiated with the light DLR, DLG, DLB emitted from the phase modulation element 22 corresponding to the respective laser beams LR, LG, LB overlap each other.
  • the vehicle headlamp 1 is White light obtained by combining the red laser light LR, the green laser light LG, and the blue laser light LB emitted from the light source 21 may be irradiated by an afterimage phenomenon.
  • the phase modulation element 22 has the phase modulation pattern corresponding to the laser beams LR, LG, and LB of the respective wavelengths.
  • Laser beams LR, LG, and LB are diffracted and emitted.
  • the light distribution patterns of the light DLR, DLG, and DLB emitted from the phase modulation element 22 corresponding to the laser beams LR, LG, and LB of the respective wavelengths can be changed to desired light distribution patterns.
  • the vehicle headlamp 1 of the present embodiment as the first mode is irradiated with the light DLR, DLG, DLB emitted from the phase modulation element 22 corresponding to the laser beams LR, LG, LB of the respective wavelengths. It is possible to suppress the deviation of the outer shape of the region to be generated, and it is possible to suppress the occurrence of color bleeding near the edge of the low beam light distribution pattern PTN L formed by the afterimage phenomenon.
  • the phase modulation element 22 emits light DLR, DLG, DLB at a focal position that is a predetermined distance away from the vehicle. It is preferable that the laser beams LR, LG, and LB be diffracted to emit the light beams DLR, DLG, and DLB so that at least a part of the outer shape of the regions to be matched with each other. That is, the phase modulation element 22 emits the laser beams LR, LG, and LB so that at least a part of the outer shape of the light distribution pattern of the light DLR, DLG, and DLB matches each other at a focal position that is a predetermined distance away from the vehicle.
  • the light DLR, DLG, and DLB are emitted after being diffracted.
  • the phase modulation pattern corresponding to each laser beam LR, LG, LB is such that at least a part of the outer shape of the region irradiated with the light DLR, DLG, DLB is mutually at a focal position that is a predetermined distance away from the vehicle.
  • a phase modulation pattern that diffracts the respective laser beams LR, LG, and LB so as to coincide with each other is preferable.
  • the vehicle headlamp 1 according to the present embodiment as the first aspect includes the red laser light LR, the green laser light LG, and the blue laser light LB emitted from the light source 21.
  • the synthesized white light can be irradiated by the afterimage phenomenon.
  • the color balance of the light synthesized by the afterimage phenomenon is adjusted by adjusting the intensity of each laser beam LR, LG, LB emitted from the light source 21 and the length of the emission time of each laser beam LR, LG, LB. It can be adjusted by doing. Therefore, the vehicle headlamp 1 of the present embodiment as the first aspect can adjust the color balance without taking measures such as replacing the light source 21.
  • FIG. 5 is a view showing the vehicular lamp in the second embodiment as the first aspect of the present invention in the same manner as FIG. 1, and FIG. 6 is a partial thickness direction of the phase modulation element shown in FIG. FIG.
  • the same referential mark is attached
  • the vehicular lamp is a vehicular headlamp 1 as in the first embodiment.
  • the vehicle headlamp 1 of the present embodiment is a vehicle of the first embodiment in that it is a transmission type phase modulation element that mainly diffracts and emits the light incident on the phase modulation element 22. Different from the headlamp 1 for use.
  • the phase modulation element 22 is, for example, an LCD (Liquid Crystal Display) that is a transmissive liquid crystal panel, and laser light LR, LG, LB emitted from the light source 21 is received in the phase modulation element 22. Incident in time division. Similar to the phase modulation element 22 of the first embodiment, the phase modulation element 22 of the present embodiment has a rectangular outer shape, and has a plurality of modulation units arranged in a matrix within the rectangle. . Each modulation unit includes a plurality of dots arranged in a matrix. The modulation unit is formed so as to be positioned one or more in the region 21A where the laser light emitted from the light source 21 is incident.
  • LCD Liquid Crystal Display
  • the phase modulation element 22 of the present embodiment is mainly provided with a translucent substrate 23 a instead of the silicon substrate 23, a point provided with a plurality of transparent electrodes 25 a instead of the plurality of electrodes 25, It differs from the phase modulation element 22 of the first embodiment in that the reflection film 26 is not provided.
  • the phase modulation element 22 of the present embodiment includes a pair of translucent substrates 23a and 29, a drive circuit layer 24, a plurality of transparent electrodes 25a, a liquid crystal layer 27, and a transparent electrode 28 as main components.
  • the plurality of transparent electrodes 25a are arranged in a matrix corresponding to each dot of the modulation unit on one surface side of one translucent substrate 23a, and each dot includes the transparent electrode 25a. .
  • the drive circuit layer 24 is disposed between the translucent substrate 23a and the plurality of transparent electrodes 25a.
  • the other translucent substrate 29 is disposed so as to face the one translucent substrate 23a on one surface side of the one translucent substrate 23a.
  • the laser light emitted from the light source 21 is incident on the surface of the other light-transmitting substrate 29 opposite to the one light-transmitting substrate 23a.
  • the transparent electrode 28 is disposed on the surface of the other translucent substrate 29 on the one translucent substrate 23a side.
  • the liquid crystal layer 27 includes liquid crystal molecules 27 a and is disposed between the plurality of transparent electrodes 25 a and the transparent electrodes 28.
  • the laser light emitted from the light source 21 is incident on the surface of the other translucent substrate 29 opposite to the one translucent substrate 23a.
  • the light LR incident from the surface opposite to the one light transmissive substrate 23 a side of the other light transmissive substrate 29 is transmitted through the transparent electrode 28, the liquid crystal layer 27, the transparent electrode 25 a, The light passes through the translucent substrate 23a and is emitted from the surface of the one translucent substrate 23a opposite to the other translucent substrate 29 side.
  • a voltage is applied between the specific transparent electrode 25a and the transparent electrode 28
  • the orientation of the liquid crystal molecules 27a of the liquid crystal layer 27 located between the transparent electrode 25a and the transparent electrode 28 changes, and the transparent electrode
  • the refractive index of the liquid crystal layer 27 located between 25a and the transparent electrode 28 changes. Since the orientation of the liquid crystal molecules 27a changes according to the applied voltage, the refractive index also changes according to this voltage.
  • the phase modulation element 22 of the present embodiment adjusts the refractive index of the liquid crystal layer 27 in each dot, thereby diffracting and emitting incident light.
  • the light distribution pattern can be changed to a desired light distribution pattern.
  • the phase modulation element 22 of the present embodiment can change the light distribution pattern of the emitted light by changing the refractive index of the liquid crystal layer 27 in each dot.
  • the phase modulation element 22 emits light from the other light transmissive substrate 29 when light is incident from the one light transmissive substrate 23a side. Even in this case, the phase modulation element 22 can change the light distribution pattern of the emitted light to a desired light distribution pattern by adjusting the refractive index of the liquid crystal layer 27 in each dot.
  • phase modulation element 22 of the present embodiment the same phase modulation pattern is formed in each modulation unit, similarly to the phase modulation element 22 of the first embodiment.
  • the phase modulation element 22 can change the modulation pattern to a phase modulation pattern corresponding to the red laser light LR, a phase modulation pattern corresponding to the green laser light LG, and a phase modulation pattern corresponding to the blue laser light LB. It is said that.
  • the phase modulation patterns corresponding to the laser beams LR, LG, and LB are different from each other.
  • the control unit 70 is configured so that the emission of the red laser light LR, the green laser light LG, and the blue laser light LB in the time division of the light source 21 and the change of the phase modulation pattern of the phase modulation element 22 are synchronized. 21 and the phase modulation element 22 are controlled. Therefore, similarly to the description in the first embodiment, the phase modulation element 22 diffracts each laser beam LR, LG, LB with a phase modulation pattern corresponding to each incident laser beam LR, LG, LB. Then, light DLR, DLG, and DLB are emitted.
  • the light distribution pattern PTN blue component light DLG light distribution pattern PTN L of the low beam of the green component of the light distribution pattern PTN L optical DLR and low beam of the red component of the L low beam Light DLB is emitted sequentially and repeatedly. Even in such a configuration, when the red laser beam LR, the green laser beam LG, and the blue laser beam LB are repeatedly emitted at a cycle shorter than the temporal resolution of human vision, the vehicle headlamp is used.
  • the lamp 1 can irradiate light having a low beam light distribution pattern PTN L by an afterimage phenomenon.
  • the phase modulation element 22 diffracts and emits the laser beams LR, LG, and LB with a phase modulation pattern corresponding to the laser beams LR, LG, and LB of the respective wavelengths.
  • the vehicle headlamp 1 of the present embodiment has an outer shape of a region irradiated with the light DLR, DLG, DLB emitted from the phase modulation element 22 corresponding to the laser beams LR, LG, LB of the respective wavelengths. Can be suppressed, and the occurrence of color blurring in the vicinity of the edge of the low-beam light distribution pattern PTN L formed by the afterimage phenomenon can be suppressed.
  • the color balance of the light emitted by the afterimage phenomenon is adjusted by adjusting the intensity of each laser beam LR, LG, LB emitted from the light source 21 and the length of the emission time of each laser beam LR, LG, LB. Can be adjusted. Therefore, the vehicle headlamp 1 of the present embodiment can adjust the color balance without taking measures such as replacing the light source 21.
  • the light OHS for sign visual recognition may be emitted.
  • the light distribution pattern of the light DLR, DLG, and DLB emitted from the phase modulation element 22 overlaps with the region irradiated with the marker visual recognition light OHS and includes an intensity distribution of the optical signal OHS for visual recognition of the marker.
  • a light pattern is preferably included.
  • the light distribution pattern of the light DLR, DLG, DLB includes an intensity distribution of the light OHS for visually recognizing the sign so that the external shape matches at least a part of the external shape of the region irradiated with the light OHS for visually recognizing the sign. More preferably, a light pattern is included. Furthermore, it is more preferable that this outer shape matches the entire outer shape of the region irradiated with the light OHS for visually recognizing the sign.
  • the vehicle headlamp 1 as the vehicle lamp is assumed to irradiate the low beam by the afterimage phenomenon, but as the first aspect of the present invention,
  • the vehicle lamp is not particularly limited.
  • the vehicular lamp as the first aspect may be irradiated with a high beam by an afterimage phenomenon, or may be irradiated with light constituting an image by an afterimage phenomenon. If the vehicle lamp is intended to irradiate a high beam by afterimage phenomenon is illuminated by light distribution pattern PTN H light afterimage of the high beam light distribution pattern is a light distribution pattern for nighttime illumination shown in FIG. 4 (B) . Note that, in the high beam light distribution pattern PTN H in FIG.
  • the region HA1 is a region having the highest intensity
  • the region HA2 is a region having a lower intensity than the region HA1. That is, the phase modulation element 22 diffracts the light so that the light synthesized by the afterimage phenomenon forms a light distribution pattern including the high beam intensity distribution. Further, when the vehicular lamp irradiates light constituting the image by an afterimage phenomenon, the direction of the light emitted from the vehicular lamp and the position where the vehicular lamp is attached to the vehicle are not particularly limited.
  • the light source 21 that emits the red laser beam LR, the green laser beam LG, and the blue laser beam LB in a time-division manner is described as an example.
  • the light source only needs to be able to emit a plurality of laser beams having different wavelengths in a time division manner.
  • the light source may emit two laser beams having different wavelengths in a time division manner. Two or more laser beams may be emitted in a time division manner.
  • the vehicle headlamp 1 as a vehicle lamp including the input unit 72 has been described as an example.
  • the vehicular lamp may not include the input unit 72.
  • the control unit determines whether or not the laser light is emitted from the light source on the basis of a predetermined setting value related to the intensity of the laser light emitted from the light source, the length of the laser light emission time, or the like. Control the state.
  • a predetermined setting value related to the intensity of the laser light emitted from the light source, the length of the laser light emission time, or the like. Control the state.
  • the intensity of the laser beam emitted from the light source and the length of the emission time of the laser beam can be adjusted.
  • the color balance of the emitted light can be adjusted. Therefore, the vehicular lamp having such a configuration can adjust the color balance without taking measures such as replacing the light source.
  • the phase modulation element 22 having a plurality of modulation units has been described as an example.
  • the number, size, outer shape and the like of the modulation unit are not particularly limited.
  • the phase modulation element 22 may have one modulation unit, and incident light may be diffracted by the one modulation unit.
  • the phase modulation patterns corresponding to the laser beams LR, LG, and LB are different from each other.
  • the phase modulation pattern corresponding to the laser beam of each wavelength diffracts each laser beam so that the regions irradiated with the light emitted from the phase modulation element corresponding to the laser beam of each wavelength overlap each other. It is sufficient that the phase modulation pattern to be generated is used.
  • some of the phase modulation patterns may be the same.
  • the reflection type phase modulation element 22 has been described as an example
  • the transmission type phase modulation element 22 has been described as an example.
  • the phase modulation element only needs to be able to change the light distribution pattern of the emitted light while diffracting and emitting the incident light.
  • the phase modulation element may be a GLV (Grating Light Valve) in which a plurality of reflectors are formed on a silicon substrate.
  • the GLV is a reflection type phase modulation element, and by electrically controlling the deflection of the reflector, the incident light is diffracted and emitted, and the light distribution pattern of the emitted light can be changed.
  • FIG. 7 is a diagram showing an example of a vehicle lamp in the present embodiment as the second mode, and is a diagram schematically showing a vertical section of the vehicle lamp.
  • the vehicular lamp of this embodiment is a vehicular headlamp 1
  • the vehicular headlamp 1 of the present embodiment has a configuration of a lamp unit 20. The difference is mainly different from the vehicle headlamp 1 of the first embodiment.
  • the lamp unit 20 of this embodiment includes a heat sink 30, a cooling fan 35, and an optical system unit 50 as main components, and is fixed to the housing 10 by a configuration not shown.
  • the heat sink 30 has a metal base plate 31 extending in a substantially horizontal direction, and a plurality of radiating fins 32 are provided integrally with the base plate 31 on the lower surface side of the base plate 31.
  • the cooling fan 35 is disposed with a clearance from the heat radiation fin 32 and is fixed to the heat sink 30.
  • the heat sink 30 is cooled by the airflow generated by the rotation of the cooling fan 35.
  • An optical system unit 50 is disposed on the upper surface of the base plate 31 in the heat sink 30.
  • the optical system unit 50 includes a first light emitting optical system 51R, a second light emitting optical system 51G, a third light emitting optical system 51B, a combining optical system 55, and a cover 59.
  • FIG. 8 is an enlarged view of the optical system unit shown in FIG.
  • the first light-emitting optical system 51R includes a first light source 52R, a first collimator lens 53R, and a phase modulation element 54R.
  • the first light source 52R is a laser element that emits a laser beam having a predetermined wavelength. In this embodiment, the first light source 52R emits a red laser beam having a power peak wavelength of, for example, 638 nm.
  • the optical system unit 50 has a circuit board (not shown), and the first light source 52R is mounted on the circuit board, and power is supplied through the circuit board.
  • the first collimating lens 53R is a lens that collimates the fast axis direction and the slow axis direction of the laser light emitted from the first light source 52R. Instead of the first collimating lens 53R, a collimating lens for collimating the fast axis direction of the laser light and a collimating lens for collimating the slow axis direction may be provided separately.
  • the phase modulation element 54R diffracts and emits incident light, and can change a light distribution pattern of the emitted light and a region irradiated with the emitted light.
  • the phase modulation element 54R of the present embodiment is a reflection type phase modulation element that diffracts and emits incident light while reflecting incident light.
  • the phase modulation element 54R is an LCOS like the phase modulation element 22 of the first embodiment.
  • the Red laser light emitted from the first collimating lens 53R is incident on the phase modulation element 54R, and the phase modulation element 54R diffracts and emits the red laser light.
  • the red first light DLR is emitted from the phase modulation element 54R, and this light DLR is emitted from the first light emitting optical system 51R.
  • the second light emitting optical system 51G includes a second light source 52G, a second collimating lens 53G, and a phase modulation element 54G.
  • the third light emitting optical system 51B includes a third light source 52B, a third collimating lens 53B, And a phase modulation element 54B.
  • the light sources 52G and 52B are laser elements that each emit laser light having a predetermined wavelength.
  • the second light source 52G emits green laser light having a power peak wavelength of 515 nm, for example
  • the third light source 52B emits blue laser light having a power peak wavelength of 445 nm, for example.
  • the light sources 52G and 52B are each mounted on the circuit board, and power is supplied through the circuit board.
  • the second collimating lens 53G is a lens that collimates the fast axis direction and the slow axis direction of the laser light emitted from the second light source 52G
  • the third collimating lens 53B is the fast axis of the laser light emitted from the third light source 52B. This lens collimates the direction and slow axis direction.
  • a collimating lens for collimating the fast axis direction of the laser light and a collimating lens for collimating the slow axis direction may be provided separately.
  • phase modulation element 54G and the phase modulation element 54B can change the distribution pattern of the emitted light and the region irradiated with the emitted light, while diffracting and emitting the incident light.
  • phase modulation elements 54G and 54B are, for example, LCOS which is a reflective liquid crystal panel. Green laser light emitted from the second collimating lens 53G is incident on the phase modulation element 54G, and the phase modulation element 54G diffracts and emits the green laser light.
  • the blue laser light emitted from the third collimating lens 53B is incident on the phase modulation element 54B, and the phase modulation element 54B diffracts and emits the blue laser light.
  • the green second light DLG is emitted from the phase modulation element 54G, and this light DLG is emitted from the second light-emitting optical system 51G.
  • the blue third light DLB is emitted from the phase modulation element 54B, and this light DLB is emitted from the third light-emitting optical system 51B.
  • the synthetic optical system 55 includes a first optical element 55f and a second optical element 55s.
  • the first optical element 55f is an optical element that synthesizes the first light DLR emitted from the first light emitting optical system 51R and the second light DLG emitted from the second light emitting optical system 51G.
  • the first optical element 55f synthesizes the first light DLR and the second light DLG by transmitting the first light DLR and reflecting the second light DLG.
  • the second optical element 55s is an optical that combines the first light DLR and the second light DLG synthesized by the first optical element 55f and the third light DLB emitted from the third light-emitting optical system 51B. It is an element.
  • the second optical element 55s transmits the first light DLR and the second light DLG synthesized by the first optical element 55f and reflects the third light DLB, thereby reflecting the first light.
  • the DLR, the second light DLG, and the third light DLB are combined.
  • Examples of the first optical element 55f and the second optical element 55s include a wavelength selection filter in which an oxide film is stacked on a glass substrate. By controlling the type and thickness of the oxide film, it is possible to transmit light having a wavelength longer than a predetermined wavelength and reflect light having a wavelength shorter than this wavelength.
  • the combined optical system 55 emits light in which the first light DLR, the second light DLG, and the third light DLB are combined. 7 and 8, the first light DLR is indicated by a solid line, the second light DLG is indicated by a broken line, and the third light DLB is indicated by a one-dot chain line. These light DLR, DLG, DLB Shown staggered.
  • the cover 59 is fixed on the base plate 31 of the heat sink 30.
  • the cover 59 has a substantially rectangular shape and is made of a metal such as aluminum.
  • the first light emitting optical system 51R, the second light emitting optical system 51G, the third light emitting optical system 51B, and the combining optical system 55 are arranged in the space inside the cover 59.
  • an opening 59H through which light emitted from the combining optical system 55 can be transmitted is formed in front of the cover 59.
  • the inner wall of the cover 59 is preferably light-absorbing by black anodizing or the like.
  • the inner wall of the cover 59 By making the inner wall of the cover 59 light-absorbing, it is possible to prevent light irradiated to the inner wall of the cover 59 from being reflected or refracted unintentionally and being emitted from the opening 59H in an unintended direction. .
  • phase modulation element 54R, the phase modulation element 54G, and the phase modulation element 54B have the same configuration, and the phase modulation elements 54R, 54G, and 54B are the same as those shown in FIGS.
  • the configuration is the same as that of the phase modulation element 22 in one embodiment.
  • FIG. 9 is a front view of the phase modulation element shown in FIG.
  • a region 53A where the laser light emitted from the first collimating lens 53R is incident is indicated by a broken line.
  • the phase modulation element 54R has a rectangular outer shape and includes a plurality of modulation units arranged in a matrix within the rectangle. Diffracts and emits light incident on the modulation unit. Each modulation unit includes a plurality of dots arranged in a matrix. The modulation unit is formed so as to be located at least one in the region 53A where the laser light emitted from the first collimating lens 53R is incident.
  • a scanning line driving circuit 22H is arranged on the lateral side of the phase modulation element 54R, and a data line driving circuit 22V is arranged on one side in the vertical direction of the phase modulation element 54R. Yes.
  • the phase modulation element 54R adjusts the refractive index of the liquid crystal layer 27 in each dot, thereby diffracting and emitting incident light.
  • the light distribution pattern can be changed to a desired light distribution pattern.
  • the phase modulation element 54R changes the refractive index of the liquid crystal layer 27 in each dot, thereby changing the light distribution pattern of the emitted light, or changing the direction of the emitted light and irradiating this light. Can be changed.
  • control unit 70 is electrically connected to the scanning line drive circuit 22H and the data line drive circuit 22V of the phase modulation element 54R. Controls the refractive index of the liquid crystal layer 27 in each dot.
  • the control unit 70 is also electrically connected to a scanning line drive circuit and a data line drive circuit (not shown) in the phase modulation elements 54G and 54B, similarly to the phase modulation element 54R.
  • the refractive index of the liquid crystal layer in each dot of 54B is also controlled.
  • the control unit 70 performs these controls based on a signal input to the control unit 70 from the outside.
  • the control unit 70 is electrically connected to a control device 71 such as an ECU (electronic control device) of the vehicle.
  • the same phase modulation pattern is formed in each modulation unit in the phase modulation element 54R. Further, the same phase modulation pattern is formed in each modulation unit in the phase modulation element 54G, and the same phase modulation pattern is formed in each modulation unit in the phase modulation element 54B.
  • the phase modulation pattern is a pattern of the refractive index of the liquid crystal layer 27 in each dot, and between the electrode 25 and the transparent electrode 28 corresponding to each dot. It can be understood that this is also the pattern of the voltage applied to. By adjusting this phase modulation pattern, the light distribution pattern of the emitted light can be changed to a desired light distribution pattern.
  • the phase modulation patterns in the phase modulation elements 54R, 54G, and 54B are different from each other.
  • the phase modulation patterns in the phase modulation elements 54R, 54G, and 54B are obtained by combining the light DLR, DLG, and DLB emitted from each of the phase modulation elements 54R, 54G, and 54B with the combining optical system 55.
  • 4B is a phase modulation pattern for diffracting the laser beams emitted from the collimating lenses 53R, 53G, and 53B so that the combined light PTN L shown in FIG.
  • the phase modulation elements 54R, 54G, and 54B are light distribution patterns PTN L in which the light DLR, DLG, and DLB emitted from each of the phase modulation elements 54R, 54G, and 54B is synthesized in the synthesis optical system 55.
  • the light DLR emitted from the phase modulation element 54R is a strength distribution based on the intensity distribution of the light distribution pattern PTN L low beam with overlapping the light distribution pattern PTN L of the low beam.
  • the light DLG emitted from the phase modulation element 54G overlaps the low beam light distribution pattern PTN L and has an intensity distribution based on the intensity distribution of the low beam light distribution pattern.
  • the light DLB emitted from the phase modulating element 54B is an intensity distribution based on the intensity distribution of the light distribution pattern PTN L low beam with overlapping the light distribution pattern PTN L of the low beam.
  • each of the phase modulation elements 54R, 54G, and 54B has a plurality of modulation units that form the same phase modulation pattern, and the collimating lens so that each modulation unit has such a light distribution pattern.
  • the laser beams emitted from 53R, 53G, and 53B are diffracted, respectively.
  • the phase modulation elements 54R, 54G, and 54B are configured such that the outer shape of the light distribution pattern of the light DLR, DLG, and DLB emitted from the phase modulation elements 54R, 54G, and 54B matches the outer shape of the low beam light distribution pattern PTN L.
  • phase modulation element 54R emits the red component light DLR of the low-beam light distribution pattern PTN L
  • phase modulation element 54G emits the green component light DLG of the low-beam light distribution pattern PTN L
  • phase modulation element 54B Emits the light component DLB of the blue component of the light distribution pattern PTN L of the low beam.
  • the above and intensity distribution based on the intensity distribution of the light distribution pattern PTN L of the low beam is in the portion intensity at high light distribution pattern PTN L of the low beam, the phase modulation element 54R, 54G, light emitted from 54B DLR, This means that the strength of DLG and DLB is also high.
  • each phase modulation pattern in the phase modulation elements 54R, 54G, and 54B is changed at a time interval shorter than a predetermined time interval. That is, the phase modulation elements 54R, 54G, and 54B diffract the laser beams emitted from the collimating lenses 53R, 53G, and 53B, respectively, with a phase modulation pattern that changes at a time interval shorter than a predetermined time interval.
  • the phase modulation patterns in the phase modulation elements 54R, 54G, and 54B are the light DLR, DLG, and DLB emitted from the phase modulation elements 54R, 54G, and 54B at a focal position that is a predetermined distance away from the vehicle.
  • the irradiated area is changed so as to vibrate in a predetermined direction.
  • This focal position is, for example, a position 25 m away from the vehicle. Therefore, the region irradiated with the light DLR emitted from the phase modulation element 54R vibrates in a predetermined direction corresponding to the change of the phase modulation pattern in the phase modulation element 54R, and the light DLG emitted from the phase modulation element 54G
  • the irradiated region vibrates in a predetermined direction corresponding to the change of the phase modulation pattern in the phase modulation element 54G, and the region irradiated with the light DLB emitted from the phase modulation element 54B is the phase modulation in the phase modulation element 54B.
  • Each phase modulation pattern in the phase modulation elements 54R, 54G, and 54B is preferably changed so as not to change the outer shape of the region corresponding to the vibration of the region irradiated with the light DLR, DLG, and DLB. .
  • the amplitude of vibration in this region is smaller than the width of this region in the vibration direction. For this reason, it can be understood that the regions irradiated with the light DLR emitted from the phase modulation elements 54R having different phase modulation patterns overlap each other. In addition, it can be understood that regions irradiated with the light DLG emitted from the phase modulation elements 54G having different phase modulation patterns overlap each other. Further, it can be understood that regions irradiated with the light DLB emitted from the phase modulation elements 54B having different phase modulation patterns overlap each other. Note that the amplitude of the vibration in this region is preferably set to such an extent that a person in the vehicle cannot recognize the vibration in this region.
  • the above-described amplitude at the focal position 25 m away from the vehicle is 3.6 mm or less. It is preferable.
  • laser beams are emitted from the light sources 52R, 52G, and 52B, respectively.
  • red laser light is emitted from the first light source 52R
  • green laser light is emitted from the second light source 52G
  • blue laser light is emitted from the third light source 52B.
  • the respective laser beams are collimated by the collimating lenses 53R, 53G, and 53B, and then enter the phase modulation elements 54R, 54G, and 54B.
  • the phase modulation elements 54R, 54G, and 54B diffract the laser light incident on the phase modulation elements 54R, 54G, and 54B, respectively.
  • the first light DLR which is the red component light of the low beam light distribution pattern PTN L
  • the first light DLR which is the green component light of the low beam light distribution pattern PTN L
  • the second light DLG is emitted
  • the third light DLB which is the light of the blue component of the low beam distribution pattern PTN L
  • the first light DLR is emitted from the first light emitting optical system 51R
  • the second light DLG is emitted from the second light emitting optical system 51G
  • the third light DLB is emitted from the third light emitting optical system 51B.
  • the combining optical system 55 first, the first light DLR and the second light DLG are combined by the first optical element 55f.
  • the first light DLR and the second light DLG combined by the first optical element 55f are combined with the third light DLB by the second optical element 55s.
  • the light obtained by combining the first red light DLR, the second green light DLG, and the third blue light DLB becomes white light.
  • the first light DLR, the second light DLG, and the third light DLB overlap with the low beam light distribution pattern PTN L as described above, and are based on the intensity distribution of the low beam light distribution pattern PTN L. Since the intensity distribution is obtained, white light obtained by combining these lights has a low beam intensity distribution.
  • the combined white light is emitted from the opening 59H of the cover 59, and this light is emitted from the vehicle headlamp 1 via the front cover 12. Since this light has a low beam distribution pattern PTN L , the irradiated light is a low beam.
  • the respective phase modulation patterns in the phase modulation elements 54R, 54G, and 54B are changed at a time interval shorter than a predetermined time interval.
  • These changes in the phase modulation pattern are such that the region irradiated with the light DLR, DLG, DLB emitted from the phase modulation elements 54R, 54G, 54B vibrates in a predetermined direction at a focal position away from the vehicle by a predetermined distance. It has been changed. Therefore, each of the regions irradiated with the light DLR, DLG, DLB emitted from the phase modulation elements 54R, 54G, 54B has a predetermined direction corresponding to the change of the phase modulation pattern in the phase modulation elements 54R, 54G, 54B.
  • regions irradiated with the light DLR emitted from the phase modulation elements 54R having different phase modulation patterns overlap each other. For this reason, in the portion of the irradiated object such as the road surface where these regions overlap each other, the visually continuous light DLR is superposed, and the optical path from the phase modulation element 54R to this portion is It changes corresponding to the change of the phase modulation pattern in the phase modulation element 54R. In addition, regions irradiated with the light DLG emitted from the phase modulation elements 54G having different phase modulation patterns are overlapped with each other.
  • the visually continuous light DLG is superposed, and the optical path from the phase modulation element 54G to this part is It changes corresponding to the change of the phase modulation pattern in the phase modulation element 54G.
  • regions irradiated with the light DLB emitted from the phase modulation elements 54B having different phase modulation patterns overlap each other. For this reason, in the part where these regions overlap each other in the irradiated object such as the road surface, the visually continuous light DLB is superimposed, and the optical path from the phase modulation element 54B to this part is It changes corresponding to the change of the phase modulation pattern in the phase modulation element 54B.
  • the incident angle of the light DLB and the phase of the light can change. Therefore, the visual superimposition of the first light DLR having different incident angles and phases, the visual superimposition of the second light DLG having different incident angles and phases, and the third light having different incident angles and phases.
  • Each of the DLB visual overlays occurs continuously. For this reason, it can suppress feeling each flicker of 1st light DLR, 2nd light DLG, and 3rd light DLB. In this way, it is possible to suppress the feeling of flickering of the low beam formed by the first light DLR, the second light DLG, and the third light DLB.
  • the time intervals at which the phase modulation patterns in the phase modulation elements 54R, 54G, and 54B change are preferably 1/15 s or less from the viewpoint of suppressing light flickering.
  • the human visual temporal resolution is approximately 1/30 s. In the case of a vehicular lamp, it is possible to suppress the flickering of light if the visual light overlapping time interval is about twice this time. If this time interval is 1/30 s or less, the time resolution of human vision is generally exceeded. Therefore, it is possible to further suppress the feeling of light flicker. Further, from the viewpoint of further suppressing the feeling of flickering of light, this time interval is preferably 1/60 s or less.
  • the vibration direction may be the up-down direction, the left-right direction, the up-down direction, and the left-right direction.
  • the direction is preferably set to two or more directions. Compared to the case where the direction of vibration is two or more directions, the visual continuous superposition of light occurs in multiple directions, and the light flickers. Can be further suppressed.
  • the vibration direction of the region irradiated with the light DLR, the vibration direction of the region irradiated with the light DLG, and the vibration direction of the region irradiated with the light DLB may be the same direction or different directions. Also good.
  • region irradiated with light DLR, DLG, and DLB may be substantially constant, it is preferable to fluctuate from a viewpoint of suppressing feeling of light flicker. By changing the amplitude, it is possible to further suppress the occurrence of visually flickering by visually overlapping light continuously in multiple directions as compared with the case where the amplitude does not change.
  • the amplitude in the vibration of the region irradiated with the light DLR, DLG, DLB may be different from each other, or may be the same amplitude. These vibrations may be synchronized with each other or may be asynchronous.
  • the vehicle headlamp 1 of the present embodiment as the second aspect includes light sources 52R, 52G, and 52B that emit light of predetermined wavelengths, respectively, and three phase modulation elements 54R, 54G, and 54B. .
  • the phase modulation element 54R diffracts and emits the light emitted from the first light source 52R with a phase modulation pattern that changes at a time interval shorter than a predetermined time interval.
  • the phase modulation element 54G diffracts and emits the light emitted from the second light source 52G with a phase modulation pattern that changes at a time interval shorter than a predetermined time interval.
  • the phase modulation element 54B diffracts and emits the light emitted from the third light source 52B with a phase modulation pattern that changes at a time interval shorter than a predetermined time interval.
  • the region irradiated with the light DLR emitted from the phase modulation element 54R vibrates in a predetermined direction corresponding to the change of the phase modulation pattern in the phase modulation element 54R, and is emitted from the phase modulation elements 54R having different phase modulation patterns. Regions irradiated with the light DLR overlap each other. For this reason, as described above, in the portion of the irradiated object such as the road surface where these regions overlap each other, visually continuous superimposing of the light DLR occurs, and the phase modulation element 54R reaches this portion.
  • the region irradiated with the light DLG emitted from the phase modulation element 54G vibrates in a predetermined direction corresponding to the change of the phase modulation pattern in the phase modulation element 54G, and from the phase modulation elements 54G having different phase modulation patterns.
  • the areas irradiated with the emitted light DLG overlap each other. For this reason, as described above, in the portion of the irradiated object such as the road surface where these regions overlap each other, visually continuous superimposing of the light DLG occurs, and the phase modulation element 54G reaches this portion.
  • the region irradiated with the light DLB emitted from the phase modulation element 54B vibrates in a predetermined direction corresponding to the change of the phase modulation pattern in the phase modulation element 54B, and from the phase modulation elements 54B having different phase modulation patterns.
  • the areas irradiated with the emitted light DLB overlap each other. For this reason, as described above, in the portion of the irradiated object such as the road surface where these regions overlap each other, visually continuous superimposing of the light DLB occurs, and this portion is reached from the phase modulation element 54B. Until the optical path changes corresponding to the change of the phase modulation pattern in the phase modulation element 54B.
  • the incident angles of the second light DLG and the third light DLB and the phase of these lights can be changed. Therefore, the visual superimposition of the first light DLR having different incident angles and phases, the visual superimposition of the second light DLG having different incident angles and phases, and the third light having different incident angles and phases.
  • Each of the DLB visual overlays occurs continuously. For this reason, it can be suppressed that the flickering of the low beam formed by the first light DLR, the second light DLG, and the third light DLB is felt.
  • the light is emitted from each light source.
  • the light intensity By adjusting the light intensity, light of a desired color can be emitted.
  • FIG. 10 is a view showing the optical system unit in the fourth embodiment as the second mode of the present invention in the same manner as FIG.
  • the same referential mark is attached
  • the optical system unit 50 of the present embodiment is a transmission type phase modulation element that mainly diffracts and emits light incident on each of the phase modulation elements 54R, 54G, and 54B. This is different from the optical system unit 50 of the first embodiment.
  • the phase modulation elements 54R, 54G, and 54B are LCDs that are transmissive liquid crystal panels, for example, similarly to the phase modulation element 22 of the second embodiment shown in FIG.
  • Red laser light emitted from the first collimating lens 53R is incident on the phase modulation element 54R, and the phase modulation element 54R diffracts and emits the red laser light.
  • Green laser light emitted from the second collimating lens 53G is incident on the phase modulation element 54G, and the phase modulation element 54G diffracts and emits the green laser light.
  • Red laser light emitted from the third collimating lens 53B is incident on the phase modulation element 54B, and the phase modulation element 54B diffracts and emits the blue laser light.
  • Each of the phase modulation elements 54R, 54G, and 54B of the present embodiment diffracts incident light by adjusting the refractive index of the liquid crystal layer 27 in each dot, similarly to the phase modulation element 22 of the second embodiment.
  • the light distribution pattern of the emitted light can be changed to a desired light distribution pattern.
  • each of the phase modulation elements 54R, 54G, and 54B of the present embodiment changes the light distribution pattern of the emitted light by changing the refractive index of the liquid crystal layer 27 in each dot, and the direction of the emitted light. It is possible to change the area irradiated with this light by changing.
  • Each of the phase modulation elements 54R, 54G, and 54B emits light from the other translucent substrate 29 when light enters from the one translucent substrate 23a side. Even in this case, each of the phase modulation elements 54R, 54G, and 54B can adjust the refractive index of the liquid crystal layer 27 in each dot to change the light distribution pattern of the emitted light to a desired light distribution pattern. Even in this case, each of the phase modulation elements 54R, 54G, 54B changes the light distribution pattern of the emitted light or emits it by changing the refractive index of the liquid crystal layer 27 in each dot. It is possible to change the area irradiated with this light by changing the direction of the light.
  • the same phase modulation pattern is formed in each modulation unit in the phase modulation element 54R. Further, the same phase modulation pattern is formed in each modulation unit in the phase modulation element 54G, and the same phase modulation pattern is formed in each modulation unit in the phase modulation element 54B.
  • the phase modulation patterns in the phase modulation elements 54R, 54G, and 54B are different from each other.
  • the phase modulation elements 54R, 54G, and 54B combine the light DLR, DLG, and DLB emitted from the phase modulation elements 54R, 54G, and 54B, respectively.
  • the laser beams emitted from the collimating lenses 53R, 53G, and 53B are diffracted so that the emitted light becomes a low beam light distribution pattern PTN L. Therefore, the first light DLR that is the red component light of the low beam light distribution pattern PTN L is emitted from the phase modulation element 54R, and the green component light of the low beam light distribution pattern PTN L is emitted from the phase modulation element 54G.
  • the second light DLG is emitted, and the third light DLB, which is the blue component light of the low beam light distribution pattern PTN L , is emitted from the phase modulation element 54B. Then, the first light DLR, the second light DLG, and the third light DLB are combined by the combining optical system 55. As in the third embodiment, the first light DLR, the second light DLG, and the third light DLB overlap with the low beam light distribution pattern PTN L and have the intensity distribution of the low beam light distribution pattern PTN L , respectively. Since the intensity distribution is based on the white light, the white light obtained by combining these lights has a low beam intensity distribution.
  • the phase modulation elements 54R, 54G, and 54B are configured such that the outer shape of the light distribution pattern of the light DLR, DLG, and DLB emitted from the phase modulation elements 54R, 54G, and 54B matches the outer shape of the low beam light distribution pattern PTN L.
  • the combined white light is emitted from the opening 59H of the cover 59, and this light is emitted from the vehicle headlamp 1 via the front cover 12. Since this light has a low beam distribution pattern PTN L , the irradiated light is a low beam.
  • the phase modulation pattern in the phase modulation element 54R changes at a time interval shorter than a predetermined time interval, and the light DLR emitted from the phase modulation element 54R is irradiated.
  • the regions irradiated with the light DLR emitted from the phase modulation elements 54R having different phase modulation patterns overlap each other.
  • the phase modulation pattern in the phase modulation element 54G changes at a time interval shorter than a predetermined time interval, and the region irradiated with the light DLG emitted from the phase modulation element 54G is the phase modulation pattern in the phase modulation element 54G. It vibrates in a predetermined direction in response to the change. Thus, the regions irradiated with the light DLG emitted from the phase modulation elements 54G having different phase modulation patterns overlap each other.
  • the phase modulation pattern in the phase modulation element 54B changes at a time interval shorter than the predetermined time interval, and the region irradiated with the light DLB emitted from the phase modulation element 54B is the phase modulation pattern in the phase modulation element 54B. It vibrates in a predetermined direction in response to the change. Thus, the regions irradiated with the light DLB emitted from the phase modulation elements 54B having different phase modulation patterns overlap each other.
  • the first light DLR, the second light DLG, and the third light DLR as in the vehicle headlamp 1 of the third embodiment as the second aspect. It is possible to suppress the flickering of the low beam formed by the light DLB.
  • FIG. 11 is a view showing the optical system unit in the fifth embodiment as the second aspect of the present invention in the same manner as FIG.
  • the optical system unit 50 of this embodiment does not include the combining optical system 55, and each light emitted from the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B.
  • the light emission direction is set to the opening 59H side of the cover 59.
  • the phase modulation elements 54R, 54G, and 54B receive light obtained by combining the light DLR, DLG, and DLB emitted from the phase modulation elements 54R, 54G, and 54B, respectively.
  • the laser beams emitted from the collimating lenses 53R, 53G, and 53B are diffracted so that the low beam distribution pattern PTN L is obtained. Therefore, the first light DLR that is the red component light of the low beam light distribution pattern PTN L is emitted from the phase modulation element 54R, and the green component light of the low beam light distribution pattern PTN L is emitted from the phase modulation element 54G.
  • the second light DLG is emitted, and the third light DLB, which is the blue component light of the low beam light distribution pattern PTN L , is emitted from the phase modulation element 54B.
  • the first light DLR emitted from the phase modulation element 54R, the second light DLG emitted from the phase modulation element 54R, and the third light DLB emitted from the phase modulation element 54B are emitted from the opening 59H of the cover 59, respectively.
  • the light is irradiated to the outside of the vehicle headlamp 1 through the front cover 12.
  • the first light DLR, the second light DLG, and the third light DLB are irradiated so that the areas irradiated with the respective lights overlap each other at a focal position separated from the vehicle by a predetermined distance.
  • This focal position is, for example, a position 25 m away from the vehicle.
  • the first light DLR, the second light DLG, and the third light DLB are preferably irradiated so that the outer shapes of the respective light distribution patterns substantially coincide at this focal position.
  • the phase modulation pattern in the phase modulation element 54R changes at a time interval shorter than a predetermined time interval, and the light DLR emitted from the phase modulation element 54R changes.
  • the irradiated region vibrates in a predetermined direction corresponding to the change of the phase modulation pattern in the phase modulation element 54R.
  • the regions irradiated with the light DLR emitted from the phase modulation elements 54R having different phase modulation patterns overlap each other.
  • the phase modulation pattern in the phase modulation element 54G changes at a time interval shorter than a predetermined time interval, and the region irradiated with the light DLG emitted from the phase modulation element 54G is the phase modulation pattern in the phase modulation element 54G. It vibrates in a predetermined direction in response to the change. Thus, the regions irradiated with the light DLG emitted from the phase modulation elements 54G having different phase modulation patterns overlap each other.
  • the phase modulation pattern in the phase modulation element 54B changes at a time interval shorter than the predetermined time interval, and the region irradiated with the light DLB emitted from the phase modulation element 54B is the phase modulation pattern in the phase modulation element 54B. It vibrates in a predetermined direction in response to the change. Thus, the regions irradiated with the light DLB emitted from the phase modulation elements 54B having different phase modulation patterns overlap each other.
  • the configuration can be simplified, and the first light DLR and It is possible to suppress the flickering of the low beam formed by the second light DLG and the third light DLB.
  • the vehicular headlamp 1 as the vehicular lamp is assumed to irradiate a low beam.
  • the vehicular headlamp 1 as the second mode of the present invention The lamp is not particularly limited.
  • the vehicular lamp as the second aspect may be irradiated with a high beam, or may be irradiated with light constituting an image.
  • the light of the high beam light distribution pattern PTN H is a light distribution pattern for night lighting, shown in FIG. 4 (B) is irradiated. That is, each of the phase modulation elements diffracts the light so that the combined light forms a light distribution pattern including a high beam intensity distribution.
  • the direction of the light emitted from the vehicle lamp and the position where the vehicle lamp is attached to the vehicle are not particularly limited.
  • the optical system unit 50 including the elements 54R, 54G, and 54B has been described as an example.
  • the optical system unit as the second aspect may include at least one light source and a phase modulation element corresponding to the light source.
  • the optical system unit may include a light source that emits white light and a phase modulation element that diffracts and emits the white light emitted from the light source.
  • the phase modulation patterns in the phase modulation elements 54R, 54G, and 54B are the phase modulation elements 54R and 54G at the focal position that is a predetermined distance away from the vehicle.
  • the region irradiated with the light DLR, DLG, DLB is changed so as to vibrate in a predetermined direction.
  • each of the regions irradiated with the light DLR, DLG, DLB emitted from the phase modulation elements 54R, 54G, 54B is predetermined in response to the change in the phase modulation pattern in each of the phase modulation elements 54R, 54G, 54B. It was vibrating in the direction of.
  • the phase modulation element as the second aspect diffracts and emits the light emitted from the light source with a phase modulation pattern that changes at a time interval shorter than a predetermined time interval, and the phase modulation elements having different phase modulation patterns It suffices that the areas irradiated with the light emitted from each other overlap each other. With such a configuration, at least one of the light distribution pattern of the light emitted from the phase modulation element and the region irradiated with the light can change corresponding to the change of the phase modulation pattern.
  • the optical path from the phase modulation element to this part changes corresponding to the change of the phase modulation pattern.
  • the phase modulation pattern in the phase modulation element as the second aspect may be changed so that the intensity distribution in the light distribution pattern of the light emitted from the phase modulation element changes. That is, the intensity distribution in the light distribution pattern of the light emitted from the phase modulation element may change corresponding to the change in the phase modulation pattern in the phase modulation element. Even with such a configuration, it is possible to suppress the visual superimposition of light having different incident angles and phases, and to prevent the light from flickering. In addition, it is preferable that the change in the intensity distribution is a change that does not allow a person in the vehicle to recognize the change in the intensity distribution.
  • the intensity change rate is preferably 5% or less.
  • the phase modulation pattern may change so that the outer shape of the light distribution pattern corresponds to the change in the intensity distribution.
  • the phase modulation pattern is preferably changed so that the outer shape of the light distribution pattern does not change in response to the change in the intensity distribution in the light distribution pattern. That is, it is preferable that only the intensity distribution in the light distribution pattern of the light emitted from the phase modulation element changes.
  • the phase modulation pattern in the phase modulation element changes the intensity distribution of the light distribution pattern of the light emitted from the phase modulation element in response to the change in the phase modulation pattern, and is irradiated with the light emitted from the phase modulation element.
  • the area to be applied may be changed so as to vibrate in a predetermined direction. That is, the intensity distribution in the light distribution pattern of the light emitted from the phase modulation element changes corresponding to the change of the phase modulation pattern in the phase modulation element, and the region irradiated with the light emitted from the phase modulation element is predetermined. You may vibrate in the direction of.
  • the intensity distribution in the light distribution pattern of the light emitted from the phase modulation element changes, and the region irradiated with the light emitted from the phase modulation element also changes. You don't have to.
  • phase modulation elements 54R, 54G, and 54B having a plurality of modulation units have been described as examples.
  • the number, size, outer shape and the like of the modulation unit are not particularly limited.
  • the phase modulation element may have one modulation unit, and incident light may be diffracted by this one modulation unit.
  • the reflection type phase modulation elements 54R, 54G, and 54B will be described as an example.
  • the transmission type is used.
  • the phase modulation elements 54R, 54G, and 54B have been described as examples.
  • the phase modulation element only needs to be able to change the light distribution pattern of the emitted light while diffracting and emitting the incident light.
  • the phase modulation element may be a GLV in which a plurality of reflectors are formed on a silicon substrate.
  • phase modulation patterns in the phase modulation elements 54R, 54G, and 54B are different from each other, but these phase modulation patterns are the same. It may be a phase modulation pattern.
  • the first optical element 55f transmits the first light DLR and reflects the second light DLG, whereby the first light DLR is transmitted.
  • the second light DLG, and the second optical element 55s transmits the first light DLR and the second light DLG synthesized by the first optical element 55f and reflects the third light DLB.
  • the first light DLR, the second light DLG, and the third light DLB were synthesized.
  • the third light DLB and the second light DLG are combined by the first optical element 55f
  • the third light DLB and the second light DLB combined by the first optical element 55f are combined by the second optical element 55s.
  • the optical DLG and the first optical DLR may be combined.
  • the positions of the third light emitting optical system 51B including the third collimating lens 53B and the phase modulation element 54B are switched.
  • the band pass filter that transmits light in a predetermined wavelength band and reflects light in other wavelength bands is the first optical element 55f or the second optical filter. It may be used for the optical element 55s.
  • the combining optical system 55 only needs to superimpose the light emitted from the respective light emitting optical systems, and is not limited to the configurations of the third and fourth embodiments as the second mode or the above configuration.
  • FIG. 12 is a view showing an example of the vehicle lamp according to the present embodiment as the third mode, and is a longitudinal sectional view schematically showing a vertical section of the vehicle lamp.
  • the vehicle lamp is the vehicle headlamp 1 in the present embodiment.
  • the vehicle headlamp 1 of the present embodiment is different from that of the third embodiment in that the cover 59 is a case 40 and the configuration of the optical system unit 50 is different. Mainly different from 1.
  • the case 40 of the present embodiment includes a base 41 made of a metal such as aluminum and a cover 42, and the base 41 is fixed to the upper surface of the base plate 31 in the heat sink 30.
  • An opening is formed in the base 41 from the front to the top.
  • the cover 42 is fixed to the base 41 so as to close the opening on the upper side.
  • an opening 40H defined by the front end portion of the base 41 and the front end portion of the cover 42 is formed.
  • An optical system unit 50 is disposed in the internal space of the case 40.
  • the inner wall of the base 41 and the inner wall of the cover 42 have light absorptivity, even when light is irradiated to these inner walls due to unintentional reflection or refraction, the irradiated light is reflected and passes through the opening 40H. Emitting in an unintended direction can be suppressed.
  • FIG. 13 is an enlarged view of the optical system unit 50 provided in the vehicle headlamp 1 shown in FIG.
  • the optical system unit 50 in this embodiment includes a first light source 52R, a second light source 52G, a third light source 52B, a first collimator lens 53R, a second collimator lens 53G, A third collimating lens 53B, a first diffraction grating 154R, a second diffraction grating 154G, a third diffraction grating 154B, a first MEMS (Micro Electro Mechanical System) mirror 80R, a second MEMS mirror 80G, and a third MEMS mirror 80B; And a synthetic optical system 55.
  • the diffraction gratings 154R, 154G, and 154B are transmissive diffraction gratings.
  • the first light source 52R emits red laser light having a power peak wavelength of, for example, 638 nm upward.
  • the second light source 52G emits green laser light having a power peak wavelength of, for example, 515 nm backward
  • the third light source 52B emits blue laser light having a power peak wavelength of, for example, 445 nm backward.
  • the optical system unit 50 has a circuit board (not shown) fixed to the base 41. The first light source 52R, the second light source 52G, and the third light source 52B are each mounted on the circuit board, and power is supplied to these light sources via the circuit board.
  • the first collimating lens 53R is disposed above the first light source 52R, and collimates the fast axis direction and the slow axis direction of the laser light emitted from the first light source 52R.
  • the second collimating lens 53G is disposed behind the second light source 52G, and collimates the fast axis direction and the slow axis direction of the laser light emitted from the second light source 52G.
  • the third collimating lens 53B is disposed behind the third light source 52B, and collimates the fast axis direction and the slow axis direction of the laser light emitted from the third light source 52B.
  • the first MEMS mirror 80R is disposed above the first collimating lens 53R.
  • the first MEMS mirror 80R is attached to the base 41 with a configuration (not shown), and the movable reflecting surface 81R is slid by an actuator (not shown).
  • the movable reflecting surface 81R is disposed at a position where at least a part of the laser light emitted from the first collimating lens 53R can enter and in a state inclined by approximately 45 ° with respect to the optical axis of the laser light.
  • the second MEMS mirror 80G is disposed behind the second collimating lens 53G.
  • the second MEMS mirror 80G is attached to the base 41 with a configuration (not shown), and the movable reflecting surface 81G is slid by an actuator (not shown).
  • the movable reflecting surface 81G is disposed at a position where at least a part of the laser light emitted from the second collimating lens 53G can enter, in a state inclined by approximately 45 ° with respect to the optical axis of the laser light.
  • the third MEMS mirror 80B is disposed behind the third collimating lens 53B.
  • the third MEMS mirror 80B is attached to the base 41 with a configuration (not shown), and the movable reflecting surface 81B is slid by an actuator (not shown).
  • the movable reflecting surface 81B is disposed at a position where at least a part of the laser light emitted from the third collimating lens 53B can enter, in a state inclined by approximately 45 ° with respect to the optical axis of the laser light.
  • FIG. 14 is a schematic view of an example of the first MEMS mirror 80R viewed from the movable reflecting surface 81R side.
  • the first MEMS mirror 80R includes a mirror main body 60 in which a movable reflecting surface 81R is formed, an inner frame portion 61 that surrounds the mirror main body 60, and an outer frame portion 62 that surrounds the inner frame portion 61. It is provided as a main component.
  • the mirror main body 60 and the inner frame portion 61 are connected by a pair of torsion bars 63 and 63 extending along the first axis P.
  • the inner frame portion 61 and the outer frame portion 62 are connected by a pair of second torsion bars 64 and 64 extending along a second axis Q perpendicular to the first axis P.
  • the mirror main body 60 can swing in two directions around the first axis P and the second axis Q by operating the actuator.
  • the actuator for example, an electromagnetic actuator or a piezoelectric actuator may be used.
  • the second MEMS mirror 80G and the third MEMS mirror 80B have the same configuration as the first MEMS mirror 80R.
  • the MEMS mirror may be configured to swing only in one direction, for example, along the first axis P.
  • the outer frame portion 62 and the second torsion bar 64 are not necessary, and the MEMS mirror can be reduced in size.
  • the first diffraction grating 154R is arranged in front of the first MEMS mirror 80R
  • the second diffraction grating 154G is arranged above the second MEMS mirror 80G
  • the third diffraction grating 154B is disposed above the third MEMS mirror 80B.
  • FIG. 15 is a schematic view of the diffraction grating 154R in the present embodiment as viewed from the incident surface side.
  • the diffraction grating 154R is configured as an aggregate of diffraction grating patterns 170 formed in each of the divided regions.
  • Each of these diffraction grating patterns 170 has the same three-dimensional structure (not shown). Therefore, the light of the same light distribution pattern is emitted from each of the laser light incident on each diffraction grating pattern 170.
  • the diffraction gratings 154G and 154B have the same configuration as the diffraction grating 154R.
  • the synthesis optical system 55 includes a first optical element 55f and a second optical element 55s, similarly to the synthesis optical system 55 of the third embodiment.
  • the first optical element 55f is disposed in front of the first diffraction grating 154R and above the second diffraction grating 154G, and is disposed in a state inclined by approximately 45 ° with respect to both the front-rear direction and the vertical direction.
  • the first optical element 55f is configured to transmit red laser light having a wavelength of 638 nm emitted from the first light source 52R and reflect green laser light having a wavelength of 515 nm emitted from the second light source 52G. .
  • the second optical element 55s is disposed in front of the first optical element 55f and above the third diffraction grating 154B, and is disposed at an angle of approximately 45 ° with respect to both the front-rear direction and the vertical direction.
  • the in the present embodiment the second optical element 55s transmits the red laser light having a wavelength of 638 nm emitted from the first light source 52R and the green laser light having a wavelength of 515 nm emitted from the second light source 52G, and emits the light from the third light source 52B. It is configured to reflect blue laser light having a wavelength of 445 nm.
  • red laser light is emitted upward from the light source 52R
  • green laser light is emitted backward from the light source 52G
  • blue laser light is emitted from the light source 52B. Is emitted backward.
  • the movable reflecting surface 81R of the MEMS mirror 80R is disposed in a state inclined by approximately 45 ° with respect to the optical axis of the red laser light emitted from the light source 52R. Therefore, the red laser light is reflected by the movable reflecting surface 81R, changed in direction by 90 °, and propagated forward, that is, toward the diffraction grating 154R.
  • the movable reflecting surface 81R swings in two directions. Therefore, as shown in FIG. 16, the red laser light emitted from the movable reflecting surface 81R propagates while vibrating in two directions as the movable reflecting surface 81R swings.
  • FIG. 16 is an enlarged view showing the vicinity of the MEMS mirror 80R and the diffraction grating 154R in FIG.
  • a movable reflecting surface 81G of the MEMS mirror 80G is arranged in a state inclined at approximately 45 ° with respect to the optical axis of the green laser light emitted from the light source 52G. Therefore, the green laser light is reflected by the movable reflecting surface 81G, turned 90 °, and propagates upward, that is, toward the diffraction grating 154G. As described above, since the movable reflecting surface 81G swings in two directions, the green laser light emitted from the movable reflecting surface 81G propagates while oscillating in two directions (see FIG. 16).
  • the movable reflecting surface 81B of the MEMS mirror 80B is disposed behind the light source 52B in a state inclined approximately 45 ° with respect to the optical axis of the blue laser light emitted from the light source 52B. Therefore, the blue laser light is reflected by the movable reflecting surface 81B, changed in direction by 90 °, and propagates upward, that is, toward the diffraction grating 154B. As described above, since the movable reflecting surface 81B swings in two directions, the blue laser light emitted from the movable reflecting surface 81B propagates while oscillating in two directions (see FIG. 16).
  • the MEMS mirrors 80R, 80G, and 80B in the present embodiment have the movable reflection surfaces 81R, 81G, and 81B that reflect the laser light toward the diffraction gratings 154R, 154G, and 154B, and the movable reflection is performed. It functions as a movable reflecting member that vibrates laser light by moving the surfaces 81R, 81G, and 81B.
  • a diffraction grating 154R is arranged in front of the MEMS mirror 80R. Therefore, the red laser light emitted from the MEMS mirror 80R is incident on the incident surface of the diffraction grating 154R.
  • the diffraction grating 154R is an aggregate of a plurality of diffraction grating patterns 170 having the same three-dimensional structure. That is, red component light having the same light distribution pattern is generated from each of the red laser light incident on each diffraction grating pattern 170.
  • the region irradiated with the red component light always includes at least one diffraction grating pattern 170.
  • the red component light having the same light distribution pattern can be generated.
  • the red component light emitted from the diffraction grating 154G is referred to as a first light LRA.
  • the first light LRA is emitted from the diffraction grating 154G and propagates forward.
  • a diffraction grating 154G is disposed above the MEMS mirror 80G. Therefore, the green laser light emitted from the MEMS mirror 80G is incident on the incident surface of the diffraction grating 154G.
  • the diffraction grating 154G is an aggregate of a plurality of diffraction grating patterns 170 having the same three-dimensional structure, like the diffraction grating 154R (see FIG. 15). That is, green component light having the same light distribution pattern is generated from each of the green laser light incident on each diffraction grating pattern 170.
  • at least one diffraction grating pattern 170 is always included in the region irradiated with the green component light.
  • the green component light emitted from the diffraction grating 154G is referred to as a second light LGA.
  • the second light LGA is emitted from the diffraction grating 154G and propagates upward.
  • a diffraction grating 154B is disposed above the MEMS mirror 80B. Therefore, the blue laser light emitted from the MEMS mirror 80B is incident on the incident surface of the diffraction grating 154B.
  • the diffraction grating 154B is an aggregate of a plurality of diffraction grating patterns 170 having the same three-dimensional structure, like the diffraction grating 154R (see FIG. 15). That is, blue component light having the same light distribution pattern is generated from each of the blue laser light incident on each diffraction grating pattern 170.
  • at least one diffraction grating pattern 170 is always included in the region irradiated with the blue component light.
  • the blue component light emitted from the diffraction grating 154B is referred to as a third light LBA.
  • the third light LBA is emitted from the diffraction grating 154B and propagates upward.
  • the diffraction gratings 154R, 154G, and 154B in the present embodiment function as light distribution pattern forming elements in order to form a predetermined light distribution pattern.
  • the diffraction gratings 154R, 154G, and 154B are the light distribution pattern formed from the diffraction grating 154R, the light distribution pattern formed from the diffraction grating 154G, and the light distribution pattern formed from the diffraction grating 154B.
  • the first optical element 55f of the combining optical system 55 is disposed in front of the diffraction grating 154R.
  • the first optical element 55f is configured to transmit red light. Accordingly, the first light LRA formed in the predetermined light distribution pattern by the diffraction grating 154R is transmitted through the first optical element 55f and propagates forward.
  • the first optical element 55f is disposed above the diffraction grating 154G.
  • the first optical element 55f is configured to reflect green light. Further, the first optical element 55f is inclined by approximately 45 ° with respect to the vertical direction. Therefore, the second light LGA formed in the predetermined light distribution pattern by the diffraction grating 154G is reflected by the first optical element 55f, turned 90 °, and propagates forward.
  • the second optical element 55s of the composite optical system is disposed in front of the first optical element 55f.
  • the second optical element 55s is configured to transmit red light and green light. Accordingly, the first light LRA and the second light LGA emitted from the first optical element 55f are transmitted through the second optical element 55s.
  • the second optical element 55s is disposed above the diffraction grating 154B. As described above, the second optical element 55s is configured to reflect blue light. Further, the second optical element 55s is inclined by approximately 45 ° with respect to the vertical direction. Therefore, the third light LBA formed in the predetermined light distribution pattern by the diffraction grating 154B is reflected by the second optical element 55s and turned 90 °.
  • the first light LRA, the second light LGA, and the third light LBA are combined to generate white light.
  • the white light propagates forward and exits from the opening 40H of the case 40, and further exits from the vehicle headlamp 1 as a low beam L via the front cover 12.
  • the shape and light intensity distribution of the first light LRA, the shape and light intensity distribution of the second light LGA, and the shape of the light distribution pattern of the third light LBA The light intensity distribution is the same.
  • the shape and light intensity distribution of the light distribution pattern of the low beam L can be the same as the shape and light intensity distribution of the light distribution pattern of the first light LRA, the second light LGA, and the third light LBA.
  • the low beam L shown in FIG. 4A is emitted from the vehicle headlamp 1 and irradiates an object to be irradiated such as a road surface.
  • the MEMS mirror 80R swings. Therefore, as shown in FIG. 16, the optical path of the laser light emitted from the MEMS mirror 80R, that is, the optical path of the first light LRA changes with time in synchronization with this peristalsis.
  • the MEMS mirror 80G swings. Therefore, the optical path of the laser light emitted from the MEMS mirror 80G, that is, the optical path of the second light LGA changes with time in synchronization with this peristalsis.
  • the MEMS mirror 80B swings. Therefore, the optical path of the laser light emitted from the MEMS mirror 80B, that is, the optical path of the third light LBA changes with time in synchronization with this peristalsis.
  • the optical path of the low beam L generated from the first light LRA, the second light LGA, and the third light LBA changes with time in synchronization with the swinging of the MEMS mirrors 80R, 80G, and 80B.
  • the incident angle and phase of light incident on the same position of the irradiated object can change with time.
  • various interference patterns are generated from the reflected light reflected at the same position of the irradiated object, and the light of these interference patterns is superimposed.
  • speckles become inconspicuous and light flickering can be suppressed.
  • the frequency of the vibration which MEMS mirror 80R, 80G, 80B gives to the optical path of light is 15 Hz or more from a viewpoint of suppressing the flicker of light.
  • the human visual temporal resolution is approximately 30 Hz. In the case of a vehicular lamp, flickering of light can be suppressed if the frequency of vibration is about half of this frequency.
  • the frequency of the vibration which these vibration provision parts give is 30 Hz or more, it will generally exceed the time resolution of human vision. Therefore, the flickering of light can be further suppressed.
  • this frequency is 60 Hz or more, it is preferable from the viewpoint of further suppressing the flickering of light.
  • the frequency of the vibration which MEMS mirror 80R, 80G, 80B gives to the optical path of light may be made into a mutually different frequency, and may be made into the same frequency.
  • the MEMS mirror vibrates the optical path of light by at least one of the diffraction grating patterns 170 as shown in FIGS.
  • the amplitude of the optical path oscillated by the MEMS mirror is increased, and the change in the incident angle and phase of the light incident on the irradiated surface is increased, so that the flickering of light can be more effectively suppressed.
  • the vehicle headlamp 1 includes the diffraction gratings 154R, 154G, and 154B that are light distribution pattern forming elements that form the light distribution pattern of the low beam L.
  • the light distribution pattern of the low beam L can be formed without using a shade. That is, it is not necessary to secure a space for using the shade, and the apparatus can be downsized.
  • the vehicle headlamp 1 of the present embodiment as the third aspect is a MEMS mirror 80R, 80G, 80B, which is a movable reflecting member that reflects light and vibrates the optical path of the light by moving a movable reflecting surface. Therefore, flickering of the low beam L is suppressed.
  • the MEMS mirror swings in two directions, more interference patterns are formed as compared with the case where the MEMS mirror swings in only one direction. Therefore, the flickering of light can be more effectively suppressed.
  • FIG. 17 is a view showing the optical system unit 150 of the vehicle headlamp according to the present embodiment in the same manner as FIG.
  • the first light source 52R, the second light source 52G, and the third light source 52B are arranged in the vertical direction on the opposite side of the opening 40H. Arranged side by side. That is, laser light is emitted in the vertical direction from each of the light sources 52R, 52G, and 52B.
  • the MEMS mirrors 80R, 80G, 80B are arranged in the vertical direction, and the diffraction gratings 154R, 154G, 154B are arranged in the vertical direction. Arranged side by side.
  • the laser beams emitted from the light sources 52R, 52G, and 52B are reflected forward by the MEMS mirrors 80R, 80G, and 80B, respectively, and then forward through the diffraction gratings 154R, 154G, and 154B.
  • the first light LRA, the second light LGA, and the third light LBA emitted from the diffraction gratings 154R, 154G, and 154B propagate forward toward the opening 40H.
  • the first light LRA, the second light LGA, and the third light LBA are irradiated so that the regions irradiated with the respective lights overlap each other at a focal position that is a predetermined distance away from the vehicle.
  • the This focal position is, for example, a position 25 m away from the vehicle.
  • the combining optical system is provided to direct all the laser light to the opening 40H. There is no need. Therefore, it can be set as a simple structure compared with 6th Embodiment.
  • FIG. 18 is a view showing a part of the optical system unit 50 of the vehicle headlamp according to the present embodiment in the same manner as FIG.
  • the optical system unit 50 of the vehicle headlamp in this embodiment includes the first MEMS mirror 280R instead of the first MEMS mirror 80R in the sixth embodiment.
  • the MEMS mirror 280R includes a substrate 282 and a reflective layer 281R as a movable reflective surface as main components.
  • a main portion 284 that is a portion other than both end portions 283 of the substrate 282 is formed thinner than both end portions 283.
  • the main portion 284 is configured to have flexibility.
  • the reflective layer 281R as the movable reflective surface described above is formed.
  • the reflective layer 281R may be made of silver, for example.
  • a piezoelectric element (not shown) is disposed in the portion of the main portion 284 where the reflective layer 281R is located. According to such a configuration, by adjusting the voltage applied to the piezoelectric element, the main portion 284 and the reflective layer 281R can be bent according to the voltage. That is, the curvature of the reflective layer 281R can change according to the voltage applied to the piezoelectric element. Therefore, according to the present embodiment, as shown in FIG. 19, the laser beam can vibrate in the radial direction by changing the curvature of the reflective layer 281R. That is, the optical path of the first light LRA emitted from the diffraction grating 154R can vibrate in the radial direction.
  • the MEMS mirrors 80G and 80B may have the same configuration as the MEMS mirror 280R.
  • FIG. 20 is a view showing the vicinity of the second light source 52G in the optical system unit 50 of the vehicle headlamp according to the present embodiment in the same manner as FIG.
  • the optical system unit 50 of the vehicle headlamp in the present embodiment is configured such that the laser light emitted from the second diffraction grating 154G is reflected by the second MEMS mirror 80G.
  • the second diffraction grating 154G is disposed above the second collimating lens 53G
  • the second MEMS mirror 80G is disposed above the second diffraction grating 154G.
  • the second light LGA transmitted through the diffraction grating 154G and having a predetermined light distribution pattern is reflected by the second MEMS mirror 80G and propagates forward.
  • the optical path of the second light LGA vibrates when the movable reflecting surface 81R of the second MEMS mirror 80G swings, flickering of light can be suppressed as in the first embodiment.
  • the vehicular headlamp 1 according to the sixth embodiment reflects the laser light by the MEMS mirror 80G. Since it is configured to enter the diffraction grating 154G, the MEMS mirror 80G can be brought closer to the light source 52G as compared with the vehicle headlamp according to the ninth embodiment. Therefore, in the sixth embodiment, the movable reflecting surface 81G of the MEMS mirror 80G can be made smaller than in the ninth embodiment.
  • the vehicle headlamp 1 as the vehicle lamp is assumed to irradiate the low beam L, but the third embodiment of the present invention
  • the vehicle lamp as an aspect is not particularly limited.
  • the vehicular lamp in another embodiment as the third aspect has an intensity higher than that of the low beam L in a region indicated by a broken line in FIG. 4A, that is, a region above the region irradiated with the low beam L. It may be configured to irradiate with low light.
  • Such low-intensity light is, for example, light OHS for label recognition.
  • marker recognition is contained in the light radiate
  • the vehicle lamp in other another embodiment may be comprised so that a high beam as shown to FIG. 4 (B) may be irradiated.
  • the vehicular lamp according to the present invention may be applied as one constituting an image. In such a case, the direction of light emitted from the vehicle lamp and the mounting position of the vehicle lamp in the vehicle are not particularly limited.
  • the diffraction grating is composed of a plurality of diffraction grating patterns, and the MEMS mirror vibrates one or more optical paths of the spectrum of the diffraction grating pattern.
  • the diffraction grating may be formed from a single diffraction grating pattern.
  • the diffraction grating is formed from a single diffraction grating pattern
  • this single diffraction grating is formed in a region irradiated with light in order to form a low beam L light distribution pattern which is a predetermined light distribution pattern.
  • Preferably all the patterns are included.
  • LCOS may be used as the light distribution pattern forming element.
  • the light distribution pattern forming element transmits light.
  • the light distribution pattern forming element is configured to reflect light. May be.
  • the present invention is not limited to this.
  • a polygon lens may be used as the movable reflecting member.
  • a vehicular lamp that can suppress color blur
  • the second aspect of the present invention it is possible to suppress light flickering.
  • the third aspect of the present invention there is provided a vehicular lamp that can suppress light flickering while being reduced in size, and is used in the field of vehicular lamps such as automobiles. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

According to the present invention, a headlight (1) for vehicles is provided with: a phase modulation element (22) which can modulate a light distribution pattern of output light while diffracting input light and outputting the diffracted light; and a light source (21) which outputs laser beams (LR, LG, LB) having different wavelengths in a time-division manner. The laser beams (LR, LG, LB), which have the different wavelengths and are output from the light source (21), are input to the phase modulation element (22). The phase modulation element (22) diffracts the laser beams (LR, LG, LB) in phase modulation patterns corresponding to the laser beams (LR, LG, LB) having the different wavelengths and then outputs the diffracted laser beams. Areas, onto which light (DLR, DLG, DLB) output from the phase modulation element (22) and corresponding to the respective laser beams (LR, LG, LB) having the different wavelengths are irradiated, are superimposed on each other.

Description

車両用灯具Vehicle lighting
 本発明は、車両用灯具に関する。 The present invention relates to a vehicular lamp.
 車両用灯具として、自動車用ヘッドライトに代表される車両用前照灯や、路面等に画像を描画する描画装置等が知られている。ところで、車両用灯具における配光パターンを所定の配光パターンとするために様々な構成が検討されており、例えば、下記特許文献1には、回折格子の一種であるホログラム素子を用いて所定の配光パターンを形成することが記載されている。 As vehicle lamps, vehicle headlamps typified by automobile headlights, drawing devices that draw images on road surfaces, and the like are known. By the way, various configurations have been studied in order to make the light distribution pattern in the vehicular lamp a predetermined light distribution pattern. For example, Patent Document 1 listed below uses a hologram element which is a kind of diffraction grating to determine a predetermined light distribution pattern. The formation of a light distribution pattern is described.
 この車両用前照灯は、ホログラム素子と、このホログラム素子に参照光を照射する光源とを備えている。ホログラム素子は、参照光が照射されることで再生される回折光がロービームの配光パターンを形成するように計算されている。この車両用前照灯は、この様にホログラム素子によりロービームの配光パターンを形成するため、シェードが不要であり、小型化が可能であるとされる。 The vehicle headlamp includes a hologram element and a light source for irradiating the hologram element with reference light. The hologram element is calculated so that the diffracted light reproduced by irradiating the reference light forms a low beam light distribution pattern. The vehicle headlamp forms a low beam light distribution pattern by the hologram element as described above, and therefore does not require a shade and can be miniaturized.
特開2012-146621号公報JP 2012-146621 A
 本発明の第1の態様による車両用灯具は、入射する光を回折して出射するとともに出射する光の配光パターンを変更可能な位相変調素子と、互いに波長の異なる複数のレーザ光を時分割で出射する光源と、を備え、前記光源から出射するそれぞれの波長の前記レーザ光は、前記位相変調素子に入射し、前記位相変調素子は、それぞれの波長の前記レーザ光に対応した位相変調パターンで当該レーザ光を回折して出射し、それぞれの波長の前記レーザ光に対応して前記位相変調素子から出射する光が照射される領域が互いに重なることを特徴とする。 The vehicular lamp according to the first aspect of the present invention includes a phase modulation element capable of diffracting and emitting incident light and changing a light distribution pattern of the emitted light, and time-dividing a plurality of laser beams having different wavelengths. The laser light of each wavelength emitted from the light source is incident on the phase modulation element, and the phase modulation element is a phase modulation pattern corresponding to the laser light of each wavelength The laser light is diffracted and emitted, and regions irradiated with light emitted from the phase modulation element corresponding to the laser light having the respective wavelengths are overlapped with each other.
 このような車両用灯具では、光源から時分割で出射する互いに波長の異なる複数のレーザ光が位相変調素子によってそれぞれ回折されて当該位相変調素子から出射する。また、それぞれの波長のレーザ光に対応して位相変調素子から出射する光が照射される領域が互いに重なっている。このため、光が照射される領域には、順次異なる波長の光が照射される。ところで、人の視覚の時間分解能よりも短い周期で波長の異なる光つまり色の異なる光が繰り返し照射される場合、人は残像現象によってこの異なる色の光が合成された光が照射されていると認識し得る。従って、波長の異なる複数のレーザ光が人の視覚の時間分解能よりも短い周期で繰り返し光源から出射される場合には、車両用灯具は、光源から出射される複数のレーザ光が合成された光を残像現象によって照射し得る。 In such a vehicular lamp, a plurality of laser beams having different wavelengths emitted from a light source in a time division manner are diffracted by the phase modulation element and emitted from the phase modulation element. In addition, regions irradiated with light emitted from the phase modulation elements corresponding to the laser beams having the respective wavelengths overlap each other. For this reason, light with different wavelengths is sequentially irradiated to the region irradiated with light. By the way, when light with different wavelengths, that is, light with different colors is repeatedly irradiated with a period shorter than the temporal resolution of human vision, a person is irradiated with light that is synthesized with light of these different colors by an afterimage phenomenon. Can be recognized. Therefore, when a plurality of laser beams having different wavelengths are repeatedly emitted from the light source at a cycle shorter than the temporal resolution of human vision, the vehicular lamp is a light in which the plurality of laser beams emitted from the light source are combined. Can be irradiated by an afterimage phenomenon.
 また、上記車両用灯具では、位相変調素子は、それぞれの波長のレーザ光に対応した位相変調パターンで当該レーザ光を回折して出射するため、それぞれの波長のレーザ光に対応して位相変調素子から出射する光の配光パターンをそれぞれ所望の配光パターンにし得る。従って、上記車両用灯具は、それぞれの波長のレーザ光に対応して位相変調素子から出射する光が照射される領域の外形がずれることを抑制でき、残像現象によって形成される配光パターンの縁近傍で色のにじみが生じることを抑制し得る。 Further, in the above vehicle lamp, the phase modulation element diffracts and emits the laser beam with a phase modulation pattern corresponding to the laser beam of each wavelength. Therefore, the phase modulation element corresponds to the laser beam of each wavelength. The light distribution pattern of the light emitted from each can be changed to a desired light distribution pattern. Therefore, the vehicular lamp can suppress the outer shape of the region irradiated with the light emitted from the phase modulation element corresponding to the laser light of each wavelength from being shifted, and the edge of the light distribution pattern formed by the afterimage phenomenon. It is possible to suppress the occurrence of color bleeding in the vicinity.
 それぞれの波長の前記レーザ光に対応して前記位相変調素子から出射する光が照射される領域の外形の少なくとも一部が一致することが好ましい。 It is preferable that at least a part of the outer shape of the region irradiated with the light emitted from the phase modulation element corresponding to the laser light of each wavelength matches.
 このような構成にすることで、残像現象によって形成される配光パターンの縁近傍で色のにじみが生じることをより抑制することができる。 By adopting such a configuration, it is possible to further suppress the occurrence of color bleeding near the edge of the light distribution pattern formed by the afterimage phenomenon.
 前記位相変調素子は、透過型の位相変調素子であることとされても良く、前記位相変調素子は、反射型の位相変調素子であることとされても良い。 The phase modulation element may be a transmission type phase modulation element, and the phase modulation element may be a reflection type phase modulation element.
 前記光源は、互いに波長の異なる少なくとも3つの前記レーザ光を出射することが好ましい。 It is preferable that the light source emits at least three laser beams having different wavelengths.
 この場合、三原色のレーザ光を用いることができる。従って、光源から出射するそれぞれのレーザ光の強度を調節することにより、所望の色の光を残像現象によって照射することができる。 In this case, laser beams of three primary colors can be used. Therefore, by adjusting the intensity of each laser beam emitted from the light source, light of a desired color can be irradiated by the afterimage phenomenon.
 本発明の第2の態様による車両用灯具は、所定の波長の光を出射する光源と、所定の時間間隔よりも短い時間間隔で変化する位相変調パターンで前記光源から出射する光を回折して出射する位相変調素子と、を備え、互いに異なる前記位相変調パターンの前記位相変調素子から出射する光が照射される領域は、互いに重なることを特徴とする。 The vehicular lamp according to the second aspect of the present invention diffracts light emitted from the light source with a light source that emits light of a predetermined wavelength and a phase modulation pattern that changes at a time interval shorter than the predetermined time interval. And a phase modulation element that emits light, and regions irradiated with light emitted from the phase modulation elements having different phase modulation patterns are overlapped with each other.
 このような車両用灯具では、上記のように、位相変調素子は、所定の時間間隔よりも短い時間間隔で変化する位相変調パターンで光源から出射する光を回折して出射する。このため、位相変調素子から出射する光の配光パターンと当該光が照射される領域の少なくとも一方は、位相変調パターンの変化に対応して変化し得る。また、上記のように、互いに異なる位相変調パターンの位相変調素子から出射する光が照射される領域は、互いに重なっている。このため、被照射体のうちこれら領域が互いに重なっている部位では、視覚的に連続した光の重ね合わせが生じており、位相変調素子からこの部位に至るまでの光路は、位相変調パターンの変化に対応して変化する。このように光路が変化すると、被照射体の同じ位置であっても、車両用灯具から被照射体に入射する光の入射角や光の位相が変化し得る。従って、入射角や位相の異なる光の視覚的な重ね合わせが連続して生じ、光のちらつきを感じることを抑制し得る。なお、位相変調パターンは、位相変調素子に入射する光の位相を変調するパターンを示すものである。 In such a vehicular lamp, as described above, the phase modulation element diffracts and emits light emitted from the light source with a phase modulation pattern that changes at a time interval shorter than a predetermined time interval. For this reason, at least one of the light distribution pattern of the light emitted from the phase modulation element and the region irradiated with the light can change corresponding to the change of the phase modulation pattern. Further, as described above, regions irradiated with light emitted from phase modulation elements having different phase modulation patterns overlap each other. For this reason, visually overlapped light occurs in the part of the irradiated object where these regions overlap each other, and the optical path from the phase modulation element to this part changes the phase modulation pattern. It changes corresponding to. When the optical path changes in this way, even at the same position of the irradiated object, the incident angle and the phase of the light incident on the irradiated object from the vehicular lamp can be changed. Accordingly, it is possible to suppress the visual superimposition of light having different angles of incidence and phases and to prevent the light from flickering. The phase modulation pattern indicates a pattern for modulating the phase of light incident on the phase modulation element.
 また、第2の態様の車両用灯具では、前記位相変調素子から出射する光が照射される領域が前記位相変調パターンの変化に対応して所定の方向へ振動することとしても良い。 Further, in the vehicular lamp of the second aspect, the region irradiated with the light emitted from the phase modulation element may vibrate in a predetermined direction corresponding to the change of the phase modulation pattern.
 また、第2の態様の車両用灯具では、前記位相変調素子から出射する光の配光パターンにおける強度分布が前記位相変調パターンの変化に対応して変化することとしても良い。なお、位相変調素子から出射する光の配光パターンにおける強度分布と外形とが位相変調パターンの変化に対応して変化しても良く、強度分布のみが変化しても良い。また、位相変調パターンの変化に対応して、位相変調素子から出射する光が照射される領域が変化せずに、強度分布のみが変化しても良い。 In the vehicular lamp of the second aspect, the intensity distribution in the light distribution pattern of the light emitted from the phase modulation element may change corresponding to the change in the phase modulation pattern. Note that the intensity distribution and the outer shape of the light distribution pattern of the light emitted from the phase modulation element may change corresponding to the change of the phase modulation pattern, or only the intensity distribution may change. Further, only the intensity distribution may be changed without changing the region irradiated with the light emitted from the phase modulation element, corresponding to the change of the phase modulation pattern.
 また、第2の態様の車両用灯具では、前記所定の時間間隔は、1/15s以下とされることが好ましい。 In the vehicular lamp according to the second aspect, it is preferable that the predetermined time interval is 1/15 s or less.
 このような構成にすることで、視覚的な光の重ね合わせの時間間隔が1/15s以下となる。人の視覚の時間分解能は概ね1/30sである。車両用灯具であれば、視覚的な光の重ね合わせの時間間隔がこの時間の2倍程度であれば光のちらつきを感じることを抑制できる。 With such a configuration, the time interval of visual light superposition is 1/15 s or less. The human visual temporal resolution is approximately 1/30 s. In the case of a vehicular lamp, it is possible to suppress the flickering of light if the visual light overlapping time interval is about twice this time.
 また、第2の態様の車両用灯具では、前記位相変調素子は、透過型の位相変調素子であることとされても良く、前記位相変調素子は、反射型の位相変調素子であることとされても良い。 In the vehicle lamp of the second aspect, the phase modulation element may be a transmission type phase modulation element, and the phase modulation element is a reflection type phase modulation element. May be.
 本発明の第3の態様による車両用灯具は、所定波長の光を出射する光源と、前記光の少なくとも一部の進行方向を変化させることにより、所定の配光パターンを有する光を生成する配光パターン形成素子と、可動反射面を有し、前記可動反射面を動かして前記光の光路を振動させる可動反射部材と、を備えることを特徴とするものである。 The vehicular lamp according to the third aspect of the present invention includes a light source that emits light having a predetermined wavelength and an arrangement that generates light having a predetermined light distribution pattern by changing a traveling direction of at least a part of the light. An optical pattern forming element and a movable reflecting member having a movable reflecting surface and moving the movable reflecting surface to vibrate the optical path of the light are provided.
 第3の態様の車両用灯具は、例えば回折格子から構成される配光パターン形成素子を備えるため、上記特許文献1に記載の車両用前照灯と同様にシェードを用いずとも所定の配光パターンの光を出射することができる。したがって、上記特許文献1の車両用前照灯と同様にシェードを用いる車両用灯具と比べて小型化することができる。 Since the vehicular lamp according to the third aspect includes a light distribution pattern forming element formed of, for example, a diffraction grating, a predetermined light distribution can be achieved without using a shade, similar to the vehicular headlamp described in Patent Document 1. Pattern light can be emitted. Therefore, it can be reduced in size as compared with the vehicular lamp using the shade as in the vehicular headlamp disclosed in Patent Document 1.
 また、第3の態様のこの車両用灯具は、可動反射面を動かして所定配光パターンを有する光の光路を振動させる可動反射部材を備えている。このような構成によれば、光路の振動に伴って被照射体に入射する所定配光パターンを有する光の入射角や位相が経時的に変化し得る。この光の入射角や光の位相の変化が連続して起こることで様々な干渉パターンが生じ、これら干渉パターンのそれぞれの光が重畳される。その結果、スペックルが目立たなくなり、光のちらつきが抑制され得る。 The vehicle lamp according to the third aspect includes a movable reflecting member that moves the movable reflecting surface to vibrate the optical path of light having a predetermined light distribution pattern. According to such a configuration, the incident angle and phase of light having a predetermined light distribution pattern incident on the irradiated object can be changed with time in accordance with the vibration of the optical path. The change in the incident angle of the light and the phase of the light continuously occur to generate various interference patterns, and the respective lights of these interference patterns are superimposed. As a result, speckle becomes inconspicuous and light flicker can be suppressed.
 また、第3の態様の車両用灯具では、前記可動反射部材の前記可動反射面は、前記光源から出射する前記光を前記配光パターン形成素子に向かって反射することが好ましい。 In the vehicle lamp of the third aspect, it is preferable that the movable reflecting surface of the movable reflecting member reflects the light emitted from the light source toward the light distribution pattern forming element.
 この場合、可動反射部材を配光パターン形成素子よりも光源に近づけて配置することができるため、可動反射面を小さくすることができる。 In this case, since the movable reflecting member can be arranged closer to the light source than the light distribution pattern forming element, the movable reflecting surface can be made small.
 また、第3の態様の車両用灯具では、前記可動反射部材の前記可動反射面は、前記配光パターン形成素子から出射する前記光を反射してもよい。 In the vehicle lamp of the third aspect, the movable reflecting surface of the movable reflecting member may reflect the light emitted from the light distribution pattern forming element.
 なお、第3の態様の車両用灯具では、前記反射部材は、例えばMEMSミラーとされてもよく、あるいは、ポリゴンミラーとされてもよい。 In the vehicle lamp of the third aspect, the reflecting member may be a MEMS mirror or a polygon mirror, for example.
 また、第3の態様の車両用灯具では、前記可動反射部材は、前記光の光路を2つ以上の方向に振動させることが好ましい。 In the vehicular lamp of the third aspect, it is preferable that the movable reflecting member vibrates the optical path of the light in two or more directions.
 この場合、光の光路が一方向にのみ振動する場合と比べて、視覚的に連続した光の重ね合わせが多方向に生じ、光のちらつきがより抑制され得る。 In this case, as compared with the case where the optical path of light vibrates only in one direction, visually overlapping light is generated in multiple directions, and the flickering of light can be further suppressed.
 また、第3の態様の車両用灯具では、前記可動反射部材は前記光の光路を15Hz以上の周波数で振動させることが好ましい。 In the vehicular lamp of the third aspect, it is preferable that the movable reflecting member vibrate the optical path of the light at a frequency of 15 Hz or more.
 人の視覚の時間分解能は概ね30Hzである。車両用灯具であれば、被照射体に照射される光の光路の振動の周波数が、人の視覚の時間分解能の振動数(約30Hz)の半分程度であれば光のちらつきが抑制され得る。なお、上記光の光路の振動の周波数が30Hz以上であれば、人の視覚の時間分解能を概ね超える。したがって、光のちらつきがより効果的に抑制され得る。また、この周波数が60Hz以上であれば、光のちらつきがさらに効果的に抑制され得る。 The human visual temporal resolution is approximately 30 Hz. In the case of a vehicular lamp, flickering of light can be suppressed if the frequency of vibration of the optical path of light irradiated on the irradiated object is about half the frequency (about 30 Hz) of human visual time resolution. In addition, if the frequency of the vibration of the optical path of the light is 30 Hz or more, the temporal resolution of human vision is generally exceeded. Therefore, the flickering of light can be more effectively suppressed. Moreover, if this frequency is 60 Hz or more, the flickering of light can be more effectively suppressed.
 また、第3の態様の車両用灯具では、前記配光パターン形成素子は、区分けされた複数の領域のそれぞれに形成された回折格子パターンからなる回折格子とされ、前記可動反射部材は、前記光の光路を、前記配光パターン形成素子の入射面において前記回折格子パターンの少なくとも1つ分以上振動させてもよい。 In the vehicular lamp of the third aspect, the light distribution pattern forming element is a diffraction grating formed of a diffraction grating pattern formed in each of a plurality of divided areas, and the movable reflecting member is the light May be oscillated at least one of the diffraction grating patterns on the incident surface of the light distribution pattern forming element.
 このような構成によれば、光の光路が回折格子パターンの少なくとも1つ分以上振動するため、被照射面に入射する光の入射角や位相の変化が大きくなる。このため、光のちらつきがより効果的に抑制され得る。 According to such a configuration, since the optical path of the light vibrates at least one of the diffraction grating patterns, the incident angle and phase change of the light incident on the irradiated surface are increased. For this reason, the flicker of light can be suppressed more effectively.
 なお、回折格子パターンが複数の回折格子パターンから形成されている場合において、光の光路が回折格子パターンの1つ分未満しか振動しない場合でも、光のちらつきが抑制され得る。また、必ずしも回折格子が複数の回折格子パターンから形成される必要はなく、単一の回折格子パターンから形成されてもよい。 In the case where the diffraction grating pattern is formed of a plurality of diffraction grating patterns, even if the optical path of the light vibrates less than one diffraction grating pattern, the light flicker can be suppressed. Further, the diffraction grating is not necessarily formed from a plurality of diffraction grating patterns, and may be formed from a single diffraction grating pattern.
 また、第3の態様の車両用灯具では、前記可動反射部材は、前記可動反射面を少なくとも1つの軸回りに搖動させることにより前記光の光路を振動させるものでもよい。あるいは、前記可動反射部材は、前記可動反射面の曲率を変化させることにより前記光の光路を振動させるものでもよい。 In the vehicle lamp of the third aspect, the movable reflecting member may vibrate the optical path of the light by swinging the movable reflecting surface around at least one axis. Alternatively, the movable reflecting member may vibrate the optical path of the light by changing the curvature of the movable reflecting surface.
本発明の第1の態様としての第1実施形態における車両用灯具の一例を示す図である。It is a figure which shows an example of the vehicle lamp in 1st Embodiment as a 1st aspect of this invention. 図1に示す位相変調素子の正面図である。It is a front view of the phase modulation element shown in FIG. 図1に示す位相変調素子の一部の厚さ方向の断面を概略的に示す図である。It is a figure which shows roughly the cross section of the thickness direction of a part of phase modulation element shown in FIG. 配光パターンを示す図である。It is a figure which shows a light distribution pattern. 本発明の第1の態様としての第2実施形態における車両用灯具を図1と同様に示す図である。It is a figure which shows the vehicle lamp in 2nd Embodiment as a 1st aspect of this invention similarly to FIG. 図5に示す位相変調素子の一部の厚さ方向の断面を概略的に示す図である。It is a figure which shows schematically the cross section of the thickness direction of a part of phase modulation element shown in FIG. 本発明の第2の態様としての第3実施形態における車両用灯具の一例を示す図である。It is a figure which shows an example of the vehicle lamp in 3rd Embodiment as a 2nd aspect of this invention. 図7に示す光学系ユニットの拡大図である。It is an enlarged view of the optical system unit shown in FIG. 図8に示す位相変調素子の正面図である。FIG. 9 is a front view of the phase modulation element shown in FIG. 8. 本発明の第2の態様としての第4実施形態における光学系ユニットを図8と同様に示す図である。It is a figure which shows the optical system unit in 4th Embodiment as a 2nd aspect of this invention similarly to FIG. 本発明の第2の態様としての第5実施形態における光学系ユニットを図8と同様に示す図である。It is a figure which shows the optical system unit in 5th Embodiment as a 2nd aspect of this invention similarly to FIG. 本発明の第3の態様としての第6実施形態に係る車両用灯具の一例を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows roughly an example of the vehicle lamp which concerns on 6th Embodiment as a 3rd aspect of this invention. 図12に示される光学系ユニットの拡大図である。It is an enlarged view of the optical system unit shown by FIG. 図13に示されるMEMSミラーの一例を概略的に示す図である。It is a figure which shows roughly an example of the MEMS mirror shown by FIG. 図13に示される回折格子に入射するレーザ光を示す図である。It is a figure which shows the laser beam which injects into the diffraction grating shown by FIG. 図13に示されるMEMSミラーの動作を説明する図である。It is a figure explaining operation | movement of the MEMS mirror shown by FIG. 本発明の第3の態様としての第7実施形態に係る車両用前照灯における光学系ユニットの概略を図13と同様に示す図である。It is a figure which shows the outline of the optical system unit in the vehicle headlamp which concerns on 7th Embodiment as a 3rd aspect of this invention similarly to FIG. 本発明の第3の態様としての第8実施形態に係る車両用前照灯における光学系ユニットの一部を図16と同様に示す図である。It is a figure which shows a part of optical system unit in the vehicle headlamp which concerns on 8th Embodiment as a 3rd aspect of this invention similarly to FIG. 図18に示す回折格子に入射するレーザ光を図15と同様に示す図である。It is a figure which shows the laser beam which injects into the diffraction grating shown in FIG. 18 similarly to FIG. 本発明の第3の態様としての第9実施形態に係る車両用灯具の光学系ユニットの一部を図13と同様に示す図である。It is a figure which shows a part of optical system unit of the vehicle lamp which concerns on 9th Embodiment as a 3rd aspect of this invention similarly to FIG.
 以下、本発明に係る車両用灯具を実施するための形態が添付図面とともに例示される。以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、以下の実施形態から変更、改良することができる。 Hereinafter, the form for implementing the vehicle lamp concerning this invention is illustrated with an accompanying drawing. The embodiments exemplified below are intended to facilitate understanding of the present invention, and are not intended to limit the present invention. The present invention can be modified and improved from the following embodiments without departing from the spirit of the present invention.
(第1実施形態)
 図1は、第1の態様としての第1実施形態における車両用灯具の一例を示す図であり、車両用灯具の鉛直方向の断面を概略的に示す図である。本実施形態の車両用灯具は車両用前照灯1とされ、図1に示すように、本実施形態の車両用前照灯1は、筐体10と、灯具ユニット20とを主な構成として備える。
(First embodiment)
FIG. 1 is a diagram illustrating an example of a vehicular lamp according to the first embodiment as a first aspect, and is a diagram schematically illustrating a vertical cross section of the vehicular lamp. The vehicular lamp of this embodiment is a vehicular headlamp 1. As shown in FIG. 1, the vehicular headlamp 1 of this embodiment has a casing 10 and a lamp unit 20 as main components. Prepare.
 筐体10は、ランプハウジング11、フロントカバー12及びバックカバー13を主な構成として備える。ランプハウジング11の前方は開口しており、当該開口を塞ぐようにフロントカバー12がランプハウジング11に固定されている。また、ランプハウジング11の後方には前方よりも小さな開口が形成されており、当該開口を塞ぐようにバックカバー13がランプハウジング11に固定されている。 The housing 10 includes a lamp housing 11, a front cover 12, and a back cover 13 as main components. The front of the lamp housing 11 is open, and the front cover 12 is fixed to the lamp housing 11 so as to close the opening. In addition, an opening smaller than the front is formed at the rear of the lamp housing 11, and the back cover 13 is fixed to the lamp housing 11 so as to close the opening.
 ランプハウジング11と、当該ランプハウジング11の前方の開口を塞ぐフロントカバー12と、当該ランプハウジング11の後方の開口を塞ぐバックカバー13とによって形成される空間は灯室Rであり、この灯室R内に灯具ユニット20の一部が収容されている。 A space formed by the lamp housing 11, the front cover 12 that closes the front opening of the lamp housing 11, and the back cover 13 that closes the rear opening of the lamp housing 11 is a lamp chamber R. The lamp chamber R A part of the lamp unit 20 is accommodated therein.
 本実施形態の灯具ユニット20は、光源21と、位相変調素子22と、制御部70と、入力部72とを主な構成として備え、光源21、位相変調素子22、及び制御部70は、灯室R内に収容され不図示の手段により筐体10に固定されている。 The lamp unit 20 of this embodiment includes a light source 21, a phase modulation element 22, a control unit 70, and an input unit 72 as main components. The light source 21, the phase modulation element 22, and the control unit 70 are It is accommodated in the chamber R and fixed to the housing 10 by means (not shown).
 光源21は、互いに波長の異なる複数のレーザ光を時分割で出射する。本実施形態の光源21は、パワーのピーク波長が例えば638nmの赤色のレーザ光を出射する不図示の発光素子と、パワーのピーク波長が例えば515nmの緑色のレーザ光を出射する不図示の発光素子と、パワーのピーク波長が例えば445nmの青色のレーザ光を出射する不図示の発光素子とを有している。これらの発光素子には駆動回路を介して電力が供給される。また、本実施形態の光源21は、これら発光素子にそれぞれ対応する不図示のコリメートレンズを有している。コリメートレンズは、対応する発光素子から出射する光のファスト軸方向、スロー軸方向をコリメートするレンズであり、これら発光素子から出射してそれぞれの発光素子に対応するコリメートレンズを透過したレーザ光が光源21から出射される。このような光源21は、それぞれの発光素子に供給される電力を調節することで、赤色のレーザ光LRと緑色のレーザ光LGと青色のレーザ光LBとを時分割で出射でき、これらレーザ光LR,LG,LBは位相変調素子22の概ね同じ領域に照射される。つまり、本実施形態の光源21は、赤色のレーザ光LRと緑色のレーザ光LGと青色のレーザ光LBとを切り換え、いずれかの色のレーザ光LR,LG,LBを所望のタイミングで所望の時間出射できるように構成されている。なお、図1では、赤色のレーザ光LRは実線で示され、緑色のレーザ光LGは破線で示され、青色のレーザ光LBは一点鎖線で示され、これらレーザ光LR,LG,LBはずらして示されている。また、光源21は、それぞれの発光素子に供給される電力を調節することで、出射するそれぞれのレーザ光LR,LG,LBの強度を調節することができる。本実施形態では、初期状態としてこれらレーザ光LR,LG,LBが合成された光の色が白色となるように、それぞれのレーザ光LR,LG,LBの強度が調節されている。光源21として、例えば発光素子がレーザ光を出射するレーザ素子とされる半導体レーザ等を用いることができる。 The light source 21 emits a plurality of laser beams having different wavelengths from each other in a time-sharing manner. The light source 21 of the present embodiment includes a light emitting element (not shown) that emits red laser light with a power peak wavelength of 638 nm, for example, and a light emitting element (not shown) that emits green laser light with a power peak wavelength of 515 nm, for example. And a light emitting element (not shown) that emits blue laser light having a power peak wavelength of, for example, 445 nm. Electric power is supplied to these light emitting elements via a drive circuit. Moreover, the light source 21 of this embodiment has a collimating lens (not shown) corresponding to each of these light emitting elements. The collimating lens is a lens that collimates the fast axis direction and the slow axis direction of the light emitted from the corresponding light emitting element, and the laser light emitted from these light emitting elements and transmitted through the collimating lens corresponding to each light emitting element is a light source. 21 is emitted. The light source 21 can emit the red laser light LR, the green laser light LG, and the blue laser light LB in a time-sharing manner by adjusting the power supplied to each light emitting element. LR, LG, and LB are applied to substantially the same region of the phase modulation element 22. That is, the light source 21 of the present embodiment switches between the red laser light LR, the green laser light LG, and the blue laser light LB, and the laser light LR, LG, LB of any color is desired at a desired timing. It is configured to be able to emit time. In FIG. 1, the red laser beam LR is indicated by a solid line, the green laser beam LG is indicated by a broken line, the blue laser beam LB is indicated by a one-dot chain line, and the laser beams LR, LG, LB are shifted. Is shown. Moreover, the light source 21 can adjust the intensity | strength of each emitted laser beam LR, LG, LB by adjusting the electric power supplied to each light emitting element. In the present embodiment, the intensities of the laser beams LR, LG, and LB are adjusted so that the color of the combined light of the laser beams LR, LG, and LB is white as an initial state. As the light source 21, for example, a semiconductor laser in which a light emitting element is a laser element that emits laser light can be used.
 位相変調素子22は、入射する光を回折して出射するとともに出射する光の配光パターンを変更可能とされている。本実施形態の位相変調素子22は、入射する光を反射しつつ回折して出射する反射型の位相変調素子とされ、例えば、反射型の液晶パネルであるLCOS(Liquid Crystal On Silicon)とされる。位相変調素子22には、光源21から出射するレーザ光LR,LG,LBが時分割で入射する。 The phase modulation element 22 is configured to diffract and emit incident light and to change the light distribution pattern of the emitted light. The phase modulation element 22 of the present embodiment is a reflection type phase modulation element that diffracts and emits incident light while reflecting incident light, and is, for example, a liquid crystal panel LCOS (Liquid Crystal On On Silicon). . Laser light LR, LG, LB emitted from the light source 21 is incident on the phase modulation element 22 in a time division manner.
 図2は、図1に示す位相変調素子22の正面図である。なお、図2には光源21から出射するレーザ光LR,LG,LBが入射する領域21Aが破線で示されている。位相変調素子22は、長方形の外形を有し、当該長方形内にマトリックス状に配置された複数の変調ユニットを有しており、それぞれの変調ユニットは、当該変調ユニットに入射する光を回折して出射する。それぞれの変調ユニットは、マトリックス状に配置された複数のドットを含んでいる。この変調ユニットは、光源21から出射するレーザ光が入射する領域21A内に一つ以上位置するように形成される。また、図2に示すように、位相変調素子22の横側には走査線駆動回路22Hが配置されており、位相変調素子22の上下方向の一方側にはデータ線駆動回路22Vが配置されている。 FIG. 2 is a front view of the phase modulation element 22 shown in FIG. In FIG. 2, a region 21A where the laser beams LR, LG, and LB emitted from the light source 21 are incident is indicated by broken lines. The phase modulation element 22 has a rectangular outer shape, and has a plurality of modulation units arranged in a matrix within the rectangle. Each modulation unit diffracts light incident on the modulation unit. Exit. Each modulation unit includes a plurality of dots arranged in a matrix. The modulation unit is formed so as to be positioned one or more in the region 21A where the laser light emitted from the light source 21 is incident. Further, as shown in FIG. 2, a scanning line driving circuit 22H is arranged on the lateral side of the phase modulation element 22, and a data line driving circuit 22V is arranged on one side in the vertical direction of the phase modulation element 22. Yes.
 図3は、図1に示す位相変調素子22の一部の厚さ方向の断面を概略的に示す図である。本実施形態の位相変調素子22は、図3に示すように、シリコン基板23、駆動回路層24、複数の電極25、反射膜26、液晶層27、透明電極28、透光性基板29を主な構成として備える。 FIG. 3 is a diagram schematically showing a section in the thickness direction of a part of the phase modulation element 22 shown in FIG. As shown in FIG. 3, the phase modulation element 22 of the present embodiment mainly includes a silicon substrate 23, a drive circuit layer 24, a plurality of electrodes 25, a reflective film 26, a liquid crystal layer 27, a transparent electrode 28, and a translucent substrate 29. Prepare as a simple configuration.
 複数の電極25は、シリコン基板23の一方の面側に上記の変調ユニットの各ドットに対応してマトリックス状に配置されており、ドットはそれぞれ電極25を含んでいる。駆動回路層24は、図2に示す走査線駆動回路22H及びデータ線駆動回路22Vに接続される回路が配置される層であり、シリコン基板23と複数の電極25との間に配置される。透光性基板29は、シリコン基板23の一方の側で当該シリコン基板23と対向するように配置され、例えばガラス基板とされる。光源21から出射するレーザ光は、この透光性基板29におけるシリコン基板23側と反対側の面から入射する。透明電極28は、透光性基板29のシリコン基板23側の面上に配置される。液晶層27は、液晶分子27aを有し、複数の電極25と透明電極28との間に配置される。反射膜26は、複数の電極25と液晶層27との間に配置され、例えば誘電体多層膜とされる。そして、光源21から出射するレーザ光は、透光性基板29におけるシリコン基板23側と反対側の面から入射する。 The plurality of electrodes 25 are arranged in a matrix corresponding to each dot of the modulation unit on one surface side of the silicon substrate 23, and each dot includes the electrode 25. The drive circuit layer 24 is a layer in which circuits connected to the scanning line drive circuit 22H and the data line drive circuit 22V shown in FIG. 2 are arranged, and is arranged between the silicon substrate 23 and the plurality of electrodes 25. The translucent substrate 29 is disposed on one side of the silicon substrate 23 so as to face the silicon substrate 23, and is a glass substrate, for example. The laser light emitted from the light source 21 is incident from the surface of the translucent substrate 29 opposite to the silicon substrate 23 side. The transparent electrode 28 is disposed on the surface of the translucent substrate 29 on the silicon substrate 23 side. The liquid crystal layer 27 includes liquid crystal molecules 27 a and is disposed between the plurality of electrodes 25 and the transparent electrode 28. The reflective film 26 is disposed between the plurality of electrodes 25 and the liquid crystal layer 27 and is, for example, a dielectric multilayer film. The laser light emitted from the light source 21 is incident from the surface of the translucent substrate 29 opposite to the silicon substrate 23 side.
 図3に示すように、透光性基板29におけるシリコン基板23側と反対側の面から入射する光LRは、透明電極28及び液晶層27を透過し、反射膜26で反射され、液晶層27及び透明電極28を透過して透光性基板29から出射される。ここで、特定の電極25と透明電極28との間に電圧が印加されると、当該電極25と透明電極28との間に位置する液晶層27の液晶分子27aの配向が変化し、当該電極25と透明電極28との間に位置する液晶層27の屈折率が変化する。液晶分子27aの配向は、印加される電圧に応じて変化するため、この電圧に応じて屈折率も変化する。液晶層27の屈折率が変化されることで上記のように当該液晶層27を透過する光LRの光路長が変化するため、当該液晶層27を透過して位相変調素子22から出射する光の位相を変化させることができる。上記のように、複数の電極25は、変調ユニットの各ドットに対応して配置されているため、各ドットに対応する電極25と透明電極28との間に印加される電圧が制御されることで、各ドットから出射する光の位相の変化量がそれぞれ調整される。位相変調素子22は、このように各ドットにおける液晶層27の屈折率を調整することで、入射する光を回折して出射するとともに出射する光の配光パターンを所望の配光パターンにし得る。また、位相変調素子22は、各ドットにおける液晶層27の屈折率を変化させることで、出射する光の配光パターンを変化させることができる。 As shown in FIG. 3, the light LR incident from the surface opposite to the silicon substrate 23 side of the translucent substrate 29 passes through the transparent electrode 28 and the liquid crystal layer 27, is reflected by the reflective film 26, and is reflected by the liquid crystal layer 27 The light passes through the transparent electrode 28 and is emitted from the translucent substrate 29. Here, when a voltage is applied between the specific electrode 25 and the transparent electrode 28, the orientation of the liquid crystal molecules 27 a of the liquid crystal layer 27 located between the electrode 25 and the transparent electrode 28 changes, and the electrode The refractive index of the liquid crystal layer 27 located between 25 and the transparent electrode 28 changes. Since the orientation of the liquid crystal molecules 27a changes according to the applied voltage, the refractive index also changes according to this voltage. As the refractive index of the liquid crystal layer 27 is changed, the optical path length of the light LR transmitted through the liquid crystal layer 27 is changed as described above. Therefore, the light transmitted through the liquid crystal layer 27 and emitted from the phase modulation element 22 is changed. The phase can be changed. As described above, since the plurality of electrodes 25 are arranged corresponding to each dot of the modulation unit, the voltage applied between the electrode 25 corresponding to each dot and the transparent electrode 28 is controlled. Thus, the amount of change in the phase of the light emitted from each dot is adjusted. By adjusting the refractive index of the liquid crystal layer 27 in each dot in this way, the phase modulation element 22 can diffract and emit the incident light and can change the light distribution pattern of the emitted light to a desired light distribution pattern. Moreover, the phase modulation element 22 can change the light distribution pattern of the emitted light by changing the refractive index of the liquid crystal layer 27 in each dot.
 本実施形態では、それぞれの変調ユニットに同じ位相変調パターンを形成する。なお、本明細書では、位相変調パターンは、入射する光の位相を変調するパターンを示すものとされる。本実施形態では、位相変調パターンは、各ドットにおける液晶層27の屈折率のパターンであり、各ドットに対応する電極25と透明電極28との間に印加される電圧のパターンでもあると理解できる。本実施形態の位相変調素子22は、変調パターンを赤色のレーザ光LRに対応した位相変調パターン、緑色のレーザ光LGに対応した位相変調パターン、及び青色のレーザ光LBに対応した位相変調パターンに変更可能とされている。そして、位相変調素子22は、それぞれのレーザ光LR,LG,LBに対応した位相変調パターンでそれぞれのレーザ光LR,LG,LBを回折して出射する。本実施形態では、それぞれのレーザ光LR,LG,LBに対応した位相変調パターンは、互いに異なる位相変調パターンとされている。 In the present embodiment, the same phase modulation pattern is formed in each modulation unit. In the present specification, the phase modulation pattern indicates a pattern for modulating the phase of incident light. In the present embodiment, the phase modulation pattern is a pattern of the refractive index of the liquid crystal layer 27 in each dot, and can be understood as a pattern of a voltage applied between the electrode 25 and the transparent electrode 28 corresponding to each dot. . The phase modulation element 22 of the present embodiment converts the modulation pattern into a phase modulation pattern corresponding to the red laser beam LR, a phase modulation pattern corresponding to the green laser beam LG, and a phase modulation pattern corresponding to the blue laser beam LB. It can be changed. Then, the phase modulation element 22 diffracts and emits each laser beam LR, LG, LB with a phase modulation pattern corresponding to each laser beam LR, LG, LB. In the present embodiment, the phase modulation patterns corresponding to the laser beams LR, LG, and LB are different from each other.
 赤色のレーザ光LRが位相変調素子22によって回折されて当該位相変調素子22から出射する光DLRは赤色であり、緑色のレーザ光LGが位相変調素子22によって回折されて位相変調素子22から出射する光DLGは緑色であり、青色のレーザ光LBが位相変調素子22によって回折されて当該位相変調素子22から出射する光DLBは青色である。なお、図1では、赤色の光DLRは実線で示され、緑色の光DLGは破線で示され、青色の光DLGは一点鎖線で示され、これら光DLR,DLG,DLBはずらして示されている。それぞれのレーザ光LR,LG,LBに対応した位相変調パターンは、車両から所定の距離離れた焦点位置において、光DLR,DLG,DLBが照射される領域が互いに重なるようにそれぞれのレーザ光LR,LG,LBを回折させる位相変調パターンとされる。この焦点位置は、例えば車両から25m離れた位置とされる。言い換えると、位相変調素子22は、出射する光DLRの配光パターンと、出射する光DLGの配光パターンと、出射する光DLBの配光パターンとが、車両から所定の距離離れた焦点位置において互いに重なるように、光DLR,DLG,DLBをそれぞれ出射する。なお、上述したように位相変調素子22は、同じ位相変調パターンを形成する複数の変調ユニットを有しており、それぞれの変調ユニットがこのような配光パターンとなるように入射するレーザ光LR,LG,LBをそれぞれ回折する。 The light DLR diffracted by the phase modulation element 22 and emitted from the phase modulation element 22 is red, and the green laser light LG is diffracted by the phase modulation element 22 and emitted from the phase modulation element 22. The light DLG is green, and the light DLB emitted from the phase modulation element 22 after the blue laser light LB is diffracted by the phase modulation element 22 is blue. In FIG. 1, the red light DLR is indicated by a solid line, the green light DLG is indicated by a broken line, the blue light DLG is indicated by an alternate long and short dash line, and the lights DLR, DLG, and DLB are shifted from each other. Yes. The phase modulation patterns corresponding to the laser beams LR, LG, and LB are arranged so that the regions irradiated with the light DLR, DLG, and DLB are overlapped with each other at a focal position separated from the vehicle by a predetermined distance. The phase modulation pattern diffracts LG and LB. This focal position is, for example, a position 25 m away from the vehicle. In other words, the phase modulation element 22 is configured such that the light distribution pattern of the emitted light DLR, the light distribution pattern of the emitted light DLG, and the light distribution pattern of the emitted light DLB are at a focal position at a predetermined distance from the vehicle. Lights DLR, DLG, and DLB are emitted so as to overlap each other. As described above, the phase modulation element 22 has a plurality of modulation units that form the same phase modulation pattern, and the laser beams LR that are incident so that each modulation unit has such a light distribution pattern, LG and LB are diffracted, respectively.
 具体的には、位相変調素子22は、当該位相変調素子22から出射するそれぞれの光DLR,DLG,DLBが合成された光がロービームの配光パターンとなるように、光源21から出射する赤色のレーザ光LRと緑色のレーザ光LGと青色のレーザ光LBとをそれぞれ回折する。このそれぞれの配光パターンには強度分布も含まれる。このため、本実施形態の位相変調素子22は、当該位相変調素子22から出射する光DLR,DLG,DLBがそれぞれロービームの配光パターンと重なると共にロービームの配光パターンの強度分布に基づいた強度分布となるように、光源21から出射して位相変調素子22に入射する赤色のレーザ光LRと緑色のレーザ光LGと青色のレーザ光LBをそれぞれ回折する。こうして、位相変調素子22は、ロービームの配光パターンの赤色成分の光DLRと、ロービームの配光パターンの緑色成分の光DLGと、ロービームの配光パターンの青色成分の光DLBとを出射する。 Specifically, the phase modulation element 22 emits red light emitted from the light source 21 so that light obtained by combining the respective lights DLR, DLG, and DLB emitted from the phase modulation element 22 has a low beam distribution pattern. The laser beam LR, the green laser beam LG, and the blue laser beam LB are diffracted, respectively. Each light distribution pattern includes an intensity distribution. For this reason, the phase modulation element 22 of the present embodiment has the light distribution DLR, DLG, DLB emitted from the phase modulation element 22 superimposed on the light distribution pattern of the low beam and the intensity distribution based on the intensity distribution of the light distribution pattern of the low beam. Thus, the red laser light LR, the green laser light LG, and the blue laser light LB that are emitted from the light source 21 and incident on the phase modulation element 22 are diffracted, respectively. Thus, the phase modulation element 22 emits the red component light DLR of the low beam light distribution pattern, the green component light DLG of the low beam light distribution pattern, and the blue component light DLB of the low beam light distribution pattern.
 なお、上記のロービームの配光パターンの強度分布に基づいた強度分布とは、ロービームの配光パターンにおける強度が高い部位では、位相変調素子22から出射する光DLR,DLG,DLBの強度もそれぞれ高いという意味である。 The intensity distribution based on the intensity distribution of the low beam light distribution pattern is that the intensity of the light DLR, DLG, and DLB emitted from the phase modulation element 22 is high at a portion where the intensity of the low beam light distribution pattern is high. It means that.
 図1に示される入力部72は、ユーザの操作に応じて入力される命令や設定値等の情報を電気信号によって出力する。本実施形態では、入力部72に入力される情報は、光源21から出射するレーザ光LR,LG,LBのそれぞれの強度と、当該レーザ光LR,LG,LBのそれぞれの出射時間の長さとされる。入力部72として、例えば、複数のロータリスイッチが回路基板に実装されたスイッチ群が挙げられる。 The input unit 72 shown in FIG. 1 outputs information such as a command and a set value input according to a user's operation using an electrical signal. In the present embodiment, the information input to the input unit 72 includes the intensity of each of the laser beams LR, LG, LB emitted from the light source 21 and the length of each emission time of the laser beams LR, LG, LB. The Examples of the input unit 72 include a switch group in which a plurality of rotary switches are mounted on a circuit board.
 制御部70は、図2に示すように、位相変調素子22の走査線駆動回路22H及びデータ線駆動回路22Vに電気的に接続されており、各ドットにおける液晶層27の屈折率を制御する。また、制御部70は、光源21に電気的に接続されており、光源21のレーザ光の出射の状態を制御する。制御部70は、これらの制御を外部から制御部70に入力する信号等に基づいて行う。本実施形態では、制御部70は、車両のECU(電子制御装置)等の制御装置71、入力部72等に電気的に接続される。 As shown in FIG. 2, the control unit 70 is electrically connected to the scanning line driving circuit 22H and the data line driving circuit 22V of the phase modulation element 22, and controls the refractive index of the liquid crystal layer 27 in each dot. The control unit 70 is electrically connected to the light source 21 and controls the emission state of the laser light from the light source 21. The control unit 70 performs these controls based on a signal input to the control unit 70 from the outside. In the present embodiment, the control unit 70 is electrically connected to a control device 71 such as an ECU (electronic control device) of the vehicle, an input unit 72, and the like.
 次に車両用前照灯1による光の出射について説明する。 Next, emission of light by the vehicle headlamp 1 will be described.
 前述の制御部70は、例えば車両の制御装置71からのロービームの照射を示す信号を検知してこの信号が制御部70に入力している入力状態の場合、光源21のレーザ光の出射の状態と位相変調素子22の各ドットにおける液晶層27の屈折率とを制御して、車両用前照灯1から光を出射する。制御部70は、光源21の駆動回路を駆動することで光源21のレーザ光の出射の状態を制御する。また、制御部70は、各ドットに対応する電極25と透明電極28との間に印加される電圧を調節することで、位相変調素子22の各ドットにおける液晶層27の屈折率とを制御する。 For example, when the control unit 70 detects a signal indicating low beam irradiation from the vehicle control device 71 and the signal is input to the control unit 70, the laser light emission state of the light source 21 is detected. And the refractive index of the liquid crystal layer 27 at each dot of the phase modulation element 22 are controlled to emit light from the vehicle headlamp 1. The controller 70 controls the state of laser light emitted from the light source 21 by driving the drive circuit of the light source 21. In addition, the control unit 70 controls the refractive index of the liquid crystal layer 27 in each dot of the phase modulation element 22 by adjusting the voltage applied between the electrode 25 corresponding to each dot and the transparent electrode 28. .
 具体的には、本実施形態の制御部70は、光源21から出射する赤色のレーザ光LRが、変調ユニットにおける位相変調パターンが赤色のレーザ光LRに対応した位相変調パターンとされている位相変調素子22に入射するように、光源21と位相変調素子22とを制御する。つまり、制御部70は、位相変調素子22の変調ユニットにおける位相変調パターンを赤色のレーザ光LRに対応した位相変調パターンとしつつ、光源21から赤色のレーザ光LRを所定の時間出射させる。なお、制御部70は、位相変調素子22の位相変調パターンの変更と光源21から赤色のレーザ光LRの出射を同じタイミングで行っても良く、これらを異なるタイミングで行っても良く、これらの順序は特に限定されるものではない。このようにして光源21から出射した赤色のレーザ光LRは、この状態の位相変調素子22によって上記のように回折され、位相変調素子22からロービームの配光パターンの赤色成分の光DLRが所定の時間出射する。このロービームの配光パターンの赤色成分の光DLRは、フロントカバー12を介して車両用前照灯1から所定の時間出射する。 Specifically, the control unit 70 of the present embodiment uses the phase modulation pattern in which the red laser light LR emitted from the light source 21 is a phase modulation pattern in which the phase modulation pattern in the modulation unit corresponds to the red laser light LR. The light source 21 and the phase modulation element 22 are controlled so as to enter the element 22. That is, the control unit 70 emits the red laser light LR from the light source 21 for a predetermined time while making the phase modulation pattern in the modulation unit of the phase modulation element 22 a phase modulation pattern corresponding to the red laser light LR. Note that the control unit 70 may change the phase modulation pattern of the phase modulation element 22 and emit the red laser light LR from the light source 21 at the same timing, or may perform them at different timings. Is not particularly limited. The red laser light LR emitted from the light source 21 in this manner is diffracted as described above by the phase modulation element 22 in this state, and the red component light DLR of the low beam light distribution pattern is given from the phase modulation element 22 to a predetermined value. Emits time. The red component light DLR of the low beam light distribution pattern is emitted from the vehicle headlamp 1 through the front cover 12 for a predetermined time.
 次に、制御部70は、光源21から出射する緑色のレーザ光LGが、変調ユニットにおける位相変調パターンが緑色のレーザ光LGに対応した位相変調パターンとされている位相変調素子22に入射するように、光源21と位相変調素子22とを制御する。つまり、制御部70は、位相変調素子22の変調ユニットにおける位相変調パターンを緑色のレーザ光LGに対応した位相変調パターンとしつつ、光源21から緑色のレーザ光LGを所定の時間出射させる。位相変調素子22からロービームの配光パターンの赤色成分の光DLRを出射する場合と同様に、制御部70は、位相変調素子22の位相変調パターンの変更と光源21から緑色のレーザ光LGの出射を同じタイミングで行っても良く、これらを異なるタイミングで行っても良い。このようにして光源21から出射した緑色のレーザ光LGは、この状態の位相変調素子22によって上記のように回折され、位相変調素子22からロービームの配光パターンの緑色成分の光DLGが所定の時間出射する。このロービームの配光パターンの緑色成分の光DLGは、フロントカバー12を介して車両用前照灯1から所定の時間出射する。 Next, the control unit 70 causes the green laser light LG emitted from the light source 21 to enter the phase modulation element 22 whose phase modulation pattern in the modulation unit is a phase modulation pattern corresponding to the green laser light LG. In addition, the light source 21 and the phase modulation element 22 are controlled. That is, the control unit 70 emits the green laser light LG from the light source 21 for a predetermined time while making the phase modulation pattern in the modulation unit of the phase modulation element 22 a phase modulation pattern corresponding to the green laser light LG. Similar to the case where the red component light DLR of the low beam distribution pattern is emitted from the phase modulation element 22, the control unit 70 changes the phase modulation pattern of the phase modulation element 22 and emits the green laser light LG from the light source 21. May be performed at the same timing, or may be performed at different timings. The green laser light LG emitted from the light source 21 in this manner is diffracted as described above by the phase modulation element 22 in this state, and the green component light DLG of the low beam light distribution pattern is predetermined from the phase modulation element 22. Emits time. The green component light DLG of the low beam light distribution pattern is emitted from the vehicle headlamp 1 through the front cover 12 for a predetermined time.
 次に、制御部70は、光源21から出射する青色のレーザ光LBが、変調ユニットにおける位相変調パターンが青色のレーザ光LBに対応した位相変調パターンとされている位相変調素子22に入射するように、光源21と位相変調素子22とを制御する。つまり、制御部70は、位相変調素子22の変調ユニットにおける位相変調パターンを青色のレーザ光LBに対応した位相変調パターンとしつつ、光源21から青色のレーザ光LBを所定の時間出射させる。位相変調素子22からロービームの配光パターンの赤色成分の光DLRを出射する場合と同様に、制御部70は、位相変調素子22の位相変調パターンの変更と光源21から青色のレーザ光LBの出射を同じタイミングで行っても良く、これらを異なるタイミングで行っても良い。このようにして光源21から出射した青色のレーザ光LBは、この状態の位相変調素子22によって上記のように回折され、位相変調素子22からロービームの配光パターンの青色成分の光DLBが所定の時間出射する。このロービームの配光パターンの青色成分の光DLBは、フロントカバー12を介して車両用前照灯1から所定の時間出射する。 Next, the control unit 70 causes the blue laser light LB emitted from the light source 21 to enter the phase modulation element 22 in which the phase modulation pattern in the modulation unit is a phase modulation pattern corresponding to the blue laser light LB. In addition, the light source 21 and the phase modulation element 22 are controlled. That is, the control unit 70 emits the blue laser light LB from the light source 21 for a predetermined time while making the phase modulation pattern in the modulation unit of the phase modulation element 22 a phase modulation pattern corresponding to the blue laser light LB. Similarly to the case where the red component light DLR of the low beam distribution pattern is emitted from the phase modulation element 22, the control unit 70 changes the phase modulation pattern of the phase modulation element 22 and emits the blue laser light LB from the light source 21. May be performed at the same timing, or may be performed at different timings. The blue laser light LB emitted from the light source 21 in this manner is diffracted as described above by the phase modulation element 22 in this state, and the blue component light DLB of the low beam light distribution pattern is predetermined from the phase modulation element 22. Emits time. The blue component light DLB of the low beam light distribution pattern is emitted from the vehicle headlamp 1 through the front cover 12 for a predetermined time.
 制御部70は、上記の位相変調素子22の位相変調パターンの変更及び光源21からの赤色のレーザ光LRの出射、位相変調素子22の位相変調パターンの変更及び光源21からの緑色のレーザ光LGの出射、位相変調素子22の位相変調パターンの変更及び光源21からの青色のレーザ光LBの出射が順次繰り返されるように、位相変調素子22の各ドットにおける液晶層27の屈折率と光源21のレーザ光の出射の状態とを制御する。つまり、光源21の時分割での赤色のレーザ光LRと緑色のレーザ光LGと青色のレーザ光LBの出射と位相変調素子22の位相変調パターンの変更とが同期されている。そして、車両用前照灯1からは、ロービームの配光パターンの赤色成分の光DLRとロービームの配光パターンの緑色成分の光DLGとロービームの配光パターンの青色成分の光DLBとが順次繰り返して出射される。本実施形態では、レーザ光LR,LG,LBのそれぞれの出射時間の長さは概ね同じとされるため、光DLR,DLG,DLBのそれぞれの出射時間の長さも概ね同じとなる。 The control unit 70 changes the phase modulation pattern of the phase modulation element 22 and emits the red laser light LR from the light source 21, changes the phase modulation pattern of the phase modulation element 22, and the green laser light LG from the light source 21. , The change of the phase modulation pattern of the phase modulation element 22, and the emission of the blue laser light LB from the light source 21 are sequentially repeated, and the refractive index of the liquid crystal layer 27 in each dot of the phase modulation element 22 and the light source 21. Controls the state of laser light emission. That is, the emission of the red laser light LR, the green laser light LG, and the blue laser light LB in the time division of the light source 21 and the change of the phase modulation pattern of the phase modulation element 22 are synchronized. From the vehicle headlamp 1, the red component light DLR of the low beam light distribution pattern, the green component light DLG of the low beam light distribution pattern, and the blue component light DLB of the low beam light distribution pattern are sequentially repeated. Are emitted. In the present embodiment, since the lengths of the emission times of the laser beams LR, LG, and LB are substantially the same, the lengths of the emission times of the lights DLR, DLG, and DLB are also substantially the same.
 ところで、人の視覚の時間分解能よりも短い周期で色の異なる光が繰り返し照射される場合、人は残像現象によってこの異なる色の光が合成された光が照射されていると認識し得る。本実施形態において、所定の色のレーザ光を出射してから当該所定の色のレーザ光を再度出射するまでの時間が人の視覚の時間分解能よりも短くされた場合、人の視覚の時間分解能よりも短い周期で位相変調素子22から出射する光DLR,DLG,DLBが繰り返し照射され、赤色の光DLRと緑色の光DLGと青色の光DLBとが残像現象によって合成される。この光DLR,DLG,DLBのそれぞれの出射時間の長さは概ね同じである。また、上記のように初期状態としてそれぞれのレーザ光LR,LG,LBの強度は、これらレーザ光LR,LG,LBが合成された光の色が白色となるように調節されている。このため、残像現象によって合成される光の色は白色となる。光DLR,DLG,DLBのそれぞれは、上述のようにロービームの配光パターンと重なると共にロービームの配光パターンの強度分布に基づいた強度分布となるようにされている。このため、光DLR,DLG,DLBが残像現象によって合成された光の配光パターンはロービームの配光パターンとなる。なお、上記のレーザ光LR,LG,LBを繰り返し出射する周期は、残像現象によって合成される光のちらつきを感じることを抑制する観点から、1/15s以下とされることが好ましい。人の視覚の時間分解能は概ね1/30sである。車両用灯具であれば、光の出射の周期が2倍程度であれば光のちらつきを感じることを抑制できる。この周期が1/30s以下であれば、人の視覚の時間分解能を概ね超える。従って、光のちらつきを感じることをより抑制できる。また、光のちらつきを感じることをより抑制する観点では、この周期は1/60s以下であることが好ましい。 By the way, when light of different colors is repeatedly irradiated with a period shorter than the temporal resolution of human vision, the person can recognize that the light of the different colors is irradiated by the afterimage phenomenon. In the present embodiment, when the time from when the laser beam of a predetermined color is emitted until the laser beam of the predetermined color is emitted again is shorter than the temporal resolution of human vision, the temporal resolution of human vision The light DLR, DLG, DLB emitted from the phase modulation element 22 with a shorter cycle is repeatedly irradiated, and the red light DLR, the green light DLG, and the blue light DLB are combined by an afterimage phenomenon. The lengths of the emission times of the light DLR, DLG, and DLB are substantially the same. Further, as described above, the intensities of the respective laser beams LR, LG, and LB are adjusted so that the color of the combined light of the laser beams LR, LG, and LB becomes white as described above. For this reason, the color of the light synthesized by the afterimage phenomenon is white. Each of the lights DLR, DLG, DLB overlaps with the low beam light distribution pattern as described above, and has an intensity distribution based on the intensity distribution of the low beam light distribution pattern. For this reason, the light distribution pattern of light in which the light DLR, DLG, and DLB are combined by the afterimage phenomenon becomes a low beam light distribution pattern. In addition, it is preferable that the period which repeats | emits said laser beam LR, LG, LB is set to 1/15 s or less from a viewpoint of suppressing feeling of the flicker of the light synthesize | combined by an afterimage phenomenon. The human visual temporal resolution is approximately 1/30 s. If it is a vehicle lamp, if the light emission cycle is about twice, it is possible to suppress the feeling of flickering of light. If this period is 1/30 s or less, it substantially exceeds the temporal resolution of human vision. Therefore, it is possible to further suppress the feeling of light flicker. Further, from the viewpoint of further suppressing the feeling of flickering of light, this period is preferably 1/60 s or less.
 こうして、車両用前照灯1はロービームの配光パターンを有する光を残像現象によって照射し得る。 Thus, the vehicle headlamp 1 can irradiate light having a low beam light distribution pattern by an afterimage phenomenon.
 図4は夜間照明用の配光パターンを示す図であり、具体的には、図4(A)はロービームの配光パターンを示す図であり、図4(B)はハイビームの配光パターンを示す図である。図4においてSは水平線を示し、配光パターンが太線で示される。図4(A)に示される夜間照明用の配光パターンであるロービームの配光パターンPTNのうち、領域LA1は最も強度が高い領域であり、領域LA2、領域LA3の順に強度が低くなる。つまり、位相変調素子22は、残像現象によって合成された光がロービームの強度分布を含む配光パターンを形成するように光を回折するのである。なお、図4において破線で示すように、ロービームが残像現象によって照射される位置よりも上方にロービームよりも強度の低い光が車両用前照灯1から照射されても良い。この光は、標識視認用の光OHSとされる。この場合、位相変調素子22から出射される光DLR,DLG,DLBの配光パターンには、当該標識視認用の光OHSが照射される領域と重なり標識視認用の光OHSの強度分布を含む配光パターンが含まれていることが好ましい。また、光DLR,DLG,DLBの配光パターンには、外形が標識視認用の光OHSが照射される領域の外形の少なくとも一部と一致して標識視認用の光OHSの強度分布を含む配光パターンが含まれていることがより好ましい。更に、この外形が標識視認用の光OHSが照射される領域の外形の全体と一致していることがより好ましい。また、この場合、ロービームと標識視認用の光OHSとで、夜間照明用の配光パターンが形成されると理解することができる。なお、夜間照明用の配光パターンは、夜間のみに用いられるものではなく、トンネル等の暗所においても使用される。 FIG. 4 is a diagram showing a light distribution pattern for night illumination. Specifically, FIG. 4A is a diagram showing a low beam light distribution pattern, and FIG. 4B is a diagram showing a high beam light distribution pattern. FIG. In FIG. 4, S indicates a horizontal line, and a light distribution pattern is indicated by a thick line. Of the low beam light distribution pattern PTN L , which is the light distribution pattern for night illumination shown in FIG. 4A, the region LA1 is the region with the highest intensity, and the intensity decreases in the order of the region LA2 and the region LA3. That is, the phase modulation element 22 diffracts the light so that the light synthesized by the afterimage phenomenon forms a light distribution pattern including a low beam intensity distribution. Note that, as indicated by a broken line in FIG. 4, light having a lower intensity than the low beam may be emitted from the vehicle headlamp 1 above the position where the low beam is irradiated by the afterimage phenomenon. This light is used as a light OHS for visually recognizing a sign. In this case, the light distribution pattern of the light DLR, DLG, and DLB emitted from the phase modulation element 22 overlaps with the region irradiated with the marker visual recognition light OHS and includes an intensity distribution of the optical signal OHS for visual recognition of the marker. A light pattern is preferably included. Further, the light distribution pattern of the light DLR, DLG, DLB includes an intensity distribution of the light OHS for visually recognizing the sign so that the external shape matches at least a part of the external shape of the region irradiated with the light OHS for visually recognizing the sign. More preferably, a light pattern is included. Furthermore, it is more preferable that this outer shape matches the entire outer shape of the region irradiated with the light OHS for visually recognizing the sign. In this case, it can be understood that a light distribution pattern for night illumination is formed by the low beam and the light OHS for visually recognizing the sign. The light distribution pattern for night illumination is not used only at night, but is also used in a dark place such as a tunnel.
 次に車両用前照灯1における光の色バランスの調整について説明する。 Next, adjustment of the light color balance in the vehicle headlamp 1 will be described.
 上述したように制御部70には、入力部72が電気的に接続されており、制御部70には、光源21から出射するレーザ光LR,LG,LBのそれぞれの強度と、当該レーザ光LR,LG,LBのそれぞれの出射時間の長さとが電気信号によって入力部72から入力される。 As described above, the input unit 72 is electrically connected to the control unit 70, and the control unit 70 has the intensities of the laser beams LR, LG, and LB emitted from the light source 21 and the laser beam LR. , LG, and LB are input from the input unit 72 as electrical signals.
 ところで、上記のように残像現象によって合成された光は、合成される光の強度や合成される光の出射時間の長さが変わることで、その光の色バランスが変更される。本実施形態では、入力部72によって、光源21から出射するレーザ光LR,LG,LBのそれぞれの強度と、当該レーザ光LR,LG,LBのそれぞれの出射時間の長さとを調節することができる。このため、光源21を交換する等の対応をしなくても、照射する光の色バランスを調節できる。 Incidentally, the light synthesized by the afterimage phenomenon as described above changes the color balance of the light by changing the intensity of the synthesized light and the length of the emission time of the synthesized light. In the present embodiment, the input unit 72 can adjust the intensity of each of the laser beams LR, LG, LB emitted from the light source 21 and the length of each emission time of the laser beams LR, LG, LB. . For this reason, the color balance of the irradiated light can be adjusted without taking measures such as replacing the light source 21.
 具体的には、本実施形態において、例えば、赤色のレーザ光LRの強度を、車両用前照灯1からロービームの配光パターンPTNを有する光が残像現象によって照射される状態における強度よりも高くした場合には、車両用前照灯1から照射されるロービームの配光パターンPTNを有する白色の光の色は、赤色が強められた色に変更される。同様にして、緑色のレーザ光LGの強度を高くした場合には、白色の光の色は緑色が強められた色に変更され、青色のレーザ光LBの強度を高くした場合には、白色の光の色は青色が強められた色に変更される。一方、赤色のレーザ光LRの強度を低くした場合には、白色の光の色は青緑色が強められた色に変更され、緑色のレーザ光LGの強度を低くした場合には、白色の光の色は赤紫色が強められた色に変更され、青色のレーザ光LBの強度を低くした場合には、白色の光の色は黄色が強められた色に変更される。 Specifically, in the present embodiment, for example, the intensity of the red laser light LR is greater than the intensity in a state in which light having the low beam light distribution pattern PTN L is irradiated from the vehicle headlamp 1 by the afterimage phenomenon. When the height is increased, the color of the white light having the low beam light distribution pattern PTN L irradiated from the vehicle headlamp 1 is changed to a color in which red is enhanced. Similarly, when the intensity of the green laser beam LG is increased, the color of the white light is changed to a color in which green is increased, and when the intensity of the blue laser beam LB is increased, the white color of white light is changed. The color of the light is changed to a color in which blue is enhanced. On the other hand, when the intensity of the red laser light LR is lowered, the color of the white light is changed to a color in which bluish green is enhanced, and when the intensity of the green laser light LG is lowered, the white light is changed. Is changed to a color in which reddish purple is enhanced, and when the intensity of the blue laser beam LB is lowered, the color of white light is changed to a color in which yellow is enhanced.
 また、本実施形態において、赤色のレーザ光LRの出射時間の長さを、車両用前照灯1からロービームの配光パターンPTNを有する光が残像現象によって照射される状態における出射時間の長さよりも長くした場合には、車両用前照灯1から照射されるロービームの配光パターンPTNを有する白色の光の色は、赤色が強められた色に変更される。同様にして、緑色のレーザ光LGの出射時間を長くした場合には、白色の光の色は緑色が強められた色に変更され、青色のレーザ光LBの出射時間を長くした場合には、白色の光の色は青色が強められた色に変更される。一方、赤色のレーザ光LRの出射時間を短くした場合には、白色の光の色は青緑色が強められた色に変更され、緑色のレーザ光LGの出射時間を短くした場合には、白色の光の色は赤紫色が強められた色に変更され、青色のレーザ光LBの出射時間を短くした場合には、白色の光の色は黄色が強められた色に変更される。 Further, in the present embodiment, the length of the emission time of the red laser light LR is set to the length of the emission time in a state where the light having the low beam distribution pattern PTN L is irradiated from the vehicle headlamp 1 by the afterimage phenomenon. If it is longer than this, the color of the white light having the low beam distribution pattern PTN L emitted from the vehicle headlamp 1 is changed to a color in which red is enhanced. Similarly, when the emission time of the green laser beam LG is increased, the color of the white light is changed to a color in which green is enhanced, and when the emission time of the blue laser beam LB is increased, The color of white light is changed to a color in which blue is enhanced. On the other hand, when the emission time of the red laser beam LR is shortened, the color of the white light is changed to a color in which blue-green is enhanced, and when the emission time of the green laser beam LG is shortened, the white color is changed to white. The color of the light is changed to a color in which reddish purple is enhanced, and when the emission time of the blue laser light LB is shortened, the color of the white light is changed to a color in which yellow is enhanced.
 ところで、上記特許文献1の車両用灯具のホログラム素子には、光源から白色の参照光が入射して、その回折光によりロービームやハイビーム等の所定の配光パターンが形成される。しかし、白色の光は複数の波長の光が合成されて成る光である。ところで、回折格子の一種であるホログラム素子は波長依存性を有している。従って、白色に含まれる互いに異なる波長の光は、ホログラム素子により互いに異なる配光パターンとなる傾向にある。このため、上記特許文献1に記載の車両用灯具では、形成される配光パターンの縁近傍において、異なる色の光が浮き出る光のにじみが生じる。 Incidentally, white reference light is incident from the light source on the hologram element of the vehicle lamp disclosed in Patent Document 1, and a predetermined light distribution pattern such as a low beam or a high beam is formed by the diffracted light. However, white light is light obtained by combining light of a plurality of wavelengths. Incidentally, a hologram element which is a kind of diffraction grating has wavelength dependency. Therefore, light of different wavelengths contained in white tends to have different light distribution patterns depending on the hologram element. For this reason, in the vehicular lamp described in Patent Document 1, bleeding of light from which different colors of light emerge near the edge of the formed light distribution pattern.
 そこで、第1の態様としての本実施形態の車両用前照灯1は、光源21と位相変調素子22とを備える。位相変調素子22は、入射する光を回折して出射するとともに出射する光の配光パターンを変更可能とされる。光源21は、赤色のレーザ光LRと緑色のレーザ光LGと青色のレーザ光LBを時分割で出射する。光源21から出射するレーザ光LR,LG,LBは、位相変調素子22に入射し、位相変調素子22は、それぞれのレーザ光LR,LG,LBに対応した位相変調パターンでそれぞれのレーザ光LR,LG,LBを回折して出射する。それぞれのレーザ光LR,LG,LBに対応して位相変調素子22から出射する光DLR,DLG,DLBが照射される領域は互いに重なる。 Therefore, the vehicle headlamp 1 of the present embodiment as the first aspect includes a light source 21 and a phase modulation element 22. The phase modulation element 22 can change the light distribution pattern of the emitted light while diffracting and emitting the incident light. The light source 21 emits red laser light LR, green laser light LG, and blue laser light LB in a time-sharing manner. The laser beams LR, LG, and LB emitted from the light source 21 are incident on the phase modulation element 22, and the phase modulation element 22 has a phase modulation pattern corresponding to each of the laser beams LR, LG, and LB. LG and LB are diffracted and emitted. The regions irradiated with the light DLR, DLG, DLB emitted from the phase modulation element 22 corresponding to the respective laser beams LR, LG, LB overlap each other.
 上述したように、人の視覚の時間分解能よりも短い周期で色の異なる光が繰り返し照射される場合、人は残像現象によってこの異なる色の光が合成された光が照射されていると認識し得る。従って、人の視覚の時間分解能よりも短い周期で赤色のレーザ光LRと緑色のレーザ光LGと青色のレーザ光LBが繰り返し光源21から出射される場合には、車両用前照灯1は、光源21から出射される赤色のレーザ光LRと緑色のレーザ光LGと青色のレーザ光LBとが合成された白色の光を残像現象によって照射し得る。 As described above, when light of different colors is repeatedly emitted with a period shorter than the human visual temporal resolution, the person recognizes that the light of the different colors is irradiated by the afterimage phenomenon. obtain. Therefore, when the red laser beam LR, the green laser beam LG, and the blue laser beam LB are repeatedly emitted from the light source 21 at a cycle shorter than the temporal resolution of human vision, the vehicle headlamp 1 is White light obtained by combining the red laser light LR, the green laser light LG, and the blue laser light LB emitted from the light source 21 may be irradiated by an afterimage phenomenon.
 また、第1の態様としての本実施形態の車両用前照灯1では、上記のように、位相変調素子22は、それぞれの波長のレーザ光LR,LG,LBに対応した位相変調パターンで当該レーザ光LR,LG,LBを回折して出射する。このため、それぞれの波長のレーザ光LR,LG,LBに対応して位相変調素子22から出射する光DLR,DLG,DLBの配光パターンをそれぞれ所望の配光パターンにし得る。従って、第1の態様としての本実施形態の車両用前照灯1は、それぞれの波長のレーザ光LR,LG,LBに対応して位相変調素子22から出射する光DLR,DLG,DLBが照射される領域の外形がずれることを抑制でき、残像現象によって形成されるロービームの配光パターンPTNの縁近傍で色のにじみが生じることを抑制し得る。 Moreover, in the vehicle headlamp 1 of the present embodiment as the first aspect, as described above, the phase modulation element 22 has the phase modulation pattern corresponding to the laser beams LR, LG, and LB of the respective wavelengths. Laser beams LR, LG, and LB are diffracted and emitted. For this reason, the light distribution patterns of the light DLR, DLG, and DLB emitted from the phase modulation element 22 corresponding to the laser beams LR, LG, and LB of the respective wavelengths can be changed to desired light distribution patterns. Therefore, the vehicle headlamp 1 of the present embodiment as the first mode is irradiated with the light DLR, DLG, DLB emitted from the phase modulation element 22 corresponding to the laser beams LR, LG, LB of the respective wavelengths. It is possible to suppress the deviation of the outer shape of the region to be generated, and it is possible to suppress the occurrence of color bleeding near the edge of the low beam light distribution pattern PTN L formed by the afterimage phenomenon.
 なお、ロービームの配光パターンPTNの縁近傍で色のにじみが生じることを抑制する観点では、位相変調素子22は、車両から所定の距離離れた焦点位置において、光DLR,DLG,DLBが照射される領域の外形の少なくとも一部が互いに一致するように、レーザ光LR,LG,LBをそれぞれ回折して光DLR,DLG,DLBを出射することが好ましい。つまり、位相変調素子22は、車両から所定の距離離れた焦点位置において、光DLR,DLG,DLBの配光パターンの外形の少なくとも一部が互いに一致するように、レーザ光LR,LG,LBをそれぞれ回折して光DLR,DLG,DLBを出射することが好ましい。言い換えると、それぞれのレーザ光LR,LG,LBに対応した位相変調パターンは、車両から所定の距離離れた焦点位置において、光DLR,DLG,DLBが照射される領域の外形の少なくとも一部が互いに一致するようにそれぞれのレーザ光LR,LG,LBを回折させる位相変調パターンとされることが好ましい。このような構成にすることで、上記のように残像現象によって形成されるロービームの配光パターンPTNの縁近傍で色のにじみが生じることを抑制することができる。また、ロービームの配光パターンPTNの縁近傍で色のにじみが生じることをより抑制する観点では、これら外形の全体が互いに一致するようにすることがより好ましい。 From the viewpoint of suppressing color blurring near the edge of the low-beam light distribution pattern PTN L , the phase modulation element 22 emits light DLR, DLG, DLB at a focal position that is a predetermined distance away from the vehicle. It is preferable that the laser beams LR, LG, and LB be diffracted to emit the light beams DLR, DLG, and DLB so that at least a part of the outer shape of the regions to be matched with each other. That is, the phase modulation element 22 emits the laser beams LR, LG, and LB so that at least a part of the outer shape of the light distribution pattern of the light DLR, DLG, and DLB matches each other at a focal position that is a predetermined distance away from the vehicle. It is preferable that the light DLR, DLG, and DLB are emitted after being diffracted. In other words, the phase modulation pattern corresponding to each laser beam LR, LG, LB is such that at least a part of the outer shape of the region irradiated with the light DLR, DLG, DLB is mutually at a focal position that is a predetermined distance away from the vehicle. A phase modulation pattern that diffracts the respective laser beams LR, LG, and LB so as to coincide with each other is preferable. With such a configuration, it is possible to suppress the occurrence of color bleeding near the edge of the low beam light distribution pattern PTN L formed by the afterimage phenomenon as described above. Further, from the viewpoint of further suppressing the occurrence of color bleeding near the edge of the low beam light distribution pattern PTN L , it is more preferable that the whole of these outer shapes match each other.
 また、第1の態様としての本実施形態の車両用前照灯1は、上記のように、光源21から出射される赤色のレーザ光LRと緑色のレーザ光LGと青色のレーザ光LBとが合成された白色の光を残像現象によって照射し得る。このようにして残像現象によって合成される光の色バランスは、光源21から出射するそれぞれのレーザ光LR,LG,LBの強度やそれぞれのレーザ光LR,LG,LBの出射時間の長さを調節することによって調節し得る。従って、第1の態様としての本実施形態の車両用前照灯1は、光源21の交換等の対応をしなくても、色バランスを調節し得る。 Further, as described above, the vehicle headlamp 1 according to the present embodiment as the first aspect includes the red laser light LR, the green laser light LG, and the blue laser light LB emitted from the light source 21. The synthesized white light can be irradiated by the afterimage phenomenon. The color balance of the light synthesized by the afterimage phenomenon is adjusted by adjusting the intensity of each laser beam LR, LG, LB emitted from the light source 21 and the length of the emission time of each laser beam LR, LG, LB. It can be adjusted by doing. Therefore, the vehicle headlamp 1 of the present embodiment as the first aspect can adjust the color balance without taking measures such as replacing the light source 21.
(第2実施形態)
 次に、本発明の第1の態様としての第2実施形態について図5、図6を参照して詳細に説明する。図5は、本発明の第1の態様としての第2実施形態における車両用灯具を図1と同様に示す図であり、図6は、図5に示す位相変調素子の一部の厚さ方向の断面を概略的に示す図である。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
(Second Embodiment)
Next, a second embodiment as the first aspect of the present invention will be described in detail with reference to FIGS. FIG. 5 is a view showing the vehicular lamp in the second embodiment as the first aspect of the present invention in the same manner as FIG. 1, and FIG. 6 is a partial thickness direction of the phase modulation element shown in FIG. FIG. In addition, about the component which is the same as that of 1st Embodiment, or equivalent, except the case where it demonstrates especially, the same referential mark is attached | subjected and the overlapping description is abbreviate | omitted.
 図5、図6に示すように、本実施形態では、上記第1実施形態と同様に、車両用灯具は車両用前照灯1とされる。また、本実施形態の車両用前照灯1は、主に位相変調素子22が入射する光を透過しつつ回折して出射する透過型の位相変調素子とされる点で第1実施形態の車両用前照灯1と異なる。 As shown in FIGS. 5 and 6, in the present embodiment, the vehicular lamp is a vehicular headlamp 1 as in the first embodiment. Further, the vehicle headlamp 1 of the present embodiment is a vehicle of the first embodiment in that it is a transmission type phase modulation element that mainly diffracts and emits the light incident on the phase modulation element 22. Different from the headlamp 1 for use.
 本実施形態では、位相変調素子22は、例えば、透過型の液晶パネルであるLCD(Liquid Crystal display)とされ、当該位相変調素子22には、光源21から出射するレーザ光LR,LG,LBが時分割で入射する。本実施形態の位相変調素子22は、上記第1実施形態の位相変調素子22と同様に、長方形の外形を有し、当該長方形内にマトリックス状に配置された複数の変調ユニットを有している。それぞれの変調ユニットは、マトリックス状に配置された複数のドットを含んでいる。この変調ユニットは、光源21から出射するレーザ光が入射する領域21A内に一つ以上位置するように形成される。 In the present embodiment, the phase modulation element 22 is, for example, an LCD (Liquid Crystal Display) that is a transmissive liquid crystal panel, and laser light LR, LG, LB emitted from the light source 21 is received in the phase modulation element 22. Incident in time division. Similar to the phase modulation element 22 of the first embodiment, the phase modulation element 22 of the present embodiment has a rectangular outer shape, and has a plurality of modulation units arranged in a matrix within the rectangle. . Each modulation unit includes a plurality of dots arranged in a matrix. The modulation unit is formed so as to be positioned one or more in the region 21A where the laser light emitted from the light source 21 is incident.
 本実施形態の位相変調素子22は、図6に示すように、主にシリコン基板23に替わって透光性基板23aを備える点、複数の電極25に替わって複数の透明電極25aを備える点、反射膜26を備えない点において、第1実施形態の位相変調素子22と異なる。そして、本実施形態の位相変調素子22は、一対の透光性基板23a,29、駆動回路層24、複数の透明電極25a、液晶層27、透明電極28を主な構成として備える。 As shown in FIG. 6, the phase modulation element 22 of the present embodiment is mainly provided with a translucent substrate 23 a instead of the silicon substrate 23, a point provided with a plurality of transparent electrodes 25 a instead of the plurality of electrodes 25, It differs from the phase modulation element 22 of the first embodiment in that the reflection film 26 is not provided. The phase modulation element 22 of the present embodiment includes a pair of translucent substrates 23a and 29, a drive circuit layer 24, a plurality of transparent electrodes 25a, a liquid crystal layer 27, and a transparent electrode 28 as main components.
 複数の透明電極25aは、一方の透光性基板23aの一方の面側において、上記の変調ユニットの各ドットに対応してマトリックス状に配置されており、ドットはそれぞれ透明電極25aを含んでいる。駆動回路層24は、透光性基板23aと複数の透明電極25aとの間に配置される。他方の透光性基板29は、一方の透光性基板23aの一方の面側で当該一方の透光性基板23aと対向するように配置される。光源21から出射するレーザ光は、この他方の透光性基板29における一方の透光性基板23a側と反対側の面から入射する。透明電極28は、他方の透光性基板29の一方の透光性基板23a側の面上に配置される。液晶層27は、液晶分子27aを有し、複数の透明電極25aと透明電極28との間に配置される。そして、本実施形態では、光源21から出射するレーザ光は、他方の透光性基板29における一方の透光性基板23a側と反対側の面から入射する。 The plurality of transparent electrodes 25a are arranged in a matrix corresponding to each dot of the modulation unit on one surface side of one translucent substrate 23a, and each dot includes the transparent electrode 25a. . The drive circuit layer 24 is disposed between the translucent substrate 23a and the plurality of transparent electrodes 25a. The other translucent substrate 29 is disposed so as to face the one translucent substrate 23a on one surface side of the one translucent substrate 23a. The laser light emitted from the light source 21 is incident on the surface of the other light-transmitting substrate 29 opposite to the one light-transmitting substrate 23a. The transparent electrode 28 is disposed on the surface of the other translucent substrate 29 on the one translucent substrate 23a side. The liquid crystal layer 27 includes liquid crystal molecules 27 a and is disposed between the plurality of transparent electrodes 25 a and the transparent electrodes 28. In this embodiment, the laser light emitted from the light source 21 is incident on the surface of the other translucent substrate 29 opposite to the one translucent substrate 23a.
 図6に示すように、他方の透光性基板29における一方の透光性基板23a側と反対側の面から入射する光LRは、透明電極28、液晶層27、透明電極25a、及び一方の透光性基板23aを透過し、一方の透光性基板23aにおける他方の透光性基板29側と反対側の面から出射される。特定の透明電極25aと透明電極28との間に電圧が印加されると、当該透明電極25aと透明電極28との間に位置する液晶層27の液晶分子27aの配向が変化し、当該透明電極25aと透明電極28との間に位置する液晶層27の屈折率が変化する。液晶分子27aの配向は、印加される電圧に応じて変化するため、この電圧に応じて屈折率も変化する。液晶層27の屈折率が変化されることで上記のように当該液晶層27を透過する光LRの光路長が変化するため、当該液晶層27を透過して位相変調素子22から出射する光の位相を変化させることができる。複数の透明電極25aは、変調ユニットの各ドットに対応して配置されているため、各ドットに対応する透明電極25aと透明電極28との間に印加される電圧が制御されることで、各ドットから出射する光の位相の変化量がそれぞれ調整される。本実施形態の位相変調素子22は、第1実施形態の位相変調素子22と同様に、各ドットにおける液晶層27の屈折率を調整することで、入射する光を回折して出射するとともに出射する光の配光パターンを所望の配光パターンにし得る。また、本実施形態の位相変調素子22は、各ドットにおける液晶層27の屈折率を変化させることで、出射する光の配光パターンを変化させることができる。なお、位相変調素子22は、一方の透光性基板23a側から光が入射する場合、他方の透光性基板29から光を出射する。この場合であっても、位相変調素子22は、各ドットにおける液晶層27の屈折率を調整することで、出射する光の配光パターンを所望の配光パターンにし得る。 As shown in FIG. 6, the light LR incident from the surface opposite to the one light transmissive substrate 23 a side of the other light transmissive substrate 29 is transmitted through the transparent electrode 28, the liquid crystal layer 27, the transparent electrode 25 a, The light passes through the translucent substrate 23a and is emitted from the surface of the one translucent substrate 23a opposite to the other translucent substrate 29 side. When a voltage is applied between the specific transparent electrode 25a and the transparent electrode 28, the orientation of the liquid crystal molecules 27a of the liquid crystal layer 27 located between the transparent electrode 25a and the transparent electrode 28 changes, and the transparent electrode The refractive index of the liquid crystal layer 27 located between 25a and the transparent electrode 28 changes. Since the orientation of the liquid crystal molecules 27a changes according to the applied voltage, the refractive index also changes according to this voltage. As the refractive index of the liquid crystal layer 27 is changed, the optical path length of the light LR transmitted through the liquid crystal layer 27 is changed as described above. Therefore, the light transmitted through the liquid crystal layer 27 and emitted from the phase modulation element 22 is changed. The phase can be changed. Since the plurality of transparent electrodes 25a are arranged corresponding to the respective dots of the modulation unit, the voltage applied between the transparent electrode 25a corresponding to each dot and the transparent electrode 28 is controlled. The amount of change in the phase of the light emitted from the dots is adjusted. Similarly to the phase modulation element 22 of the first embodiment, the phase modulation element 22 of the present embodiment adjusts the refractive index of the liquid crystal layer 27 in each dot, thereby diffracting and emitting incident light. The light distribution pattern can be changed to a desired light distribution pattern. Further, the phase modulation element 22 of the present embodiment can change the light distribution pattern of the emitted light by changing the refractive index of the liquid crystal layer 27 in each dot. The phase modulation element 22 emits light from the other light transmissive substrate 29 when light is incident from the one light transmissive substrate 23a side. Even in this case, the phase modulation element 22 can change the light distribution pattern of the emitted light to a desired light distribution pattern by adjusting the refractive index of the liquid crystal layer 27 in each dot.
 本実施形態の位相変調素子22では、第1実施形態の位相変調素子22と同様に、それぞれの変調ユニットに同じ位相変調パターンを形成する。また、位相変調素子22は、変調パターンを赤色のレーザ光LRに対応した位相変調パターン、緑色のレーザ光LGに対応した位相変調パターン、及び青色のレーザ光LBに対応した位相変調パターンに変更可能とされている。本実施形態では、それぞれのレーザ光LR,LG,LBに対応した位相変調パターンは、互いに異なる位相変調パターンとされている。 In the phase modulation element 22 of the present embodiment, the same phase modulation pattern is formed in each modulation unit, similarly to the phase modulation element 22 of the first embodiment. The phase modulation element 22 can change the modulation pattern to a phase modulation pattern corresponding to the red laser light LR, a phase modulation pattern corresponding to the green laser light LG, and a phase modulation pattern corresponding to the blue laser light LB. It is said that. In the present embodiment, the phase modulation patterns corresponding to the laser beams LR, LG, and LB are different from each other.
 制御部70は、光源21の時分割での赤色のレーザ光LRと緑色のレーザ光LGと青色のレーザ光LBの出射と位相変調素子22の位相変調パターンの変更とが同期するように、光源21及び位相変調素子22を制御する。このため、上記第1実施形態での説明と同様に、位相変調素子22は、入射するそれぞれのレーザ光LR,LG,LBに対応した位相変調パターンでそれぞれのレーザ光LR,LG,LBを回折して光DLR,DLG,DLBを出射する。こうして、車両用前照灯1からは、ロービームの配光パターンPTNの赤色成分の光DLRとロービームの配光パターンPTNの緑色成分の光DLGとロービームの配光パターンPTNの青色成分の光DLBとが順次繰り返して出射される。このような構成であっても、人の視覚の時間分解能よりも短い周期で赤色のレーザ光LRと緑色のレーザ光LGと青色のレーザ光LBが繰り返し出射される場合には、車両用前照灯1はロービームの配光パターンPTNを有する光を残像現象によって照射し得る。また、位相変調素子22は、それぞれの波長のレーザ光LR,LG,LBに対応した位相変調パターンで当該レーザ光LR,LG,LBを回折して出射する。このため、本実施形態の車両用前照灯1は、それぞれの波長のレーザ光LR,LG,LBに対応して位相変調素子22から出射する光DLR,DLG,DLBが照射される領域の外形がずれることを抑制でき、残像現象によって形成されるロービームの配光パターンPTNの縁近傍で色のにじみが生じることを抑制し得る。また、残像現象によって照射される光の色バランスは、光源21から出射するそれぞれのレーザ光LR,LG,LBの強度やそれぞれのレーザ光LR,LG,LBの出射時間の長さを調節することにより調節し得る。従って、本実施形態の車両用前照灯1は、光源21を交換する等の対応をしなくても、色バランスを調節し得る。 The control unit 70 is configured so that the emission of the red laser light LR, the green laser light LG, and the blue laser light LB in the time division of the light source 21 and the change of the phase modulation pattern of the phase modulation element 22 are synchronized. 21 and the phase modulation element 22 are controlled. Therefore, similarly to the description in the first embodiment, the phase modulation element 22 diffracts each laser beam LR, LG, LB with a phase modulation pattern corresponding to each incident laser beam LR, LG, LB. Then, light DLR, DLG, and DLB are emitted. Thus, from the vehicle headlamp 1, the light distribution pattern PTN blue component light DLG light distribution pattern PTN L of the low beam of the green component of the light distribution pattern PTN L optical DLR and low beam of the red component of the L low beam Light DLB is emitted sequentially and repeatedly. Even in such a configuration, when the red laser beam LR, the green laser beam LG, and the blue laser beam LB are repeatedly emitted at a cycle shorter than the temporal resolution of human vision, the vehicle headlamp is used. The lamp 1 can irradiate light having a low beam light distribution pattern PTN L by an afterimage phenomenon. Further, the phase modulation element 22 diffracts and emits the laser beams LR, LG, and LB with a phase modulation pattern corresponding to the laser beams LR, LG, and LB of the respective wavelengths. For this reason, the vehicle headlamp 1 of the present embodiment has an outer shape of a region irradiated with the light DLR, DLG, DLB emitted from the phase modulation element 22 corresponding to the laser beams LR, LG, LB of the respective wavelengths. Can be suppressed, and the occurrence of color blurring in the vicinity of the edge of the low-beam light distribution pattern PTN L formed by the afterimage phenomenon can be suppressed. The color balance of the light emitted by the afterimage phenomenon is adjusted by adjusting the intensity of each laser beam LR, LG, LB emitted from the light source 21 and the length of the emission time of each laser beam LR, LG, LB. Can be adjusted. Therefore, the vehicle headlamp 1 of the present embodiment can adjust the color balance without taking measures such as replacing the light source 21.
 なお、本実施形態においても、図4において破線で示すように、標識視認用の光OHSが出射されても良い。この場合、位相変調素子22から出射される光DLR,DLG,DLBの配光パターンには、当該標識視認用の光OHSが照射される領域と重なり標識視認用の光OHSの強度分布を含む配光パターンが含まれていることが好ましい。また、光DLR,DLG,DLBの配光パターンには、外形が標識視認用の光OHSが照射される領域の外形の少なくとも一部と一致して標識視認用の光OHSの強度分布を含む配光パターンが含まれていることがより好ましい。更に、この外形が標識視認用の光OHSが照射される領域の外形の全体と一致していることがより好ましい。 In this embodiment, as shown by a broken line in FIG. 4, the light OHS for sign visual recognition may be emitted. In this case, the light distribution pattern of the light DLR, DLG, and DLB emitted from the phase modulation element 22 overlaps with the region irradiated with the marker visual recognition light OHS and includes an intensity distribution of the optical signal OHS for visual recognition of the marker. A light pattern is preferably included. Further, the light distribution pattern of the light DLR, DLG, DLB includes an intensity distribution of the light OHS for visually recognizing the sign so that the external shape matches at least a part of the external shape of the region irradiated with the light OHS for visually recognizing the sign. More preferably, a light pattern is included. Furthermore, it is more preferable that this outer shape matches the entire outer shape of the region irradiated with the light OHS for visually recognizing the sign.
 なお、第1の態様としての第1、第2実施形態では、車両用灯具としての車両用前照灯1は残像現象によってロービームを照射するものとされたが、本発明の第1の態様としての車両用灯具は特に限定されない。例えば、第1の態様としての車両用灯具は、残像現象によってハイビームを照射するものとされても良く、画像を構成する光を残像現象によって照射するものとされても良い。車両用灯具が残像現象によってハイビームを照射するものとされる場合、図4(B)に示される夜間照明用の配光パターンであるハイビームの配光パターンPTNの光が残像現象によって照射される。なお、図4(B)のハイビームの配光パターンPTNのうち、領域HA1は最も強度が高い領域であり、領域HA2は領域HA1よりも強度が低い領域である。つまり、位相変調素子22は、残像現象によって合成された光がハイビームの強度分布を含む配光パターンを形成するように光を回折する。また、車両用灯具が画像を構成する光を残像現象によって照射するものとされる場合、車両用灯具が出射する光の方向や車両用灯具が車両に取り付けられる位置は特に限定されない。 In the first and second embodiments as the first aspect, the vehicle headlamp 1 as the vehicle lamp is assumed to irradiate the low beam by the afterimage phenomenon, but as the first aspect of the present invention, The vehicle lamp is not particularly limited. For example, the vehicular lamp as the first aspect may be irradiated with a high beam by an afterimage phenomenon, or may be irradiated with light constituting an image by an afterimage phenomenon. If the vehicle lamp is intended to irradiate a high beam by afterimage phenomenon is illuminated by light distribution pattern PTN H light afterimage of the high beam light distribution pattern is a light distribution pattern for nighttime illumination shown in FIG. 4 (B) . Note that, in the high beam light distribution pattern PTN H in FIG. 4B, the region HA1 is a region having the highest intensity, and the region HA2 is a region having a lower intensity than the region HA1. That is, the phase modulation element 22 diffracts the light so that the light synthesized by the afterimage phenomenon forms a light distribution pattern including the high beam intensity distribution. Further, when the vehicular lamp irradiates light constituting the image by an afterimage phenomenon, the direction of the light emitted from the vehicular lamp and the position where the vehicular lamp is attached to the vehicle are not particularly limited.
 また、第1の態様としての第1、第2実施形態では、赤色のレーザ光LRと緑色のレーザ光LGと青色のレーザ光LBとを時分割で出射する光源21を例に説明した。しかし、光源は互いに波長の異なる複数のレーザ光を時分割で出射できれば良く、例えば、光源は互いに波長の異なる二つのレーザ光を時分割で出射するものであっても良く、互いに波長の異なる三つ以上のレーザ光を時分割で出射するものであっても良い。 In the first and second embodiments as the first mode, the light source 21 that emits the red laser beam LR, the green laser beam LG, and the blue laser beam LB in a time-division manner is described as an example. However, the light source only needs to be able to emit a plurality of laser beams having different wavelengths in a time division manner. For example, the light source may emit two laser beams having different wavelengths in a time division manner. Two or more laser beams may be emitted in a time division manner.
 また、第1の態様としての第1、第2実施形態では、入力部72を備える車両用灯具としての車両用前照灯1を例に説明した。しかし、車両用灯具は入力部72を備えなくても良い。このような場合には、例えば、制御部は、光源から出射するレーザ光の強度やレーザ光の出射時間の長さ等に関する予め定められた設定値等に基づいて、光源のレーザ光の出射の状態を制御する。車両用灯具の製造の際等にこの予め定められた設定値を調節することによって、光源から出射するレーザ光の強度やレーザ光の出射時間の長さを調節することができ、残像現象によって照射される光の色バランスを調節し得る。従って、このような構成の車両用灯具は、光源を交換する等の対応をしなくても、色バランスを調節し得る。 In the first and second embodiments as the first aspect, the vehicle headlamp 1 as a vehicle lamp including the input unit 72 has been described as an example. However, the vehicular lamp may not include the input unit 72. In such a case, for example, the control unit determines whether or not the laser light is emitted from the light source on the basis of a predetermined setting value related to the intensity of the laser light emitted from the light source, the length of the laser light emission time, or the like. Control the state. By adjusting this predetermined set value when manufacturing a vehicular lamp, etc., the intensity of the laser beam emitted from the light source and the length of the emission time of the laser beam can be adjusted. The color balance of the emitted light can be adjusted. Therefore, the vehicular lamp having such a configuration can adjust the color balance without taking measures such as replacing the light source.
 また、第1の態様としての第1、第2実施形態では、複数の変調ユニットを有する位相変調素子22を例に説明した。しかし、変調ユニットの数、大きさ、外形等は特に限定されるものではない。例えば、位相変調素子22は1つの変調ユニットを有し、この1つの変調ユニットによって入射する光を回折させても良い。 In the first and second embodiments as the first mode, the phase modulation element 22 having a plurality of modulation units has been described as an example. However, the number, size, outer shape and the like of the modulation unit are not particularly limited. For example, the phase modulation element 22 may have one modulation unit, and incident light may be diffracted by the one modulation unit.
 また、第1の態様としての第1、第2実施形態では、それぞれのレーザ光LR,LG,LBに対応した位相変調パターンは、互いに異なる位相変調パターンとされていた。しかし、それぞれの波長のレーザ光に対応した位相変調パターンは、それぞれの波長のレーザ光に対応して位相変調素子から出射する光が照射される領域が互いに重なるように、それぞれのレーザ光を回折させる位相変調パターンとされていれば良い。例えば、それぞれの波長のレーザ光に対応した位相変調パターンをこのような位相変調パターンとした結果、これら位相変調パターンのうち一部の位相変調パターンが同じとなっても良い。 In the first and second embodiments as the first mode, the phase modulation patterns corresponding to the laser beams LR, LG, and LB are different from each other. However, the phase modulation pattern corresponding to the laser beam of each wavelength diffracts each laser beam so that the regions irradiated with the light emitted from the phase modulation element corresponding to the laser beam of each wavelength overlap each other. It is sufficient that the phase modulation pattern to be generated is used. For example, as a result of using the phase modulation pattern corresponding to the laser beam of each wavelength as such a phase modulation pattern, some of the phase modulation patterns may be the same.
 また、第1の態様としての第1実施形態では、反射型の位相変調素子22を例に説明し、上記第2実施形態では、透過型の位相変調素子22を例に説明した。しかし、位相変調素子は、入射する光を回折して出射するとともに出射する光の配光パターンを変更可能であれば良い。例えば、位相変調素子は、シリコン基板上に複数の反射体が形成されたGLV(Grating Light Valve)とされても良い。GLVは、反射型の位相変調素子であり、反射体のたわみを電気的に制御することによって、入射する光を回折して出射するとともに出射する光の配光パターンを変更可能とされている。 Also, in the first embodiment as the first mode, the reflection type phase modulation element 22 has been described as an example, and in the second embodiment, the transmission type phase modulation element 22 has been described as an example. However, the phase modulation element only needs to be able to change the light distribution pattern of the emitted light while diffracting and emitting the incident light. For example, the phase modulation element may be a GLV (Grating Light Valve) in which a plurality of reflectors are formed on a silicon substrate. The GLV is a reflection type phase modulation element, and by electrically controlling the deflection of the reflector, the incident light is diffracted and emitted, and the light distribution pattern of the emitted light can be changed.
(第3実施形態)
 次に、本発明の第2の態様としての第3実施形態について説明する。なお、上記第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。図7は、第2の態様としての本実施形態における車両用灯具の一例を示す図であり、車両用灯具の鉛直方向の断面を概略的に示す図である。第1実施形態と同様に、本実施形態の車両用灯具は車両用前照灯1とされ、図7に示すように、本実施形態の車両用前照灯1は、灯具ユニット20の構成が異なる点において、第1実施形態の車両用前照灯1と主に異なる。
(Third embodiment)
Next, a third embodiment as the second aspect of the present invention will be described. In addition, about the component which is the same as that of the said 1st Embodiment, or the case where it demonstrates especially, the same referential mark is attached | subjected and the overlapping description is abbreviate | omitted. FIG. 7 is a diagram showing an example of a vehicle lamp in the present embodiment as the second mode, and is a diagram schematically showing a vertical section of the vehicle lamp. As in the first embodiment, the vehicular lamp of this embodiment is a vehicular headlamp 1, and as shown in FIG. 7, the vehicular headlamp 1 of the present embodiment has a configuration of a lamp unit 20. The difference is mainly different from the vehicle headlamp 1 of the first embodiment.
 本実施形態の灯具ユニット20は、ヒートシンク30と、冷却ファン35と、光学系ユニット50とを主な構成として備え、不図示の構成により筐体10に固定されている。 The lamp unit 20 of this embodiment includes a heat sink 30, a cooling fan 35, and an optical system unit 50 as main components, and is fixed to the housing 10 by a configuration not shown.
 ヒートシンク30は、概ね水平方向に延在する金属製のベース板31を有し、当該ベース板31の下方の面側には複数の放熱フィン32がベース板31と一体に設けられている。冷却ファン35は放熱フィン32と隙間を隔てて配置され、ヒートシンク30に固定されている。この冷却ファン35の回転による気流によりヒートシンク30は冷却される。 The heat sink 30 has a metal base plate 31 extending in a substantially horizontal direction, and a plurality of radiating fins 32 are provided integrally with the base plate 31 on the lower surface side of the base plate 31. The cooling fan 35 is disposed with a clearance from the heat radiation fin 32 and is fixed to the heat sink 30. The heat sink 30 is cooled by the airflow generated by the rotation of the cooling fan 35.
 ヒートシンク30におけるベース板31の上面には光学系ユニット50が配置されている。光学系ユニット50は、第1発光光学系51Rと、第2発光光学系51Gと、第3発光光学系51Bと、合成光学系55と、カバー59とを備える。 An optical system unit 50 is disposed on the upper surface of the base plate 31 in the heat sink 30. The optical system unit 50 includes a first light emitting optical system 51R, a second light emitting optical system 51G, a third light emitting optical system 51B, a combining optical system 55, and a cover 59.
 図8は、図7に示す光学系ユニットの拡大図である。図8に示すように、第1発光光学系51Rは、第1光源52Rと、第1コリメートレンズ53Rと、位相変調素子54Rとを備える。第1光源52Rは、所定の波長のレーザ光を出射するレーザ素子とされ、本実施形態では、パワーのピーク波長が例えば638nmの赤色のレーザ光を出射する。また、光学系ユニット50は、不図示の回路基板を有しており、第1光源52Rは当該回路基板に実装されており、回路基板を介して電力が供給される。 FIG. 8 is an enlarged view of the optical system unit shown in FIG. As shown in FIG. 8, the first light-emitting optical system 51R includes a first light source 52R, a first collimator lens 53R, and a phase modulation element 54R. The first light source 52R is a laser element that emits a laser beam having a predetermined wavelength. In this embodiment, the first light source 52R emits a red laser beam having a power peak wavelength of, for example, 638 nm. The optical system unit 50 has a circuit board (not shown), and the first light source 52R is mounted on the circuit board, and power is supplied through the circuit board.
 第1コリメートレンズ53Rは、第1光源52Rから出射するレーザ光のファスト軸方向、スロー軸方向をコリメートするレンズである。この第1コリメートレンズ53Rに替わって、レーザ光のファスト軸方向をコリメートするコリメートレンズとスロー軸方向をコリメートするコリメートレンズとが個別に設けられていても良い。 The first collimating lens 53R is a lens that collimates the fast axis direction and the slow axis direction of the laser light emitted from the first light source 52R. Instead of the first collimating lens 53R, a collimating lens for collimating the fast axis direction of the laser light and a collimating lens for collimating the slow axis direction may be provided separately.
 位相変調素子54Rは、入射する光を回折して出射するとともに出射する光の配光パターンや出射する光が照射される領域を変化できるようにされている。本実施形態の位相変調素子54Rは、入射する光を反射しつつ回折して出射する反射型の位相変調素子とされ、例えば、上記第1実施形態の位相変調素子22と同様に、LCOSとされる。位相変調素子54Rには、第1コリメートレンズ53Rから出射する赤色のレーザ光が入射し、この位相変調素子54Rは、この赤色のレーザ光を回折して出射する。こうして、位相変調素子54Rから赤色である第1の光DLRが出射し、この光DLRが第1発光光学系51Rから出射する。 The phase modulation element 54R diffracts and emits incident light, and can change a light distribution pattern of the emitted light and a region irradiated with the emitted light. The phase modulation element 54R of the present embodiment is a reflection type phase modulation element that diffracts and emits incident light while reflecting incident light. For example, the phase modulation element 54R is an LCOS like the phase modulation element 22 of the first embodiment. The Red laser light emitted from the first collimating lens 53R is incident on the phase modulation element 54R, and the phase modulation element 54R diffracts and emits the red laser light. Thus, the red first light DLR is emitted from the phase modulation element 54R, and this light DLR is emitted from the first light emitting optical system 51R.
 第2発光光学系51Gは、第2光源52Gと、第2コリメートレンズ53Gと、位相変調素子54Gとを備え、第3発光光学系51Bは、第3光源52Bと、第3コリメートレンズ53Bと、位相変調素子54Bとを備える。光源52G,52Bは、それぞれ所定の波長のレーザ光を出射するレーザ素子とされる。本実施形態では、第2光源52Gはパワーのピーク波長が例えば515nmの緑色のレーザ光を出射し、第3光源52Bはパワーのピーク波長が例えば445nmの青色のレーザ光を出射する。また、光源52G,52Bはそれぞれ上記回路基板に実装されており、当該回路基板を介して電力が供給される。 The second light emitting optical system 51G includes a second light source 52G, a second collimating lens 53G, and a phase modulation element 54G. The third light emitting optical system 51B includes a third light source 52B, a third collimating lens 53B, And a phase modulation element 54B. The light sources 52G and 52B are laser elements that each emit laser light having a predetermined wavelength. In the present embodiment, the second light source 52G emits green laser light having a power peak wavelength of 515 nm, for example, and the third light source 52B emits blue laser light having a power peak wavelength of 445 nm, for example. The light sources 52G and 52B are each mounted on the circuit board, and power is supplied through the circuit board.
 第2コリメートレンズ53Gは、第2光源52Gから出射するレーザ光のファスト軸方向、スロー軸方向をコリメートするレンズであり、第3コリメートレンズ53Bは、第3光源52Bから出射するレーザ光のファスト軸方向、スロー軸方向をコリメートするレンズである。これらコリメートレンズ53G,53Bに替わって、レーザ光のファスト軸方向をコリメートするコリメートレンズとスロー軸方向をコリメートするコリメートレンズとがそれぞれ個別に設けられていても良い。 The second collimating lens 53G is a lens that collimates the fast axis direction and the slow axis direction of the laser light emitted from the second light source 52G, and the third collimating lens 53B is the fast axis of the laser light emitted from the third light source 52B. This lens collimates the direction and slow axis direction. Instead of these collimating lenses 53G and 53B, a collimating lens for collimating the fast axis direction of the laser light and a collimating lens for collimating the slow axis direction may be provided separately.
 位相変調素子54G及び位相変調素子54Bは、位相変調素子54Rと同様に、入射する光を回折して出射するとともに出射する光の配光パターンや出射する光が照射される領域を変化できるようにされている。これら位相変調素子54G,54Bは、例えば、反射型の液晶パネルであるLCOSとされる。位相変調素子54Gには、第2コリメートレンズ53Gから出射する緑色のレーザ光が入射し、位相変調素子54Gは、この緑色のレーザ光を回折して出射する。位相変調素子54Bには、第3コリメートレンズ53Bから出射する青色のレーザ光が入射し、位相変調素子54Bは、この青色のレーザ光を回折して出射する。こうして、位相変調素子54Gから緑色である第2の光DLGが出射し、この光DLGが第2発光光学系51Gから出射する。また、位相変調素子54Bから青色である第3の光DLBが出射し、この光DLBが第3発光光学系51Bから出射する。 Similarly to the phase modulation element 54R, the phase modulation element 54G and the phase modulation element 54B can change the distribution pattern of the emitted light and the region irradiated with the emitted light, while diffracting and emitting the incident light. Has been. These phase modulation elements 54G and 54B are, for example, LCOS which is a reflective liquid crystal panel. Green laser light emitted from the second collimating lens 53G is incident on the phase modulation element 54G, and the phase modulation element 54G diffracts and emits the green laser light. The blue laser light emitted from the third collimating lens 53B is incident on the phase modulation element 54B, and the phase modulation element 54B diffracts and emits the blue laser light. Thus, the green second light DLG is emitted from the phase modulation element 54G, and this light DLG is emitted from the second light-emitting optical system 51G. Further, the blue third light DLB is emitted from the phase modulation element 54B, and this light DLB is emitted from the third light-emitting optical system 51B.
 合成光学系55は、第1光学素子55fと第2光学素子55sとを有する。第1光学素子55fは、第1発光光学系51Rから出射する第1の光DLRと、第2発光光学系51Gから出射する第2の光DLGとを合成する光学素子である。本実施形態では、第1光学素子55fは、第1の光DLRを透過すると共に第2の光DLGを反射することで第1の光DLRと第2の光DLGとを合成する。また、第2光学素子55sは、第1光学素子55fで合成された第1の光DLR及び第2の光DLGと、第3発光光学系51Bから出射する第3の光DLBとを合成する光学素子である。本実施形態では、第2光学素子55sは、第1光学素子55fで合成された第1の光DLR及び第2の光DLGを透過すると共に第3の光DLBを反射することで第1の光DLRと第2の光DLGと第3の光DLBとを合成する。このような第1光学素子55f、第2光学素子55sとして、ガラス基板上に酸化膜が積層された波長選択フィルタを挙げることができる。この酸化膜の種類や厚みをコントロールすることで、所定の波長よりも長い波長の光と透過し、この波長よりも短い波長の光を反射する構成とすることができる。 The synthetic optical system 55 includes a first optical element 55f and a second optical element 55s. The first optical element 55f is an optical element that synthesizes the first light DLR emitted from the first light emitting optical system 51R and the second light DLG emitted from the second light emitting optical system 51G. In the present embodiment, the first optical element 55f synthesizes the first light DLR and the second light DLG by transmitting the first light DLR and reflecting the second light DLG. The second optical element 55s is an optical that combines the first light DLR and the second light DLG synthesized by the first optical element 55f and the third light DLB emitted from the third light-emitting optical system 51B. It is an element. In the present embodiment, the second optical element 55s transmits the first light DLR and the second light DLG synthesized by the first optical element 55f and reflects the third light DLB, thereby reflecting the first light. The DLR, the second light DLG, and the third light DLB are combined. Examples of the first optical element 55f and the second optical element 55s include a wavelength selection filter in which an oxide film is stacked on a glass substrate. By controlling the type and thickness of the oxide film, it is possible to transmit light having a wavelength longer than a predetermined wavelength and reflect light having a wavelength shorter than this wavelength.
 こうして、合成光学系55からは、第1の光DLRと第2の光DLGと第3の光DLBとが合成された光が出射する。なお、図7、図8では、第1の光DLRは実線で示され、第2の光DLGは破線で示され、第3の光DLBは一点鎖線で示され、これら光DLR,DLG,DLBはずらして示されている。 Thus, the combined optical system 55 emits light in which the first light DLR, the second light DLG, and the third light DLB are combined. 7 and 8, the first light DLR is indicated by a solid line, the second light DLG is indicated by a broken line, and the third light DLB is indicated by a one-dot chain line. These light DLR, DLG, DLB Shown staggered.
 カバー59は、ヒートシンク30のベース板31上に固定されている。カバー59は概ね矩形の形状をしており、例えばアルミニウム等の金属から成る。カバー59の内側の空間には、上記の第1発光光学系51R、第2発光光学系51G、第3発光光学系51B、合成光学系55が配置されている。また、カバー59の前方には合成光学系55から出射する光が透過可能な開口59Hが形成されている。なお、カバー59の内壁は、黒アルマイト加工等による光吸収性とされることが好ましい。カバー59の内壁が光吸収性とされることで、意図しない反射や屈折等によりカバー59の内壁に照射された光が反射して開口59Hから意図しない方向に出射することを抑制することができる。 The cover 59 is fixed on the base plate 31 of the heat sink 30. The cover 59 has a substantially rectangular shape and is made of a metal such as aluminum. In the space inside the cover 59, the first light emitting optical system 51R, the second light emitting optical system 51G, the third light emitting optical system 51B, and the combining optical system 55 are arranged. In addition, an opening 59H through which light emitted from the combining optical system 55 can be transmitted is formed in front of the cover 59. Note that the inner wall of the cover 59 is preferably light-absorbing by black anodizing or the like. By making the inner wall of the cover 59 light-absorbing, it is possible to prevent light irradiated to the inner wall of the cover 59 from being reflected or refracted unintentionally and being emitted from the opening 59H in an unintended direction. .
 ここで、本実施形態では、位相変調素子54R、位相変調素子54G、及び位相変調素子54Bは同様の構成とされ、これら位相変調素子54R,54G,54Bは、図2、図3に示される第1実施形態における位相変調素子22と同様の構成とされる。 Here, in the present embodiment, the phase modulation element 54R, the phase modulation element 54G, and the phase modulation element 54B have the same configuration, and the phase modulation elements 54R, 54G, and 54B are the same as those shown in FIGS. The configuration is the same as that of the phase modulation element 22 in one embodiment.
 図9は、図8に示す位相変調素子の正面図である。なお、図9には第1コリメートレンズ53Rから出射するレーザ光が入射する領域53Aが破線で示されている。位相変調素子54Rは、第1実施形態における位相変調素子22と同様に、長方形の外形を有し、当該長方形内にマトリックス状に配置された複数の変調ユニットを有しており、それぞれの変調ユニットは、当該変調ユニットに入射する光を回折して出射する。それぞれの変調ユニットは、マトリックス状に配置された複数のドットを含んでいる。この変調ユニットは、第1コリメートレンズ53Rから出射するレーザ光が入射する領域53A内に一つ以上位置するように形成される。また、図9に示すように、位相変調素子54Rの横側には走査線駆動回路22Hが配置されており、位相変調素子54Rの上下方向の一方側にはデータ線駆動回路22Vが配置されている。 FIG. 9 is a front view of the phase modulation element shown in FIG. In FIG. 9, a region 53A where the laser light emitted from the first collimating lens 53R is incident is indicated by a broken line. Similarly to the phase modulation element 22 in the first embodiment, the phase modulation element 54R has a rectangular outer shape and includes a plurality of modulation units arranged in a matrix within the rectangle. Diffracts and emits light incident on the modulation unit. Each modulation unit includes a plurality of dots arranged in a matrix. The modulation unit is formed so as to be located at least one in the region 53A where the laser light emitted from the first collimating lens 53R is incident. As shown in FIG. 9, a scanning line driving circuit 22H is arranged on the lateral side of the phase modulation element 54R, and a data line driving circuit 22V is arranged on one side in the vertical direction of the phase modulation element 54R. Yes.
 このような位相変調素子54Rは、第1実施形態における位相変調素子22と同様に、各ドットにおける液晶層27の屈折率を調整することで、入射する光を回折して出射するとともに出射する光の配光パターンを所望の配光パターンにし得る。また、位相変調素子54Rは、各ドットにおける液晶層27の屈折率を変化させることで、出射する光の配光パターンを変化させたり、出射する光の向きを変えてこの光が照射される領域を変化させたりできる。 Similar to the phase modulation element 22 in the first embodiment, the phase modulation element 54R adjusts the refractive index of the liquid crystal layer 27 in each dot, thereby diffracting and emitting incident light. The light distribution pattern can be changed to a desired light distribution pattern. In addition, the phase modulation element 54R changes the refractive index of the liquid crystal layer 27 in each dot, thereby changing the light distribution pattern of the emitted light, or changing the direction of the emitted light and irradiating this light. Can be changed.
 また、第1実施形態における位相変調素子22と同様に、位相変調素子54Rの走査線駆動回路22H及びデータ線駆動回路22Vには、制御部70が電気的に接続されており、この制御部70は各ドットにおける液晶層27の屈折率を制御する。なお、制御部70は、位相変調素子54Rと同様に、位相変調素子54G,54Bにおける不図示の走査線駆動回路及びデータ線駆動回路にも電気的に接続されており、これら位相変調素子54G,54Bの各ドットにおける液晶層の屈折率も制御する。制御部70は、これらの制御を外部から制御部70に入力する信号等に基づいて行う。本実施形態では、制御部70は、車両のECU(電子制御装置)等の制御装置71等に電気的に接続される。 Similarly to the phase modulation element 22 in the first embodiment, the control unit 70 is electrically connected to the scanning line drive circuit 22H and the data line drive circuit 22V of the phase modulation element 54R. Controls the refractive index of the liquid crystal layer 27 in each dot. The control unit 70 is also electrically connected to a scanning line drive circuit and a data line drive circuit (not shown) in the phase modulation elements 54G and 54B, similarly to the phase modulation element 54R. The refractive index of the liquid crystal layer in each dot of 54B is also controlled. The control unit 70 performs these controls based on a signal input to the control unit 70 from the outside. In the present embodiment, the control unit 70 is electrically connected to a control device 71 such as an ECU (electronic control device) of the vehicle.
 本実施形態では、位相変調素子54Rにおけるそれぞれの変調ユニットに同じ位相変調パターンを形成する。また、位相変調素子54Gにおけるそれぞれの変調ユニットに同じ位相変調パターンを形成し、位相変調素子54Bにおけるそれぞれの変調ユニットに同じ位相変調パターンを形成する。本実施形態では、第1実施形態における位相変調パターンと同様に、位相変調パターンは、各ドットにおける液晶層27の屈折率のパターンであり、各ドットに対応する電極25と透明電極28との間に印加される電圧のパターンでもあると理解できる。この位相変調パターンを調整することで、出射する光の配光パターンを所望の配光パターンにし得る。本実施形態では、位相変調素子54R,54G,54Bにおけるそれぞれの位相変調パターンは、互いに異なる位相変調パターンとされている。 In the present embodiment, the same phase modulation pattern is formed in each modulation unit in the phase modulation element 54R. Further, the same phase modulation pattern is formed in each modulation unit in the phase modulation element 54G, and the same phase modulation pattern is formed in each modulation unit in the phase modulation element 54B. In the present embodiment, like the phase modulation pattern in the first embodiment, the phase modulation pattern is a pattern of the refractive index of the liquid crystal layer 27 in each dot, and between the electrode 25 and the transparent electrode 28 corresponding to each dot. It can be understood that this is also the pattern of the voltage applied to. By adjusting this phase modulation pattern, the light distribution pattern of the emitted light can be changed to a desired light distribution pattern. In the present embodiment, the phase modulation patterns in the phase modulation elements 54R, 54G, and 54B are different from each other.
 具体的には、本実施形態では、位相変調素子54R,54G,54Bにおけるそれぞれの位相変調パターンは、位相変調素子54R,54G,54Bのそれぞれから出射する光DLR,DLG,DLBが合成光学系55において合成された光が図4(A)に示すロービームの配光パターンPTNとなるように、コリメートレンズ53R,53G,53Bから出射するレーザ光をそれぞれ回折させる位相変調パターンとされる。言い換えると、位相変調素子54R,54G,54Bは、位相変調素子54R,54G,54Bのそれぞれから出射する光DLR,DLG,DLBが合成光学系55において合成された光がロービームの配光パターンPTNとなるように、コリメートレンズ53R,53G,53Bから出射するレーザ光をそれぞれ回折する。この配光パターンには強度分布も含まれる。このため、本実施形態では、位相変調素子54Rから出射する光DLRは、ロービームの配光パターンPTNと重なると共にロービームの配光パターンPTNの強度分布に基づいた強度分布とされる。また、位相変調素子54Gから出射する光DLGは、ロービームの配光パターンPTNと重なると共にロービームの配光パターンの強度分布に基づいた強度分布とされる。また、位相変調素子54Bから出射する光DLBは、ロービームの配光パターンPTNと重なると共にロービームの配光パターンPTNの強度分布に基づいた強度分布とされる。上述したようにこれら位相変調素子54R,54G,54Bは、それぞれ同じ位相変調パターンを形成する複数の変調ユニットを有しており、それぞれの変調ユニットがこのような配光パターンとなるようにコリメートレンズ53R,53G,53Bから出射するレーザ光をそれぞれ回折する。なお、位相変調素子54R,54G,54Bは、当該位相変調素子54R,54G,54Bから出射する光DLR,DLG,DLBの配光パターンの外形がロービームの配光パターンPTNの外形に一致するように、コリメートレンズ53R,53G,53Bから出射するレーザ光をそれぞれ回折することが好ましい。こうして、位相変調素子54Rはロービームの配光パターンPTNの赤色成分の光DLRを出射し、位相変調素子54Gはロービームの配光パターンPTNの緑色成分の光DLGを出射し、位相変調素子54Bはロービームの配光パターンPTNの青色成分の光DLBを出射する。 Specifically, in this embodiment, the phase modulation patterns in the phase modulation elements 54R, 54G, and 54B are obtained by combining the light DLR, DLG, and DLB emitted from each of the phase modulation elements 54R, 54G, and 54B with the combining optical system 55. 4B is a phase modulation pattern for diffracting the laser beams emitted from the collimating lenses 53R, 53G, and 53B so that the combined light PTN L shown in FIG. In other words, the phase modulation elements 54R, 54G, and 54B are light distribution patterns PTN L in which the light DLR, DLG, and DLB emitted from each of the phase modulation elements 54R, 54G, and 54B is synthesized in the synthesis optical system 55. The laser beams emitted from the collimating lenses 53R, 53G, and 53B are diffracted so that This light distribution pattern includes an intensity distribution. Therefore, in the present embodiment, the light DLR emitted from the phase modulation element 54R is a strength distribution based on the intensity distribution of the light distribution pattern PTN L low beam with overlapping the light distribution pattern PTN L of the low beam. The light DLG emitted from the phase modulation element 54G overlaps the low beam light distribution pattern PTN L and has an intensity distribution based on the intensity distribution of the low beam light distribution pattern. Further, the light DLB emitted from the phase modulating element 54B is an intensity distribution based on the intensity distribution of the light distribution pattern PTN L low beam with overlapping the light distribution pattern PTN L of the low beam. As described above, each of the phase modulation elements 54R, 54G, and 54B has a plurality of modulation units that form the same phase modulation pattern, and the collimating lens so that each modulation unit has such a light distribution pattern. The laser beams emitted from 53R, 53G, and 53B are diffracted, respectively. The phase modulation elements 54R, 54G, and 54B are configured such that the outer shape of the light distribution pattern of the light DLR, DLG, and DLB emitted from the phase modulation elements 54R, 54G, and 54B matches the outer shape of the low beam light distribution pattern PTN L. In addition, it is preferable to diffract the laser beams emitted from the collimating lenses 53R, 53G, and 53B, respectively. Thus, the phase modulation element 54R emits the red component light DLR of the low-beam light distribution pattern PTN L , and the phase modulation element 54G emits the green component light DLG of the low-beam light distribution pattern PTN L , and the phase modulation element 54B. Emits the light component DLB of the blue component of the light distribution pattern PTN L of the low beam.
 なお、上記のロービームの配光パターンPTNの強度分布に基づいた強度分布とは、ロービームの配光パターンPTNにおける強度が高い部位では、位相変調素子54R,54G,54Bから出射する光DLR,DLG,DLBの強度もそれぞれ高いという意味である。 The above and intensity distribution based on the intensity distribution of the light distribution pattern PTN L of the low beam is in the portion intensity at high light distribution pattern PTN L of the low beam, the phase modulation element 54R, 54G, light emitted from 54B DLR, This means that the strength of DLG and DLB is also high.
 また、位相変調素子54R,54G,54Bにおけるそれぞれの位相変調パターンは、所定の時間間隔よりも短い時間間隔で変化される。つまり、位相変調素子54R,54G,54Bは、所定の時間間隔よりも短い時間間隔で変化する位相変調パターンで、コリメートレンズ53R,53G,53Bから出射するレーザ光をそれぞれ回折する。本実施形態では、位相変調素子54R,54G,54Bにおけるそれぞれの位相変調パターンは、車両から所定の距離離れた焦点位置において、位相変調素子54R,54G,54Bから出射する光DLR,DLG,DLBが照射される領域がそれぞれ所定の方向へ振動するように変化される。この焦点位置は、例えば車両から25m離れた位置とされる。このため、位相変調素子54Rから出射する光DLRが照射される領域は、位相変調素子54Rにおける位相変調パターンの変化に対応して所定の方向へ振動し、位相変調素子54Gから出射する光DLGが照射される領域は、位相変調素子54Gにおける位相変調パターンの変化に対応して所定の方向へ振動し、位相変調素子54Bから出射する光DLBが照射される領域は、位相変調素子54Bにおける位相変調パターンの変化に対応して所定の方向へ振動する。なお、位相変調素子54R,54G,54Bにおけるそれぞれの位相変調パターンは、光DLR,DLG,DLBが照射される領域の振動に対応して当該領域の外形が変化しないように変化されることが好ましい。 Further, each phase modulation pattern in the phase modulation elements 54R, 54G, and 54B is changed at a time interval shorter than a predetermined time interval. That is, the phase modulation elements 54R, 54G, and 54B diffract the laser beams emitted from the collimating lenses 53R, 53G, and 53B, respectively, with a phase modulation pattern that changes at a time interval shorter than a predetermined time interval. In the present embodiment, the phase modulation patterns in the phase modulation elements 54R, 54G, and 54B are the light DLR, DLG, and DLB emitted from the phase modulation elements 54R, 54G, and 54B at a focal position that is a predetermined distance away from the vehicle. The irradiated area is changed so as to vibrate in a predetermined direction. This focal position is, for example, a position 25 m away from the vehicle. Therefore, the region irradiated with the light DLR emitted from the phase modulation element 54R vibrates in a predetermined direction corresponding to the change of the phase modulation pattern in the phase modulation element 54R, and the light DLG emitted from the phase modulation element 54G The irradiated region vibrates in a predetermined direction corresponding to the change of the phase modulation pattern in the phase modulation element 54G, and the region irradiated with the light DLB emitted from the phase modulation element 54B is the phase modulation in the phase modulation element 54B. It vibrates in a predetermined direction in response to the pattern change. Each phase modulation pattern in the phase modulation elements 54R, 54G, and 54B is preferably changed so as not to change the outer shape of the region corresponding to the vibration of the region irradiated with the light DLR, DLG, and DLB. .
 この領域の振動における振幅は、当該振動方向におけるこの領域の幅よりも小とされる。このため、互いに異なる位相変調パターンの位相変調素子54Rから出射する光DLRが照射される領域は、互いに重なっていると理解できる。また、互いに異なる位相変調パターンの位相変調素子54Gから出射する光DLGが照射される領域は、互いに重なっていると理解できる。また、互いに異なる位相変調パターンの位相変調素子54Bから出射する光DLBが照射される領域は、互いに重なっていると理解できる。なお、この領域の振動における振幅は、車内の人がこの領域の振動を認識できない程度の振幅とされることが好ましい。例えば、位相変調素子54R,54G,54Bにおける位相変調パターンが変化するそれぞれの時間間隔が1/15s以下とされる場合では、車両から25m離れた焦点位置における上記の振幅が3.6mm以下であることが好ましい。 The amplitude of vibration in this region is smaller than the width of this region in the vibration direction. For this reason, it can be understood that the regions irradiated with the light DLR emitted from the phase modulation elements 54R having different phase modulation patterns overlap each other. In addition, it can be understood that regions irradiated with the light DLG emitted from the phase modulation elements 54G having different phase modulation patterns overlap each other. Further, it can be understood that regions irradiated with the light DLB emitted from the phase modulation elements 54B having different phase modulation patterns overlap each other. Note that the amplitude of the vibration in this region is preferably set to such an extent that a person in the vehicle cannot recognize the vibration in this region. For example, when the time intervals at which the phase modulation patterns in the phase modulation elements 54R, 54G, and 54B change are set to 1/15 s or less, the above-described amplitude at the focal position 25 m away from the vehicle is 3.6 mm or less. It is preferable.
 次に車両用前照灯1による光の出射について説明する。 Next, emission of light by the vehicle headlamp 1 will be described.
 まず不図示の電源から電力が供給されることで、光源52R,52G,52Bからレーザ光がそれぞれ出射する。上記のように第1光源52Rからは赤色のレーザ光が出射し、第2光源52Gからは緑色のレーザ光が出射し、第3光源52Bからは青色のレーザ光が出射する。それぞれのレーザ光は、コリメートレンズ53R,53G,53Bでコリメートされた後、位相変調素子54R,54G,54Bに入射する。位相変調素子54R,54G,54Bは、当該位相変調素子54R,54G,54Bに入射するレーザ光をそれぞれ回折する。位相変調素子54Rからはロービームの配光パターンPTNの赤色成分の光である第1の光DLRが出射し、位相変調素子54Gからはロービームの配光パターンPTNの緑色成分の光である第2の光DLGが出射し、位相変調素子54Bからはロービームの配光パターンPTNの青色成分の光である第3の光DLBが出射する。こうして、第1発光光学系51Rから第1の光DLRが出射し、第2発光光学系51Gから第2の光DLGが出射し、第3発光光学系51Bから第3の光DLBが出射する。 First, when power is supplied from a power source (not shown), laser beams are emitted from the light sources 52R, 52G, and 52B, respectively. As described above, red laser light is emitted from the first light source 52R, green laser light is emitted from the second light source 52G, and blue laser light is emitted from the third light source 52B. The respective laser beams are collimated by the collimating lenses 53R, 53G, and 53B, and then enter the phase modulation elements 54R, 54G, and 54B. The phase modulation elements 54R, 54G, and 54B diffract the laser light incident on the phase modulation elements 54R, 54G, and 54B, respectively. The first light DLR, which is the red component light of the low beam light distribution pattern PTN L , is emitted from the phase modulation element 54R, and the first light DLR, which is the green component light of the low beam light distribution pattern PTN L , is emitted from the phase modulation element 54G. The second light DLG is emitted, and the third light DLB, which is the light of the blue component of the low beam distribution pattern PTN L , is emitted from the phase modulation element 54B. Thus, the first light DLR is emitted from the first light emitting optical system 51R, the second light DLG is emitted from the second light emitting optical system 51G, and the third light DLB is emitted from the third light emitting optical system 51B.
 合成光学系55では、まず、第1の光DLRと第2の光DLGが第1光学素子55fで合成される。第1光学素子55fで合成された第1の光DLR及び第2の光DLGは、第2光学素子55sで第3の光DLBと合成される。こうして、赤色の第1の光DLRと緑色の第2の光DLGと青色の第3の光DLBとが合成された光は白色の光となる。また、第1の光DLR、第2の光DLG、及び第3の光DLBは、上記のようにそれぞれロービームの配光パターンPTNと重なると共にロービームの配光パターンPTNの強度分布に基づいた強度分布とされるため、これらの光が合成された白色の光はロービームの強度分布となる。 In the combining optical system 55, first, the first light DLR and the second light DLG are combined by the first optical element 55f. The first light DLR and the second light DLG combined by the first optical element 55f are combined with the third light DLB by the second optical element 55s. In this way, the light obtained by combining the first red light DLR, the second green light DLG, and the third blue light DLB becomes white light. Further, the first light DLR, the second light DLG, and the third light DLB overlap with the low beam light distribution pattern PTN L as described above, and are based on the intensity distribution of the low beam light distribution pattern PTN L. Since the intensity distribution is obtained, white light obtained by combining these lights has a low beam intensity distribution.
 こうして、合成された白色の光は、カバー59の開口59Hから出射し、この光はフロントカバー12を介して車両用前照灯1から出射する。この光はロービームの配光パターンPTNを有しているため、照射される光はロービームとなる。 The combined white light is emitted from the opening 59H of the cover 59, and this light is emitted from the vehicle headlamp 1 via the front cover 12. Since this light has a low beam distribution pattern PTN L , the irradiated light is a low beam.
 ところで、上記のように、位相変調素子54R,54G,54Bにおけるそれぞれの位相変調パターンは、所定の時間間隔よりも短い時間間隔で変化される。これら位相変調パターンの変化は、車両から所定の距離離れた焦点位置において、位相変調素子54R,54G,54Bから出射する光DLR,DLG,DLBが照射される領域が所定の方向へ振動するような変化とされている。このため、位相変調素子54R,54G,54Bから出射する光DLR,DLG,DLBが照射される領域のそれぞれは、位相変調素子54R,54G,54Bにおける位相変調パターンの変化に対応して所定の方向へ振動する。また、互いに異なる位相変調パターンの位相変調素子54Rから出射する光DLRが照射される領域は、互いに重なっている。このため、路面等の被照射体のうちこれら領域が互いに重なっている部位では、視覚的に連続した光DLRの重ね合わせが生じており、位相変調素子54Rからこの部位に至るまでの光路は、位相変調素子54Rにおける位相変調パターンの変化に対応して変化する。また、互いに異なる位相変調パターンの位相変調素子54Gから出射する光DLGが照射される領域は、互いに重なっている。このため、路面等の被照射体のうちこれら領域が互いに重なっている部位では、視覚的に連続した光DLGの重ね合わせが生じており、位相変調素子54Gからこの部位に至るまでの光路は、位相変調素子54Gにおける位相変調パターンの変化に対応して変化する。また、互いに異なる位相変調パターンの位相変調素子54Bから出射する光DLBが照射される領域は、互いに重なっている。このため、路面等の被照射体のうちこれら領域が互いに重なっている部位では、視覚的に連続した光DLBの重ね合わせが生じており、位相変調素子54Bからこの部位に至るまでの光路は、位相変調素子54Bにおける位相変調パターンの変化に対応して変化する。このように光路が変化すると、路面等の被照射体の同じ位置であっても、車両用前照灯1から被照射体に入射する第1の光DLRと第2の光DLGと第3の光DLBの入射角やこれら光の位相がそれぞれ変化し得る。従って、入射角や位相の異なる第1の光DLRの視覚的な重ね合わせと、入射角や位相の異なる第2の光DLGの視覚的な重ね合わせと、入射角や位相の異なる第3の光DLBの視覚的な重ね合わせとがそれぞれ連続して生じる。このため、第1の光DLRと第2の光DLGと第3の光DLBのそれぞれのちらつきを感じることを抑制し得る。こうして、第1の光DLRと第2の光DLGと第3の光DLBによって形成されるロービームのちらつきを感じることを抑制し得る。 Incidentally, as described above, the respective phase modulation patterns in the phase modulation elements 54R, 54G, and 54B are changed at a time interval shorter than a predetermined time interval. These changes in the phase modulation pattern are such that the region irradiated with the light DLR, DLG, DLB emitted from the phase modulation elements 54R, 54G, 54B vibrates in a predetermined direction at a focal position away from the vehicle by a predetermined distance. It has been changed. Therefore, each of the regions irradiated with the light DLR, DLG, DLB emitted from the phase modulation elements 54R, 54G, 54B has a predetermined direction corresponding to the change of the phase modulation pattern in the phase modulation elements 54R, 54G, 54B. Vibrate. In addition, regions irradiated with the light DLR emitted from the phase modulation elements 54R having different phase modulation patterns overlap each other. For this reason, in the portion of the irradiated object such as the road surface where these regions overlap each other, the visually continuous light DLR is superposed, and the optical path from the phase modulation element 54R to this portion is It changes corresponding to the change of the phase modulation pattern in the phase modulation element 54R. In addition, regions irradiated with the light DLG emitted from the phase modulation elements 54G having different phase modulation patterns are overlapped with each other. For this reason, in the part where these regions overlap each other in the irradiated object such as the road surface, the visually continuous light DLG is superposed, and the optical path from the phase modulation element 54G to this part is It changes corresponding to the change of the phase modulation pattern in the phase modulation element 54G. In addition, regions irradiated with the light DLB emitted from the phase modulation elements 54B having different phase modulation patterns overlap each other. For this reason, in the part where these regions overlap each other in the irradiated object such as the road surface, the visually continuous light DLB is superimposed, and the optical path from the phase modulation element 54B to this part is It changes corresponding to the change of the phase modulation pattern in the phase modulation element 54B. When the optical path changes in this way, the first light DLR, the second light DLG, and the third light that enter the irradiated object from the vehicle headlamp 1 even at the same position of the irradiated object such as the road surface. The incident angle of the light DLB and the phase of the light can change. Therefore, the visual superimposition of the first light DLR having different incident angles and phases, the visual superimposition of the second light DLG having different incident angles and phases, and the third light having different incident angles and phases. Each of the DLB visual overlays occurs continuously. For this reason, it can suppress feeling each flicker of 1st light DLR, 2nd light DLG, and 3rd light DLB. In this way, it is possible to suppress the feeling of flickering of the low beam formed by the first light DLR, the second light DLG, and the third light DLB.
 なお、位相変調素子54R,54G,54Bにおける位相変調パターンが変化するそれぞれの時間間隔は、光のちらつきを感じることを抑制する観点から、1/15s以下とされることが好ましい。人の視覚の時間分解能は概ね1/30sである。車両用灯具であれば、視覚的な光の重ね合わせの時間間隔がこの時間の2倍程度であれば光のちらつきを感じることを抑制できる。この時間間隔が1/30s以下であれば、人の視覚の時間分解能を概ね超える。従って、光のちらつきを感じることをより抑制できる。また、光のちらつきを感じることをより抑制する観点では、この時間間隔は1/60s以下であることが好ましい。 It should be noted that the time intervals at which the phase modulation patterns in the phase modulation elements 54R, 54G, and 54B change are preferably 1/15 s or less from the viewpoint of suppressing light flickering. The human visual temporal resolution is approximately 1/30 s. In the case of a vehicular lamp, it is possible to suppress the flickering of light if the visual light overlapping time interval is about twice this time. If this time interval is 1/30 s or less, the time resolution of human vision is generally exceeded. Therefore, it is possible to further suppress the feeling of light flicker. Further, from the viewpoint of further suppressing the feeling of flickering of light, this time interval is preferably 1/60 s or less.
 なお、位相変調素子54R,54G,54Bにおけるそれぞれの位相変調パターンの変化に対応して、位相変調素子54R,54G,54Bから出射する光DLR,DLG,DLBが照射される領域が振動する方向は、特に限定されるものではない。例えば、この振動方向は、上下方向であっても良く、左右方向であっても良く、上下及び左右方向であっても良い。しかし、光のちらつきを感じることを抑制する観点から、2つ以上の方向とされることが好ましい。この振動の方向が2つ以上の方向とされることによって、振動の方向が一方向である場合と比べて、視覚的な連続した光の重ね合わせが多方向に生じ、光のちらつきを感じることをより抑制し得る。また、光DLRが照射される領域の振動方向と光DLGが照射される領域の振動方向と光DLBが照射される領域の振動方向は、同じ方向とされても良く、互いに異なる方向とされても良い。また、光DLR,DLG,DLBが照射される領域の振動におけるそれぞれの振幅は、概ね一定であっても良いものの、光のちらつきを感じることを抑制する観点から、変動することが好ましい。この振幅が変動することによって、振幅が変動しない場合と比べて、視覚的に連続した光の重ね合わせが多方向に生じ、光のちらつきを感じることをより抑制し得る。なお、光DLR,DLG,DLBが照射される領域の振動における振幅は、互いに異なる振幅とされても良く、同じ振幅とされても良い。また、これらの振動は互いに同期されても良く、非同期とされても良い。 The direction in which the region irradiated with the light DLR, DLG, DLB emitted from the phase modulation elements 54R, 54G, 54B oscillates in response to changes in the respective phase modulation patterns in the phase modulation elements 54R, 54G, 54B. There is no particular limitation. For example, the vibration direction may be the up-down direction, the left-right direction, the up-down direction, and the left-right direction. However, from the viewpoint of suppressing the feeling of flickering of light, the direction is preferably set to two or more directions. Compared to the case where the direction of vibration is two or more directions, the visual continuous superposition of light occurs in multiple directions, and the light flickers. Can be further suppressed. Further, the vibration direction of the region irradiated with the light DLR, the vibration direction of the region irradiated with the light DLG, and the vibration direction of the region irradiated with the light DLB may be the same direction or different directions. Also good. Moreover, although each amplitude in the vibration of the area | region irradiated with light DLR, DLG, and DLB may be substantially constant, it is preferable to fluctuate from a viewpoint of suppressing feeling of light flicker. By changing the amplitude, it is possible to further suppress the occurrence of visually flickering by visually overlapping light continuously in multiple directions as compared with the case where the amplitude does not change. In addition, the amplitude in the vibration of the region irradiated with the light DLR, DLG, DLB may be different from each other, or may be the same amplitude. These vibrations may be synchronized with each other or may be asynchronous.
 ところで、上記特許文献1の車両用前照灯のホログラム素子に入射する光として、例えば、レーザ光が挙げられている。しかし、レーザ光が被写体に照射されると、被照射面の微小な凹凸の影響により、当該被照射面で散乱した光が相互に干渉しあって、光のちらつきの原因となる微細な斑点模様であるスペックルが発生するという懸念がある。 By the way, as the light incident on the hologram element of the vehicle headlamp of Patent Document 1, for example, laser light is cited. However, when the subject is irradiated with laser light, the fine spot pattern that causes light flickering due to the light scattered on the irradiated surface interfering with each other due to the influence of minute irregularities on the irradiated surface. There is a concern that speckle will occur.
 そこで、第2の態様としての本実施形態の車両用前照灯1は、所定波長の光をそれぞれ出射する光源52R,52G,52Bと、3つの位相変調素子54R,54G,54Bと、を備える。位相変調素子54Rは、所定の時間間隔よりも短い時間間隔で変化する位相変調パターンで第1光源52Rから出射する光を回折して出射する。位相変調素子54Gは、所定の時間間隔よりも短い時間間隔で変化する位相変調パターンで第2光源52Gから出射する光を回折して出射する。位相変調素子54Bは、所定の時間間隔よりも短い時間間隔で変化する位相変調パターンで第3光源52Bから出射する光を回折して出射する。位相変調素子54Rから出射する光DLRが照射される領域は、位相変調素子54Rにおける位相変調パターンの変化に対応して所定の方向へ振動し、互いに異なる位相変調パターンの位相変調素子54Rから出射する光DLRが照射される領域は、互いに重なる。このため、上述したように、路面等の被照射体のうちこれら領域が互いに重なっている部位では、視覚的に連続した光DLRの重ね合わせが生じており、位相変調素子54Rからこの部位に至るまでの光路は、位相変調素子54Rにおける位相変調パターンの変化に対応して変化する。また、位相変調素子54Gから出射する光DLGが照射される領域は、位相変調素子54Gにおける位相変調パターンの変化に対応して所定の方向へ振動し、互いに異なる位相変調パターンの位相変調素子54Gから出射する光DLGが照射される領域は、互いに重なる。このため、上述したように、路面等の被照射体のうちこれら領域が互いに重なっている部位では、視覚的に連続した光DLGの重ね合わせが生じており、位相変調素子54Gからこの部位に至るまでの光路は、位相変調素子54Gにおける位相変調パターンの変化に対応して変化する。また、位相変調素子54Bから出射する光DLBが照射される領域は、位相変調素子54Bにおける位相変調パターンの変化に対応して所定の方向へ振動し、互いに異なる位相変調パターンの位相変調素子54Bから出射する光DLBが照射される領域は、互いに重なる。このため、上述したように、路面等の被照射体のうちこれら領域が互いに重なっている部位では、視覚的に連続した光DLBの重ね合わせが生じており、位相変調素子54Bからこの部位に至るまでの光路は、位相変調素子54Bにおける位相変調パターンの変化に対応して変化する。 Accordingly, the vehicle headlamp 1 of the present embodiment as the second aspect includes light sources 52R, 52G, and 52B that emit light of predetermined wavelengths, respectively, and three phase modulation elements 54R, 54G, and 54B. . The phase modulation element 54R diffracts and emits the light emitted from the first light source 52R with a phase modulation pattern that changes at a time interval shorter than a predetermined time interval. The phase modulation element 54G diffracts and emits the light emitted from the second light source 52G with a phase modulation pattern that changes at a time interval shorter than a predetermined time interval. The phase modulation element 54B diffracts and emits the light emitted from the third light source 52B with a phase modulation pattern that changes at a time interval shorter than a predetermined time interval. The region irradiated with the light DLR emitted from the phase modulation element 54R vibrates in a predetermined direction corresponding to the change of the phase modulation pattern in the phase modulation element 54R, and is emitted from the phase modulation elements 54R having different phase modulation patterns. Regions irradiated with the light DLR overlap each other. For this reason, as described above, in the portion of the irradiated object such as the road surface where these regions overlap each other, visually continuous superimposing of the light DLR occurs, and the phase modulation element 54R reaches this portion. Until the optical path changes corresponding to the change of the phase modulation pattern in the phase modulation element 54R. The region irradiated with the light DLG emitted from the phase modulation element 54G vibrates in a predetermined direction corresponding to the change of the phase modulation pattern in the phase modulation element 54G, and from the phase modulation elements 54G having different phase modulation patterns. The areas irradiated with the emitted light DLG overlap each other. For this reason, as described above, in the portion of the irradiated object such as the road surface where these regions overlap each other, visually continuous superimposing of the light DLG occurs, and the phase modulation element 54G reaches this portion. Until the optical path changes corresponding to the change of the phase modulation pattern in the phase modulation element 54G. Further, the region irradiated with the light DLB emitted from the phase modulation element 54B vibrates in a predetermined direction corresponding to the change of the phase modulation pattern in the phase modulation element 54B, and from the phase modulation elements 54B having different phase modulation patterns. The areas irradiated with the emitted light DLB overlap each other. For this reason, as described above, in the portion of the irradiated object such as the road surface where these regions overlap each other, visually continuous superimposing of the light DLB occurs, and this portion is reached from the phase modulation element 54B. Until the optical path changes corresponding to the change of the phase modulation pattern in the phase modulation element 54B.
 このように光路長が変化すると、上述したように、路面等の被照射体の同じ位置であっても、車両用前照灯1から被照射体に入射するロービームを形成する第1の光DLRと第2の光DLGと第3の光DLBの入射角やこれら光の位相がそれぞれ変化し得る。従って、入射角や位相の異なる第1の光DLRの視覚的な重ね合わせと、入射角や位相の異なる第2の光DLGの視覚的な重ね合わせと、入射角や位相の異なる第3の光DLBの視覚的な重ね合わせとがそれぞれ連続して生じる。このため、第1の光DLRと第2の光DLGと第3の光DLBによって形成されるロービームのちらつきを感じることを抑制し得る。 When the optical path length changes in this way, as described above, the first light DLR that forms the low beam incident on the irradiated object from the vehicle headlamp 1 even at the same position of the irradiated object such as the road surface. The incident angles of the second light DLG and the third light DLB and the phase of these lights can be changed. Therefore, the visual superimposition of the first light DLR having different incident angles and phases, the visual superimposition of the second light DLG having different incident angles and phases, and the third light having different incident angles and phases. Each of the DLB visual overlays occurs continuously. For this reason, it can be suppressed that the flickering of the low beam formed by the first light DLR, the second light DLG, and the third light DLB is felt.
 また、第2の態様としての本実施形態では、互いに異なる波長の光を出射する3つの光源と、この3つの光源にそれぞれ対応する3つの発光光学系とを有するため、それぞれの光源から出射する光の強度を調節することにより、所望の色の光を出射することができる。 Further, in the present embodiment as the second aspect, since there are three light sources that emit light of different wavelengths and three light-emitting optical systems respectively corresponding to the three light sources, the light is emitted from each light source. By adjusting the light intensity, light of a desired color can be emitted.
(第4実施形態)
 次に、本発明の第2の態様としての第4実施形態について図10を参照して詳細に説明する。図10は、本発明の第2の態様としての第4実施形態における光学系ユニットを図8と同様に示す図である。なお、第3実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
(Fourth embodiment)
Next, a fourth embodiment as the second aspect of the present invention will be described in detail with reference to FIG. FIG. 10 is a view showing the optical system unit in the fourth embodiment as the second mode of the present invention in the same manner as FIG. In addition, about the component which is the same as that of 3rd Embodiment, or equivalent, except the case where it demonstrates especially, the same referential mark is attached | subjected and the overlapping description is abbreviate | omitted.
 図10に示すように、本実施形態の光学系ユニット50は、主に位相変調素子54R,54G,54Bのそれぞれが入射する光を透過しつつ回折して出射する透過型の位相変調素子とされる点で第1実施形態の光学系ユニット50と異なる。 As shown in FIG. 10, the optical system unit 50 of the present embodiment is a transmission type phase modulation element that mainly diffracts and emits light incident on each of the phase modulation elements 54R, 54G, and 54B. This is different from the optical system unit 50 of the first embodiment.
 本実施形態では、これら位相変調素子54R,54G,54Bは、例えば、図6に示される第2実施形態の位相変調素子22と同様に、透過型の液晶パネルであるLCDとされる。位相変調素子54Rには、第1コリメートレンズ53Rから出射する赤色のレーザ光が入射し、この位相変調素子54Rは、この赤色のレーザ光を回折して出射する。位相変調素子54Gには、第2コリメートレンズ53Gから出射する緑色のレーザ光が入射し、この位相変調素子54Gは、この緑色のレーザ光を回折して出射する。位相変調素子54Bには、第3コリメートレンズ53Bから出射する赤色のレーザ光が入射し、この位相変調素子54Bは、この青色のレーザ光を回折して出射する。 In the present embodiment, the phase modulation elements 54R, 54G, and 54B are LCDs that are transmissive liquid crystal panels, for example, similarly to the phase modulation element 22 of the second embodiment shown in FIG. Red laser light emitted from the first collimating lens 53R is incident on the phase modulation element 54R, and the phase modulation element 54R diffracts and emits the red laser light. Green laser light emitted from the second collimating lens 53G is incident on the phase modulation element 54G, and the phase modulation element 54G diffracts and emits the green laser light. Red laser light emitted from the third collimating lens 53B is incident on the phase modulation element 54B, and the phase modulation element 54B diffracts and emits the blue laser light.
 本実施形態のそれぞれの位相変調素子54R,54G,54Bは、第2実施形態の位相変調素子22と同様に、各ドットにおける液晶層27の屈折率を調整することで、入射する光を回折して出射するとともに出射する光の配光パターンを所望の配光パターンにし得る。また、本実施形態のそれぞれの位相変調素子54R,54G,54Bは、各ドットにおける液晶層27の屈折率を変化させることで、出射する光の配光パターンを変化させたり、出射する光の向きを変えてこの光が照射される領域を変化させたりできる。なお、それぞれの位相変調素子54R,54G,54Bは、一方の透光性基板23a側から光が入射する場合、他方の透光性基板29から光を出射する。この場合であっても、それぞれの位相変調素子54R,54G,54Bは、各ドットにおける液晶層27の屈折率を調整することで、出射する光の配光パターンを所望の配光パターンにし得る。また、この場合であっても、それぞれの位相変調素子54R,54G,54Bは、各ドットにおける液晶層27の屈折率を変化させることで、出射する光の配光パターンを変化させたり、出射する光の向きを変えてこの光が照射される領域を変化させたりできる。 Each of the phase modulation elements 54R, 54G, and 54B of the present embodiment diffracts incident light by adjusting the refractive index of the liquid crystal layer 27 in each dot, similarly to the phase modulation element 22 of the second embodiment. The light distribution pattern of the emitted light can be changed to a desired light distribution pattern. Further, each of the phase modulation elements 54R, 54G, and 54B of the present embodiment changes the light distribution pattern of the emitted light by changing the refractive index of the liquid crystal layer 27 in each dot, and the direction of the emitted light. It is possible to change the area irradiated with this light by changing. Each of the phase modulation elements 54R, 54G, and 54B emits light from the other translucent substrate 29 when light enters from the one translucent substrate 23a side. Even in this case, each of the phase modulation elements 54R, 54G, and 54B can adjust the refractive index of the liquid crystal layer 27 in each dot to change the light distribution pattern of the emitted light to a desired light distribution pattern. Even in this case, each of the phase modulation elements 54R, 54G, 54B changes the light distribution pattern of the emitted light or emits it by changing the refractive index of the liquid crystal layer 27 in each dot. It is possible to change the area irradiated with this light by changing the direction of the light.
 本実施形態では、第3実施形態と同様に、位相変調素子54Rにおけるそれぞれの変調ユニットに同じ位相変調パターンを形成する。また、位相変調素子54Gにおけるそれぞれの変調ユニットに同じ位相変調パターンを形成し、位相変調素子54Bにおけるそれぞれの変調ユニットに同じ位相変調パターンを形成する。また、これら位相変調素子54R,54G,54Bにおけるそれぞれの位相変調パターンは、互いに異なる位相変調パターンとされている。 In the present embodiment, similarly to the third embodiment, the same phase modulation pattern is formed in each modulation unit in the phase modulation element 54R. Further, the same phase modulation pattern is formed in each modulation unit in the phase modulation element 54G, and the same phase modulation pattern is formed in each modulation unit in the phase modulation element 54B. The phase modulation patterns in the phase modulation elements 54R, 54G, and 54B are different from each other.
 具体的には、本実施形態においても、第3実施形態と同様に、位相変調素子54R,54G,54Bは、位相変調素子54R,54G,54Bのそれぞれから出射する光DLR,DLG,DLBが合成された光がロービームの配光パターンPTNとなるように、コリメートレンズ53R,53G,53Bから出射するレーザ光をそれぞれ回折する。このため、位相変調素子54Rからはロービームの配光パターンPTNの赤色成分の光である第1の光DLRが出射し、位相変調素子54Gからはロービームの配光パターンPTNの緑色成分の光である第2の光DLGが出射し、位相変調素子54Bからはロービームの配光パターンPTNの青色成分の光である第3の光DLBが出射する。そして、第1の光DLRと、第2の光DLGと、第3の光DLBとが合成光学系55で合成される。第1の光DLR、第2の光DLG、及び第3の光DLBは、第3実施形態と同様に、それぞれロービームの配光パターンPTNと重なると共にロービームの配光パターンPTNの強度分布に基づいた強度分布とされるため、これらの光が合成された白色の光はロービームの強度分布となる。なお、位相変調素子54R,54G,54Bは、当該位相変調素子54R,54G,54Bから出射する光DLR,DLG,DLBの配光パターンの外形がロービームの配光パターンPTNの外形に一致するように、コリメートレンズ53R,53G,53Bから出射するレーザ光をそれぞれ回折することが好ましい。こうして、合成された白色の光は、カバー59の開口59Hから出射し、この光はフロントカバー12を介して車両用前照灯1から出射する。この光はロービームの配光パターンPTNを有しているため、照射される光はロービームとなる。 Specifically, also in the present embodiment, similarly to the third embodiment, the phase modulation elements 54R, 54G, and 54B combine the light DLR, DLG, and DLB emitted from the phase modulation elements 54R, 54G, and 54B, respectively. The laser beams emitted from the collimating lenses 53R, 53G, and 53B are diffracted so that the emitted light becomes a low beam light distribution pattern PTN L. Therefore, the first light DLR that is the red component light of the low beam light distribution pattern PTN L is emitted from the phase modulation element 54R, and the green component light of the low beam light distribution pattern PTN L is emitted from the phase modulation element 54G. The second light DLG is emitted, and the third light DLB, which is the blue component light of the low beam light distribution pattern PTN L , is emitted from the phase modulation element 54B. Then, the first light DLR, the second light DLG, and the third light DLB are combined by the combining optical system 55. As in the third embodiment, the first light DLR, the second light DLG, and the third light DLB overlap with the low beam light distribution pattern PTN L and have the intensity distribution of the low beam light distribution pattern PTN L , respectively. Since the intensity distribution is based on the white light, the white light obtained by combining these lights has a low beam intensity distribution. The phase modulation elements 54R, 54G, and 54B are configured such that the outer shape of the light distribution pattern of the light DLR, DLG, and DLB emitted from the phase modulation elements 54R, 54G, and 54B matches the outer shape of the low beam light distribution pattern PTN L. In addition, it is preferable to diffract the laser beams emitted from the collimating lenses 53R, 53G, and 53B, respectively. The combined white light is emitted from the opening 59H of the cover 59, and this light is emitted from the vehicle headlamp 1 via the front cover 12. Since this light has a low beam distribution pattern PTN L , the irradiated light is a low beam.
 また、本実施形態においても、第3実施形態と同様に、位相変調素子54Rにおける位相変調パターンは、所定の時間間隔よりも短い時間間隔で変化し、位相変調素子54Rから出射する光DLRが照射される領域は、位相変調素子54Rにおける位相変調パターンの変化に対応して所定の方向へ振動する。このように互いに異なる位相変調パターンの位相変調素子54Rから出射する光DLRが照射される領域は、互いに重なる。また、位相変調素子54Gにおける位相変調パターンは、所定の時間間隔よりも短い時間間隔で変化し、位相変調素子54Gから出射する光DLGが照射される領域は、位相変調素子54Gにおける位相変調パターンの変化に対応して所定の方向へ振動する。このように互いに異なる位相変調パターンの位相変調素子54Gから出射する光DLGが照射される領域は、互いに重なる。また、位相変調素子54Bにおける位相変調パターンは、所定の時間間隔よりも短い時間間隔で変化し、位相変調素子54Bから出射する光DLBが照射される領域は、位相変調素子54Bにおける位相変調パターンの変化に対応して所定の方向へ振動する。このように互いに異なる位相変調パターンの位相変調素子54Bから出射する光DLBが照射される領域は、互いに重なる。 Also in this embodiment, as in the third embodiment, the phase modulation pattern in the phase modulation element 54R changes at a time interval shorter than a predetermined time interval, and the light DLR emitted from the phase modulation element 54R is irradiated. The region to be vibrated in a predetermined direction corresponding to the change of the phase modulation pattern in the phase modulation element 54R. Thus, the regions irradiated with the light DLR emitted from the phase modulation elements 54R having different phase modulation patterns overlap each other. The phase modulation pattern in the phase modulation element 54G changes at a time interval shorter than a predetermined time interval, and the region irradiated with the light DLG emitted from the phase modulation element 54G is the phase modulation pattern in the phase modulation element 54G. It vibrates in a predetermined direction in response to the change. Thus, the regions irradiated with the light DLG emitted from the phase modulation elements 54G having different phase modulation patterns overlap each other. The phase modulation pattern in the phase modulation element 54B changes at a time interval shorter than the predetermined time interval, and the region irradiated with the light DLB emitted from the phase modulation element 54B is the phase modulation pattern in the phase modulation element 54B. It vibrates in a predetermined direction in response to the change. Thus, the regions irradiated with the light DLB emitted from the phase modulation elements 54B having different phase modulation patterns overlap each other.
 本実施形態の車両用前照灯1によれば、第2の態様としての第3実施形態の車両用前照灯1と同様に、第1の光DLRと第2の光DLGと第3の光DLBによって形成されるロービームのちらつきを感じることを抑制し得る。 According to the vehicle headlamp 1 of the present embodiment, the first light DLR, the second light DLG, and the third light DLR, as in the vehicle headlamp 1 of the third embodiment as the second aspect. It is possible to suppress the flickering of the low beam formed by the light DLB.
(第5実施形態)
 次に、本発明の第2の態様としての第5実施形態について図11を参照して詳細に説明する。なお、第4実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
(Fifth embodiment)
Next, a fifth embodiment as the second aspect of the present invention will be described in detail with reference to FIG. In addition, about the component which is the same as that of 4th Embodiment, or equivalent, except the case where it demonstrates especially, the same referential mark is attached | subjected and the overlapping description is abbreviate | omitted.
 図11は、本発明の第2の態様としての第5実施形態における光学系ユニットを図8と同様に示す図である。図11に示すように本実施形態の光学系ユニット50は、合成光学系55を備えず、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bから出射するそれぞれの光が合成されない状態で、カバー59から光を出射する点において、第4実施形態の光学系ユニット50と異なる。本実施形態では、第1発光光学系51R、第2発光光学系51G、第3発光光学系51Bは、光の出射方向がカバー59の開口59H側とされている。 FIG. 11 is a view showing the optical system unit in the fifth embodiment as the second aspect of the present invention in the same manner as FIG. As shown in FIG. 11, the optical system unit 50 of this embodiment does not include the combining optical system 55, and each light emitted from the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B. Is different from the optical system unit 50 according to the fourth embodiment in that light is emitted from the cover 59 in a state where are not combined. In the present embodiment, in the first light emitting optical system 51R, the second light emitting optical system 51G, and the third light emitting optical system 51B, the light emission direction is set to the opening 59H side of the cover 59.
 本実施形態においても、第4実施形態と同様にして、位相変調素子54R,54G,54Bは、位相変調素子54R,54G,54Bのそれぞれから出射する光DLR,DLG,DLBが合成された光がロービームの配光パターンPTNとなるように、コリメートレンズ53R,53G,53Bから出射するレーザ光をそれぞれ回折する。このため、位相変調素子54Rからはロービームの配光パターンPTNの赤色成分の光である第1の光DLRが出射し、位相変調素子54Gからはロービームの配光パターンPTNの緑色成分の光である第2の光DLGが出射し、位相変調素子54Bからはロービームの配光パターンPTNの青色成分の光である第3の光DLBが出射する。位相変調素子54Rから出射する第1の光DLR、位相変調素子54Rから出射する第2の光DLG、及び位相変調素子54Bから出射する第3の光DLBは、それぞれカバー59の開口59Hから出射し、フロントカバー12を介して車両用前照灯1の外部に照射される。このとき、第1の光DLR、第2の光DLG、及び第3の光DLBは、車両から所定の距離離れた焦点位置において、それぞれの光が照射される領域が互いに重なるように照射される。この焦点位置は、例えば車両から25m離れた位置とされる。なお、第1の光DLR、第2の光DLG、及び第3の光DLBは、この焦点位置においてそれぞれの配光パターンの外形が概ね一致するように照射されることが好ましい。 Also in the present embodiment, similarly to the fourth embodiment, the phase modulation elements 54R, 54G, and 54B receive light obtained by combining the light DLR, DLG, and DLB emitted from the phase modulation elements 54R, 54G, and 54B, respectively. The laser beams emitted from the collimating lenses 53R, 53G, and 53B are diffracted so that the low beam distribution pattern PTN L is obtained. Therefore, the first light DLR that is the red component light of the low beam light distribution pattern PTN L is emitted from the phase modulation element 54R, and the green component light of the low beam light distribution pattern PTN L is emitted from the phase modulation element 54G. The second light DLG is emitted, and the third light DLB, which is the blue component light of the low beam light distribution pattern PTN L , is emitted from the phase modulation element 54B. The first light DLR emitted from the phase modulation element 54R, the second light DLG emitted from the phase modulation element 54R, and the third light DLB emitted from the phase modulation element 54B are emitted from the opening 59H of the cover 59, respectively. The light is irradiated to the outside of the vehicle headlamp 1 through the front cover 12. At this time, the first light DLR, the second light DLG, and the third light DLB are irradiated so that the areas irradiated with the respective lights overlap each other at a focal position separated from the vehicle by a predetermined distance. . This focal position is, for example, a position 25 m away from the vehicle. The first light DLR, the second light DLG, and the third light DLB are preferably irradiated so that the outer shapes of the respective light distribution patterns substantially coincide at this focal position.
 また、本実施形態においても、第4実施形態と同様にして、位相変調素子54Rにおける位相変調パターンは、所定の時間間隔よりも短い時間間隔で変化し、位相変調素子54Rから出射する光DLRが照射される領域は、位相変調素子54Rにおける位相変調パターンの変化に対応して所定の方向へ振動する。このように互いに異なる位相変調パターンの位相変調素子54Rから出射する光DLRが照射される領域は、互いに重なる。また、位相変調素子54Gにおける位相変調パターンは、所定の時間間隔よりも短い時間間隔で変化し、位相変調素子54Gから出射する光DLGが照射される領域は、位相変調素子54Gにおける位相変調パターンの変化に対応して所定の方向へ振動する。このように互いに異なる位相変調パターンの位相変調素子54Gから出射する光DLGが照射される領域は、互いに重なる。また、位相変調素子54Bにおける位相変調パターンは、所定の時間間隔よりも短い時間間隔で変化し、位相変調素子54Bから出射する光DLBが照射される領域は、位相変調素子54Bにおける位相変調パターンの変化に対応して所定の方向へ振動する。このように互いに異なる位相変調パターンの位相変調素子54Bから出射する光DLBが照射される領域は、互いに重なる。 Also in the present embodiment, similarly to the fourth embodiment, the phase modulation pattern in the phase modulation element 54R changes at a time interval shorter than a predetermined time interval, and the light DLR emitted from the phase modulation element 54R changes. The irradiated region vibrates in a predetermined direction corresponding to the change of the phase modulation pattern in the phase modulation element 54R. Thus, the regions irradiated with the light DLR emitted from the phase modulation elements 54R having different phase modulation patterns overlap each other. The phase modulation pattern in the phase modulation element 54G changes at a time interval shorter than a predetermined time interval, and the region irradiated with the light DLG emitted from the phase modulation element 54G is the phase modulation pattern in the phase modulation element 54G. It vibrates in a predetermined direction in response to the change. Thus, the regions irradiated with the light DLG emitted from the phase modulation elements 54G having different phase modulation patterns overlap each other. The phase modulation pattern in the phase modulation element 54B changes at a time interval shorter than the predetermined time interval, and the region irradiated with the light DLB emitted from the phase modulation element 54B is the phase modulation pattern in the phase modulation element 54B. It vibrates in a predetermined direction in response to the change. Thus, the regions irradiated with the light DLB emitted from the phase modulation elements 54B having different phase modulation patterns overlap each other.
 本実施形態の車両用前照灯1によれば、第2の態様としての第3実施形態の合成光学系55を用いないため、簡易な構成とすることができるとともに、第1の光DLRと第2の光DLGと第3の光DLBによって形成されるロービームのちらつきを感じることを抑制し得る。 According to the vehicle headlamp 1 of the present embodiment, since the combining optical system 55 of the third embodiment as the second aspect is not used, the configuration can be simplified, and the first light DLR and It is possible to suppress the flickering of the low beam formed by the second light DLG and the third light DLB.
 なお、第2の態様としての第3~第5実施形態では、車両用灯具としての車両用前照灯1はロービームを照射するものとされたが、本発明の第2の態様としての車両用灯具は特に限定されない。例えば、第2の態様としての車両用灯具は、ハイビームを照射するものとされても良く、画像を構成する光を照射するものとされても良い。車両用灯具がハイビームを照射するものとされる場合、図4(B)に示される夜間照明用の配光パターンであるハイビームの配光パターンPTNの光が照射される。つまり、それぞれの位相変調素子は、合成された光がハイビームの強度分布を含む配光パターンを形成するように光を回折するものとされる。また、車両用灯具が画像を構成する光を照射するものとされる場合、車両用灯具が出射する光の方向や車両用灯具が車両に取り付けられる位置は特に限定されない。 In the third to fifth embodiments as the second mode, the vehicular headlamp 1 as the vehicular lamp is assumed to irradiate a low beam. However, the vehicular headlamp 1 as the second mode of the present invention The lamp is not particularly limited. For example, the vehicular lamp as the second aspect may be irradiated with a high beam, or may be irradiated with light constituting an image. If the vehicle lamp is intended to irradiate a high beam, the light of the high beam light distribution pattern PTN H is a light distribution pattern for night lighting, shown in FIG. 4 (B) is irradiated. That is, each of the phase modulation elements diffracts the light so that the combined light forms a light distribution pattern including a high beam intensity distribution. Further, when the vehicle lamp emits light constituting the image, the direction of the light emitted from the vehicle lamp and the position where the vehicle lamp is attached to the vehicle are not particularly limited.
 また、第2の態様としての第3~第5実施形態では、互いに異なる波長の光を出射する3つの光源52R,52G,52Bと、それぞれの光源52R,52G,52Bに対応する3つの位相変調素子54R,54G,54Bとを備える光学系ユニット50を例に説明した。しかし、第2の態様としての光学系ユニットは、少なくとも1つの光源と、この光源に対応する位相変調素子とを備えれば良い。例えば、光学系ユニットは、白色の光を出射する光源と、この光源から出射する白色の光を回折して出射する位相変調素子とを備えていても良い。 In the third to fifth embodiments as the second mode, three light sources 52R, 52G, and 52B that emit light having different wavelengths and three phase modulations corresponding to the respective light sources 52R, 52G, and 52B are used. The optical system unit 50 including the elements 54R, 54G, and 54B has been described as an example. However, the optical system unit as the second aspect may include at least one light source and a phase modulation element corresponding to the light source. For example, the optical system unit may include a light source that emits white light and a phase modulation element that diffracts and emits the white light emitted from the light source.
 また、第2の態様としての第3~第5実施形態では、位相変調素子54R,54G,54Bにおけるそれぞれの位相変調パターンは、車両から所定の距離離れた焦点位置において、位相変調素子54R,54G,54Bから出射する光DLR,DLG,DLBが照射される領域が所定の方向へ振動するように変化されていた。このため、位相変調素子54R,54G,54Bにおけるそれぞれの位相変調パターンの変化に対応して、位相変調素子54R,54G,54Bから出射する光DLR,DLG,DLBが照射される領域のそれぞれが所定の方向へ振動していた。しかし、第2の態様としての位相変調素子は、所定の時間間隔よりも短い時間間隔で変化する位相変調パターンで光源から出射する光を回折して出射し、互いに異なる位相変調パターンの位相変調素子から出射する光が照射される領域が、互いに重なっていれば良い。このような構成にすることで、位相変調素子から出射する光の配光パターンと当該光が照射される領域の少なくとも一方は、位相変調パターンの変化に対応して変化し得る。また、互いに異なる位相変調パターンの位相変調素子から出射する光が照射される領域は、互いに重なるため、被照射体のうちこれら領域が互いに重なっている部位では、視覚的に連続した光の重ね合わせが生じており、位相変調素子からこの部位に至るまでの光路は、位相変調パターンの変化に対応して変化する。このように光路が変化すると、被照射体の同じ位置であっても、車両用灯具から被照射体に入射する光の入射角や光の位相が変化し得る。従って、入射角や位相の異なる光の視覚的な重ね合わせが連続して生じ、光のちらつきを感じることを抑制し得る。 In the third to fifth embodiments as the second mode, the phase modulation patterns in the phase modulation elements 54R, 54G, and 54B are the phase modulation elements 54R and 54G at the focal position that is a predetermined distance away from the vehicle. , 54B, the region irradiated with the light DLR, DLG, DLB is changed so as to vibrate in a predetermined direction. For this reason, each of the regions irradiated with the light DLR, DLG, DLB emitted from the phase modulation elements 54R, 54G, 54B is predetermined in response to the change in the phase modulation pattern in each of the phase modulation elements 54R, 54G, 54B. It was vibrating in the direction of. However, the phase modulation element as the second aspect diffracts and emits the light emitted from the light source with a phase modulation pattern that changes at a time interval shorter than a predetermined time interval, and the phase modulation elements having different phase modulation patterns It suffices that the areas irradiated with the light emitted from each other overlap each other. With such a configuration, at least one of the light distribution pattern of the light emitted from the phase modulation element and the region irradiated with the light can change corresponding to the change of the phase modulation pattern. In addition, since the areas irradiated with the light emitted from the phase modulation elements having different phase modulation patterns overlap with each other, the overlapping of visually continuous light is performed in the portion of the irradiated object where these areas overlap each other. The optical path from the phase modulation element to this part changes corresponding to the change of the phase modulation pattern. When the optical path changes in this way, even at the same position of the irradiated object, the incident angle and the phase of the light incident on the irradiated object from the vehicular lamp can be changed. Accordingly, it is possible to suppress the visual superimposition of light having different angles of incidence and phases and to prevent the light from flickering.
 また、第2の態様としての位相変調素子における位相変調パターンは、位相変調素子から出射する光の配光パターンにおける強度分布が変化するように変化されても良い。つまり、位相変調素子における位相変調パターンの変化に対応して、当該位相変調素子から出射する光の配光パターンにおける強度分布が変化しても良い。このような構成であっても、入射角や位相の異なる光の視覚的な重ね合わせが連続して生じ、光のちらつきを感じることを抑制し得る。なお、この強度分布の変化は、車内の人がこの強度分布の変化を認識できない程度の変化とされることが好ましい。例えば、位相変調素子における位相変調パターンが変化する時間間隔が1/15s以下とされる場合では、強度の変化率は5%以下とされることが好ましい。このように位相変調素子から出射する光の配光パターンにおける強度分布が変化する場合、位相変調パターンは、この強度分布の変化に対応して配光パターンの外形がするように変化しても良い。しかし、位相変調パターンは、配光パターンにおける強度分布の変化に対応して配光パターンの外形が変化しないように変化されることが好ましい。つまり、位相変調素子から出射する光の配光パターンにおける強度分布のみが変化することが好ましい。また、位相変調素子における位相変調パターンは、当該位相変調パターンの変化に対応して、位相変調素子から出射する光の配光パターンの強度分布が変化するとともに、位相変調素子から出射する光が照射される領域が所定の方向へ振動するように変化されても良い。つまり、位相変調素子における位相変調パターンの変化に対応して、当該位相変調素子から出射する光の配光パターンにおける強度分布が変化するとともに、位相変調素子から出射する光が照射される領域が所定の方向へ振動しても良い。また、位相変調素子における位相変調パターンの変化に対応して、当該位相変調素子から出射する光の配光パターンにおける強度分布が変化するとともに、位相変調素子から出射する光が照射される領域が変化しなくても良い。 Further, the phase modulation pattern in the phase modulation element as the second aspect may be changed so that the intensity distribution in the light distribution pattern of the light emitted from the phase modulation element changes. That is, the intensity distribution in the light distribution pattern of the light emitted from the phase modulation element may change corresponding to the change in the phase modulation pattern in the phase modulation element. Even with such a configuration, it is possible to suppress the visual superimposition of light having different incident angles and phases, and to prevent the light from flickering. In addition, it is preferable that the change in the intensity distribution is a change that does not allow a person in the vehicle to recognize the change in the intensity distribution. For example, when the time interval at which the phase modulation pattern in the phase modulation element changes is 1/15 s or less, the intensity change rate is preferably 5% or less. When the intensity distribution in the light distribution pattern of the light emitted from the phase modulation element changes in this way, the phase modulation pattern may change so that the outer shape of the light distribution pattern corresponds to the change in the intensity distribution. . However, the phase modulation pattern is preferably changed so that the outer shape of the light distribution pattern does not change in response to the change in the intensity distribution in the light distribution pattern. That is, it is preferable that only the intensity distribution in the light distribution pattern of the light emitted from the phase modulation element changes. Further, the phase modulation pattern in the phase modulation element changes the intensity distribution of the light distribution pattern of the light emitted from the phase modulation element in response to the change in the phase modulation pattern, and is irradiated with the light emitted from the phase modulation element. The area to be applied may be changed so as to vibrate in a predetermined direction. That is, the intensity distribution in the light distribution pattern of the light emitted from the phase modulation element changes corresponding to the change of the phase modulation pattern in the phase modulation element, and the region irradiated with the light emitted from the phase modulation element is predetermined. You may vibrate in the direction of. Further, in response to the change of the phase modulation pattern in the phase modulation element, the intensity distribution in the light distribution pattern of the light emitted from the phase modulation element changes, and the region irradiated with the light emitted from the phase modulation element also changes. You don't have to.
 また、第2の態様としての第3~第5実施形態では、複数の変調ユニットを有する位相変調素子54R,54G,54Bを例に説明した。しかし、変調ユニットの数、大きさ、外形等は特に限定されるものではない。例えば、位相変調素子は1つの変調ユニットを有し、この1つの変調ユニットによって入射する光を回折させても良い。 In the third to fifth embodiments as the second mode, the phase modulation elements 54R, 54G, and 54B having a plurality of modulation units have been described as examples. However, the number, size, outer shape and the like of the modulation unit are not particularly limited. For example, the phase modulation element may have one modulation unit, and incident light may be diffracted by this one modulation unit.
 また、第2の態様としての第3実施形態では、反射型の位相変調素子54R,54G,54Bを例に説明し、第2の態様としての第4実施形態及び第5実施形態では、透過型の位相変調素子54R,54G,54Bを例に説明した。しかし、位相変調素子は、入射する光を回折して出射するとともに出射する光の配光パターンを変更可能であれば良い。例えば、位相変調素子は、シリコン基板上に複数の反射体が形成されたGLVとされても良い。 In the third embodiment as the second aspect, the reflection type phase modulation elements 54R, 54G, and 54B will be described as an example. In the fourth and fifth embodiments as the second aspect, the transmission type is used. The phase modulation elements 54R, 54G, and 54B have been described as examples. However, the phase modulation element only needs to be able to change the light distribution pattern of the emitted light while diffracting and emitting the incident light. For example, the phase modulation element may be a GLV in which a plurality of reflectors are formed on a silicon substrate.
 また、第2の態様としての第3~第5実施形態では、位相変調素子54R,54G,54Bにおけるそれぞれの位相変調パターンは、互いに異なる位相変調パターンとされていたが、これら位相変調パターンが同じ位相変調パターンとなっていても良い。 In the third to fifth embodiments as the second mode, the phase modulation patterns in the phase modulation elements 54R, 54G, and 54B are different from each other, but these phase modulation patterns are the same. It may be a phase modulation pattern.
 また、第2の態様としての第3実施形態及び第4実施形態では、第1光学素子55fは、第1の光DLRを透過すると共に第2の光DLGを反射することで第1の光DLRと第2の光DLGとを合成し、第2光学素子55sは、第1光学素子55fで合成された第1の光DLR及び第2の光DLGを透過すると共に第3の光DLBを反射することで第1の光DLRと第2の光DLGと第3の光DLBとを合成した。しかし、例えば、第1光学素子55fにおいて第3の光DLBと第2の光DLGとが合成され、第2光学素子55sにおいて第1光学素子55fで合成された第3の光DLB及び第2の光DLGと第1の光DLRとが合成される構成とされても良い。この場合、第2の態様としての第3実施形態及び第4実施形態において、第1光源52R、第1コリメートレンズ53R、及び位相変調素子54Rを備える第1発光光学系51Rと、第3光源52B、第3コリメートレンズ53B、及び位相変調素子54Bを備える第3発光光学系51Bとの位置が入れ替わる。また、第2の態様としての第3実施形態及び第4実施形態において、所定の波長帯域の光を透過し、他の波長帯域の光を反射するバンドパスフィルタが第1光学素子55fや第2光学素子55sに用いられても良い。また、合成光学系55は、それぞれの発光光学系から出射する光を互いに重ね合わせれば良く、第2の態様としての上記第3実施形態及び第4実施形態の構成や上記構成に限定されない。 In the third embodiment and the fourth embodiment as the second mode, the first optical element 55f transmits the first light DLR and reflects the second light DLG, whereby the first light DLR is transmitted. And the second light DLG, and the second optical element 55s transmits the first light DLR and the second light DLG synthesized by the first optical element 55f and reflects the third light DLB. Thus, the first light DLR, the second light DLG, and the third light DLB were synthesized. However, for example, the third light DLB and the second light DLG are combined by the first optical element 55f, and the third light DLB and the second light DLB combined by the first optical element 55f are combined by the second optical element 55s. The optical DLG and the first optical DLR may be combined. In this case, in the third embodiment and the fourth embodiment as the second mode, the first light emitting optical system 51R including the first light source 52R, the first collimating lens 53R, and the phase modulation element 54R, and the third light source 52B. The positions of the third light emitting optical system 51B including the third collimating lens 53B and the phase modulation element 54B are switched. In the third embodiment and the fourth embodiment as the second mode, the band pass filter that transmits light in a predetermined wavelength band and reflects light in other wavelength bands is the first optical element 55f or the second optical filter. It may be used for the optical element 55s. The combining optical system 55 only needs to superimpose the light emitted from the respective light emitting optical systems, and is not limited to the configurations of the third and fourth embodiments as the second mode or the above configuration.
(第6実施形態)
 次に、本発明の第3の態様としての第6実施形態について説明する。なお、上記第3実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。図12は、第3の態様としての本実施形態に係る車両用灯具の一例を示す図であり、車両用灯具の鉛直方向の断面を概略的に示す縦断面図である。第3実施形態と同様に、本実施形態では車両用灯具は車両用前照灯1とされる。図12に示すように、本実施形態の車両用前照灯1は、カバー59がケース40とされる点、光学系ユニット50の構成が異なる点において、第3実施形態の車両用前照灯1と主に異なる。
(Sixth embodiment)
Next, a sixth embodiment as the third aspect of the present invention will be described. Note that the same or equivalent components as those in the third embodiment are denoted by the same reference numerals, unless otherwise described, and redundant description is omitted. FIG. 12 is a view showing an example of the vehicle lamp according to the present embodiment as the third mode, and is a longitudinal sectional view schematically showing a vertical section of the vehicle lamp. Similarly to the third embodiment, the vehicle lamp is the vehicle headlamp 1 in the present embodiment. As shown in FIG. 12, the vehicle headlamp 1 of the present embodiment is different from that of the third embodiment in that the cover 59 is a case 40 and the configuration of the optical system unit 50 is different. Mainly different from 1.
 本実施形態のケース40は、例えばアルミニウム等の金属から成る基台41と、カバー42とから構成され、基台41がヒートシンク30におけるベース板31の上面に固定される。基台41には、その前部から上部に渡って開口が形成されている。カバー42は、上部側の開口を塞ぐように基台41に固定される。ケース40の前部には、このような基台41の前端部とカバー42の前端部とよって規定される開口40Hが形成されている。また、ケース40の内部空間には光学系ユニット50が配置されている。 The case 40 of the present embodiment includes a base 41 made of a metal such as aluminum and a cover 42, and the base 41 is fixed to the upper surface of the base plate 31 in the heat sink 30. An opening is formed in the base 41 from the front to the top. The cover 42 is fixed to the base 41 so as to close the opening on the upper side. In the front portion of the case 40, an opening 40H defined by the front end portion of the base 41 and the front end portion of the cover 42 is formed. An optical system unit 50 is disposed in the internal space of the case 40.
 なお、基台41の内壁及びカバー42の内壁に光吸収性を持たせるために、これらの内壁に黒アルマイト加工等を施すことが好ましい。基台41の内壁やカバー42の内壁が光吸収性を持つことで、意図しない反射や屈折等によりこれらの内壁に光が照射された場合であっても、照射光が反射して開口40Hから意図しない方向に出射することが抑制され得る。 In addition, in order to give light absorption to the inner wall of the base 41 and the inner wall of the cover 42, it is preferable to perform black alumite processing or the like on these inner walls. Since the inner wall of the base 41 and the inner wall of the cover 42 have light absorptivity, even when light is irradiated to these inner walls due to unintentional reflection or refraction, the irradiated light is reflected and passes through the opening 40H. Emitting in an unintended direction can be suppressed.
 図13は、図12に示す車両用前照灯1が備える光学系ユニット50の拡大図である。図13に示すように、本実施形態における光学系ユニット50は、第1光源52Rと、第2光源52Gと、第3光源52Bと、第1コリメートレンズ53Rと、第2コリメートレンズ53Gと、第3コリメートレンズ53Bと、第1回折格子154Rと、第2回折格子154Gと、第3回折格子154Bと、第1MEMS(Micro Electro Mechanical System)ミラー80Rと、第2MEMSミラー80Gと、第3MEMSミラー80Bと、合成光学系55とを備える。本実施形態において、回折格子154R,154G,154Bは透過型の回折格子とされる。 FIG. 13 is an enlarged view of the optical system unit 50 provided in the vehicle headlamp 1 shown in FIG. As shown in FIG. 13, the optical system unit 50 in this embodiment includes a first light source 52R, a second light source 52G, a third light source 52B, a first collimator lens 53R, a second collimator lens 53G, A third collimating lens 53B, a first diffraction grating 154R, a second diffraction grating 154G, a third diffraction grating 154B, a first MEMS (Micro Electro Mechanical System) mirror 80R, a second MEMS mirror 80G, and a third MEMS mirror 80B; And a synthetic optical system 55. In the present embodiment, the diffraction gratings 154R, 154G, and 154B are transmissive diffraction gratings.
 第1光源52Rは、本実施形態では、パワーのピーク波長が例えば638nmの赤色レーザ光を上方に出射する。本実施形態では、第2光源52Gはパワーのピーク波長が例えば515nmの緑色レーザ光を後方に出射し、第3光源52Bはパワーのピーク波長が例えば445nmの青色レーザ光を後方に出射する。また、光学系ユニット50は、基台41に固定される不図示の回路基板を有している。第1光源52R、第2光源52G、及び第3光源52Bは、それぞれ該回路基板に実装されており、この回路基板を介してこれら光源に電力が供給される。 In the present embodiment, the first light source 52R emits red laser light having a power peak wavelength of, for example, 638 nm upward. In the present embodiment, the second light source 52G emits green laser light having a power peak wavelength of, for example, 515 nm backward, and the third light source 52B emits blue laser light having a power peak wavelength of, for example, 445 nm backward. Further, the optical system unit 50 has a circuit board (not shown) fixed to the base 41. The first light source 52R, the second light source 52G, and the third light source 52B are each mounted on the circuit board, and power is supplied to these light sources via the circuit board.
 本実施形態では、第1コリメートレンズ53Rは、第1光源52Rの上方に配置されており、第1光源52Rから出射するレーザ光のファスト軸方向及びスロー軸方向をコリメートする。第2コリメートレンズ53Gは、第2光源52Gの後方に配置されており、第2光源52Gから出射するレーザ光のファスト軸方向及びスロー軸方向をコリメートする。第3コリメートレンズ53Bは、第3光源52Bの後方に配置されており、第3光源52Bから出射するレーザ光のファスト軸方向及びスロー軸方向をコリメートする。これらコリメートレンズ53R,53G,53Bは、それぞれ不図示の構成により基台41に固定される。 In the present embodiment, the first collimating lens 53R is disposed above the first light source 52R, and collimates the fast axis direction and the slow axis direction of the laser light emitted from the first light source 52R. The second collimating lens 53G is disposed behind the second light source 52G, and collimates the fast axis direction and the slow axis direction of the laser light emitted from the second light source 52G. The third collimating lens 53B is disposed behind the third light source 52B, and collimates the fast axis direction and the slow axis direction of the laser light emitted from the third light source 52B. These collimating lenses 53R, 53G, and 53B are fixed to the base 41 by a configuration (not shown).
 第1MEMSミラー80Rは、第1コリメートレンズ53Rの上方に配置されている。この第1MEMSミラー80Rは、不図示の構成により基台41に取り付けられており、不図示のアクチュエータによって可動反射面81Rが搖動する構成とされる。この可動反射面81Rは、第1コリメートレンズ53Rから出射するレーザ光の少なくとも一部が入射できる位置に、該レーザ光の光軸に対して概ね45°傾いた状態で配置される。 The first MEMS mirror 80R is disposed above the first collimating lens 53R. The first MEMS mirror 80R is attached to the base 41 with a configuration (not shown), and the movable reflecting surface 81R is slid by an actuator (not shown). The movable reflecting surface 81R is disposed at a position where at least a part of the laser light emitted from the first collimating lens 53R can enter and in a state inclined by approximately 45 ° with respect to the optical axis of the laser light.
 第2MEMSミラー80Gは、第2コリメートレンズ53Gの後方に配置されている。この第2MEMSミラー80Gは、不図示の構成により基台41に取り付けられており、不図示のアクチュエータによって可動反射面81Gが搖動する構成とされる。この可動反射面81Gは、第2コリメートレンズ53Gから出射するレーザ光の少なくとも一部が入射できる位置に、該レーザ光の光軸に対して概ね45°傾いた状態で配置される。 The second MEMS mirror 80G is disposed behind the second collimating lens 53G. The second MEMS mirror 80G is attached to the base 41 with a configuration (not shown), and the movable reflecting surface 81G is slid by an actuator (not shown). The movable reflecting surface 81G is disposed at a position where at least a part of the laser light emitted from the second collimating lens 53G can enter, in a state inclined by approximately 45 ° with respect to the optical axis of the laser light.
 第3MEMSミラー80Bは、第3コリメートレンズ53Bの後方に配置されている。この第3MEMSミラー80Bは、不図示の構成により基台41に取り付けられており、不図示のアクチュエータによって可動反射面81Bが搖動する構成とされる。この可動反射面81Bは、第3コリメートレンズ53Bから出射するレーザ光の少なくとも一部が入射できる位置に、該レーザ光の光軸に対して概ね45°傾いた状態で配置されている。 The third MEMS mirror 80B is disposed behind the third collimating lens 53B. The third MEMS mirror 80B is attached to the base 41 with a configuration (not shown), and the movable reflecting surface 81B is slid by an actuator (not shown). The movable reflecting surface 81B is disposed at a position where at least a part of the laser light emitted from the third collimating lens 53B can enter, in a state inclined by approximately 45 ° with respect to the optical axis of the laser light.
 図14は、第1MEMSミラー80Rの一例を可動反射面81R側から見た概略図である。図14に示すように、この第1MEMSミラー80Rは、可動反射面81Rが形成されたミラー本体60と、ミラー本体60を囲う内側枠部61と、内側枠部61を囲う外側枠部62とを主な構成要素として備える。ミラー本体60と内側枠部61とは、第1軸Pに沿って延びる1対のトーションバー63,63によって連結されている。また、内側枠部61と外側枠部62とは、第1軸Pに垂直な第2軸Qに沿って延びる1対の第2トーションバー64,64によって連結されている。このような構成により、ミラー本体60は、上記アクチュエータが動作することで、第1軸P及び第2軸Qを中心として2方向に搖動できるようになっている。上記アクチュエータとして、例えば、電磁式のアクチュエータや圧電式のアクチュエータなどが用いられてもよい。なお、本実施形態では、第2MEMSミラー80G及び第3MEMSミラー80Bも第1MEMSミラー80Rと同様の構成とされる。 FIG. 14 is a schematic view of an example of the first MEMS mirror 80R viewed from the movable reflecting surface 81R side. As shown in FIG. 14, the first MEMS mirror 80R includes a mirror main body 60 in which a movable reflecting surface 81R is formed, an inner frame portion 61 that surrounds the mirror main body 60, and an outer frame portion 62 that surrounds the inner frame portion 61. It is provided as a main component. The mirror main body 60 and the inner frame portion 61 are connected by a pair of torsion bars 63 and 63 extending along the first axis P. Further, the inner frame portion 61 and the outer frame portion 62 are connected by a pair of second torsion bars 64 and 64 extending along a second axis Q perpendicular to the first axis P. With such a configuration, the mirror main body 60 can swing in two directions around the first axis P and the second axis Q by operating the actuator. As the actuator, for example, an electromagnetic actuator or a piezoelectric actuator may be used. In the present embodiment, the second MEMS mirror 80G and the third MEMS mirror 80B have the same configuration as the first MEMS mirror 80R.
 なお、MEMSミラーが1方向に、例えば第1軸Pに沿ってのみ搖動するように構成してもよい。この場合、外側枠部62と第2トーションバー64とが不要となり、MEMSミラーを小型化することができる。 Note that the MEMS mirror may be configured to swing only in one direction, for example, along the first axis P. In this case, the outer frame portion 62 and the second torsion bar 64 are not necessary, and the MEMS mirror can be reduced in size.
 また、図13に示すように、第1回折格子154Rは第1MEMSミラー80Rの前方に配置されており、第2回折格子154Gは第2MEMSミラー80Gの上方に配置されており、第3回折格子154Bは第3MEMSミラー80Bの上方に配置されている。 As shown in FIG. 13, the first diffraction grating 154R is arranged in front of the first MEMS mirror 80R, the second diffraction grating 154G is arranged above the second MEMS mirror 80G, and the third diffraction grating 154B. Is disposed above the third MEMS mirror 80B.
 図15は、本実施形態における回折格子154Rをその入射面側から見た概略図である。図15に示すように、回折格子154Rは、区分けされた領域のそれぞれに形成された回折格子パターン170の集合体として構成されている。これら回折格子パターン170は、それぞれ同一の3次元構造(図示を省略)を有している。したがって、各回折格子パターン170に入射するレーザ光のそれぞれからは、同一の配光パターンの光が出射される。本実施形態では、回折格子154G,154Bも回折格子154Rと同様の構成とされる。 FIG. 15 is a schematic view of the diffraction grating 154R in the present embodiment as viewed from the incident surface side. As shown in FIG. 15, the diffraction grating 154R is configured as an aggregate of diffraction grating patterns 170 formed in each of the divided regions. Each of these diffraction grating patterns 170 has the same three-dimensional structure (not shown). Therefore, the light of the same light distribution pattern is emitted from each of the laser light incident on each diffraction grating pattern 170. In the present embodiment, the diffraction gratings 154G and 154B have the same configuration as the diffraction grating 154R.
 また、図13に示すように、合成光学系55は、第3実施形態の合成光学系55と同様に、第1光学素子55fと第2光学素子55sとを有する。本実施形態では、第1光学素子55fは、第1回折格子154Rの前方かつ第2回折格子154Gの上方に配置され、前後方向及び上下方向の双方に対して概ね45°傾いた状態で配置される。本実施形態において、第1光学素子55fは、第1光源52Rから出射する波長638nmの赤色レーザ光を透過し、第2光源52Gから出射する波長515nmの緑色レーザ光を反射するように構成される。 Further, as shown in FIG. 13, the synthesis optical system 55 includes a first optical element 55f and a second optical element 55s, similarly to the synthesis optical system 55 of the third embodiment. In the present embodiment, the first optical element 55f is disposed in front of the first diffraction grating 154R and above the second diffraction grating 154G, and is disposed in a state inclined by approximately 45 ° with respect to both the front-rear direction and the vertical direction. The In the present embodiment, the first optical element 55f is configured to transmit red laser light having a wavelength of 638 nm emitted from the first light source 52R and reflect green laser light having a wavelength of 515 nm emitted from the second light source 52G. .
 本実施形態では、第2光学素子55sは、第1光学素子55fの前方かつ第3回折格子154Bの上方に配置され、前後方向及び上下方向の双方に対して概ね45°傾いた状態で配置される。本実施形態において、第2光学素子55sは、第1光源52Rから出射する波長638nmの赤色レーザ光及び第2光源52Gから出射する波長515nmの緑色レーザ光を透過し、第3光源52Bから出射する波長445nmの青色レーザ光を反射するように構成される。 In the present embodiment, the second optical element 55s is disposed in front of the first optical element 55f and above the third diffraction grating 154B, and is disposed at an angle of approximately 45 ° with respect to both the front-rear direction and the vertical direction. The In the present embodiment, the second optical element 55s transmits the red laser light having a wavelength of 638 nm emitted from the first light source 52R and the green laser light having a wavelength of 515 nm emitted from the second light source 52G, and emits the light from the third light source 52B. It is configured to reflect blue laser light having a wavelength of 445 nm.
 次に、車両用前照灯1における光の出射について説明する。 Next, the emission of light from the vehicle headlamp 1 will be described.
 図13に示すように、不図示の電源から電力が供給されることで、光源52Rから赤色レーザ光が上方に出射され、光源52Gから緑色レーザ光が後方に出射され、光源52Bから青色レーザ光が後方に出射される。 As shown in FIG. 13, when power is supplied from a power source (not shown), red laser light is emitted upward from the light source 52R, green laser light is emitted backward from the light source 52G, and blue laser light is emitted from the light source 52B. Is emitted backward.
 光源52Rの上方には、光源52Rから出射する赤色レーザ光の光軸に対して概ね45°傾いた状態でMEMSミラー80Rの可動反射面81Rが配置されている。したがって、この赤色レーザ光は、可動反射面81Rで反射して90°方向転換し、前方に向かって、すなわち、回折格子154Rに向かって伝搬していく。ところで、上述のように可動反射面81Rは2方向に搖動する。したがって、図16に示すように、可動反射面81Rから出射する赤色レーザ光は、可動反射面81Rの搖動に伴って2方向に振動しつつ伝搬していく。なお、図16は、図13におけるMEMSミラー80R及び回折格子154Rの近傍を拡大して示す図である。 Above the light source 52R, the movable reflecting surface 81R of the MEMS mirror 80R is disposed in a state inclined by approximately 45 ° with respect to the optical axis of the red laser light emitted from the light source 52R. Therefore, the red laser light is reflected by the movable reflecting surface 81R, changed in direction by 90 °, and propagated forward, that is, toward the diffraction grating 154R. By the way, as described above, the movable reflecting surface 81R swings in two directions. Therefore, as shown in FIG. 16, the red laser light emitted from the movable reflecting surface 81R propagates while vibrating in two directions as the movable reflecting surface 81R swings. FIG. 16 is an enlarged view showing the vicinity of the MEMS mirror 80R and the diffraction grating 154R in FIG.
 図13に示すように、光源52Gの後方には、光源52Gから出射する緑色レーザ光の光軸に対して概ね45°傾いた状態でMEMSミラー80Gの可動反射面81Gが配置されている。したがって、この緑色レーザ光は、可動反射面81Gで反射して90°方向転換し、上方に向かって、すなわち、回折格子154Gに向かって伝搬していく。ところで、上述のように、可動反射面81Gは2方向に搖動するため、可動反射面81Gから出射する緑色レーザ光は、2方向に振動しつつ伝搬していく(図16参照)。 As shown in FIG. 13, behind the light source 52G, a movable reflecting surface 81G of the MEMS mirror 80G is arranged in a state inclined at approximately 45 ° with respect to the optical axis of the green laser light emitted from the light source 52G. Therefore, the green laser light is reflected by the movable reflecting surface 81G, turned 90 °, and propagates upward, that is, toward the diffraction grating 154G. As described above, since the movable reflecting surface 81G swings in two directions, the green laser light emitted from the movable reflecting surface 81G propagates while oscillating in two directions (see FIG. 16).
 光源52Bの後方には、光源52Bから出射する青色レーザ光の光軸に対して概ね45°傾いた状態でMEMSミラー80Bの可動反射面81Bが配置されている。したがって、この青色レーザ光は、可動反射面81Bで反射して90°方向転換し、上方に向かって、すなわち、回折格子154Bに向かって伝搬していく。ところで、上述のように、可動反射面81Bは2方向に搖動するため、可動反射面81Bから出射する青色レーザ光は、2方向に振動しつつ伝搬していく(図16参照)。 The movable reflecting surface 81B of the MEMS mirror 80B is disposed behind the light source 52B in a state inclined approximately 45 ° with respect to the optical axis of the blue laser light emitted from the light source 52B. Therefore, the blue laser light is reflected by the movable reflecting surface 81B, changed in direction by 90 °, and propagates upward, that is, toward the diffraction grating 154B. As described above, since the movable reflecting surface 81B swings in two directions, the blue laser light emitted from the movable reflecting surface 81B propagates while oscillating in two directions (see FIG. 16).
 以上のように、本実施形態におけるMEMSミラー80R,80G,80Bは、レーザ光を回折格子154R,154G,154Bに向かって反射させる可動反射面81R,81G,81Bを有しており、該可動反射面81R,81G,81Bを動かすことによりレーザ光を振動させる可動反射部材として機能する。 As described above, the MEMS mirrors 80R, 80G, and 80B in the present embodiment have the movable reflection surfaces 81R, 81G, and 81B that reflect the laser light toward the diffraction gratings 154R, 154G, and 154B, and the movable reflection is performed. It functions as a movable reflecting member that vibrates laser light by moving the surfaces 81R, 81G, and 81B.
 図13に示すように、MEMSミラー80Rの前方には、回折格子154Rが配置されている。したがって、MEMSミラー80Rから出射する赤色レーザ光は、この回折格子154Rの入射面に入射する。図15に示すように、回折格子154Rは、同一の3次元構造を有する複数の回折格子パターン170の集合体である。すなわち、各回折格子パターン170に入射する赤色レーザ光のそれぞれから、同一の配光パターンを有する赤色成分の光が生成される。本実施形態において、この赤色成分の光に照射される領域には常に少なくとも1つの回折格子パターン170が含まれる。このため、回折格子154Rにおけるレーザ光の入射する領域がMEMSミラー80Rの搖動に伴って変化した場合でも、同一の配光パターンを有する赤色成分の光が生成され得る。以下、この回折格子154Gから出射する赤色成分の光を第1の光LRAとする。この第1の光LRAは、回折格子154Gから出射して前方に伝搬していく。 As shown in FIG. 13, a diffraction grating 154R is arranged in front of the MEMS mirror 80R. Therefore, the red laser light emitted from the MEMS mirror 80R is incident on the incident surface of the diffraction grating 154R. As shown in FIG. 15, the diffraction grating 154R is an aggregate of a plurality of diffraction grating patterns 170 having the same three-dimensional structure. That is, red component light having the same light distribution pattern is generated from each of the red laser light incident on each diffraction grating pattern 170. In the present embodiment, the region irradiated with the red component light always includes at least one diffraction grating pattern 170. For this reason, even when the region where the laser beam is incident on the diffraction grating 154R changes as the MEMS mirror 80R is moved, the red component light having the same light distribution pattern can be generated. Hereinafter, the red component light emitted from the diffraction grating 154G is referred to as a first light LRA. The first light LRA is emitted from the diffraction grating 154G and propagates forward.
 MEMSミラー80Gの上方には、回折格子154Gが配置されている。したがって、MEMSミラー80Gから出射する緑色レーザ光は、この回折格子154Gの入射面に入射する。上述のように、回折格子154Gは、回折格子154Rと同様に、同一の3次元構造を有する複数の回折格子パターン170の集合体である(図15参照)。すなわち、各回折格子パターン170に入射する緑色レーザ光のそれぞれから、同一の配光パターンを有する緑色成分の光が生成される。本実施形態において、この緑色成分の光に照射される領域には常に少なくとも1つの回折格子パターン170が含まれる。このため、回折格子154Gにおけるレーザ光の入射する領域がMEMSミラー80Gの搖動に伴って変化した場合でも、同一の配光パターンを有する緑色成分の光が生成され得る。以下、この回折格子154Gから出射する緑色成分の光を第2の光LGAとする。この第2の光LGAは、回折格子154Gから出射して上方に伝搬していく。 A diffraction grating 154G is disposed above the MEMS mirror 80G. Therefore, the green laser light emitted from the MEMS mirror 80G is incident on the incident surface of the diffraction grating 154G. As described above, the diffraction grating 154G is an aggregate of a plurality of diffraction grating patterns 170 having the same three-dimensional structure, like the diffraction grating 154R (see FIG. 15). That is, green component light having the same light distribution pattern is generated from each of the green laser light incident on each diffraction grating pattern 170. In the present embodiment, at least one diffraction grating pattern 170 is always included in the region irradiated with the green component light. For this reason, even when the region where the laser beam is incident on the diffraction grating 154G changes as the MEMS mirror 80G moves, green component light having the same light distribution pattern can be generated. Hereinafter, the green component light emitted from the diffraction grating 154G is referred to as a second light LGA. The second light LGA is emitted from the diffraction grating 154G and propagates upward.
 MEMSミラー80Bの上方には、回折格子154Bが配置されている。したがって、MEMSミラー80Bから出射する青色レーザ光は、この回折格子154Bの入射面に入射する。上述のように、回折格子154Bは、回折格子154Rと同様に、同一の3次元構造を有する複数の回折格子パターン170の集合体である(図15参照)。すなわち、各回折格子パターン170に入射する青色レーザ光のそれぞれから、同一の配光パターンを有する青色成分の光が生成される。本実施形態において、この青色成分の光に照射される領域には常に少なくとも1つの回折格子パターン170が含まれる。このため、回折格子154Gにおけるレーザ光の入射する領域がMEMSミラー80Bの搖動に伴って変化した場合でも、同一の配光パターンを有する青色成分の光が生成され得る。以下、この回折格子154Bから出射する青色成分の光を第3の光LBAとする。この第3の光LBAは、回折格子154Bから出射して上方に伝搬していく。 A diffraction grating 154B is disposed above the MEMS mirror 80B. Therefore, the blue laser light emitted from the MEMS mirror 80B is incident on the incident surface of the diffraction grating 154B. As described above, the diffraction grating 154B is an aggregate of a plurality of diffraction grating patterns 170 having the same three-dimensional structure, like the diffraction grating 154R (see FIG. 15). That is, blue component light having the same light distribution pattern is generated from each of the blue laser light incident on each diffraction grating pattern 170. In the present embodiment, at least one diffraction grating pattern 170 is always included in the region irradiated with the blue component light. For this reason, even when the region where the laser beam is incident on the diffraction grating 154G changes as the MEMS mirror 80B is moved, light of a blue component having the same light distribution pattern can be generated. Hereinafter, the blue component light emitted from the diffraction grating 154B is referred to as a third light LBA. The third light LBA is emitted from the diffraction grating 154B and propagates upward.
 上記のように、本実施形態における回折格子154R,154G,154Bは、所定の配光パターンを形成するため、配光パターン形成素子として機能する。なお、本実施形態において、回折格子154R,154G,154Bは、回折格子154Rから形成される配光パターンと、回折格子154Gから形成される配光パターンと、回折格子154Bから形成される配光パターンとが、同一の形状および光強度分布となるように構成される。 As described above, the diffraction gratings 154R, 154G, and 154B in the present embodiment function as light distribution pattern forming elements in order to form a predetermined light distribution pattern. In the present embodiment, the diffraction gratings 154R, 154G, and 154B are the light distribution pattern formed from the diffraction grating 154R, the light distribution pattern formed from the diffraction grating 154G, and the light distribution pattern formed from the diffraction grating 154B. Are configured to have the same shape and light intensity distribution.
 図13に示すように、回折格子154Rの前方には、合成光学系55の第1光学素子55fが配置されている。上述のように、この第1光学素子55fは、赤色の光を透過するように構成されている。したがって、回折格子154Rで所定の配光パターンに形成された第1の光LRAは、第1光学素子55fを透過して前方に伝搬していく。また、回折格子154Gの上方には、第1光学素子55fが配置されている。上述のように、第1光学素子55fは、緑色の光を反射するように構成されている。また、第1光学素子55fは、上下方向に対して概ね45°傾いている。したがって、回折格子154Gで所定の配光パターンに形成された第2の光LGAは、第1光学素子55fで反射して90°方向転換し、前方に伝搬していく。 As shown in FIG. 13, the first optical element 55f of the combining optical system 55 is disposed in front of the diffraction grating 154R. As described above, the first optical element 55f is configured to transmit red light. Accordingly, the first light LRA formed in the predetermined light distribution pattern by the diffraction grating 154R is transmitted through the first optical element 55f and propagates forward. Further, the first optical element 55f is disposed above the diffraction grating 154G. As described above, the first optical element 55f is configured to reflect green light. Further, the first optical element 55f is inclined by approximately 45 ° with respect to the vertical direction. Therefore, the second light LGA formed in the predetermined light distribution pattern by the diffraction grating 154G is reflected by the first optical element 55f, turned 90 °, and propagates forward.
 第1光学素子55fの前方には、合成光学系の第2光学素子55sが配置されている。上述のように、第2光学素子55sは、赤色の光及び緑色の光を透過するように構成されている。したがって、第1光学素子55fから出射する第1の光LRA及び第2の光LGAは、第2光学素子55sを透過する。また、回折格子154Bの上方には、第2光学素子55sが配置されている。上述のように、第2光学素子55sは、青色の光を反射するように構成されている。また、第2光学素子55sは、上下方向に対して概ね45°傾いている。したがって、回折格子154Bで所定の配光パターンに形成された第3の光LBAは、第2光学素子55sで反射して90°方向転換する。これにより、第1の光LRAと、第2の光LGAと、第3の光LBAとが合成されて白色光が生成される。この白色光は前方に伝搬してケース40の開口40Hから出射し、さらにフロントカバー12を介してロービームLとして車両用前照灯1から出射する。上述のように、第1の光LRAの配光パターンの形状及び光強度分布と、第2の光LGAの配光パターンの形状及び光強度分布と、第3の光LBAの配光パターンの形状及び光強度分布とは同一である。したがって、ロービームLの配光パターンの形状及び光強度分布は、これら第1の光LRA、第2の光LGA、及び第3の光LBAの配光パターンの形状及び光強度分布と同一となり得る。 The second optical element 55s of the composite optical system is disposed in front of the first optical element 55f. As described above, the second optical element 55s is configured to transmit red light and green light. Accordingly, the first light LRA and the second light LGA emitted from the first optical element 55f are transmitted through the second optical element 55s. The second optical element 55s is disposed above the diffraction grating 154B. As described above, the second optical element 55s is configured to reflect blue light. Further, the second optical element 55s is inclined by approximately 45 ° with respect to the vertical direction. Therefore, the third light LBA formed in the predetermined light distribution pattern by the diffraction grating 154B is reflected by the second optical element 55s and turned 90 °. Thereby, the first light LRA, the second light LGA, and the third light LBA are combined to generate white light. The white light propagates forward and exits from the opening 40H of the case 40, and further exits from the vehicle headlamp 1 as a low beam L via the front cover 12. As described above, the shape and light intensity distribution of the first light LRA, the shape and light intensity distribution of the second light LGA, and the shape of the light distribution pattern of the third light LBA The light intensity distribution is the same. Accordingly, the shape and light intensity distribution of the light distribution pattern of the low beam L can be the same as the shape and light intensity distribution of the light distribution pattern of the first light LRA, the second light LGA, and the third light LBA.
 本実施形態では、図4(A)に示されるロービームLが、車両用前照灯1から出射し、路面等の被照射体を照射する。 In the present embodiment, the low beam L shown in FIG. 4A is emitted from the vehicle headlamp 1 and irradiates an object to be irradiated such as a road surface.
 ところで、このような路面などの被照射体には凹凸が存在しているため、ロービームLが被照射体に照射されると、この凹凸の影響により被照射体の被照射面で散乱した光が相互に干渉しあってスペックルが発生する問題がある。しかしながら、本実施形態によれば、以下の理由により、このスペックル、すなわち光のちらつきが抑制される。 By the way, since there are irregularities in the irradiated object such as the road surface, when the low beam L is irradiated to the irradiated object, the light scattered on the irradiated surface of the irradiated object is affected by the unevenness. There is a problem that speckles occur due to mutual interference. However, according to the present embodiment, this speckle, that is, flickering of light is suppressed for the following reason.
 上述のようにMEMSミラー80Rは搖動する。したがって、図16に示すように、MEMSミラー80Rから出射するレーザ光の光路、すなわち、第1の光LRAの光路がこの搖動と同期して経時的に変化する。同様に、MEMSミラー80Gは搖動する。したがって、MEMSミラー80Gから出射するレーザ光の光路、すなわち、第2の光LGAの光路がこの搖動と同期して経時的に変化する。同様に、MEMSミラー80Bは搖動する。したがって、MEMSミラー80Bから出射するレーザ光の光路、すなわち、第3の光LBAの光路がこの搖動と同期して経時的に変化する。換言すれば、第1の光LRAと第2の光LGAと第3の光LBAとから生成されるロービームLの光路が、MEMSミラー80R,80G,80Bの搖動と同期して経時的に変化する。そして、このようにロービームLの光路が経時的に変化することで、被照射体の同一位置に入射する光の入射角や位相が経時的に変化し得る。そして、この光の入射角や光の位相の変化が連続して起こることで、上記被照射体の同一位置で反射した反射光から様々な干渉パターンが生じ、これら干渉パターンの光が重畳される結果、スペックルが目立たなくなり、光のちらつきが抑制され得る。 As described above, the MEMS mirror 80R swings. Therefore, as shown in FIG. 16, the optical path of the laser light emitted from the MEMS mirror 80R, that is, the optical path of the first light LRA changes with time in synchronization with this peristalsis. Similarly, the MEMS mirror 80G swings. Therefore, the optical path of the laser light emitted from the MEMS mirror 80G, that is, the optical path of the second light LGA changes with time in synchronization with this peristalsis. Similarly, the MEMS mirror 80B swings. Therefore, the optical path of the laser light emitted from the MEMS mirror 80B, that is, the optical path of the third light LBA changes with time in synchronization with this peristalsis. In other words, the optical path of the low beam L generated from the first light LRA, the second light LGA, and the third light LBA changes with time in synchronization with the swinging of the MEMS mirrors 80R, 80G, and 80B. . As the optical path of the low beam L changes with time in this way, the incident angle and phase of light incident on the same position of the irradiated object can change with time. Then, by continuously changing the incident angle and the phase of the light, various interference patterns are generated from the reflected light reflected at the same position of the irradiated object, and the light of these interference patterns is superimposed. As a result, speckles become inconspicuous and light flickering can be suppressed.
 なお、MEMSミラー80R,80G,80Bが光の光路に与える振動の周波数は、光のちらつきを抑制する観点から、15Hz以上であることが好ましい。人の視覚の時間分解能は概ね30Hzである。車両用灯具であれば、振動の周波数がこの周波数の半分程度であれば光のちらつきを抑制できる。なお、これら振動付与部が与える振動の周波数が30Hz以上であれば、人の視覚の時間分解能を概ね超える。従って、光のちらつきをより抑制できる。また更に、この周波数が60Hz以上であれば、光のちらつきがより抑制される観点から好ましい。なお、MEMSミラー80R,80G,80Bが光の光路に与える振動の周波数は、互いに異なる周波数とされても良く、同じ周波数とされても良い。 In addition, it is preferable that the frequency of the vibration which MEMS mirror 80R, 80G, 80B gives to the optical path of light is 15 Hz or more from a viewpoint of suppressing the flicker of light. The human visual temporal resolution is approximately 30 Hz. In the case of a vehicular lamp, flickering of light can be suppressed if the frequency of vibration is about half of this frequency. In addition, if the frequency of the vibration which these vibration provision parts give is 30 Hz or more, it will generally exceed the time resolution of human vision. Therefore, the flickering of light can be further suppressed. Furthermore, if this frequency is 60 Hz or more, it is preferable from the viewpoint of further suppressing the flickering of light. In addition, the frequency of the vibration which MEMS mirror 80R, 80G, 80B gives to the optical path of light may be made into a mutually different frequency, and may be made into the same frequency.
 ところで可動反射面、図15及び図16に示すように、MEMSミラーは、光の光路を、回折格子パターン170の少なくとも1つ分以上振動させることが好ましい。このようにすることで、MEMSミラーによって振動する光路の振幅が大きくなり、被照射面に入射する光の入射角や位相の変化が大きくなるため、光のちらつきがより効果的に抑制され得る。 Incidentally, as shown in FIG. 15 and FIG. 16, it is preferable that the MEMS mirror vibrates the optical path of light by at least one of the diffraction grating patterns 170 as shown in FIGS. By doing so, the amplitude of the optical path oscillated by the MEMS mirror is increased, and the change in the incident angle and phase of the light incident on the irradiated surface is increased, so that the flickering of light can be more effectively suppressed.
 上記のように、第3の態様としての本実施形態の車両用前照灯1は、ロービームLの配光パターンを形成する配光パターン形成素子である回折格子154R,154G,154Bを備えるため、シェードを用いずともロービームLの配光パターンを形成することができる。すなわち、シェードを用いるスペースを確保する必要がなく、装置を小型化することができる。 As described above, the vehicle headlamp 1 according to the present embodiment as the third aspect includes the diffraction gratings 154R, 154G, and 154B that are light distribution pattern forming elements that form the light distribution pattern of the low beam L. The light distribution pattern of the low beam L can be formed without using a shade. That is, it is not necessary to secure a space for using the shade, and the apparatus can be downsized.
 また、第3の態様としての本実施形態の車両用前照灯1は、光を反射するとともに該光の光路を可動反射面を動かして振動させる可動反射部材であるMEMSミラー80R,80G,80Bを備えるため、ロービームLのちらつきが抑制される。 In addition, the vehicle headlamp 1 of the present embodiment as the third aspect is a MEMS mirror 80R, 80G, 80B, which is a movable reflecting member that reflects light and vibrates the optical path of the light by moving a movable reflecting surface. Therefore, flickering of the low beam L is suppressed.
 また、第3の態様としての本実施形態では、波長が互いに異なる3つの光を合成するものであるため、それぞれの光源から出射する光強度を調節することにより、所望の色の光を出射することができる。 Further, in the present embodiment as the third aspect, since three lights having different wavelengths are combined, light of a desired color is emitted by adjusting the light intensity emitted from each light source. be able to.
 また、第3の態様としての本実施形態では、MEMSミラーが2方向に搖動するため、MEMSミラーが1方向にのみ搖動する場合と比べて、より多くの干渉パターンが形成される。したがって、光のちらつきがより効果的に抑制され得る。 In the present embodiment as the third aspect, since the MEMS mirror swings in two directions, more interference patterns are formed as compared with the case where the MEMS mirror swings in only one direction. Therefore, the flickering of light can be more effectively suppressed.
(第7実施形態)
 次に、本発明の第3の態様としての第7実施形態について図17を参照して詳細に説明する。なお、第6実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
(Seventh embodiment)
Next, a seventh embodiment as the third aspect of the present invention will be described in detail with reference to FIG. Note that components that are the same as or equivalent to those in the sixth embodiment are denoted by the same reference numerals unless otherwise described, and redundant descriptions are omitted.
 図17は、本実施形態に係る車両用前照灯の光学系ユニット150を図13と同様に示す図である。図17に示すように、本実施形態の車両用前照灯の光学系ユニット150によれば、第1光源52R、第2光源52G、及び第3光源52Bが、開口40Hの反対側に上下方向に並んで配置される。すなわち、光源52R,52G,52Bのそれぞれからレーザ光が上下方向に出射される。また、光源52R,52G,52Bが上下方向に並んで配置されたことに対応して、MEMSミラー80R,80G,80Bが上下方向に並んで配置され、回折格子154R,154G,154Bが上下方向に並んで配置される。 FIG. 17 is a view showing the optical system unit 150 of the vehicle headlamp according to the present embodiment in the same manner as FIG. As shown in FIG. 17, according to the vehicle headlamp optical system unit 150 of the present embodiment, the first light source 52R, the second light source 52G, and the third light source 52B are arranged in the vertical direction on the opposite side of the opening 40H. Arranged side by side. That is, laser light is emitted in the vertical direction from each of the light sources 52R, 52G, and 52B. Corresponding to the fact that the light sources 52R, 52G, 52B are arranged in the vertical direction, the MEMS mirrors 80R, 80G, 80B are arranged in the vertical direction, and the diffraction gratings 154R, 154G, 154B are arranged in the vertical direction. Arranged side by side.
 このような構成によれば、光源52R,52G,52Bから出射されたレーザ光は、MEMSミラー80R,80G,80Bでそれぞれ前方に反射された後、回折格子154R,154G,154Bを前方に向かって透過する。そして、回折格子154R,154G,154Bから出射する第1の光LRAと第2の光LGAと第3の光LBAとが開口40Hに向かって前方に伝搬していく。このとき、第1の光LRA、第2の光LGA、及び、第3の光LBAは、車両から所定の距離離れた焦点位置において、それぞれの光が照射される領域が互いに重なるように照射される。この焦点位置は、例えば車両から25m離れた位置とされる。 According to such a configuration, the laser beams emitted from the light sources 52R, 52G, and 52B are reflected forward by the MEMS mirrors 80R, 80G, and 80B, respectively, and then forward through the diffraction gratings 154R, 154G, and 154B. To Penetrate. Then, the first light LRA, the second light LGA, and the third light LBA emitted from the diffraction gratings 154R, 154G, and 154B propagate forward toward the opening 40H. At this time, the first light LRA, the second light LGA, and the third light LBA are irradiated so that the regions irradiated with the respective lights overlap each other at a focal position that is a predetermined distance away from the vehicle. The This focal position is, for example, a position 25 m away from the vehicle.
 このような構成によっても、第3の態様としての第6実施形態と同様に小型化しつつ光のちらつきを抑制することができる。また、本実施形態によれば、光源52R,52G,52Bのそれぞれからレーザ光が前方、すなわち、開口40Hに向かって出射するため、すべてのレーザ光を開口40Hに向けるために合成光学系を設ける必要がない。したがって、第6実施形態に比べて、簡易な構成とすることができる。 Even with such a configuration, it is possible to suppress flickering of light while reducing the size as in the sixth embodiment as the third aspect. Further, according to the present embodiment, since the laser light is emitted from each of the light sources 52R, 52G, and 52B to the front, that is, toward the opening 40H, the combining optical system is provided to direct all the laser light to the opening 40H. There is no need. Therefore, it can be set as a simple structure compared with 6th Embodiment.
(第8実施形態)
 次に、本発明の第3の態様としての第8実施形態について図18及び図19を参照して詳細に説明する。なお、第6実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
(Eighth embodiment)
Next, an eighth embodiment as a third aspect of the present invention will be described in detail with reference to FIGS. Note that components that are the same as or equivalent to those in the sixth embodiment are denoted by the same reference numerals unless otherwise described, and redundant descriptions are omitted.
 図18は、本実施形態に係る車両用前照灯の光学系ユニット50の一部を図16と同様に示す図である。図18に示すように、本実施形態における車両用前照灯の光学系ユニット50は、第6実施形態における第1MEMSミラー80Rの代わりに第1MEMSミラー280Rを備えた点において第6実施形態における光学系ユニット50と異なる。このMEMSミラー280Rは、基板282と、可動反射面としての反射層281Rを主な構成として備える。基板282のうち両端部283以外の部分である主部284は、両端部283に比べて薄く形成されている。これにより、主部284は屈曲性を有する構成とされる。主部284の一方の面には、上述の可動反射面としての反射層281Rが形成されている。この反射層281Rは、例えば銀から形成されてもよい。また、主部284の内部のうち反射層281Rが位置する部分には、不図示の圧電素子が配置されている。このような構成によれば、上記圧電素子に印加される電圧を調整することで、該電圧に応じて主部284及び反射層281Rを屈曲させ得る。すなわち、反射層281Rの曲率が圧電素子に印加される電圧に応じて変化し得る。したがって、本実施形態によれば、図19に示すように、反射層281Rの曲率が変化することによってレーザ光が径方向に振動し得る。すなわち、回折格子154Rから出射する第1の光LRAの光路が径方向に振動し得る。なお、MEMSミラー80G,80BをMEMSミラー280Rと同様の構成としてもよい。 FIG. 18 is a view showing a part of the optical system unit 50 of the vehicle headlamp according to the present embodiment in the same manner as FIG. As shown in FIG. 18, the optical system unit 50 of the vehicle headlamp in this embodiment includes the first MEMS mirror 280R instead of the first MEMS mirror 80R in the sixth embodiment. Different from the system unit 50. The MEMS mirror 280R includes a substrate 282 and a reflective layer 281R as a movable reflective surface as main components. A main portion 284 that is a portion other than both end portions 283 of the substrate 282 is formed thinner than both end portions 283. Thus, the main portion 284 is configured to have flexibility. On one surface of the main part 284, the reflective layer 281R as the movable reflective surface described above is formed. The reflective layer 281R may be made of silver, for example. In addition, a piezoelectric element (not shown) is disposed in the portion of the main portion 284 where the reflective layer 281R is located. According to such a configuration, by adjusting the voltage applied to the piezoelectric element, the main portion 284 and the reflective layer 281R can be bent according to the voltage. That is, the curvature of the reflective layer 281R can change according to the voltage applied to the piezoelectric element. Therefore, according to the present embodiment, as shown in FIG. 19, the laser beam can vibrate in the radial direction by changing the curvature of the reflective layer 281R. That is, the optical path of the first light LRA emitted from the diffraction grating 154R can vibrate in the radial direction. The MEMS mirrors 80G and 80B may have the same configuration as the MEMS mirror 280R.
(第9実施形態)
 次に、本発明の第3の態様としての第9実施形態について図20を参照して詳細に説明する。なお、第6実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
(Ninth embodiment)
Next, a ninth embodiment as a third aspect of the present invention will be described in detail with reference to FIG. Note that components that are the same as or equivalent to those in the sixth embodiment are denoted by the same reference numerals unless otherwise described, and redundant descriptions are omitted.
 図20は、本実施形態に係る車両用前照灯の光学系ユニット50のうち第2光源52Gの近傍を図13と同様に示す図である。図20に示すように、本実施形態における車両用前照灯の光学系ユニット50は、第2回折格子154Gから出射したレーザ光が第2MEMSミラー80Gで反射するように構成されている点において、第6実施形態における光学系ユニット50と異なる。より具体的には、第9実施形態における光学系ユニット50では、第2コリメートレンズ53Gの上方に第2回折格子154Gが配置され、この第2回折格子154Gの上方に第2MEMSミラー80Gが配置される。このような構成によれば、回折格子154Gを透過して所定配光パターンとされた第2の光LGAが、第2MEMSミラー80Gで反射され、前方に伝搬していく。このような構成によれば、第2MEMSミラー80Gの可動反射面81Rが搖動することにより第2の光LGAの光路が振動するため、第1実施形態と同様に光のちらつきが抑制され得る。 FIG. 20 is a view showing the vicinity of the second light source 52G in the optical system unit 50 of the vehicle headlamp according to the present embodiment in the same manner as FIG. As shown in FIG. 20, the optical system unit 50 of the vehicle headlamp in the present embodiment is configured such that the laser light emitted from the second diffraction grating 154G is reflected by the second MEMS mirror 80G. Different from the optical system unit 50 in the sixth embodiment. More specifically, in the optical system unit 50 according to the ninth embodiment, the second diffraction grating 154G is disposed above the second collimating lens 53G, and the second MEMS mirror 80G is disposed above the second diffraction grating 154G. The According to such a configuration, the second light LGA transmitted through the diffraction grating 154G and having a predetermined light distribution pattern is reflected by the second MEMS mirror 80G and propagates forward. According to such a configuration, since the optical path of the second light LGA vibrates when the movable reflecting surface 81R of the second MEMS mirror 80G swings, flickering of light can be suppressed as in the first embodiment.
 なお、図13に示す第6実施形態と、図20に示す第9実施形態とを比較すると、第6実施形態に係る車両用前照灯1は、レーザ光をMEMSミラー80Gで反射させた後回折格子154Gに入射させるように構成されているため、第9実施形態に係る車両用前照灯に比べて、MEMSミラー80Gを光源52Gに近づけることができる。そのため、第6実施形態では、第9実施形態に比べて、MEMSミラー80Gの可動反射面81Gを小さくすることができる。 13 is compared with the ninth embodiment shown in FIG. 20, the vehicular headlamp 1 according to the sixth embodiment reflects the laser light by the MEMS mirror 80G. Since it is configured to enter the diffraction grating 154G, the MEMS mirror 80G can be brought closer to the light source 52G as compared with the vehicle headlamp according to the ninth embodiment. Therefore, in the sixth embodiment, the movable reflecting surface 81G of the MEMS mirror 80G can be made smaller than in the ninth embodiment.
 なお、上述の第3の態様としての第6実施形態から第9実施形態では、車両用灯具としての車両用前照灯1はロービームLを照射するものとされたが、本発明の第3の態様としての車両用灯具は特に限定されない。例えば、第3の態様としての他の実施形態における車両用灯具は、図4(A)において破線で示す領域、すなわち、ロービームLが照射される領域よりも上方の領域に、ロービームLよりも強度の低い光を照射するように構成されてもよい。このような低強度の光は、例えば標識認識用の光OHSとされる。この場合、それぞれの回折格子154R,154G,154Bから出射する光に標識認識用の光OHSが含まれていることが好ましい。また、他の別の実施形態における車両用灯具は、図4(B)に示すようなハイビームを照射するように構成されてもよい。また、さらに第3の態様としての別の実施形態では、本発明における車両用灯具を、画像を構成するものとして適用してもよい。このような場合、車両用灯具から出射する光の方向や、該車両における車両用灯具の取り付け位置は特に限定されない。 In the sixth to ninth embodiments as the third aspect described above, the vehicle headlamp 1 as the vehicle lamp is assumed to irradiate the low beam L, but the third embodiment of the present invention The vehicle lamp as an aspect is not particularly limited. For example, the vehicular lamp in another embodiment as the third aspect has an intensity higher than that of the low beam L in a region indicated by a broken line in FIG. 4A, that is, a region above the region irradiated with the low beam L. It may be configured to irradiate with low light. Such low-intensity light is, for example, light OHS for label recognition. In this case, it is preferable that the light OHS for label | marker recognition is contained in the light radiate | emitted from each diffraction grating 154R, 154G, 154B. Moreover, the vehicle lamp in other another embodiment may be comprised so that a high beam as shown to FIG. 4 (B) may be irradiated. Furthermore, in another embodiment as the third aspect, the vehicular lamp according to the present invention may be applied as one constituting an image. In such a case, the direction of light emitted from the vehicle lamp and the mounting position of the vehicle lamp in the vehicle are not particularly limited.
 また、上述の第3の態様としての第6実施形態から第9実施形態では、回折格子が複数の回折格子パターンからなり、MEMSミラーが回折格子パターンの1つ以上分光の光路を振動させる例を説明したが、MEMSミラーが回折格子パターンの1つ未満だけ光の光路を振動させる場合でも、光のちらつきが抑制され得る。あるいは、回折格子は、単一の回折格子パターンから形成されてもよい。なお、回折格子が単一の回折格子パターンから形成される場合には、所定配光パターンであるロービームLの配光パターンを形成するために、光に照射される領域にこの単一の回折格子パターンがすべて含まることが好ましい。 In the sixth to ninth embodiments as the third aspect described above, the diffraction grating is composed of a plurality of diffraction grating patterns, and the MEMS mirror vibrates one or more optical paths of the spectrum of the diffraction grating pattern. As described above, even when the MEMS mirror vibrates the optical path of light by less than one of the diffraction grating patterns, the light flickering can be suppressed. Alternatively, the diffraction grating may be formed from a single diffraction grating pattern. In the case where the diffraction grating is formed from a single diffraction grating pattern, this single diffraction grating is formed in a region irradiated with light in order to form a low beam L light distribution pattern which is a predetermined light distribution pattern. Preferably all the patterns are included.
 また、上述の第3の態様としての第6実施形態から第9実施形態では、3つの光源と、これら3つの光源に対応する3つのMEMSミラー及び3つの回折格子とを備える例を説明したが、第3の態様としての光源は少なくとも1つあればよく、これに対応して、MEMSミラー及び回折格子がそれぞれ少なくとも1つあればよい。ただし、上述のように、3つの光源を備えることで所望の色の光を生成することが可能となる。 Further, in the sixth to ninth embodiments as the third aspect described above, an example including three light sources, three MEMS mirrors corresponding to the three light sources, and three diffraction gratings has been described. As the third aspect, at least one light source is sufficient, and correspondingly, at least one MEMS mirror and diffraction grating are sufficient. However, as described above, it is possible to generate light of a desired color by providing three light sources.
 また、上述の第3の態様としての第6実施形態から第9実施形態では、配光パターン形成素子として回折格子を用いた例を説明したが、第3の態様としての他の実施形態では、配光パターン形成素子としてLCOSを用いてもよい。 Further, in the sixth to ninth embodiments as the third aspect described above, the example using the diffraction grating as the light distribution pattern forming element has been described, but in the other embodiments as the third aspect, LCOS may be used as the light distribution pattern forming element.
 また、上述の第3の態様としての第6実施形態から第9実施形態では、配光パターン形成素子が光を透過する例を示したが、配光パターン形成素子は光を反射する構成とされてもよい。 In the sixth to ninth embodiments as the third aspect described above, the light distribution pattern forming element transmits light. However, the light distribution pattern forming element is configured to reflect light. May be.
 また、上述の第3の態様としての第6実施形態から第9実施形態では、可動反射部材としてMEMSミラーを用いた例を説明したが、これに限定されない。例えば、第3の態様としての他の実施形態では、可動反射部材としてポリゴンレンズを用いてもよい。 Further, in the sixth to ninth embodiments as the third aspect described above, the example in which the MEMS mirror is used as the movable reflecting member has been described. However, the present invention is not limited to this. For example, in another embodiment as the third aspect, a polygon lens may be used as the movable reflecting member.
 以上のように、本発明の第1の態様によれば、色のにじみを抑制し得る車両用灯具が提供され、本発明の第2の態様によれば、光のちらつきを感じることを抑制し得る車両用灯具が提供され、本発明の第3の態様によれば、小型化しつつ光のちらつきを感じることを抑制し得る車両用灯具が提供され、自動車等の車両用灯具の分野などにおいて利用可能である。 As described above, according to the first aspect of the present invention, there is provided a vehicular lamp that can suppress color blur, and according to the second aspect of the present invention, it is possible to suppress light flickering. According to the third aspect of the present invention, there is provided a vehicular lamp that can suppress light flickering while being reduced in size, and is used in the field of vehicular lamps such as automobiles. Is possible.
1・・・車両用前照灯(車両用灯具)
10・・・筐体
20・・・灯具ユニット
21・・・光源
22・・・位相変調素子
40・・・ケース
41・・・基台
50,150・・・光学系ユニット
51R・・・第1発光光学系
51G・・・第2発光光学系
51B・・・第3発光光学系
52R・・・第1光源
52G・・・第2光源
52B・・・第3光源
53R,53G,53B・・・コリメートレンズ
54R・・・第1位相変調素子
54G・・・第2位相変調素子
54B・・・第3位相変調素子
55・・・合成光学系
55f・・・第1光学素子
55s・・・第2光学素子
60・・・ミラー本体
70・・・制御部
72・・・入力部
80R,280R・・・第1MEMSミラー(可動反射部材)
80G・・・第2MEMSミラー(可動反射部材)
80B・・・第3MEMSミラー(可動反射部材)
81R,81G,81B・・・可動反射面
281R・・・反射層
154R・・・第1回折格子(配光パターン形成素子)
154G・・・第2回折格子(配光パターン形成素子)
154B・・・第3回折格子(配光パターン形成素子)
170・・・回折格子パターン
LR,LG,LB・・・レーザ光
1 ... Vehicle headlamp (vehicle lamp)
DESCRIPTION OF SYMBOLS 10 ... Case 20 ... Lamp unit 21 ... Light source 22 ... Phase modulation element 40 ... Case 41 ... Base 50, 150 ... Optical system unit 51R ... 1st Light emitting optical system 51G ... second light emitting optical system 51B ... third light emitting optical system 52R ... first light source 52G ... second light source 52B ... third light sources 53R, 53G, 53B ... Collimating lens 54R ... first phase modulation element 54G ... second phase modulation element 54B ... third phase modulation element 55 ... synthetic optical system 55f ... first optical element 55s ... second Optical element 60... Mirror body 70... Control unit 72... Input unit 80R, 280R... First MEMS mirror (movable reflection member)
80G ... Second MEMS mirror (movable reflective member)
80B ... Third MEMS mirror (movable reflective member)
81R, 81G, 81B ... movable reflective surface 281R ... reflective layer 154R ... first diffraction grating (light distribution pattern forming element)
154G ... Second diffraction grating (light distribution pattern forming element)
154B ... Third diffraction grating (light distribution pattern forming element)
170: Diffraction grating pattern LR, LG, LB: Laser light

Claims (21)

  1.  入射する光を回折して出射するとともに出射する光の配光パターンを変更可能な位相変調素子と、
     互いに波長の異なる複数のレーザ光を時分割で出射する光源と、
    を備え、
     前記光源から出射するそれぞれの波長の前記レーザ光は、前記位相変調素子に入射し、
     前記位相変調素子は、それぞれの波長の前記レーザ光に対応した位相変調パターンで当該レーザ光を回折して出射し、
     それぞれの波長の前記レーザ光に対応して前記位相変調素子から出射する光が照射される領域が互いに重なる
    ことを特徴とする車両用灯具。
    A phase modulation element capable of changing the light distribution pattern of the emitted light while diffracting and emitting the incident light; and
    A light source that emits a plurality of laser beams having different wavelengths in a time-sharing manner;
    With
    The laser light of each wavelength emitted from the light source is incident on the phase modulation element,
    The phase modulation element diffracts and emits the laser beam with a phase modulation pattern corresponding to the laser beam of each wavelength,
    A vehicular lamp characterized in that regions irradiated with light emitted from the phase modulation element corresponding to the laser beams of respective wavelengths overlap each other.
  2.  それぞれの波長の前記レーザ光に対応して前記位相変調素子から出射する光が照射される領域の外形の少なくとも一部が一致する
    ことを特徴とする請求項1に記載の車両用灯具。
    2. The vehicular lamp according to claim 1, wherein at least a part of an outer shape of a region irradiated with light emitted from the phase modulation element corresponds to the laser light having each wavelength.
  3.  前記位相変調素子は、透過型の位相変調素子である
    ことを特徴とする請求項1または2に記載の車両用灯具。
    The vehicular lamp according to claim 1, wherein the phase modulation element is a transmissive phase modulation element.
  4.  前記位相変調素子は、反射型の位相変調素子である
    ことを特徴とする請求項1または2に記載の車両用灯具。
    The vehicular lamp according to claim 1, wherein the phase modulation element is a reflection type phase modulation element.
  5.  前記光源は、互いに波長の異なる少なくとも3つの前記レーザ光を出射する
    ことを特徴とする請求項1から4のいずれか1項に記載の車両用灯具。
    The vehicular lamp according to any one of claims 1 to 4, wherein the light source emits at least three laser beams having different wavelengths.
  6.  所定の波長の光を出射する光源と、
     所定の時間間隔よりも短い時間間隔で変化する位相変調パターンで前記光源から出射する光を回折して出射する位相変調素子と、
    を備え、
     互いに異なる前記位相変調パターンの前記位相変調素子から出射する光が照射される領域は、互いに重なる
    ことを特徴とする車両用灯具。
    A light source that emits light of a predetermined wavelength;
    A phase modulation element that diffracts and emits light emitted from the light source in a phase modulation pattern that changes at a time interval shorter than a predetermined time interval;
    With
    A vehicular lamp characterized in that regions irradiated with light emitted from the phase modulation elements having different phase modulation patterns overlap each other.
  7.  前記位相変調素子から出射する光が照射される領域が前記位相変調パターンの変化に対応して所定の方向へ振動する
    ことを特徴とする請求項6に記載の車両用灯具。
    The vehicular lamp according to claim 6, wherein a region irradiated with light emitted from the phase modulation element vibrates in a predetermined direction corresponding to a change in the phase modulation pattern.
  8.  前記位相変調素子から出射する光の配光パターンにおける強度分布が前記位相変調パターンの変化に対応して変化する
    ことを特徴とする請求項6または7に記載の車両用灯具。
    The vehicular lamp according to claim 6 or 7, wherein an intensity distribution in a light distribution pattern of light emitted from the phase modulation element changes corresponding to a change in the phase modulation pattern.
  9.  前記所定の時間間隔は、1/15s以下とされる
    ことを特徴とする請求項6から8のいずれか1項に記載の車両用灯具。
    The vehicular lamp according to any one of claims 6 to 8, wherein the predetermined time interval is 1/15 s or less.
  10.  前記位相変調素子は、透過型の位相変調素子である
    ことを特徴とする請求項6から9のいずれか1項に記載の車両用灯具。
    The vehicular lamp according to claim 6, wherein the phase modulation element is a transmission type phase modulation element.
  11.  前記位相変調素子は、反射型の位相変調素子である
    ことを特徴とする請求項6から9のいずれか1項に記載の車両用灯具。
    The vehicular lamp according to any one of claims 6 to 9, wherein the phase modulation element is a reflection type phase modulation element.
  12.  所定波長の光を出射する光源と、
     前記光の少なくとも一部の進行方向を変化させることにより、所定の配光パターンを有する光を生成する配光パターン形成素子と、
     可動反射面を有し、前記可動反射面を動かして前記光の光路を振動させる可動反射部材と、
    を備える
    ことを特徴とする車両用灯具。
    A light source that emits light of a predetermined wavelength;
    A light distribution pattern forming element that generates light having a predetermined light distribution pattern by changing a traveling direction of at least a part of the light;
    A movable reflective member having a movable reflective surface and moving the movable reflective surface to vibrate the optical path of the light;
    A vehicular lamp characterized by comprising:
  13.  前記可動反射部材の前記可動反射面は、前記光源から出射する前記光を前記配光パターン形成素子に向かって反射する
    ことを特徴とする請求項12に記載の車両用灯具。
    The vehicular lamp according to claim 12, wherein the movable reflecting surface of the movable reflecting member reflects the light emitted from the light source toward the light distribution pattern forming element.
  14.  前記可動反射部材の前記可動反射面は、前記配光パターン形成素子から出射する前記光を反射する
    ことを特徴とする請求項12に記載の車両用灯具。
    The vehicular lamp according to claim 12, wherein the movable reflecting surface of the movable reflecting member reflects the light emitted from the light distribution pattern forming element.
  15.  前記可動反射部材はMEMSミラーとされる
    ことを特徴とする請求項12から14のいずれか1項に記載の車両用灯具。
    The vehicular lamp according to any one of claims 12 to 14, wherein the movable reflecting member is a MEMS mirror.
  16.  前記可動反射部材により前記光の光路を2つ以上の方向に振動させる
    ことを特徴とする請求項12から15のいずれか1項に記載の車両用灯具。
    The vehicular lamp according to any one of claims 12 to 15, wherein the movable reflection member vibrates the optical path of the light in two or more directions.
  17.  前記可動反射部材は前記光の光路を15Hz以上の周波数で振動させる
    ことを特徴とする請求項12から16のいずれか1項に記載の車両用灯具。
    The vehicular lamp according to any one of claims 12 to 16, wherein the movable reflecting member vibrates the optical path of the light at a frequency of 15 Hz or more.
  18.  前記配光パターン形成素子は、区分けされた複数の領域のそれぞれに形成された回折格子パターンからなる回折格子とされ、
     前記可動反射部材は、前記光の光路を、前記配光パターン形成素子の入射面において前記回折格子パターンの少なくとも1つ分以上振動させる
    ことを特徴とする請求項12から17のいずれか1項に記載の車両用灯具。
    The light distribution pattern forming element is a diffraction grating composed of a diffraction grating pattern formed in each of a plurality of divided regions,
    18. The movable reflecting member according to claim 12, wherein the light reflecting path vibrates at least one of the diffraction grating patterns on the incident surface of the light distribution pattern forming element. The vehicle lamp as described.
  19.  前記配光パターン形成素子は、LCOS(Liquid Crystal On Silicon)とされる
    ことを特徴とする請求項12から17のいずれか1項に記載の車両用灯具。
    18. The vehicular lamp according to any one of claims 12 to 17, wherein the light distribution pattern forming element is LCOS (Liquid Crystal On Silicon).
  20.  前記可動反射部材は、前記可動反射面を少なくとも1つの軸回りに搖動させることにより前記光の光路を振動させる
    ことを特徴とする請求項12から19のいずれか1項に記載の車両用灯具。
    The vehicular lamp according to any one of claims 12 to 19, wherein the movable reflecting member vibrates the optical path of the light by swinging the movable reflecting surface about at least one axis.
  21.  前記可動反射部材は、前記可動反射面の曲率を変化させることにより前記光の光路を振動させる
    ことを特徴とする請求項12から19のいずれか1項に記載の車両用灯具。

     
    The vehicular lamp according to any one of claims 12 to 19, wherein the movable reflecting member vibrates an optical path of the light by changing a curvature of the movable reflecting surface.

PCT/JP2019/020943 2018-05-31 2019-05-27 Lamp for vehicles WO2019230664A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020522188A JPWO2019230664A1 (en) 2018-05-31 2019-05-27 Vehicle lighting

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-105277 2018-05-31
JP2018105067 2018-05-31
JP2018-105450 2018-05-31
JP2018-105067 2018-05-31
JP2018105277 2018-05-31
JP2018105450 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230664A1 true WO2019230664A1 (en) 2019-12-05

Family

ID=68698139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020943 WO2019230664A1 (en) 2018-05-31 2019-05-27 Lamp for vehicles

Country Status (2)

Country Link
JP (1) JPWO2019230664A1 (en)
WO (1) WO2019230664A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232592A (en) * 1997-02-18 1998-09-02 Canon Inc Picture recording device and picture reproducing device
JP2008262029A (en) * 2007-04-12 2008-10-30 Seiko Epson Corp Illuminator and projector
JP2015132707A (en) * 2014-01-14 2015-07-23 大日本印刷株式会社 Display device and vehicle having display device mounted thereon
WO2016072505A1 (en) * 2014-11-07 2016-05-12 大日本印刷株式会社 Lighting device
JP2017134908A (en) * 2016-01-25 2017-08-03 スタンレー電気株式会社 Vehicular lighting fixture
JP2017223964A (en) * 2010-09-08 2017-12-21 大日本印刷株式会社 Illumination device, projection device and projection type picture display device
JP2018032630A (en) * 2015-06-22 2018-03-01 大日本印刷株式会社 Illumination device
WO2018092834A1 (en) * 2016-11-17 2018-05-24 大日本印刷株式会社 Illumination device and method for manufacturing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232592A (en) * 1997-02-18 1998-09-02 Canon Inc Picture recording device and picture reproducing device
JP2008262029A (en) * 2007-04-12 2008-10-30 Seiko Epson Corp Illuminator and projector
JP2017223964A (en) * 2010-09-08 2017-12-21 大日本印刷株式会社 Illumination device, projection device and projection type picture display device
JP2015132707A (en) * 2014-01-14 2015-07-23 大日本印刷株式会社 Display device and vehicle having display device mounted thereon
WO2016072505A1 (en) * 2014-11-07 2016-05-12 大日本印刷株式会社 Lighting device
JP2018032630A (en) * 2015-06-22 2018-03-01 大日本印刷株式会社 Illumination device
JP2017134908A (en) * 2016-01-25 2017-08-03 スタンレー電気株式会社 Vehicular lighting fixture
WO2018092834A1 (en) * 2016-11-17 2018-05-24 大日本印刷株式会社 Illumination device and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2019230664A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
JP6987350B2 (en) In-vehicle headlights and light projection methods
US10551020B2 (en) Vehicle lamp with acousto-optic device
WO2015122482A1 (en) Vehicle lamp
WO2015111649A1 (en) Vehicle lighting fixture
US11346518B2 (en) Headlight for vehicle
CN111480032B (en) Vehicle lamp
WO2019230664A1 (en) Lamp for vehicles
CN110242930B (en) Vehicle lamp
CN210801006U (en) Vehicle lamp
CN210801005U (en) Vehicle lamp
JP7285260B2 (en) vehicle lamp
CN210128316U (en) Vehicle headlamp
US10641457B2 (en) Vehicular lamp
CN110953542B (en) Vehicle lamp
CN211083943U (en) Vehicle lamp
CN111684200B (en) Vehicle lamp
CN210141553U (en) Vehicle headlamp
WO2020166650A1 (en) Headlight for vehicles and lamp for vehicles
JP2020044999A (en) Vehicular lighting fixture
JP2020044875A (en) Vehicular lighting fixture
JP2020098734A (en) Vehicular lighting fixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522188

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810103

Country of ref document: EP

Kind code of ref document: A1