WO2020039699A1 - Traveling vehicle control device, traveling vehicle system, and traveling vehicle control method - Google Patents

Traveling vehicle control device, traveling vehicle system, and traveling vehicle control method Download PDF

Info

Publication number
WO2020039699A1
WO2020039699A1 PCT/JP2019/022971 JP2019022971W WO2020039699A1 WO 2020039699 A1 WO2020039699 A1 WO 2020039699A1 JP 2019022971 W JP2019022971 W JP 2019022971W WO 2020039699 A1 WO2020039699 A1 WO 2020039699A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveling
traveling vehicle
target
vehicle
cost
Prior art date
Application number
PCT/JP2019/022971
Other languages
French (fr)
Japanese (ja)
Inventor
悠二 榎
賢治 熊谷
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Publication of WO2020039699A1 publication Critical patent/WO2020039699A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present disclosure relates to a traveling vehicle control device, a traveling vehicle system, and a traveling vehicle control method.
  • an unmanned traveling vehicle system that controls traveling of a traveling vehicle that conveys articles such as semiconductors, for example, in a semiconductor manufacturing factory or the like is known.
  • a new travel request for example, a transport request including information indicating each of an article to be transported, a gripping position (From point), and an unloading position (To point)
  • a gripping position For example, the following optimum bogie priority control is executed.
  • a traveling vehicle that can reach the cargo grasping position in the shortest path or the shortest time is specified. Is done.
  • the transfer request is assigned to the specified traveling vehicle.
  • Patent Literature 1 discloses that a plurality of candidate routes from the current position of a traveling vehicle to a destination can efficiently travel based on the distance and speed limit of the candidate route.
  • a system is disclosed in which a candidate route determined to be is selected as a traveling route of the traveling vehicle.
  • a traveling plan indicating a position and a time at which the traveling vehicle accelerates or decelerates in a traveling route selected in advance is created, and based on the traveling plan, traveling vehicles in front and behind are created.
  • a system is disclosed that corrects a traveling plan of a subsequent traveling vehicle when it is determined that the traveling vehicle interferes.
  • a traveling route is selected from a plurality of candidate routes without considering that traveling of the traveling vehicles is hindered by the relationship between the traveling vehicles.
  • the traveling vehicle must travel while avoiding interference with other traveling vehicles, for example, and cannot always travel at the upper limit speed of the speed limit. For this reason, depending on the relationship between the traveling vehicles, a candidate route where each traveling vehicle cannot travel efficiently may be selected as the traveling route.
  • a traveling route is selected in advance without considering a relationship between traveling vehicles, and a traveling plan according to the traveling route is corrected afterward. Therefore, it is desired to select a more appropriate traveling route by considering the relationship between traveling vehicles in advance when selecting the traveling route.
  • an object of the present disclosure is to provide a traveling vehicle control device, a traveling vehicle system, and a traveling vehicle control method that can more appropriately select the traveling route of the traveling vehicle.
  • the traveling vehicle control device transmits a target traveling vehicle that is one of a plurality of traveling vehicles traveling along a transport path and a request to move to a preset destination.
  • a traveling vehicle control device that selects a traveling route from the current position of the target traveling vehicle to the destination for the combination of the traveling request including the traveling request, and an acquisition unit that acquires the traveling request, and the target traveling vehicle in the transport path.
  • a plurality of nodes each indicating a specific point included in the travelable area, a plurality of links connecting the nodes, and a static associated with each link indicating a time required for the traveling vehicle to pass through the link.
  • a storage unit that stores map information including a travel cost, and at least one of the target travel vehicle and the non-target travel vehicle based on a relationship between the target travel vehicle and a non-target travel vehicle that is a travel vehicle other than the target travel vehicle.
  • Tsuga phosphorus A calculating unit that calculates a delay cost indicating an increase in time required to pass through, a total running cost is calculated for each link based on the static running cost and the delay cost, and the calculated total running cost is calculated based on the calculated total running cost.
  • a selection unit that selects a traveling route from a plurality of candidate routes from the current position of the target traveling vehicle to the destination.
  • the traveling vehicle control method includes a target traveling vehicle that is one of a plurality of traveling vehicles traveling along a transport path and a request to move to a preset destination.
  • a static traveling cost indicating a time required for a traveling vehicle to pass through the link, associated with each of a plurality of links connecting between a plurality of nodes each indicating a specific point included in the travelable area
  • the delay cost indicating the amount of increase in the time required for at least one of the target traveling vehicle and the non-target traveling vehicle to pass through the link according to the relationship between the target traveling vehicle and the non-target traveling vehicle that is a traveling vehicle other than the target traveling vehicle.
  • the target traveling vehicle and the non-target traveling are determined based on not only the unique static traveling cost associated with each link but also the relationship between the target traveling vehicle and the non-target traveling vehicle.
  • the total travel cost is calculated for each link in consideration of a delay cost indicating an increase in time required for at least one of the vehicles to pass through the link.
  • a traveling route is selected from the plurality of candidate routes based on the calculated total traveling cost. Therefore, in consideration of the case where the traveling of the traveling vehicle is hindered by the relationship between traveling vehicles, a candidate route that allows the target traveling vehicle to travel more efficiently to the destination of the traveling request is selected as the traveling route. be able to. Therefore, according to the traveling vehicle control device or the traveling vehicle control method, it is possible to more appropriately select the traveling route of the target traveling vehicle.
  • the selecting unit calculates, for each link, a total traveling cost that is a sum of the static traveling cost and the delay cost, and includes the total traveling cost in the candidate route among the plurality of candidate routes.
  • the candidate route that minimizes the total sum of the running costs of the links to be linked may be selected as the running route.
  • the total traveling cost which is the sum of the static traveling cost and the delay cost, is calculated, so that the total traveling cost can be calculated by simple processing.
  • a candidate route that minimizes the sum of the total traveling costs of the links included in the candidate route is selected as the traveling route.
  • a candidate route that allows the target traveling vehicle to travel particularly efficiently to the destination of the traveling request can be selected as a traveling route.
  • the delay cost is such that the target traveling vehicle passes through the link due to the influence of the front traveling vehicle, which is a non-target traveling vehicle ahead along the transport path of the target traveling vehicle.
  • the traveling vehicle control device includes a planning unit that creates a traveling schedule related to a position of the traveling vehicle at each future time for each of the plurality of traveling vehicles, and the planning unit includes a target traveling vehicle.
  • Create a static traveling schedule that is a traveling schedule of the traveling vehicle that does not consider the relationship between the target traveling vehicle and the non-target traveling vehicle, and based on the static traveling schedule of the target traveling vehicle and the traveling schedule of the traveling vehicle ahead,
  • a modified traveling schedule is created by modifying the static traveling schedule of the target traveling vehicle so as to avoid interference with the preceding traveling vehicle, and the calculation unit calculates the modified traveling schedule of the target traveling vehicle and the modified traveling schedule of the target traveling vehicle.
  • the first delay cost may be calculated based on the first delay cost.
  • a traveling vehicle control device includes a communication unit that receives, at a predetermined timing, state information related to a current position and a traveling speed of the traveling vehicle from a plurality of traveling vehicles, and the node is configured such that a transport path branches or Including a branch junction that is a merging point, the calculation unit, based on the state information of the traveling vehicle, at the branch junction located forward along the transport path of the target traveling vehicle, the target traveling vehicle and the forward traveling vehicle
  • the first standby delay cost indicating the standby time of the target traveling vehicle is calculated, and the first delay cost may include the first standby delay cost.
  • the target traveling vehicle waits in front of the branching junction in order to avoid interference with a forward traveling vehicle that is about to branch or merge with the transport path on which the target traveling vehicle is traveling. In the case where such control is performed, it is possible to more appropriately select the traveling route of the target traveling vehicle.
  • the traveling vehicle is an unmanned guided vehicle that transports and transfers articles, and from a plurality of traveling vehicles, state information related to the current position and traveling speed of the traveling vehicle.
  • a transfer unit for receiving, at a predetermined timing, transfer information on a transfer position, time, and required time at which the traveling vehicle transfers an article, and the calculation unit includes state information and the transfer of the traveling vehicle.
  • the first transfer delay cost indicating the standby time of the target traveling vehicle is calculated when the target traveling vehicle stands by before the transfer position of the preceding traveling vehicle due to the transfer of the article by the preceding traveling vehicle.
  • the first delay cost may include a first transfer delay cost. Accordingly, in the traveling vehicle control device, when the control is performed such that the target traveling vehicle waits in front of the transfer position in order to avoid interference with the preceding traveling vehicle that transfers the articles, the traveling of the target traveling vehicle is performed. The route can be more appropriately selected.
  • the delay cost is such that the rear traveling vehicle that is a non-target traveling vehicle behind the target traveling vehicle along the transport path of the target traveling vehicle passes through the link due to the influence of the target traveling vehicle.
  • the traveling vehicle control device the amount of time required for the following vehicle to pass through the link due to the influence of the target traveling vehicle is reflected in the delay cost, so that the target traveling vehicle can control other traveling vehicles.
  • the influence on running can be considered. Therefore, the traveling route of the target traveling vehicle can be more appropriately selected.
  • the traveling vehicle control device includes a planning unit that creates a traveling schedule related to a position of the traveling vehicle at each future time for each of the plurality of traveling vehicles, and the planning unit includes a target traveling vehicle.
  • Create a static traveling schedule that is a traveling schedule of the traveling vehicle that does not consider the relationship between the target traveling vehicle and the non-target traveling vehicle.
  • a modified traveling schedule is created by modifying the static traveling schedule of the rearward traveling vehicle so as to avoid interference with the rearward traveling vehicle, and the calculation unit calculates the modified traveling schedule of the rearward traveling vehicle and the static traveling schedule of the rearward traveling vehicle.
  • the second delay cost may be calculated based on the second delay cost.
  • the traveling vehicle control device can more appropriately select the traveling route of the target traveling vehicle in consideration of the influence of interference between the target traveling vehicle and the rear traveling vehicle.
  • a traveling vehicle control device includes a communication unit that receives, at a predetermined timing, state information related to a current position and a traveling speed of the traveling vehicle from a plurality of traveling vehicles, and the node is configured such that a transport path branches or Including a branch junction, which is a merging point, the calculation unit, based on the state information of the traveling vehicle, at the branch junction located forward along the transport path of the target traveling vehicle, the target traveling vehicle and the rear traveling vehicle When the rear traveling vehicle stands by before the branch junction according to the relationship, the second standby delay cost indicating the standby time of the rear traveling vehicle is calculated, and the second delay cost may include the second standby delay cost. .
  • the rear traveling vehicle waits in front of the branch junction in order to avoid interference with the rear traveling vehicle that is about to branch or merge with the transport path on which the target traveling vehicle is traveling. In the case where such control is performed, it is possible to more appropriately select the traveling route of the target traveling vehicle.
  • the traveling vehicle is an unmanned guided vehicle that transports and transfers articles, and from a plurality of traveling vehicles, state information related to the current position and traveling speed of the traveling vehicle.
  • a transfer unit for receiving, at a predetermined timing, transfer information on a transfer position, time, and required time at which the traveling vehicle transfers an article, and the calculation unit includes state information and the transfer of the traveling vehicle.
  • a second transfer delay cost indicating a standby time of the rear traveling vehicle is calculated.
  • the second delay cost may include a second transfer delay cost.
  • the acquisition unit acquires and accumulates a plurality of traveling requests
  • the selection unit accumulates each of the plurality of traveling vehicles as target traveling vehicles and the acquisition unit. And selecting a traveling route for each of the plurality of traveling requests and, based on the total traveling cost corresponding to each of the traveling routes selected for each combination, assigning one traveling vehicle to each of the plurality of traveling requests.
  • a deriving unit that derives the associated pairing information may be provided.
  • a traveling vehicle system includes the traveling vehicle control device described above, a transport path, and a plurality of traveling vehicles that can travel along the transport path. Since the traveling vehicle system includes the traveling vehicle control device described above, the traveling vehicle system can more appropriately select the traveling route of the target traveling vehicle for the above-described reason.
  • FIG. 1 is a diagram illustrating a layout example of the traveling vehicle system according to the present embodiment.
  • FIG. 2 is a block diagram illustrating an example of a hardware configuration of the controller.
  • FIG. 3 is a block diagram illustrating a functional configuration of the controller.
  • FIG. 4 is a diagram illustrating an example of a process performed by the selection unit.
  • FIG. 5 is a diagram illustrating an example of a process performed by the selection unit.
  • FIG. 6 is a diagram illustrating an example of a processing result of the selection unit.
  • FIG. 7 is a diagram showing the pairing information derived for the processing result of FIG.
  • FIG. 8 is a diagram illustrating an example of a process of the derivation unit.
  • FIG. 9 is a flowchart illustrating an example of a process of the derivation unit.
  • FIG. 10 is a diagram for explaining an example of the processing of the derivation unit.
  • FIG. 11 is a diagram for explaining an example of the processing of the derivation unit.
  • FIG. 12 is a diagram for explaining an example of the processing of the derivation unit.
  • FIG. 13 is a diagram illustrating an example of a process of the deriving unit.
  • FIG. 14 is a diagram illustrating an example of a process of the deriving unit.
  • FIG. 15 is a diagram illustrating an example of a process of the deriving unit.
  • FIG. 16 is a diagram for describing a traveling schedule created by the planning unit.
  • FIG. 17 is a diagram for describing a travel schedule created by the planning unit.
  • FIG. 18 is a diagram for describing a traveling schedule created by the planning unit.
  • FIG. 16 is a diagram for describing a traveling schedule created by the planning unit.
  • FIG. 19 is a diagram for describing a traveling schedule created by the planning unit.
  • FIG. 20 is a diagram for describing a travel schedule created by the planning unit.
  • FIG. 21 is a diagram for describing a travel schedule created by the planning unit.
  • FIG. 22 is a diagram for describing a travel schedule created by the planning unit.
  • FIG. 23 is a diagram for describing a travel schedule created by the planning unit.
  • FIG. 24 is a flowchart illustrating the traveling vehicle control method.
  • FIG. 1 is a diagram showing a layout example of the traveling vehicle system 1 according to the present embodiment.
  • FIG. 2 is a block diagram illustrating an example of a hardware configuration of the controller 3.
  • FIG. 3 is a block diagram illustrating a functional configuration of the controller 3.
  • the traveling vehicle system 1 according to the present embodiment includes a transport path 4, a plurality of traveling vehicles 2 that can travel along the transport path 4, and an operation of each traveling vehicle 2.
  • a controller (traveling vehicle control device) 3 for controlling the vehicle.
  • the traveling vehicle 2 is an unmanned traveling vehicle, for example, an overhead traveling vehicle, a tracked truck, or the like.
  • the traveling vehicle 2 is, for example, an unmanned transport vehicle that is provided so as to be able to travel along a transport path 4 laid in a factory and that transports and transfers articles.
  • a traveling vehicle 2 is a ceiling transportation vehicle provided to be able to travel along a transportation path 4 such as a rail (track) laid near a ceiling in a factory. It is.
  • the traveling vehicle 2 is an overhead traveling type automatic guided vehicle (OHT: Overhead / Hoist / Transfer).
  • the article transported by the traveling vehicle 2 is a cassette (a so-called FOUP (Front Opening Unified Unified Pod)) in which a plurality of semiconductor wafers are stored.
  • the traveling vehicle 2 transmits the state information and the transfer information to the controller 3 at a predetermined timing.
  • the state information is information on the current position and the traveling speed of the traveling vehicle 2.
  • the transfer information is information on a transfer position, time, and required time at which the traveling vehicle transfers an article.
  • the transport path 4 is divided into a plurality (twelve in the example of FIG. 1) of sections (bays).
  • the transport path 4 includes an intrabay route 5 which is a route in a bay, and an interbay route 6 which is a route connecting different bays.
  • a load port 7 and a buffer 8 are provided along the transport path 4.
  • the load port 7 is a point where the FOUP is transferred between the semiconductor processing device (not shown) and the traveling vehicle 2.
  • the buffer 8 is a point where the traveling vehicle 2 can temporarily place the FOUP.
  • the branching junction 9 is a point where the transport path 4 branches or merges. In the branching junction 9, exclusive control is required to exclude a plurality of traveling vehicles 2 from entering at the same time on the transport path 4.
  • the controller 3 controls the transport operation of each traveling vehicle 2 by outputting a transportation command to each traveling vehicle 2 by, for example, wireless communication.
  • the transport operation is a series of operations performed for transporting and transferring the FOUP. For example, an operation of gripping the FOUP at the load port 7 and the buffer 8 (load gripping operation) and an operation of unloading the FOUP (loading operation) Unloading operation), and a traveling operation of traveling on the transport path 4 and the like.
  • the controller 3 receives a transport request (transport command) related to the transport of the FOUP from an upper controller such as a MES (Manufacturing Execution System) and an MCS (Material Control System) (not shown), and allocates it to the traveling vehicle 2.
  • MES Manufacturing Execution System
  • MCS Mobility Control System
  • the controller 3 determines the traveling vehicle 2 that executes the transfer request, and instructs the determined traveling vehicle 2 to execute the transfer request.
  • the transport request includes information for specifying an article to be transported, a cargo gripping position (From point), an unloading position (To point), and the like. That is, the transport request is a command requesting that a FOUP (article) arranged at a cargo gripping position (From point) as a destination be gripped and unloaded at a predetermined unloading position (To point). .
  • the controller 3 may directly control the traveling vehicle 2 existing in the control target area (area including a plurality of bays) illustrated in FIG. 1 or may travel the traveling vehicle 2 via a controller lower than the controller 3. May be controlled indirectly.
  • the control target area may be divided into a plurality of zones (for example, bay units), and a zone controller (bay controller) for controlling the traveling vehicle 2 in the zone may be provided for each zone.
  • the controller 3 may transmit a control signal to each zone controller, and each zone controller may transmit a control signal to the traveling vehicle 2 in each zone. That is, the traveling vehicle 2 in each zone may be indirectly controlled by the controller 3 via the zone controller of each zone.
  • the controller 3 includes a processor 301 such as one or more CPUs (Central Processing Unit), one or more RAMs (Random Access Memory) 302 as a main storage device, and one or more ROMs (Read Only). Memory) 303, an input device 304 such as a keyboard for the operator to perform operation input, an output device 305 such as a display for presenting information to the operator, and wired communication or wireless communication between the host controller and the traveling vehicle 2 and the like. It can be configured as a computer system including a communication module 306 for performing communication and an auxiliary storage device 307 such as an HDD and an SSD.
  • the controller 3 may be configured as one server device, or may be configured as a plurality of server devices that operate in cooperation with each other.
  • Each function of the controller 3 described below causes a predetermined program to be read on a memory such as the RAM 302, operates the input device 304 and the output device 305 under the control of the processor 301, and operates the communication module 306. It is realized by reading and writing data in the RAM 302 and the auxiliary storage device 307.
  • the controller 3 includes, as functional components, an acquisition unit 31, a storage unit 32, a planning unit 33, a calculation unit 34, a selection unit 35, a derivation unit 36, a communication unit 37.
  • the controller 3 assigns a traveling request including a request for moving to a preset destination to the target traveling vehicle 2A which is one traveling vehicle 2 selected from the plurality of traveling vehicles 2 by using these functions. Execute the process.
  • the traveling request is the above-described transport request
  • the preset destination is a cargo gripping position included in the transport request.
  • the controller 3 selects a traveling route from the current position of the target traveling vehicle 2A to the destination of the transport request.
  • the traveling vehicle 2 which is focused on as a target to which the traveling request is allocated may be referred to as a target traveling vehicle 2A.
  • the traveling vehicle 2 other than the target traveling vehicle 2A may be referred to as a non-target traveling vehicle 2B.
  • the non-target traveling vehicle 2B ahead of the target traveling vehicle 2A along the transport path 4 may be referred to as a front traveling vehicle 2F
  • the rear non-target traveling vehicle 2B along the transport path 4 of the target traveling vehicle 2A may be referred to as a rear traveling vehicle. It may be referred to as traveling vehicle 2R.
  • the acquisition unit 31 acquires and accumulates a plurality of transport requests output from the host controller.
  • the acquisition unit 31 temporarily stores the transport request acquired from the upper controller in a memory or the like provided in the controller 3.
  • the acquisition unit 31 is configured to periodically receive a transport request from a host controller at a predetermined cycle (first control cycle). That is, the acquisition unit 31 accepts a transport request from the host controller at the reception timing that repeatedly arrives in the first control cycle. For example, the acquisition unit 31 acquires one or more transport requests generated in the upper controller between the previous reception timing and the current reception timing at the current reception timing. In the case where no transfer request has occurred between the previous reception timing and the current reception timing, the transfer request may not be acquired by the acquisition unit 31 at the current reception timing.
  • the storage unit 32 stores map information on the layout of the traveling vehicle system 1.
  • the map information is information including a plurality of nodes, a plurality of links, and a static traveling cost associated with each link.
  • the map information is referred to by the planning unit 33 described later.
  • the plurality of nodes are information indicating specific points included in an area on which the target traveling vehicle 2A can travel (for example, the control target area illustrated in FIG. 1) on the transport path 4.
  • the specific point is an arbitrary point registered on the transport path 4 in advance.
  • the specific point is, for example, a point where a predetermined working device such as the load port 7 and the buffer 8 is arranged, and a point including the branch junction 9 where the transport path 4 branches or merges.
  • the link is information indicating a part connecting the nodes (a part of the transport path 4).
  • a direction in which the traveling vehicle 2 can travel is associated with each link. That is, a plurality of nodes and a plurality of links included in the map information form a directed graph.
  • the static traveling cost is information indicating the time required for the traveling vehicle 2 to pass through the link (hereinafter, also referred to as “cost”).
  • the static traveling cost is a cost associated with the link in advance, and is a cost when the relationship between the target traveling vehicle 2A and the non-target traveling vehicle 2B is not considered.
  • the static traveling cost is a cost that is not affected by other traveling vehicles 2.
  • the static traveling cost is a cost that indicates the shortest time that one traveling vehicle 2 can pass through a link in a situation where it is not affected by another traveling vehicle 2.
  • Such a static traveling cost can be calculated based on, for example, the length (distance) of the link, the speed limit associated with the link, and the like.
  • the planning unit 33 creates, for each of the plurality of traveling vehicles 2, a traveling schedule related to the position of the traveling vehicle 2 at each future time (see FIG. 17). More specifically, first, the planning unit 33 creates a static traveling schedule that is a traveling schedule of the traveling vehicle 2 without considering the relationship between the target traveling vehicle 2A and the non-target traveling vehicle 2B.
  • the planning unit 33 determines the target traveling vehicle 2A and the front traveling vehicle 2F based on the static traveling schedule of the target traveling vehicle 2A and the traveling schedule of the front traveling vehicle 2F (the decided traveling schedule of the front traveling vehicle 2F).
  • a modified traveling schedule is created by modifying the static traveling schedule of the target traveling vehicle 2A so as to avoid interference with the traveling vehicle. That is, the planning unit 33 detects interference between the target traveling vehicle 2A and the front traveling vehicle 2F, and creates a corrected traveling schedule of the target traveling vehicle 2A so as to eliminate the interference.
  • the planning unit 33 also determines the target traveling vehicle 2A and the rear traveling vehicle 2R based on the traveling schedule of the target traveling vehicle 2A (the determined traveling schedule of the target traveling vehicle 2A) and the static traveling schedule of the rear traveling vehicle 2R.
  • a modified traveling schedule is created by modifying the static traveling schedule of the rear traveling vehicle 2R so as to avoid interference with the vehicle. That is, the planning unit 33 detects interference between the target traveling vehicle 2A and the rear traveling vehicle 2R, and creates a corrected traveling schedule of the rear traveling vehicle 2R so as to eliminate the interference.
  • the traveling schedule created by the planning unit 33 will be described later in detail.
  • the calculation unit 34 calculates a delay cost indicating an increase in time required for at least one of the target traveling vehicle 2A and the non-target traveling vehicle 2B to pass through the link, based on the relationship between the target traveling vehicle 2A and the non-target traveling vehicle 2B. calculate.
  • the delay cost includes a first delay cost Ti1 indicating an amount of time required for the target traveling vehicle 2A to pass through the link due to the influence of the traveling vehicle 2F and a rear traveling vehicle 2R due to the influence of the target traveling vehicle 2A.
  • a second delay cost Ti2 indicating the amount of time required to pass through the link increases (see FIG. 23).
  • the calculation unit 34 calculates the first delay cost Ti1 based on the static traveling schedule of the target traveling vehicle 2A and the corrected traveling schedule of the target traveling vehicle 2A. Further, the calculation unit 34 calculates the second delay cost Ti2 based on the static traveling schedule of the rear traveling vehicle 2R and the corrected traveling schedule of the rear traveling vehicle 2R.
  • the selection unit 35 selects a travel route for each combination of each of the plurality of traveling vehicles 2 as the target traveling vehicle 2A and each of the plurality of traveling requests accumulated by the acquisition unit 31.
  • the selecting unit 35 calculates the total traveling cost for each link based on the static traveling cost and the delay cost.
  • the selection unit 35 selects a traveling route from a plurality of candidate routes from the current position of the target traveling vehicle 2A to the destination based on the calculated total traveling cost. For example, the selection unit 35 calculates, for each link, a total traveling cost that is a total of the static traveling cost and the delay cost, and calculates a total of the total traveling costs of the links included in the candidate route among the plurality of candidate routes. Is selected as the traveling route.
  • FIGS. 4 and 5 are diagrams for explaining an example of the processing of the selection unit 35.
  • the selecting unit 35 determines whether the traveling vehicle 2 has received the transportation request for each combination of one of the transportation requests accumulated by the acquisition unit 31 and one of the traveling vehicles 2.
  • the route cost indicating the time required for the execution (in the present embodiment, the time required for the traveling vehicle 2 to reach the destination (From point) of the transport request) is calculated.
  • the selection unit 35 determines, for each combination of the transport request and the traveling vehicle 2, the static traveling cost included in the map information stored in the storage unit 32 and the delay cost calculated by the calculation unit 34. , The total travel cost is calculated for each link.
  • the selection unit 35 selects a traveling route from a plurality of candidate routes from the current position of the target traveling vehicle 2A to the destination (From point which is a cargo gripping position) based on the calculated total traveling cost.
  • the selection unit 35 determines, for an arbitrary combination of the transport request and the traveling vehicle 2, a plurality of candidate routes from the current position of the traveling vehicle 2 to the destination (From point) of the transportation request.
  • the candidate route that is, the shortest route
  • the route cost is determined as the running route.
  • the selection unit 35 determines a travel route (shortest route) for each combination of the transport request and the traveling vehicle 2 by using a known shortest route search algorithm such as the Dijkstra method or A * (A-star). , The route cost can be calculated.
  • the processing of the selection unit 35 for a certain combination of the traveling vehicle 2 and the transport request will be described.
  • the processing using the Dijkstra method will be described as an example.
  • the nodes N with “E” and “1” to “6” correspond to the nodes included in the above-described map information.
  • a node N marked with “S” (hereinafter also referred to as “start point S”) indicates a departure point of the route search (that is, the current position of the traveling vehicle 2).
  • the node N marked with “E” (hereinafter also referred to as “end point E”) indicates the destination of the route search (that is, the From point of the transport request).
  • Nodes N marked with “1” to “6” are nodes that are neither the departure place nor the destination.
  • the link L connecting these nodes N corresponds to the link included in the map information.
  • “Cost” associated with each link L corresponds to the cost included in the map information.
  • the cost of each link L is the total running cost which is the sum of the static running cost and the delay cost.
  • the direction of each link L indicates a direction in which the traveling vehicle 2 can travel. Note that the start point S does not match a node registered in the map information in advance (that is, the start point S corresponds to an intermediate position of a link connecting the first node and the second node registered in the map information in advance). In FIG.
  • the selecting unit 35 newly sets a first link connecting the starting point S and the first node and a second link connecting the starting point S and the second node.
  • the travel cost associated with each of the first link and the second link includes, for example, the travel cost associated with the link connecting the first node and the second node, and the distance between the first link and the second link.
  • the selecting unit 35 executes the shortest path search algorithm (here, Dijkstra's algorithm) on the directed graph as shown in FIG. 4, and determines the shortest path from the start point S to the end point E and the one included in the shortest path.
  • a route cost which is the sum of the running costs of the link L, is derived.
  • FIG. 5 is a diagram illustrating an execution result of the shortest path search algorithm. As shown in FIG. 5, the selecting unit 35 selects “S” ⁇ “1” ⁇ “2” ⁇ “4” ⁇ “6” ⁇ “5” ⁇ “E” as the shortest path from the start point S to the end point E. Is determined.
  • the selecting unit 35 derives the travel route (shortest route) and the route cost for one combination of the traveling vehicle 2 and the transport request by executing the known shortest route search algorithm.
  • the selecting unit 35 executes the shortest route search algorithm for all possible combinations between the plurality of transport requests accumulated by the acquiring unit 31 and the plurality of traveling vehicles 2 existing in the control target area. Thereby, the selection unit 35 derives the traveling route and the route cost for each combination.
  • FIG. 6 shows a plurality of (here, four) transport requests (transport requests 1 to 4) and a plurality of (here, seven) traveling vehicles 2 (the traveling vehicles 2 identified by the traveling vehicle IDs A to G).
  • FIG. 14 is a diagram illustrating an example of a path cost calculated for each combination with (1).
  • the first row in the table of the transport request 1 in FIG. 6 indicates that the transport request 1 is the traveling vehicle 2 whose traveling vehicle ID is “A” (hereinafter, traveling vehicle 2 whose traveling vehicle ID is “X”).
  • traveling vehicle X The shortest time required for traveling vehicle A to reach the From position of transport request 1 from the current position of traveling vehicle A is “3”. It is shown that. In the example of FIG. 6, the traveling vehicle 2 whose route cost is equal to or more than a predetermined threshold (here, 30) is excluded.
  • a predetermined threshold here, 30
  • the deriving unit 36 derives pairing information in which one traveling vehicle is associated with each of a plurality of traveling requests based on route costs respectively corresponding to traveling routes selected for each combination. More specifically, the deriving unit 36 derives pairing information in which one traveling vehicle 2 is associated with (assigned to) each of the plurality of transport requests accumulated by the acquiring unit 31. The deriving unit 36 derives the pairing information based on the route cost calculated for each combination by the selecting unit 35 (that is, the calculation result as shown in FIG. 6). In the present embodiment, the deriving unit 36 derives the pairing information such that the sum of the route costs in the combination of the plurality of transport requests and the plurality of traveling vehicles 2 accumulated by the acquisition unit 31 is minimized.
  • FIG. 7 is a diagram showing the pairing information derived for the example of FIG.
  • the traveling request C is associated with the transportation request 1
  • the traveling vehicle E is associated with the transportation request 2
  • the traveling vehicle B is associated with the transportation request 3
  • the traveling vehicle A is associated with the transportation request 4.
  • the pairing information (hereinafter, also referred to as “optimal pairing information”) in which the total optimization of the route costs is minimized is obtained.
  • the deriving unit 36 formulates the association (pairing) between the transport request and the traveling vehicle 2 as a minimum cost flow problem, and derives pairing information by solving the minimum cost flow problem.
  • FIG. 8A illustrates an example of a calculation result by the selection unit 35 prepared for the description of the present example in a table format similar to FIG.
  • FIG. 8B expresses the relationship shown in FIG. 8A as an undirected graph. The graph shown in FIG.
  • the 8B expresses the transport requests 1 and 2 and the traveling vehicles A, B, and C as nodes, respectively, and expresses each of the transport requests 1 and 2 and the traveling vehicles A, B, and C as nodes.
  • the route cost of the combination is expressed as the cost of a link connecting the transport request and the traveling vehicle.
  • FIG. 9 is a flowchart showing a processing procedure.
  • the deriving unit 36 creates the network with cost shown in FIG. 10 in order to formulate the problem of deriving the optimal pairing information as the minimum cost flow problem. Specifically, as shown in FIG. 10, the deriving unit 36 sets the starting point s connected to each of the nodes 1 and 2 indicating the transport requests 1 and 2 by the link of the cost “0”, and An end point e connected to each of the nodes A, B, and C indicating the cars A, B, and C by a link having a cost of “0” is set.
  • the deriving unit 36 sets each graph so that the entire graph becomes a directed graph flowing in the direction of “start point s ⁇ transport request node (nodes 1 and 2) ⁇ traveling vehicle node (nodes A, B and C) ⁇ end point e”.
  • start point s ⁇ transport request node (nodes 1 and 2)
  • traveling vehicle node nodes A, B and C
  • end point e Set the direction of the link.
  • the capacity of each link is set to 1.
  • the problem of deriving the optimal pairing information between the two transport requests 1 and 2 and the three traveling vehicles A, B, and C is the minimum cost flow problem for the network with cost (directed graph) shown in FIG. Is converted to
  • step S12 the deriving unit 36 obtains the shortest path P1 from the start point s to the end point e by executing the shortest path search algorithm such as the Dijkstra method for the network with cost shown in FIG.
  • the shortest cost from the start point s to each node (the sum of the costs of the links that pass when the shortest path from the start point s to each node is traced) is obtained.
  • the shortest path P1 (start point s ⁇ node 1 ⁇ node A ⁇ end point e) indicated by a thick line and the shortest cost of each node are obtained.
  • step S13 the deriving unit 36 creates an auxiliary network (remaining capacity network) for the shortest path P1. Specifically, first, as shown in FIG. 12, the deriving unit 36 reverses the direction of each link on the shortest path P1 and makes the cost of each link on the shortest path P1 negative (that is, Multiply the cost of each link by "-1"). As a result, the cost of the link connecting node 1 and node A changes from “1” to “ ⁇ 1”. Subsequently, as shown in FIG. 13, the deriving unit 36 adds “the shortest cost at the start point of the link ⁇ the shortest cost at the end point of the link” to the cost of each link in the directed graph. Thereby, as shown in FIG. 13, the auxiliary network AN1 in which the cost of each link is updated is obtained.
  • step S14 the deriving unit 36 determines whether or not there is a route from the start point s to the end point e in the auxiliary network AN1.
  • the deriving unit 36 proceeds to the process of step S15.
  • step S15 the derivation unit 36 obtains the shortest path P2 from the start point s to the end point e by executing the shortest path search algorithm such as the Dijkstra method on the auxiliary network AN1, and also, from the start point s to each node. Find the shortest cost of Thereby, as shown in FIG. 14, the shortest path P2 (start point s ⁇ node 2 ⁇ node A ⁇ node 1 ⁇ node B ⁇ end point e) indicated by a thick line is obtained, and the shortest cost of each node is updated. .
  • the shortest path search algorithm such as the Dijkstra method on the auxiliary network AN1
  • the deriving unit 36 obtains an auxiliary network for the shortest path P2 by the same procedure as the processing for the shortest path P1.
  • the direction of each link on the shortest path P2 is reversed, and the auxiliary network AN2 in which the cost of each link is updated is obtained.
  • the determination result of step S14 is “NO”, and the deriving unit 36 proceeds to the process of step S16.
  • the number of traveling vehicles 2 (here, 3)> the number of transport requests (here, 2)” is satisfied as in this example, the number of repetitions (the number of times the auxiliary network is derived) is equal to the number of transport requests. Become equal. For this reason, in the present example, when the second auxiliary network AN2 is derived, there is no route from the start point s to the end point e.
  • step S16 the deriving unit 36 executes the traveling vehicles (nodes A to C) in the state (auxiliary network AN2 shown in FIG. 15) at the time when the above-described iterative processing (shortest route search and auxiliary network creation) is completed.
  • Optimum pairing information is derived on the basis of the link directed to the transport request (nodes 1 and 2) from.
  • the link from the node A to the node 2 and the link from the node B to the node 1 indicate an optimal combination of the transport request and the traveling vehicle.
  • the deriving unit 36 derives the pairing information in which the transport request 1 is associated with the traveling vehicle B and the transport request 2 is associated with the traveling vehicle A as the optimal pairing information.
  • the deriving unit 36 may select any one of the plurality of shortest paths and execute the subsequent processing (the creation of the auxiliary network in step S13). According to such a measure, optimal pairing information can be finally obtained.
  • the shortest path search algorithm such as the Dijkstra method in step S12 or step S15
  • the deriving unit 36 may select any one of the plurality of shortest paths and execute the subsequent processing (the creation of the auxiliary network in step S13). According to such a measure, optimal pairing information can be finally obtained.
  • the communication unit 37 transmits and receives information to and from the traveling vehicle 2 by, for example, wireless communication.
  • the communication unit 37 transmits information on the traveling request associated with each traveling vehicle 2 to the traveling vehicle 2 based on the pairing information derived by the deriving unit 36.
  • the controller 3 assigns a traveling request to each traveling vehicle 2.
  • the communication unit 37 transmits, from the plurality of traveling vehicles 2, state information relating to the current position and traveling speed of the traveling vehicle 2, and a transfer position at which the traveling vehicle transfers articles, a time, and a transfer time relating to a required time. And the placement information are received at a predetermined timing.
  • FIG. 16 is a diagram illustrating a part of the transport path 4.
  • the portion shown in FIG. 16 of the transport path 4 includes three links (hereinafter, referred to as link A, link B, and link C).
  • Link A, link B, and link C are connected in this order.
  • Link A is connected to link X and link Y on the upstream side of link A at node a.
  • link A and link B are connected at node b
  • link B and link C are connected at node c.
  • the link C is connected to a link Z on the downstream side of the link C by a node d.
  • one traveling vehicle 2 located at link B is traveling toward link C
  • traveling vehicle 2 located at link A is traveling toward link B
  • traveling vehicle 2 is located at link X. It is assumed that the traveling vehicle 2 is traveling toward the link A.
  • the traveling vehicle 2 located on the link A is closer to the node a (that is, between the traveling vehicle 2 located on the link A and the traveling vehicle 2 located on the link X),
  • the traveling vehicle 2 newly enters from the transport path Y.
  • the newly entered traveling vehicle 2 is referred to as a target traveling vehicle 2A
  • the traveling vehicle 2 which was located at the link X in the initial state is the rear traveling vehicle 2R
  • the traveling vehicle 2 which was located at the link A in the initial state Is referred to as a forward running vehicle 2F.
  • the traveling vehicle 2 located at the link B in the initial state is referred to as a leading traveling vehicle 2T.
  • FIG. 17 is a graph showing the traveling schedule of the leading traveling vehicle 2T, the forward traveling vehicle 2F, and the rear traveling vehicle 2R when the target traveling vehicle 2A enters the link A.
  • the horizontal axis represents time
  • the vertical axis represents a position along the transport path 4.
  • the slope of the graph represents the traveling speed of the traveling vehicle 2.
  • the traveling speed of the traveling vehicle 2 is specified by, for example, the speed limit of each link.
  • the leading traveling vehicle 2T is scheduled to stop to transfer articles on the link B, as shown in FIG.
  • the traveling vehicle 2F is scheduled to stop in order to avoid interference with the leading traveling vehicle 2T.
  • the rear traveling vehicle 2R is scheduled to travel on the transport path 4 without being affected by the leading traveling vehicle 2T and the forward traveling vehicle 2F.
  • FIG. 18 is a diagram for describing a static traveling schedule of the target traveling vehicle 2A in the link A.
  • the required time T1 from the current position of the target traveling vehicle 2A to the node b is represented by the following equation (1).
  • Cost is the required time when the traveling vehicle 2 travels from the node a to the node b at the speed limit of the link A
  • L is the total length of the link A
  • P is the distance from the node a to the target traveling vehicle 2A.
  • T1 Cost ⁇ ((LP) / L) (1)
  • FIG. 19 is a diagram for describing correction of a traveling schedule of the target traveling vehicle 2A in the link A.
  • the target traveling vehicle 2A is connected to the node b. Reduce running speed. More specifically, the time interval between the time when the forward traveling vehicle 2F passes through the node b and the time when the target traveling vehicle 2A reaches the node b is a safety time T2 represented by the following equation (2).
  • T2 ⁇ (v / a) + (Lv / v) (2)
  • FIG. 20 is a diagram for explaining correction of the traveling schedule in the link A of the target traveling vehicle 2A based on the flow rate restriction control.
  • the flow rate limiting control sets an upper limit on the number of traveling vehicles 2 that can exist in each link, and the number of traveling vehicles 2 exceeding the upper limit attempts to enter the link. In this case, the control is such that the traveling vehicle 2 does not enter the link.
  • the flow rate limiting control for setting the upper limit of the traveling vehicles 2 that can exist in the link B to two is executed. For this reason, the target traveling vehicle 2A does not enter the link B while the leading traveling vehicle 2T and the traveling vehicle 2F are present in the link B.
  • the target traveling vehicle 2A is connected to the node so that the target traveling vehicle 2A enters the link B after the leading traveling vehicle 2T exits the link B so that only the forward traveling vehicle 2F exists within the link B.
  • the traveling speed up to b is reduced.
  • FIG. 21 is a diagram for explaining a static traveling schedule of the target traveling vehicle 2A in the link B.
  • a static traveling schedule in which the target traveling vehicle 2A travels at the link B speed limit is created for the range from the node b to the node c.
  • the created static traveling schedule of the target traveling vehicle 2A is such that the target traveling vehicle 2A is located ahead of the target traveling vehicle 2A. It interferes with the traveling schedule of the traveling vehicle 2F.
  • FIG. 22 is a diagram for explaining the correction of the traveling schedule in the link B of the target traveling vehicle 2A.
  • the target traveling vehicle 2A is configured to avoid interference between the target traveling vehicle 2A and the front traveling vehicle 2F.
  • a modified traveling schedule is created by modifying the static traveling schedule of. More specifically, the traveling speed of the target traveling vehicle 2A from node b to node c is reduced so that the target traveling vehicle 2A does not catch up with and interfere with the front traveling vehicle 2F.
  • the time interval between the time when the target traveling vehicle 2A passes through the node b and the time when the target traveling vehicle 2A reaches the node c in the static traveling schedule of the target traveling vehicle 2A corresponds to the static traveling cost of the link B.
  • the created corrected traveling schedule of the target traveling vehicle 2A is such that the target traveling vehicle 2A interferes with the rear traveling vehicle 2R.
  • FIG. 23 is a diagram for explaining correction of a traveling schedule in the link B of the rear traveling vehicle 2R.
  • a modified traveling schedule is generated by modifying the static traveling schedule of the rear traveling vehicle 2R so as to avoid the following. More specifically, the traveling speed of the rear traveling vehicle 2R from the node b to the node c is reduced so that the rear traveling vehicle 2R does not catch up with and interfere with the target traveling vehicle 2A.
  • the interval corresponds to the delay cost (more specifically, the second delay cost Ti2) of the link B in the situation of FIG.
  • the traveling vehicle control method is a method of selecting a traveling route from the current position of the target traveling vehicle 2A to the destination of the traveling request for the combination of the target traveling vehicle 2A and the traveling request.
  • a traveling vehicle control method using the above-described controller 3 will be described as an example.
  • FIG. 24 is a flowchart showing a traveling vehicle control method.
  • the flowchart of FIG. 24 is started, for example, when a traveling request is output from a host controller.
  • the controller 3 acquires a traveling request (acquisition step). More specifically, the acquisition unit 31 acquires the traveling request output from the upper controller.
  • the controller 3 determines, based on the relationship between the target traveling vehicle 2A and the non-target traveling vehicle 2B, the static traveling cost associated with each of the plurality of links connecting the plurality of nodes.
  • a delay cost indicating an increase in time required for at least one of the target traveling vehicle 2A and the non-target traveling vehicle 2B to pass through the link is calculated (calculation step).
  • the controller 3 calculates the total traveling cost for each link based on the static traveling cost and the delay cost, and calculates the total traveling cost from the current position of the target traveling vehicle 2A based on the calculated total traveling cost.
  • a traveling route is selected from a plurality of candidate routes to the destination (selection step).
  • the first delay cost Ti1 may include a first standby delay cost and a first transfer delay cost. Further, the above-described second delay cost Ti2 may include a second standby delay cost and a second transfer delay cost.
  • the first standby delay cost, the first transfer delay cost, the second standby delay cost, and the second transfer delay cost will be described.
  • the first waiting delay cost refers to a case where a front traveling vehicle 2F that is about to branch or join at a branching junction 9 located ahead of the target traveling vehicle 2A along the transport path 4 exists. This is the cost incurred when the target traveling vehicle 2A waits in front of the branch junction 9 until the vehicle 2A leaves the branch junction 9.
  • the first standby delay cost occurs because an exclusive control is executed to exclude a plurality of traveling vehicles 2 from entering the branching junction 9 at the same time.
  • the calculation unit 34 determines, based on the state information of the traveling vehicle 2, the target traveling vehicle 2 ⁇ / b> A and the forward traveling vehicle 2 ⁇ / b> F at the branching junction 9 located forward along the transport path 4 of the target traveling vehicle 2 ⁇ / b> A.
  • the first standby delay cost indicating the standby time of the target traveling vehicle 2A is calculated. More specifically, the calculation unit 34 determines whether or not the standby of the target traveling vehicle 2A is necessary based on the state information of each traveling vehicle 2 and, when determining that the standby of the target traveling vehicle 2A is necessary, The standby time of the target traveling vehicle 2A is calculated based on the state information of each traveling vehicle 2.
  • the first transfer delay cost is a cost incurred when the target traveling vehicle 2A waits short of the transfer position by the front traveling vehicle 2F due to the transfer of an article by the front traveling vehicle 2F.
  • the first transfer delay cost occurs because the target traveling vehicle 2A cannot pass the front traveling vehicle 2F that is stopped for the transportation in front of the transport path 4 on which the target traveling vehicle 2A is traveling. I do.
  • the calculation unit 34 causes the target traveling vehicle 2A to stand by just before the transfer position by the front traveling vehicle 2F due to the transfer of the articles by the front traveling vehicle 2F based on the state information and the transfer information of the traveling vehicle 2. In this case, the first transfer delay cost indicating the standby time of the target traveling vehicle 2A is calculated.
  • the calculation unit 34 determines whether the standby of the target traveling vehicle 2A is necessary based on the state information and the transfer information of each traveling vehicle 2 and determines that the standby of the target traveling vehicle 2A is necessary. In this case, the standby time of the target traveling vehicle 2A is calculated based on the state information and the transfer information of each traveling vehicle 2.
  • the second waiting delay cost means that when the target traveling vehicle 2A is about to branch or merge at the branching junction 9, the rear traveling vehicle 2R is connected to the branch junction 9 until the target traveling vehicle 2A leaves the branching junction 9. This is the cost incurred by waiting in front of the server.
  • the second standby delay cost is generated because exclusive control is executed to exclude a plurality of traveling vehicles 2 from entering the branching junction 9 at the same time.
  • the calculation unit 34 determines, based on the state information of the traveling vehicle 2, that the target traveling vehicle 2 ⁇ / b> A and the rear traveling vehicle 2 ⁇ / b> R at the branching junction 9 located forward along the transport path 4 of the target traveling vehicle 2 ⁇ / b> A.
  • the second standby delay cost indicating the standby time of the rear traveling vehicle 2R is calculated according to the relationship. More specifically, the calculation unit 34 determines whether or not the waiting of the rear traveling vehicle 2R is necessary based on the state information of each traveling vehicle 2 and, when determining that the standby of the rear traveling vehicle 2R is necessary, The standby time of the rear traveling vehicle 2R is calculated based on the state information of each traveling vehicle 2.
  • the second transfer delay cost is a cost incurred when the rear traveling vehicle 2R waits short of the transfer position of the target traveling vehicle 2A due to the transfer of an article by the target traveling vehicle 2A.
  • the second transfer delay cost occurs because the rear traveling vehicle 2R cannot overtake the target traveling vehicle 2A stopped for the transportation in front of the transport path 4 on which the rear traveling vehicle 2R is traveling. I do.
  • the calculation unit 34 causes the rear traveling vehicle 2R to stand by just before the transfer position by the target traveling vehicle 2A due to the transfer of articles by the target traveling vehicle 2A based on the state information and the transfer information of the traveling vehicle 2. In this case, the second transfer delay cost indicating the standby time of the rear traveling vehicle 2R is calculated.
  • the calculation unit 34 determines whether or not the rear traveling vehicle 2R needs to wait based on the state information and the transfer information of each traveling vehicle 2, and determines that the rear traveling vehicle 2R needs to wait. In this case, the standby time of the rear traveling vehicle 2R is calculated based on the state information and the transfer information of each traveling vehicle 2.
  • the controller 3 requests the target traveling vehicle 2A, which is one of the traveling vehicles 2 traveling along the transport path 4, to move to the preset destination.
  • the controller 3 selects a traveling route from the current position of the target traveling vehicle 2A to the destination with respect to a combination of the traveling request including the traveling request.
  • a plurality of nodes respectively indicating specific points included in the area where the car 2A can travel, a plurality of links connecting the nodes, and a time required for the traveling vehicle 2 to pass through the link, which is associated with each link.
  • a storage unit 32 for storing map information including a static traveling cost indicating the target traveling vehicle 2A and a non-target traveling vehicle 2B that is a traveling vehicle 2 other than the target traveling vehicle 2A.
  • a calculating unit that calculates a delay cost indicating an increase in a time required for at least one of the vehicle 2A and the non-target traveling vehicle 2B to pass through the link; and a total traveling cost based on the static traveling cost and the delay cost.
  • a selection unit 35 that calculates a traveling route from a plurality of candidate routes from the current position of the target traveling vehicle 2A to the destination based on the calculated total traveling cost and the calculated total traveling cost.
  • the controller 3 determines at least the target traveling vehicle 2A and the non-target traveling vehicle 2B based on the relationship between the target traveling vehicle 2A and the non-target traveling vehicle 2B as well as the unique static traveling cost associated with each link.
  • the total running cost is calculated for each link in consideration of the delay cost indicating the amount of time required for one to pass through the link.
  • a traveling route is selected from the plurality of candidate routes based on the calculated total traveling cost. Therefore, in consideration of the case where the traveling of the traveling vehicle 2 is hindered by the relationship between the traveling vehicles 2, the candidate route that allows the target traveling vehicle 2A to travel more efficiently to the destination of the traveling request is determined as the traveling route. Can be selected as Therefore, according to the controller 3, it is possible to more appropriately select the traveling route of the target traveling vehicle 2A.
  • the selection unit 35 calculates a total traveling cost, which is a sum of the static traveling cost and the delay cost, for each link, and calculates a total traveling cost of a link included in the candidate route among the plurality of candidate routes. Is selected as a traveling route that minimizes the sum of As a result, the controller 3 calculates the total traveling cost, which is the sum of the static traveling cost and the delay cost, so that the total traveling cost can be calculated by simple processing. The controller 3 selects a candidate route that minimizes the sum of the total travel costs of the links included in the candidate route among the plurality of candidate routes as the travel route. As a result, a candidate route that allows the target traveling vehicle 2A to travel particularly efficiently to the destination requested for traveling can be selected as a traveling route.
  • the delay cost is caused by the target traveling vehicle 2A passing through the link due to the influence of the front traveling vehicle 2F which is the non-target traveling vehicle 2B ahead of the target traveling vehicle 2A along the transport path 4.
  • a first delay cost Ti1 indicating the amount of increase in time is included. Accordingly, the controller 3 reflects the amount of time required for the target traveling vehicle 2A to pass through the link due to the influence of the preceding traveling vehicle 2F in the delay cost, so that the traveling vehicle 2 passes through the link. Can be estimated appropriately. Therefore, the traveling route of the target traveling vehicle 2A can be more appropriately selected.
  • the controller 3 includes a planning unit 33 that creates a traveling schedule for each of the plurality of traveling vehicles 2 at a future time at a position of the traveling vehicle 2.
  • a static traveling schedule which is a traveling schedule of the traveling vehicle 2 that does not consider the relationship with the target traveling vehicle 2B, is created, and the target traveling is performed based on the static traveling schedule of the target traveling vehicle 2A and the traveling schedule of the forward traveling vehicle 2F.
  • a corrected traveling schedule is created by modifying the static traveling schedule of the target traveling vehicle 2A so as to avoid interference between the vehicle 2A and the traveling vehicle 2F, and the calculation unit 34 calculates the static traveling schedule and the target traveling of the target traveling vehicle 2A.
  • the first delay cost Ti1 is calculated based on the corrected travel schedule of the vehicle 2A.
  • the controller 3 can more appropriately select the traveling route of the target traveling vehicle 2A in consideration of the influence of interference between the target traveling vehicle 2A and the front traveling vehicle 2F.
  • the controller 3 includes a communication unit 37 that receives state information on the current position and the traveling speed of the traveling vehicle 2 from the plurality of traveling vehicles 2 at a predetermined timing.
  • the node is located at a point where the transport path 4 branches or merges.
  • the calculation unit 34 includes, based on the state information of the traveling vehicle 2, the branching junction 9 located in front of the target traveling vehicle 2 ⁇ / b> A along the transport path 4 and the target traveling vehicle 2 ⁇ / b> A.
  • the target traveling vehicle 2 ⁇ / b> A is connected to the branch junction 9 in order to avoid interference with the forward traveling vehicle 2 ⁇ / b> F that is about to branch or join the transport path 4 on which the target traveling vehicle 2 ⁇ / b> A is traveling.
  • the traveling route of the target traveling vehicle 2A can be more appropriately selected.
  • the traveling vehicle 2 is an unmanned transport vehicle that transports and transfers articles, and from the plurality of traveling vehicles 2, state information on the current position and traveling speed of the traveling vehicle 2 and the traveling vehicle 2 2 includes a communication unit 37 that receives, at a predetermined timing, transfer information on a transfer position, a time, and a required time at which an article is transferred.
  • a first transfer delay indicating a standby time of the target traveling vehicle 2A when the target traveling vehicle 2A stands by before the transfer position by the front traveling vehicle 2F due to the transfer of an article by the front traveling vehicle 2F based on the information.
  • the cost is calculated, and the first delay cost Ti1 includes the first transfer delay cost.
  • the controller 3 performs control of the target traveling vehicle 2A.
  • the traveling route can be more appropriately selected.
  • the delay cost is due to the rear traveling vehicle 2R, which is a non-target traveling vehicle 2B behind the target traveling vehicle 2A along the transport path 4 due to the influence of the target traveling vehicle 2A, passing through the link.
  • a second delay cost Ti2 indicating the amount of increase in time is included. Accordingly, the controller 3 reflects the increase in the time required for the rear traveling vehicle 2R to pass through the link due to the influence of the target traveling vehicle 2A in the delay cost, so that the target traveling vehicle 2A can be used as another traveling vehicle. 2 can be considered. Therefore, the traveling route of the target traveling vehicle 2A can be more appropriately selected.
  • the controller 3 includes a planning unit 33 that creates a traveling schedule for each of the plurality of traveling vehicles 2 at a future time at a position of the traveling vehicle 2.
  • a static traveling schedule which is a traveling schedule of the traveling vehicle 2 that does not consider the relationship with the target traveling vehicle 2B, is created, and the target traveling is performed based on the traveling schedule of the target traveling vehicle 2A and the static traveling schedule of the rear traveling vehicle 2R.
  • a modified traveling schedule is created by modifying the static traveling schedule of the rear traveling vehicle 2R so as to avoid interference between the vehicle 2A and the rear traveling vehicle 2R.
  • the second delay cost Ti2 is calculated based on the corrected traveling schedule of the vehicle 2R.
  • the controller 3 can more appropriately select the traveling route of the target traveling vehicle 2A in consideration of the influence of interference between the target traveling vehicle 2A and the rear traveling vehicle 2R.
  • the controller 3 includes a communication unit 37 that receives state information on the current position and the traveling speed of the traveling vehicle 2 from the plurality of traveling vehicles 2 at a predetermined timing.
  • the node is located at a point where the transport path 4 branches or merges.
  • the calculation unit 34 includes, based on the state information of the traveling vehicle 2, the branching junction 9 located in front of the target traveling vehicle 2 ⁇ / b> A along the transport path 4 and the target traveling vehicle 2 ⁇ / b> A.
  • the rear traveling vehicle 2R is connected to the branch junction 9 in order to avoid interference with the rear traveling vehicle 2R that is about to branch or merge with the transport path 4 on which the target traveling vehicle 2A is traveling.
  • the traveling route of the target traveling vehicle 2A can be more appropriately selected.
  • the traveling vehicle 2 is an unmanned transport vehicle that transports and transfers articles, and from the plurality of traveling vehicles 2, state information on the current position and traveling speed of the traveling vehicle 2 and the traveling vehicle 2 2 includes a communication unit 37 that receives, at a predetermined timing, transfer information on a transfer position, a time, and a required time at which an article is transferred. Based on the information, when the rear traveling vehicle 2R waits in front of the transfer position of the target traveling vehicle 2A due to the transfer of the article by the target traveling vehicle 2A, a second transfer delay indicating the standby time of the rear traveling vehicle 2R. The cost is calculated, and the second delay cost Ti2 includes the second transfer delay cost. Accordingly, in the case where the controller 3 executes a control in which the rear traveling vehicle 2R waits in front of the transfer position in order to avoid interference with the target traveling vehicle 2A for transferring articles, the controller 3 The traveling route can be more appropriately selected.
  • the acquiring unit 31 acquires and accumulates a plurality of traveling requests
  • the selecting unit 35 computes each of the traveling vehicles 2 as the target traveling vehicle 2 ⁇ / b> A and the plurality of traveling requests accumulated by the acquiring unit 31.
  • a traveling route is selected for each of the traveling requests and the combination of the traveling requests, and one traveling vehicle 2 is corresponded to each of the plurality of traveling requests based on the total traveling cost corresponding to the traveling route selected for each combination.
  • a deriving unit 36 for deriving the attached pairing information is provided.
  • the controller 3 can more appropriately allocate the traveling request to the traveling vehicle 2 as compared with the case where the traveling vehicle 2 is assigned to the traveling request each time one traveling request is generated. Become.
  • the traveling vehicle system 1 includes the controller 3 described above, a transport path 4, and a plurality of traveling vehicles 2 that can travel along the transport path 4. Since the traveling vehicle system 1 includes the above-described controller 3, the traveling vehicle system 1 can more appropriately select the traveling route of the target traveling vehicle 2A for the above-described reason.
  • the above-described traveling vehicle control method includes the acquisition step, the calculation step, and the selection step, so that the same operation and effect as the above-described controller 3 can be achieved.
  • the travel request may be a request including a request for moving to a preset destination, and may not be a transport request for transporting articles.
  • the selection unit 35 does not need to calculate the total travel cost as the sum of the static travel cost and the delay cost.
  • the selection unit 35 may calculate the total traveling cost as the sum of the static traveling cost and the cost obtained by weighting the delay cost based on a preset reference.
  • the selecting unit 35 does not have to select a candidate route having the smallest total traveling cost among the plurality of candidate routes as the traveling route.
  • the delay cost does not have to include the first delay cost Ti1. Further, the delay cost may not include the second delay cost Ti2.
  • the calculating unit 34 does not necessarily need to calculate the delay cost based on the traveling schedule created by the planning unit 33.
  • the calculation unit 34 may statistically calculate the delay cost based on the past traveling history of the traveling vehicle 2. For example, for each link, the calculation unit 34 calculates the delay cost of the link based on the amount of time required for the traveling vehicle 2 to pass through the link in the past relative to the static travel cost. Is also good. More specifically, for each link, the average value of the amount of time required for the traveling vehicle 2 to pass through the link in the past to the static traveling cost may be set as the delay cost of the link. In this case, the controller 3 may not include the planning unit 33.
  • the first delay cost Ti1 may not include the first standby delay cost. Further, the first delay cost Ti1 may not include the first transfer delay cost.
  • the second delay cost Ti2 may not include the second standby delay cost. Further, the second delay cost T12 may not include the second transfer delay cost.
  • the controller 3 may acquire one traveling request by the acquiring unit 31 and select a traveling route for only the combination of one target traveling vehicle 2A and the traveling request by the selecting unit 35. In this case, the controller 3 need not derive pairing information in which one traveling vehicle 2 is associated with each of the plurality of traveling requests. That is, the controller 3 may not include the deriving unit 36.
  • the FOUP accommodating a plurality of semiconductor wafers is exemplified as the article (transported article) conveyed by the traveling vehicle 2, but the article is not limited to this, and for example, a glass wafer, a reticle It may be another container in which etc. are stored.
  • the traveling vehicle system 1 is not limited to a semiconductor manufacturing plant, and can be applied to other facilities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

In the present invention, for a combination of a target traveling vehicle, which is one of a plurality of traveling vehicles, and a travel request that includes a request for movement to a destination, a controller selects a traveling route for the target traveling vehicle. The controller is provided with: a storage unit for storing map information that includes a plurality of nodes, a plurality of links, and a static travel cost that is associated with each link and indicates the time it will take for a traveling vehicle to pass the link; a calculation unit that calculates a delay cost indicating an increase in the amount of time it will take for the target traveling vehicle and at least one of non-target traveling vehicles to pass the link depending on the relationships between the target traveling vehicle and the non-target traveling vehicles; and a selection unit that selects a travel route from a plurality of candidate routes on the basis of a total travel cost calculated on the basis of the static travel cost and the delay cost.

Description

走行車制御装置、走行車システム、及び走行車制御方法Traveling vehicle control device, traveling vehicle system, and traveling vehicle control method
 本開示は、走行車制御装置、走行車システム、及び走行車制御方法に関する。 The present disclosure relates to a traveling vehicle control device, a traveling vehicle system, and a traveling vehicle control method.
 従来、例えば半導体製造工場等において、半導体等の物品を搬送する走行車の走行を制御する無人走行車システムが知られている。このような無人走行車システムでは、新たな走行要求(一例として、搬送対象となる物品、荷掴み位置(From地点)、及び荷降ろし位置(To地点)の各々を示す情報を含む搬送要求)が発生する毎に、例えば以下のような最適台車優先制御が実行される。まず、荷掴み位置を含むモジュール(ベイ)内に存在する複数の空き走行車(物品搬送中ではない走行車)のうちから、最短経路又は最短時間で荷掴み位置に到達可能な走行車が特定される。そして、特定された走行車に上記搬送要求が割り付けられる。 2. Description of the Related Art Conventionally, an unmanned traveling vehicle system that controls traveling of a traveling vehicle that conveys articles such as semiconductors, for example, in a semiconductor manufacturing factory or the like is known. In such an unmanned traveling vehicle system, a new travel request (for example, a transport request including information indicating each of an article to be transported, a gripping position (From point), and an unloading position (To point)) is issued. Each time it occurs, for example, the following optimum bogie priority control is executed. First, from among a plurality of vacant traveling vehicles (traveling vehicles that are not carrying articles) existing in a module (bay) including a cargo grasping position, a traveling vehicle that can reach the cargo grasping position in the shortest path or the shortest time is specified. Is done. Then, the transfer request is assigned to the specified traveling vehicle.
 このような無人搬送車システムとして、例えば特許文献1には、走行車の現在位置から目的地までの複数の候補経路のうち、当該候補経路の距離及び制限速度等に基づいて効率的に走行可能と判定される候補経路が、当該走行車の走行経路として選定されるシステムが開示されている。また、例えば特許文献2には、各走行車について、予め選定された走行経路において走行車が加速又は減速する位置及び時刻を示す走行計画を作成し、当該走行計画に基づいて前後の走行車が干渉すると判定される場合に、後続の走行車の走行計画を修正するシステムが開示されている。 As such an automatic guided vehicle system, for example, Patent Literature 1 discloses that a plurality of candidate routes from the current position of a traveling vehicle to a destination can efficiently travel based on the distance and speed limit of the candidate route. A system is disclosed in which a candidate route determined to be is selected as a traveling route of the traveling vehicle. In addition, for example, in Patent Document 2, for each traveling vehicle, a traveling plan indicating a position and a time at which the traveling vehicle accelerates or decelerates in a traveling route selected in advance is created, and based on the traveling plan, traveling vehicles in front and behind are created. A system is disclosed that corrects a traveling plan of a subsequent traveling vehicle when it is determined that the traveling vehicle interferes.
特許第4915302号公報Japanese Patent No. 4915302 特許第5743169号公報Japanese Patent No. 5743169
 特許文献1に開示される無人搬送車システムでは、走行車同士の関係によって走行車の走行が互いに妨げられることを考慮しないで、複数の候補経路のうちから走行経路が選定される。しかし、実際には、走行車は例えば他の走行車との干渉を避けながら走行する必要があり、常に制限速度の上限の速度で走行できるとは限らない。このため、走行車同士の関係によっては、各走行車が効率的に走行することができない候補経路が走行経路として選定されてしまう場合がある。 In the automatic guided vehicle system disclosed in Patent Document 1, a traveling route is selected from a plurality of candidate routes without considering that traveling of the traveling vehicles is hindered by the relationship between the traveling vehicles. However, in practice, the traveling vehicle must travel while avoiding interference with other traveling vehicles, for example, and cannot always travel at the upper limit speed of the speed limit. For this reason, depending on the relationship between the traveling vehicles, a candidate route where each traveling vehicle cannot travel efficiently may be selected as the traveling route.
 また、特許文献2に開示される無人搬送車システムでは、走行車同士の関係を考慮しないで予め走行経路が選定されており、当該走行経路に応じた走行計画が事後的に修正される。したがって、走行経路を選定するに際し、事前に走行車同士の関係を考慮することで、より適切な走行経路を選定することが望まれる。 In addition, in the automatic guided vehicle system disclosed in Patent Document 2, a traveling route is selected in advance without considering a relationship between traveling vehicles, and a traveling plan according to the traveling route is corrected afterward. Therefore, it is desired to select a more appropriate traveling route by considering the relationship between traveling vehicles in advance when selecting the traveling route.
 そこで、本開示は、走行車の走行経路をより適切に選定することができる走行車制御装置、走行車システム、及び走行車制御方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a traveling vehicle control device, a traveling vehicle system, and a traveling vehicle control method that can more appropriately select the traveling route of the traveling vehicle.
 本開示の一態様に係る走行車制御装置は、搬送路に沿って走行する複数の走行車のうちの1つの走行車である対象走行車と、予め設定された目的地への移動の要求を含む走行要求と、の組合せについて、対象走行車の現在位置から目的地までの走行経路を選定する走行車制御装置であって、走行要求を取得する取得部と、搬送路において、対象走行車が走行可能なエリアに含まれる特定の地点をそれぞれ示す複数のノードと、ノード間を接続する複数のリンクと、リンク毎に関連付けられた、走行車がリンクを通過するのにかかる時間を示す静的走行コストと、を含むマップ情報を記憶する記憶部と、対象走行車と対象走行車以外の走行車である非対象走行車との関係による、当該対象走行車及び当該非対象走行車の少なくとも1つがリンクを通過するのにかかる時間の増加量を示す遅延コストを算出する算出部と、静的走行コストと遅延コストとに基づいて総走行コストをリンク毎に算出し、算出された総走行コストに基づいて、対象走行車の現在位置から目的地までの複数の候補経路から走行経路を選定する選定部と、を備える。 The traveling vehicle control device according to an aspect of the present disclosure transmits a target traveling vehicle that is one of a plurality of traveling vehicles traveling along a transport path and a request to move to a preset destination. A traveling vehicle control device that selects a traveling route from the current position of the target traveling vehicle to the destination for the combination of the traveling request including the traveling request, and an acquisition unit that acquires the traveling request, and the target traveling vehicle in the transport path. A plurality of nodes each indicating a specific point included in the travelable area, a plurality of links connecting the nodes, and a static associated with each link indicating a time required for the traveling vehicle to pass through the link. A storage unit that stores map information including a travel cost, and at least one of the target travel vehicle and the non-target travel vehicle based on a relationship between the target travel vehicle and a non-target travel vehicle that is a travel vehicle other than the target travel vehicle. Tsuga phosphorus A calculating unit that calculates a delay cost indicating an increase in time required to pass through, a total running cost is calculated for each link based on the static running cost and the delay cost, and the calculated total running cost is calculated based on the calculated total running cost. A selection unit that selects a traveling route from a plurality of candidate routes from the current position of the target traveling vehicle to the destination.
 本開示の一態様に係る走行車制御方法は、搬送路に沿って走行する複数の走行車のうちの1つの走行車である対象走行車と、予め設定された目的地への移動の要求を含む走行要求と、の組合せについて、対象走行車の現在位置から目的地までの走行経路を選定する走行車制御方法であって、走行要求を取得する取得ステップと、搬送路において、対象走行車が走行可能なエリアに含まれる特定の地点をそれぞれ示す複数のノード間を接続する複数のリンク毎に関連付けられた、走行車がリンクを通過するのにかかる時間を示す静的走行コストに対して、対象走行車と対象走行車以外の走行車である非対象走行車との関係による、対象走行車及び非対象走行車の少なくとも1つがリンクを通過するのにかかる時間の増加量を示す遅延コストを算出する算出ステップと、静的走行コストと遅延コストとに基づいて総走行コストをリンク毎に算出し、算出された総走行コストに基づいて、対象走行車の現在位置から目的地までの複数の候補経路から走行経路を選定する選定ステップと、を含む。 The traveling vehicle control method according to an aspect of the present disclosure includes a target traveling vehicle that is one of a plurality of traveling vehicles traveling along a transport path and a request to move to a preset destination. A traveling vehicle control method for selecting a traveling route from the current position of the target traveling vehicle to the destination, for a combination of the traveling request including the traveling request, and an acquisition step of acquiring the traveling request, wherein the target traveling vehicle is located on a transport path. For a static traveling cost indicating a time required for a traveling vehicle to pass through the link, associated with each of a plurality of links connecting between a plurality of nodes each indicating a specific point included in the travelable area, The delay cost indicating the amount of increase in the time required for at least one of the target traveling vehicle and the non-target traveling vehicle to pass through the link according to the relationship between the target traveling vehicle and the non-target traveling vehicle that is a traveling vehicle other than the target traveling vehicle. Calculating the total traveling cost for each link based on the static traveling cost and the delay cost, and calculating a plurality of total traveling costs from the current position of the target traveling vehicle to the destination based on the calculated total traveling cost. Selecting a traveling route from the candidate routes.
 この走行車制御装置又は走行車制御方法では、リンク毎に関連付けられた固有の静的走行コストだけでなく、対象走行車と非対象走行車との関係による、当該対象走行車及び当該非対象走行車の少なくとも1つがリンクを通過するのにかかる時間の増加量を示す遅延コストを考慮して、リンク毎に総走行コストが算出される。そして、算出された総走行コストに基づいて、複数の候補経路から走行経路が選定される。このため、走行車同士の関係により当該走行車の走行が妨げられる場合を考慮して、対象走行車が走行要求の目的地までより効率的に走行することができる候補経路を走行経路として選定することができる。よって、この走行車制御装置又は走行車制御方法によれば、対象走行車の走行経路をより適切に選定することが可能になる。 In this traveling vehicle control device or traveling vehicle control method, the target traveling vehicle and the non-target traveling are determined based on not only the unique static traveling cost associated with each link but also the relationship between the target traveling vehicle and the non-target traveling vehicle. The total travel cost is calculated for each link in consideration of a delay cost indicating an increase in time required for at least one of the vehicles to pass through the link. Then, a traveling route is selected from the plurality of candidate routes based on the calculated total traveling cost. Therefore, in consideration of the case where the traveling of the traveling vehicle is hindered by the relationship between traveling vehicles, a candidate route that allows the target traveling vehicle to travel more efficiently to the destination of the traveling request is selected as the traveling route. be able to. Therefore, according to the traveling vehicle control device or the traveling vehicle control method, it is possible to more appropriately select the traveling route of the target traveling vehicle.
 本開示の一態様に係る走行車制御装置では、選定部は、静的走行コストと遅延コストとの総和である総走行コストをリンク毎に算出し、複数の候補経路のうち当該候補経路に含まれるリンクの総走行コストの総和が最小となる候補経路を走行経路として選定してもよい。これにより、この走行車制御装置では、静的走行コストと遅延コストとの総和である総走行コストが算出されるため、総走行コストを簡便な処理で算出することができる。また、この走行車制御装置では、複数の候補経路のうち当該候補経路に含まれるリンクの総走行コストの総和が最小となる候補経路が走行経路として選定される。これにより、対象走行車が走行要求の目的地まで特に効率的に走行することができる候補経路を走行経路として選定することができる。 In the traveling vehicle control device according to an aspect of the present disclosure, the selecting unit calculates, for each link, a total traveling cost that is a sum of the static traveling cost and the delay cost, and includes the total traveling cost in the candidate route among the plurality of candidate routes. The candidate route that minimizes the total sum of the running costs of the links to be linked may be selected as the running route. Thus, in this traveling vehicle control device, the total traveling cost, which is the sum of the static traveling cost and the delay cost, is calculated, so that the total traveling cost can be calculated by simple processing. In this traveling vehicle control device, a candidate route that minimizes the sum of the total traveling costs of the links included in the candidate route is selected as the traveling route. As a result, a candidate route that allows the target traveling vehicle to travel particularly efficiently to the destination of the traveling request can be selected as a traveling route.
 本開示の一態様に係る走行車制御装置では、遅延コストは、対象走行車の搬送路に沿った前方の非対象走行車である前方走行車の影響による、対象走行車がリンクを通過するのにかかる時間の増加量を示す第1遅延コストを含んでもよい。これにより、この走行車制御装置では、前方走行車の影響により対象走行車がリンクを通過するのにかかる時間が増加する量を遅延コストに反映させることで、走行車が当該リンクを通過するのにかかる時間を適切に見積もることが可能となる。よって、対象走行車の走行経路をより適切に選定することができる。 In the traveling vehicle control device according to an aspect of the present disclosure, the delay cost is such that the target traveling vehicle passes through the link due to the influence of the front traveling vehicle, which is a non-target traveling vehicle ahead along the transport path of the target traveling vehicle. May include a first delay cost indicating the amount of increase in the time required for. Accordingly, in this traveling vehicle control device, the amount of time required for the target traveling vehicle to pass through the link due to the influence of the preceding traveling vehicle is reflected in the delay cost, so that the traveling vehicle passes through the link. Can be estimated appropriately. Therefore, the traveling route of the target traveling vehicle can be more appropriately selected.
 本開示の一態様に係る走行車制御装置は、複数の走行車のそれぞれについて、将来の各時刻での当該走行車の位置に関する走行スケジュールを作成する計画部を備え、計画部は、対象走行車と非対象走行車との関係を考慮しない走行車の走行スケジュールである静的走行スケジュールを作成し、対象走行車の静的走行スケジュールと前方走行車の走行スケジュールとに基づいて、対象走行車と前方走行車との干渉を避けるように対象走行車の静的走行スケジュールを修正した修正走行スケジュールを作成し、算出部は、対象走行車の静的走行スケジュールと対象走行車の修正走行スケジュールとに基づいて第1遅延コストを算出してもよい。これにより、この走行車制御装置では、対象走行車と前方走行車との干渉の影響を考慮して、対象走行車の走行経路をより適切に選定することができる。 The traveling vehicle control device according to an aspect of the present disclosure includes a planning unit that creates a traveling schedule related to a position of the traveling vehicle at each future time for each of the plurality of traveling vehicles, and the planning unit includes a target traveling vehicle. Create a static traveling schedule that is a traveling schedule of the traveling vehicle that does not consider the relationship between the target traveling vehicle and the non-target traveling vehicle, and based on the static traveling schedule of the target traveling vehicle and the traveling schedule of the traveling vehicle ahead, A modified traveling schedule is created by modifying the static traveling schedule of the target traveling vehicle so as to avoid interference with the preceding traveling vehicle, and the calculation unit calculates the modified traveling schedule of the target traveling vehicle and the modified traveling schedule of the target traveling vehicle. The first delay cost may be calculated based on the first delay cost. Thus, the traveling vehicle control device can more appropriately select the traveling route of the target traveling vehicle in consideration of the influence of the interference between the target traveling vehicle and the preceding traveling vehicle.
 本開示の一態様に係る走行車制御装置は、複数の走行車から当該走行車の現在位置及び走行速度に関する状態情報を所定のタイミングで受信する通信部を備え、ノードは、搬送路が分岐又は合流する地点である分岐合流部を含み、算出部は、走行車の状態情報に基づいて、対象走行車の搬送路に沿った前方に位置する分岐合流部において、対象走行車と前方走行車との関係により対象走行車が分岐合流部の手前で待機する場合に、対象走行車の待機時間を示す第1待機遅延コストを算出し、第1遅延コストは、第1待機遅延コストを含んでもよい。これにより、この走行車制御装置では、対象走行車が走行している搬送路に対して分岐又は合流しようとする前方走行車との干渉を避けるために対象走行車が分岐合流部の手前で待機する制御を実行する場合において、対象走行車の走行経路をより適切に選定することができる。 A traveling vehicle control device according to an aspect of the present disclosure includes a communication unit that receives, at a predetermined timing, state information related to a current position and a traveling speed of the traveling vehicle from a plurality of traveling vehicles, and the node is configured such that a transport path branches or Including a branch junction that is a merging point, the calculation unit, based on the state information of the traveling vehicle, at the branch junction located forward along the transport path of the target traveling vehicle, the target traveling vehicle and the forward traveling vehicle When the target traveling vehicle waits in front of the branching junction according to the relationship, the first standby delay cost indicating the standby time of the target traveling vehicle is calculated, and the first delay cost may include the first standby delay cost. . Thus, in this traveling vehicle control device, the target traveling vehicle waits in front of the branching junction in order to avoid interference with a forward traveling vehicle that is about to branch or merge with the transport path on which the target traveling vehicle is traveling. In the case where such control is performed, it is possible to more appropriately select the traveling route of the target traveling vehicle.
 本開示の一態様に係る走行車制御装置では、走行車は、物品の搬送及び移載を行う無人搬送車であり、複数の走行車から、当該走行車の現在位置及び走行速度に関する状態情報と、当該走行車が物品の移載を行う移載位置、時刻、及び所要時間に関する移載情報と、を所定のタイミングで受信する通信部を備え、算出部は、走行車の状態情報及び移載情報に基づいて、前方走行車による物品の移載により対象走行車が前方走行車による移載位置の手前で待機する場合に、対象走行車の待機時間を示す第1移載遅延コストを算出し、第1遅延コストは、第1移載遅延コストを含んでもよい。これにより、この走行車制御装置では、物品の移載を行う前方走行車との干渉を避けるために対象走行車が移載位置の手前で待機する制御を実行する場合において、対象走行車の走行経路をより適切に選定することができる。 In the traveling vehicle control device according to an aspect of the present disclosure, the traveling vehicle is an unmanned guided vehicle that transports and transfers articles, and from a plurality of traveling vehicles, state information related to the current position and traveling speed of the traveling vehicle. And a transfer unit for receiving, at a predetermined timing, transfer information on a transfer position, time, and required time at which the traveling vehicle transfers an article, and the calculation unit includes state information and the transfer of the traveling vehicle. Based on the information, the first transfer delay cost indicating the standby time of the target traveling vehicle is calculated when the target traveling vehicle stands by before the transfer position of the preceding traveling vehicle due to the transfer of the article by the preceding traveling vehicle. , The first delay cost may include a first transfer delay cost. Accordingly, in the traveling vehicle control device, when the control is performed such that the target traveling vehicle waits in front of the transfer position in order to avoid interference with the preceding traveling vehicle that transfers the articles, the traveling of the target traveling vehicle is performed. The route can be more appropriately selected.
 本開示の一態様に係る走行車制御装置では、遅延コストは、対象走行車の影響による、対象走行車の搬送路に沿った後方の非対象走行車である後方走行車がリンクを通過するのにかかる時間の増加量を示す第2遅延コストを含んでもよい。これにより、この走行車制御装置では、対象走行車の影響により後方走行車がリンクを通過するのにかかる時間が増加する量を遅延コストに反映させることで、対象走行車が他の走行車の走行に与える影響を考慮することができる。よって、対象走行車の走行経路をより適切に選定することができる。 In the traveling vehicle control device according to an aspect of the present disclosure, the delay cost is such that the rear traveling vehicle that is a non-target traveling vehicle behind the target traveling vehicle along the transport path of the target traveling vehicle passes through the link due to the influence of the target traveling vehicle. May include a second delay cost indicating the amount of increase in the time required for. Thus, in the traveling vehicle control device, the amount of time required for the following vehicle to pass through the link due to the influence of the target traveling vehicle is reflected in the delay cost, so that the target traveling vehicle can control other traveling vehicles. The influence on running can be considered. Therefore, the traveling route of the target traveling vehicle can be more appropriately selected.
 本開示の一態様に係る走行車制御装置は、複数の走行車のそれぞれについて、将来の各時刻での当該走行車の位置に関する走行スケジュールを作成する計画部を備え、計画部は、対象走行車と非対象走行車との関係を考慮しない走行車の走行スケジュールである静的走行スケジュールを作成し、対象走行車の走行スケジュールと後方走行車の静的走行スケジュールとに基づいて、対象走行車と後方走行車との干渉を避けるように後方走行車の静的走行スケジュールを修正した修正走行スケジュールを作成し、算出部は、後方走行車の静的走行スケジュールと後方走行車の修正走行スケジュールとに基づいて第2遅延コストを算出してもよい。これにより、この走行車制御装置では、対象走行車と後方走行車との干渉の影響を考慮して、対象走行車の走行経路をより適切に選定することができる。 The traveling vehicle control device according to an aspect of the present disclosure includes a planning unit that creates a traveling schedule related to a position of the traveling vehicle at each future time for each of the plurality of traveling vehicles, and the planning unit includes a target traveling vehicle. Create a static traveling schedule that is a traveling schedule of the traveling vehicle that does not consider the relationship between the target traveling vehicle and the non-target traveling vehicle. A modified traveling schedule is created by modifying the static traveling schedule of the rearward traveling vehicle so as to avoid interference with the rearward traveling vehicle, and the calculation unit calculates the modified traveling schedule of the rearward traveling vehicle and the static traveling schedule of the rearward traveling vehicle. The second delay cost may be calculated based on the second delay cost. Thus, the traveling vehicle control device can more appropriately select the traveling route of the target traveling vehicle in consideration of the influence of interference between the target traveling vehicle and the rear traveling vehicle.
 本開示の一態様に係る走行車制御装置は、複数の走行車から当該走行車の現在位置及び走行速度に関する状態情報を所定のタイミングで受信する通信部を備え、ノードは、搬送路が分岐又は合流する地点である分岐合流部を含み、算出部は、走行車の状態情報に基づいて、対象走行車の搬送路に沿った前方に位置する分岐合流部において、対象走行車と後方走行車との関係により後方走行車が分岐合流部の手前で待機する場合に、後方走行車の待機時間を示す第2待機遅延コストを算出し、第2遅延コストは、第2待機遅延コストを含んでもよい。これにより、この走行車制御装置では、対象走行車が走行している搬送路に対して分岐又は合流しようとする後方走行車との干渉を避けるために後方走行車が分岐合流部の手前で待機する制御を実行する場合において、対象走行車の走行経路をより適切に選定することができる。 A traveling vehicle control device according to an aspect of the present disclosure includes a communication unit that receives, at a predetermined timing, state information related to a current position and a traveling speed of the traveling vehicle from a plurality of traveling vehicles, and the node is configured such that a transport path branches or Including a branch junction, which is a merging point, the calculation unit, based on the state information of the traveling vehicle, at the branch junction located forward along the transport path of the target traveling vehicle, the target traveling vehicle and the rear traveling vehicle When the rear traveling vehicle stands by before the branch junction according to the relationship, the second standby delay cost indicating the standby time of the rear traveling vehicle is calculated, and the second delay cost may include the second standby delay cost. . Thus, in the traveling vehicle control device, the rear traveling vehicle waits in front of the branch junction in order to avoid interference with the rear traveling vehicle that is about to branch or merge with the transport path on which the target traveling vehicle is traveling. In the case where such control is performed, it is possible to more appropriately select the traveling route of the target traveling vehicle.
 本開示の一態様に係る走行車制御装置では、走行車は、物品の搬送及び移載を行う無人搬送車であり、複数の走行車から、当該走行車の現在位置及び走行速度に関する状態情報と、当該走行車が物品の移載を行う移載位置、時刻、及び所要時間に関する移載情報と、を所定のタイミングで受信する通信部を備え、算出部は、走行車の状態情報及び移載情報に基づいて、対象走行車による物品の移載により後方走行車が対象走行車による移載位置の手前で待機する場合に、後方走行車の待機時間を示す第2移載遅延コストを算出し、第2遅延コストは、第2移載遅延コストを含んでもよい。これにより、この走行車制御装置では、物品の移載を行う対象走行車との干渉を避けるために後方走行車が移載位置の手前で待機する制御を実行する場合において、対象走行車の走行経路をより適切に選定することができる。 In the traveling vehicle control device according to an aspect of the present disclosure, the traveling vehicle is an unmanned guided vehicle that transports and transfers articles, and from a plurality of traveling vehicles, state information related to the current position and traveling speed of the traveling vehicle. And a transfer unit for receiving, at a predetermined timing, transfer information on a transfer position, time, and required time at which the traveling vehicle transfers an article, and the calculation unit includes state information and the transfer of the traveling vehicle. Based on the information, when the rear traveling vehicle stands by before the transfer position of the target traveling vehicle due to the transfer of the article by the target traveling vehicle, a second transfer delay cost indicating a standby time of the rear traveling vehicle is calculated. , The second delay cost may include a second transfer delay cost. Accordingly, in the traveling vehicle control device, when performing control of waiting for the rear traveling vehicle to be in front of the transfer position in order to avoid interference with the target traveling vehicle for transferring articles, the traveling of the target traveling vehicle is performed. The route can be more appropriately selected.
 本開示の一態様に係る走行車制御装置では、取得部は、複数の走行要求を取得して蓄積し、選定部は、対象走行車としての複数の走行車のそれぞれと、取得部により蓄積された複数の走行要求のそれぞれと、の組合せ毎に走行経路を選定し、組合せ毎に選定された走行経路にそれぞれ対応する総走行コストに基づいて、複数の走行要求のそれぞれに1つの走行車を対応付けたペアリング情報を導出する導出部を備えてもよい。これにより、この走行車制御装置では、複数の走行要求が一旦蓄積された後に、当該複数の走行要求のそれぞれに対して走行車を1対1に対応付けたペアリング情報が導出される。このため、単一の走行要求だけでなく複数の走行要求間の相互の影響を考慮して、複数の走行要求のそれぞれに対する走行車の対応付け(割り付け)を行うことが可能となる。したがって、この走行車制御装置では、1つの走行要求が発生する毎に当該走行要求に対する走行車の割り付けを行う場合と比較して、走行車に対して走行要求をより適切に割り付けることが可能となる。 In the traveling vehicle control device according to an aspect of the present disclosure, the acquisition unit acquires and accumulates a plurality of traveling requests, and the selection unit accumulates each of the plurality of traveling vehicles as target traveling vehicles and the acquisition unit. And selecting a traveling route for each of the plurality of traveling requests and, based on the total traveling cost corresponding to each of the traveling routes selected for each combination, assigning one traveling vehicle to each of the plurality of traveling requests. A deriving unit that derives the associated pairing information may be provided. Thus, in the traveling vehicle control device, after a plurality of traveling requests are temporarily stored, pairing information in which traveling vehicles are associated one-to-one with each of the plurality of traveling requests is derived. Therefore, it is possible to associate (assign) a traveling vehicle to each of a plurality of traveling requests in consideration of not only a single traveling request but also a mutual influence between a plurality of traveling requests. Therefore, with this traveling vehicle control device, it is possible to more appropriately allocate the traveling request to the traveling vehicle as compared with the case where the traveling vehicle is allocated to the traveling request each time one traveling request is generated. Become.
 本開示の一態様に係る走行車システムは、上述した走行車制御装置と、搬送路と、搬送路に沿って走行可能な複数の走行車と、を含む。この走行車システムは上述した走行車制御装置を含んでいるため、この走行車システムでは、上述した理由により、対象走行車の走行経路をより適切に選定することが可能となる。 走 行 A traveling vehicle system according to an aspect of the present disclosure includes the traveling vehicle control device described above, a transport path, and a plurality of traveling vehicles that can travel along the transport path. Since the traveling vehicle system includes the traveling vehicle control device described above, the traveling vehicle system can more appropriately select the traveling route of the target traveling vehicle for the above-described reason.
 本開示の種々の態様によれば、走行車の走行経路をより適切に選定することが可能となる。 According to various aspects of the present disclosure, it is possible to more appropriately select a traveling route of a traveling vehicle.
図1は、本実施形態に係る走行車システムのレイアウト例を示す図である。FIG. 1 is a diagram illustrating a layout example of the traveling vehicle system according to the present embodiment. 図2は、コントローラのハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of a hardware configuration of the controller. 図3は、コントローラの機能構成を示すブロック図である。FIG. 3 is a block diagram illustrating a functional configuration of the controller. 図4は、選定部の処理の一例を説明するための図である。FIG. 4 is a diagram illustrating an example of a process performed by the selection unit. 図5は、選定部の処理の一例を説明するための図である。FIG. 5 is a diagram illustrating an example of a process performed by the selection unit. 図6は、選定部の処理結果の一例を示す図である。FIG. 6 is a diagram illustrating an example of a processing result of the selection unit. 図7は、図6の処理結果について導出されるペアリング情報を示す図である。FIG. 7 is a diagram showing the pairing information derived for the processing result of FIG. 図8は、導出部の処理の一例を説明するための図である。FIG. 8 is a diagram illustrating an example of a process of the derivation unit. 図9は、導出部の処理の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of a process of the derivation unit. 図10は、導出部の処理の一例を説明するための図である。FIG. 10 is a diagram for explaining an example of the processing of the derivation unit. 図11は、導出部の処理の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of the processing of the derivation unit. 図12は、導出部の処理の一例を説明するための図である。FIG. 12 is a diagram for explaining an example of the processing of the derivation unit. 図13は、導出部の処理の一例を説明するための図である。FIG. 13 is a diagram illustrating an example of a process of the deriving unit. 図14は、導出部の処理の一例を説明するための図である。FIG. 14 is a diagram illustrating an example of a process of the deriving unit. 図15は、導出部の処理の一例を説明するための図である。FIG. 15 is a diagram illustrating an example of a process of the deriving unit. 図16は、計画部により作成される走行スケジュールについて説明するための図である。FIG. 16 is a diagram for describing a traveling schedule created by the planning unit. 図17は、計画部により作成される走行スケジュールについて説明するための図である。FIG. 17 is a diagram for describing a travel schedule created by the planning unit. 図18は、計画部により作成される走行スケジュールについて説明するための図である。FIG. 18 is a diagram for describing a traveling schedule created by the planning unit. 図19は、計画部により作成される走行スケジュールについて説明するための図である。FIG. 19 is a diagram for describing a traveling schedule created by the planning unit. 図20は、計画部により作成される走行スケジュールについて説明するための図である。FIG. 20 is a diagram for describing a travel schedule created by the planning unit. 図21は、計画部により作成される走行スケジュールについて説明するための図である。FIG. 21 is a diagram for describing a travel schedule created by the planning unit. 図22は、計画部により作成される走行スケジュールについて説明するための図である。FIG. 22 is a diagram for describing a travel schedule created by the planning unit. 図23は、計画部により作成される走行スケジュールについて説明するための図である。FIG. 23 is a diagram for describing a travel schedule created by the planning unit. 図24は、走行車制御方法を示すフローチャートである。FIG. 24 is a flowchart illustrating the traveling vehicle control method.
 以下、図面を参照して、例示的な実施形態について説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, exemplary embodiments will be described with reference to the drawings. In the drawings, the same or corresponding portions are denoted by the same reference characters, and redundant description will be omitted.
 図1は、本実施形態に係る走行車システム1のレイアウト例を示す図である。図2は、コントローラ3のハードウェア構成の一例を示すブロック図である。図3は、コントローラ3の機能構成を示すブロック図である。図1~図3に示されるように、本実施形態に係る走行車システム1は、搬送路4と、搬送路4に沿って走行可能な複数の走行車2と、各走行車2の動作を制御するコントローラ(走行車制御装置)3と、を含む。 FIG. 1 is a diagram showing a layout example of the traveling vehicle system 1 according to the present embodiment. FIG. 2 is a block diagram illustrating an example of a hardware configuration of the controller 3. FIG. 3 is a block diagram illustrating a functional configuration of the controller 3. As shown in FIGS. 1 to 3, the traveling vehicle system 1 according to the present embodiment includes a transport path 4, a plurality of traveling vehicles 2 that can travel along the transport path 4, and an operation of each traveling vehicle 2. A controller (traveling vehicle control device) 3 for controlling the vehicle.
 走行車2は、無人走行車であり、例えば天井走行車、有軌道台車等である。本実施形態では、走行車2は、例えば工場内に敷設された搬送路4に沿って走行可能に設けられ、物品の搬送及び移載を行う無人搬送車である。図1に示されるように、本実施形態では一例として、走行車2は、工場内の天井付近に敷設されたレール(軌道)等の搬送路4に沿って走行可能に設けられた天井搬送車である。例えば、走行車2は、天井走行式無人搬送車(OHT:Overhead Hoist Transfer)である。一例として、走行車2によって搬送される物品は、複数枚の半導体ウェハが収容されるカセット(いわゆるFOUP(Front Opening Unified Pod))である。走行車2は、状態情報と移載情報とを所定のタイミングでコントローラ3に送信する。状態情報とは、当該走行車2の現在位置及び走行速度に関する情報である。移載情報とは、当該走行車が物品の移載を行う移載位置、時刻、及び所要時間に関する情報である。 The traveling vehicle 2 is an unmanned traveling vehicle, for example, an overhead traveling vehicle, a tracked truck, or the like. In the present embodiment, the traveling vehicle 2 is, for example, an unmanned transport vehicle that is provided so as to be able to travel along a transport path 4 laid in a factory and that transports and transfers articles. As shown in FIG. 1, in the present embodiment, as an example, a traveling vehicle 2 is a ceiling transportation vehicle provided to be able to travel along a transportation path 4 such as a rail (track) laid near a ceiling in a factory. It is. For example, the traveling vehicle 2 is an overhead traveling type automatic guided vehicle (OHT: Overhead / Hoist / Transfer). As an example, the article transported by the traveling vehicle 2 is a cassette (a so-called FOUP (Front Opening Unified Unified Pod)) in which a plurality of semiconductor wafers are stored. The traveling vehicle 2 transmits the state information and the transfer information to the controller 3 at a predetermined timing. The state information is information on the current position and the traveling speed of the traveling vehicle 2. The transfer information is information on a transfer position, time, and required time at which the traveling vehicle transfers an article.
 搬送路4は、複数(図1の例では12個)の区画(ベイ)に分けられている。搬送路4は、ベイ内のルートであるイントラベイルート5と、異なるベイ間を接続するルートであるインターベイルート6と、を含む。搬送路4に沿って、ロードポート7及びバッファ8が設けられている。ロードポート7は、図示しない半導体処理装置と走行車2との間でFOUPの受け渡しをする地点である。バッファ8は、走行車2がFOUPを仮置きできる地点である。分岐合流部9は、搬送路4が分岐又は合流する地点である。分岐合流部9では、搬送路4上において、複数の走行車2が同時に進入することを排除する排他制御が必要となる。 The transport path 4 is divided into a plurality (twelve in the example of FIG. 1) of sections (bays). The transport path 4 includes an intrabay route 5 which is a route in a bay, and an interbay route 6 which is a route connecting different bays. A load port 7 and a buffer 8 are provided along the transport path 4. The load port 7 is a point where the FOUP is transferred between the semiconductor processing device (not shown) and the traveling vehicle 2. The buffer 8 is a point where the traveling vehicle 2 can temporarily place the FOUP. The branching junction 9 is a point where the transport path 4 branches or merges. In the branching junction 9, exclusive control is required to exclude a plurality of traveling vehicles 2 from entering at the same time on the transport path 4.
 コントローラ3は、各走行車2に対して例えば無線通信によって搬送命令を出力することにより、各走行車2の搬送動作を制御する。ここで、搬送動作は、FOUPの搬送及び移載のために行われる一連の動作であり、例えば、ロードポート7及びバッファ8等においてFOUPを掴む動作(荷掴み動作)及びFOUPを降ろす動作(荷降ろし動作)、並びに搬送路4を走行する走行動作等を含む。コントローラ3は、例えば図示しないMES(Manufacturing Execution System)及びMCS(Material Control System)等の上位コントローラから、FOUPの搬送に関する搬送要求(搬送指令)を受け付けて、走行車2に割り付ける。すなわち、コントローラ3は、上位コントローラから搬送要求を受け付けると、当該搬送要求を実行する走行車2を決定し、決定された走行車2に対して当該搬送要求を実行するように命令する。ここで、搬送要求は、搬送対象となる物品、荷掴み位置(From地点)、及び荷降ろし位置(To地点)等を特定するための情報を含んでいる。すなわち、搬送要求は、目的地としての荷掴み位置(From地点)に配置されたFOUP(物品)を荷掴みして所定の荷降ろし位置(To地点)で荷降ろしすることを要求する指令である。 The controller 3 controls the transport operation of each traveling vehicle 2 by outputting a transportation command to each traveling vehicle 2 by, for example, wireless communication. Here, the transport operation is a series of operations performed for transporting and transferring the FOUP. For example, an operation of gripping the FOUP at the load port 7 and the buffer 8 (load gripping operation) and an operation of unloading the FOUP (loading operation) Unloading operation), and a traveling operation of traveling on the transport path 4 and the like. The controller 3 receives a transport request (transport command) related to the transport of the FOUP from an upper controller such as a MES (Manufacturing Execution System) and an MCS (Material Control System) (not shown), and allocates it to the traveling vehicle 2. That is, when receiving the transfer request from the upper controller, the controller 3 determines the traveling vehicle 2 that executes the transfer request, and instructs the determined traveling vehicle 2 to execute the transfer request. Here, the transport request includes information for specifying an article to be transported, a cargo gripping position (From point), an unloading position (To point), and the like. That is, the transport request is a command requesting that a FOUP (article) arranged at a cargo gripping position (From point) as a destination be gripped and unloaded at a predetermined unloading position (To point). .
 コントローラ3は、図1に示される制御対象エリア(複数のベイを含むエリア)に存在する走行車2を直接的に制御してもよいし、コントローラ3よりも下位のコントローラを介して走行車2を間接的に制御してもよい。例えば、制御対象エリアが複数のゾーン(例えばベイ単位)に分割され、ゾーン内の走行車2を制御するためのゾーンコントローラ(ベイコントローラ)が、ゾーン毎に設けられてもよい。この場合、コントローラ3は、各ゾーンコントローラに対して制御信号を送信し、各ゾーンコントローラが、各ゾーン内の走行車2に対して制御信号を送信してもよい。すなわち、各ゾーン内の走行車2は、各ゾーンのゾーンコントローラを介して、コントローラ3によって間接的に制御されてもよい。 The controller 3 may directly control the traveling vehicle 2 existing in the control target area (area including a plurality of bays) illustrated in FIG. 1 or may travel the traveling vehicle 2 via a controller lower than the controller 3. May be controlled indirectly. For example, the control target area may be divided into a plurality of zones (for example, bay units), and a zone controller (bay controller) for controlling the traveling vehicle 2 in the zone may be provided for each zone. In this case, the controller 3 may transmit a control signal to each zone controller, and each zone controller may transmit a control signal to the traveling vehicle 2 in each zone. That is, the traveling vehicle 2 in each zone may be indirectly controlled by the controller 3 via the zone controller of each zone.
 図2に示されるように、コントローラ3は、一以上のCPU(Central Processing Unit)等のプロセッサ301と、主記憶装置である一以上のRAM(Random Access Memory)302及び一以上のROM(Read Only Memory)303と、オペレータが操作入力を行うためのキーボード等の入力装置304と、オペレータに情報を提示するディスプレイ等の出力装置305と、上位コントローラ及び走行車2等との間で有線通信又は無線通信を行うための通信モジュール306と、HDD及びSSD等の補助記憶装置307と、を含むコンピュータシステムとして構成され得る。コントローラ3は、1台のサーバ装置として構成されてもよいし、互いに協調して動作する複数のサーバ装置として構成されてもよい。後述するコントローラ3の各機能は、例えば、RAM302等のメモリ上に所定のプログラムを読み込ませ、プロセッサ301の制御のもとで入力装置304及び出力装置305を動作させると共に通信モジュール306を動作させ、RAM302及び補助記憶装置307におけるデータの読み出し及び書き込みを行うことで実現される。 As shown in FIG. 2, the controller 3 includes a processor 301 such as one or more CPUs (Central Processing Unit), one or more RAMs (Random Access Memory) 302 as a main storage device, and one or more ROMs (Read Only). Memory) 303, an input device 304 such as a keyboard for the operator to perform operation input, an output device 305 such as a display for presenting information to the operator, and wired communication or wireless communication between the host controller and the traveling vehicle 2 and the like. It can be configured as a computer system including a communication module 306 for performing communication and an auxiliary storage device 307 such as an HDD and an SSD. The controller 3 may be configured as one server device, or may be configured as a plurality of server devices that operate in cooperation with each other. Each function of the controller 3 described below, for example, causes a predetermined program to be read on a memory such as the RAM 302, operates the input device 304 and the output device 305 under the control of the processor 301, and operates the communication module 306. It is realized by reading and writing data in the RAM 302 and the auxiliary storage device 307.
 図3に示されるように、コントローラ3は、機能的構成要素として、取得部31と、記憶部32と、計画部33と、算出部34と、選定部35と、導出部36と、通信部37と、を備えている。コントローラ3は、これらの各機能により、予め設定された目的地への移動の要求を含む走行要求を複数の走行車2のうちから選択される1つの走行車2である対象走行車2Aに割り付ける処理を実行する。本実施形態では、走行要求は、上述した搬送要求であり、予め設定された目的地は、搬送要求に含まれる荷掴み位置である。コントローラ3は、対象走行車2Aと搬送要求との組合せについて、対象走行車2Aの現在位置から当該搬送要求の目的地までの走行経路を選定する。以下の説明では、走行要求の割り付け対象として着目されている走行車2を対象走行車2Aという場合がある。また、対象走行車2A以外の走行車2を非対象走行車2Bという場合がある。また、対象走行車2Aの搬送路4に沿った前方の非対象走行車2Bを前方走行車2Fという場合があり、対象走行車2Aの搬送路4に沿った後方の非対象走行車2Bを後方走行車2Rという場合がある。 As illustrated in FIG. 3, the controller 3 includes, as functional components, an acquisition unit 31, a storage unit 32, a planning unit 33, a calculation unit 34, a selection unit 35, a derivation unit 36, a communication unit 37. The controller 3 assigns a traveling request including a request for moving to a preset destination to the target traveling vehicle 2A which is one traveling vehicle 2 selected from the plurality of traveling vehicles 2 by using these functions. Execute the process. In the present embodiment, the traveling request is the above-described transport request, and the preset destination is a cargo gripping position included in the transport request. For the combination of the target traveling vehicle 2A and the transport request, the controller 3 selects a traveling route from the current position of the target traveling vehicle 2A to the destination of the transport request. In the following description, the traveling vehicle 2 which is focused on as a target to which the traveling request is allocated may be referred to as a target traveling vehicle 2A. The traveling vehicle 2 other than the target traveling vehicle 2A may be referred to as a non-target traveling vehicle 2B. The non-target traveling vehicle 2B ahead of the target traveling vehicle 2A along the transport path 4 may be referred to as a front traveling vehicle 2F, and the rear non-target traveling vehicle 2B along the transport path 4 of the target traveling vehicle 2A may be referred to as a rear traveling vehicle. It may be referred to as traveling vehicle 2R.
 取得部31は、上位コントローラから出力された複数の搬送要求を取得して蓄積する。取得部31は、上位コントローラから取得した搬送要求をコントローラ3が備えるメモリ等に一時的に保存する。本実施形態では、取得部31は、所定の周期(第1制御周期)で、上位コントローラから周期的に搬送要求を受け付けるように構成されている。つまり、取得部31は、第1制御周期で繰り返し到来する受付タイミングにおいて、上位コントローラから搬送要求を受け付ける。例えば、取得部31は、前回の受付タイミングから今回の受付タイミングまでの間に上位コントローラにおいて発生した一以上の搬送要求を、今回の受付タイミングにおいて取得する。なお、前回の受付タイミングから今回の受付タイミングまでの間に一つも搬送要求が発生しなかった場合、今回の受付タイミングにおいては、取得部31によって搬送要求は取得されなくてもよい。 The acquisition unit 31 acquires and accumulates a plurality of transport requests output from the host controller. The acquisition unit 31 temporarily stores the transport request acquired from the upper controller in a memory or the like provided in the controller 3. In the present embodiment, the acquisition unit 31 is configured to periodically receive a transport request from a host controller at a predetermined cycle (first control cycle). That is, the acquisition unit 31 accepts a transport request from the host controller at the reception timing that repeatedly arrives in the first control cycle. For example, the acquisition unit 31 acquires one or more transport requests generated in the upper controller between the previous reception timing and the current reception timing at the current reception timing. In the case where no transfer request has occurred between the previous reception timing and the current reception timing, the transfer request may not be acquired by the acquisition unit 31 at the current reception timing.
 記憶部32は、走行車システム1のレイアウトに関するマップ情報を記憶している。マップ情報は、複数のノードと、複数のリンクと、リンク毎に関連付けられた静的走行コストと、を含む情報である。マップ情報は、後述する計画部33によって参照される。 The storage unit 32 stores map information on the layout of the traveling vehicle system 1. The map information is information including a plurality of nodes, a plurality of links, and a static traveling cost associated with each link. The map information is referred to by the planning unit 33 described later.
 複数のノードは、搬送路4において、対象走行車2Aが走行可能なエリア(例えば図1に示される制御対象エリア)に含まれる特定の地点をそれぞれ示す情報である。特定の地点は、搬送路4上において予め登録された任意の地点である。特定の地点は、例えば、ロードポート7、バッファ8等の所定の作業装置が配置された地点や、搬送路4が分岐又は合流する地点である分岐合流部9等を含む地点である。リンクは、ノード間を接続する部分(搬送路4の一部)を示す情報である。各リンクには、走行車2が走行可能な方向が関連付けられている。すなわち、マップ情報に含まれる複数のノードと複数のリンクとは、有向グラフを構成している。 The plurality of nodes are information indicating specific points included in an area on which the target traveling vehicle 2A can travel (for example, the control target area illustrated in FIG. 1) on the transport path 4. The specific point is an arbitrary point registered on the transport path 4 in advance. The specific point is, for example, a point where a predetermined working device such as the load port 7 and the buffer 8 is arranged, and a point including the branch junction 9 where the transport path 4 branches or merges. The link is information indicating a part connecting the nodes (a part of the transport path 4). A direction in which the traveling vehicle 2 can travel is associated with each link. That is, a plurality of nodes and a plurality of links included in the map information form a directed graph.
 静的走行コストは、走行車2がリンクを通過するのにかかる時間(以下、「コスト」ともいう)を示す情報である。静的走行コストは、リンクに予め関連付けられたコストであり、対象走行車2Aと非対象走行車2Bとの関係を考慮しない場合のコストである。換言すると、静的走行コストは、他の走行車2の影響を受けないコストである。例えば、静的走行コストは、一の走行車2が他の走行車2の影響を受けない状況においてリンクを通過可能な最短時間を示すコストである。このような静的走行コストは、例えば、リンクの長さ(距離)、リンクに関連付けられた制限速度等に基づいて算出され得る。 The static traveling cost is information indicating the time required for the traveling vehicle 2 to pass through the link (hereinafter, also referred to as “cost”). The static traveling cost is a cost associated with the link in advance, and is a cost when the relationship between the target traveling vehicle 2A and the non-target traveling vehicle 2B is not considered. In other words, the static traveling cost is a cost that is not affected by other traveling vehicles 2. For example, the static traveling cost is a cost that indicates the shortest time that one traveling vehicle 2 can pass through a link in a situation where it is not affected by another traveling vehicle 2. Such a static traveling cost can be calculated based on, for example, the length (distance) of the link, the speed limit associated with the link, and the like.
 計画部33は、複数の走行車2のそれぞれについて、将来の各時刻での当該走行車2の位置に関する走行スケジュールを作成する(図17参照)。より詳細には、計画部33は、まず、対象走行車2Aと非対象走行車2Bとの関係を考慮しない走行車2の走行スケジュールである静的走行スケジュールを作成する。 The planning unit 33 creates, for each of the plurality of traveling vehicles 2, a traveling schedule related to the position of the traveling vehicle 2 at each future time (see FIG. 17). More specifically, first, the planning unit 33 creates a static traveling schedule that is a traveling schedule of the traveling vehicle 2 without considering the relationship between the target traveling vehicle 2A and the non-target traveling vehicle 2B.
 その後、計画部33は、対象走行車2Aの静的走行スケジュールと前方走行車2Fの走行スケジュール(前方走行車2Fの確定済みの走行スケジュール)とに基づいて、対象走行車2Aと前方走行車2Fとの干渉を避けるように対象走行車2Aの静的走行スケジュールを修正した修正走行スケジュールを作成する。すなわち、計画部33は、対象走行車2Aと前方走行車2Fとの干渉を検出し、当該干渉を排除するように、対象走行車2Aの修正走行スケジュールを作成する。 Thereafter, the planning unit 33 determines the target traveling vehicle 2A and the front traveling vehicle 2F based on the static traveling schedule of the target traveling vehicle 2A and the traveling schedule of the front traveling vehicle 2F (the decided traveling schedule of the front traveling vehicle 2F). A modified traveling schedule is created by modifying the static traveling schedule of the target traveling vehicle 2A so as to avoid interference with the traveling vehicle. That is, the planning unit 33 detects interference between the target traveling vehicle 2A and the front traveling vehicle 2F, and creates a corrected traveling schedule of the target traveling vehicle 2A so as to eliminate the interference.
 また、計画部33は、対象走行車2Aの走行スケジュール(対象走行車2Aの確定済みの走行スケジュール)と後方走行車2Rの静的走行スケジュールとに基づいて、対象走行車2Aと後方走行車2Rとの干渉を避けるように後方走行車2Rの静的走行スケジュールを修正した修正走行スケジュールを作成する。すなわち、計画部33は、対象走行車2Aと後方走行車2Rとの干渉を検出し、当該干渉を排除するように、後方走行車2Rの修正走行スケジュールを作成する。計画部33により作成される走行スケジュールについて、詳しくは後述する。 The planning unit 33 also determines the target traveling vehicle 2A and the rear traveling vehicle 2R based on the traveling schedule of the target traveling vehicle 2A (the determined traveling schedule of the target traveling vehicle 2A) and the static traveling schedule of the rear traveling vehicle 2R. A modified traveling schedule is created by modifying the static traveling schedule of the rear traveling vehicle 2R so as to avoid interference with the vehicle. That is, the planning unit 33 detects interference between the target traveling vehicle 2A and the rear traveling vehicle 2R, and creates a corrected traveling schedule of the rear traveling vehicle 2R so as to eliminate the interference. The traveling schedule created by the planning unit 33 will be described later in detail.
 算出部34は、対象走行車2Aと非対象走行車2Bとの関係による、対象走行車2A及び非対象走行車2Bの少なくとも1つがリンクを通過するのにかかる時間の増加量を示す遅延コストを算出する。遅延コストには、前方走行車2Fの影響により対象走行車2Aがリンクを通過するのにかかる時間が増加する量を示す第1遅延コストTi1と、対象走行車2Aの影響により後方走行車2Rがリンクを通過するのにかかる時間が増加する量を示す第2遅延コストTi2と、が含まれる(図23参照)。より詳細には、算出部34は、対象走行車2Aの静的走行スケジュールと対象走行車2Aの修正走行スケジュールとに基づいて第1遅延コストTi1を算出する。また、算出部34は、後方走行車2Rの静的走行スケジュールと後方走行車2Rの修正走行スケジュールとに基づいて第2遅延コストTi2を算出する。 The calculation unit 34 calculates a delay cost indicating an increase in time required for at least one of the target traveling vehicle 2A and the non-target traveling vehicle 2B to pass through the link, based on the relationship between the target traveling vehicle 2A and the non-target traveling vehicle 2B. calculate. The delay cost includes a first delay cost Ti1 indicating an amount of time required for the target traveling vehicle 2A to pass through the link due to the influence of the traveling vehicle 2F and a rear traveling vehicle 2R due to the influence of the target traveling vehicle 2A. And a second delay cost Ti2 indicating the amount of time required to pass through the link increases (see FIG. 23). More specifically, the calculation unit 34 calculates the first delay cost Ti1 based on the static traveling schedule of the target traveling vehicle 2A and the corrected traveling schedule of the target traveling vehicle 2A. Further, the calculation unit 34 calculates the second delay cost Ti2 based on the static traveling schedule of the rear traveling vehicle 2R and the corrected traveling schedule of the rear traveling vehicle 2R.
 選定部35は、対象走行車2Aとしての複数の走行車2のそれぞれと、取得部31により蓄積された複数の走行要求のそれぞれと、の組合せ毎に走行経路を選定する。選定部35は、静的走行コストと遅延コストとに基づいて総走行コストをリンク毎に算出する。そして、選定部35は、算出された総走行コストに基づいて、対象走行車2Aの現在位置から目的地までの複数の候補経路から走行経路を選定する。例えば、選定部35は、静的走行コストと遅延コストとの総和である総走行コストをリンク毎に算出し、複数の候補経路のうち当該候補経路に含まれるリンクのそれぞれの総走行コストの総和が最小となる候補経路を走行経路として選定する。 The selection unit 35 selects a travel route for each combination of each of the plurality of traveling vehicles 2 as the target traveling vehicle 2A and each of the plurality of traveling requests accumulated by the acquisition unit 31. The selecting unit 35 calculates the total traveling cost for each link based on the static traveling cost and the delay cost. Then, the selection unit 35 selects a traveling route from a plurality of candidate routes from the current position of the target traveling vehicle 2A to the destination based on the calculated total traveling cost. For example, the selection unit 35 calculates, for each link, a total traveling cost that is a total of the static traveling cost and the delay cost, and calculates a total of the total traveling costs of the links included in the candidate route among the plurality of candidate routes. Is selected as the traveling route.
 選定部35による処理について、図4及び図5を参照して説明する。図4及び図5は、選定部35の処理の一例を説明するための図である。 The processing performed by the selection unit 35 will be described with reference to FIGS. 4 and 5 are diagrams for explaining an example of the processing of the selection unit 35.
 選定部35は、取得部31により蓄積された複数の搬送要求のうちの1つの搬送要求と複数の走行車2のうちの1つの走行車2との組み合わせ毎に、走行車2が搬送要求を実行する場合にかかる時間(本実施形態では、走行車2が搬送要求の目的地(From地点)に到達するまでにかかる時間)を示す経路コストを算出する。具体的には、選定部35は、搬送要求と走行車2との組合せ毎に、記憶部32に記憶されたマップ情報に含まれる静的走行コストと、算出部34により算出された遅延コストとに基づいて、総走行コストをリンク毎に算出する。そして、選定部35は、算出された総走行コストに基づいて、対象走行車2Aの現在位置から目的地(荷掴み位置であるFrom地点)までの複数の候補経路から走行経路を選定する。 The selecting unit 35 determines whether the traveling vehicle 2 has received the transportation request for each combination of one of the transportation requests accumulated by the acquisition unit 31 and one of the traveling vehicles 2. The route cost indicating the time required for the execution (in the present embodiment, the time required for the traveling vehicle 2 to reach the destination (From point) of the transport request) is calculated. Specifically, the selection unit 35 determines, for each combination of the transport request and the traveling vehicle 2, the static traveling cost included in the map information stored in the storage unit 32 and the delay cost calculated by the calculation unit 34. , The total travel cost is calculated for each link. Then, the selection unit 35 selects a traveling route from a plurality of candidate routes from the current position of the target traveling vehicle 2A to the destination (From point which is a cargo gripping position) based on the calculated total traveling cost.
 本実施形態では、上述したように、選定部35は、搬送要求と走行車2との任意の組み合わせについて、走行車2の現在位置から搬送要求の目的地(From地点)までの複数の候補経路のうち、候補経路に含まれるリンクの総走行コストの和(すなわち経路コスト)が最小となる候補経路(すなわち最短経路)を走行経路として決定する。選定部35は、例えばダイクストラ法、A*(A-star)等の公知の最短経路探索アルゴリズムを用いることにより、搬送要求と走行車2との組み合わせ毎に、走行経路(最短経路)を決定し、その経路コストを算出することができる。 In the present embodiment, as described above, the selection unit 35 determines, for an arbitrary combination of the transport request and the traveling vehicle 2, a plurality of candidate routes from the current position of the traveling vehicle 2 to the destination (From point) of the transportation request. Among them, the candidate route (that is, the shortest route) that minimizes the sum of the total running costs of the links included in the candidate route (that is, the route cost) is determined as the running route. The selection unit 35 determines a travel route (shortest route) for each combination of the transport request and the traveling vehicle 2 by using a known shortest route search algorithm such as the Dijkstra method or A * (A-star). , The route cost can be calculated.
 図4を参照して、走行車2と搬送要求とのある組み合わせについての選定部35の処理について説明する。ここでは一例として、ダイクストラ法を用いた処理について説明する。図4において、「E」、及び「1」~「6」が記されたノードNは、上述したマップ情報に含まれるノードに対応している。「S」が記されたノードN(以下「始点S」ともいう。)は、ルート探索の出発地(すなわち、走行車2の現在位置)を示している。「E」が記されたノードN(以下「終点E」ともいう。)は、ルート探索の目的地(すなわち、搬送要求のFrom地点)を示している。「1」~「6」が記されたノードNは、出発地でも目的地でもないノードである。これらのノードN間を接続するリンクLは、マップ情報に含まれるリンクに対応している。各リンクLに関連付けられた「Cost」は、マップ情報に含まれるコストに対応している。ここでは、各リンクLのコストは、静的走行コストと遅延コストとの総和である総走行コストとされている。各リンクLの向きは、走行車2が走行可能な方向を示している。なお、始点Sがマップ情報に予め登録されたノードと一致しない場合(すなわち、始点Sがマップ情報に予め登録された第1ノードと第2ノードとを接続するリンクの途中位置に対応する場合)には、選定部35は、始点Sと第1ノードとを接続する第1リンクと始点Sと第2ノードとを接続する第2リンクとを新たに設定することにより、図4に示したようなマップの情報を取得してもよい。この場合、第1リンク及び第2リンクの各々に関連付けられる走行コストは、例えば、第1ノードと第2ノードとを接続するリンクに関連付けられた走行コストと、第1リンク及び第2リンクの距離の比と、に基づいて決定され得る。 With reference to FIG. 4, the processing of the selection unit 35 for a certain combination of the traveling vehicle 2 and the transport request will be described. Here, the processing using the Dijkstra method will be described as an example. In FIG. 4, the nodes N with “E” and “1” to “6” correspond to the nodes included in the above-described map information. A node N marked with “S” (hereinafter also referred to as “start point S”) indicates a departure point of the route search (that is, the current position of the traveling vehicle 2). The node N marked with “E” (hereinafter also referred to as “end point E”) indicates the destination of the route search (that is, the From point of the transport request). Nodes N marked with “1” to “6” are nodes that are neither the departure place nor the destination. The link L connecting these nodes N corresponds to the link included in the map information. “Cost” associated with each link L corresponds to the cost included in the map information. Here, the cost of each link L is the total running cost which is the sum of the static running cost and the delay cost. The direction of each link L indicates a direction in which the traveling vehicle 2 can travel. Note that the start point S does not match a node registered in the map information in advance (that is, the start point S corresponds to an intermediate position of a link connecting the first node and the second node registered in the map information in advance). In FIG. 4, the selecting unit 35 newly sets a first link connecting the starting point S and the first node and a second link connecting the starting point S and the second node. You may acquire the information of a simple map. In this case, the travel cost associated with each of the first link and the second link includes, for example, the travel cost associated with the link connecting the first node and the second node, and the distance between the first link and the second link. And the ratio of
 選定部35は、図4に示されるような有向グラフに対して最短経路探索アルゴリズム(ここではダイクストラ法)を実行することにより、始点Sから終点Eまでの最短経路と、当該最短経路に含まれる一以上のリンクLの走行コストの和である経路コストと、を導出する。図5は、最短経路探索アルゴリズムの実行結果を示す図である。図5に示されるように、選定部35は、始点Sから終点Eまでの最短経路として、「S」→「1」→「2」→「4」→「6」→「5」→「E」の順に辿るルートを決定する。また、選定部35は、当該最短経路の経路コストとして、当該最短経路に含まれるリンクLの走行コストの和(すなわち、経路コスト)である「16(=2+3+3+4+2+2)」を算出する。このように、選定部35は、公知の最短経路探索アルゴリズムを実行することにより、走行車2と搬送要求との1つの組み合わせについて、走行経路(最短経路)とその経路コストとを導出する。選定部35は、取得部31により蓄積された複数の搬送要求と制御対象エリアに存在する複数の走行車2との間で可能な全ての組み合わせについて、上記最短経路探索アルゴリズムを実行する。これにより、選定部35は、組み合わせ毎の走行経路とその経路コストとを導出する。 The selecting unit 35 executes the shortest path search algorithm (here, Dijkstra's algorithm) on the directed graph as shown in FIG. 4, and determines the shortest path from the start point S to the end point E and the one included in the shortest path. A route cost, which is the sum of the running costs of the link L, is derived. FIG. 5 is a diagram illustrating an execution result of the shortest path search algorithm. As shown in FIG. 5, the selecting unit 35 selects “S” → “1” → “2” → “4” → “6” → “5” → “E” as the shortest path from the start point S to the end point E. Is determined. Further, the selecting unit 35 calculates “16 (= 2 + 3 + 3 + 4 + 2 + 2)” which is the sum of the traveling costs of the links L included in the shortest route (that is, the route cost) as the route cost of the shortest route. As described above, the selecting unit 35 derives the travel route (shortest route) and the route cost for one combination of the traveling vehicle 2 and the transport request by executing the known shortest route search algorithm. The selecting unit 35 executes the shortest route search algorithm for all possible combinations between the plurality of transport requests accumulated by the acquiring unit 31 and the plurality of traveling vehicles 2 existing in the control target area. Thereby, the selection unit 35 derives the traveling route and the route cost for each combination.
 上述した選定部35の処理により、取得部31により蓄積された複数の搬送要求と複数の走行車2との間で可能な各組み合わせについての経路コストが得られる。図6は、複数(ここでは4つ)の搬送要求(搬送要求1~搬送要求4)と複数(ここでは7つ)の走行車2(A~Gの走行車IDにより識別される走行車2)との組み合わせ毎に算出された経路コストの一例を示す図である。例えば、図6の搬送要求1の表における第1行目は、搬送要求1を走行車IDが「A」である走行車2(以下、走行車IDが「X」である走行車2のことを、単に「走行車X」と表記する。)に割り付けた場合に、走行車Aが走行車Aの現在位置から搬送要求1のFrom地点に到達するまでにかかる最短時間が「3」であることを示している。なお、図6の例では、経路コストが所定の閾値(ここでは30)以上となる走行車2が除外されている。 処理 By the processing of the selection unit 35 described above, the route cost for each possible combination between the plurality of transport requests and the plurality of traveling vehicles 2 accumulated by the acquisition unit 31 is obtained. FIG. 6 shows a plurality of (here, four) transport requests (transport requests 1 to 4) and a plurality of (here, seven) traveling vehicles 2 (the traveling vehicles 2 identified by the traveling vehicle IDs A to G). FIG. 14 is a diagram illustrating an example of a path cost calculated for each combination with (1). For example, the first row in the table of the transport request 1 in FIG. 6 indicates that the transport request 1 is the traveling vehicle 2 whose traveling vehicle ID is “A” (hereinafter, traveling vehicle 2 whose traveling vehicle ID is “X”). Is simply referred to as “traveling vehicle X”.), The shortest time required for traveling vehicle A to reach the From position of transport request 1 from the current position of traveling vehicle A is “3”. It is shown that. In the example of FIG. 6, the traveling vehicle 2 whose route cost is equal to or more than a predetermined threshold (here, 30) is excluded.
 導出部36は、組合せ毎に選定された走行経路にそれぞれ対応する経路コストに基づいて、複数の走行要求のそれぞれに1つの走行車を対応付けたペアリング情報を導出する。より具体的には、導出部36は、取得部31により蓄積された複数の搬送要求の各々に1つの走行車2を対応付けた(割り付けた)ペアリング情報を導出する。導出部36は、選定部35によって組み合わせ毎に算出された経路コスト(すなわち、図6に示されるような算出結果)に基づいて、ペアリング情報を導出する。本実施形態では、導出部36は、取得部31により蓄積された複数の搬送要求と複数の走行車2との組み合わせにおける経路コストの総和が最小となるように、ペアリング情報を導出する。 The deriving unit 36 derives pairing information in which one traveling vehicle is associated with each of a plurality of traveling requests based on route costs respectively corresponding to traveling routes selected for each combination. More specifically, the deriving unit 36 derives pairing information in which one traveling vehicle 2 is associated with (assigned to) each of the plurality of transport requests accumulated by the acquiring unit 31. The deriving unit 36 derives the pairing information based on the route cost calculated for each combination by the selecting unit 35 (that is, the calculation result as shown in FIG. 6). In the present embodiment, the deriving unit 36 derives the pairing information such that the sum of the route costs in the combination of the plurality of transport requests and the plurality of traveling vehicles 2 accumulated by the acquisition unit 31 is minimized.
 図7は、図6の例について導出されたペアリング情報を示す図である。図7に示されるように、搬送要求1に走行車Cを対応付け、搬送要求2に走行車Eを対応付け、搬送要求3に走行車Bを対応付け、搬送要求4に走行車Aを対応付けた場合に、経路コストの総和が最小値「21(=6+5+6+4)」を取る。したがって、このような対応付けを示すペアリング情報が、導出部36によって導出される。このように、導出部36によれば、経路コストの総和が最小となるように全体最適が図られたペアリング情報(以下「最適ペアリング情報」ともいう。)が得られる。 FIG. 7 is a diagram showing the pairing information derived for the example of FIG. As shown in FIG. 7, the traveling request C is associated with the transportation request 1, the traveling vehicle E is associated with the transportation request 2, the traveling vehicle B is associated with the transportation request 3, and the traveling vehicle A is associated with the transportation request 4. In this case, the sum of the path costs takes the minimum value “21 (= 6 + 5 + 6 + 4)”. Therefore, the pairing information indicating such association is derived by the deriving unit 36. As described above, according to the deriving unit 36, the pairing information (hereinafter, also referred to as “optimal pairing information”) in which the total optimization of the route costs is minimized is obtained.
 続いて、図8~図15を参照して、最適ペアリング情報を導出するための導出部36の処理の一例について説明する。この例では、導出部36は、搬送要求と走行車2との対応付け(ペアリング)を最小費用流問題として定式化し、当該最小費用流問題を解くことにより、ペアリング情報を導出する。ここでは、図8に示されるように、2つの搬送要求1,2と3つの走行車A,B,Cとの間で経路コストの総和が最小となる最適ペアリング情報を導出する場合の処理について説明する。図8の(A)は、本例の説明のために用意された選定部35による算出結果の一例を図6と同様の表形式で表現したものである。図8の(B)は、図8の(A)に示される関係を無向グラフとして表現したものである。図8の(B)に示されるグラフは、搬送要求1,2と走行車A,B,Cとをそれぞれノードとして表現すると共に、搬送要求1,2と走行車A,B,Cとの各組み合わせの経路コストを搬送要求と走行車とを結ぶリンクのコストとして表現したものである。 Next, an example of the processing of the deriving unit 36 for deriving the optimal pairing information will be described with reference to FIGS. In this example, the deriving unit 36 formulates the association (pairing) between the transport request and the traveling vehicle 2 as a minimum cost flow problem, and derives pairing information by solving the minimum cost flow problem. Here, as shown in FIG. 8, a process for deriving optimal pairing information that minimizes the sum of the route costs between the two transport requests 1 and 2 and the three traveling vehicles A, B and C. Will be described. FIG. 8A illustrates an example of a calculation result by the selection unit 35 prepared for the description of the present example in a table format similar to FIG. FIG. 8B expresses the relationship shown in FIG. 8A as an undirected graph. The graph shown in FIG. 8B expresses the transport requests 1 and 2 and the traveling vehicles A, B, and C as nodes, respectively, and expresses each of the transport requests 1 and 2 and the traveling vehicles A, B, and C as nodes. The route cost of the combination is expressed as the cost of a link connecting the transport request and the traveling vehicle.
 図9は、処理手順を示すフローチャートである。まず、ステップS11において、導出部36は、最適ペアリング情報を導出する問題を最小費用流問題として定式化するために、図10に示されるコスト付きネットワークを作成する。具体的には、図10に示されるように、導出部36は、搬送要求1,2を示すノード1,2の各々とコスト「0」のリンクによって接続される始点sを設定すると共に、走行車A,B,Cを示すノードA,B,Cの各々とコスト「0」のリンクによって接続される終点eを設定する。また、導出部36は、グラフ全体が「始点s→搬送要求ノード(ノード1,2)→走行車ノード(ノードA,B,C)→終点e」の方向に流れる有向グラフとなるように、各リンクの向きを設定する。ここで、各リンクの容量は1に設定される。以上により、2つの搬送要求1,2と3つの走行車A,B,Cとの間の最適ペアリング情報を導出する問題は、図10に示されるコスト付きネットワーク(有向グラフ)に対する最小費用流問題に変換される。 FIG. 9 is a flowchart showing a processing procedure. First, in step S11, the deriving unit 36 creates the network with cost shown in FIG. 10 in order to formulate the problem of deriving the optimal pairing information as the minimum cost flow problem. Specifically, as shown in FIG. 10, the deriving unit 36 sets the starting point s connected to each of the nodes 1 and 2 indicating the transport requests 1 and 2 by the link of the cost “0”, and An end point e connected to each of the nodes A, B, and C indicating the cars A, B, and C by a link having a cost of “0” is set. In addition, the deriving unit 36 sets each graph so that the entire graph becomes a directed graph flowing in the direction of “start point s → transport request node (nodes 1 and 2) → traveling vehicle node (nodes A, B and C) → end point e”. Set the direction of the link. Here, the capacity of each link is set to 1. As described above, the problem of deriving the optimal pairing information between the two transport requests 1 and 2 and the three traveling vehicles A, B, and C is the minimum cost flow problem for the network with cost (directed graph) shown in FIG. Is converted to
 続いて、ステップS12において、導出部36は、図10に示されるコスト付きネットワークについて、ダイクストラ法等の最短経路探索アルゴリズムを実行することにより、始点sから終点eまでの最短経路P1を求めると共に、始点sから各ノードへの最短コスト(始点sから各ノードへの最短経路を辿った場合に通過するリンクのコストの和)を求める。これにより、図11に示されるように、太線で示される最短経路P1(始点s→ノード1→ノードA→終点e)と各ノードの最短コストとが求まる。 Subsequently, in step S12, the deriving unit 36 obtains the shortest path P1 from the start point s to the end point e by executing the shortest path search algorithm such as the Dijkstra method for the network with cost shown in FIG. The shortest cost from the start point s to each node (the sum of the costs of the links that pass when the shortest path from the start point s to each node is traced) is obtained. Thereby, as shown in FIG. 11, the shortest path P1 (start point s → node 1 → node A → end point e) indicated by a thick line and the shortest cost of each node are obtained.
 続いて、ステップS13において、導出部36は、最短経路P1について、補助ネットワーク(残余容量ネットワーク)を作成する。具体的には、まず、図12に示されるように、導出部36は、最短経路P1上の各リンクの向きを逆転させると共に、最短経路P1上の各リンクのコストをマイナスにする(すなわち、各リンクのコストに「-1」を乗算する)。これにより、ノード1とノードAとを結ぶリンクのコストは、「1」から「-1」に変化する。続いて、図13に示されるように、導出部36は、有向グラフの各リンクのコストに、「リンクの始点の最短コスト-リンクの終点の最短コスト」を加える。これにより、図13に示されるように、各リンクのコストが更新された補助ネットワークAN1が得られる。 Subsequently, in step S13, the deriving unit 36 creates an auxiliary network (remaining capacity network) for the shortest path P1. Specifically, first, as shown in FIG. 12, the deriving unit 36 reverses the direction of each link on the shortest path P1 and makes the cost of each link on the shortest path P1 negative (that is, Multiply the cost of each link by "-1"). As a result, the cost of the link connecting node 1 and node A changes from “1” to “−1”. Subsequently, as shown in FIG. 13, the deriving unit 36 adds “the shortest cost at the start point of the link−the shortest cost at the end point of the link” to the cost of each link in the directed graph. Thereby, as shown in FIG. 13, the auxiliary network AN1 in which the cost of each link is updated is obtained.
 続いて、ステップS14において、導出部36は、補助ネットワークAN1において、始点sから終点eに向かう経路が存在するか否かを判定する。ここでは、補助ネットワークAN1において、始点sから終点eに向かう経路が存在し、判定結果は「YES」となるため、導出部36は、ステップS15の処理へと進む。 Subsequently, in step S14, the deriving unit 36 determines whether or not there is a route from the start point s to the end point e in the auxiliary network AN1. Here, in the auxiliary network AN1, there is a route from the start point s to the end point e, and the determination result is “YES”, so the deriving unit 36 proceeds to the process of step S15.
 ステップS15において、導出部36は、補助ネットワークAN1に対して、ダイクストラ法等の最短経路探索アルゴリズムを実行することにより、始点sから終点eまでの最短経路P2を求めると共に、始点sから各ノードへの最短コストを求める。これにより、図14に示されるように、太線で示される最短経路P2(始点s→ノード2→ノードA→ノード1→ノードB→終点e)が求まると共に、各ノードの最短コストが更新される。 In step S15, the derivation unit 36 obtains the shortest path P2 from the start point s to the end point e by executing the shortest path search algorithm such as the Dijkstra method on the auxiliary network AN1, and also, from the start point s to each node. Find the shortest cost of Thereby, as shown in FIG. 14, the shortest path P2 (start point s → node 2 → node A → node 1 → node B → end point e) indicated by a thick line is obtained, and the shortest cost of each node is updated. .
 続いて、ステップS13に戻って、導出部36は、最短経路P1についての処理と同様の手順により、最短経路P2について、補助ネットワークを求める。これにより、図15に示されるように、最短経路P2上の各リンクの向きが逆転させられると共に、各リンクのコストが更新された補助ネットワークAN2が得られる。補助ネットワークAN2が得られた時点で、始点sから終点eに向かう経路は存在しなくなる。したがって、ステップS14の判定結果は「NO」となるため、導出部36は、ステップS16の処理へと進む。なお、本例のように「走行車2の数(ここでは3)>搬送要求の数(ここでは2)」が成立する場合、反復回数(補助ネットワークの導出回数)は、搬送要求の数と等しくなる。このため、本例では、2つ目の補助ネットワークAN2を導出した段階で、始点sから終点eに向かう経路が存在しなくなる。 Subsequently, returning to step S13, the deriving unit 36 obtains an auxiliary network for the shortest path P2 by the same procedure as the processing for the shortest path P1. Thereby, as shown in FIG. 15, the direction of each link on the shortest path P2 is reversed, and the auxiliary network AN2 in which the cost of each link is updated is obtained. When the auxiliary network AN2 is obtained, there is no route from the start point s to the end point e. Therefore, the determination result of step S14 is “NO”, and the deriving unit 36 proceeds to the process of step S16. When “the number of traveling vehicles 2 (here, 3)> the number of transport requests (here, 2)” is satisfied as in this example, the number of repetitions (the number of times the auxiliary network is derived) is equal to the number of transport requests. Become equal. For this reason, in the present example, when the second auxiliary network AN2 is derived, there is no route from the start point s to the end point e.
 続いて、ステップS16において、導出部36は、上述した繰り返し処理(最短経路探索及び補助ネットワーク作成)を終了した時点の状態(図15に示される補助ネットワークAN2)における走行車(ノードA~C)から搬送要求(ノード1,2)に向かうリンクに基づいて、最適ペアリング情報を導出する。図15の例では、ノードAからノード2に向かうリンクとノードBからノード1に向かうリンクとが、搬送要求と走行車との最適な組み合わせを示している。この場合、導出部36は、搬送要求1を走行車Bに対応付けると共に搬送要求2を走行車Aに対応付けたペアリング情報を最適ペアリング情報として導出する。 Subsequently, in step S16, the deriving unit 36 executes the traveling vehicles (nodes A to C) in the state (auxiliary network AN2 shown in FIG. 15) at the time when the above-described iterative processing (shortest route search and auxiliary network creation) is completed. Optimum pairing information is derived on the basis of the link directed to the transport request (nodes 1 and 2) from. In the example of FIG. 15, the link from the node A to the node 2 and the link from the node B to the node 1 indicate an optimal combination of the transport request and the traveling vehicle. In this case, the deriving unit 36 derives the pairing information in which the transport request 1 is associated with the traveling vehicle B and the transport request 2 is associated with the traveling vehicle A as the optimal pairing information.
 なお、この例では、ステップS12又はステップS15において、ダイクストラ法等の最短経路探索アルゴリズムによって得られる最短経路が複数存在する場合(すなわち、始点sから終点eまでのコストが同一となる複数の最短経路が存在する場合)があり得る。このような場合、導出部36は、複数の最短経路のうちの任意の1つの最短経路を選択して、引き続きの処理(ステップS13における補助ネットワークの作成)を実行すればよい。このような方策によれば、最終的に、最適ペアリング情報を得ることができる。なお、図8の例では、複数の搬送要求1,2と複数の走行車A,B,Cとの間の全ての組み合わせが可能なケース(すなわち、全ての走行車A,B,Cが全ての搬送要求1,2を実行可能なケース)について説明した。ただし、上述した処理は、一部の搬送要求のみを実行可能な走行車が存在する場合、及び一部の走行車のみによって実行されることが可能な搬送要求が存在する場合においても、適用可能である。 In this example, when there are a plurality of shortest paths obtained by the shortest path search algorithm such as the Dijkstra method in step S12 or step S15 (that is, a plurality of shortest paths having the same cost from the start point s to the end point e) Is present). In such a case, the deriving unit 36 may select any one of the plurality of shortest paths and execute the subsequent processing (the creation of the auxiliary network in step S13). According to such a measure, optimal pairing information can be finally obtained. In the example of FIG. 8, a case where all combinations between the plurality of transport requests 1 and 2 and the plurality of traveling vehicles A, B, and C are possible (that is, all traveling vehicles A, B, and C are all In which the transfer requests 1 and 2 can be executed). However, the above-described processing is applicable even when there is a traveling vehicle that can execute only a part of the transportation requests and when there is a transportation request that can be executed only by some of the traveling vehicles. It is.
 図1~図3に戻り、通信部37は、走行車2と例えば無線通信により情報を送受信する。通信部37は、導出部36により導出されたペアリング情報に基づいて、各走行車2に対応付けられた走行要求に関する情報を当該走行車2に送信する。これにより、コントローラ3は、各走行車2に走行要求を割り付ける。また、通信部37は、複数の走行車2から、当該走行車2の現在位置及び走行速度に関する状態情報と、当該走行車が物品の移載を行う移載位置、時刻、及び所要時間に関する移載情報と、を所定のタイミングで受信する。 1 to 3, the communication unit 37 transmits and receives information to and from the traveling vehicle 2 by, for example, wireless communication. The communication unit 37 transmits information on the traveling request associated with each traveling vehicle 2 to the traveling vehicle 2 based on the pairing information derived by the deriving unit 36. Thereby, the controller 3 assigns a traveling request to each traveling vehicle 2. In addition, the communication unit 37 transmits, from the plurality of traveling vehicles 2, state information relating to the current position and traveling speed of the traveling vehicle 2, and a transfer position at which the traveling vehicle transfers articles, a time, and a transfer time relating to a required time. And the placement information are received at a predetermined timing.
 続いて、計画部33により作成される走行スケジュールについて説明する。図16は、搬送路4の一部を示す図である。搬送路4において図16に示される部分には、3つのリンク(以下、リンクA、リンクB、及びリンクCという)が含まれている。リンクA、リンクB、及びリンクCは、この順に接続されている。リンクAは、リンクAの上流側のリンクX及びリンクYとノードaで接続されている。また、リンクAとリンクBとはノードbで接続されており、リンクBとリンクCとはノードcで接続されている。リンクCは、リンクCの下流側のリンクZとノードdで接続されている。初期状態として、リンクBに位置する1つの走行車2がリンクC側に向かって走行しており、リンクAに位置する走行車2がリンクB側に向かって走行しており、リンクXに位置する走行車2がリンクA側に向かって走行している状態を想定する。 Next, the travel schedule created by the planning unit 33 will be described. FIG. 16 is a diagram illustrating a part of the transport path 4. The portion shown in FIG. 16 of the transport path 4 includes three links (hereinafter, referred to as link A, link B, and link C). Link A, link B, and link C are connected in this order. Link A is connected to link X and link Y on the upstream side of link A at node a. Further, link A and link B are connected at node b, and link B and link C are connected at node c. The link C is connected to a link Z on the downstream side of the link C by a node d. As an initial state, one traveling vehicle 2 located at link B is traveling toward link C, traveling vehicle 2 located at link A is traveling toward link B, and traveling vehicle 2 is located at link X. It is assumed that the traveling vehicle 2 is traveling toward the link A.
 ここで、図16に示されるように、リンクAに位置する走行車2よりもノードa側(すなわち、リンクAに位置する走行車2とリンクXに位置する走行車2との間)に、例えば搬送路Yから新たに走行車2が進入する状況を想定する。以下、新たに進入した走行車2を対象走行車2Aとするとともに、初期状態においてリンクXに位置していた走行車2を後方走行車2R、初期状態においてリンクAに位置していた走行車2を前方走行車2Fとする。また、初期状態においてリンクBに位置していた走行車2を先頭走行車2Tということとする。 Here, as shown in FIG. 16, the traveling vehicle 2 located on the link A is closer to the node a (that is, between the traveling vehicle 2 located on the link A and the traveling vehicle 2 located on the link X), For example, it is assumed that the traveling vehicle 2 newly enters from the transport path Y. Hereinafter, the newly entered traveling vehicle 2 is referred to as a target traveling vehicle 2A, and the traveling vehicle 2 which was located at the link X in the initial state is the rear traveling vehicle 2R, and the traveling vehicle 2 which was located at the link A in the initial state. Is referred to as a forward running vehicle 2F. The traveling vehicle 2 located at the link B in the initial state is referred to as a leading traveling vehicle 2T.
 図17は、対象走行車2AがリンクAに進入する時点での先頭走行車2T、前方走行車2F、及び後方走行車2Rの走行スケジュールを示すグラフである。図17では、横軸に時間を表し、縦軸に搬送路4に沿った位置を表す。グラフの傾きは、走行車2の走行速度を表す。走行車2の走行速度は、他の走行車2の影響を受けない場合には例えば各リンクの制限速度によって規定される。対象走行車2AがリンクAに進入する前には、図17に示されるように、先頭走行車2TがリンクBにおいて物品を移載するために停止することが予定されている。また、物品を移載するために停止した先頭走行車2Tの手前(上流側)で、先頭走行車2Tとの干渉を避けるために前方走行車2Fが停止することが予定されている。後方走行車2Rは、先頭走行車2T及び前方走行車2Fの影響を受けずに搬送路4を走行することが予定されている。 FIG. 17 is a graph showing the traveling schedule of the leading traveling vehicle 2T, the forward traveling vehicle 2F, and the rear traveling vehicle 2R when the target traveling vehicle 2A enters the link A. In FIG. 17, the horizontal axis represents time, and the vertical axis represents a position along the transport path 4. The slope of the graph represents the traveling speed of the traveling vehicle 2. When the traveling speed of the traveling vehicle 2 is not affected by the other traveling vehicles 2, the traveling speed of the traveling vehicle 2 is specified by, for example, the speed limit of each link. Before the target traveling vehicle 2A enters the link A, the leading traveling vehicle 2T is scheduled to stop to transfer articles on the link B, as shown in FIG. In addition, in front of (upstream of) the leading traveling vehicle 2T that has stopped for transferring articles, the traveling vehicle 2F is scheduled to stop in order to avoid interference with the leading traveling vehicle 2T. The rear traveling vehicle 2R is scheduled to travel on the transport path 4 without being affected by the leading traveling vehicle 2T and the forward traveling vehicle 2F.
 図18は、対象走行車2AのリンクA内における静的走行スケジュールを説明するための図である。対象走行車2AがリンクAに進入すると、図18に示されるように、対象走行車2Aの現在位置からノードbまでの範囲について、対象走行車2AがリンクAの制限速度で走行する静的走行スケジュールが作成される。なお、対象走行車2Aの現在位置からノードbまでの所要時間T1は、下記の式(1)で表される。ここで、Costは、走行車2がリンクAの制限速度でノードaからノードbまで走行した場合の所要時間であり、LはリンクAの全長であり、Pはノードaから対象走行車2Aの現在位置までの距離である。
T1=Cost×((L-P)/L)…(1)
FIG. 18 is a diagram for describing a static traveling schedule of the target traveling vehicle 2A in the link A. When the target traveling vehicle 2A enters the link A, as shown in FIG. 18, static traveling in which the target traveling vehicle 2A travels at the speed limit of the link A in a range from the current position of the target traveling vehicle 2A to the node b. A schedule is created. The required time T1 from the current position of the target traveling vehicle 2A to the node b is represented by the following equation (1). Here, Cost is the required time when the traveling vehicle 2 travels from the node a to the node b at the speed limit of the link A, L is the total length of the link A, and P is the distance from the node a to the target traveling vehicle 2A. The distance to the current location.
T1 = Cost × ((LP) / L) (1)
 図19は、対象走行車2AのリンクA内における走行スケジュールの修正を説明するための図である。図19に示されるように、先頭走行車2Tによる物品の移載のためにリンクB内で待機している前方走行車2Fとの車間距離を保つために、対象走行車2Aはノードbまでの走行速度を低下させる。より具体的には、前方走行車2Fがノードbを通過する時刻と対象走行車2Aがノードbに到達する時刻との時間間隔が、下記の式(2)で表される安全時間T2となるように、対象走行車2Aはノードbまでの走行速度を低下させる。ここで、vはリンクAの制限速度であり、aは対象走行車2Aの走行速度であり、Lvは走行車2の全長である。
T2=-(v/a)+(Lv/v)…(2)
FIG. 19 is a diagram for describing correction of a traveling schedule of the target traveling vehicle 2A in the link A. As shown in FIG. 19, in order to keep the inter-vehicle distance with the forward traveling vehicle 2F waiting in the link B for the transfer of articles by the leading traveling vehicle 2T, the target traveling vehicle 2A is connected to the node b. Reduce running speed. More specifically, the time interval between the time when the forward traveling vehicle 2F passes through the node b and the time when the target traveling vehicle 2A reaches the node b is a safety time T2 represented by the following equation (2). Thus, the target traveling vehicle 2A decreases the traveling speed to the node b. Here, v is the speed limit of the link A, a is the traveling speed of the target traveling vehicle 2A, and Lv is the total length of the traveling vehicle 2.
T2 = − (v / a) + (Lv / v) (2)
 図20は、流量制限制御に基づいた対象走行車2AのリンクA内における走行スケジュールの修正を説明するための図である。流量制限制御とは、図20に示されるように、各リンク内に存在することができる走行車2の数に上限を設定し、上限を超える数の走行車2が当該リンクに進入しようとする場合には、当該走行車2を当該リンクに進入させない制御である。ここでは、一例として、リンクBに対して、リンクB内に存在することができる走行車2の上限を2つに設定する流量制限制御が実行されている。このため、リンクB内に先頭走行車2T及び前方走行車2Fが存在している期間は、対象走行車2AはリンクBに進入しない。そして、先頭走行車2TがリンクBを退出することでリンクB内に前方走行車2Fのみが存在するようになった後に対象走行車2AがリンクBに進入するように、対象走行車2Aはノードbまでの走行速度を低下させる。 FIG. 20 is a diagram for explaining correction of the traveling schedule in the link A of the target traveling vehicle 2A based on the flow rate restriction control. As shown in FIG. 20, the flow rate limiting control sets an upper limit on the number of traveling vehicles 2 that can exist in each link, and the number of traveling vehicles 2 exceeding the upper limit attempts to enter the link. In this case, the control is such that the traveling vehicle 2 does not enter the link. Here, as an example, for the link B, the flow rate limiting control for setting the upper limit of the traveling vehicles 2 that can exist in the link B to two is executed. For this reason, the target traveling vehicle 2A does not enter the link B while the leading traveling vehicle 2T and the traveling vehicle 2F are present in the link B. Then, the target traveling vehicle 2A is connected to the node so that the target traveling vehicle 2A enters the link B after the leading traveling vehicle 2T exits the link B so that only the forward traveling vehicle 2F exists within the link B. The traveling speed up to b is reduced.
 図21は、対象走行車2AのリンクB内における静的走行スケジュールを説明するための図である。図21に示されるように、ノードbからノードcまでの範囲について、対象走行車2AがリンクBの制限速度で走行する静的走行スケジュールが作成される。なお、この場合、静的走行スケジュールでは対象走行車2Aと非対象走行車2Bとの関係が考慮されていないため、作成された対象走行車2Aの静的走行スケジュールは、対象走行車2Aが前方走行車2Fの走行スケジュールと干渉する。 FIG. 21 is a diagram for explaining a static traveling schedule of the target traveling vehicle 2A in the link B. As shown in FIG. 21, a static traveling schedule in which the target traveling vehicle 2A travels at the link B speed limit is created for the range from the node b to the node c. In this case, since the relationship between the target traveling vehicle 2A and the non-target traveling vehicle 2B is not taken into account in the static traveling schedule, the created static traveling schedule of the target traveling vehicle 2A is such that the target traveling vehicle 2A is located ahead of the target traveling vehicle 2A. It interferes with the traveling schedule of the traveling vehicle 2F.
 図22は、対象走行車2AのリンクB内における走行スケジュールの修正を説明するための図である。図22に示されるように、対象走行車2Aの静的走行スケジュールと前方走行車2Fの走行スケジュールとに基づいて、対象走行車2Aと前方走行車2Fとの干渉を避けるように対象走行車2Aの静的走行スケジュールを修正した修正走行スケジュールが作成される。より具体的には、対象走行車2Aが前方走行車2Fに追いついて干渉しないように、対象走行車2Aのノードbからノードcまでの走行速度を低下させる。このとき、対象走行車2Aの静的走行スケジュールにおいて対象走行車2Aがノードbを通過する時刻とノードcに到達する時刻との時間間隔が、リンクBの静的走行コストに相当する。また、対象走行車2Aの静的走行スケジュールにおいて対象走行車2Aがノードcに到達する時刻と、対象走行車2Aの修正走行スケジュールにおいて対象走行車2Aがノードcに到達する時刻と、の時間間隔が、図22の状況におけるリンクBの遅延コスト(より詳しくは、第1遅延コストTi1)に相当する。なお、作成された対象走行車2Aの修正走行スケジュールは、対象走行車2Aが後方走行車2Rと干渉するような走行スケジュールとなっている。 FIG. 22 is a diagram for explaining the correction of the traveling schedule in the link B of the target traveling vehicle 2A. As shown in FIG. 22, based on the static traveling schedule of the target traveling vehicle 2A and the traveling schedule of the front traveling vehicle 2F, the target traveling vehicle 2A is configured to avoid interference between the target traveling vehicle 2A and the front traveling vehicle 2F. A modified traveling schedule is created by modifying the static traveling schedule of. More specifically, the traveling speed of the target traveling vehicle 2A from node b to node c is reduced so that the target traveling vehicle 2A does not catch up with and interfere with the front traveling vehicle 2F. At this time, the time interval between the time when the target traveling vehicle 2A passes through the node b and the time when the target traveling vehicle 2A reaches the node c in the static traveling schedule of the target traveling vehicle 2A corresponds to the static traveling cost of the link B. The time interval between the time when the target traveling vehicle 2A reaches the node c in the static traveling schedule of the target traveling vehicle 2A and the time when the target traveling vehicle 2A reaches the node c in the modified traveling schedule of the target traveling vehicle 2A. Corresponds to the delay cost of the link B in the situation of FIG. 22 (more specifically, the first delay cost Ti1). The created corrected traveling schedule of the target traveling vehicle 2A is such that the target traveling vehicle 2A interferes with the rear traveling vehicle 2R.
 図23は、後方走行車2RのリンクB内における走行スケジュールの修正を説明するための図である。図23に示されるように、対象走行車2Aの走行スケジュール(ここでは、修正走行スケジュール)と後方走行車2Rの静的走行スケジュールとに基づいて、対象走行車2Aと後方走行車2Rとの干渉を避けるように後方走行車2Rの静的走行スケジュールを修正した修正走行スケジュールが作成される。より具体的には、後方走行車2Rが対象走行車2Aに追いついて干渉しないように、後方走行車2Rのノードbからノードcまでの走行速度を低下させる。このとき、後方走行車2Rの静的走行スケジュールにおいて後方走行車2Rがノードcに到達する時刻と、後方走行車2Rの修正走行スケジュールにおいて後方走行車2Rがノードcに到達する時刻と、の時間間隔が、図23の状況におけるリンクBの遅延コスト(より詳しくは、第2遅延コストTi2)に相当する。そして、対象走行車2Aの静的走行スケジュールにおいて対象走行車2Aがノードbを通過する時刻と、後方走行車2Rの修正走行スケジュールにおいて後方走行車2Rがノードcに到達する時刻と、の時間間隔が、図23の状況における対象走行車2AのリンクBの総走行コストに相当する。つまり、ここでは、リンクBの総走行コストは、静的走行コストに第1遅延コストTi1及び第2遅延コストTi2を加算したコストである。 FIG. 23 is a diagram for explaining correction of a traveling schedule in the link B of the rear traveling vehicle 2R. As shown in FIG. 23, the interference between the target traveling vehicle 2A and the rear traveling vehicle 2R based on the traveling schedule of the target traveling vehicle 2A (here, the corrected traveling schedule) and the static traveling schedule of the rear traveling vehicle 2R. A modified traveling schedule is generated by modifying the static traveling schedule of the rear traveling vehicle 2R so as to avoid the following. More specifically, the traveling speed of the rear traveling vehicle 2R from the node b to the node c is reduced so that the rear traveling vehicle 2R does not catch up with and interfere with the target traveling vehicle 2A. At this time, the time when the rear traveling vehicle 2R reaches the node c in the static traveling schedule of the rear traveling vehicle 2R and the time when the rear traveling vehicle 2R reaches the node c in the modified traveling schedule of the rear traveling vehicle 2R. The interval corresponds to the delay cost (more specifically, the second delay cost Ti2) of the link B in the situation of FIG. The time interval between the time when the target traveling vehicle 2A passes through the node b in the static traveling schedule of the target traveling vehicle 2A and the time when the rear traveling vehicle 2R reaches the node c in the modified traveling schedule of the rear traveling vehicle 2R. Corresponds to the total traveling cost of the link B of the target traveling vehicle 2A in the situation of FIG. That is, here, the total travel cost of the link B is a cost obtained by adding the first delay cost Ti1 and the second delay cost Ti2 to the static travel cost.
 次に、走行車制御方法について説明する。走行車制御方法は、対象走行車2Aと走行要求との組合せについて、対象走行車2Aの現在位置から走行要求の目的地までの走行経路を選定する方法である。ここでは、一例として上述したコントローラ3を用いた走行車制御方法を説明する。 Next, the traveling vehicle control method will be described. The traveling vehicle control method is a method of selecting a traveling route from the current position of the target traveling vehicle 2A to the destination of the traveling request for the combination of the target traveling vehicle 2A and the traveling request. Here, a traveling vehicle control method using the above-described controller 3 will be described as an example.
 図24は、走行車制御方法を示すフローチャートである。図24のフローチャートは、例えば上位コントローラから走行要求が出力されたときに開始される。図24に示されるように、走行車制御方法では、ステップS21において、コントローラ3は、走行要求を取得する(取得ステップ)。より具体的には、取得部31により、上位コントローラから出力された走行要求が取得される。続いて、ステップS22において、コントローラ3は、複数のノード間を接続する複数のリンクの各々に関連付けられた静的走行コストに対して、対象走行車2Aと非対象走行車2Bとの関係による、対象走行車2A及び非対象走行車2Bの少なくとも1つがリンクを通過するのにかかる時間の増加量を示す遅延コストを算出する(算出ステップ)。続いて、ステップS23において、コントローラ3は、静的走行コストと遅延コストとに基づいて総走行コストをリンク毎に算出し、算出された総走行コストに基づいて、対象走行車2Aの現在位置から目的地までの複数の候補経路から走行経路を選定する(選定ステップ)。以上により、走行車制御方法の今回の処理が終了する。 FIG. 24 is a flowchart showing a traveling vehicle control method. The flowchart of FIG. 24 is started, for example, when a traveling request is output from a host controller. As shown in FIG. 24, in the traveling vehicle control method, in step S21, the controller 3 acquires a traveling request (acquisition step). More specifically, the acquisition unit 31 acquires the traveling request output from the upper controller. Subsequently, in step S22, the controller 3 determines, based on the relationship between the target traveling vehicle 2A and the non-target traveling vehicle 2B, the static traveling cost associated with each of the plurality of links connecting the plurality of nodes. A delay cost indicating an increase in time required for at least one of the target traveling vehicle 2A and the non-target traveling vehicle 2B to pass through the link is calculated (calculation step). Subsequently, in step S23, the controller 3 calculates the total traveling cost for each link based on the static traveling cost and the delay cost, and calculates the total traveling cost from the current position of the target traveling vehicle 2A based on the calculated total traveling cost. A traveling route is selected from a plurality of candidate routes to the destination (selection step). Thus, the current processing of the traveling vehicle control method ends.
 なお、上述した第1遅延コストTi1には、第1待機遅延コストと第1移載遅延コストとが含まれてもよい。また、上述した第2遅延コストTi2には、第2待機遅延コストと第2移載遅延コストとが含まれてもよい。以下、第1待機遅延コスト、第1移載遅延コスト、第2待機遅延コスト、及び第2移載遅延コストについて説明する。 The first delay cost Ti1 may include a first standby delay cost and a first transfer delay cost. Further, the above-described second delay cost Ti2 may include a second standby delay cost and a second transfer delay cost. Hereinafter, the first standby delay cost, the first transfer delay cost, the second standby delay cost, and the second transfer delay cost will be described.
 第1待機遅延コストとは、対象走行車2Aの搬送路4に沿った前方に位置する分岐合流部9において分岐又は合流しようとする前方走行車2Fが存在する場合に、当該前方走行車2Fが分岐合流部9から退出するまで対象走行車2Aが分岐合流部9の手前で待機することにより発生するコストである。第1待機遅延コストは、分岐合流部9に複数の走行車2が同時に進入することを排除する排他制御が実行されるために発生する。このように、算出部34は、走行車2の状態情報に基づいて、対象走行車2Aの搬送路4に沿った前方に位置する分岐合流部9において、対象走行車2Aと前方走行車2Fとの関係により対象走行車2Aが分岐合流部9の手前で待機する場合に、対象走行車2Aの待機時間を示す第1待機遅延コストを算出する。より詳細には、算出部34は、各走行車2の状態情報に基づいて対象走行車2Aの待機の要否を判定し、対象走行車2Aの待機が必要であると判定した場合には、各走行車2の状態情報に基づいて対象走行車2Aの待機時間を算出する。 The first waiting delay cost refers to a case where a front traveling vehicle 2F that is about to branch or join at a branching junction 9 located ahead of the target traveling vehicle 2A along the transport path 4 exists. This is the cost incurred when the target traveling vehicle 2A waits in front of the branch junction 9 until the vehicle 2A leaves the branch junction 9. The first standby delay cost occurs because an exclusive control is executed to exclude a plurality of traveling vehicles 2 from entering the branching junction 9 at the same time. As described above, the calculation unit 34 determines, based on the state information of the traveling vehicle 2, the target traveling vehicle 2 </ b> A and the forward traveling vehicle 2 </ b> F at the branching junction 9 located forward along the transport path 4 of the target traveling vehicle 2 </ b> A. When the target traveling vehicle 2A stands by before the branching junction 9 according to the relationship, the first standby delay cost indicating the standby time of the target traveling vehicle 2A is calculated. More specifically, the calculation unit 34 determines whether or not the standby of the target traveling vehicle 2A is necessary based on the state information of each traveling vehicle 2 and, when determining that the standby of the target traveling vehicle 2A is necessary, The standby time of the target traveling vehicle 2A is calculated based on the state information of each traveling vehicle 2.
 第1移載遅延コストとは、前方走行車2Fによる物品の移載により対象走行車2Aが前方走行車2Fによる移載位置の手前で待機することにより発生するコストである。第1移載遅延コストは、対象走行車2Aが走行している搬送路4の前方で移載のために停止している前方走行車2Fを当該対象走行車2Aが追い越すことができないために発生する。このように、算出部34は、走行車2の状態情報及び移載情報に基づいて、前方走行車2Fによる物品の移載により対象走行車2Aが前方走行車2Fによる移載位置の手前で待機する場合に、対象走行車2Aの待機時間を示す第1移載遅延コストを算出する。より詳細には、算出部34は、各走行車2の状態情報及び移載情報に基づいて対象走行車2Aの待機の要否を判定し、対象走行車2Aの待機が必要であると判定した場合には、各走行車2の状態情報及び移載情報に基づいて対象走行車2Aの待機時間を算出する。 The first transfer delay cost is a cost incurred when the target traveling vehicle 2A waits short of the transfer position by the front traveling vehicle 2F due to the transfer of an article by the front traveling vehicle 2F. The first transfer delay cost occurs because the target traveling vehicle 2A cannot pass the front traveling vehicle 2F that is stopped for the transportation in front of the transport path 4 on which the target traveling vehicle 2A is traveling. I do. As described above, the calculation unit 34 causes the target traveling vehicle 2A to stand by just before the transfer position by the front traveling vehicle 2F due to the transfer of the articles by the front traveling vehicle 2F based on the state information and the transfer information of the traveling vehicle 2. In this case, the first transfer delay cost indicating the standby time of the target traveling vehicle 2A is calculated. More specifically, the calculation unit 34 determines whether the standby of the target traveling vehicle 2A is necessary based on the state information and the transfer information of each traveling vehicle 2 and determines that the standby of the target traveling vehicle 2A is necessary. In this case, the standby time of the target traveling vehicle 2A is calculated based on the state information and the transfer information of each traveling vehicle 2.
 第2待機遅延コストとは、対象走行車2Aが分岐合流部9において分岐又は合流しようとする場合に、当該対象走行車2Aが分岐合流部9から退出するまで後方走行車2Rが分岐合流部9の手前で待機することにより発生するコストである。第2待機遅延コストは、分岐合流部9に複数の走行車2が同時に進入することを排除する排他制御が実行されるために発生する。このように、算出部34は、走行車2の状態情報に基づいて、対象走行車2Aの搬送路4に沿った前方に位置する分岐合流部9において、対象走行車2Aと後方走行車2Rとの関係により後方走行車2Rが分岐合流部9の手前で待機する場合に、後方走行車2Rの待機時間を示す第2待機遅延コストを算出する。より詳細には、算出部34は、各走行車2の状態情報に基づいて後方走行車2Rの待機の要否を判定し、後方走行車2Rの待機が必要であると判定した場合には、各走行車2の状態情報に基づいて後方走行車2Rの待機時間を算出する。 The second waiting delay cost means that when the target traveling vehicle 2A is about to branch or merge at the branching junction 9, the rear traveling vehicle 2R is connected to the branch junction 9 until the target traveling vehicle 2A leaves the branching junction 9. This is the cost incurred by waiting in front of the server. The second standby delay cost is generated because exclusive control is executed to exclude a plurality of traveling vehicles 2 from entering the branching junction 9 at the same time. As described above, the calculation unit 34 determines, based on the state information of the traveling vehicle 2, that the target traveling vehicle 2 </ b> A and the rear traveling vehicle 2 </ b> R at the branching junction 9 located forward along the transport path 4 of the target traveling vehicle 2 </ b> A. When the rear traveling vehicle 2R stands by before the branching junction 9, the second standby delay cost indicating the standby time of the rear traveling vehicle 2R is calculated according to the relationship. More specifically, the calculation unit 34 determines whether or not the waiting of the rear traveling vehicle 2R is necessary based on the state information of each traveling vehicle 2 and, when determining that the standby of the rear traveling vehicle 2R is necessary, The standby time of the rear traveling vehicle 2R is calculated based on the state information of each traveling vehicle 2.
 第2移載遅延コストとは、対象走行車2Aによる物品の移載により後方走行車2Rが対象走行車2Aによる移載位置の手前で待機することにより発生するコストである。第2移載遅延コストは、後方走行車2Rが走行している搬送路4の前方で移載のために停止している対象走行車2Aを当該後方走行車2Rが追い越すことができないために発生する。このように、算出部34は、走行車2の状態情報及び移載情報に基づいて、対象走行車2Aによる物品の移載により後方走行車2Rが対象走行車2Aによる移載位置の手前で待機する場合に、後方走行車2Rの待機時間を示す第2移載遅延コストを算出する。より詳細には、算出部34は、各走行車2の状態情報及び移載情報に基づいて後方走行車2Rの待機の要否を判定し、後方走行車2Rの待機が必要であると判定した場合には、各走行車2の状態情報及び移載情報に基づいて後方走行車2Rの待機時間を算出する。 The second transfer delay cost is a cost incurred when the rear traveling vehicle 2R waits short of the transfer position of the target traveling vehicle 2A due to the transfer of an article by the target traveling vehicle 2A. The second transfer delay cost occurs because the rear traveling vehicle 2R cannot overtake the target traveling vehicle 2A stopped for the transportation in front of the transport path 4 on which the rear traveling vehicle 2R is traveling. I do. As described above, the calculation unit 34 causes the rear traveling vehicle 2R to stand by just before the transfer position by the target traveling vehicle 2A due to the transfer of articles by the target traveling vehicle 2A based on the state information and the transfer information of the traveling vehicle 2. In this case, the second transfer delay cost indicating the standby time of the rear traveling vehicle 2R is calculated. More specifically, the calculation unit 34 determines whether or not the rear traveling vehicle 2R needs to wait based on the state information and the transfer information of each traveling vehicle 2, and determines that the rear traveling vehicle 2R needs to wait. In this case, the standby time of the rear traveling vehicle 2R is calculated based on the state information and the transfer information of each traveling vehicle 2.
 以上説明したように、コントローラ3は、搬送路4に沿って走行する複数の走行車2のうちの1つの走行車2である対象走行車2Aと、予め設定された目的地への移動の要求を含む走行要求と、の組合せについて、対象走行車2Aの現在位置から目的地までの走行経路を選定するコントローラ3であって、走行要求を取得する取得部31と、搬送路4において、対象走行車2Aが走行可能なエリアに含まれる特定の地点をそれぞれ示す複数のノードと、ノード間を接続する複数のリンクと、リンク毎に関連付けられた、走行車2がリンクを通過するのにかかる時間を示す静的走行コストと、を含むマップ情報を記憶する記憶部32と、対象走行車2Aと対象走行車2A以外の走行車2である非対象走行車2Bとの関係による、当該対象走行車2A及び当該非対象走行車2Bの少なくとも1つがリンクを通過するのにかかる時間の増加量を示す遅延コストを算出する算出部34と、静的走行コストと遅延コストとに基づいて総走行コストをリンク毎に算出し、算出された総走行コストに基づいて、対象走行車2Aの現在位置から目的地までの複数の候補経路から走行経路を選定する選定部35と、を備える。 As described above, the controller 3 requests the target traveling vehicle 2A, which is one of the traveling vehicles 2 traveling along the transport path 4, to move to the preset destination. The controller 3 selects a traveling route from the current position of the target traveling vehicle 2A to the destination with respect to a combination of the traveling request including the traveling request. A plurality of nodes respectively indicating specific points included in the area where the car 2A can travel, a plurality of links connecting the nodes, and a time required for the traveling vehicle 2 to pass through the link, which is associated with each link. And a storage unit 32 for storing map information including a static traveling cost indicating the target traveling vehicle 2A and a non-target traveling vehicle 2B that is a traveling vehicle 2 other than the target traveling vehicle 2A. A calculating unit that calculates a delay cost indicating an increase in a time required for at least one of the vehicle 2A and the non-target traveling vehicle 2B to pass through the link; and a total traveling cost based on the static traveling cost and the delay cost. A selection unit 35 that calculates a traveling route from a plurality of candidate routes from the current position of the target traveling vehicle 2A to the destination based on the calculated total traveling cost and the calculated total traveling cost.
 このコントローラ3では、リンク毎に関連付けられた固有の静的走行コストだけでなく、対象走行車2Aと非対象走行車2Bとの関係による、当該対象走行車2A及び当該非対象走行車2Bの少なくとも1つがリンクを通過するのにかかる時間の増加量を示す遅延コストを考慮して、リンク毎に総走行コストが算出される。そして、算出された総走行コストに基づいて、複数の候補経路から走行経路が選定される。このため、走行車2同士の関係により当該走行車2の走行が妨げられる場合を考慮して、対象走行車2Aが走行要求の目的地までより効率的に走行することができる候補経路を走行経路として選定することができる。よって、このコントローラ3によれば、対象走行車2Aの走行経路をより適切に選定することが可能になる。 The controller 3 determines at least the target traveling vehicle 2A and the non-target traveling vehicle 2B based on the relationship between the target traveling vehicle 2A and the non-target traveling vehicle 2B as well as the unique static traveling cost associated with each link. The total running cost is calculated for each link in consideration of the delay cost indicating the amount of time required for one to pass through the link. Then, a traveling route is selected from the plurality of candidate routes based on the calculated total traveling cost. Therefore, in consideration of the case where the traveling of the traveling vehicle 2 is hindered by the relationship between the traveling vehicles 2, the candidate route that allows the target traveling vehicle 2A to travel more efficiently to the destination of the traveling request is determined as the traveling route. Can be selected as Therefore, according to the controller 3, it is possible to more appropriately select the traveling route of the target traveling vehicle 2A.
 また、コントローラ3では、選定部35は、静的走行コストと遅延コストとの総和である総走行コストをリンク毎に算出し、複数の候補経路のうち当該候補経路に含まれるリンクの総走行コストの総和が最小となる候補経路を走行経路として選定する。これにより、このコントローラ3では、静的走行コストと遅延コストとの総和である総走行コストが算出されるため、総走行コストを簡便な処理で算出することができる。また、このコントローラ3では、複数の候補経路のうち当該候補経路に含まれるリンクの総走行コストの総和が最小となる候補経路が走行経路として選定される。これにより、対象走行車2Aが走行要求の目的地まで特に効率的に走行することができる候補経路を走行経路として選定することができる。 Further, in the controller 3, the selection unit 35 calculates a total traveling cost, which is a sum of the static traveling cost and the delay cost, for each link, and calculates a total traveling cost of a link included in the candidate route among the plurality of candidate routes. Is selected as a traveling route that minimizes the sum of As a result, the controller 3 calculates the total traveling cost, which is the sum of the static traveling cost and the delay cost, so that the total traveling cost can be calculated by simple processing. The controller 3 selects a candidate route that minimizes the sum of the total travel costs of the links included in the candidate route among the plurality of candidate routes as the travel route. As a result, a candidate route that allows the target traveling vehicle 2A to travel particularly efficiently to the destination requested for traveling can be selected as a traveling route.
 また、コントローラ3では、遅延コストは、対象走行車2Aの搬送路4に沿った前方の非対象走行車2Bである前方走行車2Fの影響による、対象走行車2Aがリンクを通過するのにかかる時間の増加量を示す第1遅延コストTi1を含む。これにより、このコントローラ3では、前方走行車2Fの影響により対象走行車2Aがリンクを通過するのにかかる時間が増加する量を遅延コストに反映させることで、走行車2が当該リンクを通過するのにかかる時間を適切に見積もることが可能となる。よって、対象走行車2Aの走行経路をより適切に選定することができる。 In the controller 3, the delay cost is caused by the target traveling vehicle 2A passing through the link due to the influence of the front traveling vehicle 2F which is the non-target traveling vehicle 2B ahead of the target traveling vehicle 2A along the transport path 4. A first delay cost Ti1 indicating the amount of increase in time is included. Accordingly, the controller 3 reflects the amount of time required for the target traveling vehicle 2A to pass through the link due to the influence of the preceding traveling vehicle 2F in the delay cost, so that the traveling vehicle 2 passes through the link. Can be estimated appropriately. Therefore, the traveling route of the target traveling vehicle 2A can be more appropriately selected.
 また、コントローラ3は、複数の走行車2のそれぞれについて、将来の各時刻での当該走行車2の位置に関する走行スケジュールを作成する計画部33を備え、計画部33は、対象走行車2Aと非対象走行車2Bとの関係を考慮しない走行車2の走行スケジュールである静的走行スケジュールを作成し、対象走行車2Aの静的走行スケジュールと前方走行車2Fの走行スケジュールとに基づいて、対象走行車2Aと前方走行車2Fとの干渉を避けるように対象走行車2Aの静的走行スケジュールを修正した修正走行スケジュールを作成し、算出部34は、対象走行車2Aの静的走行スケジュールと対象走行車2Aの修正走行スケジュールとに基づいて第1遅延コストTi1を算出する。これにより、このコントローラ3では、対象走行車2Aと前方走行車2Fとの干渉の影響を考慮して、対象走行車2Aの走行経路をより適切に選定することができる。 In addition, the controller 3 includes a planning unit 33 that creates a traveling schedule for each of the plurality of traveling vehicles 2 at a future time at a position of the traveling vehicle 2. A static traveling schedule, which is a traveling schedule of the traveling vehicle 2 that does not consider the relationship with the target traveling vehicle 2B, is created, and the target traveling is performed based on the static traveling schedule of the target traveling vehicle 2A and the traveling schedule of the forward traveling vehicle 2F. A corrected traveling schedule is created by modifying the static traveling schedule of the target traveling vehicle 2A so as to avoid interference between the vehicle 2A and the traveling vehicle 2F, and the calculation unit 34 calculates the static traveling schedule and the target traveling of the target traveling vehicle 2A. The first delay cost Ti1 is calculated based on the corrected travel schedule of the vehicle 2A. Thus, the controller 3 can more appropriately select the traveling route of the target traveling vehicle 2A in consideration of the influence of interference between the target traveling vehicle 2A and the front traveling vehicle 2F.
 また、コントローラ3は、複数の走行車2から当該走行車2の現在位置及び走行速度に関する状態情報を所定のタイミングで受信する通信部37を備え、ノードは、搬送路4が分岐又は合流する地点である分岐合流部9を含み、算出部34は、走行車2の状態情報に基づいて、対象走行車2Aの搬送路4に沿った前方に位置する分岐合流部9において、対象走行車2Aと前方走行車2Fとの関係により対象走行車2Aが分岐合流部9の手前で待機する場合に、対象走行車2Aの待機時間を示す第1待機遅延コストを算出し、第1遅延コストTi1は、第1待機遅延コストを含む。これにより、このコントローラ3では、対象走行車2Aが走行している搬送路4に対して分岐又は合流しようとする前方走行車2Fとの干渉を避けるために対象走行車2Aが分岐合流部9の手前で待機する制御を実行する場合において、対象走行車2Aの走行経路をより適切に選定することができる。 Further, the controller 3 includes a communication unit 37 that receives state information on the current position and the traveling speed of the traveling vehicle 2 from the plurality of traveling vehicles 2 at a predetermined timing. The node is located at a point where the transport path 4 branches or merges. The calculation unit 34 includes, based on the state information of the traveling vehicle 2, the branching junction 9 located in front of the target traveling vehicle 2 </ b> A along the transport path 4 and the target traveling vehicle 2 </ b> A. When the target traveling vehicle 2A stands by before the branch junction 9 due to the relationship with the forward traveling vehicle 2F, a first standby delay cost indicating a standby time of the target traveling vehicle 2A is calculated, and the first delay cost Ti1 is Including the first waiting delay cost. Thereby, in the controller 3, the target traveling vehicle 2 </ b> A is connected to the branch junction 9 in order to avoid interference with the forward traveling vehicle 2 </ b> F that is about to branch or join the transport path 4 on which the target traveling vehicle 2 </ b> A is traveling. In the case of executing the control of waiting in front, the traveling route of the target traveling vehicle 2A can be more appropriately selected.
 また、コントローラ3では、走行車2は、物品の搬送及び移載を行う無人搬送車であり、複数の走行車2から、当該走行車2の現在位置及び走行速度に関する状態情報と、当該走行車2が物品の移載を行う移載位置、時刻、及び所要時間に関する移載情報と、を所定のタイミングで受信する通信部37を備え、算出部34は、走行車2の状態情報及び移載情報に基づいて、前方走行車2Fによる物品の移載により対象走行車2Aが前方走行車2Fによる移載位置の手前で待機する場合に、対象走行車2Aの待機時間を示す第1移載遅延コストを算出し、第1遅延コストTi1は、第1移載遅延コストを含む。これにより、このコントローラ3では、物品の移載を行う前方走行車2Fとの干渉を避けるために対象走行車2Aが移載位置の手前で待機する制御を実行する場合において、対象走行車2Aの走行経路をより適切に選定することができる。 In the controller 3, the traveling vehicle 2 is an unmanned transport vehicle that transports and transfers articles, and from the plurality of traveling vehicles 2, state information on the current position and traveling speed of the traveling vehicle 2 and the traveling vehicle 2 2 includes a communication unit 37 that receives, at a predetermined timing, transfer information on a transfer position, a time, and a required time at which an article is transferred. A first transfer delay indicating a standby time of the target traveling vehicle 2A when the target traveling vehicle 2A stands by before the transfer position by the front traveling vehicle 2F due to the transfer of an article by the front traveling vehicle 2F based on the information. The cost is calculated, and the first delay cost Ti1 includes the first transfer delay cost. Accordingly, in the case where the target traveling vehicle 2A executes a control to wait in front of the transfer position in order to avoid interference with the forward traveling vehicle 2F that transfers the articles, the controller 3 performs control of the target traveling vehicle 2A. The traveling route can be more appropriately selected.
 また、コントローラ3では、遅延コストは、対象走行車2Aの影響による、対象走行車2Aの搬送路4に沿った後方の非対象走行車2Bである後方走行車2Rがリンクを通過するのにかかる時間の増加量を示す第2遅延コストTi2を含む。これにより、このコントローラ3では、対象走行車2Aの影響により後方走行車2Rがリンクを通過するのにかかる時間が増加する量を遅延コストに反映させることで、対象走行車2Aが他の走行車2の走行に与える影響を考慮することができる。よって、対象走行車2Aの走行経路をより適切に選定することができる。 In the controller 3, the delay cost is due to the rear traveling vehicle 2R, which is a non-target traveling vehicle 2B behind the target traveling vehicle 2A along the transport path 4 due to the influence of the target traveling vehicle 2A, passing through the link. A second delay cost Ti2 indicating the amount of increase in time is included. Accordingly, the controller 3 reflects the increase in the time required for the rear traveling vehicle 2R to pass through the link due to the influence of the target traveling vehicle 2A in the delay cost, so that the target traveling vehicle 2A can be used as another traveling vehicle. 2 can be considered. Therefore, the traveling route of the target traveling vehicle 2A can be more appropriately selected.
 また、コントローラ3は、複数の走行車2のそれぞれについて、将来の各時刻での当該走行車2の位置に関する走行スケジュールを作成する計画部33を備え、計画部33は、対象走行車2Aと非対象走行車2Bとの関係を考慮しない走行車2の走行スケジュールである静的走行スケジュールを作成し、対象走行車2Aの走行スケジュールと後方走行車2Rの静的走行スケジュールとに基づいて、対象走行車2Aと後方走行車2Rとの干渉を避けるように後方走行車2Rの静的走行スケジュールを修正した修正走行スケジュールを作成し、算出部34は、後方走行車2Rの静的走行スケジュールと後方走行車2Rの修正走行スケジュールとに基づいて第2遅延コストTi2を算出する。これにより、このコントローラ3では、対象走行車2Aと後方走行車2Rとの干渉の影響を考慮して、対象走行車2Aの走行経路をより適切に選定することができる。 In addition, the controller 3 includes a planning unit 33 that creates a traveling schedule for each of the plurality of traveling vehicles 2 at a future time at a position of the traveling vehicle 2. A static traveling schedule, which is a traveling schedule of the traveling vehicle 2 that does not consider the relationship with the target traveling vehicle 2B, is created, and the target traveling is performed based on the traveling schedule of the target traveling vehicle 2A and the static traveling schedule of the rear traveling vehicle 2R. A modified traveling schedule is created by modifying the static traveling schedule of the rear traveling vehicle 2R so as to avoid interference between the vehicle 2A and the rear traveling vehicle 2R. The second delay cost Ti2 is calculated based on the corrected traveling schedule of the vehicle 2R. Thus, the controller 3 can more appropriately select the traveling route of the target traveling vehicle 2A in consideration of the influence of interference between the target traveling vehicle 2A and the rear traveling vehicle 2R.
 また、コントローラ3は、複数の走行車2から当該走行車2の現在位置及び走行速度に関する状態情報を所定のタイミングで受信する通信部37を備え、ノードは、搬送路4が分岐又は合流する地点である分岐合流部9を含み、算出部34は、走行車2の状態情報に基づいて、対象走行車2Aの搬送路4に沿った前方に位置する分岐合流部9において、対象走行車2Aと後方走行車2Rとの関係により後方走行車2Rが分岐合流部9の手前で待機する場合に、後方走行車2Rの待機時間を示す第2待機遅延コストを算出し、第2遅延コストTi2は、第2待機遅延コストを含む。これにより、このコントローラ3では、対象走行車2Aが走行している搬送路4に対して分岐又は合流しようとする後方走行車2Rとの干渉を避けるために後方走行車2Rが分岐合流部9の手前で待機する制御を実行する場合において、対象走行車2Aの走行経路をより適切に選定することができる。 Further, the controller 3 includes a communication unit 37 that receives state information on the current position and the traveling speed of the traveling vehicle 2 from the plurality of traveling vehicles 2 at a predetermined timing. The node is located at a point where the transport path 4 branches or merges. The calculation unit 34 includes, based on the state information of the traveling vehicle 2, the branching junction 9 located in front of the target traveling vehicle 2 </ b> A along the transport path 4 and the target traveling vehicle 2 </ b> A. When the rear traveling vehicle 2R stands by before the branching junction 9 due to the relationship with the rear traveling vehicle 2R, a second standby delay cost indicating a standby time of the rear traveling vehicle 2R is calculated, and the second delay cost Ti2 is Including the second waiting delay cost. Thus, in the controller 3, the rear traveling vehicle 2R is connected to the branch junction 9 in order to avoid interference with the rear traveling vehicle 2R that is about to branch or merge with the transport path 4 on which the target traveling vehicle 2A is traveling. In the case of executing the control of waiting in front, the traveling route of the target traveling vehicle 2A can be more appropriately selected.
 また、コントローラ3では、走行車2は、物品の搬送及び移載を行う無人搬送車であり、複数の走行車2から、当該走行車2の現在位置及び走行速度に関する状態情報と、当該走行車2が物品の移載を行う移載位置、時刻、及び所要時間に関する移載情報と、を所定のタイミングで受信する通信部37を備え、算出部34は、走行車2の状態情報及び移載情報に基づいて、対象走行車2Aによる物品の移載により後方走行車2Rが対象走行車2Aによる移載位置の手前で待機する場合に、後方走行車2Rの待機時間を示す第2移載遅延コストを算出し、第2遅延コストTi2は、第2移載遅延コストを含む。これにより、このコントローラ3では、物品の移載を行う対象走行車2Aとの干渉を避けるために後方走行車2Rが移載位置の手前で待機する制御を実行する場合において、対象走行車2Aの走行経路をより適切に選定することができる。 In the controller 3, the traveling vehicle 2 is an unmanned transport vehicle that transports and transfers articles, and from the plurality of traveling vehicles 2, state information on the current position and traveling speed of the traveling vehicle 2 and the traveling vehicle 2 2 includes a communication unit 37 that receives, at a predetermined timing, transfer information on a transfer position, a time, and a required time at which an article is transferred. Based on the information, when the rear traveling vehicle 2R waits in front of the transfer position of the target traveling vehicle 2A due to the transfer of the article by the target traveling vehicle 2A, a second transfer delay indicating the standby time of the rear traveling vehicle 2R. The cost is calculated, and the second delay cost Ti2 includes the second transfer delay cost. Accordingly, in the case where the controller 3 executes a control in which the rear traveling vehicle 2R waits in front of the transfer position in order to avoid interference with the target traveling vehicle 2A for transferring articles, the controller 3 The traveling route can be more appropriately selected.
 また、コントローラ3では、取得部31は、複数の走行要求を取得して蓄積し、選定部35は、対象走行車2Aとしての複数の走行車2のそれぞれと、取得部31により蓄積された複数の走行要求のそれぞれと、の組合せ毎に走行経路を選定し、組合せ毎に選定された走行経路にそれぞれ対応する総走行コストに基づいて、複数の走行要求のそれぞれに1つの走行車2を対応付けたペアリング情報を導出する導出部36を備える。これにより、このコントローラ3では、複数の走行要求が一旦蓄積された後に、当該複数の走行要求のそれぞれに対して走行車2を1対1に対応付けたペアリング情報が導出される。このため、単一の走行要求だけでなく複数の走行要求間の相互の影響を考慮して、複数の走行要求のそれぞれに対する走行車2の対応付け(割り付け)を行うことが可能となる。したがって、このコントローラ3では、1つの走行要求が発生する毎に当該走行要求に対する走行車2の割り付けを行う場合と比較して、走行車2に対して走行要求をより適切に割り付けることが可能となる。 In the controller 3, the acquiring unit 31 acquires and accumulates a plurality of traveling requests, and the selecting unit 35 computes each of the traveling vehicles 2 as the target traveling vehicle 2 </ b> A and the plurality of traveling requests accumulated by the acquiring unit 31. A traveling route is selected for each of the traveling requests and the combination of the traveling requests, and one traveling vehicle 2 is corresponded to each of the plurality of traveling requests based on the total traveling cost corresponding to the traveling route selected for each combination. A deriving unit 36 for deriving the attached pairing information is provided. Thus, in the controller 3, after a plurality of traveling requests are once accumulated, pairing information in which the traveling vehicle 2 is associated with each of the plurality of traveling requests on a one-to-one basis is derived. For this reason, it is possible to associate (assign) the traveling vehicle 2 with each of the plurality of traveling requests in consideration of not only a single traveling request but also the mutual influence between the plurality of traveling requests. Therefore, the controller 3 can more appropriately allocate the traveling request to the traveling vehicle 2 as compared with the case where the traveling vehicle 2 is assigned to the traveling request each time one traveling request is generated. Become.
 また、走行車システム1は、上述したコントローラ3と、搬送路4と、搬送路4に沿って走行可能な複数の走行車2と、を含む。この走行車システム1は上述したコントローラ3を含んでいるため、この走行車システム1では、上述した理由により、対象走行車2Aの走行経路をより適切に選定することが可能となる。 The traveling vehicle system 1 includes the controller 3 described above, a transport path 4, and a plurality of traveling vehicles 2 that can travel along the transport path 4. Since the traveling vehicle system 1 includes the above-described controller 3, the traveling vehicle system 1 can more appropriately select the traveling route of the target traveling vehicle 2A for the above-described reason.
 また、上述した走行車制御方法は、取得ステップと、算出ステップと、選定ステップと、を含むことにより、上述したコントローラ3と同様の作用及び効果を奏することができる。 走 行 In addition, the above-described traveling vehicle control method includes the acquisition step, the calculation step, and the selection step, so that the same operation and effect as the above-described controller 3 can be achieved.
 上述した実施形態は、当業者の知識に基づいて種々の変更、改良を施した様々な形態で実施することができる。 The embodiments described above can be implemented in various forms with various changes and improvements based on the knowledge of those skilled in the art.
 例えば、走行要求は、予め設定された目的地への移動の要求を含む要求であればよく、物品を搬送する搬送要求でなくてもよい。 For example, the travel request may be a request including a request for moving to a preset destination, and may not be a transport request for transporting articles.
 また、選定部35は、総走行コストを、静的走行コストと遅延コストとの総和として算出しなくてもよい。例えば、選定部35は、静的走行コストと、遅延コストを予め設定された基準で重みづけしたコストと、の総和として総走行コストを算出してもよい。また、選定部35は、複数の候補経路のうち総走行コストが最小となる候補経路を走行経路として選定しなくてもよい。 The selection unit 35 does not need to calculate the total travel cost as the sum of the static travel cost and the delay cost. For example, the selection unit 35 may calculate the total traveling cost as the sum of the static traveling cost and the cost obtained by weighting the delay cost based on a preset reference. In addition, the selecting unit 35 does not have to select a candidate route having the smallest total traveling cost among the plurality of candidate routes as the traveling route.
 なお、遅延コストは、第1遅延コストTi1を含まなくてもよい。また、遅延コストは、第2遅延コストTi2を含まなくてもよい。 The delay cost does not have to include the first delay cost Ti1. Further, the delay cost may not include the second delay cost Ti2.
 また、算出部34は、必ずしも計画部33により作成された走行スケジュールに基づいて遅延コストを算出しなくてもよい。例えば、算出部34は、走行車2の過去の走行履歴に基づいて統計的に遅延コストを算出してもよい。例えば、算出部34は、各リンクについて、過去に走行車2が当該リンクを通過するのにかかる時間が静的走行コストに対して増加した量に基づいて、当該リンクの遅延コストを算出してもよい。より具体的には、各リンクについて、過去に走行車2が当該リンクを通過するのにかかる時間が静的走行コストに対して増加した量の平均値を、当該リンクの遅延コストとしてもよい。この場合、コントローラ3は、計画部33を備えていなくてもよい。 算出 Also, the calculating unit 34 does not necessarily need to calculate the delay cost based on the traveling schedule created by the planning unit 33. For example, the calculation unit 34 may statistically calculate the delay cost based on the past traveling history of the traveling vehicle 2. For example, for each link, the calculation unit 34 calculates the delay cost of the link based on the amount of time required for the traveling vehicle 2 to pass through the link in the past relative to the static travel cost. Is also good. More specifically, for each link, the average value of the amount of time required for the traveling vehicle 2 to pass through the link in the past to the static traveling cost may be set as the delay cost of the link. In this case, the controller 3 may not include the planning unit 33.
 また、第1遅延コストTi1は、第1待機遅延コストを含まなくてもよい。また、第1遅延コストTi1は、第1移載遅延コストを含まなくてもよい。また、第2遅延コストTi2は、第2待機遅延コストを含まなくてもよい。また、第2遅延コストT12は、第2移載遅延コストを含まなくてもよい。 The first delay cost Ti1 may not include the first standby delay cost. Further, the first delay cost Ti1 may not include the first transfer delay cost. The second delay cost Ti2 may not include the second standby delay cost. Further, the second delay cost T12 may not include the second transfer delay cost.
 また、コントローラ3は、取得部31により1つの走行要求を取得し、選定部35により1つの対象走行車2Aと当該走行要求との組合せのみについて走行経路を選定してもよい。この場合、コントローラ3は、複数の走行要求のそれぞれに1つの走行車2を対応付けたペアリング情報を導出しなくてもよい。すなわち、コントローラ3は、導出部36を備えていなくてもよい。 Alternatively, the controller 3 may acquire one traveling request by the acquiring unit 31 and select a traveling route for only the combination of one target traveling vehicle 2A and the traveling request by the selecting unit 35. In this case, the controller 3 need not derive pairing information in which one traveling vehicle 2 is associated with each of the plurality of traveling requests. That is, the controller 3 may not include the deriving unit 36.
 また、上記実施形態では、走行車2によって搬送される物品(被搬送物)として、複数の半導体ウェハが収容されたFOUPを例示したが、物品はこれに限定されず、例えば、ガラスウェハ、レチクル等が収容されたその他の容器であってもよい。また、走行車システム1は、半導体製造工場に限定されず、その他の施設にも適用可能である。 Further, in the above-described embodiment, the FOUP accommodating a plurality of semiconductor wafers is exemplified as the article (transported article) conveyed by the traveling vehicle 2, but the article is not limited to this, and for example, a glass wafer, a reticle It may be another container in which etc. are stored. In addition, the traveling vehicle system 1 is not limited to a semiconductor manufacturing plant, and can be applied to other facilities.
 1…走行車システム、2…走行車、2A…対象走行車、2B…非対象走行車、2F…前方走行車、2R…後方走行車、3…コントローラ(走行車制御装置)、4…搬送路、9…分岐合流部、31…取得部、32…記憶部、33…計画部、34…算出部、35…選定部、36…導出部、37…通信部。 DESCRIPTION OF SYMBOLS 1 ... Traveling vehicle system, 2 ... Traveling vehicle, 2A ... Target traveling vehicle, 2B ... Non-target traveling vehicle, 2F ... Forward traveling vehicle, 2R ... Rear traveling vehicle, 3 ... Controller (traveling vehicle control device), 4 ... Transport path , 9: branching and joining section, 31: acquisition section, 32: storage section, 33: planning section, 34: calculation section, 35: selection section, 36: derivation section, 37: communication section.

Claims (13)

  1.  搬送路に沿って走行する複数の走行車のうちの1つの走行車である対象走行車と、予め設定された目的地への移動の要求を含む走行要求と、の組合せについて、前記対象走行車の現在位置から前記目的地までの走行経路を選定する走行車制御装置であって、
     前記走行要求を取得する取得部と、
     前記搬送路において、前記対象走行車が走行可能なエリアに含まれる特定の地点をそれぞれ示す複数のノードと、前記ノード間を接続する複数のリンクと、前記リンク毎に関連付けられた、前記走行車が前記リンクを通過するのにかかる時間を示す静的走行コストと、を含むマップ情報を記憶する記憶部と、
     前記対象走行車と前記対象走行車以外の前記走行車である非対象走行車との関係による、当該対象走行車及び当該非対象走行車の少なくとも1つが前記リンクを通過するのにかかる時間の増加量を示す遅延コストを算出する算出部と、
     前記静的走行コストと前記遅延コストとに基づいて総走行コストを前記リンク毎に算出し、算出された前記総走行コストに基づいて、前記対象走行車の現在位置から前記目的地までの複数の候補経路から前記走行経路を選定する選定部と、を備える、走行車制御装置。
    The combination of a target traveling vehicle, which is one of a plurality of traveling vehicles traveling along the transport path, and a traveling request including a request to move to a preset destination, A traveling vehicle control device that selects a traveling route from the current position of the vehicle to the destination,
    An acquisition unit that acquires the traveling request;
    A plurality of nodes respectively indicating specific points included in an area where the target traveling vehicle can travel on the transport path, a plurality of links connecting the nodes, and the traveling vehicle associated with each of the links. A storage unit that stores map information including a static traveling cost indicating a time required to pass through the link,
    Increase in time required for at least one of the target traveling vehicle and the non-target traveling vehicle to pass through the link due to a relationship between the target traveling vehicle and the non-target traveling vehicle that is the traveling vehicle other than the target traveling vehicle. A calculating unit for calculating a delay cost indicating the amount;
    A total traveling cost is calculated for each link based on the static traveling cost and the delay cost, and a plurality of traveling distances from the current position of the target traveling vehicle to the destination are calculated based on the calculated total traveling cost. A selection unit that selects the travel route from the candidate routes.
  2.  前記選定部は、前記静的走行コストと前記遅延コストとの総和である前記総走行コストを前記リンク毎に算出し、複数の前記候補経路のうち当該候補経路に含まれる前記リンクの前記総走行コストの総和が最小となる前記候補経路を前記走行経路として選定する、請求項1に記載の走行車制御装置。 The selecting unit calculates, for each of the links, the total traveling cost that is a sum of the static traveling cost and the delay cost, and calculates the total traveling of the link included in the candidate route among the plurality of candidate routes. The traveling vehicle control device according to claim 1, wherein the candidate route that minimizes the total cost is selected as the traveling route.
  3.  前記遅延コストは、前記対象走行車の前記搬送路に沿った前方の前記非対象走行車である前方走行車の影響による、前記対象走行車が前記リンクを通過するのにかかる時間の増加量を示す第1遅延コストを含む、請求項1又は2に記載の走行車制御装置。 The delay cost is an increase amount of time required for the target traveling vehicle to pass through the link due to an influence of a front traveling vehicle that is the non-target traveling vehicle ahead of the target traveling vehicle along the transport path. The traveling vehicle control device according to claim 1, wherein the traveling vehicle control device includes a first delay cost indicated.
  4.  複数の前記走行車のそれぞれについて、将来の各時刻での当該走行車の位置に関する走行スケジュールを作成する計画部を備え、
     前記計画部は、
      前記対象走行車と前記非対象走行車との関係を考慮しない前記走行車の走行スケジュールである静的走行スケジュールを作成し、
      前記対象走行車の前記静的走行スケジュールと前記前方走行車の前記走行スケジュールとに基づいて、前記対象走行車と前記前方走行車との干渉を避けるように前記対象走行車の前記静的走行スケジュールを修正した修正走行スケジュールを作成し、
     前記算出部は、前記対象走行車の前記静的走行スケジュールと前記対象走行車の前記修正走行スケジュールとに基づいて前記第1遅延コストを算出する、請求項3に記載の走行車制御装置。
    For each of the plurality of traveling vehicles, comprising a planning unit that creates a traveling schedule related to the position of the traveling vehicle at each future time,
    The planning unit comprises:
    Create a static traveling schedule that is a traveling schedule of the traveling vehicle that does not consider the relationship between the target traveling vehicle and the non-target traveling vehicle,
    The static traveling schedule of the target traveling vehicle based on the static traveling schedule of the target traveling vehicle and the traveling schedule of the preceding traveling vehicle so as to avoid interference between the target traveling vehicle and the preceding traveling vehicle. Create a corrected travel schedule with the
    The traveling vehicle control device according to claim 3, wherein the calculation unit computes the first delay cost based on the static traveling schedule of the target traveling vehicle and the corrected traveling schedule of the target traveling vehicle.
  5.  複数の前記走行車から当該走行車の現在位置及び走行速度に関する状態情報を所定のタイミングで受信する通信部を備え、
     前記ノードは、前記搬送路が分岐又は合流する地点である分岐合流部を含み、
     前記算出部は、前記走行車の前記状態情報に基づいて、前記対象走行車の前記搬送路に沿った前方に位置する前記分岐合流部において、前記対象走行車と前記前方走行車との関係により前記対象走行車が前記分岐合流部の手前で待機する場合に、前記対象走行車の待機時間を示す第1待機遅延コストを算出し、
     前記第1遅延コストは、前記第1待機遅延コストを含む、請求項3又は4に記載の走行車制御装置。
    A communication unit that receives status information on the current position and the traveling speed of the traveling vehicle from the plurality of traveling vehicles at a predetermined timing,
    The node includes a branch junction where the transport path branches or merges,
    The calculation unit is based on the state information of the traveling vehicle, and at the branching junction located forward along the transport path of the target traveling vehicle, by a relationship between the target traveling vehicle and the forward traveling vehicle. When the target traveling vehicle stands by before the branch junction, a first standby delay cost indicating a standby time of the target traveling vehicle is calculated,
    The traveling vehicle control device according to claim 3, wherein the first delay cost includes the first standby delay cost.
  6.  前記走行車は、物品の搬送及び移載を行う無人搬送車であり、
     複数の前記走行車から、当該走行車の現在位置及び走行速度に関する状態情報と、当該走行車が前記物品の移載を行う移載位置、時刻、及び所要時間に関する移載情報と、を所定のタイミングで受信する通信部を備え、
     前記算出部は、前記走行車の前記状態情報及び前記移載情報に基づいて、前記前方走行車による前記物品の移載により前記対象走行車が前記前方走行車による前記移載位置の手前で待機する場合に、前記対象走行車の待機時間を示す第1移載遅延コストを算出し、
     前記第1遅延コストは、前記第1移載遅延コストを含む、請求項3~5のいずれか一項に記載の走行車制御装置。
    The traveling vehicle is an automatic guided vehicle that transports and transfers articles.
    From the plurality of traveling vehicles, state information relating to the current position and traveling speed of the traveling vehicle, and a transfer position at which the traveling vehicle performs the transfer of the article, time, and transfer information relating to a required time are determined by a predetermined method. It has a communication unit to receive at the timing,
    The calculation unit is configured to wait for the target traveling vehicle to be in front of the transfer position by the traveling vehicle based on the transfer of the article by the traveling vehicle based on the state information and the transportation information of the traveling vehicle. In this case, a first transfer delay cost indicating a standby time of the target traveling vehicle is calculated,
    The traveling vehicle control device according to any one of claims 3 to 5, wherein the first delay cost includes the first transfer delay cost.
  7.  前記遅延コストは、前記対象走行車の影響による、前記対象走行車の前記搬送路に沿った後方の前記非対象走行車である後方走行車が前記リンクを通過するのにかかる時間の増加量を示す第2遅延コストを含む、請求項1~6のいずれか一項に記載の走行車制御装置。 The delay cost is an increase amount of time required for the rear traveling vehicle that is the non-target traveling vehicle behind the target traveling vehicle along the transport path to pass through the link due to the influence of the target traveling vehicle. The traveling vehicle control device according to any one of claims 1 to 6, including a second delay cost indicated.
  8.  複数の前記走行車のそれぞれについて、将来の各時刻での当該走行車の位置に関する走行スケジュールを作成する計画部を備え、
     前記計画部は、
      前記対象走行車と前記非対象走行車との関係を考慮しない前記走行車の走行スケジュールである静的走行スケジュールを作成し、
      前記対象走行車の前記走行スケジュールと前記後方走行車の前記静的走行スケジュールとに基づいて、前記対象走行車と前記後方走行車との干渉を避けるように前記後方走行車の前記静的走行スケジュールを修正した修正走行スケジュールを作成し、
     前記算出部は、前記後方走行車の前記静的走行スケジュールと前記後方走行車の前記修正走行スケジュールとに基づいて前記第2遅延コストを算出する、請求項7に記載の走行車制御装置。
    For each of the plurality of traveling vehicles, comprising a planning unit that creates a traveling schedule related to the position of the traveling vehicle at each future time,
    The planning unit comprises:
    Create a static traveling schedule that is a traveling schedule of the traveling vehicle that does not consider the relationship between the target traveling vehicle and the non-target traveling vehicle,
    The static traveling schedule of the rear traveling vehicle based on the traveling schedule of the target traveling vehicle and the static traveling schedule of the rear traveling vehicle so as to avoid interference between the target traveling vehicle and the rear traveling vehicle. Create a corrected travel schedule with the
    The traveling vehicle control device according to claim 7, wherein the calculation unit computes the second delay cost based on the static traveling schedule of the rear traveling vehicle and the corrected traveling schedule of the rear traveling vehicle.
  9.  複数の前記走行車から当該走行車の現在位置及び走行速度に関する状態情報を所定のタイミングで受信する通信部を備え、
     前記ノードは、前記搬送路が分岐又は合流する地点である分岐合流部を含み、
     前記算出部は、前記走行車の前記状態情報に基づいて、前記対象走行車の前記搬送路に沿った前方に位置する前記分岐合流部において、前記対象走行車と前記後方走行車との関係により前記後方走行車が前記分岐合流部の手前で待機する場合に、前記後方走行車の待機時間を示す第2待機遅延コストを算出し、
     前記第2遅延コストは、前記第2待機遅延コストを含む、請求項7又は8に記載の走行車制御装置。
    A communication unit that receives status information on the current position and the traveling speed of the traveling vehicle from the plurality of traveling vehicles at a predetermined timing,
    The node includes a branch junction where the transport path branches or merges,
    The calculation unit is based on the state information of the traveling vehicle, and at the branching junction located forward along the transport path of the target traveling vehicle, by a relationship between the target traveling vehicle and the rear traveling vehicle. When the rear traveling vehicle stands by before the branch junction, a second standby delay cost indicating a standby time of the rear traveling vehicle is calculated,
    The traveling vehicle control device according to claim 7, wherein the second delay cost includes the second standby delay cost.
  10.  前記走行車は、物品の搬送及び移載を行う無人搬送車であり、
     複数の前記走行車から、当該走行車の現在位置及び走行速度に関する状態情報と、当該走行車が前記物品の移載を行う移載位置、時刻、及び所要時間に関する移載情報と、を所定のタイミングで受信する通信部を備え、
     前記算出部は、前記走行車の前記状態情報及び前記移載情報に基づいて、前記対象走行車による前記物品の移載により前記後方走行車が前記対象走行車による前記移載位置の手前で待機する場合に、前記後方走行車の待機時間を示す第2移載遅延コストを算出し、
     前記第2遅延コストは、前記第2移載遅延コストを含む、請求項7~9のいずれか一項に記載の走行車制御装置。
    The traveling vehicle is an automatic guided vehicle that transports and transfers articles.
    From the plurality of traveling vehicles, state information relating to the current position and traveling speed of the traveling vehicle, and a transfer position at which the traveling vehicle performs the transfer of the article, time, and transfer information relating to a required time are determined by a predetermined method. It has a communication unit to receive at the timing,
    The calculating unit is configured to transfer the article by the target vehicle based on the state information and the transfer information of the traveling vehicle so that the rear traveling vehicle waits before the transfer position by the target vehicle. In this case, a second transfer delay cost indicating the waiting time of the rear traveling vehicle is calculated,
    The traveling vehicle control device according to any one of claims 7 to 9, wherein the second delay cost includes the second transfer delay cost.
  11.  前記取得部は、複数の前記走行要求を取得して蓄積し、
     前記選定部は、前記対象走行車としての複数の前記走行車のそれぞれと、前記取得部により蓄積された複数の前記走行要求のそれぞれと、の組合せ毎に前記走行経路を選定し、
     前記組合せ毎に選定された前記走行経路にそれぞれ対応する前記総走行コストに基づいて、複数の前記走行要求のそれぞれに1つの前記走行車を対応付けたペアリング情報を導出する導出部を備える、請求項1~10のいずれか一項に記載の走行車制御装置。
    The acquisition unit acquires and accumulates a plurality of the traveling requests,
    The selecting unit selects the traveling route for each combination of each of the plurality of traveling vehicles as the target traveling vehicle and each of the plurality of traveling requests accumulated by the acquisition unit,
    A deriving unit that derives pairing information in which one traveling vehicle is associated with each of a plurality of traveling requests, based on the total traveling costs respectively corresponding to the traveling routes selected for each of the combinations. The traveling vehicle control device according to any one of claims 1 to 10.
  12.  請求項1~11のいずれか一項に記載の走行車制御装置と、
     前記搬送路と、
     前記搬送路に沿って走行可能な複数の前記走行車と、を含む、走行車システム。
    A traveling vehicle control device according to any one of claims 1 to 11,
    The transport path;
    And a plurality of the traveling vehicles that can travel along the transport path.
  13.  搬送路に沿って走行する複数の走行車のうちの1つの走行車である対象走行車と、予め設定された目的地への移動の要求を含む走行要求と、の組合せについて、前記対象走行車の現在位置から前記目的地までの走行経路を選定する走行車制御方法であって、
     前記走行要求を取得する取得ステップと、
     前記搬送路において、前記対象走行車が走行可能なエリアに含まれる特定の地点をそれぞれ示す複数のノード間を接続する複数のリンク毎に関連付けられた、前記走行車が前記リンクを通過するのにかかる時間を示す静的走行コストに対して、前記対象走行車と前記対象走行車以外の前記走行車である非対象走行車との関係による、前記対象走行車及び前記非対象走行車の少なくとも1つが前記リンクを通過するのにかかる時間の増加量を示す遅延コストを算出する算出ステップと、
     前記静的走行コストと前記遅延コストとに基づいて総走行コストを前記リンク毎に算出し、算出された前記総走行コストに基づいて、前記対象走行車の現在位置から前記目的地までの複数の候補経路から前記走行経路を選定する選定ステップと、を含む、走行車制御方法。
    The combination of a target traveling vehicle, which is one of a plurality of traveling vehicles traveling along the transport path, and a traveling request including a request to move to a preset destination, A traveling vehicle control method for selecting a traveling route from the current position of the vehicle to the destination,
    An acquisition step of acquiring the travel request;
    In the transport path, the traveling vehicle is associated with each of a plurality of links connecting a plurality of nodes each indicating a specific point included in an area where the target traveling vehicle can travel, and the traveling vehicle passes through the link. At least one of the target traveling vehicle and the non-target traveling vehicle is determined based on a relationship between the target traveling vehicle and the non-target traveling vehicle other than the target traveling vehicle. A calculating step of calculating a delay cost indicating an increase in time required for one to pass through the link;
    A total traveling cost is calculated for each link based on the static traveling cost and the delay cost, and a plurality of traveling distances from the current position of the target traveling vehicle to the destination are calculated based on the calculated total traveling cost. A selecting step of selecting the traveling route from the candidate routes.
PCT/JP2019/022971 2018-08-24 2019-06-10 Traveling vehicle control device, traveling vehicle system, and traveling vehicle control method WO2020039699A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-157009 2018-08-24
JP2018157009A JP2020030724A (en) 2018-08-24 2018-08-24 Running car control apparatus, running car system, and running car control method

Publications (1)

Publication Number Publication Date
WO2020039699A1 true WO2020039699A1 (en) 2020-02-27

Family

ID=69592450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022971 WO2020039699A1 (en) 2018-08-24 2019-06-10 Traveling vehicle control device, traveling vehicle system, and traveling vehicle control method

Country Status (3)

Country Link
JP (1) JP2020030724A (en)
TW (1) TW202014356A (en)
WO (1) WO2020039699A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328923B2 (en) * 2020-03-16 2023-08-17 株式会社東芝 Information processing device, information processing method, and computer program
JP2022018855A (en) * 2020-07-16 2022-01-27 株式会社東芝 Travel controller, travel control method and computer program
JP7453102B2 (en) * 2020-09-09 2024-03-19 シャープ株式会社 Travel time prediction device and travel time prediction method
CN112706770B (en) * 2021-01-11 2022-04-08 南京航空航天大学 Vehicle entry control system and method considering steer-by-wire delay
JP7331882B2 (en) * 2021-04-23 2023-08-23 株式会社ダイフク Article transport equipment, route setting method, and route setting program
JP7331883B2 (en) * 2021-04-23 2023-08-23 株式会社ダイフク Article transport equipment, route setting method, and route setting program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10320047A (en) * 1997-05-21 1998-12-04 Shinko Electric Co Ltd Unmanned carrier controller and unmanned carrier control method
JP2006214825A (en) * 2005-02-02 2006-08-17 Navitime Japan Co Ltd Navigation system, route searching server and program
JP2009115717A (en) * 2007-11-08 2009-05-28 Pioneer Electronic Corp Navigation system, navigation method, navigation program, and record medium
JP4915302B2 (en) * 2007-07-13 2012-04-11 ムラテックオートメーション株式会社 Route search system and method, transport system, and computer program
JP2012243291A (en) * 2011-05-24 2012-12-10 Murata Mach Ltd Conveyance vehicle system
JP5743169B2 (en) * 2011-07-07 2015-07-01 村田機械株式会社 Transportation vehicle system and method of generating traveling schedule of transportation vehicle
JP2016017914A (en) * 2014-07-10 2016-02-01 日産自動車株式会社 Travel support device and travel support method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10320047A (en) * 1997-05-21 1998-12-04 Shinko Electric Co Ltd Unmanned carrier controller and unmanned carrier control method
JP2006214825A (en) * 2005-02-02 2006-08-17 Navitime Japan Co Ltd Navigation system, route searching server and program
JP4915302B2 (en) * 2007-07-13 2012-04-11 ムラテックオートメーション株式会社 Route search system and method, transport system, and computer program
JP2009115717A (en) * 2007-11-08 2009-05-28 Pioneer Electronic Corp Navigation system, navigation method, navigation program, and record medium
JP2012243291A (en) * 2011-05-24 2012-12-10 Murata Mach Ltd Conveyance vehicle system
JP5743169B2 (en) * 2011-07-07 2015-07-01 村田機械株式会社 Transportation vehicle system and method of generating traveling schedule of transportation vehicle
JP2016017914A (en) * 2014-07-10 2016-02-01 日産自動車株式会社 Travel support device and travel support method

Also Published As

Publication number Publication date
TW202014356A (en) 2020-04-16
JP2020030724A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2020039699A1 (en) Traveling vehicle control device, traveling vehicle system, and traveling vehicle control method
CN109643123B (en) Traveling vehicle system and control method for traveling vehicle system
JP4746674B2 (en) Transport system and transport method
WO2010035411A1 (en) Guided vehicle system
JP4366663B2 (en) Conveyor cart system
US9845192B2 (en) Transport vehicle system and transport method
JP4782194B2 (en) Transport system
CN114819420B (en) Overhead traveling crane transportation path planning method based on conflict resolution
US9836050B2 (en) Guided vehicle system and guided vehicle control method
KR102431740B1 (en) Driving vehicle controller and driving vehicle system
JP7263119B2 (en) Driving decision method, controller, and driving system provided with the controller
US7809466B2 (en) Transportation system and transportation method
US11404298B2 (en) Travelling vehicle system and method for controlling travelling vehicle
CN111954632B (en) Transport vehicle system and transport vehicle control method
KR20110091020A (en) Traveling vehicle system
WO2020039700A1 (en) Running vehicle control device, running vehicle system, and running vehicle control method
JP6515892B2 (en) Traveling vehicle system and control method of traveling vehicle system
JP7306588B2 (en) Driving vehicle system and driving vehicle control method
JP7435643B2 (en) Goods conveyance equipment
JP7501635B2 (en) Vehicle System
US20220223446A1 (en) Transport system and transport control method

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852541

Country of ref document: EP

Kind code of ref document: A1