WO2020038420A1 - 光接收器和光模块 - Google Patents

光接收器和光模块 Download PDF

Info

Publication number
WO2020038420A1
WO2020038420A1 PCT/CN2019/101862 CN2019101862W WO2020038420A1 WO 2020038420 A1 WO2020038420 A1 WO 2020038420A1 CN 2019101862 W CN2019101862 W CN 2019101862W WO 2020038420 A1 WO2020038420 A1 WO 2020038420A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
port
optical module
module
Prior art date
Application number
PCT/CN2019/101862
Other languages
English (en)
French (fr)
Inventor
孙飞龙
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2020038420A1 publication Critical patent/WO2020038420A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings

Definitions

  • the present application relates to the field of optical communication technologies, and in particular, to an optical receiver and an optical module.
  • Optical modules include a light receiving part, which is used to separate light of multiple wavelengths transmitted by an optical fiber and convert the light of multiple wavelengths into electricity respectively. Signal to receive.
  • the size of the light receiving part directly affects the size of the optical module, and thus the board integration of the optical module.
  • the present application provides an optical receiver and an optical module, which are used to solve the problems of how to reduce the volume of the optical module and improve the single board integration of the optical module.
  • the present application provides a light receiver including a light receiver housing.
  • the light receiver housing is provided with a first optical port, a second optical port, and a third optical port.
  • a first optical module, a second optical module, and a third optical module are provided; wherein the first optical module is opposite to the first optical port, the second optical module is located between the first optical module and the second optical port, and the third optical module The module is located between the second optical module and the third optical port; the first optical module is configured to reflect the light having the first wavelength and the light having the second wavelength through the first optical port to the second optical module;
  • the two optical modules only allow the light having the first wavelength to pass through and enter the second optical port, and the second optical module can reflect the light having the second wavelength onto the third optical module; the third optical module allows only the The light having the second wavelength passes through and enters the third optical port.
  • the first optical module has a first reflecting surface, the light having a first wavelength and the light having a second wavelength are reflected by the first reflecting surface, and the second optical module has a second reflection Surface, the light having the second wavelength is reflected by the second reflecting surface; the angle between the first reflecting surface and the central axis of the first optical port is 40 ° -50 °, and the second reflecting surface is closer to the first The direction of the optical port is an inclined surface, and the angle between the second reflecting surface and the central axis of the first optical port is 3 ° to 13 °.
  • the angle between the first reflective surface and the central axis of the first optical port is 45 °, and the angle between the second reflective surface and the central axis of the first optical port is 8 ° .
  • the third optical module has an incident surface, and light having a second wavelength enters the third optical module from the incident surface; the incident surface is opposite to the second reflecting surface, and the incident surface is away from the first
  • the direction of the optical port is an inclined surface, and the included angle between the incident surface and the central axis of the first optical port is 6 ° to 26 °.
  • the included angle between the incident surface and the central axis of the first optical port is 16 °.
  • the third optical module includes a prism and a filter film;
  • the prism includes a light entrance surface and a light exit surface, the light entrance surface is opposite to the second reflection surface, the light exit surface is opposite to the third light port, and The light surface is an inclined surface inclined away from the first light port, the light exit surface is an inclined surface inclined toward the first light port, and the angle between the light incident surface and the light exit surface is 23.5 ° ⁇ 39.5 °;
  • the filter film The filter film is disposed on at least one of the light-entering surface and the light-exiting surface, and the filter film allows only light having a second wavelength to pass through.
  • the included angle between the light incident surface and the light exit surface is 31.5 °.
  • the first optical module, the second optical module, and the third optical module are all filters.
  • a first photoelectric converter and a second photoelectric converter are connected to the housing of the optical receiver, and the light input end of the first photoelectric converter is opposite to the second optical port, and the second photoelectric converter is The light entrance end is opposite to the third light port.
  • a fourth optical port and a fifth optical port are further provided on the optical receiver housing, and a fourth optical module is further disposed in the optical receiver housing.
  • the fourth optical module is located on the first optical module. A side far from the first optical port, the fourth optical module is configured to move the light having the third wavelength passed in by the fourth optical port and the light having the fourth wavelength passed in by the fifth optical port, and move along the first light.
  • the central axis direction of the port is emitted by the first optical port; the first optical module allows the light having the third wavelength and the light having the fourth wavelength to pass through.
  • a first electric-optical converter and a second electric-optical converter are connected to the housing of the optical receiver.
  • the light-emitting end of the first electric-optical converter is opposite to the fourth optical port.
  • the light emitting end is opposite to the fifth optical port.
  • the first electro-optical converter and the second electro-optical converter are both laser diode modules, and the focal length of the laser diode module is 4.4 mm to 5.4 mm.
  • the present application provides an optical module, including the optical receiver according to any one of the foregoing technical solutions.
  • the optical module further includes a main casing, and the light receiver is disposed in the main casing.
  • a control circuit board is further disposed in the main casing, and the first optical receiver casing is connected to the first The photoelectric converter and the second photoelectric converter, the light input end of the first photoelectric converter is opposite to the second optical port of the optical receiver, and the light input end of the second photoelectric converter is opposite to the third optical port of the optical receiver, Both the electric output end of the first photoelectric converter and the electric output end of the second photoelectric converter are connected to the control circuit board.
  • a light receiver and a light module provided in the present application. Since the light receiver includes a light receiver housing, the light receiver housing is provided with a first light port, a second light port, and a third light port.
  • a first optical module, a second optical module, and a third optical module are provided in the housing of the receiver, wherein the first optical module is configured to reflect light having a first wavelength and light having a second wavelength through the first optical port.
  • the second optical module only allows the light having the first wavelength to pass through and enter the second optical port, and the second optical module can reflect the light having the second wavelength to the third optical module ;
  • the third optical module allows only the light having the second wavelength to pass through and enter the third optical port.
  • the first optical module, the second optical module, and the third optical module can be used to separate the light having the first wavelength and the light having the second wavelength through the first optical port.
  • the optical receiver of the embodiment includes fewer parts and components, and the structure of the optical receiver is simple, which is conducive to achieving a compact design of the optical receiver, which can reduce the volume of the optical module including the optical receiver and improve the light. Board integration of the module.
  • FIG. 1 is a schematic diagram of an internal structure of an optical module disclosed in this application.
  • FIG. 2 is a partial cross-sectional view of a light transmitter / receiver in the optical module shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of an optical module according to an embodiment of the present application.
  • FIG. 4 is a partial cross-sectional view of an optical receiver according to an embodiment of the present application.
  • FIG. 5 is an optical path diagram in an optical receiver according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a third optical module in an optical receiver according to an embodiment of the present application.
  • an optical module is provided.
  • the optical module includes a main casing 01, an optical fiber interface 02 is provided on the main casing 01, and an optical transmitter / receiver is provided in the main casing 01.
  • Optical fiber adapter 04 and control board 05 As shown in FIG. 2, the light emitting / receiving device 03 includes a housing 031 and a light receiving component disposed in the housing 031.
  • the housing 031 is provided with a light entrance 032, a first light exit, and a second light exit. 033.
  • the light entrance 032 is opposite to one end of the optical fiber adapter 04, and the other end of the optical fiber adapter 04 is opposite to the optical fiber interface 02.
  • the light receiving component includes a first filter 034, a second filter 035, a third filter 036, a fourth filter 037, and a fifth filter 038.
  • the first filter 034 is used to reflect light at a wavelength of 1270 nm passed through the light entrance 032 to the fourth filter 037, and at the same time, the first filter 034 can transmit light at a wavelength of 1310 nm passed through the light entrance 032 to the first
  • the second filter 035 and the second filter 035 can reflect the 1310nm wavelength light onto the third filter 036, and the third filter 036 is disposed near the first light outlet, and the third filter 036 can only allow the 1310nm wavelength
  • the light passes through and enters the first light exit;
  • the fourth filter 037 can reflect the light of 1270nm wavelength to the fifth filter 038, and the fifth filter 038 is disposed near the second light exit 033, and the fifth filter 038 can only allow light with a wavelength of 1270 nm to pass through and enter the second light exit 033.
  • Detectors 06 are connected to the first light exit and the second light exit 033. As shown in FIG. 1, both detectors 06 are electrically connected to the control board 05 to convert the optical signals into electrical signals and send them to Control board 05. This achieves the reception of the optical signal.
  • the optical module includes a light receiver 1.
  • FIG. 4 is a light receiver provided by some embodiments of the present application.
  • the light receiver 1 includes a light receiver housing 11.
  • the light receiver housing 11 is provided with a first optical port 12 and a second optical port 12.
  • An optical port 13 and a third optical port 14, the first optical module 15, a second optical module 16, and a third optical module 17 are provided in the optical receiver housing 11; wherein the first optical module 15 and the first optical port 12 is opposite, the second optical module 16 is located between the first optical module 15 and the second optical port 13, and the third optical module 17 is located between the second optical module 16 and the third optical port 14;
  • the first optical module 15 is used for Reflects the light having the first wavelength and the light having the second wavelength through the first optical port 12 to the second optical module 16;
  • the second optical module 16 allows only the light having the first wavelength to pass through and enters the first optical module 16
  • Two optical ports 13 and the second optical module 16 can reflect the light having the second wavelength onto the third optical module 17;
  • the third optical module 17 allows only the light having the
  • the optical receiver 1 includes a light receiver housing 11, the light receiver housing 11 is provided with a first optical port 12, a second optical port 13, and a third optical port.
  • Optical port 14 the optical receiver housing 11 is provided with a first optical module 15, a second optical module 16 and a third optical module 17; wherein the first optical module 15 is used to pass the first optical port 12
  • the light having the first wavelength and the light having the second wavelength are reflected on the second optical module 16;
  • the second optical module 16 allows only the light having the first wavelength to pass through and enter the second optical port 13, and the second optical
  • the module 16 can reflect the light having the second wavelength onto the third optical module 17;
  • the third optical module 17 allows only the light having the second wavelength to pass through and enter the third optical port 14.
  • the optical receiver 1 in the embodiment of the present application includes fewer parts, and the structure of the optical receiver 1 is simple, which is conducive to achieving a compact design of the optical receiver 1 and can reduce the inclusion of the optical receiver 1
  • the volume of the optical module improves the board integration of the optical module.
  • optical module provided in the embodiment of the present application. Since the optical module includes the optical receiver 1, the beneficial effects of the optical module provided by the embodiment of the present application are the same as the beneficial effects of the optical receiver 1 provided by the foregoing embodiment. No longer.
  • the optical module includes a main housing 2 in addition to the light receiver 1.
  • the light receiver 1 is disposed in the main housing 2 and the main housing 2.
  • a control circuit board 3 is also provided, and a first photoelectric converter 6 and a second photoelectric converter 7 are connected to a light receiver housing 11 of the light receiver 1.
  • the second optical port 13 of 1 is opposite, the light input end of the second photoelectric converter 7 is opposite to the third optical port 14 of the optical receiver 1, the electrical output end of the first photoelectric converter 6 and the second optical converter 7 are The electric output terminals are all connected to the control circuit board 3.
  • an optical interface 4 is provided on the main casing 2 at a position opposite to the first optical port 12 of the optical receiver 1.
  • an optical fiber adapter 5 is provided between the optical interface 4 and the first optical port 12.
  • the optical fiber adapter 5 can be used as a connector of the optical fiber to allow the optical fiber to be accessed by the optical interface.
  • a collimating lens 10 is provided in the first optical port 12. The collimating lens 10 can adjust the divergent light beam passing through the first optical port 12 into a collimated light beam so as to pass through the first optical module 15, The second optical module 16 and the third optical module 17 control a transmission direction of the light beam.
  • the light receiver housing 11 may be a cylindrical housing as shown in FIG. 4, a block housing, or a spherical housing, which is not specifically limited herein.
  • the light receiver housing 11 is a cylindrical housing
  • the first optical port 12 is disposed at one end of the cylindrical housing
  • the central axis of the cylindrical housing and the first optical port 12 The center axes coincide.
  • the light receiver housing 11 is further provided with A support frame 00 is used to support the first optical module 15, the second optical module 16, and the third optical module 17.
  • the support frame 00 is composed of Made of transparent material.
  • the first optical port 12, the second optical port 13, and the third optical port 14 may be directly opened, or may be a shell region formed of a light-transmitting material, which is not specifically limited herein.
  • the first optical module 15 may be a reflective prism, a filter, or a prism provided with a filter or a filter film, which is not specifically limited herein.
  • the second optical module 16 and the third optical module 17 may be a filter, a prism with a filter or a filter film attached thereto, or other structures, which are not specifically limited herein.
  • the first wavelength may be 1270 nm, 1310 nm, 1490 nm, 1577 nm, or the like, which is not specifically limited herein.
  • the second wavelength may be 1270 nm, 1310 nm, 1490 nm, 1577 nm, etc., and is not specifically limited herein.
  • the first wavelength is 1310 nm and the second wavelength is 1270 nm.
  • the first optical module 15 has a first reflecting surface a, and the light having the first wavelength and the light having the second wavelength are reflected by the first reflecting surface a.
  • the second optical module 16 has a second reflecting surface b, and the light having a second wavelength is reflected by the second reflecting surface b.
  • the angle ⁇ between the first reflecting surface a and the central axis of the first optical port 12 is 40 ° to 50 °
  • the second reflecting surface b is an inclined surface inclined in a direction close to the first optical port 12
  • the angle ⁇ between the second reflecting surface b and the central axis of the first optical port 12 is 3 ° to 13 °.
  • the arrangement direction of the first optical module 15 and the second optical module 16 is perpendicular or approximately perpendicular to the arrangement direction of the first optical module 15 and the first optical port 12, and since the second reflecting surface b is closer to the first optical port An inclined surface inclined in the direction of 12; the angle ⁇ between the second reflecting surface b and the central axis of the first optical port 12 is 3 ° to 13 °; and the third optical module 17 is located between the second optical module 16 and the third light And the second optical module 16 can reflect the light having the second wavelength onto the third optical module 17, so the third optical module 17 and the third optical port 14 are disposed near the first optical module 15
  • One side of an optical port 12 and the distance between the third optical module 17 and the first optical module 15 in the direction of the central axis of the first optical port 12 is relatively short, so that the optical receiver 1 can be reduced along the first The length of the optical port 12 in the direction of the central axis, thereby achieving a miniaturized design of the optical receiver 1.
  • the angle ⁇ between the first reflecting surface a and the central axis of the first optical port 12 is 45 °, and the second reflecting surface b and the central axis of the first optical port 12
  • the included angle ⁇ is 8 °.
  • the arrangement direction of the first optical module 15 and the second optical module 16 is perpendicular to the arrangement direction of the first optical module 15 and the first optical port 12, which is convenient for the first optical port 12, the first optical module 15, and the second optical module.
  • the relative position between 16 is determined, and the third optical module 17 and the third optical port 14 are disposed on the side of the first optical module 15 near the first optical port 12, and between the third optical module 17 and the first optical module 15
  • the distance in the central axis direction of the first optical port 12 is short, so that the length of the optical receiver 1 in the central axis direction of the first optical port 12 is small, and the volume of the optical receiver 1 is small.
  • the third optical module 17 has an incident surface c, and light having a second wavelength enters the third optical module 17 from the incident surface c; the incident surface c and the second The reflecting surface b faces each other, the incident surface c is an inclined surface inclined in a direction away from the first optical port 12, and an included angle ⁇ between the incident surface c and the central axis of the first optical port 12 is 6 ° to 26 °.
  • the light having the second wavelength can enter the third optical module 17 in a direction perpendicular to or approximately perpendicular to the incident surface c, so that the light having the second wavelength can be reduced when entering the third optical module 17.
  • Light loss is the incident surface c, and light having a second wavelength enters the third optical module 17 from the incident surface c; the incident surface c and the second The reflecting surface b faces each other, the incident surface c is an inclined surface inclined in a direction away from the first optical port 12, and an included angle ⁇ between the incident surface c and the central axis of the first optical port 12 is
  • the angle ⁇ between the incident surface c and the central axis of the first optical port 12 is 16 °. In this way, the light having the second wavelength can be incident on the third optical module 17 in a direction perpendicular to the incident surface c, thereby reducing the light of the light having the second wavelength when entering the third optical module 17 as much as possible. loss.
  • the third optical module 17 includes a prism 171 and a filter film 172;
  • the prism 171 includes a light incident surface d and a light emitting surface e, and the light incident surface d is opposite to the second reflecting surface b.
  • the light exit surface e is opposite to the third light port 14, and the light incident surface d is an inclined surface inclined in a direction away from the first light port 12, and the light exit surface e is an inclined surface inclined in a direction close to the first light port 12.
  • the angle ⁇ between d and the light-emitting surface e is 23.5 ° to 39.5 °;
  • the filter film 172 is disposed on at least one of the light-incident surface d and the light-emitting surface e.
  • the filter film 172 allows only light having a second wavelength to pass through.
  • the third optical module 17 can not only select the light with the second wavelength to pass through the filter film 172, but also change the transmission direction of the light with the second wavelength through the prism 171, so that the light with the second wavelength can follow
  • the direction perpendicular to or approximately perpendicular to the central axis of the first optical port 12 is emitted by the third optical port 14 to facilitate the positioning of the second photoelectric converter 7 and at the same time ensure the aesthetic appearance of the optical receiver 1.
  • the filter film 172 when the filter film 172 is disposed only on the light exit surface e of the prism 171, the light incident surface d of the prism 171 is the incident surface c of the third optical module 17.
  • the outer surface of the filter film 172 provided on the light incident surface d is the incident surface c of the third optical module 17, and the incident surface c of the third optical module 17 and The light incident surface d of the prism 171 is parallel.
  • the inclination direction of the light incident surface d of the prism 171 is consistent with the inclination direction of the incident surface c of the third module, and the inclination angle of the light incident surface d of the prism 171 is the same as that of the incident surface c of the third module. .
  • the cross-sectional shape of the prism 171 may be a pentagon as shown in FIG. 6, a trapezoid or a triangle, or other shapes, which are not specifically limited herein.
  • the material of the prism 171 may be K9, BaK4, BK7, or the like, which is not specifically limited herein. In some embodiments, the material of the prism 171 is BK7, which is not specifically limited herein.
  • an included angle ⁇ between the light incident surface d and the light exit surface e is 31.5 °.
  • the light emitted by the third optical module 17 can be emitted from the third optical port 14 in a direction perpendicular to the central axis of the first optical port 12 to facilitate the positioning of the second photoelectric converter 7 and ensure the light receiver 1 The aesthetics of the appearance.
  • the first optical module 15, the second optical module 16, and the third optical module 17 are all filters. This structure is simple and takes up less space, which is more conducive to achieving a compact design of the optical receiver 1.
  • a fourth optical port (not shown in the figure) and a fifth optical port (not shown in the figure) are further provided on the light receiver housing 11.
  • the light receiver shell A fourth optical module 18 is also provided in the body 11.
  • the fourth optical module 18 is located on a side of the first optical module 15 away from the first optical port 12.
  • the fourth optical module 18 is used for allowing the fourth optical port to pass through. After the three-wavelength light and the fourth-wavelength light passing through the fifth optical port are brought closer together, they are emitted from the first optical port 12 along the central axis direction of the first optical port 12; the first optical module 15 allows the The light of the third wavelength and the light of the fourth wavelength pass. In this way, the optical receiver 1 can achieve dual transmission and dual reception, with stronger functions and wider application range.
  • the fourth optical module 18 may be a filter shown in FIG. 4, or a prism with a filter or a filter film attached thereto, or may have other structures, which are not specifically limited herein.
  • the fourth optical module 18 is a filter.
  • the filter has a small volume and a small occupied space, which is beneficial to the compact design of the optical receiver 1.
  • the third wavelength may be 1270 nm, 1310 nm, 1490 nm, 1577 nm, or the like, which is not specifically limited herein.
  • the fourth wavelength may be 1270 nm, 1310 nm, 1490 nm, 1577 nm, etc., and is not specifically limited herein.
  • the third wavelength is 1490 nm and the second wavelength is 1577 nm.
  • the light receiver housing 11 is connected to a first electro-optical converter 8 and a second electro-optical converter 9, and an output end of the first electro-optical converter 8 and a fourth light The optical output end of the second electro-optical converter 9 is opposite to the fifth optical port. This structure is simple and easy to implement.
  • both the first electro-optical converter 8 and the second electro-optical converter 9 are electrically connected to the control circuit board 3 to control the first electro-optical converter 8 and the second electro-optical converter 8 through the control circuit board 3. Input power of the electro-optical converter 9.
  • the first electro-optical converter 8 and the second electro-optical converter 9 may be a laser diode module with a focal length of 7.5 mm, or a laser diode module with a focal length of 4.9 mm, or other electro-optical conversion devices. It is not specifically limited here.
  • the first electro-optical converter 8 and the second electro-optical converter 9 are both laser diode modules, and the focal length of the laser diode module is 4.4 mm to 5.4 mm. In this way, the focal lengths of the first electro-optical converter 8 and the second electro-optical converter 9 are small, and the first electro-optical converter 8 and the second electro-optical converter 9 can be installed closer to the light receiver housing 11, which can further reduce The size of the light receiver 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光接收器(1)包括光接收器壳体(11),光接收器壳体(11)内设有第一光学模块(15)用于将第一光口(12)通入的第一波长的光和第二波长的光反射至第二光学模块(16);第二光学模块(16)仅允许第一波长的光通过并射入第二光口(13),且能够将第二波长的光反射至第三光学模块(17)上;第三光学模块(17)仅允许第二波长的光通过并射入第三光口(14)。

Description

光接收器和光模块 技术领域
本申请涉及光通信技术领域,尤其涉及一种光接收器和光模块。
背景技术
在光通信技术领域中,光模块得到了广泛的应用,光模块包括光接收部分,光接收部分用于分离光纤所传输的多个波长的光,并分别将该多个波长的光转换成电信号以接收。光接收部分的尺寸大小直接影响到光模块的尺寸大小,从而影响到光模块的单板集成度。
发明内容
本申请提供一种光接收器和光模块,用于解决如何减小光模块的体积,提高光模块的单板集成度的问题。
为达到上述目的,本申请采用如下技术方案:
一方面,本申请提供了一种光接收器,包括光接收器壳体,该光接收器壳体上设有第一光口、第二光口和第三光口,该光接收器壳体内设有第一光学模块、第二光学模块和第三光学模块;其中,第一光学模块与第一光口相对,第二光学模块位于第一光学模块与第二光口之间,第三光学模块位于第二光学模块与第三光口之间;第一光学模块用于将第一光口通入的具有第一波长的光和具有第二波长的光反射至第二光学模块上;第二光学模块仅允许该具有第一波长的光通过并射入第二光口,且第二光学模块能够将该具有第二波长的光反射至第三光学模块上;第三光学模块仅允许该具有第二波长的光通过并射入第三光口。
在本申请某些实施例中,第一光学模块具有第一反射面,该具有第一波长的光和该具有第二波长的光由该第一反射面反射,第二光学模块具有第二反射面,该具有第二波长的光由该第二反射面反射;第一反射面与第一光口的中轴线之间的夹角为40°~50°,第二反射面为向靠近第一光口的方向倾斜的斜面,且第二反射面与第一光口的中轴线之间的夹角为3°~13°。
在本申请某些实施例中,第一反射面与第一光口的中轴线之间的夹角为45°,第二反射面与第一光口的中轴线之间的夹角为8°。
在本申请某些实施例中,第三光学模块具有入射面,具有第二波长的光由该入射面射入第三光学模块;入射面与第二反射面相对,入射面为向远离第一光口的方向倾斜的斜面,且入射面与第一光口的中轴线之间的夹角为6°~26°。
在本申请某些实施例中,入射面与第一光口的中轴线之间的夹角为16°。
在本申请某些实施例中,第三光学模块包括棱镜和滤波膜;棱镜包括入光面和出光面,该入光面与第二反射面相对,出光面与第三光口相对,且入光面为向远离第一光口的方向倾斜的斜面,出光面为向靠近第一光口的方向倾斜的斜面,入光面与出光面之间的夹角为23.5°~39.5°;滤波膜设置于入光面和出光面中的至少一个上,滤波膜仅允许具有第二波长的光通过。
在本申请某些实施例中,入光面与出光面之间的夹角为31.5°。
在本申请某些实施例中,第一光学模块、第二光学模块和第三光学模块均为滤波片。
在本申请某些实施例中,光接收器壳体上连接有第一光电转换器和第二光电转换器,第一光电转换器的入光端与第二光口相对,第二光电转换器的入光端与第三光口相对。
在本申请某些实施例中,光接收器壳体上还设有第四光口和第五光口,光接收器壳体内还设有第四光学模块,第四光学模块位于第一光学模块远离第一光口的一侧,第四光学模块用于使第四光口通入的具有第三波长的光与第五光口通入的具有第四波长的光靠拢后,沿第一光口的中轴线方向由第一光口射出;所述第一光学模块允许所述具有第三波长的光和所述具有第四波长的光通过。
在本申请某些实施例中,光接收器壳体上连接有第一电光转换器和第二电光转换器,第一电光转换器的出光端与第四光口相对,第二电光转换器的出光端与第五光口相对。
在本申请某些实施例中,第一电光转换器和第二电光转换器均为镭射二极体模组,镭射二极体模组的焦距为4.4mm~5.4mm。
第二方面,本申请提供了一种光模块,包括如上任一技术方案所述的光接收器。
在本申请某些实施例中,光模块还包括主壳体,光接收器设置于主壳体内,主壳体内还设有控制电路板,光接收器的光接收器壳体上连接有第一光电转换器和第二光电转换器,第一光电转换器的入光端与光接收器的第二光口相对,第二光电转换器的入光端与光接收器的第三光口相对,第一光电转换器的电输出端和第二光电转换器的电输出端均与控制电路板连接。
本申请提供的一种光接收器和光模块,由于光接收器包括光接收器壳体,该光接收器壳体上设有第一光口、第二光口和第三光口,该光接收器壳体内设有第一光学模块、第二光学模块和第三光学模块;其中,第一光学模块用于将第一光口通入的具有第一波长的光和具有第二波长的光反射至第二光学模块上;第二光学模块仅允许该具有第一波长的光通过并射入第二光口,且第二光学模块能够将该具有第二波长的光反射至第三光学模块上;第三光学模块仅允许该具有第二波长的光通过并射入第三光口。因此,通过第一光学模块、第二光学模块和第三光学模块三个零部件即可实现第一光口通入的具有第一波长的光与具有第二波长的光之间的分离,本申请实施例的光接收器中包括的零部件较少,光接收器的结构简单,有利于实现光接收器的体积小型化设计,能够减小包括该光接收器的光模块的体积,提高光模块的单板集成度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请公开的一种光模块的内部结构示意图;
图2为图1所示光模块中光发射/接收器的局部剖视图;
图3为本申请实施例光模块的一种结构示意图;
图4为本申请实施例光接收器的局部剖视图;
图5为本申请实施例光接收器内的光路图;
图6为本申请实施例光接收器中第三光学模块的一种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请一些实施例,如图1所示提供了一种光模块,该光模块包括主壳体01,主壳体01上设有光纤接口02,主壳体01内设有光发射/接收器03、光纤适配器04和控制板05。如图2所示,该光发射/接收器03包括壳体031和设置于该壳体031内的光接收组件,壳体031上设有入光口032、第一出光口和第二出光口033,该入光口032与光纤适配器04的一端相对,光纤适配器04的另一端与光纤接口02相对。光接收组件包括第一滤波片034、第二滤波片035、第三滤波片036、第四滤波片037和第五滤波片038。第一滤波片034用于将入光口032通入的1270nm波长的光反射至第四滤波片037上,同时第一滤波片034能够将入光口032通入的1310nm波长的光透射至第二滤波片035,第二滤波片035能够将该1310nm波长的光反射至第三滤波片036上,第三滤波片036靠近第一出光口设置,该第三滤波片036能够仅允许该1310nm波长的光通过并射入第一出光口;第四滤波片 037能够将该1270nm波长的光反射至第五滤波片038上,第五滤波片038靠近第二出光口033设置,该第五滤波片038能够仅允许该1270nm波长的光通过并射入第二出光口033。由此通过五个滤波片实现了1310nm波长的光和1270nm波长的光的分离。且第一出光口处和第二出光口033处均连接有探测器06,如图1所示,两个探测器06均与控制板05电连接,以将光信号转换成电信号并发送至控制板05。由此实现了光信号的接收。本申请一些实施例提供了一种光模块,如图3所示,该光模块包括光接收器1。
图4为本申请一些实施例提供的光接收器,如图4所示,光接收器1包括光接收器壳体11,该光接收器壳体11上设有第一光口12、第二光口13和第三光口14,该光接收器壳体11内设有第一光学模块15、第二光学模块16和第三光学模块17;其中,第一光学模块15与第一光口12相对,第二光学模块16位于第一光学模块15与第二光口13之间,第三光学模块17位于第二光学模块16与第三光口14之间;第一光学模块15用于将第一光口12通入的具有第一波长的光和具有第二波长的光反射至第二光学模块16上;第二光学模块16仅允许该具有第一波长的光通过并射入第二光口13,且第二光学模块16能够将该具有第二波长的光反射至第三光学模块17上;第三光学模块17仅允许该具有第二波长的光通过并射入第三光口14。
本申请实施例提供的一种光接收器,由于该光接收器1包括光接收器壳体11,该光接收器壳体11上设有第一光口12、第二光口13和第三光口14,该光接收器壳体11内设有第一光学模块15、第二光学模块16和第三光学模块17;其中,第一光学模块15用于将第一光口12通入的具有第一波长的光和具有第二波长的光反射至第二光学模块16上;第二光学模块16仅允许该具有第一波长的光通过并射入第二光口13,且第二光学模块16能够将该具有第二波长的光反射至第三光学模块17上;第三光学模块17仅允许该具有第二波长的光通过并射入第三光口14。因此,通过第一光学模块15、第二光学模块16和第三光学模块17三个零部件即可实现第一光口12通入的具有第一波长的光与具有第二波长的光之间的分离,本申请实施例的光接收器1中包括的零部件较少,光接收器1的结构简单,有利于实现光接 收器1的体积小型化设计,能够减小包括该光接收器1的光模块的体积,提高光模块的单板集成度。
本申请实施例提供的一种光模块,由于该光模块包括光接收器1,因此本申请实施例提供的光模块的有益效果与上述实施例提供的光接收器1的有益效果相同,在此不再赘述。
在一些实施例中,如图3所示,光模块除了包括光接收器1之外,还包括主壳体2,该光接收器1设置于该主壳体2内,该主壳体2内还设有控制电路板3,光接收器1的光接收器壳体11上连接有第一光电转换器6和第二光电转换器7,第一光电转换器6的入光端与光接收器1的第二光口13相对,第二光电转换器7的入光端与光接收器1的第三光口14相对,第一光电转换器6的电输出端和第二光电转换器7的电输出端均与控制电路板3连接。如图3所示,主壳体2上与光接收器1的第一光口12相对的位置设有光接口4。如图3和图4所示,光接口4与第一光口12之间设有光纤适配器5,该光纤适配器5能够作为光纤的接头允许光纤由光接口接入。如图4所示,第一光口12内设有准直透镜10,准直透镜10能够将由第一光口12通入的发散光束调整为准直光束,以便于通过第一光学模块15、第二光学模块16和第三光学模块17控制光束的传输方向。
光接收器壳体11可以为图4所示的柱状壳体,也可以为块状壳体,还可以为球状壳体,在此不做具体限定。在一些实施例中,如图4所示,光接收器壳体11为柱状壳体,第一光口12设置于柱状壳体的一端,且该柱状壳体的中轴线与第一光口12的中轴线重合。
为了支撑光接收器壳体11内的第一光学模块15、第二光学模块16和第三光学模块17,在一些实施例中,如图4所示,光接收器壳体11内还设有支撑架00,该支撑架00用于支撑第一光学模块15、第二光学模块16和第三光学模块17,为了避免支撑架00对光路造成干扰,在一些实施例中,该支撑架00由透光材料制作。
第一光口12、第二光口13和第三光口14可以直接为开口,也可以为由透光材料形成的壳体区域,在此不做具体限定。第一光学模块15可以为反射棱镜,也可以为滤波片,还可以为贴设有滤波片或滤波膜的棱镜,在此不做具体限定。第二光学模块16和第三光学模块 17可以为滤波片,也可以为贴设有滤波片或滤波膜的棱镜,还可以为其他结构,在此不做具体限定。
第一波长可以为1270nm、1310nm、1490nm或1577nm等等,在此不做具体限定。相应的,第二波长可以为1270nm、1310nm、1490nm或1577nm等等,在此不做具体限定。在一些实施例中,第一波长为1310nm,第二波长为1270nm。
对第一光口12、第二光口13、第三光口14之间的相对位置不做具体限定。在一些实施例中,如图4和图5所示,第一光学模块15具有第一反射面a,该具有第一波长的光和该具有第二波长的光由该第一反射面a反射,第二光学模块16具有第二反射面b,该具有第二波长的光由该第二反射面b反射;第一反射面a与第一光口12的中轴线之间的夹角α为40°~50°,第二反射面b为向靠近第一光口12的方向倾斜的斜面,且第二反射面b与第一光口12的中轴线之间的夹角β为3°~13°。这样,第一光学模块15、第二光学模块16的排列方向与第一光学模块15、第一光口12的排列方向垂直或近似垂直,且由于第二反射面b为向靠近第一光口12的方向倾斜的斜面,第二反射面b与第一光口12的中轴线之间的夹角β为3°~13°,而第三光学模块17位于第二光学模块16与第三光口14之间,且第二光学模块16能够将该具有第二波长的光反射至第三光学模块17上,因此第三光学模块17和第三光口14设置于第一光学模块15靠近第一光口12的一侧,且第三光学模块17与第一光学模块15之间在第一光口12的中轴线方向上的距离较短,由此能够减小光接收器1沿第一光口12的中轴线方向的长度,从而实现了光接收器1的体积小型化设计。在上述实施例中,需要说明的是,第一光口12的中轴线是指经过第一光口12的中心且与第一光口12所在面垂直的轴线。
在一些实施例中,如图5所示,第一反射面a与第一光口12的中轴线之间的夹角α为45°,第二反射面b与第一光口12的中轴线之间的夹角β为8°。这样,第一光学模块15、第二光学模块16的排列方向与第一光学模块15、第一光口12的排列方向垂直,便于第一光口12、第一光学模块15、第二光学模块16之间的相对位置确定,且第三光学模块17和第三光口14设置于第一光学模块15靠近第一光 口12的一侧,第三光学模块17与第一光学模块15之间在第一光口12的中轴线方向上的距离较短,由此光接收器1沿第一光口12的中轴线方向的长度较小,光接收器1的体积较小。
在一些实施例中,如图4和图5所示,第三光学模块17具有入射面c,具有第二波长的光由该入射面c射入第三光学模块17;入射面c与第二反射面b相对,入射面c为向远离第一光口12的方向倾斜的斜面,且入射面c与第一光口12的中轴线之间的夹角γ为6°~26°。这样,具有第二波长的光能够沿垂直于或近似垂直于入射面c的方向射入第三光学模块17,从而能够减小该具有第二波长的光在射入第三光学模块17时的光损失。
在一些实施例中,如图4和图5所示,入射面c与第一光口12的中轴线之间的夹角γ为16°。这样,该具有第二波长的光能够沿垂直于入射面c的方向射入第三光学模块17,从而尽可能地减小该具有第二波长的光在射入第三光学模块17时的光损失。
在一些实施例中,如图6所示,第三光学模块17包括棱镜171和滤波膜172;棱镜171包括入光面d和出光面e,该入光面d与第二反射面b相对,出光面e与第三光口14相对,且入光面d为向远离第一光口12的方向倾斜的斜面,出光面e为向靠近第一光口12的方向倾斜的斜面,入光面d与出光面e之间的夹角θ为23.5°~39.5°;滤波膜172设置于入光面d和出光面e中的至少一个上,滤波膜172仅允许具有第二波长的光通过。这样,第三光学模块17不仅可以通过滤波膜172选择具有第二波长的光通过,还可以通过棱镜171改变该具有第二波长的光的传送方向,以使该具有第二波长的光能够沿垂直于或近似垂直于第一光口12的中轴线的方向由第三光口14射出,以便于第二光电转换器7的定位,同时保证光接收器1的外观的美观性。
在上述实施例中,需要说明的是,当滤波膜172仅设置于棱镜171的出光面e上时,则棱镜171的入光面d为第三光学模块17的入射面c;当滤波膜172设置于棱镜171的入光面d上时,则设置于该入光面d上的滤波膜172的外表面为第三光学模块17的入射面c,该第三光学模块17的入射面c与棱镜171的入光面d平行。由此可知,棱镜171的入光面d的倾斜方向与第三模块的入射面c的倾斜方向一 致,且棱镜171的入光面d的倾斜角度与第三模块的入射面c的倾斜角度相同。
另外,棱镜171的截面形状可以为图6所示的五边形,也可以为梯形或三角形,还可以为其他形状,在此不做具体限定。此外,棱镜171的材料可以为K9、BaK4或BK7等等,在此不做具体限定。在一些实施例中,棱镜171的材料为BK7,在此不做具体限定。
在一些实施例中,如图6所示,入光面d与出光面e之间的夹角θ为31.5°。这样,第三光学模块17射出的光能够沿垂直于第一光口12的中轴线的方向由第三光口14射出,以便于第二光电转换器7的定位,同时保证光接收器1的外观的美观性。
在一些实施例中,如图4所示,第一光学模块15、第二光学模块16和第三光学模块17均为滤波片。此结构简单,占用空间较小,更利于实现光接收器1的体积小型化设计。
在一些实施例中,如图4所示,光接收器壳体11上还设有第四光口(图中未示出)和第五光口(图中未示出),光接收器壳体11内还设有第四光学模块18,第四光学模块18位于第一光学模块15远离第一光口12的一侧,第四光学模块18用于使第四光口通入的具有第三波长的光与第五光口通入的具有第四波长的光靠拢后,沿第一光口12的中轴线方向由第一光口12射出;所述第一光学模块15允许所述具有第三波长的光和所述具有第四波长的光通过。这样,光接收器1能够实现双发双收,功能更强,适用范围更广。
在上述实施例中,第四光学模块18可以为图4所示的滤波片,也可以为贴设有滤波片或滤波膜的棱镜,还可以为其他结构,在此不做具体限定。在一些实施例中,如图4所示,第四光学模块18为滤波片,滤波片的体积较小,占用空间较小,有利于光接收器1的体积小型化设计。
第三波长可以为1270nm、1310nm、1490nm或1577nm等等,在此不做具体限定。相应的,第四波长可以为1270nm、1310nm、1490nm或1577nm等等,在此不做具体限定。在一些实施例中,第三波长为1490nm,第二波长为1577nm。在一些实施例中,如图3或4所示, 光接收器壳体11上连接有第一电光转换器8和第二电光转换器9,第一电光转换器8的出光端与第四光口相对,第二电光转换器9的出光端与第五光口相对。此结构简单,容易实现。
在一些实施例中,如图3所示,第一电光转换器8和第二电光转换器9均与控制电路板3电连接,以通过控制电路板3控制第一电光转换器8和第二电光转换器9的输入功率。
第一电光转换器8和第二电光转换器9可以为焦距为7.5mm的镭射二极体模组,也可以为焦距为4.9mm的镭射二极体模组,还可以为其他电光转换器件,在此不做具体限定。在一些实施例中,第一电光转换器8和第二电光转换器9均为镭射二极体模组,该镭射二极体模组的焦距为4.4mm~5.4mm。这样,第一电光转换器8和第二电光转换器9的焦距较小,能够使第一电光转换器8和第二电光转换器9更靠近光接收器壳体11安装,从而能够进一步减小光接收器1的尺寸。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种光接收器,其特征在于,包括光接收器壳体,所述光接收器壳体上设有第一光口、第二光口和第三光口,所述光接收器壳体内设有第一光学模块、第二光学模块和第三光学模块;
    所述第一光学模块与所述第一光口相对,所述第二光学模块位于所述第一光学模块与所述第二光口之间,所述第三光学模块位于所述第二光学模块与所述第三光口之间;
    所述第一光学模块用于将所述第一光口通入的具有第一波长的光和具有第二波长的光反射至所述第二光学模块上;所述第二光学模块仅允许所述具有第一波长的光通过并射入所述第二光口,且所述第二光学模块能够将所述具有第二波长的光反射至所述第三光学模块上;所述第三光学模块仅允许所述具有第二波长的光通过并射入所述第三光口。
  2. 根据权利要求1所述的光接收器,其特征在于,所述第一光学模块具有第一反射面,所述具有第一波长的光和所述具有第二波长的光由所述第一反射面反射,所述第二光学模块具有第二反射面,所述具有第二波长的光由所述第二反射面反射;
    所述第一反射面与所述第一光口的中轴线之间的夹角为40°~50°,所述第二反射面为向靠近所述第一光口的方向倾斜的斜面,且所述第二反射面与所述第一光口的中轴线之间的夹角为3°~13°。
  3. 根据权利要求2所述的光接收器,其特征在于,所述第一反射面与所述第一光口的中轴线之间的夹角为45°,所述第二反射面与所述第一光口的中轴线之间的夹角为8°。
  4. 根据权利要求2或3所述的光接收器,其特征在于,所述第三光学模块具有入射面,所述具有第二波长的光由所述入射面射入所述第三光学模块;
    所述入射面与所述第二反射面相对,所述入射面为向远离所述第一光口的方向倾斜的斜面,且所述入射面与所述第一光口的中轴线之间的夹角为6°~26°。
  5. 根据权利要求4所述的光接收器,其特征在于,所述入射面与所述第一光口的中轴线之间的夹角为16°。
  6. 根据权利要求4所述的光接收器,其特征在于,所述第三光学模块包括棱镜和滤波膜;
    所述棱镜包括入光面和出光面,所述入光面与所述第二反射面相对,所述出光面与所述第三光口相对,且所述入光面为向远离所述第一光口的方向倾斜的斜面,所述出光面为向靠近所述第一光口的方向倾斜的斜面,所述入光面与所述出光面之间的夹角为23.5°~39.5°;
    所述滤波膜设置于所述入光面和所述出光面中的至少一个上,所述滤波膜仅允许所述具有第二波长的光通过。
  7. 根据权利要求6所述的光接收器,其特征在于,所述入光面与所述出光面之间的夹角为31.5°。
  8. 根据权利要求1~5中任一项所述的光接收器,其特征在于,所述第一光学模块、所述第二光学模块和所述第三光学模块均为滤波片。
  9. 根据权利要求1所述的光接收器,其特征在于,所述光接收器壳体上连接有第一光电转换器和第二光电转换器,所述第一光电转换器的入光端与所述第二光口相对,所述第二光电转换器的入光端与所述第三光口相对。
  10. 根据权利要求1所述的光接收器,其特征在于,所述光接收器壳体上还设有第四光口和第五光口,
    所述光接收器壳体内还设有第四光学模块,所述第四光学模块位于所述第一光学模块远离所述第一光口的一侧,所述第四光学模块用于使所述第四光口通入的具有第三波长的光与所述第五光口通入的具有第四波长的光靠拢后,沿所述第一光口的中轴线方向由所述第一光口射出;所述第一光学模块允许所述具有第三波长的光和所述具有第四波长的光通过。
  11. 根据权利要求10所述的光接收器,其特征在于,所述光接收器壳体上连接有第一电光转换器和第二电光转换器,所述第一电光转换器的出光端与所述第四光口相对,所述第二电光转换器的出光端与所述第五光口相对。
  12. 根据权利要求11所述的光接收器,其特征在于,所述第一电光转换器和所述第二电光转换器均为镭射二极体模组,所述镭射二极体模组的焦距为4.4mm~5.4mm。
  13. 一种光模块,其特征在于,包括权利要求1~12中任一项所述的光接收器。
  14. 根据权利要求13所述的光模块,其特征在于,所述光模块还包括主壳体,所述光接收器设置于所述主壳体内,所述主壳体内还设有控制电路板,
    所述光接收器的光接收器壳体上连接有第一光电转换器和第二光电转换器,所述第一光电转换器的入光端与所述光接收器的第二光口相对,所述第二光电转换器的入光端与所述光接收器的第三光口相对,所述第一光电转换器的电输出端和所述第二光电转换器的电输出端均与所述控制电路板连接。
PCT/CN2019/101862 2018-08-21 2019-08-21 光接收器和光模块 WO2020038420A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810953542.9A CN109143493A (zh) 2018-08-21 2018-08-21 一种光接收器和光模块
CN201810953542.9 2018-08-21

Publications (1)

Publication Number Publication Date
WO2020038420A1 true WO2020038420A1 (zh) 2020-02-27

Family

ID=64790510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101862 WO2020038420A1 (zh) 2018-08-21 2019-08-21 光接收器和光模块

Country Status (2)

Country Link
CN (1) CN109143493A (zh)
WO (1) WO2020038420A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143493A (zh) * 2018-08-21 2019-01-04 青岛海信宽带多媒体技术有限公司 一种光接收器和光模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060088255A1 (en) * 2004-10-22 2006-04-27 Enboa Wu Multi-wavelength optical transceiver subassembly module
US20130108262A1 (en) * 2011-10-26 2013-05-02 Electronics And Telecommunications Research Institute Multi-channel optical module
CN105301711A (zh) * 2015-11-23 2016-02-03 上海伟钊光学科技股份有限公司 单纤四向组件及其滤光片配置方法
CN106054329A (zh) * 2016-07-19 2016-10-26 深圳市新波光子技术有限公司 一种光收发器
CN109143493A (zh) * 2018-08-21 2019-01-04 青岛海信宽带多媒体技术有限公司 一种光接收器和光模块

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202771056U (zh) * 2012-06-05 2013-03-06 光红建圣股份有限公司 光收发次模块用楔形滤波片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060088255A1 (en) * 2004-10-22 2006-04-27 Enboa Wu Multi-wavelength optical transceiver subassembly module
US20130108262A1 (en) * 2011-10-26 2013-05-02 Electronics And Telecommunications Research Institute Multi-channel optical module
CN105301711A (zh) * 2015-11-23 2016-02-03 上海伟钊光学科技股份有限公司 单纤四向组件及其滤光片配置方法
CN106054329A (zh) * 2016-07-19 2016-10-26 深圳市新波光子技术有限公司 一种光收发器
CN109143493A (zh) * 2018-08-21 2019-01-04 青岛海信宽带多媒体技术有限公司 一种光接收器和光模块

Also Published As

Publication number Publication date
CN109143493A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
US6694031B2 (en) Optical microphone/sensors
US11754787B2 (en) Multi-channel light-receiving module
US6075635A (en) Bidirectional optical transceiver assembly
CN102854580B (zh) 适用于降低光信号偏振敏感度的装置及其制造和适用方法
US6501876B1 (en) Bidirectional optical communication device and bidirectional optical communication apparatus
CN109613654B (zh) 多通道并行波分复用/解复用分光组件及其光器件
US20130094807A1 (en) Optical coupling system for use in an optical communications module, an optical communications module that incorporates the optical coupling system, and a method
US5838859A (en) Bidirectional optical transceiver assembly
JP2002124687A (ja) 双方向光通信器および双方向光通信装置並びに双方向光通信器の組み立て方法
US5796899A (en) Bidirectional optical transceiver assembly with reduced crosstalk
WO2020038420A1 (zh) 光接收器和光模块
CN110806623A (zh) 光收发器件
TW201331657A (zh) 光學次組裝模組及中間光學機構
WO2019153181A1 (zh) 一种低串扰单芯双向光组件
JP2004525397A (ja) 平面の光導体により光信号を伝送するための装置
US20130022313A1 (en) Optical Devices and Methods of Making and Using the Same
CN114488440A (zh) 一种光学封装结构
JP2003107302A (ja) 光送受信器
WO2020000776A1 (zh) 一种光学装置
CN210605101U (zh) 一种基于光波导的多路波分解复用光接收组件
JP2005202156A (ja) 光モジュール
JP2001188149A (ja) 双方向光通信器及び双方向光通信装置
CN110908150A (zh) 一种自由空间环行器
CN218866153U (zh) 一种光学单元及具有其的光纤传感器
CN220894597U (zh) 一种双曲面分光棱镜的一体化to设计结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851470

Country of ref document: EP

Kind code of ref document: A1