WO2020038310A1 - Dispositif de génération de micro-nano-bulles de type à jet entrant en collision à deux fluides - Google Patents

Dispositif de génération de micro-nano-bulles de type à jet entrant en collision à deux fluides Download PDF

Info

Publication number
WO2020038310A1
WO2020038310A1 PCT/CN2019/101278 CN2019101278W WO2020038310A1 WO 2020038310 A1 WO2020038310 A1 WO 2020038310A1 CN 2019101278 W CN2019101278 W CN 2019101278W WO 2020038310 A1 WO2020038310 A1 WO 2020038310A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
micro
nano
venturi
dual
Prior art date
Application number
PCT/CN2019/101278
Other languages
English (en)
Chinese (zh)
Inventor
孙广东
赵龙
吕冠梦
沙倩
申彪
蒋云钟
吴昊
张萍
Original Assignee
深圳源域生态科创中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳源域生态科创中心有限公司 filed Critical 深圳源域生态科创中心有限公司
Publication of WO2020038310A1 publication Critical patent/WO2020038310A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the utility model belongs to the technical field of water quality treatment equipment, and particularly relates to a dual-flow colliding jet type micro-nano bubble generating device.
  • the concentration of dissolved oxygen in the water indicates the self-purification ability of the water area.
  • the use of an aeration device to increase the dissolved oxygen in the water body is a key technical point.
  • the micro-nano aeration method has more gas input into the water in the same time and has a wider range of effects.
  • Micro-nano aeration equipment is small, more convenient to use than traditional aeration equipment, lower energy consumption, and micro-nano bubbles can be kept in water for a long time, which can greatly increase the dissolved oxygen in water, and when the bubble diameter is less than 50 microns The interface of the bubble is negatively charged, has a strong adsorption capacity, and has obvious air flotation effect.
  • the utility model proposes a dual-flow colliding jet type micro-nano bubble generating device.
  • the utility model is based on the Venturi jet method and adopts a unique dual-flow colliding structure design to achieve more stable preparation of micro-nano bubbles. Effect.
  • micro-nano bubble generation methods at home and abroad include pressurized dissolved gas release method, water temperature difference method, electric field method, microwave method, venturi jet method, etc., based on the above methods With the help of rotary cutting, centrifugation and other devices to prepare micro-nano bubbles.
  • the pressurized dissolved gas release method and related devices change the gas pressure in a special dissolved gas tank to change the solubility of the gas in the liquid, and then the dissolved gas is changed into micro-nano bubbles by sudden pressure recovery.
  • the form of precipitation, the number of micro-nano bubbles is large, and the particle size is uniform, but the dissolved gas tank of the device has low gas-dissolving efficiency, complicated operation, high manufacturing cost, high energy consumption, and most of them are used in air flotation technology.
  • the scope of application is small.
  • the water temperature difference method shows that when cold and hot water are mixed, gas is released from low-temperature water to prepare nano-bubbles.
  • Venturi jet method uses various shearing forces to smash the gas to form micro-nano bubbles into the liquid phase. This method is easy to operate and has low energy consumption. Venturi jet micro-nano bubble generator The advantages of "compact structure, not easy to block, and large flux" have important application potentials. However, the traditional single-tube Venturi jet device cannot form a 360 ° all-round jet due to the single jet direction. The micro-nano bubbles generated in rivers and lakes In the application, the diffusion is not uniform, the diffusion is insufficient, and the high pressure required by the jet causes high energy consumption.
  • the utility model proposes a method and a device for generating 360 ° micro-nano bubbles based on the colliding jet, which can conveniently and conveniently The formation and diffusion of 360 ° micro-nano bubbles, while reducing the required jet pressure and energy consumption, can obtain smaller-sized micro-nano bubbles, which is an inevitable demand for micro-nano bubbles generation technology widely used in river and lake water treatment.
  • the purpose of the present invention is to provide a dual-flow colliding jet-type micro-nano bubble generator in order to solve the above problems, and solve the shortcomings of the prior art.
  • the present invention provides a technical solution:
  • a dual-flow colliding jet type micro-nano bubble generating device includes a venturi tube, two venturi tubes are provided, the venturi tubes are sleeved on a fixed disc, and a water inlet is provided at an upper end of the venturi tubes.
  • the water inlet of the venturi tube is at the center position of a fixed disc.
  • a plurality of fixed rods are inserted through the fixed disc, and the fixed rods are sleeved with screws. Each of the fixed rods and two fixed rods are fixed.
  • the disks are vertically connected, each of the fixed rods is parallel to each other, the two fixed disks are parallel to each other, a shrink tube is connected below the water inlet, and the water inlet and the shrink tube are integral, and the shrinkage A throat is provided on one side of the tube end, an air inlet is provided on the venturi tube, a water outlet is provided on one end of the venturi tube relative to the water inlet, and a distance between the end of the contraction tube and the throat is very large.
  • a small gap there is a gap between the outer wall of the shrink tube and the air inlet hole, a collision gap is provided between the two venturi tubes, and the fixed disc is detachable by a fixing rod and a screw Connection, each said solid The distance between the rod and the center of the fixed disc is equal, and the distance between each two adjacent fixed rods is equal.
  • the end of the shrink tube is a small cylindrical structure, and there is no gap between the shrink tube and the air inlet hole. In direct communication, the gap between the outer wall of the shrink tube and the air inlet hole surrounds the lower end of the shrink tube in a ring shape.
  • the gap between the shrinkable tube and the throat pipe communicates with the gap between the outer wall of the shrinkable tube and the air intake hole.
  • the air inlet is located outside the venturi device.
  • a diffuser is connected between the water outlet and the throat.
  • the length of the collision gap ranges from 0.1 cm to 100 cm.
  • the utility model adopts a dual-flow colliding structure design, and two fluids containing micro-nano bubbles collide with each other, generating a turbulence intensity 1.5 to 3 times higher than that of a traditional single-tube jet, which promotes the secondary fragmentation of micro-nano.
  • the number of micro-nano bubbles is increased and the particle size becomes uniform.
  • the utility model uses two foam streams to collide, so that the diffusion mode of the micro-nano bubbles is changed into a 360 ° annular disc shape, which is beneficial to the micro-nano bubbles Due to the special collision structure design, the reaction force of the water body is very small, so the device does not need other fixing devices when working underwater, and the convenience is greatly improved.
  • the utility model and the traditional single-tube wenqiu Compared with the inner tube device, under the requirements of generating the same particle size and the same number of micro-nano bubbles, the required energy consumption is lower.
  • Figure 1 is a schematic diagram of the internal structure of the utility model
  • FIG. 2 is a schematic structural diagram of the present invention
  • FIG. 3 is a working flowchart of the utility model.
  • a dual-flow colliding jet micro-nano bubble generating device including a venturi tube 6, two venturi tubes 6, and two venturi tubes 6
  • a water inlet 2 is provided at the upper end of the venturi tube 6, the water inlet 2 of the venturi tube 6 is located at the center position of the fixed disc 8, and a plurality of fixed rods 7 7 is provided with screws 1 on each sleeve, and each of the fixing rods 7 is vertically connected to two fixing discs 8 and each of the fixing rods 7 is parallel to each other, and the two fixing discs 8 are parallel to each other.
  • a shrink tube is connected below the water inlet 2 9.
  • the water inlet 2 and the shrink tube 9 are integrated.
  • the end of the shrink tube 9 is provided with a throat 10, the venturi tube 6 is provided with an air inlet 3, and the venturi tube 6 is provided at one end with respect to the water inlet 2.
  • the fixed discs 8 are detachably connected through the fixing rods 7 and the screws 1, and the distance between each fixing rod 7 The distance between the center of the fixed disc 8 is equal, and the distance between each two adjacent fixed rods 7 is equal.
  • the end of the shrink tube 9 is a small cylindrical structure, and there is no direct communication between the shrink tube 9 and the air inlet hole 3,
  • the gap between the outer wall of the shrinkable tube 9 and the air inlet hole 3 surrounds the lower end of the shrinkable tube 9 in a ring shape.
  • the gap between the shrink tube 9 and the throat pipe 10 communicates with the gap between the outer wall of the shrink tube 9 and the air inlet hole 3.
  • the air inlet hole 3 is located outside the venturi 6 device, and the water outlet 5 and the throat 10 are connected
  • the length of the diffusion tube 11 and the collision gap 4 is between 0.1 cm and 100 cm.
  • a dual-flow colliding jet type micro-nano bubble generating device in use, the water inlets 2 on both sides are connected to a pump respectively, and the air inlets 3 on two symmetrical venturi tubes 6 are each connected to a soft
  • the gas flow meter can be installed on both flexible pipes to detect the intake air volume of the venturi 6 on both sides, and the two flexible pipes are equipped with a device to adjust the intake air volume to ensure two air intakes.
  • the air intake volume of the hole 3 remains the same.
  • the high-pressure water flows through the water inlet 2 and the shrink tube 9 and the cavity at the end of the shrink tube 9 is initially mixed with the gas and enters the throat 10.
  • the throat 10 is fully mixed and collided.
  • the two gas-liquid mixtures sprayed still have great kinetic energy, and collisions occur at the collision gap 4 to obtain more micro-nano bubbles while the micro-nano bubbles' diffusion path is diffused in a straight line. It becomes a 360-degree disc-shaped plane spread.
  • the device should be placed vertically in the water body so that the initial diffusion surface of the micro-nano bubbles is parallel to the water surface. Because the device is separated from the pump, the vertical position of the device in the water body can be freely adjusted according to the situation.
  • the pump is a booster pump and a water pump.
  • the head is 30-40m
  • the flexible tube is a PVC material hose
  • the gas flow meter is an electronic flow meter
  • the diffusion angle of the diffusion pipe 11 is 5 ° -15 °
  • the gap 4 distance is between 0.1-100cm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

L'invention concerne un dispositif de génération de micro-nano-bulles de type à jet entrant en collision à deux fluides, comprenant des tubes Venturi, deux tubes Venturi étant prévus. Le dispositif présente les effets bénéfiques que le dispositif utilise une conception structurale de type collision à deux fluides; une collision se produit entre deux fluides contenant des micro-nano-bulles, et, par conséquent, une intensité de turbulence étant de 1,5 à 3 fois supérieure à celle des jets de tube unique classiques est formée pour favoriser un broyage secondaire micro-nano, de telle sorte qu'il y a plus de micro-nano-bulles générées, et la taille de grain devient uniforme; par collision entre deux fluides de mousse, un mode de diffusion des micro-nano-bulles change à une forme de disque annulaire à 360 degrés, ce qui facilite la diffusion des micro-nano-bulles; une force de contre-action d'un corps d'eau sur le dispositif est petite en raison d'une conception structurelle de type collision spéciale; par conséquent, lorsque le dispositif fonctionne sous l'eau, d'autres dispositifs de fixation ne sont pas nécessaires, ce qui améliore considérablement la commodité; et par comparaison avec un dispositif à tube Venturi classique à tube unique, la présente invention nécessite une consommation d'énergie inférieure dans le cas de nécessiter la génération du même nombre de micro-nano-bulles ayant la même taille de grain.
PCT/CN2019/101278 2018-08-21 2019-08-19 Dispositif de génération de micro-nano-bulles de type à jet entrant en collision à deux fluides WO2020038310A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821342790.1U CN209005563U (zh) 2018-08-21 2018-08-21 一种双流对撞射流式微纳米气泡发生装置
CN201821342790.1 2018-08-21

Publications (1)

Publication Number Publication Date
WO2020038310A1 true WO2020038310A1 (fr) 2020-02-27

Family

ID=66831088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101278 WO2020038310A1 (fr) 2018-08-21 2019-08-19 Dispositif de génération de micro-nano-bulles de type à jet entrant en collision à deux fluides

Country Status (2)

Country Link
CN (1) CN209005563U (fr)
WO (1) WO2020038310A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113926330A (zh) * 2021-10-26 2022-01-14 中国石油大学(华东) 一种微纳米气泡发生器
CN115739398A (zh) * 2022-11-11 2023-03-07 昆明理工大学 一种实验室微纳米气泡浮选设备及其浮选方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209005563U (zh) * 2018-08-21 2019-06-21 北京环域生态环保技术有限公司 一种双流对撞射流式微纳米气泡发生装置
CN113105038B (zh) * 2021-03-29 2022-09-06 同研智慧(苏州)环境科技有限公司 一种水力空化耦合微纳曝气强化光催化去除微藻的设备

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226719A (en) * 1978-07-10 1980-10-07 Woltman Robert B Treating device for large bodies of water
US4308138A (en) * 1978-07-10 1981-12-29 Woltman Robert B Treating means for bodies of water
CN2190112Y (zh) * 1994-04-27 1995-02-22 重庆市北碚区奔康机械配件厂 射流式增氧器
CN2736345Y (zh) * 2004-10-30 2005-10-26 宜兴市天立环保有限公司 改进的射流曝气器
CN206184414U (zh) * 2016-11-23 2017-05-24 锦州永嘉化工有限公司 一种撞击流混合反应器
CN106745489A (zh) * 2016-12-24 2017-05-31 青岛科技大学 一种水力空化污水处理设备
CN107530650A (zh) * 2016-04-12 2018-01-02 大生工业株式会社 微细气泡生成装置
CN107744732A (zh) * 2017-11-27 2018-03-02 北京石油化工学院 一种管式微细气泡发生器
CN107915326A (zh) * 2017-10-31 2018-04-17 南京航空航天大学 基于射流的微气泡产生方法及射流微气泡曝气器
CN207271082U (zh) * 2017-09-08 2018-04-27 北京爱尔斯生态环境工程有限公司 一种超微气泡发生设备和超微气泡发生器
CN109731491A (zh) * 2018-08-21 2019-05-10 北京环域生态环保技术有限公司 一种双流对撞射流式微纳米气泡发生方法及装置
CN209005563U (zh) * 2018-08-21 2019-06-21 北京环域生态环保技术有限公司 一种双流对撞射流式微纳米气泡发生装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226719A (en) * 1978-07-10 1980-10-07 Woltman Robert B Treating device for large bodies of water
US4308138A (en) * 1978-07-10 1981-12-29 Woltman Robert B Treating means for bodies of water
CN2190112Y (zh) * 1994-04-27 1995-02-22 重庆市北碚区奔康机械配件厂 射流式增氧器
CN2736345Y (zh) * 2004-10-30 2005-10-26 宜兴市天立环保有限公司 改进的射流曝气器
CN107530650A (zh) * 2016-04-12 2018-01-02 大生工业株式会社 微细气泡生成装置
CN206184414U (zh) * 2016-11-23 2017-05-24 锦州永嘉化工有限公司 一种撞击流混合反应器
CN106745489A (zh) * 2016-12-24 2017-05-31 青岛科技大学 一种水力空化污水处理设备
CN207271082U (zh) * 2017-09-08 2018-04-27 北京爱尔斯生态环境工程有限公司 一种超微气泡发生设备和超微气泡发生器
CN107915326A (zh) * 2017-10-31 2018-04-17 南京航空航天大学 基于射流的微气泡产生方法及射流微气泡曝气器
CN107744732A (zh) * 2017-11-27 2018-03-02 北京石油化工学院 一种管式微细气泡发生器
CN109731491A (zh) * 2018-08-21 2019-05-10 北京环域生态环保技术有限公司 一种双流对撞射流式微纳米气泡发生方法及装置
CN209005563U (zh) * 2018-08-21 2019-06-21 北京环域生态环保技术有限公司 一种双流对撞射流式微纳米气泡发生装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113926330A (zh) * 2021-10-26 2022-01-14 中国石油大学(华东) 一种微纳米气泡发生器
CN113926330B (zh) * 2021-10-26 2023-12-26 中国石油大学(华东) 一种微纳米气泡发生器
CN115739398A (zh) * 2022-11-11 2023-03-07 昆明理工大学 一种实验室微纳米气泡浮选设备及其浮选方法

Also Published As

Publication number Publication date
CN209005563U (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
WO2020038310A1 (fr) Dispositif de génération de micro-nano-bulles de type à jet entrant en collision à deux fluides
CN107744732B (zh) 一种管式微细气泡发生器
CN109433035B (zh) 一种多文丘里结构的文丘里式气泡发生装置
CN103785311B (zh) 微纳米气泡发生装置
CN103920402B (zh) 增益式缓释节流微纳米气泡发生装置
CN111346589B (zh) 微纳气泡气液反应器
CN109731491A (zh) 一种双流对撞射流式微纳米气泡发生方法及装置
CN109046792A (zh) 一种混流式微泡发生器及气泡分布器
CN103041723A (zh) 微细气泡发生装置
CN203079758U (zh) 自吸式三混合管双级射流曝气装置
CN102688709A (zh) 高速旋回式气液混合型微纳米泡沫发生装置
CN103102021B (zh) 高氧射流器
CN210048555U (zh) 一种多级旋切破碎式微纳米气泡发生装置
CN111348740A (zh) 基于文丘里管空化效应的曝气系统
CN203935832U (zh) 带导流翅片的旋涡流空化器
CN103585726A (zh) 一种用于矿井防灭火的泡沫凝胶制备装置
WO2020038302A1 (fr) Appareil rotatif de génération de nanobulles en forme de cuvette à auto-aspiration
CN205550170U (zh) 一种低能耗微纳米气泡水发生装置
CN110898698B (zh) 一种微气泡发生器和包含该微气泡发生器的气液反应器
CN117550728A (zh) 一种自吸式微纳米气泡发生装置及发生方法
CN203663289U (zh) 用于矿井防灭火的泡沫凝胶制备装置
CN209237735U (zh) 一种二次加压多级破碎的纳米气泡发生装置
CN104724771A (zh) 一种水力空化技术强化污水除污效率的空化器
CN209237734U (zh) 一种碟形自吸式文丘里射流微纳气泡发生装置
CN109987726A (zh) 一种多级旋切破碎式微纳米气泡发生方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25.06.21)

122 Ep: pct application non-entry in european phase

Ref document number: 19852508

Country of ref document: EP

Kind code of ref document: A1