WO2020038164A1 - 一种气体动力装置 - Google Patents
一种气体动力装置 Download PDFInfo
- Publication number
- WO2020038164A1 WO2020038164A1 PCT/CN2019/096484 CN2019096484W WO2020038164A1 WO 2020038164 A1 WO2020038164 A1 WO 2020038164A1 CN 2019096484 W CN2019096484 W CN 2019096484W WO 2020038164 A1 WO2020038164 A1 WO 2020038164A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- outer ring
- gas
- channel
- gas power
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D1/00—Non-positive-displacement machines or engines, e.g. steam turbines
- F01D1/32—Non-positive-displacement machines or engines, e.g. steam turbines with pressure velocity transformation exclusively in rotor, e.g. the rotor rotating under the influence of jets issuing from the rotor, e.g. Heron turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D1/00—Non-positive-displacement machines or engines, e.g. steam turbines
- F01D1/34—Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D1/00—Non-positive-displacement machines or engines, e.g. steam turbines
- F01D1/02—Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2200/00—Mathematical features
- F05D2200/20—Special functions
- F05D2200/23—Logarithm
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/10—Two-dimensional
- F05D2250/15—Two-dimensional spiral
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/10—Two-dimensional
- F05D2250/18—Two-dimensional patterned
- F05D2250/183—Two-dimensional patterned zigzag
Definitions
- the invention discloses a gas power device, which belongs to the technical field of mechanical devices that generate power according to the International Patent Classification Table (IPC).
- IPC International Patent Classification Table
- the original meaning of the engine refers to the "mechanical device that generates power". It is a machine that converts a certain form of energy into mechanical energy. For example, the chemical energy of liquid or gas combustion is converted into thermal energy after combustion, and then the thermal energy is converted by expansion. For mechanical energy and external power.
- Engines, especially pneumatic engines, are currently researching the development of compact, efficient, and reliable small engines, which are mostly in the trial and trial stage, and have not yet had large-scale commercial applications.
- Cida variable-pressure jet air engine including an impeller chamber and an impeller.
- the impeller chamber is provided with an injection hole for injecting compressed gas and an exhaust hole for ejecting compressed gas.
- the impeller is installed on the shaft through a rotating shaft.
- the impeller chamber includes an air gap matching the inner surface of the impeller chamber along a rotating peripheral surface, and the inner surface of the impeller chamber is further provided with a variable-pressure air jet groove.
- the structure of this document is similar to that of a vane pump. The setting of a variable pressure jet trough results in low engine speed and low efficiency.
- the present invention provides a gas power device.
- the energy of the gas is used multiple times, and the rotating outer ring is driven by the core body to realize power output. It has the advantages of compact structure, large torque, high speed, high transmission efficiency, energy saving and environmental protection.
- At least one intake channel, at least one nozzle, at least two driving recesses, at least one flushing channel, at least one row of outlets, and at least one exhaust channel form an independent work unit
- the aerodynamic device includes at least one independent work unit.
- an intake passage and an exhaust passage are formed in the core.
- the secondary flush flow path includes a return path and a communicating stroke path, the return path communicates with a driving recess corresponding to the outer ring, and the stroke path communicates with another driving recess.
- each driving recess has a contour bottom surface and a driving surface.
- the contour line of the contour bottom surface is a logarithmic spiral line, and its pole is set at the center of the core.
- the gas power device of the present invention has a simple structure, large torque, high rotation speed, high transmission efficiency, and low energy consumption, and can be widely used in vehicles, power generation equipment, and other fields requiring power output devices.
- the present invention has the following beneficial effects:
- the multi-stage flow channel provided by the core in the present invention that is, the intake channel is used as the first-stage flow channel, and each impulse flow channel is used as the second-, third-, and fourth-stage flow channels.
- the driving recess acting on the outer ring the driving recess communicating with the second stage flow channel, and then returning to the second stage flow channel and then acting on the other driving recess of the outer circle, and so on, until the gas is discharged from the exhaust channel, the entire process It is performed in the forward direction of the outer ring rotation direction, with large torque, high transmission efficiency, and high gas utilization rate.
- the output torque further increases with the increase of the rotation speed.
- Fig. 3 is a side view in the direction of axis B of the first embodiment of the present invention.
- Fig. 4 is a sectional view of the first embodiment of the present invention.
- Fig. 8 is a side view in the direction of the axis D of the second embodiment of the present invention.
- the intake passage 31 and the exhaust passage 310 are formed in the core 3.
- the nozzle 301 and the secondary flushing channel 300 on the core 3 communicate with the driving recess 11 corresponding to the outer ring 1, and the secondary flush
- the flow passages 300 are alternately arranged and communicated with the corresponding driving recesses 11, and the secondary flush flow passages 300 are arranged along the core or the outer ring circumferential direction.
- the secondary impulse runner 300 is an arc line extending from the edge of the core 3 inward to the edge, and the secondary impulse runner 300 communicates with the two front and rear drive recesses 11 corresponding to the outer ring 1 along the core circumferential direction.
- N-level runners where N ⁇ 2 is a natural number. It should be noted that if it is a second-order flow path, it includes the first-order flow path (intake channel) and second-order flow path (primary impulse flow path); if it is a third-order flow path, it includes the first-order flow path ( Intake channel), 2nd stage flow channel (primary flow channel), 3rd stage flow channel (another flow channel), ...
- FIG. 5 is a schematic diagram of the 4-stage flow channel. After the compressed gas enters from the first-stage flow channel 311, it passes through the second, third, and fourth-stage flow channels 312, 313, and 314, and ejects and acts on the corresponding driving recess 11, and finally The body is output through the exhaust flow channel 310;
- FIG. 4 is a schematic diagram of a 5-stage intake flow channel, and the working process is similar to that shown in FIG. 5.
- the secondary flush flow path 300 includes a return flow path and interlinked stroke paths, such as a return flow path 3131 and an interconnected stroke path 3132 in the third stage flow path.
- the stroke path 3132 communicates with another driving recess.
- the core body 3 may be formed by combining the left and right core bodies.
- the left and right core body mating surfaces are provided with an intake passage 31 and an exhaust passage 310, and the core body 3 may also be integrally cast. Made.
- This embodiment is a first-level driving structure.
- a gas channel is provided on the core 3 in the circumferential direction to form a first-level driving structure.
- the gas channel is also referred to as an independent work unit.
- the core 3 and the outer ring 1 The upper air inlet channel 31, a nozzle 301, at least two driving recesses 11, at least one flushing channel 300, a row of outlets 302, and an exhaust channel 310 form an independent work unit.
- the aerodynamic device includes at least one independent work unit. In the independent work unit, the gas inlet path 31, the nozzle 301, the driving recess 11, the secondary flushing channel 300, the exhaust port 302, and the exhaust channel 310 constitute a gas flow path.
- the inner ring surface of the outer ring 1 is provided with more than two driving recesses 11.
- Each driving recess has a contour bottom surface 111 and a driving surface 112, and a contour line of the contour bottom surface 111. It can be an ordinary arc or spiral.
- the contour of the bottom of the contour is a logarithmic spiral, its poles are set on the axis.
- Each driving recess 11 communicates with the adjacent flow channel at the same time so that the previous flow channel enters. The gas is output by the next stage flow channel.
- the core body 3 of the present invention is provided with an air inlet channel 31, and its direction is a logarithmic spiral line extending from the center to the outside.
- the trend of the logarithmic spiral of the stroke channel of the flushing channel is substantially the same as that of the logarithmic spiral of the intake channel.
- the orientation of the inlet channel of the core 3 is a logarithmic spiral line extending from the middle to the outside.
- the pole of the logarithmic spiral line is set on the core axis.
- the logarithmic spiral line angle is 15 ° -45 °. The smaller the angle, The longer the runner, the more the loss; the larger the angle, the smaller the tangential component force driving the outer ring.
- the aerodynamic device referred to in this application refers to a device capable of converting gas energy into mechanical rotation.
- the device may include other components in addition to the necessary design of the outer ring, the core and its corresponding recess structure or flow channel structure.
- it may additionally include a housing and a sealing structure to provide external protection, and it may additionally include a coupling to provide torque transmission.
- the outer ring can change its specific expression according to different mechanical rotation output methods.
- an outer toothed structure is formed on the outer ring to facilitate the output of kinetic energy through gear transmission.
- FIGS. 1 and 4 What needs to be explained in FIGS. 1 and 4 is that although the intake channels 31 and exhaust channels 310 of the core body, the intake shaft channels 21 and the exhaust shaft channels 210 do not correspond according to the drawing rules, but for the sake of illustration, in FIG. 1
- the air intake passage and exhaust passage of the core body refer to the air intake passage and the exhaust passage.
- FIG. 6 and FIG. 9 in Embodiment 2 are similar schematic diagrams.
- Embodiment 2 Please refer to FIGS. 6 to 9.
- the gas power device includes two independent power units to form a two-stage driving structure, that is, two gas channels are provided on the core 3 in the circumferential direction, and each gas channel includes more than one stage.
- the intake passage 31 and the secondary flushing passage 300 are arranged along the circumferential direction of the core body 3 and the exhaust passage 310.
- the aerodynamic device includes an outer ring 1 provided with a plurality of driving recesses 11 in the circumferential direction of the inner ring surface; a core body 3 which is coaxially disposed in the outer ring 1 and can be rotated relative to the outer ring.
- the outer ring surface of the core body is provided with 2 groups of nozzles, exhaust ports, and at least one flushing channel between each group of nozzles and outlets;
- the core is provided with 2 intake channels 31, 32, which correspond to the communication nozzles; and 2 exhaust channels 310, 320 , Which correspond to the connected exhaust port;
- two streams of gas enter from the 2 intake channels of the core, and are ejected through the nozzles of the core 3 and the secondary flushing channel 300 in a stepwise manner, acting on the corresponding driving recesses in the circumferential direction of the outer ring. 11.
- the gas is discharged through the exhaust channel of the core through the exhaust channel.
- the above-mentioned one air inlet channel, one nozzle, corresponding number of driving recesses, and corresponding secondary flushing channels, exhaust ports, and one exhaust channel form independent work units.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Jet Pumps And Other Pumps (AREA)
- Actuator (AREA)
Abstract
一种气体动力装置,包括外圈(1)和芯体(3),芯体(3)的外环面的喷口(301)和排口(302)之间设有至少一阶以上的次冲流道(300),气体从进气通道(31)进入,通过芯体(3)的喷口(301)及次冲流道(300)的逐阶喷出,作用于外圈(1)周向上的至少二驱动凹部(11),对这些驱动凹部(11)产生推力推动外圈(1)旋转做功,实现动力输出,最后,气体通过芯体(3)的排口(302)经排气通道(310)排出。
Description
本发明公开一种气体动力装置,按国际专利分类表(IPC)划分属于产生动力的机械装置类技术领域。
发动机本义是指那种“产生动力的机械装置”,是将某一种形式的能量转换为机械能的机器,如将液体或气体燃烧的化学能通过燃烧后转化为热能,再把热能通过膨胀转化为机械能并对外输出动力。发动机,尤其是气压发动机,当今研究方向是发展结构紧凑,高效可靠的小型发动机,大多处于试验即试制阶段,还未有大规模的商业应用。
目前,大多数气体发动机设计原型是以活塞发动机或叶片泵的基础,通过热交换器受热实现能量的转化,达到动力输出,但结构复杂、效率低,难以满足续航能力的要求。
中国文献CN201410167469.4公开一种变压喷气式空气发动机,包括叶轮室和叶轮,叶轮室上设置有喷入压缩气体的喷入孔和喷出压缩气体的排气孔,叶轮通过转轴装设于叶轮室,叶轮包括沿转动周面与叶轮室的内表面气隙配合,叶轮室的内表面还设置有变压喷气槽。该文献结构与叶片泵相似,变压喷气槽的设置导致发动机转速低,效率低。
中国文献CN107083994A公开一种气压发动机,是本案发明人之前提出的关于空气发动机的发明创造,通过直驱动力机芯的进气流道喷出,作用在外圈的槽面上,产生推力推动旋转外圈,是发动机领域一大颠覆性变革,其输出扭矩可以与现有汽车发动机相匹配,其折合续航里程与目前同类新能源汽车续航里程相当。
为进一步改善发动机性能,实现结构紧凑、高效可靠的气体动力生成装置,本发明人经过多年的开发研究,故才有本发明的提出。
发明内容
针对现有技术的不足,本发明提供了一种气体动力装置,通过芯体上周向设置的多阶流道,气体的能量多次利用,通过芯体驱动旋转外圈,实现动力的输出,具有结构紧凑、扭矩大、转速高、传递效率高、节能环保 等优点。
为达到上述目的,本发明是通过以下技术方案实现的:
一种气体动力装置,其包括:
一外圈,其内环面周向上设有多个驱动凹部;
一芯体,其同轴设置在外圈内并能相对外圈转动,芯体的外环面设有至少一喷口、至少一排口、以及位于喷口和排口之间的至少一次冲流道;
至少一进气通道,其连通至少一喷口;以及
至少一排气通道,其连通至少一排口;
气体从进气通道进入,通过芯体的喷口及次冲流道的逐阶喷出,作用于外圈周向上的至少二驱动凹部,对这些驱动凹部产生推力推动外圈旋转做功,实现动力输出,最后,气体通过芯体的排口经排气通道排出。
进一步,至少一进气通道、至少一喷口、至少二驱动凹部、至少一次冲流道、至少一排口和至少一排气通道形成独立做功单元,该气体动力装置中包括至少一个独立做功单元。
进一步,芯体上的喷口及次冲流道,与外圈对应的驱动凹部连通,次冲流道与对应的驱动凹部交错布设依次连通,次冲流道沿芯体或外圈周向设置。
进一步,进气通道和排气通道形成于芯体内。
进一步,芯体上包括:
进气通道,其在芯体周面形成喷口,其走向为由中间往外延伸的弧形线,喷口与外圈对应的驱动凹部连通,形成第1阶流道;
次冲流道,其走向为芯体边缘向内再到边缘弯折延伸的弧形线,每一次冲流道与外圈对应的前后两驱动凹部连通,沿芯体周向形成N阶流道,其中N≥2的自然数;
各阶流道与外圈对应驱动凹部配合形成气体能量递减的多阶冲程结构。
进一步,次冲流道包括回程道和相通的冲程道,回程道与外圈对应的驱动凹部连通,冲程道与另一驱动凹部连通。
进一步,芯体进气通道的走向为由中间往外延伸的对数螺旋线,该对数螺旋线的极点设置在芯体中心轴线上,对数螺旋线走向角15°-45°。
进一步,芯体上设有进气通道,其走向为由中间往外延伸的对数螺旋线,次冲流道的冲程道的走向为对数螺旋线,次冲流道的冲程道对数螺旋线的走向与进气通道对数螺旋线的走向大致相同。
进一步,该气体动力装置还包括一轴,外圈与芯体同轴设置于轴上。
进一步,该气体动力装置还包括一轴,外圈与芯体同轴设置于轴上,该轴上开设有进、出气轴道分别连通至芯体的进气通道和排气通道。
轴内进、出气轴道形成进气口和出气口,进、出气轴道为不连通结构。
进一步,外圈通过侧板配合于轴上形成一个封闭空间,芯体设置于封闭空间内并与轴连接固定。
进一步,独立做功单元中进气通道、喷口、驱动凹部、次冲流道、排口和排气通道构成气体流动路径。
进一步,该气体动力装置中包括二个以上独立做功单元形成多级驱动结构,并沿芯体或外圈周向设置。
进一步,外圈的内环面上设置有2个以上驱动凹部,每一驱动凹部具有一轮廓底面以及驱动面,轮廓底面的轮廓线为对数螺旋线,其极点设置在芯体中心。
一种气压发动机,其包括所述的气体动力装置,所述气体是压缩气体或具有一定压力的气体。一种无级变速器,其包括所述的气体动力装置。
本发明气体动力装置,结构简单,扭矩大,转速高,传递效率高,能耗低,可广泛应用于交通工具、发电设备以及其他需要动力输出装置的各领域,本发明具有如下有益效果:
1、本发明中芯体设置的多阶流道,即进气通道作为第1阶流道,各次冲流道作为第2、3、4……阶流道,气体由第1阶流道作用在外圈的驱动凹部,驱动凹部与第2阶流道相通,然后返回到第2阶流道后又作用在外圈的另一驱动凹部,位次类推,直至气体从排气通道排出,整个过程是沿外圈旋转方向的顺向进行,扭矩大,传递效率高、气体利用率高,输出扭矩随着转速的提高进一步增大。
2、本发明芯体周向布设的各流道,有效减小了整体装置的体积,可灵活配合于各领域动力生成或输出设备,同时,芯体上进气流道设置越多,整体重量反而降低,进一步提高了装置的输出速度和效率。
图1是本发明第1实施例示意图。
图2是本发明第1实施例轴A向侧视图。
图3是本发明第1实施例轴B向侧视图。
图4是本发明第1实施例一剖视图。
图5是本发明第1实施例另一布局图。
图6是本发明第2实施例示意图。
图7是本发明第2实施例轴C向侧视图。
图8是本发明第2实施例轴D向侧视图。
图9是本发明第2实施例径向剖视图。
下面结合附图对本发明作进一步说明:
实施例1:请参阅图1至图4,一种气体动力装置,其包括一外圈1,其内环面周向上设有多个驱动凹部11;一芯体3,其同轴设置在外圈1内并能相对外圈转动,芯体3的外环面设有至少一喷口301、至少一排口302、以及位于喷口和排口之间的至少一次冲流道300;
至少一进气通道31,其连通至少一喷口301;以及
至少一排气通道310,其连通至少一排口302;
气体从进气通道31进入,通过芯体3的喷口301及次冲流道300的逐阶喷出,作用于外圈1周向上的至少二驱动凹部11,对这些驱动凹部11产生推力推动外圈1旋转做功,实现动力连续输出,最后,气体通过芯体3的排口经排气通道排出。该气体动力装置还包括一轴2,外圈1与芯体3同轴设置于轴2上。
如图4所示,进气通道31和排气通道310形成于芯体3内,芯体3上的喷口301及次冲流道300,与外圈1对应的驱动凹部11连通,其中次冲流道300与对应的驱动凹部11交错布设依次连通,次冲流道300沿芯体或外圈周向设置。
如图4,芯体3上包括:进气通道31,其在芯体周面形成喷口31,其走向为由中间往外延伸的弧形线,喷口301与外圈对应的驱动凹部11连通,形成第1阶流道;
次冲流道300,其走向为芯体3边缘向内再到边缘弯折延伸的弧形线,每一次冲流道300与外圈1对应的前后两驱动凹部11连通,沿芯体周向 形成N阶流道,其中N≥2的自然数。需要说明的是:这里如果是2阶流道则包括第1阶流道(进气通道)和第2阶流道(一次冲流道);如果是3阶流道包括第1阶流道(进气通道)、第2阶流道(一次冲流道)、第3阶流道(另一次冲流道),……
各阶流道与外圈对应驱动凹部配合形成气体能量递减的多阶冲程结构。
根据负载的要求,可以对气体动力装置进行设计,其中的芯体3设置可以是2阶流道、3阶流道、或更多阶进气流道,每阶循环做功,能量充分利用,最大程度地提高使用效率,以满足输出扭矩和转速的需求。
如图5是4阶流道示意图,压缩气体从第1阶流道311进入后,经第2、3、4阶流道312、313、314,并喷出作用在对应的驱动凹部11,最后体通过排气流道310输出;图4是5阶进气流道示意图,工作过程同图5示意类似。如图5,次冲流道300包括回程道和相通的冲程道,如图5中的第3阶流道中的回程道3131和相通的冲程道3132,回程道3131与外圈对应的驱动凹部连通,冲程道3132与另一驱动凹部连通。
请参阅图1,该气体动力装置还包括一轴2,外圈1与芯体3同轴设置于轴2上,该轴2上开设有进、出气轴道21、210分别连通至芯体3的进气通道31和排气通道310。轴内进、出气轴道形成进口(进气口)和出口(出气口),进、出气轴道为不连通结构。外圈1通过侧板41、42配合于轴2上形成一个封闭空间,芯体3设置于封闭空间内并与轴2连接固定。本发明中芯体3设有至少2阶流道,每一阶流道与外圈对应的驱动凹部连通,最后由排气通道排出气体。
请参阅图1,本发明中芯体3可以是由左、右芯体配合而成,左、右芯体配合面设有进气通道31和排气通道310,芯体3也可以是整体铸造而成。
请参阅图1、图4,本实施例是一级驱动结构,芯体3上沿周向设置1条气体通道形成一级驱动结构,气体通道也称为独立做功单元,芯体3和外圈1上一进气通道31、一喷口301、至少二驱动凹部11、至少一次冲流道300、一排口302和一排气通道310形成独立做功单元,该气体动力装置中包括至少一个独立做功单元。独立做功单元中进气通道31、喷口 301、驱动凹部11、次冲流道300、排口302和排气通道310构成气体流动路径。
请参阅图1、图4或图5,本发明中外圈1的内环面上设置有2个以上驱动凹部11,每一驱动凹部具有一轮廓底面111以及驱动面112,轮廓底面111的轮廓线可以是普通弧形线或螺旋线,当轮廓底面的轮廓线为对数螺旋线,其极点设置在轴上,每一驱动凹部11同时与相邻阶流道相通以使前一阶流道进入的气体由下一阶流道输出。
本发明中芯体3进气通道即第1阶流道走向可以是普通弧形线或螺旋线,各次冲流道即第N阶流道中冲程道的走向也可以是普通弧形线或螺旋线。
如图4及图5,本发明芯体3上设有进气通道31,其走向为由中间往外延伸的对数螺旋线,次冲流道300的冲程道的走向为对数螺旋线,次冲流道的冲程道对数螺旋线的走向与进气通道对数螺旋线的走向大致相同。芯体3进气通道的走向为由中间往外延伸的对数螺旋线,该对数螺旋线的极点设置在芯体中心轴线上,对数螺旋线走向角15°-45°,角度越小,流道越长,损耗越多;角度越大,驱动外圈的切向分力越小。
请参阅图1、图2及图3,本发明轴2内进、出气轴道21、210形成进口和出口,进、出气轴道为不连通结构。轴的进口和出口可以设置在轴一端或轴两端,进气轴道21与芯体的进气通道31相通,轴的出气口轴向延伸形成出气轴道210,出气轴道与芯体的排气通道310相通。
本申请案所涉气体动力装置是指能够将气体能转换成机械转动的装置,其中该装置除必要的外圈、芯体及其相应凹部结构或流道结构设计外,还可以额外包括其他部件;例如,可以额外包括有提供外保护的壳体和密封结构等,又如可以额外包括有提供转矩传递的联轴器等。其中,外圈可以根据机械转动输出方式的不同而具体表现形式有所变化,例如外圈外侧形成外齿形结构,以利于通过齿轮传动的方式输出动能;又例如外圈具有皮带槽,以通过皮带传动的方式输出动能;再例如外圈具有安装法兰盘,可以方便地安装联轴器以输出动能;等等。芯体和外圈的材质为硬质材料制成,不限于金属、金属合金、塑料、复合材质,芯体和外圈的凹部结构或流道结构的加工方式可以采用一切已知的生产手段实现,包括而不限于 压铸、锻造、挤压、3D打印等等。输入至该动力装置的气体压力可以是压缩机(如气压泵)产生、压缩流体的容器(如高压气瓶)产生、等等。
图1和图4中需要说明的是,芯体的进气通道31和排气通道310及进气轴道21、出气轴道210,按制图规则虽然不对应,但为了形象说明,图1中芯体的进气通道和排气通道就是指进气通道和排气通道,实施例2中图6和图9与此类似的示意图示。
实施例2:请参阅图6至图9,气体动力装置中包括2独立做功单元形成二级驱动结构,即芯体3上沿周向设置2条气体通道,每条气体通道包括1阶以上的进气通道31和次冲流道300并沿芯体3周向布设及排气通道310。气体动力装置包括外圈1,其内环面周向上设有多个驱动凹部11;一芯体3,其同轴设置在外圈1内并能相对外圈转动,芯体的外环面设有2组喷口、排口、以及每组喷口和排口之间设有至少一次冲流道;芯体上设有2进气通道31、32,其对应连通喷口;以及2排气通道310、320,其对应连通排口;两股气体从分别从芯体的2进气通道进入,通过芯体3的喷口及次冲流道300的逐阶喷出,作用于外圈周向上相应的驱动凹部11,对这些驱动凹部产生推力推动外圈1旋转做功,实现动力输出,最后,气体通过芯体的排口经排气通道排出。上述的一进气通道、一喷口、相应数量的驱动凹部及对应的次冲流道、排口和一排气通道形成独立做功单元。
该气体动力装置还包括一轴2,外圈1与芯体3同轴设置于轴上,该轴2上开设有进气轴道21、22及出气轴道210、220分别连通至芯体的进气通道31、32和排气通道310、320。轴2上设有与气体通道对应的两进气口和两出气口;压缩气体从轴2的两进气口进入,通过芯体3进气通道喷出作用在外圈1的驱动凹部11,产生推力推动外圈1旋转做功,最后压缩气体通过芯体3的排气通道回到相应的出气口,实现动力的连续输出。其他结构与实施例1中结构相同,不再赘述。
实施例3:本发明气体动力装置中包括4或更多的独立做功单元形成多级驱动结构,芯体上沿周向设置3条或更多条气体通道,每条气体通道包括1阶以上的进气通道和次冲流道并沿芯体周向布设及排气通道,进气通道和排气通道设置在左、右芯体的配合面。轴上设有与气体通道对应数 量的进气轴道和出气轴道,压缩气体从轴的进气轴道进入,通过芯体进气流道喷出作用在外圈的驱动凹部,推动外圈旋转做功,实现动力的连续输出,最后压缩气体通过芯体的各排气通道回到相应的出气轴道。其他结构与实施例1中结构相同。
实施例4:
气体动力装置样机:
(一)二阶气体动力装置
1、主要参数如下:
(1)气体压力:1.2MPa;
(2)最高转速:8550r/min;
(3)驱动结构级数:3;
(4)进气流道直径:Φ5mm;
(5)单级驱动进气阶数:2;
(6)外圈直径:Φ140mm;
(7)外圈重量:2.5KG
2、输出扭矩
静扭矩(转速0r/min) N静=4.95N·m;
输出扭矩1(转速1000r/min时) N1000=6.23N·m;
输出扭矩2(转速3000r/min) N3000=8.79N·m;
输出扭矩3(转速5000r/min) N5000=11.35N·m;
输出扭矩4(转速8550r/min) Nmax=15.89N·m。
(二)五阶气体动力装置
1、主要参数如下:
(1)气体压力:1.2MPa;
(2)最高转速:17967r/min;
(3)驱动结构级数:3;
(4)进气流道直径:Φ5mm;
(5)单级驱动进气阶数:5;
(6)外圈直径:Φ140mm;
(7)外圈重量:2.5KG
2、输出扭矩
静扭矩(转速0r/min) N静=9.58N·m;
输出扭矩1(转速1000r/min时) N1000=10.86N·m;
输出扭矩2(转速3000r/min) N3000=13.42N·m;
输出扭矩3(转速5000r/min) N5000=15.98N·m;
输出扭矩4(转速10000r/min) N10000=22.38N·m;
输出扭矩5(转速17967r/min) Nmax=33.58N·m。
通过试验可见,在同等条件下,增加驱动进气阶数可显著增大输出扭矩,加速性能更佳,同时,还有利于提高转速。
以上所记载,仅为利用本创作技术内容的实施例,任何熟悉本项技艺者运用本创作所做的修饰、变化,皆属本创作主张的专利范围,而不限于实施例所揭示者。
Claims (17)
- 一种气体动力装置,其特征在于,包括:一外圈,其内环面周向上设有多个驱动凹部;一芯体,其同轴设置在外圈内并能相对外圈转动,芯体的外环面设有至少一喷口、至少一排口、以及位于喷口和排口之间的至少一次冲流道;至少一进气通道,其连通至少一喷口;以及至少一排气通道,其连通至少一排口;气体从进气通道进入,通过芯体的喷口及次冲流道的逐阶喷出,作用于外圈周向上的至少二驱动凹部,对这些驱动凹部产生推力推动外圈旋转做功,实现动力输出,最后,气体通过芯体的排口经排气通道排出。
- 根据权利要求1所述的气体动力装置,其特征在于:至少一进气通道、至少一喷口、至少二驱动凹部、至少一次冲流道、至少一排口和至少一排气通道形成独立做功单元,该气体动力装置中包括至少一个独立做功单元。
- 根据权利要求1所述的气体动力装置,其特征在于:芯体上的喷口及次冲流道,与外圈对应的驱动凹部连通,次冲流道沿芯体或外圈周向设置。
- 根据权利要求1所述的气体动力装置,其特征在于:进气通道和排气通道形成于芯体内。
- 根据权利要求4所述的气体动力装置,其特征在于:芯体上包括进气通道,其在芯体周面形成喷口,其走向为由中间往外延伸的弧形线,喷口与外圈对应的驱动凹部连通,形成第1阶流道;次冲流道,其走向为芯体边缘向内再到边缘弯折延伸的弧形线,每一次冲流道与外圈对应的前后两驱动凹部连通,沿芯体周向形成N阶流道,其中N≥2的自然数;各阶流道与外圈对应驱动凹部配合形成气体能量递减的多阶冲程结构。
- 根据权利要求1所述的气体动力装置,其特征在于:次冲流道包括回程道和相通的冲程道,回程道与外圈对应的驱动凹部连通,冲程道与另一驱动凹部连通。
- 根据权利要求4所述的气体动力装置,其特征在于:芯体进气通道的走向为由中间往外延伸的对数螺旋线,该对数螺旋线的极点设置在芯体中心轴线上,对数螺旋线走向角15°-45°。
- 根据权利要求6所述的气体动力装置,其特征在于:芯体上设有进气通道,其走向为由中间往外延伸的对数螺旋线,次冲流道的冲程道的走向为对数螺旋线,次冲流道的冲程道对数螺旋线的走向与进气通道对数螺旋线的走向大致相同。
- 根据权利要求1所述的气体动力装置,其特征在于:该气体动力装置还包括一轴,外圈与芯体同轴设置于轴上。
- 根据权利要求4所述的气体动力装置,其特征在于:该气体动力装置还包括一轴,外圈与芯体同轴设置于轴上,该轴上开设有进、出气轴道分别连通至芯体的进气通道和排气通道。
- 根据权利要求10所述的气体动力装置,其特征在于:轴内进、出气轴道形成进气口和出气口,进、出气轴道为不连通结构。
- 根据权利要求9所述的气体动力装置,其特征在于:外圈通过侧板配合于轴上形成一个封闭空间,芯体设置于封闭空间内并与轴连接固定。
- 根据权利要求2所述的气体动力装置,其特征在于:独立做功单元中进气通道、喷口、驱动凹部、次冲流道、排口和排气通道构成气体流动路径。
- 根据权利要求2所述的气体动力装置,其特征在于:该气体动力装置中包括二个以上独立做功单元形成多级驱动结构,并沿芯体或外圈周向设置。
- 根据权利要求1所述的气体动力装置,其特征在于:外圈的内环面上设置有2个以上驱动凹部,每一驱动凹部具有一轮廓底面以及驱动面,轮廓底面的轮廓线为对数螺旋线,其极点设置在芯体中心。
- 一种气压发动机,其特征在于:包括权利要求1—15任意一项所 述的气体动力装置,所述气体是压缩气体或具有一定压力的气体。
- 一种无级变速器,其特征在于:包括权利要求1—15任意一项所述的气体动力装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19852751.7A EP3839209B1 (en) | 2018-08-19 | 2019-07-18 | Pneumatic device |
JP2021532505A JP7128966B2 (ja) | 2018-08-19 | 2019-07-18 | 気体動力装置 |
RU2020142338A RU2752390C1 (ru) | 2018-08-19 | 2019-07-18 | Пневматическое устройство |
US17/125,784 US11441445B2 (en) | 2018-08-19 | 2020-12-17 | Pneumatic device |
ZA2020/07960A ZA202007960B (en) | 2018-08-19 | 2020-12-18 | Pneumatic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810944526.3A CN110836128A (zh) | 2018-08-19 | 2018-08-19 | 一种气体动力装置 |
CN201810944526.3 | 2018-08-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/125,784 Continuation US11441445B2 (en) | 2018-08-19 | 2020-12-17 | Pneumatic device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020038164A1 true WO2020038164A1 (zh) | 2020-02-27 |
Family
ID=69573773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/096484 WO2020038164A1 (zh) | 2018-08-19 | 2019-07-18 | 一种气体动力装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11441445B2 (zh) |
EP (1) | EP3839209B1 (zh) |
JP (1) | JP7128966B2 (zh) |
CN (1) | CN110836128A (zh) |
RU (1) | RU2752390C1 (zh) |
WO (1) | WO2020038164A1 (zh) |
ZA (1) | ZA202007960B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107083994B (zh) * | 2017-06-16 | 2023-03-24 | 传孚科技(厦门)有限公司 | 气压发动机 |
CN110836128A (zh) * | 2018-08-19 | 2020-02-25 | 传孚科技(厦门)有限公司 | 一种气体动力装置 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3026088A (en) * | 1959-12-03 | 1962-03-20 | Max D Green | Inverted turbine |
JP2005188378A (ja) * | 2003-12-25 | 2005-07-14 | Takeo Saito | ディスク型半径流タービン |
US8678749B2 (en) * | 2010-01-05 | 2014-03-25 | Takeo S. Saitoh | Centrifugal reverse flow disk turbine and method to obtain rotational power thereby |
CN107083994A (zh) | 2017-06-16 | 2017-08-22 | 传孚科技(厦门)有限公司 | 气压发动机 |
CN208929795U (zh) * | 2018-08-19 | 2019-06-04 | 传孚科技(厦门)有限公司 | 一种流体驱动机床 |
CN208950763U (zh) * | 2018-08-19 | 2019-06-07 | 传孚科技(厦门)有限公司 | 一种泵送系统 |
CN208950764U (zh) * | 2018-08-19 | 2019-06-07 | 传孚科技(厦门)有限公司 | 一种利用水力进行驱动的动力设备 |
CN208950593U (zh) * | 2018-08-19 | 2019-06-07 | 传孚科技(厦门)有限公司 | 一种流体驱动掘进装置 |
CN208944378U (zh) * | 2018-08-19 | 2019-06-07 | 传孚科技(厦门)有限公司 | 一种流体驱动离心机 |
CN208947094U (zh) * | 2018-08-19 | 2019-06-07 | 传孚科技(厦门)有限公司 | 一种工程车辆 |
CN208946090U (zh) * | 2018-08-19 | 2019-06-07 | 传孚科技(厦门)有限公司 | 一种气动工具 |
CN208940384U (zh) * | 2018-08-19 | 2019-06-07 | 传孚科技(厦门)有限公司 | 一种气动割草机 |
CN209176502U (zh) * | 2018-08-19 | 2019-07-30 | 传孚科技(厦门)有限公司 | 一种气动汽车 |
CN209179936U (zh) * | 2018-08-19 | 2019-07-30 | 传孚科技(厦门)有限公司 | 一种利用风力进行驱动的动力设备 |
CN209179821U (zh) * | 2018-08-19 | 2019-07-30 | 传孚科技(厦门)有限公司 | 一种风力驱动发电机组 |
CN209176503U (zh) * | 2018-08-19 | 2019-07-30 | 传孚科技(厦门)有限公司 | 一种气动助力车 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US948692A (en) * | 1910-02-08 | Willis G Dodd | Rotary engine. | |
US111538A (en) * | 1871-02-07 | Improvement in double-acting rotary engines | ||
US925127A (en) * | 1908-11-13 | 1909-06-15 | Alexander Mcdonald | Rotary engine. |
US1349487A (en) * | 1917-05-31 | 1920-08-10 | Erastus S Bennett | Turbine-engine |
US3761195A (en) | 1971-05-04 | 1973-09-25 | M Eskeli | Compressing centrifuge |
WO2000029721A1 (de) * | 1998-11-13 | 2000-05-25 | Siemens Aktiengesellschaft | Strömungsmaschine, insbesondere turbosatz mit einer strömungsmaschine und mit einer elektrischen maschine |
US7008175B2 (en) * | 2003-06-03 | 2006-03-07 | Saied Fathi | Radiator cooling fan replacement to increase engine efficiency |
JP2006144720A (ja) * | 2004-11-22 | 2006-06-08 | Jungman Yoon | 蒸気タービン |
US20060225432A1 (en) * | 2005-03-29 | 2006-10-12 | Awdalla Essam T | Supercharged open cycle gas turbine engine |
JP2010065651A (ja) | 2008-09-12 | 2010-03-25 | Jungman Yoon | 蒸気タービン装置及びボイラシステム装置 |
WO2010048730A2 (en) * | 2008-10-30 | 2010-05-06 | Distributed Thermal Systems Ltd. | Multistage flow optimizer |
CN104421188A (zh) * | 2013-08-26 | 2015-03-18 | 珠海格力电器股份有限公司 | 多级离心压缩机及空调机组 |
RU148081U1 (ru) * | 2014-06-27 | 2014-11-27 | Юрий Павлович Кузнецов | Пневматический двигатель |
CN105443160A (zh) * | 2014-09-06 | 2016-03-30 | 天津重力士净化分离技术有限公司 | 压缩空气驱动的托盘活塞式摇摆发动机头 |
CN107061103A (zh) | 2017-06-16 | 2017-08-18 | 传孚科技(厦门)有限公司 | 液压能量转换装置 |
CN206942813U (zh) * | 2017-06-16 | 2018-01-30 | 传孚科技(厦门)有限公司 | 气压发动机 |
CN110836128A (zh) * | 2018-08-19 | 2020-02-25 | 传孚科技(厦门)有限公司 | 一种气体动力装置 |
CN209354199U (zh) * | 2018-08-19 | 2019-09-06 | 传孚科技(厦门)有限公司 | 一种气体动力装置 |
-
2018
- 2018-08-19 CN CN201810944526.3A patent/CN110836128A/zh active Pending
-
2019
- 2019-07-18 JP JP2021532505A patent/JP7128966B2/ja active Active
- 2019-07-18 WO PCT/CN2019/096484 patent/WO2020038164A1/zh active Application Filing
- 2019-07-18 RU RU2020142338A patent/RU2752390C1/ru active
- 2019-07-18 EP EP19852751.7A patent/EP3839209B1/en active Active
-
2020
- 2020-12-17 US US17/125,784 patent/US11441445B2/en active Active
- 2020-12-18 ZA ZA2020/07960A patent/ZA202007960B/en unknown
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3026088A (en) * | 1959-12-03 | 1962-03-20 | Max D Green | Inverted turbine |
JP2005188378A (ja) * | 2003-12-25 | 2005-07-14 | Takeo Saito | ディスク型半径流タービン |
US8678749B2 (en) * | 2010-01-05 | 2014-03-25 | Takeo S. Saitoh | Centrifugal reverse flow disk turbine and method to obtain rotational power thereby |
CN107083994A (zh) | 2017-06-16 | 2017-08-22 | 传孚科技(厦门)有限公司 | 气压发动机 |
CN208929795U (zh) * | 2018-08-19 | 2019-06-04 | 传孚科技(厦门)有限公司 | 一种流体驱动机床 |
CN208950763U (zh) * | 2018-08-19 | 2019-06-07 | 传孚科技(厦门)有限公司 | 一种泵送系统 |
CN208950764U (zh) * | 2018-08-19 | 2019-06-07 | 传孚科技(厦门)有限公司 | 一种利用水力进行驱动的动力设备 |
CN208950593U (zh) * | 2018-08-19 | 2019-06-07 | 传孚科技(厦门)有限公司 | 一种流体驱动掘进装置 |
CN208944378U (zh) * | 2018-08-19 | 2019-06-07 | 传孚科技(厦门)有限公司 | 一种流体驱动离心机 |
CN208947094U (zh) * | 2018-08-19 | 2019-06-07 | 传孚科技(厦门)有限公司 | 一种工程车辆 |
CN208946090U (zh) * | 2018-08-19 | 2019-06-07 | 传孚科技(厦门)有限公司 | 一种气动工具 |
CN208940384U (zh) * | 2018-08-19 | 2019-06-07 | 传孚科技(厦门)有限公司 | 一种气动割草机 |
CN209176502U (zh) * | 2018-08-19 | 2019-07-30 | 传孚科技(厦门)有限公司 | 一种气动汽车 |
CN209179936U (zh) * | 2018-08-19 | 2019-07-30 | 传孚科技(厦门)有限公司 | 一种利用风力进行驱动的动力设备 |
CN209179821U (zh) * | 2018-08-19 | 2019-07-30 | 传孚科技(厦门)有限公司 | 一种风力驱动发电机组 |
CN209176503U (zh) * | 2018-08-19 | 2019-07-30 | 传孚科技(厦门)有限公司 | 一种气动助力车 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3839209A4 |
Also Published As
Publication number | Publication date |
---|---|
CN110836128A (zh) | 2020-02-25 |
US11441445B2 (en) | 2022-09-13 |
EP3839209C0 (en) | 2024-05-08 |
EP3839209A4 (en) | 2021-10-13 |
EP3839209B1 (en) | 2024-05-08 |
JP2021533306A (ja) | 2021-12-02 |
RU2752390C1 (ru) | 2021-07-27 |
US20210115810A1 (en) | 2021-04-22 |
EP3839209A1 (en) | 2021-06-23 |
JP7128966B2 (ja) | 2022-08-31 |
ZA202007960B (en) | 2022-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104343528B (zh) | 涡轮增压系统 | |
US20090139699A1 (en) | Annular intercooler having curved fins | |
WO2020038164A1 (zh) | 一种气体动力装置 | |
CN104500269B (zh) | 带内环空气涡轮的自驱动风扇大涵道比涡扇发动机 | |
US11866160B2 (en) | Power device capable of generating greater propelling force | |
CN107083994B (zh) | 气压发动机 | |
CN115306584A (zh) | 含有对转涡轮的液体火箭发动机涡轮泵 | |
CN209354199U (zh) | 一种气体动力装置 | |
CN110834534A (zh) | 一种气动助力车 | |
CN110834535A (zh) | 一种气动汽车 | |
CN219733526U (zh) | 一种特斯拉阀脉冲发动机 | |
CN113898465B (zh) | 环形串联直缸发动机的增压配气机构及环形直缸发动机 | |
CN202673630U (zh) | 发动机增压系统 | |
CN108005912A (zh) | 一种高背压大流量超高速涡轮泵 | |
CN110833934A (zh) | 一种流体驱动离心机 | |
CN2152082Y (zh) | 喷气转子发动机 | |
CN203640864U (zh) | 涡轮发动机用增压装置 | |
CN110836258A (zh) | 一种液压动力装置 | |
CN110834536A (zh) | 一种工程车辆 | |
CN101776092A (zh) | 增压器压气机壳 | |
CN201351637Y (zh) | 增压器压气机壳 | |
CN113530614A (zh) | 一种免燃式涡轮汽轮机 | |
CN110832984A (zh) | 一种气动割草机 | |
US20130199169A1 (en) | Multistage compressed gas engine and motor vehicle | |
CN107905849A (zh) | 一种平板式单螺杆膨胀机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19852751 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021532505 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019852751 Country of ref document: EP |