WO2020038083A1 - 双电池的充电方法、电子设备及存储介质 - Google Patents

双电池的充电方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2020038083A1
WO2020038083A1 PCT/CN2019/090977 CN2019090977W WO2020038083A1 WO 2020038083 A1 WO2020038083 A1 WO 2020038083A1 CN 2019090977 W CN2019090977 W CN 2019090977W WO 2020038083 A1 WO2020038083 A1 WO 2020038083A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
current
power supply
state parameter
Prior art date
Application number
PCT/CN2019/090977
Other languages
English (en)
French (fr)
Inventor
贾宝锋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020038083A1 publication Critical patent/WO2020038083A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present disclosure relates to the field of electronic technology, but is not limited to the field of electronic technology, and in particular, to a method for charging a dual battery, an electronic device, and a storage medium.
  • Embodiments of the present disclosure are expected to provide a dual battery charging method, an electronic device, and a storage medium.
  • a method for charging a dual battery includes:
  • the electronic device If it is detected that the electronic device establishes a power supply connection with the power supply device, obtaining a first state parameter of the first battery and a second state parameter of the second battery;
  • the first battery is charged according to the first state parameter
  • the second battery is charged according to the second state parameter
  • a first charging circuit connected to the charging interface and the first battery, respectively;
  • a second charging circuit connected to the charging interface and the second battery, respectively;
  • a processing module connected to the first charging circuit and the second charging circuit and configured to obtain a first state parameter of the first battery and a second state of the second battery if it is detected that the electronic device establishes a power connection with the power supply device; State parameter; turning on or off the first charging circuit to control the charging of the first battery according to the first state parameter, and turning on or off the second charging circuit control according to the second state parameter Charging of the second battery.
  • An electronic device including:
  • the processor is connected to the memory, and is configured to implement the foregoing dual battery charging method by executing computer-executable instructions stored on the memory.
  • a computer storage medium stores computer-executable instructions. After the computer-executable instructions are executed, the foregoing dual battery charging method can be performed.
  • the first battery and the second battery are charged according to the state parameters of the first battery and the second battery, respectively.
  • the charging speed is fast and the number of secondary charges is high. Fewer features.
  • FIG. 1 is a schematic flowchart of a first dual battery charging method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a second dual battery charging method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a third method for charging a dual battery according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a second dual-battery charging device according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a charging module according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of charging a dual battery provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a fourth dual battery charging method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a fifth dual battery charging method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a sixth dual battery charging method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart of a seventh dual battery charging method according to an embodiment of the present disclosure.
  • FIG. 12 is a connection diagram of a dual battery charging circuit according to an embodiment of the present disclosure.
  • This embodiment provides a method for charging a dual battery, which includes: if it is detected that an electronic device establishes a power connection with a power supply device, charging the first battery and the second battery at the same time.
  • an embodiment of the present disclosure also provides a method for charging a dual battery, including:
  • Step S110 if it is detected that the electronic device establishes a power supply connection with the power supply device, obtain a first state parameter of the first battery and a second state parameter of the second battery;
  • Step S120 Charge the first battery according to the first state parameter, and charge the second battery according to the second state parameter.
  • the first battery and the second battery are respectively charged according to the state parameters of the two batteries, which may be the foregoing embodiment of charging the first battery and the second battery simultaneously.
  • the first battery and the second battery can be fully charged without considering the state parameters of the two batteries.
  • the method for charging the dual battery can be applied to various electronic devices including the dual battery.
  • the mobile device may include a vehicle-mounted mobile device and a person-mounted mobile device.
  • the vehicle-mounted mobile device may be an electronic device mounted on various vehicles, for example, a navigation device.
  • the human-mounted device may include: a mobile phone, a tablet computer, a wearable device, and the like; the wearable device may include: a smart bracelet or a smart watch.
  • the first battery and the second battery are two batteries that are independent of each other, and these two batteries can respectively supply power to the electronic device.
  • the first battery and the second battery are two batteries in the same electronic device, or the first battery and the second battery are two batteries connected to the same electronic device.
  • the first battery and the second battery may be batteries with the same battery parameters, or batteries with different battery parameters.
  • batteries with the same battery parameters may include batteries of the same model and the same nominal capacity from the same manufacturer.
  • Batteries with different battery parameters can include: different types of batteries from the same manufacturer, and batteries from different manufacturers.
  • the battery parameters of the first battery and the second battery may be different, but the power supply parameters may be the same. In this way, the first battery and the second battery can be mutually used as backup batteries.
  • the power supply parameters of the battery to power the load may include: a supply voltage and / or a charging current, so that the same electronic device can be provided with the required voltage or current.
  • the power supply pins of the first battery and the second battery are connected to the system power supply pins of the electronic device.
  • the first battery and the second battery can be connected to the system power supply pins through the power supply pins to the electronics.
  • the device provides the power required to generate power.
  • the power supply pin of the system may be provided on a main board of an electronic device. After the main board of the electronic device receives power from a first battery or a second battery, the voltage or current required by each functional unit is provided through conversion of a power supply circuit or the like. .
  • a method for charging the first battery and the second battery at the same time is provided in this embodiment.
  • the first battery and the second battery can be caused to store electric energy.
  • charging the first battery and the second battery at the same time may include:
  • the first battery and the second battery are connected in parallel at the back end of the charging interface of the electronic device.
  • the charging interface can directly charge the first battery and the second battery through a shunting strategy instead of the charging interface first.
  • the mobile phone includes: a battery A and a battery B; in this embodiment, the battery A and the battery B simultaneously receive a charging current directly from a charging interface and are charged separately.
  • the charging interface may be a wired charging interface, such as a universal serial bus (Universal Serial Bus, USB).
  • USB Universal Serial Bus
  • the charging interface may be a wireless charging interface
  • the wireless charging interface may be a battery inductive charging interface based on battery induction for wireless charging, a battery coupled charging interface based on electric field coupling for wireless charging, or a microwave-based charging interface.
  • Microwave charging interface for wireless charging may be a wireless charging interface, and the wireless charging interface may be a battery inductive charging interface based on battery induction for wireless charging, a battery coupled charging interface based on electric field coupling for wireless charging, or a microwave-based charging interface.
  • the power supply device in this embodiment may be various devices capable of charging the first battery and the second battery in the electronic device, such as a charging plug and a charging socket.
  • a power supply connection with the power supply device can be at least one of the following:
  • the electronic device is within a power supply range of a power supply device capable of wireless charging.
  • the detecting that the electronic device is located within a power supply range of a power supply device capable of wireless charging includes:
  • the electronic device is located on a charging stand of a wireless power supply device.
  • a parallel charging circuit will be used to charge the first battery and the second battery separately.
  • the charging current that the device can usually provide is greater than the charging current required for a single battery.
  • charging the first battery and the second battery at the same time can maximize the use of the power supply current of the power supply equipment, thereby reducing current waste during charging;
  • the first battery and the second battery are charged at the same time as opposed to a single battery. While using the power supply current of the power supply device as much as possible, the electronic device is quickly charged, thereby improving the charging of the electronic device. effectiveness.
  • the state of full charging of the two batteries can be improved in this time.
  • the sequential charging of the two batteries can be reduced (for example, the fast charging battery is fully charged after Charging ordinary batteries from fast-charging batteries. After charging ordinary batteries, the capacity of fast-charging batteries decreases and recharges through the charging socket), which can reduce the number of secondary charging times of at least one battery, thereby reducing the number of secondary charging times of the battery.
  • the resulting accelerated aging, as such, can extend the battery life of the battery.
  • the state parameter of the first battery is called the first state parameter; the state parameter of the second battery is called the second state parameter.
  • the first state parameter may be: a state parameter describing the first battery related to charging; the second state parameter may be: a state parameter describing the second battery related to charging.
  • the state parameters related to charging may include: the temperature of the battery, the current power of the battery, the charging current of the battery, the charging stage of the battery, etc .; the above are only examples of the state parameters, and the specific implementation is not limited to any of the above examples.
  • the current output by the power supply device may pass through the battery's charge control chip, and the charge control chip converts voltage and / or current-related parameters before entering the battery as a charge current.
  • the first state parameter includes, but is not limited to, at least one of: a temperature of the first battery; a charging stage of the first battery; and a current charge of the first battery.
  • the second state parameter includes, but is not limited to, at least one of the following: the temperature of the second battery; the charging stage of the second battery; and the current power of the second battery.
  • Both the temperature of the first battery and the temperature of the second battery may be referred to as the temperature of the battery; the temperature of the battery may include: the temperature on the surface of the battery or the grace within the battery.
  • reactions such as chemical changes, electrochemical changes, electron migration, and material transport occur within the battery, and these will cause the surface of the battery to generate heat; the heat generated by these heat phenomena cannot be completely released to the environment in a timely manner.
  • the middle zone which results in the accumulation of heat inside the battery, which causes the temperature of the battery to rise; thus, the temperature of the inside and / or surface of the battery will rise.
  • the temperature of the first battery and the temperature of the second battery may be: the temperature of the surface of the first battery and the temperature of the surface of the second battery. If the surface of a battery is overheated, a thermal runaway may occur inside the corresponding battery, and the thermal runaway temperature may cause accelerated battery aging or battery safety issues. Therefore, when charging the battery in the normal temperature range, If overheating is detected, the current required for charging the battery will be automatically adjusted. By adjusting the automatic adjustment of the required charging current, the rate of heat accumulation in the battery can be reduced, thereby reducing the temperature of the battery. At this time, the required charging current of the battery is small. .
  • Both the charging phase of the first battery and the charging phase of the second battery may be referred to as: a charging phase of the battery.
  • the charging phase of the battery includes a constant current phase and a constant voltage phase.
  • the charging current of the corresponding battery is constant, and the charging current is ensured by changing the charging voltage; in the constant voltage phase, the charging voltage of the corresponding battery is constant, and the charging is ensured by adjusting the charging current. Constant voltage.
  • the charging phase of the battery may include: first entering a constant current phase, and after using the constant current for a period of time, when the battery reaches a specific current value, it enters the constant voltage phase and uses constant voltage charging.
  • the charging current in the constant voltage phase is gradually reduced.
  • the current power of the first battery may be: the current power of the first battery; the current power of the second battery may be: the current power of the second battery.
  • the charge of the first battery and the second battery is measured using a fuel gauge, so that the first battery and the second battery can be accurately charged respectively, and then the remaining space before charging is combined Power; you can estimate the current power of the first and second batteries.
  • the second charging current distribution relationship is determined according to the first state parameter of the first battery and the second battery parameter of the second battery.
  • the determined second charging current relationship is related to the first battery and the first battery.
  • the current status of the two batteries is adapted; this not only charges the first battery and the second battery at the same time, fully utilizes the power supply capacity of the power supply equipment, improves the charging rate and reduces the waste of power supply current, but also according to the two
  • the state of the battery is used to achieve the distribution of charging current. In this way, problems such as overheating during charging of a certain battery are reduced; battery safety and low loss of the battery are ensured during the charging process.
  • the first battery and the second battery are respectively charged according to the state parameters of the first battery and the second battery, instead of the first charging in the related art.
  • a certain battery is charged.
  • the other battery is charged.
  • Charging the first battery according to the first state parameter and charging the second battery according to the second state parameter is equivalent to using the power supply device to charge the first battery and the second battery at the same time. Since the power supply capability of the power supply device is generally greater than the charging requirement of a single battery of the electronic device, if only one battery is charged, this will result in a waste of the power supply capacity of the power supply device.
  • the first battery and the second battery are simultaneously charged. Charging, so as to use the power supply capacity of the power supply equipment as much as possible, reducing the waste of the power supply capacity of the power supply equipment; and because the first battery and the second battery are charged at the same time, the overall charging rate of the electronic device can be increased; Slow charging due to charging.
  • the power supply device Recharging the battery again results in a high frequency of secondary charging of the previously charged battery, and a high frequency of secondary charging will accelerate the aging of the battery.
  • the first battery and the second battery are charged at the same time, instead of charging one battery to another battery, the frequency of secondary charging of a certain battery can be reduced, thereby reducing the battery caused by the high frequency of secondary charging.
  • the problem of fast aging has prolonged the battery life.
  • the method further includes:
  • Step S101 At the initial time of charging, the charging current charged to the first battery and the second battery is allocated according to a preset first charging current distribution relationship;
  • Step S102 charging the first battery and the second battery respectively according to the allocated charging current.
  • the electronic device may be pre-configured with the first charging current distribution relationship; the first charging current distribution relationship may be used to indicate how the first battery and the second battery allocate power from the power supply device.
  • Current The power supply current of the power supply device may be a total charging current for charging the electronic device.
  • the system power consumption of the electronic device is negligible, that is, the electronic device is in a low-power mode in a powered-off state or in a powered-on state (for example, in a sleep mode or a total system power consumption is lower than a preset Power consumption value), the charging current of the first battery and the total charging current of the rechargeable battery of the second battery can be considered.
  • the power consumption of the system of the electronic device is relatively large.
  • the power supply current of the power supply device may be: the charging current of the first battery, the charging current of the second battery, and the system current of the system power consumption. sum.
  • the first charging current distribution relationship may include: a first charging current distribution ratio.
  • the charging current is distributed according to the first charging current distribution ratio.
  • the distribution ratio of the first charging current is A: B; then the charging current of the first battery is: I * A / (A + B); the charging current of the second battery is: I * B / (A + B); wherein I may be a power supply current of the power supply device.
  • the power supply current is a current output by the power supply device.
  • the charging current of a battery is the current flowing into the battery.
  • the first charging current distribution relationship may be determined according to a calibrated battery capacity of the first battery and the second battery.
  • the nominal capacity of the first battery is C1 mA
  • the nominal capacity of the second battery is C2 mA
  • the distribution ratio of the first charging current is: the charging current of the first battery and the first battery are
  • the ratio of the charging currents of the two batteries, the charging distribution ratio of the first battery may be: C2: C1.
  • the calibrated capacity may be a calibrated capacity when the battery leaves the factory.
  • the first charging current distribution relationship may be determined according to the actual capacitances of the first battery and the second battery after they were fully charged last time.
  • the real capacity of the first battery is C3 mA
  • the real capacity of the second battery is C4 mA
  • the distribution ratio of the first charging current is: Said the ratio of the charging current of the second battery
  • the charging distribution ratio of the first battery may be: C4: C3.
  • the battery will age after a period of use. If the battery ages, the actual capacity of the battery will be less than the nominal capacity of the new battery when it leaves the factory.
  • the step S101 may include: at an initial moment of charging, an equal distribution of a charging current for charging the first battery and the second battery.
  • the first charging current distribution relationship may be: an even distribution relationship of charging power, that is, the first battery and the second battery are evenly distributed with the power supply current of the power supply device, and then the first battery and the second battery The current values of the charging currents obtained from the power supply equipment are equal.
  • the average distribution of the charging current may be: the first charging current ratio is 1: 1. The use of equal distribution has the characteristics of simple realization.
  • the step S120 may include:
  • Step S121 after the initial time, determine a second charging current distribution relationship according to a first state parameter of the first battery and a second state parameter of the second battery;
  • Step S122 Allocate a charging current charged to the first battery and the second battery according to the second charging current distribution relationship
  • Step S123 Charge the first battery and the second battery according to the allocated charging current.
  • the second charging current distribution relationship is determined according to the first state parameter of the first battery and the second state parameter of the second battery.
  • the second charging current distribution relationship herein may be used to indicate how the first battery and the second battery allocate the power supply current of the power supply device.
  • the second charging current distribution relationship may be dynamically determined during the charging process of the first battery and the second battery. Specifically determined according to the state parameters of the first battery and the second battery.
  • the method further includes:
  • Step S111 After the initial time, detect the first state parameter and the second state parameter at a preset time interval.
  • the first type any adjacent time intervals are equal, and thus, it is equivalent to detecting the first state parameter and the second state parameter at a predetermined period, so as to re-determine the second charging current distribution relationship at a predetermined period, and Adjust the charging current for the first battery and the second battery to charge at the same time.
  • the second type two adjacent time intervals are not equal; for example, the preset time interval is determined before the corresponding time point comes; for example, the first state of the first battery detected in the n-th time interval
  • the parameter and the second state parameter of the second battery determine the interval duration of the n + 1th time interval.
  • the state difference amount of the first state parameter detected in the n-th time interval relative to the detection of the first state parameter in the n-1 time interval is the first difference amount
  • the state difference amount of the second state parameter relative to the detection of the second state parameter within the n-1th time interval is the second difference amount; if the difference between the first difference amount and the second difference amount is within a specified range within, it is determined that the interval duration of the n + 1th time interval is equal to the interval duration of the nth time interval. If the difference between the first difference amount and the second difference amount is not within a specified range, it is determined that the interval duration of the n + 1th time interval is smaller than the interval duration of the nth time interval.
  • the first state parameter and the second state parameter are detected multiple times at a predetermined time interval.
  • the detection times of detecting the first state parameter and the second state parameter are the same, that is, the detection time interval of the first state parameter and the second state parameter are the same and the starting time of detection is the same.
  • the starting time here may be an initial time after the first battery and the second battery start charging or any time after the initial time of charging.
  • the state parameter of the battery may be divided into a state parameter of a first priority and a state parameter of a second priority.
  • the state parameter of the first priority may include: a temperature of the battery; at this time, the state parameter of the second priority may include: a charging stage of the battery and a charged amount of the battery.
  • the parameters of the first priority may include a temperature of the battery and a charging stage of the battery.
  • the state parameters of the second priority may include: the current power of the battery.
  • the state parameters of the battery may be divided into: state parameters of the first priority, state parameters of the second priority, and state parameters of the third priority.
  • the state parameter of the first priority may include: the temperature of the battery, and the state parameter of the second priority may be: the battery charging stage; the state parameter of the third priority may be: the current power of the battery.
  • the state parameter of the first priority may include: a charging stage of the battery, and the state parameter of the second priority may be: a temperature of the battery; and the state parameter of the third priority may be: a current power of the battery.
  • the first priority is higher than the second priority; if a third priority is set, the second priority is higher than the third priority.
  • the state parameters of the battery may further include: a current required charging current, which is not limited to any of the above state parameters.
  • determining the second charging current distribution relationship according to the first state parameter of the first battery and the second state parameter of the second battery may include:
  • the second charging current distribution relationship is directly determined according to the high-priority status parameters; if the high-priority status parameters are the same, the second priority current status parameter is determined according to the low-priority status parameters. Charge current distribution relationship.
  • the determining a second charging current distribution relationship according to a first state parameter of the first battery and a second state parameter of the second battery includes:
  • the power supply current of the power supply device is preferably used to satisfy the charging current of the battery within the range of the abnormal temperature range, and the remaining portion of the power supply current is used to charge another battery.
  • the charging phase may include a constant voltage phase and a constant current phase.
  • the charging stage of the first battery is the same as the charging stage of the second battery, and may include: the first battery and the second battery are both in a constant voltage stage; or the first battery and the second battery are both in a constant current stage.
  • the supply current is distributed according to the temperature of the two batteries. For example, one is in the normal temperature range degree range and the other is in the abnormal temperature range degree range. A battery in a normal temperature range requires a larger charging current, and a battery in an abnormal temperature range requires a smaller charging current. In order to accelerate the charging, in this embodiment, the charging current of the battery that is within the range of the different normal temperature range is preferably satisfied. If the power supply current provided by the power supply device is left, it is used to satisfy the range of the normal temperature range. Charging the batteries, in this way, can satisfy the charging of two batteries at the same time.
  • the normal temperature range includes a middle temperature range.
  • the range of the abnormal temperature range includes: a low temperature region and a high temperature region;
  • the temperature in the intermediate temperature region is higher than the temperature in the low temperature region.
  • the temperature in the high temperature region is higher than the temperature in the intermediate temperature region.
  • the temperature of the battery from 0 degrees Celsius to 10 degrees Celsius is regarded as a low temperature zone, and a temperature range greater than 10 degrees Celsius and less than 45 degrees Celsius is regarded as a medium temperature zone; a temperature greater than 45 degrees Celsius and between 55 degrees Celsius The range is regarded as the high temperature region.
  • the temperature of the battery from -10 degrees Celsius to 10 degrees Celsius is regarded as a low temperature zone, and a temperature range greater than 10 degrees Celsius and less than 45 degrees Celsius is regarded as a medium temperature zone; Mentioned high temperature zone.
  • the range of the abnormal temperature range may further include: an ultra-low temperature region and / or an ultra-high temperature region; a temperature of the ultra-low temperature region is lower than a temperature of the low temperature region, for example, the ultra-low temperature region
  • the temperature can be -10 degrees Celsius and below.
  • the temperature in the ultra-high temperature region is higher than that in the high-temperature region.
  • the temperature in the ultra-high temperature region may be: a temperature greater than 55 degrees Celsius.
  • determining the second charging current distribution relationship according to the first state parameter of the first battery and the second state parameter of the second battery further includes:
  • the power supply current is used. Priority is given to charging a battery with a smaller required charging current. In addition, the remainder of the supply current is used to charge another battery.
  • the power supply current is used to meet the charging of the battery with the smaller required charging current. There is a greater possibility that the remaining part of the power supply current can be used to charge another battery to achieve simultaneous charging of the first battery and the second battery.
  • determining the second charging current distribution relationship according to the first state parameter of the first battery and the second state parameter of the second battery further includes:
  • the power supply current is used. Priority is given to the current required to charge a low-battery battery. In addition, the remainder of the supply current is used to charge another battery.
  • the power supply current is allocated according to the current power of the first battery and the current power of the second battery. For example, the charging current of both batteries may be required. Small, and the current battery with a smaller charge may require a larger charge. Even so, to meet the current charge of the battery with a smaller charge first, there is still a very large probability that the power supply current remains. In this way, two batteries are realized on the one hand Charging at the same time, on the other hand, the use of power batteries is as far as possible.
  • determining the second charging current distribution relationship according to the first state parameter of the first battery and the second state parameter of the second battery further includes: if the charging stage of the first battery and The charging stage of the second battery is the same, and the temperature of the first battery and the temperature of the second battery are both within an abnormal temperature range. According to the current power of the first battery and the second battery, A ratio of the current power amount to the supply current.
  • the ratio of the charging current of the first battery to the charging current of the second battery is: P1: 1; the P1 Is any positive number.
  • Determining the second charging current distribution relationship according to the first state parameter of the first battery and the second state parameter of the second battery includes, including at least one of the following:
  • the temperature of the battery in the constant current phase is in an abnormal temperature range and is in the constant voltage phase
  • the temperature of the battery is within the normal temperature range, and the power supply current of the power supply device is used to preferentially meet the charging current required by the battery in the constant current stage; in addition, the remaining portion of the power supply current can also be used to supply another battery battery charging;
  • the temperature of the battery in the constant current phase is in an abnormal temperature range and is in the constant voltage phase
  • the power supply current of the power supply device is used to preferentially meet the current required for charging the battery with low current capacity; in addition, the remaining portion of the power supply current is also used to supply another battery Charge
  • One of the first battery and the second battery is in a constant current stage and the other is in a constant voltage stage. If the temperature of the battery in the constant current stage is in an abnormal temperature range and is in the constant voltage stage, The temperature of the battery is within the range of the abnormal temperature range, and the power supply current is allocated according to a ratio of the current power of the first battery and the current power of the second battery;
  • the power supply current is used. The current required by the battery in the constant current phase is preferably satisfied, and the remaining portion of the power supply current is used to charge the battery in the constant voltage phase.
  • the charging phase of the battery may be used as the state parameter of the first priority, the temperature of the battery as the state parameter of the second priority, and the current power of the battery as the state parameter of the third priority.
  • only the charging phase of the battery may be considered, and the temperature of the battery is not considered; for example, the determining of the first battery is based on the charging phase of the first battery and the charging phase of the second battery.
  • Two battery current distribution relationships including:
  • the charging current of the first battery is greater than the charging current of the second battery; and / or, if the first battery is at In the constant voltage phase and the second battery is in the constant current phase, the charging current of the second battery is greater than the charging current of the first battery; and / or, if the charging phases of the first battery and the battery are the same , Determining the second charging current distribution relationship according to the current capacity of the first battery and the current capacity of the second battery.
  • the current capacity of the first battery is greater than the current capacity of the second battery, it is determined that the charging current of the first battery is less than the charging current of the second battery; and / or, if the second battery is The current power of the first battery is greater than the current power of the first battery, and it is determined that the charging current of the second battery is less than the charging current of the first battery; according to the current power of the first battery and the current power of the second battery A current value ratio of the current value to determine a charge current ratio of the first battery and the second battery; wherein the charge current ratio is an inverse of the current charge ratio.
  • the determination of the second charging current distribution relationship may be performed only based on the temperature of the battery. For example, according to the temperature range in which the temperatures of the two batteries are located, the power supply current is preferably used to satisfy the degree of abnormal temperature range. The charging of the battery in the range meets the charging of the battery in the normal temperature range; at this time, the charging stage of the battery can be ignored. In some other embodiments, the determination of the second charging current distribution relationship may be performed only based on the temperature of the battery. If the temperature of both batteries is within the range of the normal temperature range, the smaller required charging current is preferentially satisfied.
  • the supply current provided by the power supply device is distributed to determine the charging current of the two batteries.
  • determining the second charging current distribution relationship according to the first state parameter of the first battery and the second state parameter of the second battery further includes at least one of the following:
  • the system power consumption of the electronic device is greater than a preset power consumption value, and the first battery is in a constant voltage phase and the second battery is in a constant current phase, stop charging the first battery and continue to charge the first battery. Said second battery charging;
  • the second battery is in a constant voltage phase and the first battery is in a constant current phase, stop charging the second battery and continue The first battery is charged.
  • the power supply device may be directly connected to a system power supply pin of the electronic device to directly supply power to the system.
  • the first battery is in a constant voltage phase and the second battery is in a constant current phase, stopping charging of the first battery and continuing to charge the second battery; if electronic The device has system power consumption, and the second battery is in a constant voltage phase and the first battery is in a constant current phase. Stop charging the second battery and continue charging the first battery. That is, if the power consumption of the electronic device system is relatively large, the charging of the battery in the constant voltage stage is suspended first, and the charging of the battery in the constant current stage is maintained.
  • the charging current provided by the power supply device can be large, which can not only meet the system power consumption of the electronic device, but also charge the battery in the constant current stage.
  • the remaining part can continue to be used for charging the battery in the constant voltage stage; so as to realize the maximum use of the power supply current of the power supply device and achieve rapid charging of the electronic device.
  • the value of n is greater than 0 and less than 1.
  • the first charging chip may be used to adjust a charging current and / or a charging voltage input to the first battery.
  • the second charging chip may be used to adjust a charging current and / or a charging voltage input to the second battery.
  • the sum of the In1 and the In2 may be equal to or less than a power supply current of the power supply device.
  • the method further includes: determining a supply current of the power supply device;
  • the step S120 may include: if it is detected that a power supply connection is established with the power supply device, using a shunt strategy to charge the first battery and the second battery at the same time; wherein the charging current of the first battery and the The sum of the charging current of the second battery is not greater than the charging current.
  • the determining a power supply current of the power supply device may include: reading a rated power supply parameter of the power supply device, and the power supply parameter may include: a rated power supply voltage and a rated power supply current.
  • the power supply current of the power supply device directly determines the total charging circuit available to the electronic device.
  • an embodiment of the present disclosure provides a dual-battery charging device, including: a charging module 101 configured to detect a power connection between an electronic device and a power supply device, and simultaneously connect the first battery 102 and the second battery 103 for charging.
  • the dual-battery charging device further includes:
  • the detection module 100 is configured to detect a first state parameter of the first battery and a second state parameter of the second battery if it is detected that a power supply connection is established between the electronic device and the power supply device;
  • the charging module 101 is configured to charge the first battery according to the first state parameter, and charge the second battery according to the second state parameter.
  • the charging module 101 is connected to the first battery 102 and the second battery 103, respectively, and can be used to receive the current provided by the power supply device, and simultaneously to the first battery 102 and the second battery 103 Charging.
  • the charging module 101 may include: a charging chip; the charging chip may include: a charging circuit and a transformer or a converter; the transformer may be configured to provide a voltage required for charging to a corresponding battery; the converter It can be used to provide the current required to charge the corresponding battery.
  • the transformer and / or the converter are located on a charging circuit, one end of the charging circuit is connected to the charging interface, and a connection is established with the power supply device through a power supply interface, and the other end is connected to a charging pin of a battery.
  • the charging chip may include a first charging chip and a second charging chip.
  • the first charging chip is connected to the first battery 102.
  • the second charging chip is connected to the second battery 103. .
  • the charging chip may include: a complex programmable device, a field programmable device, or an application-specific integrated circuit.
  • the charging chip may include: an embedded controller or a microcontroller.
  • the charging module 101 may be a pure hardware device or a combination of software and hardware; or it may be: a program module; after the program module is executed by a processor, it can control the first battery 102 and the first battery of the power supply sub-device.
  • the two batteries 103 are charged at the same time.
  • the charging module 101 there are many structures of the charging module 101; it is not limited to any of the above examples.
  • the charging module 101 is configured to simultaneously charge the first battery 102 and the battery according to a preset first charging current distribution relationship at an initial moment of charging, for example, at an initial moment of charging According to a preset first charging current distribution relationship, the charging current charged to the first battery and the second battery is allocated; and the first battery and the second battery are charged respectively according to the allocated charging current.
  • the charging module 101 is configured to simultaneously charge the first battery 102 and the second battery 103 according to an average distribution of the charging current at the initial moment of charging.
  • the charging module 101 may be configured to determine a second charging after the initial time according to a first state parameter of the first battery 102 and a second state parameter of the second battery 103 Current distribution relationship; charging the first battery 102 and the second battery 103 simultaneously according to the second charging current distribution relationship.
  • the apparatus further includes:
  • the detecting module 100 is configured to detect the first state parameter and the second state parameter at a preset time interval after the initial time.
  • the detection module may include various sensors that sense the first state parameter and the second state parameter, such as a fuel gauge and the like.
  • the detection module may also be: a program module executable by a processor; in other embodiments, the detection module may also be the aforementioned complex programmable device, field programmable device, and embedded control. Device or microcontroller or microprocessor.
  • the first state parameter includes at least one of: a temperature of the first battery 102; a charging stage of the first current; a current power level of the first battery 102; and / or,
  • the second state parameter includes at least one of the following: the temperature of the second battery 103; the charging phase of the second battery 103; and the current power of the second battery 103.
  • the charging module 101 is specifically configured to perform at least one of the following:
  • the charging stage of the first battery 102 and the second battery 103 are the same, and one of the temperature of the first battery 102 and the temperature of the second battery 103 is within the range of the normal temperature range , The other is in the range of the abnormal temperature range, and the power supply current of the power supply device is used to preferentially meet the charging current of the battery in the range of the abnormal temperature range, and the remaining portion of the power supply current is used to supply another battery Charging.
  • the charging module 101 is configured to perform at least one of the following:
  • the power supply current preferably satisfies the charge of a battery with a smaller required charging current, and the remaining portion of the power supply current is used to charge another battery.
  • the charging module 101 is configured to execute at least one of the following:
  • the power supply current preferentially meets a charging current required for a battery with a low current capacity, and the remaining part of the power supply current is used to charge another battery;
  • the charging stage of the first battery 102 and the second battery 103 are the same, and the temperature of the first battery 102 and the temperature of the second battery 103 are within the range of the abnormal temperature range, according to A ratio of a current power amount of the first battery 102 and a current power amount of the second battery 103 distributes the power supply current.
  • the charging current required by the second battery 103 is preferentially satisfied and the remaining portion is used for The first battery 102 is charged;
  • the charging current required by the first battery 102 is preferentially satisfied and the remaining portion And used to charge the second battery 103.
  • the charging module 101 is configured to perform at least one of the following:
  • the system power consumption of the electronic device is greater than a preset power consumption value, and the first battery 102 is in a constant voltage phase and the second battery 103 is in a constant current phase, stop charging the first battery 102 and Continue to charge the second battery 103;
  • the power to the second battery 103 is stopped. Charge and continue to charge the first battery 102.
  • the charging module 101 needs to satisfy the following functional relationship when charging the first battery and the second battery respectively:
  • U is the supply voltage of the power supply equipment
  • In1 is the input current of the first charging chip of the first battery 102
  • In2 is the input current of the second charging chip of the second battery 103
  • n is the charging efficiency
  • v1 Is the charging voltage of the first battery 102
  • fcc1 is the charging current of the first battery 102
  • v2 is the charging voltage of the second battery 103
  • fcc2 is the charging current of the second battery 103.
  • the apparatus further includes:
  • a determining module configured to determine a power supply current of the power supply device
  • the charging module 101 is specifically configured to charge the first battery 102 and the second battery 103 at the same time by using a shunting strategy if a power connection is established with the power supply device; wherein, the first battery 102 The sum of the charging current of and the charging current of the second battery 103 is not greater than the charging current.
  • the specific structure of the charging module 101 here may be: a complex programmable device or a field programmable device, an embedded controller, a single-chip microcomputer, and the like.
  • this embodiment provides an electronic device, including:
  • a first charging circuit connected to the charging interface and the first battery, respectively;
  • a second charging circuit connected to the charging interface and the second battery, respectively;
  • the processing module is connected to the first charging circuit and the second charging circuit, and is configured to obtain a first state parameter of the first battery and a first battery state if it detects that a power connection is established between the electronic device and the power supply device. Two state parameters; turning on or off the first charging circuit to control charging of the first battery according to the first state parameter; turning on or off the second charging circuit according to the second state parameter Controlling the charging of the second battery.
  • the charging interface may be a common interface for charging the first battery and the second battery.
  • the charging interface may be used to connect a power supply device.
  • the power supply device passes the first charging circuit and the second charging current, respectively. , Respectively, supplying power to the processing modules.
  • the charging interface may be various types of wired charging interfaces, such as a mini universal serial bus (mini Universal Serial Bus, mini USB, etc.).
  • a mini universal serial bus mini Universal Serial Bus, mini USB, etc.
  • the charging interface may also be a wireless charging interface, for example, an electronic device that uses wireless charging technology for charging may include a charging interface capable of wireless charging.
  • the first battery and the second battery may share one of the charging interfaces. In this way, when the charging interface has a current input, it will be shunted to the first battery and the second battery. The battery is charged.
  • the charging interface can be connected to a power source for charging the first battery and the second battery, for example, a device that can provide current input, such as a power supply socket connected to a city power supply, an external charging power source (for example, a mobile power bank), or a personal computer.
  • a power source for charging the first battery and the second battery for example, a device that can provide current input, such as a power supply socket connected to a city power supply, an external charging power source (for example, a mobile power bank), or a personal computer.
  • the processing module may be various modules that control charging, for example, an embedded controller, a programmable integrated circuit (for example, a complex programmable logic circuit or a field programmable logic circuit).
  • an embedded controller for example, a programmable integrated circuit (for example, a complex programmable logic circuit or a field programmable logic circuit).
  • the electronic device further includes: a circuit board, wherein a processor and a system power supply pin are disposed on the circuit board;
  • a first power supply circuit an input end of which is connected to an output end of the first battery, and an output end of which is connected to the system power supply pin, for the first battery to provide system power for the electronic device;
  • the second power supply circuit has an input end connected to an output end of the second battery, and an output end connected to the system power supply pin, and is configured to provide the second battery with system power for the electronic device.
  • the electronic device further includes:
  • a first reverse cut-off device located on the first power supply circuit, configured to prevent the second battery from supplying power to the first battery
  • a second reverse cut-off device is located on the second power supply circuit and is configured to prevent the first battery from supplying power to the second battery.
  • the circuit board may be any circuit board included in an electronic device, for example, a printed circuit board (PCB).
  • the circuit board may be a main board of a central processing unit provided with an electronic device.
  • the circuit board is provided with a system power supply pin, which is used for various energy consuming components to receive battery power from the system power supply pin.
  • the processing module may be various electronic components or a combination of electronic components with information processing or signal control.
  • the processing module may include a microprocessor, a digital signal processor, a programmable device, or an application-specific integrated circuit, which may be a device with low power consumption, connected to the first battery and the second battery, and simultaneously The first power supply circuit or the second power supply circuit is connected, and the on or off of the first power supply circuit or the second power supply circuit can be controlled, so that the first battery or the second battery is selected for power supply.
  • both the first battery and the second battery are disposed in the same electronic device.
  • the output terminals of the first battery and the second battery are connected to the system power supply pins through corresponding power supply circuits, if the power of the second battery is lower than that of the first battery, there is a gap between the first battery and the second battery. Pressure difference. This pressure difference may cause a high-battery battery to supply power to a low-battery battery. Obviously, power supply between such batteries will also cause battery aging, which is not required by electronic equipment.
  • the first reverse cut-off device and the second direction cut-off device are used to prevent mutual power supply between the batteries.
  • the power supply circuit of the target powered battery is turned on, and the source powered battery is turned off after the power supply circuit of the target powered battery is turned on.
  • the power supply circuits of both batteries are conducting, because the first battery and the second battery are also grounded, so if there is a voltage difference, a high-voltage battery will go low. Battery powered.
  • the first power supply circuit and the second power supply circuit are used in the first power supply circuit and the second power supply circuit.
  • the power supply circuit of the corresponding battery is disconnected, it is achieved by an input turn-on voltage or a turn-on current, for example.
  • the drain and source of the transistor are only because there is not enough gate-to-source voltage to temporarily interrupt the current, but if the source voltage is higher than the drain, reverse conduction may occur, which will cause a reverse current sink phenomenon. Therefore, this embodiment also The arrangement of the first reverse cut-off device and the second reverse cut-off device prevents mutual charging between the batteries caused by the backward current of the voltage difference.
  • the first reverse cut-off device may include a unidirectional pass tube such as a diode.
  • the first reverse cut-off device may be a packaged chip with a reverse cut-off function.
  • the first reverse cut-off device may include: a controlled switch And a control circuit, the controlled switching transistor may include: a field effect transistor (MOS transistor).
  • the controlled switch may include: a control terminal, an input terminal, and an output terminal; the control terminal is connected to the control circuit, the input terminal is connected to the first battery, and the output terminal may be connected to the system Power pin connection.
  • the control circuit may be used to generate a control level, and the level of the control level directly determines that the input terminal and the output terminal of the controlled switch are in communication. If the first battery is not powered, the control level may be a low level that controls the input and output terminals to be non-conductive, otherwise it outputs a high level.
  • the same second reverse cut-off device may also include: a controlled switch tube and a control circuit. In some embodiments, the first reverse-cut device and the controlled switch of the first reverse-cut device are connected to the same control circuit.
  • the control circuit includes two output terminals, a first output terminal connected to the first reverse cut-off device and a second output terminal connected to the second reverse cut-off device. In some embodiments, the control circuit may generate a first control signal.
  • the first control signal is connected to the first output terminal, and the first output terminal may directly output the first control signal.
  • the control circuit is further provided with a second output terminal connected in parallel with the first output terminal. Assume that the circuit where the first output terminal is located is the first path; then the circuit where the second output terminal is located is the second path; the first path and the second path are connected in parallel, and the first path and the second path The connection is divided from the same level output point; the second path has one more inverter than the first path. In this way, it is ensured that the control signals of the controlled switches that respectively output different reverse cut-off devices are always reversed. That is, if the first control signal is high, the second control signal is low; if the first control signal is low, the second control signal is high.
  • the first reverse cut-off device allows the first battery to supply power under the action of a high level
  • the current that cuts off the second battery is also poured into the first battery
  • the second reverse cut-off device is prohibited under the action of a low level
  • the second battery is powered, and the current that cuts off the first battery is poured into the second battery.
  • this example provides a charging module including a first battery unit, a second battery unit, and a current calculation and distribution unit.
  • the first battery unit includes: a first charging sub-module, a first fuel gauge sub-module, and a first battery sub-module.
  • the first battery unit obtains the temperature, voltage, and power of the battery through a certain preset period. And charging current supply parameters.
  • the second battery unit includes a second charging sub-module, a second fuel gauge sub-module, and a second battery sub-module.
  • the second battery unit obtains the temperature, voltage, power, and battery temperature of the battery through a predetermined period. recharging current.
  • the current calculation and distribution unit includes a charger capability calculation sub-module, a first battery charging current distribution sub-module, and a second rechargeable battery charging current distribution sub-module.
  • the power supply parameters are sent to the current calculation and distribution unit, and the current calculation and distribution are used for calculation processing. After the calculation, the charging current of the first battery and the charging current of the second battery are obtained, and the two batteries are charged simultaneously after the distribution.
  • the charger After the charger is inserted, it will be connected to the first battery unit and the second battery unit.
  • the first battery unit and the second battery unit can be used to charge the first battery and the second battery, respectively, and detect the first state parameter and the second battery unit.
  • the state parameter is provided to the current calculation and distribution unit, and the current calculation and distribution unit allocates the power supply current based on the first state parameter and the second state parameter, so that the first battery and the second battery obtain a matching charging current.
  • the simultaneous charging strategy of the dual batteries is activated for charging.
  • the charging device uses the current that the charger needs to provide at the current temperature, voltage, and capacity as the reference charging current. There is a waste of the charging current of a battery, which means that the charging current currently allocated to the charging chip is too large; a shortage of the charging current of a battery means that the charging current currently allocated to the charging chip is insufficient. As long as the charging current is wasted or insufficient, the current is redistributed, and the charging is continued after the distribution is completed.
  • the charger power calculation submodule first calculates the power supply power of the charger, and the power supply power is calculated by the charging submodule in the first battery unit.
  • the first battery unit After the calculation is completed, first distribute half of the current for initial charging, and then the first battery unit obtains the temperature, voltage, power, and charging current of the first battery, and the second battery unit obtains the temperature, voltage, power, and charge of the second battery. recharging current.
  • the current calculation and distribution sub-module After obtaining the relevant parameters of the two battery systems, they are sent to the current calculation and distribution sub-module, which respectively calculates the charging current, charging current of the first battery, and the charging current and charging current of the second battery. After setting, it performs simultaneous charging separately. . Then, the charging current of the system is detected again after the preset detection time has passed, and after dynamic adjustment, the charging is set again. When the charger is unplugged, the current distribution calculation is stopped.
  • the first battery unit includes a first charging sub-module, a first electricity meter sub-module, and a first battery sub-module.
  • the first charging sub-module is responsible for detecting the insertion and extraction of the charger to charge the first battery; the first fuel gauge obtains the temperature, voltage, power, and charging current of the battery through a certain preset period.
  • Second battery unit includes a first charging sub-module, a second fuel gauge sub-module, and a second battery sub-module.
  • the second charging sub-module is responsible for detecting the insertion and extraction of the charger and charging the second battery; the second fuel gauge obtains the temperature, voltage, power and charging current of the battery through a certain preset period.
  • Current calculation and distribution unit includes a charger capability calculation sub-module, a first battery charging current distribution sub-module, and a second rechargeable battery charging current distribution sub-module.
  • the basic capacity of the charger for example, 5V_1.5A
  • how much charging current the charger can provide is calculated by the charging sub-module in the first battery unit.
  • the obtained battery-related parameters are sent to the current calculation and distribution unit through the first and second battery units for calculation processing.
  • the charging current of the first battery and the charging current of the second battery are obtained, and then performed again. After distribution, charge both batteries simultaneously.
  • the first rechargeable battery unit, the second battery system unit, and the current calculation and distribution unit may all be components of the foregoing charging module.
  • this example provides a method for charging control of a dual battery system, which may include:
  • Step 1 Determine whether the charger is connected. If no charger is plugged in, then loop execution and continue to wait.
  • the charger here is one of the aforementioned power supply equipment.
  • Step 2 When the system detects that the charger is plugged in, the charger capability calculation submodule first calculates the charging capability of the power supply device. Taking a mobile phone as an example, the size of a charger is standard on the mobile phone. For example, 9V_1.5A is standard for fast charging mobile phones, and 5V_1.5A is standard for ordinary chargers. In practice, the power of the charger used by the user varies, and different charger sizes involve the current distribution scheme. After the calculation of the charging capacity is completed, proceed to step 3.
  • Step 3 According to the calculation result of the charger capacity, each of them is allocated a general current for initial charging. At the same time, the temperature, voltage, power, and charging current of the first battery are obtained by the first battery system, and the temperature, voltage, power, and charging current of the second battery are obtained by the second battery system, and the process proceeds to step 4.
  • Step 4 The current distribution calculation sub-module redistributes respective currents according to the first battery parameters obtained by the first battery system and the second battery parameters obtained by the second battery system.
  • the first battery unit and the second battery unit obtain the state parameters of the first battery and the second battery and submit them to the current calculation and distribution unit.
  • the current calculation by the current calculation and distribution unit does not distribute the supply current provided by the power supply device.
  • Step 5 After a certain preset time, check whether the current value needs to be adjusted again. If adjustment is needed, go to step 4 and recalculate and distribute new current. The current calculation and distribution unit will determine whether the preset period is reached, and if it is reached, it will redistribute the charging current based on the newly detected state parameters.
  • this example marks the voltage of the first battery as v1, the temperature is t1, the amount of electricity is cap1, the charging current is fcc1, and fcc1 is the current into the first battery.
  • the voltage of the second battery is v2, the temperature is t2, the capacity is cap2, the charging current is fcc2, and fcc2 is the current that currently enters the second battery.
  • the voltage provided by the marker charger is U
  • the charging current of the first charging chip is In1
  • the charging current of the second charging chip is In2.
  • the charging stage is divided into Constant Current (CC) and Constant Voltage (CV), so four cases will be combined.
  • CC Constant Current
  • CV Constant Voltage
  • the capacity of the two batteries may be different, so in this case, this example will be allocated according to the current proportion of the batteries.
  • temperature is the first priority parameter. First, ensure that the current at a certain temperature does not exceed the standard, and then perform current distribution.
  • the charging heating parameters of different scenarios can be preset to use the debugging mobile phone for heating, such as game mode, video mode, Internet chat mode, shopping mode, and so on.
  • This example provides a method for charging a dual battery based on Example 1.
  • current distribution is performed according to the current capacity of the battery cap1 and cap2, combined with the battery temperature. If the temperature of the two batteries are in the normal temperature range, the current is distributed according to the current power ratio cap1 / cap2 of the two batteries.
  • cap1 / cap2 ⁇ 1 it means that the current capacity of the first battery is low and the first battery The distributed In1 current is larger, and the secondary battery's In2 current is smaller. Specific allocation is based on the battery cap1 / cap2 ratio principle.
  • the current capacity ratio between the first battery and the second battery is 2, and the charging current of the charger is 1500 mA
  • In1 is assigned to 1000 mA
  • In2 is assigned to 500 mA.
  • the temperature of one battery is in the cold or high temperature zone
  • the battery temperature and current in the cold or medium temperature zone are preferentially satisfied, and the remaining current is allocated to the other battery.
  • both batteries are in the cold or medium temperature area, the current of the low-battery battery is preferentially satisfied, and the remaining current is distributed to the other battery. This can ensure that the charging current of the charger is not wasted, and the battery with a small percentage of current power is preferentially charged as soon as possible.
  • the charging stage of the first battery is CC and the charging stage of the second battery is CV
  • the current priority distribution principle of the first battery is performed at this time, according to the preset half of each The current is calculated. If the current fcc2 obtained at the CV stage is smaller than the benchmark, the benchmark here is the result of half of the power balance formula, then it is considered that the second battery does not need such a large current.
  • the charging current is wasted, and the current fcc2 is substituted into the formula for recalculation. A new charging current In1 is obtained, In1 and In2 are redistributed, and then charging is performed.
  • the remaining current is distributed to the second battery, and the battery in the normal temperature range is charged as soon as possible. If the temperature of the two batteries is not within the normal range, the current of the low-battery battery is preferentially satisfied, and the remaining current is distributed to the other battery, and then the charging continues.
  • This example provides a method for charging a dual battery based on Example 1.
  • the charging stage of the two batteries is CV; or, the charging stage of the first battery is CV and the charging stage of the second battery is CC.
  • the current priority distribution principle of the first battery is used at this time, and the calculation is based on the preset half of the current.
  • the current obtained at the CV stage fcc2 is less than the benchmark.
  • the benchmark is the result of each half of the power balance formula, so it is considered that the second battery does not need such a large current, and the charging current of the second battery is wasted.
  • the temperature of the first battery is not in the normal temperature range, after the temperature priority current is set, the remaining current is distributed to the second battery, and the battery in the normal temperature range is charged as soon as possible. If the temperature of the two batteries is not within the normal temperature range, the current of the low-battery battery is preferentially satisfied, and the remaining current is distributed to the other battery, and then the charging is continued. In this case, if the system is running, turn off the battery in the CV state of the second battery, allocate the CC battery according to 75% of the total current, charge it, and power the system at the same time. This 75% ratio can be fine-tuned.
  • the basic principle is to allocate more current to the battery in the CC state and less current to the battery in the CV state. While satisfying the power supply to the system, it can both charge the battery in the CC state more, and Charge the CV battery with low current.
  • the state of the first battery is CV, and the state of the second battery is CC.
  • the current priority distribution principle of the second battery is performed at this time, and the calculation is based on the preset half of the current
  • the current fcc1 of the CV phase of the first battery obtained at this time if fcc1 is less than the benchmark, then it is considered that the first battery does not need such a large current, and the charging current of the first battery is wasted.
  • a new input current In1 is obtained, In1 and In2 are redistributed, and then charged.
  • the remaining current is redistributed to the first battery, and then charging continues.
  • the system is running, turn off the battery in the CV state of the first battery, charge the battery allocated to CC according to 75% of the total current, and charge the system at the same time. This 75% ratio can be fine-tuned.
  • the basic principle is to allocate more current to the battery in the CC state, and less current to the battery in the CV state. While satisfying the power supply to the system, both the battery in the CC state can be charged more, and Can charge CV batteries with low current.
  • Example 1 provides a dual battery charging method based on Example 1.
  • the first battery CV and the second battery CV shown in FIG. 11 indicate that the charging phase of the first battery is CV, and the charging phase of the second battery is CV. at this time,
  • the current obtained in the first battery CV stage fcc1 and the current in the second battery CV stage fcc2 if fcc1 ⁇ fcc2 ⁇ reference current, the current of the two batteries They are all sufficient to charge at the current. If fcc1 is less than the benchmark, it means that the fcc1 current is sufficient, then recalculate an In1 based on the current fcc1, and allocate the remaining In2 to another battery. Conversely, if fcc2 is less than the benchmark, it means that the fcc2 current is sufficient, then recalculate an In2 with the current fcc2, and allocate the remaining In1 to another battery.
  • neither fcc1 or fcc2 is less than the reference, it means that the current does not exist enough, and it can be charged according to the current current. If a battery is not in the normal temperature range, the battery current that satisfies the cool or warm temperature is preferred, and the remaining current is allocated to the other battery. If the two batteries are not in normal temperature, the current is distributed according to the current power proportion, and then continue to charge.
  • the above is the flowchart of adjusting the charging current of the dual-battery system mobile phone. After this processing, the charging current can be guaranteed to be as uneven as possible. Simultaneous charging between the two batteries can speed up the charging time and improve the user experience.
  • the two batteries basically maintain a synchronous charging speed, that is, they are fully charged at the same time, and the frequency of secondary charging is also reduced. It can also prevent one battery from being recharged and one battery being charged normally.
  • USB_IN is an input pin of a charger using a USB interface
  • VBAT_SYS provides power for the battery to supply power to the system, and serves as system power charging.
  • the positive electrode of the battery is connected to the Vin pin of the LTC4412 chip, and Vout is powered.
  • Enable is used as the enable signal for LTC4412 to turn on, and low level indicates that LTC4412 is enabled; Status as the status signal for battery on-power; Status pin is high to indicate LTC4412
  • the chip is enabled, the battery is charged by Vin, and Vout powers the system.
  • the Enable pin is connected to the GPIO pin of the processor, and the enable of the LTC4412 chip is controlled by the high and low levels of the GPIO pin.
  • the LTC4412 chip has a reverse cut-off function, which places the problem of current backflow caused by the voltage difference between the first battery and the second battery.
  • the first charging sub-module is configured to charge the first battery, and the second charging sub-module is used to charge the second battery; the first fuel gauge is used to detect and calculate the power of the first battery, and the second fuel gauge is used Detects and calculates the charge of the second battery.
  • This embodiment provides an electronic device, including:
  • a processor connected to the memory and configured to implement a method for charging a dual battery provided by any one of the foregoing technical solutions by executing computer-executable instructions stored on the memory; for example, as shown in FIGS. 1 to 3 and 8 Up to one or more of the methods shown in FIG. 11.
  • This embodiment provides a computer storage medium that stores computer-executable instructions. After the computer-executable instructions are executed, the method for charging a dual battery provided by any one of the foregoing technical solutions can be implemented; for example, One or more of the methods shown in FIGS. 1 to 2 and 6 to 9.
  • the computer storage medium may be various types of storage media, for example, a non-transitory storage medium.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed components are coupled, or directly coupled, or communicated with each other through some interfaces.
  • the indirect coupling or communication connection of the device or unit may be electrical, mechanical, or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, which may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • the functional units in the embodiments of the present disclosure may be all integrated into one processing sub-module, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the integrated unit can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer-readable storage medium.
  • the program is executed, the program is executed.
  • the foregoing storage medium includes: a mobile storage device, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk etc.

Abstract

本公开实施例公开了一种双电池的充电方法及装置、电子设备及存储介质。所述双电池的充电方法,包括:若检测到电子设备与供电设备建立了供电连接,获取第一电池的第一状态参数和第二电池的第二状态参数;根据所述第一状态参数向所述第一电池充电,并根据所述第二状态参数向所述第二电池充电。

Description

双电池的充电方法、电子设备及存储介质
相关申请的交叉引用
本申请基于申请号为201810950691.X、申请日为2018年08月20日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及电子技术领域但不限于电子技术领域,尤其涉及一种双电池的充电方法、电子设备及存储介质。
背景技术
随着电子设备的功能越来越强大,则电子设备的耗能也越来越大。为了延长电子设备的待机时长,在一些电子设备中设置双电池。利用双电池的存储电量来延长高能耗的电子设备的待机时长。但是研究发现在相关技术,对双电池的电子设备的充电存在着:不能充分利用供电设备的供电能力、充电效率低及有的电池二次充电频次高的现象。
发明内容
本公开实施例期望提供一种双电池的充电方法、电子设备及存储介质。
本公开的技术方案是这样实现的:
一种双电池的充电方法,包括:
若检测到电子设备与供电设备建立供电连接,获取第一电池的第一状态参数和第二电池的第二状态参数;
根据所述第一状态参数向所述第一电池充电,并根据所述第二状态参数向所述第二电池充电。
充电接口;
第一电池,
第一充电电路,分别与所述充电接口及所述第一电池连接;
第二电池;
第二充电电路,分别与所述充电接口及所述第二电池连接;
处理模组,与所述第一充电电路和所述第二充电电路连接,配置为若检测到电子设备与供电设备建立供电连接,获取第一电池的第一状态参数和第二电池的第二状态参数;根据所述第一状态参数导通或断开所述第一充电电路控制所述第一电池的充电,并根据所述第二状态参数导通或断开所述第二充电电路控制所述第二电池的充电。
一种电子设备,其中,包括:
存储器;
处理器,与所述存储器连接,用于通过执行存储在所述存储器上的计算机可执行指令,实现前述的双电池的充电方法。
一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被执行后,能够前述的双电池的充电方法。
在本公开实施例中,在电子设备与供电设备建立连接之后,会根据第一电池和第二电池的状态参数,分别对第一电池和第二电池进行充电具有充电速率快及二次充电次数少的特点。
附图说明
图1为本公开实施例提供的第一种双电池的充电方法的流程示意图;
图2为本公开实施例提供的第二种双电池的充电方法的流程示意图;
图3为本公开实施例提供的第三种双电池的充电方法的流程示意图;
图4为本公开实施例提供的第二种双电池的充电装置的结构示意图;
图5为本发明实施例提供的一种电子设备的结构示意图;
图6为本公开实施例提供的一种充电模块的结构示意图;
图7为本公开实施例提供的一种双电池的充电示意图;
图8为本公开实施例提供的第四种双电池的充电方法的流程示意图;
图9为本公开实施例提供的第五种双电池的充电方法的流程示意图;
图10为本公开实施例提供的第六种双电池的充电方法的流程示意图;
图11为本公开实施例提供的第七种双电池的充电方法的流程示意图;
图12为本公开实施例提供的一种双电池的充电电路的连接示意图。
具体实施方式
以下结合说明书附图及具体实施例对本公开的技术方案做进一步的详细阐述。
本实施例提供一种双电池的充电方法,包括:若检测到电子设备与供电设备建立供电连接,同时对第一电池和第二电池进行充电。
在一些实施例中,如图1所示,本公开实施例还提供过一种双电池的充电方法,包括:
步骤S110:若检测到电子设备与供电设备建立供电连接,获取第一电池的第一状态参数和第二电池的第二状态参数;
步骤S120:根据所述第一状态参数向所述第一电池充电,并根据所述第二状态参数向所述第二电池充电。
此处根据两个电池的状态参数,分别对第一电池充电和第二电池充电,可为前述同时对第一电池和第二电池充电的一种实施例。具体实现时,也可以在考虑两个电池的状态参数的情况下,直接对第一电池和第二电充分 别充电。
本实施例提供的双电池的充电方法,可应用于各种包括双电池的电子设备中。所述移动设备可包括:车载移动设备、人载移动设备。所述车载移动设备可为各种交通工具搭载的电子设备,例如,导航设备。所述人载设备可包括:手机、平板电脑、可穿戴式设备等;所述可穿戴式设备可包括:智能手环或智能手表等。
所述第一电池和所述第二电池为相互独立的两个电池,这两个电池可以分别向电子设备供电。例如,所述第一电池和第二电池为同一个电子设备内的两个电池,或者,第一电池和第二电池为与同一个电子设备连接的两个电池。
所述第一电池和所述第二电池可为相同电池参数的电池,也可以是具备不同电池参数的电池。例如,相同电池参数的电池可包括:来自同一个生产厂家的同一个型号的等标定容量的电池。具备不同电池参数的电池可包括:来自同一个生产厂家的不同型号的电池,来自不同生产厂家的电池。
第一电池和第二电池的电池参数可不相同,但是供电参数可相同,如此,可以实现第一电池和第二电池互为备用电池。此处电池向负载供电的供电参数可包括:供电电压和/或充电电流,以可以向同一个电子设备提供其所需的电压或电流。
例如,第一电池和第二电池的供电管脚,都连接到电子设备的系统供电管脚上,如此,第一电池和第二电池可以通过供电管脚与系统供电管脚的连接,向电子设备提供产生功耗所需的电量。该系统供电管脚可设置在电子设备的主板上,所述电子设备的主板从第一电池或第二电池接收到供电之后,通过供电电路的转化等向提供各个功能单元所需的电压或电流。
在本实施例中提供一种同时向所述第一电池和所述第二电池充电的方法。通过向第一电池和第二电池的充电,可以使得第一电池和第二电池存 储电能。
在本实施例中,同时向所述第一电池和所述第二电池充电可包括:
所述第一电池和所述第二电池并联在所述电子设备的充电接口的后端,如此,充电接口可以通过分流策略同步向第一电池和第二电池直接进行充电,而非充电接口先向一块电池充电,该电池再向另一个电池充电。例如,在手机中包括:电池A和电池B;在本实施例中,所述电池A和所述电池B同时直接从充电接口接受充电电流,并各自进行充电。
在一些实施例中,所述充电接口可为有线充电接口,例如,通用串行总线(Universal Serial Bus,USB)。
在另一些实施例中,所述充电接口可为无线充电接口,该无线充电接口可为:基于电池感应进行无线充电的电池感应充电接口、基于电场耦合进行无线充电的电池耦合充电接口或者基于微波进行无线充电的微波充电接口。
在本实施例中所述供电设备可为各种能够向电子设备中第一电池和第二电池充电的设备,例如,充电插头、充电插座。
检测到与供电设备建立供电连接可以下至少之一:
检测到电子设备通过充电线与所述供电设备建立有线充电连接;
检测到所述电子设备位于可进行无线充电的供电设备的供电范围内。
在一些实施例中,所述检测到所述电子设备位于可进行无线充电的供电设备的供电范围内,包括:
检测到所述电子设备位于无线的供电设备的充电座上。
总之,在本实施例中,若检测到电子设备与供电设备建立充电连接,会同时采用并联的充电电路分别向所述第一电池和所述第二电池进行充电,如此,一方面,由于供电设备通常可提供的充电电流会大于单一电池所需充电电流,如此,同时对第一电池和第二电池进行充电,可以最大限 度的利用供电设备的供电电流,从而减少充电时的电流浪费;另一方面同时对第一电池和第二电池,相对于某一个是对单一电池进行充电,在尽可能利用供电设备的供电电流的同时,快速的实现对电子设备的充电,从而提升电子设备的充电效率。再一方面,由于同时对第一电池和第二电池充电,可以提升两个电池差不多时间内充满的状态,如此,可以减少相对于两个电池的先后充电(例如,快充电池先充满后,由快充电池向普通电池充电,快充电池在向普通电池充电之后电量下降,再次通过充电插座进行充电),可以至少减少一个电池的二次充电次数,从而减少因电池的二次充电次数多导致的加速老化,如此,可以延长电池的电池寿命。
所述第一电池的状态参数称之为所述第一状态参数;所述第二电池的状态参数称之为第二状态参数。
所述第一状态参数可为:描述所述第一电池与充电相关的状态参数;所述第二状态参数可为:描述所述第二电池与充电相关的状态参数。与充电相关的状态参数可包括:电池的温度、电池的当前电量、电池的充电电流、电池的充电阶段等;以上仅是状态参数的举例,具体实现时不局限于上述任何举例。
在一些实施例中,供电设备输出的电流可能经过电池的充电控制芯片,由充电控制芯片进行电压和/或电流的相关参数的转换之后,才作为充电电流进入到电池。
在一些实施例中,所述第一状态参数包括但不限于以下至少之一:所述第一电池的温度;所述第一电池的充电阶段;所述第一电池的当前电量。所述第二状态参数包括但不限于以下至少之一:所述第二电池的温度;所述第二电池的充电阶段;所述第二电池的当前电量。
所述第一电池的温度及所述第二电池的温度均可以称之为电池的温度;所述电池的温度可包括:电池表面的温度或电池内部的恩度。电池在 充电时,电池内部在发生化学变化、电化学变化、电子迁移及物质传输等反应,而这些会导致电池的表面出现发热现象;而这些发热现象产生的热量并不能完全及时的散发到环境中区,从而导致电池内部的热量的累计,从而导致电池的温度上升;如此,电池的内部和/或表面的温度都会上升。在本实施例中为了方便电池的温度的检测,所述第一电池的温度和所述第二电池的温度可分别是:第一电池表面的温度、第二电池表面的温度。若一旦电池的表面过热,则对应的电池的内部可能出现了热失控问题,而热失控温度,可能会导致电池的加速老化或者电池的安全性问题,故在正常温度范围在对电池充电时,若检测到过热现象,则会自动调整电池当前充电所需充电电流,通过调整自动调整所需充电电流可以降低电池内热累计的速率,从而降低电池的温度,此时电池所需充电电流就小了。
所述第一电池的充电阶段和所述第二电池的充电阶段均可以称之为:电池的充电阶段。所述电池的充电阶段包括:恒流阶段和恒压阶段。
在所述恒流阶段,对应电池的充电电流是恒定的,而通过充电电压的改变确保充电电流的恒定;在恒压阶段,对应电池的充电电压时恒定的,而通过充电流的调整确保充电电压的恒定的。
在本实施例中,电池的充电阶段可包括:先进入恒流阶段,采用恒流充电一段时间后,当电池的电量达到特定电流值,则进入到恒压阶段,采用恒压充电。在本实施例中,所述恒压阶段的充电电流是逐步减小的。
所述第一电池的当前电量可为:第一电池当前时刻的电量;所述第二电池的当前电量可为:第二电池当前时刻的电量。
在一些实施例中,例如,利用电量计对第一电池和第二电池的充电进行测量,如此就可以精确测量出分别向第一电池和第二电池充入电量;然后结合充电之前的剩余地电量;就可以估算出第一电池和第二电池的当前电量。
在本实施例中,第二充电电流分配关系是根据第一电池的第一状态参数和第二电池的第二电量参数来确定的,如此,确定的第二充电电流关系与第一电池和第二电池的当前状态相适配的;如此不仅同时向第一电池和第二电池充电,充分利用了供电设备的供电能力,提升了充电速率及减少了供电电流的浪费,同时还会根据两个电池的状态来实现充电电流的分配,如此,减少了某一个电池充电过程中出现过热等充电异常等问题;确保了充电过程中的电池安全性和电池的低损耗性。
在本公开实施例中,在电子设备与供电设备建立连接之后,会根据第一电池和第二电池的状态参数,分别对第一电池和第二电池进行充电,而非是相关技术中先对某一个电池充电,当某一个电池充满之后,再对另一个电池充电。根据第一状态参数对第一电池充电和根据第二状态参数对第二电池充电,相当于可以利用供电设备同时对第一电池和第二电池充电。由于供电设备的供电能力一般大于电子设备单一电池的充电需求,若仅对一个电池充电,如此会导致供电设备的供电能力的浪费,而在本公开实施例中同时对第一电池和第二电池进行充电,从而尽可能利用供电设备的供电能力,减少供电设备的供电能力的浪费;并由于同时对第一电池和第二电池充电,可以提升电子设备整体的充电速率;减少一次仅对一块电池充电导致的充电速率慢的现象。此外,若先对一个电池充电,在该电池充满或电量达到特定值之后,由该电池向另一个电池充电,在向另一个电池放电的过程中,该电池的电量又下降了,则供电设备对该电池进行再次充电,如此导致了先充电的电池的二次充电频次高,而二次充电频次高会加速电池的老化。而在本实施例中同时对第一电池和第二电池充电,而非由一块电池向另一个电池充电,可以减少某一块电池的二次充电频率,从而减少电池因为二次充电频率高导致的老化速度快的问题,延长了电池的使用期。
在一些实施例中,如图2所示,所述方法还包括:
步骤S101:在充电的初始时刻,按照预设的第一充电电流分配关系,分配向第一电池和第二电池充入的充电电流;
步骤S102:根据分配的充电电流,分别向所述第一电池充电和所述第二电池充电。
在本实施例中,所述电子设备中可以预先配置有所述第一充电电流分配关系;所述第一充电电流分配关系可用于指示第一电池和第二电池如何分配所述供电设备的供电电流。所述供电设备的供电电流可为:电子设备的充电的总充电电流。在一些实施例中,所述电子设备的系统耗电可以忽略不计,即电子设备处于关机状态或者处于开机状态下的低功耗模式下(例如,休眠模式下或者系统总功耗低于预设功耗值),则可认为所述第一电池的充电电流和所述第二电池的充电电池的总充电电流。在另一些实施例中,所述电子设备的系统耗电比较大,则所述供电设备的供电电流可为:第一电池的充电电流、第二电池的充电电流及系统耗电的系统电流的总和。
例如,所述第一充电电流分配关系可包括:第一充电电流分配比例。在充电的初始时刻,按照第一充电电流分配比例分配充电电流。例如,所述第一充电电流分配比例为A:B;则第一电池的充电电流为:I*A/(A+B);所述第二电池的充电电流为:I*B/(A+B);其中,所述I可为所述供电设备的供电电流。所述供电电流为所述供电设备输出的电流。电池的充电电流为流入到电池内的电流。
在一些实施例中,所述第一充电电流分配关系可为:根据所述第一电池和所述第二电池的标定电池容量确定的。例如,所述第一电池的标定容量为C1毫安;所述第二电池的标定容量为C2毫安;且假设所述第一充电电流分配比例为:第一电池的充电电流与所述第二电池的充电电流的比值,则所述第一电池充电分配比例可为:C2:C1。所述标定容量可为电池出厂时标定的容量。
在另一些实施例中,所述第一充电电流分配关系可为:根据所述第一电池和所述第二电池上一次充满后的实际电容确定的。例如,例如,所述第一电池的实容量为C3毫安;所述第二电池的实容量为C4毫安;且假设所述第一充电电流分配比例为:第一电池的充电电流与所述第二电池的充电电流的比值,则所述第一电池充电分配比例可为:C4:C3。电池在使用一段时间后会出现老化现象,若电池出现老化现象则电池的实际容量会小于新电池出厂时的标定容量的。
在一些实施例中,所述步骤S101可包括:在充电的初始时刻,平均分配向所述第一电池和所述第二电池充电的充电电流。
如此,相当于在充电的初始时刻,按照充电电流平均分配同时向所述第一电池和所述第二电池充电。
在本实施例中,所述第一充电电流分配关系可为:充电电量平均分配关系,即向第一电池和所述第二电池平均分配供电设备的供电电流,则第一电池和第二电池从所述供电设备中获得的充电电流的电流值是相等的。此处的充电电流平均分配可为:所述第一充电电流比例为1:1。采用平均分配方式具有实现简单的特点。
在一些实施例中,所述步骤S120可包括:
步骤S121:在所述初始时刻以后,根据所述第一电池的第一状态参数和所述第二电池的第二状态参数确定第二充电电流分配关系;
步骤S122:根据所述第二充电电流分配关系,分配向所述第一电池和所述第二电池充入的充电电流;
步骤S123:根据分配的所述充电电流,向所述第一电池和所述第二电池充电。
在初始时刻以后,根据第一电池的第一状态参数和第二电池的第二状态参数确定第二充电电流分配关系。
此处的第二充电电流分配关系可用于指示第一电池和第二电池如何分配所述供电设备的供电电流。在本实施例中,所述第二充电电流分配关系可为:在第一电池和第二电池充电过程中动态确定的。具体根据所述第一电池和所述第二电池的状态参数确定。
在一些实施例中,如图3所示,所述方法还包括:
步骤S111:在所述初始时刻以后,按照预设时间间隔检测所述第一状态参数和所述第二状态参数。
在本实施例中所述预设时间间隔可至少分为以下两类:
第一类:任意相邻时间间隔均相等,如此,相当于按预定周期检测所述第一状态参数和所述第二状态参数,从而按照预定周期重新确定所述第二充电电流分配关系,并调整第一电池和第二电池同时充电的充电电流。
第二类:相邻两个时间间隔不相等;例如,所述预设时间间隔是在对应的时间点来临之前确定的;例如,根据第n个时间间隔内检测的第一电池的第一状态参数和第二电池的第二状态参数,确定第n+1个时间间隔的间隔时长。例如,第n个时间间隔内检测的所述第一状态参数相对于第n-1个时间间隔内检测第一状态参数的状态差异量为第一差异量;第n个时间间隔内检测的所述第二状态参数相对于第n-1个时间间隔内检测第二状态参数的状态差异量为第二差异量;如若所述第一差异量和所述第二差异量的差值在指定范围内,则确定第n+1个时间间隔的间隔时长等于所述第n个时间间隔的间隔时长。若所述第一差异量和所述第二差异量的差值不在指定范围内,则确定第n+1个时间间隔的间隔时长小于所述第n个时间间隔的间隔时长。
总之,在本实施例中在第一电池和第二电池充电的过程中,会按照预定时间间隔多次检测所述第一状态参数和所述第二状态参数。在本实施例中,检测第一状态参数和所述第二状态参数的检测时刻相同,即,所述第 一状态参数和第二状态参数的检测时间间隔相同且检测的起始时刻相同。此处的起始时刻,可为所述第一电池和第二电池开始充电后的初始时刻或者充电的初始时刻以后的任意一个时刻。
在一些实施例中,电池的状态参数可分为第一优先级的状态参数和第二优先级的状态参数。例如,所述第一优先级的状态参数可包括:电池的温度;则此时,第二优先级的状态参数可包括:电池的充电阶段及电池的充电电量。再例如,第一优先级的参数可包括:电池的温度及电池的充电阶段。第二优先级的状态参数可包括:电池的当前电量。
在还有一些实施例中,电池的状态参数可分为:第一优先级的状态参数、第二优先级的状态参数、第三优先级的状态参数。所述第一优先级的状态参数可包括:电池的温度、第二优先级的状态参数可为:电池的充电阶段;第三优先级的状态参数可为:电池的当前电量。或者,所述第一优先级的状态参数可包括:电池的充电阶段、第二优先级的状态参数可为:电池的温度;第三优先级的状态参数可为:电池的当前电量。
所述第一优先级高于所述第二优先级;若设置有第三优先级,则第二优先级高于第三优先级。
在还有一些实施例中,电池的状态参数还可包括:当前所需的充电电流,不局限于上述任意状态参数。
在一些实施例中,根据所述第一电池的第一状态参数和所述第二电池的第二状态参数确定第二充电电流分配关系可包括:
若高优先级的状态参数不同,则直接根据高优先级的状态参数确定所述第二充电电流分配关系;若高优先级的状态参数相同,则根据低优先级的状态参数确定所述第二充电电流分配关系。
例如,确定第一电池和第二电池的第一优先级的状态参数是否相同,若不相同,直接根据第一优先级的状态参数确定所述第二充电电流分配关 系;若相同,根据第二优先级的状态参数确定所述第二充电电流分配关系。若电子设备还设置有第三优先级的状态参数,在第一优先级和第二优先级的状态参数均相同的情况下,根据第三优先级的状态参数确定所述第二充电电流分配关系。
如此,可以根据不同状态参数对电池充电的影响程度,设置不同优先级;更好的控制电池的充电,实现尽可能多的同时向两个电池进行充电,尽可能高的利用供电设备的供电能力。
在一些实施例中,所述根据所述第一电池的第一状态参数和所述第二电池的第二状态参数确定第二充电电流分配关系,包括:
若所述第一电池的充电阶段和所述第二电池的充电阶段相同,且所述第一电池的温度和所述第二电池的温度中的一个处于正常温度范围度范围内,另一个处于异常温度范围度范围内,利用所述供电设备的供电电流优先满足处于所述异常温度范围度范围内的电池的充电电流,所述供电电流中的剩余部分用于向另一个电池充电。
所述充电阶段可包括:恒压阶段和恒流阶段。所述第一电池的充电阶段和第二电池的充电阶段相同,可包括:第一电池和第二电池均处于恒压阶段;或者,第一电池和第二电池均处于恒流阶段。
若两个电池的充电阶段相同,则根据两个电池的温度来分配供电电流。例如,一个处于正常温度范围度范围,另一个处于异常温度范围度范围。正常温度范围度范围内的电池需要更大的充电电流,而异常温度范围度范围内的电池需要的充电电流较小。为了加速充电,在本实施例中,优先满足处于所述异正常温度范围度反问内的电池的充电电流,若供电设备提供的供电电流还有剩余则用于满足处于正常温度范围度范围内的电池的充电,如此,可以尽可能的同时满足两个电池的充电。
所述正常温度范围度范围包括:中温区。
所述异常温度范围度范围包括:低温区及高温区;
所述中温区的温度高于所述低温区的温度。所述高温区的温度高于所述中温区的温度。
在一些实施例中,将电池的温度从0摄氏度到10摄氏度视为低温区,将大于10摄氏度且低于45摄氏度的温度范围视为中温区;将大于45摄氏度且在55摄氏度之间的温度范围视为所述高温区。
在另一些实施例中,将电池的温度从-10摄氏度到10摄氏度视为低温区,将大于10摄氏度且低于45摄氏度的温度范围视为中温区;将大于45摄氏度的温度范围视为所述高温区。
在还有一些实施例中,所述异常温度范围度范围还可包括:超低温度区和/或超高温区;所述超低温区的温度低于所述低温区的温度,例如,所述超低温区的温度可为零下10摄氏度及其以下的温度。超高温区的温度高于高温区的温度。又例如,所述超高温区可的温度可为:大于55摄氏度以上的温度。
以上仅是对正常温度范围度范围及异常温度范围度范围的举例说明,具体实现时,不局限于上述任意一种实施例。
在一些实施例中,根据所述第一电池的第一状态参数和所述第二电池的第二状态参数确定第二充电电流分配关系,还包括:
若所述第一电池的充电阶段和所述第二电池的充电阶段相同,且所述第一电池的温度和所述第二电池的温度均处于正常温度范围度范围内,利用所述供电电流优先满足所需充电电流较小的电池的充电。此外,所述供电电流中的剩余部分用于向另一个电池充电。
若第一电池和第二电池的处于相同的充电阶段,且第一电池和第二电池均处于正常温度范围度范围内,则利用供电电流满足所需充电电流较小的电池的充电,如此,有更大的可能供电电流会有剩余部分可以用于向另 一个电池进行充电,实现第一电池和第二电池的同时充电。
在一些实施例中,根据所述第一电池的第一状态参数和所述第二电池的第二状态参数确定第二充电电流分配关系,还包括:
若所述第一电池的充电阶段和所述第二电池的充电阶段相同,且所述第一电池的温度和所述第二电池的温度均处于异常温度范围度范围内,利用所述供电电流优先满足当前电量低电池所需充电电流。此外,所述供电电流的剩余部分用于向另一个电池充电。
若两个电池的充电阶段相同且均处于异常温度范围度范围内,则根据第一电池的当前电量和第二电池的当前电量来分配供电电流,例如,说明两个电池的充电电流都可能要求小,而当前电量较小的电池可能要求的充电更大一些,即便如此,先满足当前电量较小的电池的充电,供电电流有非常大的概率依然有剩余,如此,一方面实现两个电池的同时充电,另一个方面尽可能实现了利用了供电电池。
在另一些实施例中,根据所述第一电池的第一状态参数和所述第二电池的第二状态参数确定第二充电电流分配关系,还包括:若所述第一电池的充电阶段和所述第二电池的充电阶段相同,且所述第一电池的温度和所述第二电池的温度均处于异常温度范围度范围内,根据所述第一电池的当前电量和所述第二电池的当前电量的比值分配所述供电电流。
如此,例如,第一电池的当前电量比上第二电池的当前电量为:1:P1,则第一电池的充电电流比上第二电池的充电电流的比值为:P1:1;所述P1为任意正数。
根据所述第一电池的第一状态参数和所述第二电池的第二状态参数确定第二充电电流分配关系,包括,包括以下至少之一:
若所述第一电池和所述第二电池中一个处于恒流阶段且另一个处于恒压阶段,若处于所述恒流阶段的电池的温度处于异常温度范围度范围且处 于所述恒压阶段的电池的温度处于正常温度范围度范围内,利用所述供电设备的供电电流优先满足处于所述恒流阶段的电池所需充电电流;此外,所述供电电流的剩余部分还可用于向另一个电池充电;
若所述第一电池和所述第二电池中一个处于恒流阶段且另一个处于恒压阶段,若处于所述恒流阶段的电池的温度处于异常温度范围度范围且处于所述恒压阶段的电池的温度处于所述异常温度范围度范围内,利用所述供电设备的供电电流优先满足当前电量低的电池所需充电电流;此外,所述供电电流的剩余部分还用于向另一个电池充电;
所述第一电池和所述第二电池中一个处于恒流阶段且另一个处于恒压阶段,若处于所述恒流阶段的电池的温度处于异常温度范围度范围且处于所述恒压阶段的电池的温度处于所述异常温度范围度范围内,根据所述第一电池的当前电量和所述第二电池的当前电量的比值分配所述供电电流;
若所述第一电池和所述第二电池中一个处于恒流阶段且另一个处于恒压阶段,若处于所述恒流阶段的电池的温度处于正常温度范围度范围内,利用所述供电电流优先满足处于所述恒流阶段的电池所需的电流,所述供电电流的剩余部分用于向处于恒压阶段的电池进行充电。
在一些实施例中,电池的充电阶段可作为第一优先级的状态参数,电池的温度作为第二优先级的状态参数;电池的当前电量作为第三优先级的状态参数。
在还有一些实施例中,可以仅考虑电池的充电阶段,而不考虑电池的温度;例如,所述根据所述第一电池的充电阶段和所述第二电池的充电阶段,确定所述第二电池电流分配关系,包括:
若所述第一电池处于恒流阶段且所述第二电池处于恒压阶段,所述第一电池的充电电流大于所述第二电池的充电电流;和/或,若所述第一电池处于恒压阶段且所述第二电池处于恒流阶段,所述第二电池的充电电流大 于所述第一电池的充电电流;和/或,若所述第一电池及所述电池的充电阶段相同,则根据所述第一电池的当前容量和所述第二电池的当前容量,确定所述第二充电电流分配关系。
例如,若所述第一电池的当前电量大于所述第二电池的当前电量,确定所述第一电池的充电电流小于所述第二电池的充电电流;和/或,若所述第二电池的当前电量大于所述第一电池的当前电量,确定所述第二电池的充电电流小于所述第一电池的充电电流;根据所述第一电池的当前电量与所述第二电池的当前电量的当前电量比值,确定所述第一电池和所述第二电池的充电电流比值;其中,所述充电电流比值为所述当前电量比值的倒数。
在还有一些实施例中,可以仅根据电池的温度进行所述第二充电电流分配关系的确定,例如,根据两块电池的温度所处的温度范围,优先利用供电电流满足处于异常温度范围度范围内的电池的充电,再满足处于正常温度范围度范围内的电池的充电;此时,可以忽略电池的充电阶段。在还有一些实施例中,可以仅根据电池的温度进行所述第二充电电流分配关系的确定,若两个电池的温度都处于正常温度范围度范围内,则优先满足所需充电电流较小的电池的充电,再满足另一个电池的充电;或者,根据当前电池的电量,优先满足当前电量低的电池的充电,在满足另一个电池的充电;或者,直接根据电池的当前电量的比值来分配供电设备提供的供电电流,从而确定出两个电池的充电电流。
在一些实施例中,根据所述第一电池的第一状态参数和所述第二电池的第二状态参数确定第二充电电流分配关系,还包括以下至少之一:
若所述电子设备的系统耗电大于预设耗电值,且所述第一电池处于恒压阶段及所述第二电池处于恒流阶段,停止对所述第一电池的充电并继续对所述第二电池充电;
若所述电子设备的系统耗电大于所述预设耗电值,且所述第二电池处于恒压阶段及所述第一电池处于恒流阶段,停止对所述第二电池的充电并继续对所述第一电池充电。
例如,电子设备有开启应用或者有业务数据传输等,则会有系统耗电。在本实施例中个,所述供电设备可以直接与电子设备的系统供电引脚连接,直接对系统进行供电。如此,在一些实施例中,且所述第一电池处于恒压阶段及所述第二电池处于恒流阶段,停止对所述第一电池的充电并继续对所述第二电池充电;若电子设备有系统耗电,且所述第二电池处于恒压阶段及所述第一电池处于恒流阶段,停止对所述第二电池的充电并继续对所述第一电池充电。即若电子设备系统耗电比较大,则直接先暂停处于恒压阶段的电池的充电,维持处于恒流阶段的电池的充电。但是在一些实施例中,若供电设备的供电能力很强,供电设备可提供的充电电流很大,不仅可以满足电子设备的系统耗电,可以向处于恒流阶段的电池充电所需充电电流之外,所述供电电流还有剩余,则该剩余的部分可以继续用于处于恒压阶段的电池的充电;以实现尽可能的利用所述供电设备的供电电流,实现电子设备的快速充电。
在一些实施例中,在分别对第一电池和第二电池充电时,满足如下函数关系:
U*(In1+In2)*n=v1*fcc1+v2*fcc2;
其中,所述U为供电设备的供电电压;所述In1为所述第一电池的第一充电芯片的输入电流;所述In2为所述第二电池的第二充电芯片的输入电流;所述n为充电效率;所述v1为所述第一电池的充电电压;所述fcc1为所述第一电池的充电电流;所述v2为所述第二电池的充电电压;所述fcc2为所述第二电池的充电电流。
在本实施例中所述n的取值大于0且小于1。所述第一充电芯片可以用 于调整输入到所述第一电池的充电电流和/或充电电压。所述第二充电芯片可以用于调整输入到所述第二电池的充电电流和/或充电电压。所述In1和所述In2之和,可等于或小于所述供电设备的供电电流。
通过上述函数关系,实现在调整第一电池的充电电流和第二电池的充电电流的过程中需要遵循功率平衡原则;减少某一个充电电流设置异常导致的充电异常现象。
在一些实施例中,所述方法还包括:确定所述供电设备的供电电流;
所述步骤S120可包括:若检测到与所述供电设备建立供电连接,利用分流策略同时对所述第一电池和所述第二电池进行充电;其中,所述第一电池的充电电流和所述第二电池的充电电流之和不大于所述充电电流。
所述确定供电设备的供电电流,可包括:读取所述供电设备额定的供电参数,该供电参数可包括:额定的供电电压及额定的供电电流。
所述供电设备的供电电流直接决定了电子设备可获得的总的充电电路。
如此,方便在步骤S120中同时第一电池和第二电池充电时的充电电流的分配。
如图4所示,本公开实施例提供一种双电池的充电装置,包括:充电模块101,用于若检测到电子设备与供电设备建立了供电连接,同时对第一电池102和第二电池103进行充电。
在一些实施例中,所述双电池的充电装置还包括:
检测模块100,配置为若检测到电子设备与供电设备建立了供电连接,检测第一电池的第一状态参数及第二电池的第二状态参数;
充电模块101,配置为根据所述第一状态参数向第一电池充电,并根据第二状态参数向第二电池充电。
该充电模块101,分别与所述第一电池102和所述第二电池103连接, 可以用于接受所述供电设备提供的电流,并对所述第一电池102和所述第二电池103同时充电。
所述充电模块101可包括:充电芯片;所述充电芯片可包括:充电电路及变压器或变流器等,所述变压器可以配置为向对应的电池提供充电所需的电压;所述变流器可以用于向对应的电池提供充电所需的电流。所述变压器和/或所述变流器位于充电电路上,所述充电电路一端连接所述充电接口,并通过供电接口与所述供电设备建立连接,另一端连接对一个电池的充电引脚。
在一些实施例中,所述充电芯片可包括:第一充电芯片和第二充电芯片,第一充电芯片与所述第一电池102连接;所述第二充电芯片与所述第二电池103连接。
在一些实施例中,所述充电芯片可包括:复杂可编程器件、现场可编程器件或专用集成电路等。
在另一些实施例中,所述充电芯片可包括:嵌入式控制器或者单片机等。
所述充电模块101可为纯硬件器件,也可以是软件和硬件的结合组件;还可以是:程序模块;所述程序模块被处理器执行后,能够控制供电子设备的第一电池102和第二电池103同时充电。
总之,所述充电模块101的结构有很多;不局限于上述任意举例。
在一些实施例中,所述充电模块101,配置为在充电的初始时刻,按照预设的第一充电电流分配关系同时向所述第一电池102和所述电池充电,例如在充电的初始时刻,按照预设的第一充电电流分配关系,分配向第一电池和第二电池充入的充电电流;根据分配的充电电流,分别向所述第一电池充电和所述第二电池充电。
在一些实施例中,所述充电模块101,配置为在充电的初始时刻,按照 充电电流平均分配同时向所述第一电池102和所述第二电池103充电。
在一些实施例中,所述充电模块101,可配置为在所述初始时刻以后,根据所述第一电池102的第一状态参数和所述第二电池103的第二状态参数确定第二充电电流分配关系;根据所述第二充电电流分配关系,同时向所述第一电池102和所述第二电池103充电。
在一些实施例中,所述装置还包括:
检测模块100,用于在所述初始时刻以后,按照预设时间间隔检测所述第一状态参数和所述第二状态参数。
该检测模块可包括:各种传感所述第一状态参数和所述第二状态参数的传感器,例如,电量计等。在一些实施例中,所述检测模块也可以为:可由处理器执行的程序模块;在另一些实施例中,所述检测模块同样可为前述复杂可编程器件、现场可编程器件、嵌入式控制器或单片机或微处理器等。
在一些实施例中,所述第一状态参数包括以下至少之一:所述第一电池102的温度;所述第一电流的充电阶段;所述第一电池102的当前电量;和/或,所述第二状态参数包括以下至少之一:所述第二电池103的温度;所述第二电池103的充电阶段;所述第二电池103的当前电量。
在一些实施例中,所述充电模块101,具体用于执行以下至少之一:
若所述第一电池102的充电阶段和所述第二电池103的充电阶段相同,且所述第一电池102的温度和所述第二电池103的温度中的一个处于正常温度范围度范围内,另一个处于异常温度范围度范围内,利用所述供电设备的供电电流优先满足处于所述异常温度范围度范围内的电池的充电电流,所述供电电流中的剩余部分用于向另一个电池充电。
在一些实施例中,所述充电模块101,配置为执行以下至少之一:
若所述第一电池102的充电阶段和所述第二电池103的充电阶段相同, 且所述第一电池102的温度和所述第二电池103的温度均处于正常温度范围度范围内,利用所述供电电流优先满足所需充电电流较小的电池的充电,所述供电电流中的剩余部分用于向另一个电池充电。
所述充电模块101,配置为执行以下至少之一:
若所述第一电池102的充电阶段和所述第二电池103的充电阶段相同,且所述第一电池102的温度和所述第二电池103的温度均处于异常温度范围度范围内,利用所述供电电流优先满足当前电量低电池所需充电电流,所述供电电流的剩余部分用于向另一个电池充电;
或者,
若所述第一电池102的充电阶段和所述第二电池103的充电阶段相同,且所述第一电池102的温度和所述第二电池103的温度均处于异常温度范围度范围内,根据所述第一电池102的当前电量和所述第二电池103的当前电量的比值分配所述供电电流。
若所述第一电池102的温度处于正常温度范围度范围内且所述第二电池103处于异常温度范围度范围内,优先满足所述第二电池103所需充电电流且剩余部分用于向所述第一电池102充电;
若所述第一电池102的温度处于所述异常温度范围度范围内且所述第二电池103处于所述正常温度范围度范围内,优先满足所述第一电池102所需充电电流且剩余部分用于向所述第二电池103充电。
在一些实施例中,所述充电模块101,配置为执行以下至少之一:
若所述电子设备的系统耗电大于预设耗电值,且所述第一电池102处于恒压阶段及所述第二电池103处于恒流阶段,停止对所述第一电池102的充电并继续对所述第二电池103充电;
若所述电子设备的系统耗电大于所述预设耗电值,且所述第二电池103处于恒压阶段及所述第一电池102处于恒流阶段,停止对所述第二电池103 的充电并继续对所述第一电池102充电。
在一些实施例中,所述充电模块101,具体在分别向第一电池和第二电池充电时,需要满足如下函数关系:
U*(In1+In2)*n=v1*fcc1+v2*fcc2;
其中,U为供电设备的供电电压;In1为所述第一电池102的第一充电芯片的输入电流;In2为所述第二电池103的第二充电芯片的输入电流;n为充电效率;v1为所述第一电池102的充电电压;fcc1为所述第一电池102的充电电流;v2为所述第二电池103的充电电压;fcc2为所述第二电池103的充电电流。
在一些实施例中,所述装置还包括:
确定模块,配置为确定所述供电设备的供电电流;
所述充电模块101,具体用于若检测到与所述供电设备建立供电连接,利用分流策略同时对所述第一电池102和所述第二电池103进行充电;其中,所述第一电池102的充电电流和所述第二电池103的充电电流之和不大于所述充电电流。
此处的充电模块101的具体结构,可为:复杂可编程器件或现场可编程器件、嵌入式控制器、单片机等。
如图6所示,本实施例提供一种电子设备,包括:
充电接口;
第一电池,
第一充电电路,分别与所述充电接口及所述第一电池连接;
第二电池;
第二充电电路,分别与所述充电接口及所述第二电池连接;
处理模组,与所述第一充电电路和所述第二充电电路连接,配置为若检测到电子设备与供电设备建立了供电连接,获取第一电池的第一状态参 数和第二电池的第二状态参数;根据所述第一状态参数导通或断开所述第一充电电路控制所述第一电池的充电,并根据所述第二状态参数导通或断开所述第二充电电路控制所述第二电池的充电。
在本实施例中所述充电接口可为所述第一电池和第二电池充电的公共接口,所述充电接口可以用于连接供电设备,由供电设备分别通过第一充电电路和第二充电电流,分别向所述处理模组进行供电。
在一些实施例中,所述充电接口可为各种类型的有线充电接口,例如,迷你通用串行总线(min Universal Serial Bus,mini USB)等。
在一些实施例中,所述充电接口还可为:无线充电接口,例如,利用无线充电技术进行充电的电子设备,可包括能够进行无线充电的充电接口。
在本实施例中第一电池和第二电池可以共用一个所述充电接口,如此,该充电接口在有电流输入时,会分流到第一电池和第二电池,分别对第一电池和第二电池进行充电。
该充电接口可以连接向第一电池和第二电池充电的电源,例如,连接到市电的供电插座、外部充电电源(例如,移动充电宝)或者个人电脑等可以提供电流输入的设备。
此处的,处理模组可为各种控制充电的模组,例如,嵌入式控制器、可编程集成电路(例如,复杂可编程逻辑电路或现场可编程逻辑电路)。
在一些实施例中,所述电子设备还包括:电路板,其中,所述电路板上设置有处理器和系统供电管脚;
第一供电电路,输入端与所述第一电池的输出端连接,输出端与所述系统供电管脚连接,用于所述第一电池提供所述电子设备的系统供电;
第二供电电路,输入端与所述第二电池的输出端连接,输出端与所述系统供电管脚连接,配置为所述第二电池提供所述电子设备的系统供电。
在一些实施例中,所述电子设备还包括:
第一反向截止器件,位于所述第一供电电路上,配置为防止所述第二电池向所述第一电池供电;
第二反向截止器件,位于所述第二供电电路上,配置为防止所述第一电池向所述第二电池供电。
所述电路板可为包含在电子设备内任意电路板,例如,印刷电路板(PCB)。所述电路板可为设置有电子设备的中央处理器的主板。所述电路板上设置有系统供电管脚,用于各种耗能部件从系统供电管脚接受电池的供电。
所述处理模组可为各种具有信息处理或信号控制的电子元件或电子元件的组合。例如,所述处理模组可包括:微处理器、数字信号处理器、可编程器件或专用集成电路,可为一种耗电量小的器件,与第一电池和第二电池连接,同时与第一供电电路或第二供电电路连接,可以用控制第一供电电路或第二供电电路的导通和断开,从而选择第一电池或第二电池进行供电。
在本实施例中,第一电池和第二电池均设置在同一个电子设备中。
由于第一电池和第二电池的输出端均通过对应的供电电路连接到系统供电管脚,若第二电池的电量低于第一电池的电量,则第一电池和第二电池之间存在着压差,这种压差可能会使得电量高的电池向电量低的电池供电,显然这种电池之间相互供电,也会产生电池的老化,并不是电子设备所需要的。
在本实施例中,一方面利用第一反向截止器件和第二方向截止器件来防止电池之间的相互供电。例如,电子设备在切换供电的电池时,为了避免切换过程中导致电子设备的供电,会导通目标供电的电池的供电电路,在导通目标供电的电池的供电电路之后再切断源供电的电池的供电电路,如此,至少存在一个瞬间两个电池的供电电路都是导通的,由于第一电池 和第二电池本身也接地,如此,若存在压差,则会产生高电压的电池向低电压的电池供电。
另一方面,在第一供电电路和第二供电电路中使用了很多晶体管或三极管等器件,在断开对应的电池的供电电路时,是通过输入的开启电压或开启电流来实现的,例如,晶体管的漏极和源极仅是因为没有足够的栅源电压暂时中断电流,但是若源极电压高于漏极,则可能会产生反向导通,从而产生电流倒灌现象,故本实施例中还通过第一反向截止器件和第二反向截止器件的设置,防止因为压差的电流倒灌产生的电池之间相互充电现象。
在本实施例中,所述第一反向截止器件可包括:二极管等单向导通管。在另一些实施例中,所述第一反向截止器件可为打包好的具有反向截止功能的芯片,例如,在一些实施例中,所述第一反向截止器件可包括:受控开关管及控制电路,该受控开关管可包括:场效应晶体管(MOS管)。所述受控开关管可包括:控制端、输入端及输出端;所述控制端与所述控制电路连接,所述输入端与所述第一电池连接,所述输出端可与所述系统电源引脚连接。所述控制电路可以用于产生控制电平,该控制电平的高低直接决定了所述受控开关管的输入端和所述输出端连通。若所述第一电池不供电,则所述控制电平可为控制所述输入端和输出端不导通的低电平,否则输出高电平。同样的第二反向截止器件也可以包括:受控开关管及控制电路。在一些实施例中,所述第一反向截止器件和第一反向截止器件的受控开关与同一个控制电路连接。所述控制电路包括两个输出端,分别为与所述第一反向截止器件连接的第一输出端和所述第二反向截止器件连接的第二输出端。在一些实施例中,所述控制电路可以产生出第一控制信号,所述第一控制信号上的连接有所述第一输出端,所述第一输出端可以直接输出所述第一控制信号,所述控制电路上还设置有与所述第一输出端并联 的第二输出端。假设所述第一输出端所在的电路为第一路径;则所述第二输出端所在的电路为第二路径;所述第一路径和第二路径并联,所述第一路径和第二路径的连接从同一个电平输出点分出;所述第二路径比所述第一路径多一个反向器。如此,确保了分别输出不同反向截止器件的受控开关的控制信号总是反向的。即,若第一控制信号为高电平,则第二控制信号为低电平;若第一控制信号为低电平,则第二控制信号为高电平。如此,第一反向截止器件在高电平的作用下允许第一电池供电时,还将截止第二电池的电流灌入第一电池;第二反向截止器件在低电平的作用下禁止第二电池供电,还将截止第一电池的电流灌入第二电池。
以下结合上述任意实施例提供几个具体示例:
示例1:
如图6及图7所示,本示例提供一种充电模块,包括:第一电池单元、第二电池单元、电流计算分配单元。
第一电池单元包括:第一充电子模块,第一电量计子模块和第一电池子模块,第一电池单元通过一定的预设周期获取第一电量计子模块获取电池的温度、电压、电量和充电电流的供电参数。
第二电池单元包括第二充电子模块,第二电量计子模块和第二电池子模块,第二电池单元通过一定的预设周期获取第二电量计子模块获取电池的温度、电压、电量和充电电流。
电流计算分配单元,包括充电器能力计算子模块,第一电池充电电流分配子模块,第二充电池充电电流分配子模块。
供电参数送入到电流计算分配单元,由电流计算分配进行计算处理,计算之后得出来第一电池的充电电流和第二电池的充电流,进行分配后进行两块电池的同时充电。
充电器插入之后会连接到第一电池单元和第二电池单元,第一电池 单元和第二电池单元可以用于分别对第一电池和第二电池的充电,并检测第一状态参数和第二状态参数,提供给电流计算分配单元,由电流计算分配单元基于第一状态参数和第二状态参数分配供电电流,使得第一电池和第二电池获得相适配的充电电流。
在本示例提供的充电装置中,如果检测到有充电器插入,就启动双电池的同时充电策略进行充电。
在充电过程中,根据预设的检测周期进行电流的再次分配检测,如果那个电池的电流分配存在浪费或者不足。充电装置把在当前温度、电压、容量下充电器需要提供的电流作为基准充电电流。某个电池的充电电流存在浪费,是指当前分配给充电芯片的充电电流存在过大;某个电池的充电电流存在不足,是指当前分配给充电芯片的充电电流存在不足。只要充电充电电流存在浪费或者不足,就进行电流的重新分配,分配完了之后再继续充电。
例如,当系统检测到充电器插入时,先由充电器能力计算子模块计算出充电器的供电功率,所述供电功率计算第一电池单元中的充电子模块来进行计算。
计算完了之后,先各自分配一半的电流进行初始充电,然后由第一电池单元获取第一电池的温度、电压、电量和充电电流,由第二电池单元获取第二电池的温度、电压、电量和充电电流。
获取到两个电池系统的相关参数后,送入电流计算分配子模块,分别计算得出第一电池的充电电流、充电电流和第二电池的充电电流、充电电流,设置后进行分别进行同时充电。然后在过预先设置的检测时间再次检测系统的充电电流,进行动态调整后,再次设置进行充电。当充电器拔出时,停止电流的分配计算。
例如,第一电池单元:第一电池单元包括第一充电子模块,第一电 量计子模块和第一电池子模块。第一充电子模块负责检测充电器的插入与拔出,对第一电池进行充电;第一电量计通过一定的预设周期获取电池的温度、电压、电量和充电电流。第二电池单元:第二电池单元包括第一充电子模块,第二电量计子模块和第二电池子模块。
第二充电子模块负责检测充电器的插入与拔出,对第二电池进行充电;第二电量计通过一定的预设周期获取电池的温度、电压、电量和充电电流。
电流计算分配单元:包括充电器能力计算子模块,第一电池充电电流分配子模块,第二充电池充电电流分配子模块。先由充电器能力计算子模块计算出充电器的供电能力基本大小(比如5V_1.5A),计算出充电器能提供多大的充电电流,这个计算由第一电池单元中的充电子模块来进行计算,计算之后先各自分配一半的电流进行初始充电。之后经过一定的周期通过第一、第二电池单元把获取到的电池相关参数送入电流计算分配单元进行计算处理,计算之后得出来第一电池的充电电流和第二电池的充电流,再次进行分配后,进行两块电池的同时充电。
在本示例中,所述第一充电电池单元、第二电池系统个单元及电流计算分配单元可均为前述充电模块的组成部分。
参考图8所示,本示例提供了一种双电池系统的充电控制的方法,可包括:
步骤1:判断是否连接充电器,如果没有充电器插入,那么就循环执行继续等待。此处的充电器为前述的供电设备的一种。
步骤2:当系统检测到充电器插入时,就先由充电器能力计算子模块计算供电设备的充电能力。以手机为例,手机会标配一个充电器的大小,比如对于快充的手机标配的是9V_1.5A,对于普通的充电器标配的是5V_1.5A。实际中,用户使用的充电器功率不等,不同的充电器大小 涉及到对电流的分配方案,充电能力计算完成之后,进入步骤3。
步骤3:按照充电器能力计算的结果,各自分配一般的电流进行初始充电。同时由第一电池系统获取第一电池的温度、电压、电量和充电电流,由第二电池系统获取第二电池的温度、电压、电量和充电电流,进入步骤4。
步骤4:电流分配计算子模块根据获取到第一电池系统获取的第一电池参数和第二电池系统获取的第二电池参数进行各自电流的重新分配。例如,第一电池单元和第二电池单元分配获得第一电池和第二电池的状态参数,并提交给电流计算分配单元,由电流计算分配单元进行电流计算并非分配供电设备所提供的供电电流。
步骤5:在过一定的预设时间,再次检测当前的电流值是否需要调整,如果需要调整,在次进入步骤4,重新计算分配新的电流。电流计算分配单元会判断是否预设周期达到,若达到会重新基于新检测的状态参数进行充电电流的重新分配。
具体电流分配算法的过程如下:
在这里本示例标记第一电池的电压为v1、温度为t1、电量为cap1,充电电流为fcc1,fcc1为当前进第一电池的电流。第二电池的电压为v2、温度为t2、电量为cap2,充电电流为fcc2,fcc2为当前进入第二电池的电流。标记充电器的提供的电压为U,第一充电芯片的充电电流为In1,第二充电芯片的充电电流为In2,实际中要考虑损耗,标记充电的效率为n。
计算要符合功率平衡原则U*(In1+In2)*n=v1*fcc1+v2*fcc2。充电的阶段分为恒流(Constant Current,CC)和恒压(Constant Voltage,CV),因此就会组合出四种情况。下面本示例描述下每种情况下的电流分配方案。
两块电池本身的容量可能不一样,有鉴于此,本示例会根据电池的当前的电量比例来分配。
在进行电流分配时,温度是第一优先参数,首先要保证在某个温度下的电流不超标,其次在进行电流分配。
通过该示例,可以结合应用到手机整个发热的管理控制过程中,充电发热电流调整作为一个子模块来使用。
通过该示例,可以预置不同场景的充电发热参数来进行使用调试手机的发热,比如游戏模式、视频模式、上网聊天模式、购物模式等等。
通过该示例,可以使用大数据云计算,基于服务器端进行学习和训练,对使用同一款的手机用户都进行统计学习,最终训练出针对某一个应用比较好的充电发热电流控制参数,直接在后台下发到用户的手机中,当使用某款应用时可以直接使用。
示例2:
本示例基于示例1提供一种双电池的充电方法。图9所示所示,第一电池CC、第二电池CC;表示第一电池的充电阶段为CC及第二电池的充电阶段为CC。在这种状态下,根据电池的当前电量cap1和cap2,再结合电池温度共同来进行电流分配。如果两个电池的温度都处于正常温度范围中,那么就根据当前两个电池的电量比例cap1/cap2来进行电流分配,当cap1/cap2<1,说明第一电池的当前电量少,第一电池分配的In1电流大一些,第二电池分配的In2电流小一些。具体的以电池cap1/cap2比例原则进行分配。
比如,第一电池和第二电池的当前电量比为2,充电器的充电电流为1500mA,那么就分配In1为1000mA,分配In2为500mA。如果有一个电池的温度处于冷温区(cool)中,或者处于高温区(warm)中,那么优先满足冷温区或者中温区的电池温度电流,剩余的电流全部分配给 另一个电池。如果两个电池都处于冷温区或者中温区,优先满足低电量电池的电流,剩余的电流分配给另外一个电池。这样可以保证不浪费充电器的充电电流,优先当前电量百分比小的电池尽快充电。
若第一电池的充电阶段为CC,第二电池的充电阶段为CV,如果第一电池的温度在正常的温度范围内,这个时候进行第一电池的电流优先分配原则,根据预先设置的各自一半电流进行计算,此时获取到的CV阶段的电流fcc2,如果小于基准,这里的基准是功率平衡公式各自分配一半计算的结果,那么就认为第二电池不需要这么大的电流,第二电池的充电电流浪费,以当前的fcc2代入公式重新计算,获取到一个新的充电电流In1,重新分配In1和In2,然后进行充电。如果第一电池的温度不在正常范围内,在温度优先电流设置后,剩余的电流都分配给第二电池,优先正常温度范围下的电池尽快充电。如果两个电池的温度都不在正常范围内,那么优先满足低电量电池的电流,剩余的电流分配给另外一个电池,之后继续充电。
示例3:
本示例基于示例1提供一种双电池的充电方法,图10所示第一电池CC,第二电池CV,或者第一电池CV,第二电池CC;表示第一电池的充电阶段为CC及第二电池的充电阶段为CV;或者,第一电池的充电阶段为CV且第二电池的充电阶段为CC。
如果第一电池的温度在正常温度范围内,这个时候进行第一电池的电流优先分配原则,根据预先设置的各自一半电流进行计算,此时获取到的CV阶段的电流fcc2,如果小于基准,这里的基准是功率平衡公式各自分配一半计算的结果,那么就认为第二电池不需要这么大的电流,第二电池的充电电流浪费,以当前的fcc2代入公式重新计算,获取到一个新的输入电流In2,重新分配In1和In2,然后进行充电。如果第一电 池的温度不在正常温度范围内,在温度优先电流设置后,剩余的电流都分配给第二电池,优先正常温度范围下的电池尽快充电。如果两个电池的温度都不在正常温度范围内,那么优先满足低电量电池的电流,剩余的电流分配给另外一个电池,之后继续充电。在这种情况下,如果系统有业务运行,那么关闭第二电池CV状态的电池,按照总电流的75%分配CC的电池,进行充电,同时给系统供电,这个75%的比例是可以微调的,基本原则就是给处于CC状态的电池分配较多的电流,给CV状态的电池分配较少的电流,在满足给系统供电的同时,既可以给CC状态的电池进行较多的充电,还能给CV电池的小电流充电。
第一电池状态为CV,第二电池状态为CC,参考图8,如果第二电池温度在正常温度范围内,这个时候进行第二电池的电流优先分配原则,根据预先设置的各自一半电流进行计算,此时获取到的第一电池CV阶段的电流fcc1,如果fcc1小于基准,那么就认为第一电池不需要这么大的电流,第一电池的充电电流浪费,以当前的fcc1代入公式重新计算,获取到一个新的输入电流In1,重新分配In1和In2,然后进行充电。如果第二电池的温度不在正常温度范围内,在温度优先电流设置后,剩余的电流都重新分配给第一电池,之后继续充电。在这种情况下,如果系统有业务运行,那么关闭第一电池CV状态的电池,按照总电流的75%分配给CC的电池,进行充电,同时给系统供电,这个75%的比例是可以微调的,基本原则就是给处于CC状态的电池分配较多的电流,给CV状态的电池分配较少的电流,在满足给系统供电的同时,既可以给CC状态的电池进行较多的充电,还能给CV电池的小电流充电。
正常温度范围本示例基于示例1提供一种双电池的充电方法,图11所示第一电池CV,第二电池CV,表示第一电池的充电阶段为CV,第二电池的充电阶段为CV。此时,
如果两个电池的温度都在normal的范围内,此时获取到的第一电池CV阶段的电流fcc1,第二电池CV阶段的电流fcc2,如果fcc1<fcc2<基准电流,说明两个电池的电流都很充足,按照当前的电流进行充电。如果fcc1小于基准,说明fcc1电流充足,那么以当前的fcc1重新计算一个In1出来,剩余的In2分配给另外一个电池。反之,如果fcc2小于基准,说明fcc2电流充足,那么以当前的fcc2重新计算一个In2出来,剩余的In1分配给另外一个电池。如果fcc1或者fcc2都不小于基准,说明电流不存在充足,按照当前电流进行充电即可。如果一个电池不在正常温度范围内,那么优先满足cool或者warm温度的电池电流,剩余的电流全部分配给另外一个电池。如果两个电池都不在normal温度内,那么按照当前的电量比例进行电流分配,之后继续充电。以上就是双电池系统手机充电电流调整流程图,经过这样的处理后,可以保证充电电流尽可能的不均匀,在两个电池之间进行同时充电,加快充电时间,提升用户体验。在整个充电过程中,首先要保证不同温度下的充电电流不超标。其次,两块电池基本保持同步的充电速度,也就是说同时充满,对二次充电的频率也有所减少,也能避免一个电池处于二次充电,而一个电池处于正常的充电中。
示例4:
如图12所示,USB_IN为采用USB接口的充电器的输入引脚;VBAT_SYS为电池的供电给系统进行供电,作为系统供电的充电。
电池的正极连接到LTC4412芯片Vin管脚,Vout供电;Enable作为LTC4412导通的使能信号,为低电平表示LTC4412使能;Status作为电池导通供电的状态信号;Status管脚为高表示LTC4412芯片使能,电池通过Vin充电,Vout供电给系统供电。
Enable管脚接到处理器的GPIO管脚,通过GPIO管脚的高低电平控制LTC4412芯片的使能。
LTC4412芯片具有反向截止功能,放置第一电池和第二电池之间由于电压的差引起的电流倒灌问题。
第一充电子模块配置为给第一电池进行充电,第二充电子模块用于给第二电池进行充电;第一电量计用于检测和计算第一电池的电量,电量第二电量计用于检测和计算第二电池的电量。
本实施例提供一种电子设备,其中,包括:
存储器;
处理器,与所述存储器连接,配置为通过执行存储在所述存储器上的计算机可执行指令,实现前述任意一个技术方案提供的双电池的充电方法;例如,如图1至图3及图8至图11所示的方法中的一个或多个。
本实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被执行后,能够实现前述任意一个技术方案提供的双电池的充电方法;例如,如图1至图2及图6至图9所示的方法中的一个或多个。
所述计算机存储介质可为各种类型的存储介质,例如,非瞬间存储介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的, 作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本公开各实施例中的各功能单元可以全部集成在一个处理子模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种双电池的充电方法,包括:
    若检测到电子设备与供电设备建立了供电连接,获取第一电池的第一状态参数和第二电池的第二状态参数;
    根据所述第一状态参数向所述第一电池充电,并根据所述第二状态参数向所述第二电池充电。
  2. 根据权利要求1所述的方法,其中,
    所述方法,包括:
    在充电的初始时刻,按照预设的第一充电电流分配关系,分配向第一电池和第二电池充入的充电电流;
    根据分配的充电电流,分别向所述第一电池充电和所述第二电池充电。
  3. 根据权利要求2所述的方法,其中,
    所述在充电的初始时刻,按照预设的第一充电电流分配关系,分配向第一电池和第二电池充电的电流,包括:
    在充电的初始时刻,平均分配向所述第一电池和所述第二电池充电的充电电流。
  4. 根据权利要求2所述的方法,其中,
    所述根据所述第一状态参数向所述第一电池充电,并根据所述第二状态参数向所述第二电池充电,包括:
    在所述初始时刻以后,根据所述第一电池的第一状态参数和所述第二电池的第二状态参数确定第二充电电流分配关系;
    根据所述第二充电电流分配关系,分配向所述第一电池和所述第二电池充入的充电电流;
    根据分配的所述充电电流,向所述第一电池和所述第二电池充电。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    在所述初始时刻以后,按照预设时间间隔检测所述第一状态参数和所述第二状态参数。
  6. 根据权利要求4或5所述的方法,其中,
    所述第一状态参数包括以下至少之一:
    所述第一电池的温度;
    所述第一电池的充电阶段;
    所述第一电池的当前电量;
    和/或,
    所述第二状态参数包括以下至少之一:
    所述第二电池的温度;
    所述第二电池的充电阶段;
    所述第二电池的当前电量。
  7. 根据权利要求4所述的方法,其中,
    根据所述第一电池的第一状态参数和所述第二电池的第二状态参数确定第二充电电流分配关系,包括:
    若所述第一电池的充电阶段和所述第二电池的充电阶段相同,且所述第一电池的温度和所述第二电池的温度中的一个处于正常温度范围度范围内,另一个处于异常温度范围度范围内,利用所述供电设备的供电电流优先满足处于所述异常温度范围度范围内的电池的充电电流。
  8. 根据权利要求7所述的方法,其中,
    根据所述第一电池的第一状态参数和所述第二电池的第二状态参数确定第二充电电流分配关系,还包括:
    若所述第一电池的充电阶段和所述第二电池的充电阶段相同,且所述第一电池的温度和所述第二电池的温度均处于正常温度范围度范围内,利 用所述供电电流优先满足所需充电电流较小的电池的充电。
  9. 根据权利要求7所述的方法,其中,
    根据所述第一电池的第一状态参数和所述第二电池的第二状态参数确定第二充电电流分配关系,还包括:
    若所述第一电池的充电阶段和所述第二电池的充电阶段相同,且所述第一电池的温度和所述第二电池的温度均处于异常温度范围度范围内,利用所述供电电流优先满足当前电量低电池所需充电电流或者,根据所述第一电池的当前电量和所述第二电池的当前电量的比值分配所述供电电流。
  10. 根据权利要求7所述的方法,其中,
    根据所述第一电池的第一状态参数和所述第二电池的第二状态参数确定第二充电电流分配关系,还包括:若所述第一电池和所述第二电池中一个电池温度处于温度正常范围内,另一个电池的温度处于异常温度范围内,优先满足温度处于所述温度异常范围内的电池所需的充电电流。
  11. 根据权利要求4所述的方法,其中,
    根据所述第一电池的第一状态参数和所述第二电池的第二状态参数确定第二充电电流分配关系,包括,包括以下至少之一:
    若处于恒流阶段的电池的温度处于异常温度范围度范围且处于恒压阶段的电池的温度处于正常温度范围度范围内,利用所述供电设备的供电电流优先满足处于所述恒流阶段的电池所需充电电流;
    若处于恒流阶段的电池的温度处于异常温度范围度范围且处于恒压阶段的电池的温度处于所述异常温度范围度范围内,利用所述供电设备的供电电流优先满足当前电量低的电池所需充电电流;
    若处于恒流阶段的电池的温度处于异常温度范围度范围且处于恒压阶段的电池的温度处于所述异常温度范围度范围内,根据所述第一电池的当前电量和所述第二电池的当前电量的比值分配所述供电电流;
    若处于恒流阶段的电池的温度处于正常温度范围度范围内,利用所述供电电流优先满足处于所述恒流阶段的电池所需的电流。
  12. 根据权利要求4所述的方法,其中,
    根据所述第一电池的第一状态参数和所述第二电池的第二状态参数确定第二充电电流分配关系,还包括以下至少之一:
    若所述电子设备的系统耗电大于预设耗电值,且所述第一电池处于恒压阶段及所述第二电池处于恒流阶段,停止对所述第一电池的充电并继续对所述第二电池充电;
    若所述电子设备的系统耗电大于所述预设耗电值,且所述第二电池处于恒压阶段及所述第一电池处于恒流阶段,停止对所述第二电池的充电并继续对所述第一电池充电。
  13. 根据权利要求1至5任一项所述的方法,其中,
    分别对所述第一电池和所述第二电池充电时,需要满足如下函数关系:
    U*(In1+In2)*n=v1*fcc1+v2*fcc2;
    其中,U为供电设备的供电电压;In1为所述第一电池的第一充电芯片的输入电流;In2为所述第二电池的第二充电芯片的输入电流;n为充电效率;v1为所述第一电池的充电电压;fcc1为所述第一电池的充电电流;v2为所述第二电池的充电电压;fcc2为所述第二电池的充电电流。
  14. 一种双电池的电子设备,包括:
    充电接口;
    第一电池,
    第一充电电路,分别与所述充电接口及所述第一电池连接;
    第二电池;
    第二充电电路,分别与所述充电接口及所述第二电池连接;
    处理模组,与所述第一充电电路和所述第二充电电路连接,配置为若 检测到电子设备与供电设备建立了供电连接,获取第一电池的第一状态参数和第二电池的第二状态参数;根据所述第一状态参数导通或断开所述第一充电电路控制所述第一电池的充电,并根据所述第二状态参数导通或断开所述第二充电电路控制所述第二电池的充电。
  15. 根据权利要求14所述的电子设备,所述电子设备还包括:电路板,其中,所述电路板上设置有处理器和系统供电管脚;
    第一供电电路,输入端与所述第一电池的输出端连接,输出端与所述系统供电管脚连接,配置为所述第一电池提供所述电子设备的系统供电;
    第二供电电路,输入端与所述第二电池的输出端连接,输出端与所述系统供电管脚连接,配置为所述第二电池提供所述电子设备的系统供电。
  16. 根据权利要求15所述的电子设备,其中,所述电子设备还包括:
    第一反向截止器件,位于所述第一供电电路上,用于防止所述第二电池向所述第一电池供电;
    第二反向截止器件,位于所述第二供电电路上,用于防止所述第一电池向所述第二电池供电。
  17. 一种电子设备,其中,包括:
    存储器;
    处理器,与所述存储器连接,用于通过执行存储在所述存储器上的计算机可执行指令,实现权利要求1至13任一项提供的方法。
  18. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被执行后,能够实现权利要求1至13任一项提供的方法。
PCT/CN2019/090977 2018-08-20 2019-06-12 双电池的充电方法、电子设备及存储介质 WO2020038083A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810950691.X 2018-08-20
CN201810950691.XA CN110854939B (zh) 2018-08-20 2018-08-20 双电池的充电方法、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020038083A1 true WO2020038083A1 (zh) 2020-02-27

Family

ID=69592306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090977 WO2020038083A1 (zh) 2018-08-20 2019-06-12 双电池的充电方法、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN110854939B (zh)
WO (1) WO2020038083A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446515B (zh) * 2020-04-02 2022-03-25 联想(北京)有限公司 一种充电方法、装置和电子设备
CN111497683A (zh) * 2020-04-26 2020-08-07 东风汽车集团有限公司 可实现双倍电池包电压的高压快充系统及其使用方法
CN113852143A (zh) * 2020-06-28 2021-12-28 北京小米移动软件有限公司 电能管理方法及装置、存储介质
CN113946171A (zh) * 2021-10-28 2022-01-18 歌尔光学科技有限公司 一种双电池的温度控制方法、装置、设备及存储介质
CN116315184B (zh) * 2023-05-11 2023-10-27 荣耀终端有限公司 电池、电路板、电子设备、以及电池充电方法
CN116317057B (zh) * 2023-05-12 2023-09-19 合肥联宝信息技术有限公司 控制方法及电子设备
CN116365670B (zh) * 2023-06-01 2023-10-20 荣耀终端有限公司 充电控制方法、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532191A (zh) * 2013-10-14 2014-01-22 松下家电研究开发(杭州)有限公司 一种吸尘器的双组电池组充电系统及其充电方法
CN104242397A (zh) * 2014-09-25 2014-12-24 联想(北京)有限公司 多电池快速充电电路及其充电方法
CN105244954A (zh) * 2015-10-15 2016-01-13 努比亚技术有限公司 移动终端双电池充电方法及装置
CN106786962A (zh) * 2017-01-13 2017-05-31 广东欧珀移动通信有限公司 充电控制方法、装置及终端
CN106981904A (zh) * 2017-05-22 2017-07-25 维沃移动通信有限公司 一种充放电控制的方法及充放电控制系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2903247B1 (fr) * 2006-06-29 2008-09-12 Valeo Equip Electr Moteur Procede et dispositif de charge d'un element de stockage d'energie electrique, notamment un ultracondensateur
CN102340169A (zh) * 2010-07-16 2012-02-01 希姆通信息技术(上海)有限公司 双电池供电电路
CN104505890B (zh) * 2014-12-24 2017-02-01 广东欧珀移动通信有限公司 一种移动终端
CN105990871A (zh) * 2015-02-27 2016-10-05 中兴通讯股份有限公司 一种电池组和控制电池组方法
CN104852439B (zh) * 2015-06-10 2018-08-10 联想(北京)有限公司 电子设备以及双电池充放电切换方法
CN107863794A (zh) * 2017-10-26 2018-03-30 努比亚技术有限公司 终端和终端电池控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532191A (zh) * 2013-10-14 2014-01-22 松下家电研究开发(杭州)有限公司 一种吸尘器的双组电池组充电系统及其充电方法
CN104242397A (zh) * 2014-09-25 2014-12-24 联想(北京)有限公司 多电池快速充电电路及其充电方法
CN105244954A (zh) * 2015-10-15 2016-01-13 努比亚技术有限公司 移动终端双电池充电方法及装置
CN106786962A (zh) * 2017-01-13 2017-05-31 广东欧珀移动通信有限公司 充电控制方法、装置及终端
CN106981904A (zh) * 2017-05-22 2017-07-25 维沃移动通信有限公司 一种充放电控制的方法及充放电控制系统

Also Published As

Publication number Publication date
CN110854939A (zh) 2020-02-28
CN110854939B (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
WO2020038083A1 (zh) 双电池的充电方法、电子设备及存储介质
TWI625912B (zh) 行動終端
US9979224B2 (en) Integrated circuit for wireless charging and operating method thereof
TWI757533B (zh) 供電系統及使用於其之半導體裝置
US9372521B2 (en) Systems and methods for providing auxiliary reserve current for powering information handling systems
US8793518B2 (en) Systems and methods for providing supplemental power to battery powered information handling systems
KR101701712B1 (ko) 무선으로 전력을 전송하기 위한 방법들, 전송 장치들 및 전송 제어 시스템
US9634502B2 (en) Fast battery charging through digital feedback
US20160336745A1 (en) Dynamic power sharing among multiple physical ports
WO2016051722A1 (ja) 蓄電装置、制御装置、蓄電システム、蓄電装置の制御方法および制御プログラムを格納した非一時的なコンピュータ可読媒体
US9261934B2 (en) Dynamic response improvement of hybrid power boost technology
JP5874268B2 (ja) 充電装置及び充電方法
US20140300310A1 (en) Portable quick charge battery booster
KR20160096080A (ko) Usb 포트 전원용 자동 부하 공유 아키텍처
TW201447551A (zh) 電源管理系統及方法
CN112421801A (zh) 无线功率发送器及其控制方法
WO2018127105A1 (zh) 一种组合智能设备充电和互充装置及充电方法
WO2017148408A1 (zh) 一种储能式充电系统
WO2021175215A1 (zh) 供电方法、系统、电源设备和存储介质
CN108923484A (zh) 充电功率调节方法、装置、供电设备及存储介质
CN111146831A (zh) 可移动设备、电池管理电路和电池管理方法
KR20210087816A (ko) 배터리 관리 장치
CN105098890A (zh) 充电数据线及充电器
CN105226754A (zh) 电池充放电控制电路及其控制方法
EP2852021B1 (en) Charging circuit and control method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19852990

Country of ref document: EP

Kind code of ref document: A1