WO2020037842A1 - 一种激光飞行时间光雷达 - Google Patents

一种激光飞行时间光雷达 Download PDF

Info

Publication number
WO2020037842A1
WO2020037842A1 PCT/CN2018/114567 CN2018114567W WO2020037842A1 WO 2020037842 A1 WO2020037842 A1 WO 2020037842A1 CN 2018114567 W CN2018114567 W CN 2018114567W WO 2020037842 A1 WO2020037842 A1 WO 2020037842A1
Authority
WO
WIPO (PCT)
Prior art keywords
photodiode
comparator
operational amplifier
input
laser
Prior art date
Application number
PCT/CN2018/114567
Other languages
English (en)
French (fr)
Inventor
罗玉辉
Original Assignee
深亮智能技术(中山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深亮智能技术(中山)有限公司 filed Critical 深亮智能技术(中山)有限公司
Priority to CN201890000986.4U priority Critical patent/CN211786109U/zh
Publication of WO2020037842A1 publication Critical patent/WO2020037842A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal

Definitions

  • the invention relates to a distance measuring device, in particular to a laser time-of-flight optical radar.
  • TOF time-of-flight
  • complex analog circuits to detect the phase difference between the emitted light pulse and the light pulse that bounces back.
  • TDC time-to-digital converter
  • DLL delay-locked loop
  • Avalanche diodes and high-speed counters are expensive components and avalanche diodes require high bias voltages (> 15V), which requires a charge pump or booster circuit.
  • the present invention aims to provide a laser time-of-flight lidar with a simple and effective structure, which has the advantages of simple assembly and low cost.
  • a laser time-of-flight optical radar includes a transmitting module and a receiving module, the transmitting module is used to emit laser light, and the receiving module is used to receive laser light reflected on an object after the transmitting module emits;
  • the receiving module includes a first photodiode, a second photodiode, and a single-chip microcomputer.
  • the single-chip microcomputer is used to obtain a phase difference between the emitted laser light and the reflected laser light, and at least includes a comparator and an analog-to-digital converter.
  • the signal output end is connected to the signal input end of the transmitting module; the first photodiode and the second photodiode are arranged in parallel, and the first photodiode is used to receive reflected laser light and convert it into a corresponding electrical signal.
  • Two photodiodes are used for receiving and emitting laser light and converting them into corresponding electrical signals; the electrical signals of the first photodiode and the second photodiode are input to the comparator after high-pass filtering, and the comparator output end is subjected to low-pass After filtering, the analog-to-digital converter is connected to the input end, and the analog-to-digital converter outputs a readable electrical signal.
  • the transmitting module includes a vertical cavity surface emitting laser for emitting laser light and a high current driving unit for driving the vertical cavity surface emitting laser, and the single-chip signal output end is connected in series with the high current driving unit and the vertical cavity.
  • the surface emitting laser forms a transmitting loop.
  • the comparator of the single-chip microcomputer is provided with two input terminals, and the electric signal of the first photodiode is input to one of the inputs of the comparator after high-pass filtering, and the electric signal of the second photodiode is subjected to high-pass filtering.
  • the second input of the rear input comparator is provided with two input terminals, and the electric signal of the first photodiode is input to one of the inputs of the comparator after high-pass filtering, and the electric signal of the second photodiode is subjected to high-pass filtering.
  • the second input of the rear input comparator is provided with two input terminals, and the electric signal of the first photodiode is input to one of the inputs of the comparator after high-pass filtering, and the electric signal of the second photodiode is subjected to high-pass filtering.
  • the second input of the rear input comparator is provided with two input terminals, and the electric signal of the first photodiode is input to one of
  • the single-chip microcomputer further includes a first operational amplifier and a second operational amplifier; the electrical signal of the first photodiode is connected to the input end of the first operational amplifier, and the output end of the first operational amplifier is connected to one input end of the comparator The electrical signal of the second photodiode is connected to the input end of the second operational amplifier, and the output end of the second operational amplifier is connected to the other two input ends of the comparator.
  • the single-chip microcomputer further includes a third operational amplifier and a fourth operational amplifier; the output end of the first operational amplifier is connected to a third operational amplifier in series and then connected to one of the input ends of the comparator; the second The output end of the operational amplifier is connected to the fourth operational amplifier in series and then connected to the other two input ends of the comparator.
  • the single-chip microcomputer is provided with a comparator input terminal, and the comparator is used to compare the input electric signal with an internal reference voltage; the first photodiode and the second photodiode are connected in series, and the electric signals of the two are in common. Terminal, connected to the input terminal of the comparator after high-pass filtering.
  • the laser time-of-flight lidar described in the present invention has the advantage that the use of a single-chip analog peripheral circuit can realize the construction of a laser time-of-flight lidar with lower efficiency requirements, which greatly simplifies the assembly structure and at the same time Reduced volume and cost.
  • the larger the phase difference that is, the farther the distance between the objects, the higher the level; the distance between the objects can be digitized with an analog-to-digital converter, and the analog-to-digital converter does not need a high sampling rate. Enough to apply.
  • the first operational amplifier and the second operational amplifier respectively constitute a transimpedance amplifier, and the bias voltages of the two photodiodes can be fixed before being input to the comparator to obtain better signal linearity.
  • the third operational amplifier and the fourth operational amplifier each constitute a two-stage amplifier. Due to the amplification effect of the second stage, the transimpedance of the first stage can be reduced, which is equivalent to increasing the multiple of the photodiode's response speed. gain.
  • FIG. 1 is a schematic circuit diagram of an output unit of a laser time-of-flight lidar according to the present invention
  • FIG. 2 is a schematic circuit diagram of a first embodiment of an input unit of a laser time-of-flight lidar according to the present invention
  • FIG. 3 is a schematic circuit diagram of a second embodiment of an input unit of a laser time-of-flight radar according to the present invention.
  • FIG. 4 is a schematic circuit diagram of a third embodiment of an input unit of a laser time-of-flight lidar according to the present invention.
  • FIG. 5 is a schematic circuit diagram of a fourth embodiment of an input unit of a laser time-of-flight optical radar according to the present invention.
  • FIG. 6 is a schematic diagram of a signal phase of a laser time-of-flight lidar according to the present invention.
  • the laser time-of-flight optical radar includes a transmitting module and a receiving module.
  • the transmitting module is used for transmitting laser light
  • the receiving module is used for receiving laser light reflected on an object after the transmitting module transmits.
  • the receiving module includes a first photodiode PD1, a second photodiode PD2, and a microcontroller.
  • the single-chip microcomputer is used to obtain the phase difference between the emitted laser light and the reflected laser light, and at least includes a comparator U1 and an analog-to-digital converter ADC.
  • the signal output terminal of the single-chip computer is connected to the signal input terminal of the transmitting module.
  • the first photodiode PD1 and the second photodiode PD2 are arranged in parallel.
  • the first photodiode PD1 is used for receiving reflected laser light and converted into a corresponding electrical signal
  • the second photodiode PD2 is used for receiving and transmitting.
  • the laser is converted into a corresponding electrical signal.
  • the electrical signals of the first photodiode PD1 and the second photodiode PD2 are input to the comparator U1 after high-pass filtering, and the output of the comparator U1 is connected to the analog-to-digital converter ADC input after low-pass filtering.
  • the described analog-to-digital converter ADC outputs a readable electrical signal.
  • the specific structure of the transmitting module may be as shown in FIG. 1, including a vertical cavity surface emitting laser VCSEL for emitting laser light and a high-current driving unit Y1 for driving the vertical cavity surface emitting laser VCSEL.
  • a high-current drive unit Y1 and a vertical cavity surface emitting laser VCSEL are connected in series to form a transmitting loop.
  • the specific structure of the receiving module can have at least the following four implementations under the same inventive concept of the present invention:
  • the single-chip microcomputer is provided with two input terminals of a comparator U1, and the electric signal of the first photodiode PD1 is input to one of the input terminals of the comparator U1 after high-pass filtering.
  • the electric signal of the second photodiode PD2 is input to the other two input ends of the comparator U1 after being high-pass filtered.
  • the output end of the comparator U1 is connected to the input end of an analog-to-digital converter ADC after low-pass filtering, and the analog-to-digital converter ADC outputs a readable electrical signal.
  • the single-chip microcomputer further includes a first operational amplifier OPA1 and a second operational amplifier OPA2.
  • the electrical signal of the first photodiode PD1 is connected to the input terminal of the first operational amplifier OPA1, and the output terminal of the first operational amplifier OPA1 is connected to one of the input terminals of the comparator U1.
  • the electrical signal of the second photodiode PD2 is connected to the input terminal of the second operational amplifier OPA2, and the output terminal of the second operational amplifier OPA2 is connected to the other two input terminals of the comparator U1.
  • the first operational amplifier OPA1 and the second operational amplifier OPA2 respectively constitute a transimpedance amplifier (Transimpedance amplifier) and then are connected to the comparator U1.
  • a transimpedance amplifier can be used to fix the bias voltages of the two photodiodes to obtain better signal linearity.
  • the single-chip microcomputer further includes a third operational amplifier OPA3 and a fourth operational amplifier OPA4.
  • the output terminal of the first operational amplifier OPA1 is connected in series with the third operational amplifier OPA3 and then connected to one of the input terminals of the comparator U1.
  • the output terminal of the second operational amplifier OPA2 is serially connected to the fourth operational amplifier OPA4 and then connected to the other two input terminals of the comparator U1.
  • Two-stage amplification can be used to increase the speed of the two photodiodes: the first stage is still the transimpedance amplifier described above, and the second stage is composed of a third operational amplifier OPA3 and a fourth operational amplifier OPA4 each to form a voltage amplifier. . Due to the amplification of the second stage, the transimpedance of the first stage can be reduced, which can significantly increase the reaction speed of the two photodiodes.
  • this embodiment is particularly applicable to a single-chip microcomputer having only one comparison input terminal, and a first operational amplifier OPA1, a second operational amplifier OPA2, and / or a third operational amplifier OPA3 are provided before the comparator U1.
  • the structure of the fourth operational amplifier OPA4 is also applicable.
  • the single-chip microcomputer is provided with an input terminal of a comparator U1, and the comparator U1 is used to compare the input electric signal with an internal reference voltage; the first photodiode PD1 and the second photodiode PD2 are connected in series, The common terminal of the signal is connected to the input terminal of the comparator U1 after high-pass filtering.
  • the output end of the comparator U1 is connected to the input end of an analog-to-digital converter ADC after low-pass filtering, and the analog-to-digital converter ADC outputs a readable electrical signal.
  • a series of PWM signals are generated by the single-chip microcomputer, and the vertical-cavity surface-emitting laser VCSEL is driven by the high-current drive unit Y1 to emit a pulsed laser, that is, a light pulse.
  • the series of light pulses are converted into corresponding current signals by the first photodiode PD1 and the second photodiode PD2, respectively. Because the distance between the vertical cavity surface emitting laser VCSEL and the second photodiode PD2 is fixed, the signal phase difference between the two is also fixed.
  • the phase of the electrical signal of the first photodiode PD1 depends on the distance of the observation object, that is, the time of flight (TOF) of the light.
  • TOF time of flight
  • the comparator U1 Only when the signal of the second photodiode PD2 is a high level and the signal of the first photodiode PD1 is a low level, the comparator U1 outputs a high level; the other times are all low levels.
  • the phase difference between the first photodiode PD1 and the second photodiode PD2 becomes a new PWM signal.
  • This new PWM signal will be converted into a DC voltage by low-pass filtering, which is the ADC input curve in Figure 6.
  • the slight phase difference also becomes a readable DC level.
  • the larger the phase difference the farther away the object is, the higher the level will be.
  • the object distance can be digitized with an analog-to-digital converter ADC.
  • the higher the accuracy of the analog-to-digital converter ADC the higher the measurable distance accuracy.
  • the analog-to-digital converter ADC does not require a high sampling rate.
  • the analog-to-digital converter ADC configured inside the microcontroller is already very suitable.
  • the advantage of the laser time-of-flight lidar described in the present invention lies in the use of a simulated peripheral circuit of a single-chip microcomputer to realize the construction of a laser time-of-flight lidar with lower efficiency requirements. This greatly simplifies the assembly structure, while reducing the volume and cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光飞行时间光雷达,包括:发射模块和接收模块。接收模块包括第一光电二极管(PD1)、第二光电二极管(PD2)和单片机;单片机包括一比较器(U1)和一模数转换器(ADC),单片机信号输出端连接发射模块的信号输入端;第一光电二极管(PD1)和第二光电二极管(PD2)并行设置;第一光电二极管(PD1)和第二光电二极管(PD2)的电信号经过高通滤波后输入比较器(U1),比较器(U1)输出端经过低通滤波后连接模数转换器(ADC)输入端,模数转换器(ADC)输出可读电信号。该激光飞行时间雷达利用单片机的模拟周边电路,以较低的效能要求就能实现激光飞行时间光雷达的构建,这大大的简化了组装结构,同时减小了体积和降低了成本。

Description

一种激光飞行时间光雷达 技术领域
本发明涉及一种距离测量装置,尤其涉及一种激光飞行时间光雷达。
背景技术
测量光飞行时间(TOF)的方法有很多种,一般涉及了复杂的模拟电路去侦测发射的光脉冲和反弹回来的光脉冲之间的相位差。这需要比较贵的单芯片制程或者要大量的分立模拟芯片去构建系统。另外就是利用非常高速的时数转换器(Time-to-Digital converter TDC)去实现延迟锁定环(delay-locked loop DLL)电路。另外也有利用雪崩二极管(APD)的脉冲和高速计数器去直接累算反射光的时间差从而推算物体距离。雪崩二极管和高速计数器都是昂贵的元件而且雪崩二极管须要高偏置电压(>15V),这需要附带电荷泵或者升压电路。
发明内容
为了解决上述现有技术存在的问题,本发明目的在于提供一种架构简单而有效的激光飞行时间光雷达,具有组装简单、成本低廉等优点。
本发明所述的一种激光飞行时间光雷达,包括:发射模块和接收模块,所述的发射模块用于发射激光,所述的接收模块用于接收发射模块发射后在物体上反射的激光;所述的接收模块包括第一光电二极管、第二光电二极管和单片机;所述的单片机用于获取发射激光和反射激光的相位差,至少包括一比较器和一模数转换器,所述的单片机信号输出端连接发射模块的信号输入端;所述的第一光电二极管和第二光电二极管并行设置,所述的第一光电二极管用于接收反射激光并转换为对应的电信号,所述的第二光电二极管用于接收发射激光并转换为对应的电信号;所述的第一光电二极管和第二光电二极管的电信号经过高通滤波后输入所述比较器,所述比较器输出端经过低通滤波后连接模数转换器输入端,所述的模数转换器输出可读电信号。
优选地,所述的发射模块包括用于发射激光的垂直腔面发射激光器和用于驱动垂直腔面发射激光器的大电流驱动单元,所述的单片机信号输出端串接大电流驱动单元和垂直腔面发射激光器形成发射回路。
优选地,所述单片机的比较器设有两个输入端,所述第一光电二极管的电信号经过高通滤波后输入比较器的其一输入端,所述第二光电二极管的电信号经过高通滤波 后输入比较器的其二输入端。
优选地,所述的单片机还包括第一运算放大器和第二运算放大器;所述第一光电二极管的电信号连接第一运算放大器输入端,第一运算放大器输出端连接比较器的其一输入端;所述第二光电二极管的电信号连接第二运算放大器输入端,第二运算放大器输出端连接比较器的其二输入端。
优选地,所述的单片机还包括第三运算放大器和第四运算放大器;所述的第一运算放大器输出端串接第三运算放大器后再连接比较器的其一输入端;所述的第二运算放大器输出端串接第四运算放大器后再连接比较器的其二输入端。
优选地,所述的单片机设有一个比较器输入端,比较器用于将输入的电信号与内部参考电压进行比较;所述的第一光电二极管和第二光电二极管串联,两者的电信号共端,经过高通滤波后连接比较器的输入端。
本发明所述的一种激光飞行时间光雷达,其优点在于,利用单片机的模拟周边电路,以较低的效能要求就能实现激光飞行时间光雷达的构建,这大大的简化了组装结构,同时减小了体积和降低了成本。相位差越大,也就是物体距离越远,电平会越高;用模数转换器就可以把物体距离数字化,而且模数转换器不需要高取样速率,一般单片机内部配置的模数转换器已经足够适用。另外,第一运算放大器和第二运算放大器分别构成跨阻放大器,在输入比较器之前可以固定两光电二极管的偏置电压从而得到更好的信号线性度。第三运算放大器和第四运算放大器则分别构成一个二级放大器,由于第二级的放大作用,第一级的跨阻可以减少,这对于提高光电二极管的反应速度提高倍数就等于第二极的放大倍数。
附图说明
图1是本发明所述激光飞行时间光雷达的输出单元电路示意图;
图2是本发明所述激光飞行时间光雷达的输入单元实施例一电路示意图;
图3是本发明所述激光飞行时间光雷达的输入单元实施例二电路示意图;
图4是本发明所述激光飞行时间光雷达的输入单元实施例三电路示意图;
图5是本发明所述激光飞行时间光雷达的输入单元实施例四电路示意图;
图6是本发明所述激光飞行时间光雷达的信号相位示意图。
附图标记:VCSEL-垂直腔面发射激光器、Y1-大电流驱动单元;PD1-第一光电二极管、PD2-第二光电二极管、U1-比较器、ADC-模数转换器、OPA1-第一运算放大器、OPA2-第二运算放大器、OPA3-第三运算放大器、OPA4-第四运算放大器。
具体实施方式
本发明所述的一种激光飞行时间光雷达包括:发射模块和接收模块,所述的发射模块用于发射激光,所述的接收模块用于接收发射模块发射后在物体上反射的激光。所述的接收模块包括第一光电二极管PD1、第二光电二极管PD2和单片机。所述的单片机用于获取发射激光和反射激光的相位差,至少包括一比较器U1和一模数转换器ADC,所述的单片机信号输出端连接发射模块的信号输入端。所述的第一光电二极管PD1和第二光电二极管PD2并行设置,所述的第一光电二极管PD1用于接收反射激光并转换为对应的电信号,所述的第二光电二极管PD2用于接收发射激光并转换为对应的电信号。所述的第一光电二极管PD1和第二光电二极管PD2的电信号经过高通滤波后输入所述比较器U1,所述比较器U1输出端经过低通滤波后连接模数转换器ADC输入端,所述的模数转换器ADC输出可读电信号。
其中,发射模块的具体结构可以如图1所示,包括用于发射激光的垂直腔面发射激光器VCSEL和用于驱动垂直腔面发射激光器VCSEL的大电流驱动单元Y1,所述的单片机信号输出端串接大电流驱动单元Y1和垂直腔面发射激光器VCSEL形成发射回路。
接收模块的具体结构在本发明相同的发明构思下至少可以有以下四个实施方式:
实施例一,如图2所示,所述的单片机设有两个比较器U1输入端,所述第一光电二极管PD1的电信号经过高通滤波后输入比较器U1的其一输入端,所述第二光电二极管PD2的电信号经过高通滤波后输入比较器U1的其二输入端。所述的比较器U1输出端经过低通滤波后连接模数转换器ADC输入端,所述的模数转换器ADC输出可读电信号。
实施例二,如图3所示,在实施例一的基础上,所述的单片机还包括第一运算放大器OPA1和第二运算放大器OPA2。所述第一光电二极管PD1的电信号连接第一运算放大器OPA1输入端,第一运算放大器OPA1输出端连接比较器U1的其一输入端。所述第二光电二极管PD2的电信号连接第二运算放大器OPA2输入端,第二运算放大器OPA2输出端连接比较器U1的其二输入端。所述的第一运算放大器OPA1和第二运算放大器OPA2分别构成一个跨阻放大器(Transimpedance amplifier)再接入所述比较器U1。用跨阻放大器可以固定所述两个光电二极管的偏置电压从而得到更好的讯号线性度。
实施例三,如图4所示,在实施例二的基础上,所述的单片机还包括第三运算放 大器OPA3和第四运算放大器OPA4。所述的第一运算放大器OPA1输出端串接第三运算放大器OPA3后再连接比较器U1的其一输入端。所述的第二运算放大器OPA2输出端串接第四运算放大器OPA4后再连接比较器U1的其二输入端。可以用两级放大的方法以让两个光电二极管的速度提高:第一级还是所述的跨阻放大器,第二级则分别由第三运算放大器OPA3、第四运算放大器OPA4各组成一个电压放大器。由于第二级的放大作用,第一级的跨阻可以减少,可以明显提高两光电二极管的反应速度。
实施例四,如图5所示,本实施例尤其适用于只有一个比较输入端的单片机,而且在比较器U1之前设置第一运算放大器OPA1、第二运算放大器OPA2和/或第三运算放大器OPA3、第四运算放大器OPA4的结构同样适用。所述的单片机设有一个比较器U1输入端,比较器U1用于将输入的电信号与内部参考电压进行比较;所述的第一光电二极管PD1和第二光电二极管PD2串联,两者的电信号共端,经过高通滤波后连接比较器U1的输入端。所述的比较器U1输出端经过低通滤波后连接模数转换器ADC输入端,所述的模数转换器ADC输出可读电信号。
以上实施例所述激光飞行时间光雷达的工作原理表征相似、本质相同,结合图6,统一描述如下。由单片机产生一串PWM信号,通过大电流驱动单元Y1推动垂直腔面发射激光器VCSEL发出具有脉冲的激光,即光脉冲。这串光脉冲会分别由第一光电二极管PD1和第二光电二极管PD2转换成相应的电流信号。由于垂直腔面发射激光器VCSEL和第二光电二极管PD2的距离固定,二者的信号相位差也相应固定。但第一光电二极管PD1的电信号相位就取决于观察物体的距离,也就是光的飞行时间(TOF)。第一光电二极管PD1和第二光电二极管PD2的电流信号经过高通滤波之后会通过比较器U1做比较。只有当第二光电二极管PD2的信号是高电平而第一光电二极管PD1的信号是低电平时,比较器U1才会输出高电平;其它时间都是低电平。第一光电二极管PD1和第二光电二极管PD2的相位差就变成一个新的PWM信号。这个新的PWM信号会通过低通滤波变成一个直流电压,即图6中的模数转换器ADC输入曲线。在累积一段时间,比如一毫秒,微小的相位差也会变成可读的直流电平。相位差越大,也就是物体距离越远,电平会越高。用模数转换器ADC就可以把物体距离数字化,模数转换器ADC精度越高,可测量的距离精度也越高。而且模数转换器ADC不需要高取样速率,一般单片机内部配置的模数转换器ADC已经很合用。
本发明所述的一种激光飞行时间光雷达优势在于利用单片机的模拟周边电路,以较低的效能要求就能实现激光飞行时间光雷达的构建。这大大的简化了组装结构,同 时减小了体积和降低了成本。
对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (6)

  1. 一种激光飞行时间光雷达,包括:发射模块和接收模块,所述的发射模块用于发射激光,所述的接收模块用于接收发射模块发射后在物体上反射的激光;
    其特征在于,所述的接收模块包括第一光电二极管(PD1)、第二光电二极管(PD2)和单片机;所述的单片机用于获取发射激光和反射激光的相位差,至少包括一比较器(U1)和一模数转换器(ADC),所述的单片机信号输出端连接发射模块的信号输入端;所述的第一光电二极管(PD1)和第二光电二极管(PD2)并行设置,所述的第一光电二极管(PD1)用于接收反射激光并转换为对应的电信号,所述的第二光电二极管(PD2)用于接收发射激光并转换为对应的电信号;所述的第一光电二极管(PD1)和第二光电二极管(PD2)的电信号经过高通滤波后输入所述比较器(U1),所述比较器(U1)输出端经过低通滤波后连接模数转换器(ADC)输入端,所述的模数转换器(ADC)输出可读电信号。
  2. 根据权利要求1所述激光飞行时间光雷达,其特征在于,所述的发射模块包括用于发射激光的垂直腔面发射激光器(VCSEL)和用于驱动垂直腔面发射激光器(VCSEL)的大电流驱动单元(Y1),所述的单片机信号输出端串接大电流驱动单元(Y1)和垂直腔面发射激光器(VCSEL)形成发射回路。
  3. 根据权利要求1所述激光飞行时间光雷达,其特征在于,所述单片机的比较器(U1)设有两个输入端,所述第一光电二极管(PD1)的电信号经过高通滤波后输入比较器(U1)的其一输入端,所述第二光电二极管(PD2)的电信号经过高通滤波后输入比较器(U1)的其二输入端。
  4. 根据权利要求3所述激光飞行时间光雷达,其特征在于,所述的单片机还包括第一运算放大器(OPA1)和第二运算放大器(OPA2);所述第一光电二极管(PD1)的电信号连接第一运算放大器(OPA1)输入端,第一运算放大器(OPA1)输出端连接比较器(U1)的其一输入端;所述第二光电二极管(PD2)的电信号连接第二运算放大器(OPA2)输入端,第二运算放大器(OPA2)输出端连接比较器(U1)的其二输入端。
  5. 根据权利要求4所述激光飞行时间光雷达,其特征在于,所述的单片机还包括第三运算放大器(OPA3)和第四运算放大器(OPA4);所述的第一运算放大器(OPA1)输出端串接第三运算放大器(OPA3)后再连接比较器(U1)的其一输入端;所述的第二运算放大器(OPA2)输出端串接第四运算放大器(OPA4)后再连接比较器(U1)的其二输入端。
  6. 根据权利要求1所述激光飞行时间光雷达,其特征在于,所述的单片机设有一个比较器(U1)输入端,比较器(U1)用于将输入的电信号与内部参考电压进行比较;所述的第一光电二极管(PD1)和第二光电二极管(PD2)串联,两者的电信号共端,经过高通滤波后连接比较器(U1)的输入端。
PCT/CN2018/114567 2018-08-22 2018-11-08 一种激光飞行时间光雷达 WO2020037842A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201890000986.4U CN211786109U (zh) 2018-08-22 2018-11-08 一种激光飞行时间光雷达

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810959118.5 2018-08-22
CN201810959118.5A CN109270547A (zh) 2018-08-22 2018-08-22 一种激光飞行时间光雷达

Publications (1)

Publication Number Publication Date
WO2020037842A1 true WO2020037842A1 (zh) 2020-02-27

Family

ID=65153961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114567 WO2020037842A1 (zh) 2018-08-22 2018-11-08 一种激光飞行时间光雷达

Country Status (2)

Country Link
CN (2) CN109270547A (zh)
WO (1) WO2020037842A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792949C2 (ru) * 2020-10-09 2023-03-28 Общество с ограниченной ответственностью «Яндекс Беспилотные Технологии» Лидарная система и способ с когерентным детектированием

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028258B (zh) 2015-08-04 2022-06-21 光程研创股份有限公司 锗硅感光设备
US10254389B2 (en) 2015-11-06 2019-04-09 Artilux Corporation High-speed light sensing apparatus
US10418407B2 (en) 2015-11-06 2019-09-17 Artilux, Inc. High-speed light sensing apparatus III
US11105928B2 (en) 2018-02-23 2021-08-31 Artilux, Inc. Light-sensing apparatus and light-sensing method thereof
US11448830B2 (en) 2018-12-12 2022-09-20 Artilux, Inc. Photo-detecting apparatus with multi-reset mechanism
TW202104927A (zh) * 2019-06-19 2021-02-01 美商光程研創股份有限公司 光偵測裝置以及電流再利用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396510A (en) * 1993-09-30 1995-03-07 Honeywell Inc. Laser sensor capable of measuring distance, velocity, and acceleration
JPH0915334A (ja) * 1995-06-28 1997-01-17 Mitsubishi Heavy Ind Ltd レーザ測距装置
CN101865997A (zh) * 2010-05-26 2010-10-20 北京握奇数据系统有限公司 一种激光测距设备及方法
CN104459710A (zh) * 2013-09-25 2015-03-25 北京航天计量测试技术研究所 脉冲/相位一体式激光测距仪
CN104535179A (zh) * 2015-01-06 2015-04-22 山西大学 一种光电探测器
CN105652282A (zh) * 2015-12-29 2016-06-08 电子科技大学 一种激光相位测距模块

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4600299A (en) * 1982-08-10 1986-07-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical distance measuring instrument
JP2013195117A (ja) * 2012-03-16 2013-09-30 Ricoh Co Ltd 測距装置
CN106597458B (zh) * 2016-11-22 2019-05-24 北京遥测技术研究所 一种基于apd的光功率自补偿的激光测距系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396510A (en) * 1993-09-30 1995-03-07 Honeywell Inc. Laser sensor capable of measuring distance, velocity, and acceleration
JPH0915334A (ja) * 1995-06-28 1997-01-17 Mitsubishi Heavy Ind Ltd レーザ測距装置
CN101865997A (zh) * 2010-05-26 2010-10-20 北京握奇数据系统有限公司 一种激光测距设备及方法
CN104459710A (zh) * 2013-09-25 2015-03-25 北京航天计量测试技术研究所 脉冲/相位一体式激光测距仪
CN104535179A (zh) * 2015-01-06 2015-04-22 山西大学 一种光电探测器
CN105652282A (zh) * 2015-12-29 2016-06-08 电子科技大学 一种激光相位测距模块

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792949C2 (ru) * 2020-10-09 2023-03-28 Общество с ограниченной ответственностью «Яндекс Беспилотные Технологии» Лидарная система и способ с когерентным детектированием

Also Published As

Publication number Publication date
CN211786109U (zh) 2020-10-27
CN109270547A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
WO2020037842A1 (zh) 一种激光飞行时间光雷达
WO2021088646A1 (zh) 动态阈值定时电路、激光雷达、以及获取时间信息的方法
US20210286051A1 (en) Distance measuring device, and time measurement method based on distance measuring device
US20190178995A1 (en) Ranging device and method thereof
US11112494B2 (en) Photodetector and portable electronic equipment
CN109870703A (zh) 一种激光脉冲能量调节装置、方法及多能级脉冲激光器
CN114114212B (zh) 脉冲信号的放大电路、回波信号接收系统及激光雷达
US20230022688A1 (en) Laser distance measuring device, laser distance measuring method, and movable platform
CN112305519B (zh) 基于硅光电倍增管的激光雷达快速探测系统
US20220236376A1 (en) Laser radar apparatus
CN109471118A (zh) 基于回波波形累加和波形采样的激光测距系统
CN209656893U (zh) 一种脉冲式激光雷达系统
CN209417298U (zh) 基于回波波形累加和波形采样的激光测距系统
CN111656219B (zh) 用于使用光信号确定至少一个对象的距离的装置和方法
CN116990826B (zh) 高动态精度激光相位式测距仪
CN108614272A (zh) 一种脉冲式激光测距电路
US20230288538A1 (en) Laser receiving system and laser ranging system
CN219456505U (zh) 激光雷达系统及其接收装置
CN116930984A (zh) 一种测量电路和测量装置
CN217879629U (zh) 一种激光雷达直流耦合接收电路
CN208207215U (zh) 狭小空间点式激光测距装置
CN213210475U (zh) 一种激光接收系统、激光雷达系统以及机器人设备
US20210088661A1 (en) Photodetector and optical ranging apparatus using the same
CN108700648A (zh) 一种放大电路及激光测量装置、移动平台
CN108919287A (zh) 一种狭小空间点式激光测距装置及其测距方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930779

Country of ref document: EP

Kind code of ref document: A1