WO2020037682A1 - Methods and devices for allocating resources - Google Patents

Methods and devices for allocating resources Download PDF

Info

Publication number
WO2020037682A1
WO2020037682A1 PCT/CN2018/102337 CN2018102337W WO2020037682A1 WO 2020037682 A1 WO2020037682 A1 WO 2020037682A1 CN 2018102337 W CN2018102337 W CN 2018102337W WO 2020037682 A1 WO2020037682 A1 WO 2020037682A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource blocks
terminal device
rbs
resources
sets
Prior art date
Application number
PCT/CN2018/102337
Other languages
French (fr)
Inventor
Lin Liang
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2018/102337 priority Critical patent/WO2020037682A1/en
Publication of WO2020037682A1 publication Critical patent/WO2020037682A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • New radio access system which is also called as NR system or NR network
  • NR system is the next generation communication system.
  • RAN Radio Access Network
  • 3GPP Third Generation Partnership Project
  • LAA License Assisted Access
  • channel occupancy requirement on signal transmission is specified on unlicensed bands.
  • ETSI European Telecommunications Standards Institute
  • NR-U NR unlicensed band
  • example embodiments of the present disclosure provide methods, devices and computer readable mediums for allocating resources.
  • a terminal device in a fourth aspect, includes a processor; and a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the device to perform the method according to the second aspect.
  • FIG. 3 shows example of some embodiments of the present disclosure
  • FIG. 8 shows a flowchart of an example method 800 for allocating resources according to some embodiments of the present disclosure
  • FIG. 9 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
  • the term “network device” or “base station” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate.
  • a network device include, but not limited to, a Node B (NodeB or NB) , an Evolved NodeB (eNodeB or eNB) , a NodeB in new radio access (gNB) , a next generation NodeB (gNB) , a Remote Radio Unit (RRU) , a radio head (RH) , a remote radio head (RRH) , a low power node such as a femto node, a pico node, and the like.
  • NodeB Node B
  • eNodeB or eNB Evolved NodeB
  • gNB NodeB in new radio access
  • gNB next generation NodeB
  • RRU Remote Radio Unit
  • RH radio head
  • RRH remote radio head
  • a low power node such as a
  • terminal device refers to any device having wireless or wired communication capabilities.
  • Examples of the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like.
  • UE user equipment
  • PDAs personal digital assistants
  • portable computers image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like.
  • FIG. 1 shows an example communication network 100 in which implementations of the present disclosure can be implemented.
  • the network 100 includes a network device 110 and a terminal device 120 served by the network device 110.
  • the serving area of the network device 110 is called as a cell 102.
  • the network 100 may include any suitable number of network devices and terminal devices adapted for implementing implementations of the present disclosure.
  • one or more terminal devices may be located in the cell 102 and served by the network device 110.
  • the network device 110 can communicate data and control information with the terminal device 120.
  • a link from the network device 110 to the terminal device 120 is referred to as a downlink (DL) or a forward link, while a link from the terminal device 120 to the network device 110 is referred to as an uplink (UL) or a reverse link.
  • DL downlink
  • UL uplink
  • the resource for the uplink transmission of the terminal device 120 is allocated by the terminal device 120.
  • the network 100 may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Address (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency-Division Multiple Access (OFDMA) network, a Single Carrier-Frequency Division Multiple Access (SC-FDMA) network or any others.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Address
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • Communications discussed in the network 100 may use conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and the like.
  • NR New Radio Access
  • LTE Long Term Evolution
  • LTE-A LTE-Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols.
  • the techniques described herein may be used
  • LAA Licensed Assisted Access
  • 3GPP release 13 As part of LTE Advanced Pro.
  • LAA is a feature of LTE that leverages the unlicensed 5 GHz band in combination with licensed spectrum to deliver a performance boost for mobile device users. It uses carrier aggregation in the downlink to combine LTE in unlicensed 5 GHz band with LTE in the licensed band to provide better data rates and a better user experience.
  • LAA uses a concept called Listen-before-talk (LBT) which dynamically selects channels in the 5 GHz band which are not being used by Wi-Fi users. If there is no clear channel available, LAA will share a channel fairly with others.
  • LBT Listen-before-talk
  • a maximum channel bandwidth per NR carrier is allowed to be 100MHz for a band less than 6GHz.
  • LBT can be performed in units of 20 MHz.
  • the network device 110 and the terminal device 120 may operate under different bandwidths. For example, a wide bandwidth of 100MHz for the network device 110 and Bandwidth Part (BWP) of each 20MHz for the terminal device 120 are supported in NR.
  • BWP Bandwidth Part
  • Table 1 shows the transmission bandwidth configuration NRB under different bandwidths and SCSs in NR system.
  • the bandwidth is 20 MHz and the SCS is 15 KHz
  • the maximal available number of resource blocks (RBs) is 106. It can be seen from table 1 that the larger the SCS, the smaller maximal available number of RBs under a same bandwidth.
  • the channel bandwidths of 20MHz, 40MHz, 60MHz, 80MHz and 100 MHz in different SCSs, i.e. 15KHz, 30KHz and 60KHz are interested because they are multiple of 20MHz which is the basic bandwidth for LBT.
  • guard band refers to an unused part of the radio spectrum between radio bands, for the purpose of preventing out of band emission. It is a narrow frequency range used to separate two wider frequency ranges to ensure that both can transmit simultaneously without leakage power interfering with each other. It can be seen from table 2 that the guard bands for different channel bandwidths are different.
  • the network device 110 and the terminal device 120 used different channel bandwidth, for example, a wide bandwidth of 40MHz for the network device 110 and BWP of each 20MHz for the terminal device 120, 20MHz bandwidth is coexist with 40MHz bandwidth.
  • the maximal available number of RBs should be determined by considering the guard band under different bandwidths.
  • FIG. 2 shows process 200 according to example embodiments of the present disclosure.
  • the process 200 may involve resource allocation.
  • the network device Before the uplink transmission is performed by the terminal device, the network device should configure suitable resources to the terminal device and transmitting information indicating the allocated resources to the terminal device. As mention above, it is possible that the terminal device and the network device are operated under different bandwidth in the NR system.
  • both network device 110 and terminal device 120 operate under a bandwidth of 20MHz and a SCS of 15 KHz.
  • segment 310 represents the bandwidth to be allocated and segments 310-1 and 310-2 represent the guard bands, respectively.
  • the bandwidth of the segment 310 is 19.095 MHz and each bandwidth the segments 310-1 and 310-2 is 452.5 KHz.
  • the maximal available number of RBs is 106.
  • the 106 RBs may be divided into two types of resources.
  • the types of resources and the pattern for each type of resources may be shown in table 3.
  • Table 3 The allocation of RBs under 15 KHz SCS and 20 MHz channel bandwidth
  • Table 4 The allocation of RBs under 15 KHz SCS and 20 MHz channel bandwidth
  • the pattern may indicate the interlaced spacing or the indices of the RBs in the set.
  • the pattern for each of type 0 and type 1 may indicate the interlaced spacing.
  • the pattern for type 2 which comprises a single RB may be the index of this single RB.
  • FIG. 3 illustrates both the network device and the terminal device operating under a same channel bandwidth.
  • the schemes for the resource allocation will be explained in the embodiments shown in FIG 4A. to FIG. 6B.
  • FIG. 4B illustrates a diagram of a coexistent of a channel bandwidth of 40 MHz with a channel bandwidth of 20 MHz.
  • segments 430-1 and 430-2 indicate each bandwidth of 20MHz, respectively, in which the resources are to be allocated.
  • segments 420-1 and 420-2 in FIG. 4B represent the guard bands, respectively. Since the segments 430-1 and 430-2 indicate each bandwidth of 20MHz, there is a respective guard band between the segments 420-1 and 420-2.
  • the segment 440 represents this guard band.
  • Table 5 The allocation of RBs in segment 420-1 under 40 MHz channel bandwidth
  • the maximal available number of RBs is 105.
  • the 104 RBs may be divided into two types of resources, that is, type 0 and type 1, the set of RBs [0, 99] belongs to the type 0 of resources and the set of RBs [100, 104] belongs to the type 1 of resources.
  • the interlaced spacing may be 10 RBs and for the RBs in the type 1, the interlaced spacing may be 4 RBs, that means the RBs in the type 0 could be configured in 2 interlaces, in which one interlace has 4 RBs and the other interlace has only one RB.
  • the SCS Since the SCS is changed from 15 KHz to 30 KHz, the maximal available number of RBs is different. Therefore, the scheme for the allocation of RBs may be different.
  • Table 10 the distribution of the RBs and associated bandwidth in MHz
  • 106 RBs may be divided into two types of resources, that is, type 0 and type 1, the set of RBs [0, 49] and the set of RBs [56, 106] belong to the type 0 of resources and the set of RBs [50, 55] belongs to the type 1 of resources.
  • the interlaced spacing may be 5 RBs and there are 20 interlaces in the type 0.
  • the RBs in the type 0 there are 6 RBs.
  • the pattern for allocating the RBs may be the indices of each RB in the set of RBs [50, 55] .
  • 4 RBs of the set of RBs [50, 55] may be allocated for the terminal device.
  • row 1 shows the distribution of the RBs and associated bandwidth corresponding to segment 430-1 of FIG. 4B
  • row 4 shows the distribution of the RBs and associated bandwidth corresponding to segment 430-2
  • rows 2 and 3 show the distribution of the RBs and associated bandwidth corresponding to segment 440.
  • the network device 110 may determine if these RBs is to be allocated to the terminal device 120.
  • the network device 110 may support a channel bandwidth of 60 MHz and the SCS is 30 KHz.
  • FIG. 5A illustrates a diagram of 60MHz channel.
  • the segment 510 represents the bandwidth to be allocated and segments 520-1 and 520-2 represent the guard bands, respectively. If the 60 MHz channel is used for a terminal device 120 which also supports a channel bandwidth of 60 MHz, the resources in the segment 510 could be allocated to the terminal device 120.
  • FIG. 5B illustrates a diagram of a coexistent of a channel bandwidth of 60 MHz with a channel bandwidth of 20 MHz.
  • segments 530-1, 530-2 and 530-3 indicate each bandwidth of 20MHz, respectively, in which the resources are to be allocated.
  • segments 520-1 and 520-2 in FIG. 5B represent the guard bands, respectively.
  • the segments 540-1 and 540-2 represents guard bands between the segments 520-1 and 520-2 and 520-2 and 520-3, respectively.
  • Table 11 The allocation of RBs for 60 MHz multiplexing with 20 MHz under 30 kHz SCS
  • Table 12 the distribution of the RBs and associated bandwidth in MHz
  • Table 13 the distribution of the RBs and associated bandwidth in MHz
  • Table 14 the distribution of the RBs and associated bandwidth in MHz
  • Row RB start RB end Frequency start Frequency end 1 0 49 0.845 18.845 2 50 54 18.845 20.645 3 55 55 20.645 21.005 4 56 105 21.005 39.005 5 106 110 39.005 40.805
  • the odd rows shows the distribution of the RBs and associated bandwidth corresponding to the segments (in-band) , in which the resources are to be allocated to the terminal device 120, while the even rows show the distribution of the RBs and associated bandwidth corresponding to the guard bands.
  • the 89 quarter-RBs may be allocated for a plurality of network devices, for example, for four network devices in this case.
  • the allocated RB is an integer.
  • 23 RBs there are 3 terminal devices each allocated 6RBs and one terminal device allocated 5RB.
  • quarter-based interlaces one example of allocation is shown in FIG. 6.
  • blocks 610-0 to 610-8 may represent a plurality of interlaces, wherein the blocks 610-0, 610-2, 610-4, 610-6, 610-8 each comprises 4 interlaces 630-1 to 630-4 and each interlace comprises 4 RBs (640-1 to 640-3) which are allocated for the respective four terminal devices.
  • the blocks 610-1, 610-3, 610-5, 610-7 each represent one interlace which comprises only 3 RBs (645-1 to 645-4) which are allocated for three terminal devices of the four terminal devices.
  • unevenly interlaced design is adopted and the span of first and last quarter RB is 89.
  • the network device 110 determines the lengths of bit fields for each of the indications and transmitting the information in the respective length of the bit fields.
  • the network device 110 determines the lengths of bit fields for each of the indications and compares the determined lengths. If the length of bit field for the target set of resource blocks from the first types of resources is a maximal length of the lengths of bit fields for each of the indications. The information is transmitted in the length of bit field for the target set of resource blocks from the first types of resources.
  • the terminal device 120 performs the uplink transmission on the target set of the resource blocks.
  • the schemes for resource allocation in the case of coexistence of different bandwidths are achieved. Meanwhile, the number of RBs in one interlace or in multiple interlaces assigned to a given terminal device is suitable for the efficient DFT operation.
  • the method further comprises the network device 110 determines a target set of resource blocks from the sets of resource blocks in each of the plurality of types of resources for the terminal device.
  • a unit comprises at least one of the followings: a resource block; a half of a resource block; and a quarter of a resource block.
  • the network device 110 may select resource blocks having the indices from the resource blocks in the sets as the target set of resource blocks.
  • the network device 110 may generate the information comprising indications indicating the target set of resource blocks from each of the plurality of types of resources.
  • the network device 110 may determine a length of bit fields for the indications.
  • the network device 110 may transmit the information in the length of the bit fields
  • the network device 110 may generate the information comprising indications indicating the target set of resource blocks from each of the plurality of types of resources.
  • the network device 110 may determine a length of bit fields for the indications. If the network device 110 determines that a first length of bit fields for transmitting a first indication of the plurality of indications exceeds a threshold length, the terminal device may transmit the information in the first length of bit fields.
  • FIG. 8 shows a flowchart of an example method 800 for allocating resources according to some example embodiments of the present disclosure.
  • the method 800 can be implemented at the terminal device 120 as shown in FIGs. 1-2.
  • the method 800 will be described with reference to FIGs. 1-2.
  • the terminal device 120 receives information about a target set of resource blocks for uplink transmission of the terminal device.
  • the target set of resource blocks being determined from each of a plurality of types of resources determined at least partially based on a Bandwidth Part (BMP) of a terminal device, each type of resources comprising one or more sets of resource blocks with the same pattern, the pattern indicating at least one of the followings: an interlaced spacing of the resource blocks in the sets; and indices of the resource blocks in the sets
  • BMP Bandwidth Part
  • the terminal device 120 performs the uplink transmission on the target set of resource blocks.
  • Fig. 9 is a simplified block diagram of a device 900 that is suitable for implementing embodiments of the present disclosure.
  • the device 900 can be considered as a further example implementation of a network device 110 or a terminal device 120 as shown in Fig. 1. Accordingly, the device 900 can be implemented at or as at least a part of the network device 110 or the terminal device 120.
  • the device 900 includes a processor 910, a memory 920 coupled to the processor 910, a suitable transmitter (TX) and receiver (RX) 940 coupled to the processor 910, and a communication interface coupled to the TX/RX 940.
  • the memory 910 stores at least a part of a program 930.
  • the TX/RX 940 is for bidirectional communications.
  • the TX/RX 940 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the program 930 is assumed to include program instructions that, when executed by the associated processor 910, enable the device 900 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 2 to 8.
  • the embodiments herein may be implemented by computer software executable by the processor 910 of the device 900, or by hardware, or by a combination of software and hardware.
  • the processor 910 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 910 and memory 910 may form processing means 950 adapted to implement various embodiments of the present disclosure.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Abstract

Embodiments of the present disclosure relate to methods, devices and computer readable mediums for allocating resources. The method comprises determining a plurality of types of resources at least partially based on a Bandwidth Part (BMP) of a terminal device, each type of resources comprising one or more sets of resource blocks with the same pattern, the pattern indicating at least one of the followings: an interlaced spacing of the resource blocks in the sets; and indices of the resource blocks in the sets; determining a target set of resource blocks from the sets of resource blocks in each of the plurality of types of resources for the terminal device; transmitting, to the terminal device, information about the target set of resource blocks for uplink transmission of the terminal device.

Description

METHODS AND DEVICES FOR ALLOCATING RESOURCES TECHNICAL FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication, and in particular, to methods, devices and computer readable mediums for allocating resources.
BACKGROUND
New radio access system, which is also called as NR system or NR network, is the next generation communication system. In Radio Access Network (RAN) #71 meeting for the third generation Partnership Project (3GPP) working group, study of the NR system was approved. In order to improve the data rate performance, in 3GPP Long Term Evolution (LTE) , there was introduced License Assisted Access (LAA) for both downlink and uplink transmission.
In some regions, channel occupancy requirement on signal transmission is specified on unlicensed bands. For example, in European Telecommunications Standards Institute (ETSI) regulation, it specifies that the signal occupied bandwidth shall be at least 80% (5GHz) of the declared nominal channel bandwidth. As the LTE network enters its next phase of evolution with the study of wider bandwidth waveform under the NR project, solutions on the NR unlicensed band (NR-U) are studied.
SUMMARY
In general, example embodiments of the present disclosure provide methods, devices and computer readable mediums for allocating resources.
In a first aspect, there is provided a method implemented at a network device. The method comprises determining a plurality of types of resources at least partially based on a Bandwidth Part (BMP) of a terminal device, each type of resources comprising one or more sets of resource blocks with the same pattern, the pattern indicating at least one of the followings: an interlaced spacing of the resource blocks in the sets; and indices of the resource blocks in the sets; determining a target set of resource blocks from the sets of resource blocks in each of the plurality of types of resources for the terminal device;  transmitting, to the terminal device, information about the target set of resource blocks for uplink transmission of the terminal device.
In a second aspect, there is provided a method implemented at a terminal device. The method comprises receiving information about a target set of resource blocks for uplink transmission of the terminal device, the target set of resource blocks being determined from each of a plurality of types of resources determined at least partially based on a Bandwidth Part (BMP) of a terminal device, each type of resources comprising one or more sets of resource blocks with the same pattern, the pattern indicating at least one of the followings: an interlaced spacing of the resource blocks in the sets; and indices of the resource blocks in the sets; and performing the uplink transmission on the target set of resource blocks.
In a third aspect, there is provided a network device. The device includes a processor; and a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the device to perform the method according to the first aspect.
In a fourth aspect, there is provided a terminal device. The device includes a processor; and a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the device to perform the method according to the second aspect.
In a fifth aspect, there is provided a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to carry out the method according to the first aspect.
In a sixth aspect, there is provided a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to carry out the method according to the second aspect.
Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein:
FIG. 1 is a block diagram of a communication network 100 in which embodiments of the present disclosure can be implemented;
FIG. 2 shows a diagram of an example process 200 for allocating resources according to some embodiments of the present disclosure;
FIG. 3 shows example of some embodiments of the present disclosure;
FIG. 4A and 4B show examples of some embodiments of the present disclosure;
FIG. 5A and 5B show examples of some embodiments of the present disclosure;
FIG. 6 shows example of some embodiments of the present disclosure;
FIG. 7 shows a flowchart of an example method 700 for allocating resources according to some embodiments of the present disclosure;
FIG. 8 shows a flowchart of an example method 800 for allocating resources according to some embodiments of the present disclosure;
FIG. 9 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitations as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term “network device” or “base station” (BS) refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate. Examples of a network device include, but not limited to, a Node B  (NodeB or NB) , an Evolved NodeB (eNodeB or eNB) , a NodeB in new radio access (gNB) , a next generation NodeB (gNB) , a Remote Radio Unit (RRU) , a radio head (RH) , a remote radio head (RRH) , a low power node such as a femto node, a pico node, and the like. For the purpose of discussion, in the following, some embodiments will be described with reference to eNB as examples of the network device.
As used herein, the term “terminal device” refers to any device having wireless or wired communication capabilities. Examples of the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like.
As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ” The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
FIG. 1 shows an example communication network 100 in which implementations of the present disclosure can be implemented. The network 100 includes a network device 110 and a terminal device 120 served by the network device 110. The serving area of the network device 110 is called as a cell 102. It is to be understood that the number of network devices and terminal devices is only for the purpose of illustration without suggesting any limitations. The network 100 may include any suitable number of network devices and terminal devices adapted for implementing implementations of the present disclosure. Although not shown, it is to be understood that one or more terminal devices may be located in the cell 102 and served by the network device 110.
In the communication network 100, the network device 110 can communicate data and control information with the terminal device 120. A link from the network device 110 to the terminal device 120 is referred to as a downlink (DL) or a forward link, while a link  from the terminal device 120 to the network device 110 is referred to as an uplink (UL) or a reverse link. For example, the resource for the uplink transmission of the terminal device 120 is allocated by the terminal device 120.
Depending on the communication technologies, the network 100 may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Address (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency-Division Multiple Access (OFDMA) network, a Single Carrier-Frequency Division Multiple Access (SC-FDMA) network or any others. Communications discussed in the network 100 may use conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and the like. Furthermore, the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols. The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, certain aspects of the techniques are described below for LTE, and LTE terminology is used in much of the description below.
Unlicensed band operation has been studied and applied in 3GPP. For example, Licensed Assisted Access (LAA) was introduced in the 3GPP release 13 as part of LTE Advanced Pro. LAA is a feature of LTE that leverages the unlicensed 5 GHz band in combination with licensed spectrum to deliver a performance boost for mobile device users. It uses carrier aggregation in the downlink to combine LTE in unlicensed 5 GHz band with LTE in the licensed band to provide better data rates and a better user experience.
Since this technology operates in the 5 GHz band where Wi-Fi operates, it must be able to co-exist with Wi-Fi by avoiding channels that are being used by Wi-Fi users. LAA uses a concept called Listen-before-talk (LBT) which dynamically selects channels in the 5 GHz band which are not being used by Wi-Fi users. If there is no clear channel available, LAA will share a channel fairly with others.
In RAN1#88 meeting, a maximum channel bandwidth per NR carrier is allowed to be 100MHz for a band less than 6GHz. In RAN1#92bis meeting, it has been agreed that at least for band where absence of Wi-Fi cannot be guaranteed (e.g. by regulation) , LBT can be performed in units of 20 MHz. In this case, it is possible that the network device 110 and the terminal device 120 may operate under different bandwidths. For example, a wide bandwidth of 100MHz for the network device 110 and Bandwidth Part (BWP) of each 20MHz for the terminal device 120 are supported in NR.
Therefore, it is necessary to study the compatibility of network device 110 and terminal device 120 operating under different bandwidths, that is, for terminal device 120 operating under different bandwidths, how the network device 110 configure resources for uplink transmission of terminal devices. The relationship between the transmission bandwidth configuration N RB and the channel bandwidth of the terminal device and Subcarrier Spacing (SCS) in the NR is further explained below.
The transmission bandwidth configuration N RB for each channel bandwidth of the terminal device and SCS is specified in table 1 and the minimum guard band for each channel bandwidth of the terminal device and SCS is specified in table 2. Both table 1 and table 2 are reference from are quoted from 3GPP TS38.101.
Table 1: Transmission bandwidth configuration N RB for FR1
Figure PCTCN2018102337-appb-000001
Table 2: Minimum guard band [kHz] (FR1)
Figure PCTCN2018102337-appb-000002
Table 1 shows the transmission bandwidth configuration NRB under different  bandwidths and SCSs in NR system. For example, in a case that the bandwidth is 20 MHz and the SCS is 15 KHz, the maximal available number of resource blocks (RBs) is 106. It can be seen from table 1 that the larger the SCS, the smaller maximal available number of RBs under a same bandwidth. For the NR-U system, the channel bandwidths of 20MHz, 40MHz, 60MHz, 80MHz and 100 MHz in different SCSs, i.e. 15KHz, 30KHz and 60KHz are interested because they are multiple of 20MHz which is the basic bandwidth for LBT.
Table 2 shows the minimum guard band under different bandwidths and SCSs in NR system. As used herein, the term “guard band” refers to an unused part of the radio spectrum between radio bands, for the purpose of preventing out of band emission. It is a narrow frequency range used to separate two wider frequency ranges to ensure that both can transmit simultaneously without leakage power interfering with each other. It can be seen from table 2 that the guard bands for different channel bandwidths are different. Thus, For the network device 110 and the terminal device 120 used different channel bandwidth, for example, a wide bandwidth of 40MHz for the network device 110 and BWP of each 20MHz for the terminal device 120, 20MHz bandwidth is coexist with 40MHz bandwidth. The maximal available number of RBs should be determined by considering the guard band under different bandwidths.
Some solutions have been proposed to solve the problem of coexistence of different bandwidths. However, in the current 3GPP agreement, the number of RBs defined for each bandwidth configuration is not always divisible by the number of interlaces (which can be seen from table 1. ) In this case, uneven interlace design can be considered where not all interlaces have the identical number of RBs. In addition, the number of RBs in one interlace or in multiple interlaces assigned to a given terminal device needs to be a factor of 2, 3 or 5 for the efficient Discrete Fourier Transformation (DFT) operation, which cannot be satisfied by conventional solutions.
According to embodiments of the present disclosure, there is provided a solution for allocating resources. The embodiments in accordance with the present disclosure are directed to schemes for resource allocation in the case of coexistence of different bandwidths. More details of the embodiments of the present disclosure will be discussed with reference to FIGs. 2 to 9.
Principle and implementations of the present disclosure will be described in detail below with reference to FIG. 2, which shows process 200 according to example  embodiments of the present disclosure. For the purpose of discussion, the process 200 will be described with reference to FIG. 1. The process 200 may involve resource allocation.
Before the uplink transmission is performed by the terminal device, the network device should configure suitable resources to the terminal device and transmitting information indicating the allocated resources to the terminal device. As mention above, it is possible that the terminal device and the network device are operated under different bandwidth in the NR system.
As shown in FIG. 2, for a terminal device 120 operating under a predetermined bandwidth, the network device 110 configures 210 the resources for the uplink transmission of the terminal device 120 based on the BWP of the terminal device 120. The BWP of the terminal device 120 is configured by the terminal device 120. For the different bandwidths and SCSs, the schemes for the resource allocation are different. As mentioned above, the schemes should support the coexistence of different bandwidths. In addition, the number of RBs in one interlace or in multiple interlaces assigned to the terminal device 120 should be a factor of 2, 3 or 5 for the DFT operation. The schemes for resource allocation under different bandwidths and SCSs will be illustrated with reference to FIG. 3 to FIG. 6B
In the example embodiment shown in FIG. 3, both network device 110 and terminal device 120 operate under a bandwidth of 20MHz and a SCS of 15 KHz. In FIG. 2, segment 310 represents the bandwidth to be allocated and segments 310-1 and 310-2 represent the guard bands, respectively.
As shown in tables 1 and 2, for 15 KHz SCS and 20 MHz channel bandwidth, the bandwidth of the segment 310 is 19.095 MHz and each bandwidth the segments 310-1 and 310-2 is 452.5 KHz. In the case, the maximal available number of RBs is 106.
For allocating the 106 RBs, the network device 110 determines a plurality of types of resources. Each type of resources comprises one or more sets of resource blocks with the same pattern.
As an option, the 106 RBs may be divided into two types of resources. The types of resources and the pattern for each type of resources may be shown in table 3.
Table 3: The allocation of RBs under 15 KHz SCS and 20 MHz channel bandwidth
Type index RBs in the type pattern
0 [0, 99] Interlaced spacing 10
1 [100, 105] Interlaced spacing 3
As shown in table 3, the set of RBs [0, 99] (from the 0 th RB to 99 th RB) belongs to the type 0 of resources and the set of RBs [100, 105] belongs to the type 1 of resources.
In some embodiments, the pattern may represent the interlaced spacing for the sets. For different type, the interlaced spacing may be different. The sets of RBs may be configured in at least one interlace. The interlaced spacing may be determined based on the number of the RBs in each type of resources.
In this embodiment, as shown in table 3, the interlaced spacing for type 0 is 10 RBs and the interlaced spacing for type 1 is 3 RBs. For example, for 10 RBs interlaced spacing, that means there are 10 interlaces in the type 0 of the resources and each interlace has 10 RBs. Similarly, for 3 RBs interlaced spacing, that means there are 3 interlaces in the type 1 and each interlace has 2 RBs. In other words, 106 RBs are divided in 12 interlaces.
As another option, the 106 RBs may be divided into three types of resources which are different as the types shown in table 3. The three types of resources and the pattern for each type of resources may be shown in table 4.
Table 4: The allocation of RBs under 15 KHz SCS and 20 MHz channel bandwidth
Type index RBs in the type pattern
0 [0, 95] Interlaced spacing 8
1 [96, 104] Interlaced spacing 3
2 105 Bitmap block 1 or N/A
In this embodiment, the pattern may indicate the interlaced spacing or the indices of the RBs in the set. For example, as shown in table 4, for type 0 and type 1, the pattern for each of type 0 and type 1 may indicate the interlaced spacing. However, for type 2, which comprises a single RB, the pattern may be the index of this single RB.
The embodiment shown in FIG. 3 illustrates both the network device and the terminal device operating under a same channel bandwidth. For the case that the network  device and the terminal device operating under different channel bandwidths, the schemes for the resource allocation will be explained in the embodiments shown in FIG 4A. to FIG. 6B.
In the example embodiments, the network device 110 may support a channel bandwidth of 40 MHz and the SCS is 15 KHz. FIG. 4A illustrates a diagram of 40MHz channel. The segment 410 represents the bandwidth to be allocated and segments 420-1 and 420-2 represent the guard bands, respectively, If the 40 MHz channel is used for a terminal device 120 which also supports a channel bandwidth of 40 MHz, the resources in the segment 410 could be allocated to the terminal device 120 and the maximal number of RBs is 216.
However, if the terminal device 120 only supports a channel bandwidth of 20 MHz, the 40 MHz channel may be divided into sub bands. FIG. 4B illustrates a diagram of a coexistent of a channel bandwidth of 40 MHz with a channel bandwidth of 20 MHz. In FIG. 4B, segments 430-1 and 430-2 indicate each bandwidth of 20MHz, respectively, in which the resources are to be allocated. Similar with FIG. 4A, segments 420-1 and 420-2 in FIG. 4B represent the guard bands, respectively. Since the segments 430-1 and 430-2 indicate each bandwidth of 20MHz, there is a respective guard band between the segments 420-1 and 420-2. In FIG. 4B, the segment 440 represents this guard band.
For each bandwidth of 20MHz shown by the segments 430-1 and 430-2, the allocations of RBs are illustrated in tables 5 and 6.
Table 5: The allocation of RBs in segment 420-1 under 40 MHz channel bandwidth
Type index RBs in the type pattern
0 [0, 99] Interlaced spacing 10
1 [100, 104] Interlaced spacing 4 or N/A
Table 6: The allocation of RBs in segment 420-2 under 40 MHz channel bandwidth
Type index RBs in the type pattern
0 [5, 104] Interlaced spacing 10
1 [0, 4] Interlaced spacing 4 or N/A
In each 20 MHz bandwidth, the maximal available number of RBs is 105. For segment 430-1, the 104 RBs may be divided into two types of resources, that is, type 0 and type 1, the set of RBs [0, 99] belongs to the type 0 of resources and the set of RBs [100, 104] belongs to the type 1 of resources. For the RBs in the type 0, the interlaced spacing may be 10 RBs and for the RBs in the type 1, the interlaced spacing may be 4 RBs, that means the RBs in the type 0 could be configured in 2 interlaces, in which one interlace has 4 RBs and the other interlace has only one RB.
Similarly, for segment 430-2, the 104 RBs may be divided into two types of resources, that is, type 0 and type 1, the set of RBs [5, 104] belongs to the type 0 of resources and the set of RBs [0, 4] belongs to the type 1 of resources. For the RBs in the type 0, the interlaced spacing may be 10 RBs and for the RBs in the type 1, the interlaced spacing may be 4 RBs, that means the RBs in the type 0 could be configured in 2 interlaces, in which one interlace has 4 RBs and the other interlace has only one RB.
Thus, for the case of 40 MHz channel bandwidth multiplexing with 20 MHz channel bandwidth under 15 kHz SCS, the scheme for the allocation of RBs is illustrated in table 7. Correspondingly, the distribution of the RBs and associated bandwidth are illustrated in table 8.
Table 7: The allocation of RBs for 40 MHz multiplexing with 20 MHz under 15 kHz SCS
Type index RBs in the type pattern
0 [0, 99] + [116, 215] Interlaced spacing 10
1 [100, 115] Interlaced spacing 4
Table 8: the distribution of the RBs and associated bandwidth in MHz
Row RB start RB end Frequency start Frequency end
1 0 104 0.5525 19.4525
2 105 110 19.4525 20.5325
3 111 215 20.5325 39.4325
As shown in table 7, 216 RBs may be divided into two types of resources, that is, type 0 and type 1, the set of RBs [0, 99] and the set of RBs [116, 215] belong to the type 0  of resources and the set of RBs [100, 115] belongs to the type 1 of resources. For the RBs in the type 0, the interlaced spacing may be 10 RBs and for the RBs in the type 1, the interlaced spacing may be 4 RBs. In this case, there are 20 interlaces in the type 0 and there are 4 interlaces in the type 1.
In table 8, row 1 shows the distribution of the RBs and associated bandwidth corresponding to segment 430-1 of FIG. 4B, row 3 shows the distribution of the RBs and associated bandwidth corresponding to segment 430-2, while row 2 shows the distribution of the RBs and associated bandwidth corresponding to segment 440. For the RBs distributed in the segment 440, the network device 110 may determine if these RBs is to be allocated to the terminal device 120.
In the example embodiments, the network device 110 may support a channel bandwidth of 40 MHz and the SCS is 30 KHz. Still referring to FIG. 4B, segments 430-1 and 430-2 indicate each bandwidth of 20MHz, respectively, in which the resources are to be allocated. Segments 420-1 and 420-2 in FIG. 4B represent the guard bands, respectively. Since the segments 430-1 and 430-2 indicate each bandwidth of 20MHz, there is a respective guard band between the segments 420-1 and 420-2. In FIG. 4B, the segment 440 represents this guard band.
Since the SCS is changed from 15 KHz to 30 KHz, the maximal available number of RBs is different. Therefore, the scheme for the allocation of RBs may be different.
For the case of 40 MHz channel bandwidth multiplexing with 20 MHz channel bandwidth under 30 kHz SCS, the scheme for the allocation of RBs is illustrated in table 9. Correspondingly, the distribution of the RBs and associated bandwidth are illustrated in table 10.
Table 9: The allocation of RBs for 40 MHz multiplexing with 20 MHz under 30 kHz SCS
Type index RBs in the type pattern
0 [0, 49] + [56, 105] Interlaced spacing 5
1 [50, 55] Bitmap block 4
Table 10: the distribution of the RBs and associated bandwidth in MHz
Row RB start RB end Frequency start Frequency end
1 0 49 0.905 18.905
2 50 54 18.905 20.705
3 55 55 20.705 21.065
4 56 105 21.065 39.065
As shown in table 9, 106 RBs may be divided into two types of resources, that is, type 0 and type 1, the set of RBs [0, 49] and the set of RBs [56, 106] belong to the type 0 of resources and the set of RBs [50, 55] belongs to the type 1 of resources. For the RBs in the type 0, the interlaced spacing may be 5 RBs and there are 20 interlaces in the type 0. For the RBs in the type 0, there are 6 RBs. For the 6 RBs, the pattern for allocating the RBs may be the indices of each RB in the set of RBs [50, 55] . For example, 4 RBs of the set of RBs [50, 55] may be allocated for the terminal device.
In table 10, row 1 shows the distribution of the RBs and associated bandwidth corresponding to segment 430-1 of FIG. 4B, row 4 shows the distribution of the RBs and associated bandwidth corresponding to segment 430-2, while rows 2 and 3 show the distribution of the RBs and associated bandwidth corresponding to segment 440. For the RBs distributed in the segment 440, the network device 110 may determine if these RBs is to be allocated to the terminal device 120.
In the example embodiments, the network device 110 may support a channel bandwidth of 60 MHz and the SCS is 30 KHz. FIG. 5A illustrates a diagram of 60MHz channel. The segment 510 represents the bandwidth to be allocated and segments 520-1 and 520-2 represent the guard bands, respectively. If the 60 MHz channel is used for a terminal device 120 which also supports a channel bandwidth of 60 MHz, the resources in the segment 510 could be allocated to the terminal device 120.
If the terminal device 120 only supports a channel bandwidth of 20 MHz, the 60 MHz channel may be divided into sub bands. FIG. 5B illustrates a diagram of a coexistent of a channel bandwidth of 60 MHz with a channel bandwidth of 20 MHz. In FIG. 5B, segments 530-1, 530-2 and 530-3 indicate each bandwidth of 20MHz, respectively, in which the resources are to be allocated. Similar with FIG. 5A, segments 520-1 and 520-2 in FIG. 5B represent the guard bands, respectively. In FIG. 4B, the segments 540-1 and 540-2 represents guard bands between the segments 520-1 and 520-2 and 520-2 and 520-3, respectively.
For the case of 60 MHz channel bandwidth multiplexing with 20 MHz channel bandwidth under 30 kHz SCS, the scheme for the allocation of RBs is illustrated in table 11. Correspondingly, the distribution of the RBs and associated bandwidth are illustrated in table 12.
Table 11: The allocation of RBs for 60 MHz multiplexing with 20 MHz under 30 kHz SCS
Figure PCTCN2018102337-appb-000003
Table 12: the distribution of the RBs and associated bandwidth in MHz
Row RB start RB end Frequency start Frequency end
1 0 49 0.825 18.825
2 50 54 18.825 20.625
3 55 55 20.625 20.985
4 56 105 20.985 38.985
5 106 110 38.985 40.785
6 111 111 40.785 41.145
7 0 49 0.825 18.825
As shown in table 11, 162 RBs may be divided into two types of resources, that is, type 0 and type 1, the set of RBs [0, 54] , the set of RBs [56, 110] and the set of RBs [112, 161] belong to the type 0 of resources and the set of RBs [50+110] belongs to the type 1 of resources. For the RBs in the type 0, the interlaced spacing may be 5 RBs and there are 30 interlaces in the type 0. For the RBs in the type 0, there are 2 RBs. For the 2 RBs, the pattern for allocating the RBs may be the indices of each RB [55] and RB [110] .
In table 12, row 1 shows the distribution of the RBs and associated bandwidth corresponding to segment 530-1 of FIG. 5B, row 4 shows the distribution of the RBs and associated bandwidth corresponding to segment 530-2, row 7 shows the distribution of the RBs and associated bandwidth corresponding to segment 530-23, while rows 2 and 3 show  the distribution of the RBs and associated bandwidth corresponding to segment 540-1 and rows 5 and 6 show the distribution of the RBs and associated bandwidth corresponding to segment 540-2. For the RBs distributed in the segments 540-1 and 540-2, the network device 110 may determine if these RBs is to be allocated to the terminal device 120.
For the case of 80 MHz channel bandwidth multiplexing with 20 MHz channel bandwidth under 30 kHz SCS and the case of 100 MHz channel bandwidth multiplexing with 20 MHz channel bandwidth under 30 kHz SCS, the distribution of the RBs and associated bandwidth are illustrated in tables 13 and 14, respectively.
Table 13: the distribution of the RBs and associated bandwidth in MHz
Row RB start RB end Frequency start Frequency end
1 0 49 0.925 18.925
2 50 54 18.925 20.725
3 55 55 20.725 21.085
4 56 105 21.085 39.085
5 106 110 39.085 40.885
6 111 160 40.885 58.885
7 161 161 58.885 59.245
8 162 166 59.245 61.045
9 167 216 61.045 79.045
Table 14: the distribution of the RBs and associated bandwidth in MHz
Row RB start RB end Frequency start Frequency end
1 0 49 0.845 18.845
2 50 54 18.845 20.645
3 55 55 20.645 21.005
4 56 105 21.005 39.005
5 106 110 39.005 40.805
6 111 111 40.805 41.165
7 112 161 41.165 59.165
8 162 166 59.165 60.965
9 167 216 60.965 78.965
10 217 221 78.965 80.765
11 222 222 80.765 81.125
12 223 272 81.125 99.125
In table 13, rows 1, 4, 6 and 9 shows the distribution of the RBs and associated bandwidth corresponding to the segments, in which the resources are to be allocated to the terminal device 120, while rows 2, 3, 5, 7 and 8 show the distribution of the RBs and associated bandwidth corresponding to the guard bands. For the RBs distributed in the guard bands, the network device 110 may determine if these RBs is to be allocated to the terminal device 120.
In table 14, rows 1, 4, 7, 9 and 12 shows the distribution of the RBs and associated bandwidth corresponding to the segments (in-band) , in which the resources are to be allocated to the terminal device 120, while rows 2, 3, 5, 6, 8, 10 and 11 show the distribution of the RBs and associated bandwidth corresponding to the guard bands. For the RBs distributed in the guard bands, the network device 110 may determine if these RBs is to be allocated to the terminal device 120.
For the case of 60 kHz SCS, 40 MHz channel bandwidth multiplexing with 20 MHz channel bandwidth, 60 MHz channel bandwidth multiplexing with 20 MHz channel bandwidth, 80 MHz channel bandwidth multiplexing with 20 MHz channel bandwidth and 100 MHz channel bandwidth multiplexing with 20 MHz channel bandwidth are illustrated in tables 15-18, respectively.
Table 15: the distribution of the RBs and associated bandwidth in MHz
Row RB start RB end Frequency start Frequency end
1 0 22 1.61 18.17
2 23 27 18.17 21.77
3 28 50 21.77 38.33
Table 16: the distribution of the RBs and associated bandwidth in MHz
Row RB start RB end Frequency start Frequency end
1 0 22 1.53 18.09
2 23 27 18.09 21.69
3 28 50 21.69 38.25
4 51 55 38.25 41.85
5 56 78 41.85 58.41
Table 17: the distribution of the RBs and associated bandwidth in MHz
Row RB start RB end Frequency start Frequency end
1 0 22 1.45 18.01
2 23 27 18.01 21.61
3 28 50 21.61 38.17
4 51 55 38.17 41.77
5 56 78 41.77 58.33
6 79 83 58.33 61.93
7 84 106 61.93 78.49
Table 18: the distribution of the RBs and associated bandwidth in MHz
Row RB start RB end Frequency start Frequency end
1 0 22 1.37 17.93
2 23 27 17.93 21.53
3 28 50 21.53 38.09
4 51 55 38.09 41.69
5 56 78 41.69 58.25
6 79 83 58.25 61.85
7 84 106 61.85 78.41
8 107 111 78.41 82.01
9 112 134 82.01 98.57
In the tables 15-18, the odd rows shows the distribution of the RBs and associated bandwidth corresponding to the segments (in-band) , in which the resources are to be allocated to the terminal device 120, while the even rows show the distribution of the RBs and associated bandwidth corresponding to the guard bands.
For a SCS of 60 KHz, the frequency span of 1RB is 720 KHz which is too large for interlaced base allocation. Hence, half-RB-based or quarter-RB-based allocation is introduced.
In some embodiments, for 23 RBs and quarter-RB based allocation, there are total 92 quarter-RBs. To fulfill 80%Channel Occupied Bandwidth (COB) regulation, the span of first and last quarter-RB should larger than 89 quarter-RBs.
For example, the 89 quarter-RBs may be allocated for a plurality of network devices, for example, for four network devices in this case. For each terminal device, the allocated RB is an integer. For 23 RBs, there are 3 terminal devices each allocated 6RBs and one terminal device allocated 5RB. For quarter-based interlaces, one example of allocation is shown in FIG. 6.
In FIG. 6, blocks 610-0 to 610-8 may represent a plurality of interlaces, wherein the blocks 610-0, 610-2, 610-4, 610-6, 610-8 each comprises 4 interlaces 630-1 to 630-4 and each interlace comprises 4 RBs (640-1 to 640-3) which are allocated for the respective four terminal devices. The blocks 610-1, 610-3, 610-5, 610-7 each represent one interlace which comprises only 3 RBs (645-1 to 645-4) which are allocated for three terminal devices of the four terminal devices. Thus, in this case, unevenly interlaced design is adopted and the span of first and last quarter RB is 89.
The schemes for allocation of RBs in the case shown in tables 13 and 14 may be determined in the similar way with the schemes as mentioned above. It should be understood that the schemes illustrated as above are only example embodiments for each bandwidth case and the schemes should not be considered as the limit of the present disclosure.
Back to FIG. 2, after the network device 110 determines the scheme for allocation of RBs, the network device 110 determines the target set of resource blocks from the sets of  resource blocks in each of the plurality of types of resources for the terminal device 120 and transmits 230, to the terminal device 120, the information about the target set of resource blocks for uplink transmission of the terminal device 120.
For transmitting the information about the target set of resource blocks for uplink transmission, the network device may generate indications indicating the target set of resource blocks from each of the plurality of types of resources. In some embodiments, resources from each of the types of resources can be indicated to the terminal device 120 in the information jointly or separately.
For separate indication, the network device 110 determines the lengths of bit fields for each of the indications and transmitting the information in the respective length of the bit fields.
For joint indication, the network device 110 determines the lengths of bit fields for each of the indications and compares the determined lengths. If the length of bit field for the target set of resource blocks from the first types of resources is a maximal length of the lengths of bit fields for each of the indications. The information is transmitted in the length of bit field for the target set of resource blocks from the first types of resources.
For example, the maximum length of bit field among the multiple types is used, and type 0 has maximum number of interlaces. For the other types, if it is interlaced, the allocation of interlaces is the same as type 0 within its resources. If it is bitmap case, the bitmap indication is the same as interlaces allocation in type 0. That means if the n th interlaces is allocated in type 0, then the n th bit in bitmap is 1, otherwise it is 0.
As an example, for the scheme shown in table 3, the second type of resources could be combined into the first type of resources. In this case, there are 10 interlaces, 3 of them have 12 RBs and 7 of them have 10 RBs separately. The bit length is equal to bit length of type 1 and the allocation of type 2 is indicated implicitly.
Again referring to FIG. 2, the terminal device 120 performs the uplink transmission on the target set of the resource blocks.
In this way, the schemes for resource allocation in the case of coexistence of different bandwidths are achieved. Meanwhile, the number of RBs in one interlace or in multiple interlaces assigned to a given terminal device is suitable for the efficient DFT operation.
FIG. 7 shows a flowchart of an example method 700 for allocating resources according to some example embodiments of the present disclosure. The method 700 can be implemented at the network device 110 as shown in FIGs. 1-2. For the purpose of discussion, the method 700 will be described with reference to FIGs. 1-2.
At block 710, the network device 110 determines a plurality of types of resources at least partially based on a Bandwidth Part (BMP) of a terminal device, each type of resources comprising one or more sets of resource blocks with the same pattern, the pattern indicating at least one of the followings: an interlaced spacing of the resource blocks in the sets; and indices of the resource blocks in the sets.
In some embodiments, the network device 110 may determine a first number of resource blocks based on the BMP, a Subcarrier Spacing (SCS) used in communication with the terminal device and a bandwidth of the network device. The network device 110 may determine the number of the types and the pattern of each type based on the first number of resource blocks. The network device 110 may determine resources in each type based on the determined pattern and the first number of resource blocks.
At block 720, the method further comprises the network device 110 determines a target set of resource blocks from the sets of resource blocks in each of the plurality of types of resources for the terminal device.
In some embodiments, if the pattern indicates the interlaced spacing of the sets of resource blocks, the network device 110 may determine one or more interlaces from the sets of resource blocks based on the number of resource blocks in each set and a Subcarrier Spacing (SCS) used in communication with the terminal device, each interlace comprising a plurality of units having the interlaced spacing. The network device 110 may select the target set of resource blocks from the interlaces.
In some embodiments, a unit comprises at least one of the followings: a resource block; a half of a resource block; and a quarter of a resource block.
In some embodiments, if the pattern indicates indices of the resource blocks in the sets, the network device 110 may select resource blocks having the indices from the resource blocks in the sets as the target set of resource blocks.
At block 730, the method further comprises the network device 110 transmits to the terminal device, information about the target set of resource blocks for uplink transmission of the terminal device.
In some embodiments, the network device 110 may generate the information comprising indications indicating the target set of resource blocks from each of the plurality of types of resources. The network device 110 may determine a length of bit fields for the indications. The network device 110 may transmit the information in the length of the bit fields
In some embodiments, the network device 110 may generate the information comprising indications indicating the target set of resource blocks from each of the plurality of types of resources. The network device 110 may determine a length of bit fields for the indications. If the network device 110 determines that a first length of bit fields for transmitting a first indication of the plurality of indications exceeds a threshold length, the terminal device may transmit the information in the first length of bit fields.
FIG. 8 shows a flowchart of an example method 800 for allocating resources according to some example embodiments of the present disclosure. The method 800 can be implemented at the terminal device 120 as shown in FIGs. 1-2. For the purpose of discussion, the method 800 will be described with reference to FIGs. 1-2.
At block 810, the terminal device 120 receives information about a target set of resource blocks for uplink transmission of the terminal device. The target set of resource blocks being determined from each of a plurality of types of resources determined at least partially based on a Bandwidth Part (BMP) of a terminal device, each type of resources comprising one or more sets of resource blocks with the same pattern, the pattern indicating at least one of the followings: an interlaced spacing of the resource blocks in the sets; and indices of the resource blocks in the sets
At block 820, the terminal device 120 performs the uplink transmission on the target set of resource blocks.
Fig. 9 is a simplified block diagram of a device 900 that is suitable for implementing embodiments of the present disclosure. The device 900 can be considered as a further example implementation of a network device 110 or a terminal device 120 as shown in Fig. 1. Accordingly, the device 900 can be implemented at or as at least a part of the network device 110 or the terminal device 120.
As shown, the device 900 includes a processor 910, a memory 920 coupled to the processor 910, a suitable transmitter (TX) and receiver (RX) 940 coupled to the processor 910, and a communication interface coupled to the TX/RX 940. The memory 910 stores  at least a part of a program 930. The TX/RX 940 is for bidirectional communications. The TX/RX 940 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the eNB, Un interface for communication between the eNB and a relay node (RN) , or Uu interface for communication between the eNB and a terminal device.
The program 930 is assumed to include program instructions that, when executed by the associated processor 910, enable the device 900 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 2 to 8. The embodiments herein may be implemented by computer software executable by the processor 910 of the device 900, or by hardware, or by a combination of software and hardware. The processor 910 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 910 and memory 910 may form processing means 950 adapted to implement various embodiments of the present disclosure.
The memory 910 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 910 is shown in the device 900, there may be several physically distinct memory modules in the device 900. The processor 910 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 900 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in  firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to any of Figs. 2 o 11 Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device,  or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (12)

  1. A method implemented at a network device, comprising:
    determining a plurality of types of resources at least partially based on a Bandwidth Part (BMP) of a terminal device, each type of resources comprising one or more sets of resource blocks with the same pattern, the pattern indicating at least one of the followings:
    an interlaced spacing of the resource blocks in the sets; and
    indices of the resource blocks in the sets;
    determining a target set of resource blocks from the sets of resource blocks in each of the plurality of types of resources for the terminal device; and
    transmitting, to the terminal device, information about the target set of resource blocks for uplink transmission of the terminal device.
  2. The method of claim 1, wherein determining the types of resources comprises:
    determining a first number of resource blocks based on the BMP, a Subcarrier Spacing (SCS) used in communication with the terminal device and a bandwidth of the network device;
    determining the number of the types and the pattern of each type based on the first number of resource blocks; and
    determining resources in each type based on the determined pattern and the first number of resource blocks.
  3. The method of claim 1, wherein determining the target set of resource blocks comprises:
    in response to the pattern indicating the interlaced spacing of the sets of resource blocks, determining one or more interlaces from the sets of resource blocks based on the number of resource blocks in each set and a Subcarrier Spacing (SCS) used in communication with the terminal device, each interlace comprising a plurality of units having the interlaced spacing; and
    selecting the target set of resource blocks from the interlaces.
  4. The method of claim 3, wherein a unit comprises at least one of the followings:
    a resource block;
    a half of a resource block; and
    a quarter of a resource block.
  5. The method of claim 1, wherein determining the target set of resource blocks comprises:
    in response to the pattern indicating indices of the resource blocks in the sets, selecting resource blocks having the indices from the resource blocks in the sets as the target set of resource blocks.
  6. The method of claim 1, wherein transmitting the information comprises:
    generating the information comprising indications indicating the target set of resource blocks from each of the plurality of types of resources;
    determining a length of bit fields for the indications; and
    transmitting the information in the length of the bit fields.
  7. The method of claim 1, wherein transmitting the information comprises:
    generating the information comprising indications indicating the target set of resource blocks from each of the plurality of types of resources;
    determining lengths of bit fields for each of the indications; and
    in response to determining that a first length of bit fields for transmitting a first indication of the plurality of indications exceeds a threshold length, transmitting the information in the first length of bit fields.
  8. A method implemented at a terminal device, comprising:
    receiving information about a target set of resource blocks for uplink transmission of the terminal device, the target set of resource blocks being determined from each of a plurality of types of resources determined at least partially based on a Bandwidth Part (BMP) of a terminal device, each type of resources comprising one or more sets of resource blocks with the same pattern, the pattern indicating at least one of the followings:
    an interlaced spacing of the resource blocks in the sets; and
    indices of the resource blocks in the sets; and
    performing the uplink transmission on the target set of resource blocks.
  9. A terminal device, comprising:
    a processor; and
    a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the device to perform the method according to any of claims 1-7.
  10. A network device, comprising:
    a processor; and
    a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the device to perform the method according to any of claim 8.
  11. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to carry out the method according to any of claims 1-7.
  12. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to carry out the method according to any of claim 8.
PCT/CN2018/102337 2018-08-24 2018-08-24 Methods and devices for allocating resources WO2020037682A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/102337 WO2020037682A1 (en) 2018-08-24 2018-08-24 Methods and devices for allocating resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/102337 WO2020037682A1 (en) 2018-08-24 2018-08-24 Methods and devices for allocating resources

Publications (1)

Publication Number Publication Date
WO2020037682A1 true WO2020037682A1 (en) 2020-02-27

Family

ID=69592217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102337 WO2020037682A1 (en) 2018-08-24 2018-08-24 Methods and devices for allocating resources

Country Status (1)

Country Link
WO (1) WO2020037682A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630340A (en) * 2021-06-22 2021-11-09 北京邮电大学 Method, device, electronic equipment and medium for allocating bandwidth resources
WO2023226038A1 (en) * 2022-05-27 2023-11-30 北京小米移动软件有限公司 Resource allocation method and apparatus in communication system, device and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099659A1 (en) * 2015-12-08 2017-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Interlace pattern selection for low cm/papr transmission
WO2017166998A1 (en) * 2016-04-01 2017-10-05 Jrd Communication Inc. Resource block allocation for uplink communications
US20180124790A1 (en) * 2016-10-28 2018-05-03 Qualcomm Incorporated Coexistence of interleaved and contiguous uplink transmissions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099659A1 (en) * 2015-12-08 2017-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Interlace pattern selection for low cm/papr transmission
WO2017166998A1 (en) * 2016-04-01 2017-10-05 Jrd Communication Inc. Resource block allocation for uplink communications
US20180124790A1 (en) * 2016-10-28 2018-05-03 Qualcomm Incorporated Coexistence of interleaved and contiguous uplink transmissions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630340A (en) * 2021-06-22 2021-11-09 北京邮电大学 Method, device, electronic equipment and medium for allocating bandwidth resources
CN113630340B (en) * 2021-06-22 2024-04-05 北京邮电大学 Method, device, electronic equipment and medium for distributing bandwidth resources
WO2023226038A1 (en) * 2022-05-27 2023-11-30 北京小米移动软件有限公司 Resource allocation method and apparatus in communication system, device and storage medium

Similar Documents

Publication Publication Date Title
EP3376812B1 (en) Method and device for wireless communication
JP2023002658A (en) Method, device, apparatus, and storage medium for indicating and receiving resource location
US20150139118A1 (en) Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit
JP2022065107A (en) Network device, terminal device, and method
WO2019056164A1 (en) Methods and apparatuses for transmitting control information
JP7379475B2 (en) Downlink control of unlicensed subbands
EP3528573B1 (en) Power control method and communication device
US10973031B2 (en) Resource configuration method and device, and computer storage medium
US20220231813A1 (en) Methods and apparatuses for phase tracking reference signal configuration
TWI572173B (en) Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit
WO2019153195A1 (en) Methods and apparatuses for phase tracking reference signal configuration
EP3796728A1 (en) Resource configuration method, network device, and terminal
US11895671B2 (en) Method and apparatus for signal configuration in a wireless communication system
JP7092195B2 (en) Methods and devices for resource allocation in the control resource area
US11063806B2 (en) Synchronization method and apparatus
WO2020037682A1 (en) Methods and devices for allocating resources
WO2019105255A1 (en) Method, device and computer readable storage medium for resource allocation on unlicensed spectrum
JP6822583B2 (en) Terminal and method
AU2019474027B2 (en) Methods, devices and computer readable media for communication on unlicensed band
WO2021056525A1 (en) Extended bandwidth allocation
WO2023010289A1 (en) Method, device and computer readable medium for communications
JP7287540B2 (en) Method, terminal device and network device
WO2021159353A1 (en) Methods, devices and computer storage media of communication
WO2019183920A1 (en) Grouping of orthogonal subcarriers
WO2019056304A1 (en) Resource configuration for unlicensed band

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930626

Country of ref document: EP

Kind code of ref document: A1