WO2020036351A1 - 파동 중첩형 생체자극용 미세전류 생성방법 - Google Patents
파동 중첩형 생체자극용 미세전류 생성방법 Download PDFInfo
- Publication number
- WO2020036351A1 WO2020036351A1 PCT/KR2019/009635 KR2019009635W WO2020036351A1 WO 2020036351 A1 WO2020036351 A1 WO 2020036351A1 KR 2019009635 W KR2019009635 W KR 2019009635W WO 2020036351 A1 WO2020036351 A1 WO 2020036351A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wave
- microcurrent
- main
- biostimulation
- generating
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
Definitions
- the present invention relates to a microcurrent generation method for infiltration repetition freguency biological stimulation, and more specifically, to a reference pattern of a small frequency reference wave microcurrent and a large frequency reference wave microcurrent in a set pattern for human or animal
- the present invention relates to a wave superposition type biostimulation microcurrent generation method that enables activation of various physiological functions according to a biological stimulus by applying to a living body.
- Electrotherapy is one of them.
- Electrotherapy can be defined as a field of medicine that diagnoses and treats diseases using electricity such as direct current, current, and pulsating current.
- the types of electrical therapy include medical galvanism treatment, iontoporesis, electrical stimulation theraphy (EST), transcutaneous electrical nerve stimulation (TENS) treatment, and functional electrical stimulation treatment.
- EST electrical stimulation theraphy
- TESS transcutaneous electrical nerve stimulation
- FES functional electrical stimulation treatment
- ICT interferential current therapy
- SWD shortwave diathermy
- MWD microwave diathermy
- ultrasound treatment ultrasound treatment.
- Such electrotherapy has been used for the treatment of musculoskeletal damage and diseases, nervous system damage and diseases, circulatory diseases, skin diseases, medical diseases, chronic inflammatory diseases.
- the greatest advantage of the treatment method using the electronic energy is known as a therapy that uses the phenomenon and characteristics of the body to produce an electrical change in the human body by electrical stimulation from the outside, which is useful for the treatment.
- electrotherapy has a significant difference in function depending on the waveform of the frequency, the current, the strength of the current, the application site and the like.
- the present invention improves the problems of the prior art, and the main wave may have a reference wave microcurrent that may have a theater frequency (VLF) frequency range of 3 to 30 kHz and a long wave (LF) frequency range of 30 kHz to 300 kHz.
- VLF theater frequency
- LF long wave
- the purpose of the present invention is to provide a new method for generating a superimposed wave type microcurrent for the superimposition of the wave, by allowing microcurrent to be applied to a living body of a human or an animal while overlapping a set pattern. do.
- the reference wave microcurrent and the main wave microcurrent are generated so that the trajectories connecting the floors of the waves forming the main wave microcurrent become the waveforms of the reference wave microcurrent, and the reference wave microcurrent is a triangular wave, square wave, sawtooth wave.
- waveforms such as DC waves, including sine waves and staircase waves, it is possible to increase the efficiency of physical stimulation to cope with diseases such as pain, cancer, dementia and viral infection or to help the human body grow.
- An object of the present invention is to provide a microcurrent generation method.
- the present invention is a reference wave for generating a reference wave microcurrent having a frequency magnitude belonging to the set reference wave frequency range and a current value belonging to the set microcurrent value range for biostimulation Generating a microcurrent;
- Microcurrent superimposition step of superimposing the reference wave microcurrent and the main wave microcurrent provides a method for generating a superimposed wave-type biostimulation, characterized in that it comprises a.
- the reference wave microcurrent generation step in the wave superimposition type biostimulation microcurrent generation method according to the present invention is set to a reference wave frequency range of 3 ⁇ 30kHz theater wave (VLF), the main wave microcurrent generation step
- the main wave microcurrent frequency range can be set to a long wave (LF) of 30kHz to 300kHz.
- the wave displacement value of the reference wave microcurrent at the time is the wave displacement value of the main wave microcurrent by time
- the main wave microcurrent generation step may include a path connecting the floor of the wave constituting the main wave microcurrent to become a waveform of the reference wave microcurrent.
- the main wave microcurrent can be generated.
- the reference wave microcurrent generation step includes: a DC wave group in which the reference wave microcurrent includes triangular waves, square waves, sawtooth waves, sinusoidal waves, and staircase waves.
- the reference wave microcurrent may be generated only in an area having a positive wave displacement value.
- the microwave current generation method may have a reference wave microcurrent having a theater frequency (VLF) frequency range of 3 to 30 kHz and a long wave (LF) frequency range of 30 kHz to 300 kHz. Since the main wave microcurrent is applied to a living body of a human or an animal while overlapping a set pattern, various physiological functions according to a living body stimulation are activated.
- VLF theater frequency
- LF long wave
- the reference wave microcurrent and the main wave microcurrent are generated so that the locus connecting the floors of the waves forming the main wave microcurrent becomes a waveform of the reference wave microcurrent. It is generated, and the reference wave microcurrent is generated to have a waveform such as a triangular wave, square wave, sawtooth wave, sine wave, DC wave including staircase wave, so that it can cope with diseases such as pain, cancer, dementia, viral infection, etc.
- Increased efficiency of physical stimulation to help, while increasing the efficiency of biological stimulation to cope with diseases and viral infections, such as fish in the farms / aquariums, cattle / pigs / chickens / ducks, which are farming animals It works.
- the method of generating the superimposed wave-type biostimulation microcurrent of the present invention to the animal farming, there is a possibility to replace the antibiotic, it can be used to treat the wound of the animal.
- FIG. 1 is a flow chart of a method for generating a microcurrent for wave superposition type biostimulation according to an embodiment of the present invention
- FIGS. 2A to 2D are waveform diagrams of reference wave microcurrents according to an embodiment of the present invention.
- FIG. 3 is a diagram illustrating a displacement value function of a reference wave microcurrent and a main wave microcurrent according to an embodiment of the present invention
- FIG. 4 is a view for showing that the main wave microcurrent is generated corresponding to the waveform of the reference wave microcurrent in the main wave microcurrent generation step according to an embodiment of the present invention
- 5 to 8 are exemplary diagrams of a microcurrent superimposition step according to an embodiment of the present invention.
- the present invention relates to an invasive repetitive frequency biological stimulation method, and a method for generating a superimposed wave current according to an embodiment of the present invention for generating a reference wave microcurrent as shown in FIG. 1 and generating a main wave microcurrent. Step, the microcurrent superposition step is carried out.
- the reference wave microcurrent generation step is a step of generating a reference wave microcurrent having a frequency magnitude belonging to the set reference wave frequency range and a current value belonging to the set microcurrent value range for biostimulation.
- the reference frequency range may be set to a theater frequency (VLF) of 3 ⁇ 30kHz.
- VLF theater frequency
- the frequency magnitude of the reference wave microcurrent may be set at a frequency of 3 Hz to 30 Hz.
- the frequency magnitude of the reference wave microcurrent is not limited thereto.
- the reference wave microcurrent has a waveform of a triangular wave as shown in (a) of FIG. 2, or has a waveform of a square wave as shown in (b) of FIG. 2, or FIG. 2.
- the reference wave microcurrent may have a waveform of a DC wave such as a sine wave and a step wave.
- the reference wave microcurrent having a waveform of a DC wave including a triangular wave, a square wave, a sawtooth wave, a sine wave, and a staircase wave may be generated only in an area having a positive wave displacement value.
- the main wave microcurrent generation step includes generating a main wave microcurrent having a frequency magnitude belonging to the main wave microcurrent frequency range which is set larger than a frequency magnitude of the reference wave microcurrent and a current value belonging to the set microcurrent value range for biostimulation.
- the main wave microcurrent frequency range may be set to a long wave (LF) of 30kHz to 300kHz.
- the frequency magnitude of the main wave microcurrent may be set to a frequency of 40 kHz to 100 kHz.
- the frequency magnitude of the main wave microcurrent is not limited thereto.
- the main wave microcurrent of the first condition is that the wave displacement value of the main wave microcurrent does not exceed the wave displacement value of the reference wave microcurrent at that time.
- the main wave microcurrent of the waveform satisfying the second condition where both the wave displacement value of the time and the sign of the wave displacement value of the reference wave microcurrent at that time satisfy the same second condition is generated. See displacement value function of wave microcurrent
- the main wave microcurrent generation step generates a main wave microcurrent such that the locus connecting the floors of the waves forming the main wave microcurrent becomes a waveform of the reference wave microcurrent as shown in FIG. 4. .
- the superimposition of the microcurrent is a superposition of the reference wave microcurrent and the main wave microcurrent.
- the main wave microcurrent periodically oscillates within the waveform of the reference wave microcurrent, and overlaps the reference wave microcurrent and the main wave microcurrent. Let's go.
- the microcurrent generation method for wave superposition type biostimulation has a reference wave microcurrent having a frequency range of 3 to 30 kHz (VLF) and a long wave (LF) of 30 kHz to 300 kHz. Since the main wave microcurrent, which may have a frequency range, is applied to a living body of a human or an animal while being superimposed in a set pattern, activation of various physiological functions according to a living body stimulation is achieved.
- VLF 3 to 30 kHz
- LF long wave
- the method of generating a superimposed wave type biostimulation microcurrent includes a reference wave microcurrent and a main wave microcurrent so that the locus connecting the floors of the waves forming the main wave microcurrent becomes a waveform of the reference wave microcurrent.
- Is generated and the reference wave microcurrent has a structure such as a triangular wave, a square wave, a sawtooth wave, a sinusoidal wave, a DC wave including a staircase wave, and the like to cope with diseases such as pain, cancer, dementia, and viral infection,
- diseases and viral infections such as fish in the farms, aquariums, cattle, pigs, chickens, ducks, etc., or to increase the biostimulation efficiency for activating animal growth. do.
- Wave1 of SAW_Minus waveform (not applied to nested Hz), Wave2 of SAW waveform (applied to overlapped Hz), Wave3 of SQUARE waveform (applied to Hz) and Wave4 of STEP FORM waveform (applied to Hz) are applied. ohm), voltage 5V, fundamental frequency 7 Hz, and superimposed frequency 44KHz of Wave2,3,4 and then applied to the Alzheimer's disease (AD) mouse model.
- AD Alzheimer's disease
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Electrotherapy Devices (AREA)
Abstract
본 발명은 침윤성 반복 주파수(infiltration repetition freguency) 생체 자극용 미세전류 생성방법에 관한 것으로, 본 발명에 따른 파동 중첩형 생체자극용 미세전류 생성방법은 설정된 기준파동 주파수 범위에 속하는 주파수 크기 및 설정된 생체자극용 미세전류값 범위에 속하는 전류값을 갖는 기준파동 미세전류가 생성되는 기준파동 미세전류 생성단계; 상기 기준파동 미세전류의 주파수 크기보다 크게 설정되는 메인파동 미세전류 주파수 범위에 속하는 주파수 크기 및 설정된 생체자극용 미세전류값 범위에 속하는 전류값을 갖는 메인파동 미세전류가 생성되는 메인파동 미세전류 생성단계; 상기 기준파동 미세전류와 메인파동 미세전류를 중첩시키는 미세전류 중첩단계; 를 포함하는 구성으로 이루어진다. 이와 같이 본 발명은 작은 주파수의 기준파동 미세전류와 큰 주파수의 기준파동 미세전류를 설정패턴으로 중첩시켜 사람이나 동물의 생체에 인가함으로써 생체 자극에 따른 각종 생리기능의 활성화가 도모되도록 한다
Description
본 발명은 침윤성 반복 주파수(infiltration repetition freguency) 생체 자극용 미세전류 생성방법에 관한 것으로, 좀더 구체적으로는 작은 주파수의 기준파동 미세전류와 큰 주파수의 기준파동 미세전류를 설정패턴으로 중첩시켜 사람이나 동물의 생체에 인가함으로써 생체 자극에 따른 각종 생리기능의 활성화가 도모되도록 하는 파동 중첩형 생체자극용 미세전류 생성방법에 관한 것이다.
최근 풍요한 물질 문명을 배경으로 건강에 대한 관심이 점차적으로 높아져 가고 있다. 또한, 식생활 문화의 변화와 운동 부족으로 인한 각종 성인병의 발생으로 더욱 건강에 관한 많은 관심을 가지게 되었으며, 이에 따라 다양한 기능과 종류의 미용관련 기기가 개발되어 널리 사용되고 있다. 전기치료기도 그 중의 하나이다.
전기치료란 직류전류, 전류, 맥동전류 등과 같은 전기(electricity)를 이용하여 질병을 진단하고 치료하는 의과학의 한 분야라고 정의할 수 있다.
전기치료의 종류로는 의용평류(medical galvanism)치료, 이온도입법(iontoporesis), 전기자극치료(electrical stimulation theraphy, EST), 경피신경전기자극(transcutaneous electrical nerve stimulation, TENS)치료, 기능적 전기자극치료(FES), 간섭전류(interferential current therapy, ICT)치료, 단파심부투열(shortwave diathermy, SWD)치료, 극초단파심부투열(microwave diathermy, MWD)치료, 초음파(ultrasound)치료 등이 있다.
이러한, 전기치료는 근골격계 손상 및 질환, 신경계 손상 및 질환, 순환계 질환, 피부질환, 내과질환, 만성염증질환 등의 치료목적으로 사용되고 있다. 이와 같은, 전자에너지를 이용한 치료방법의 최대 장점은 몸의 현상과 특성을 이용하여 외부로부터의 전기자극에 의해 인체에 전기적 변화를 일으켜 치료에 유익하게 사용하는 요법으로 알려져 있다.
그런데, 전기치료는 주파수의 파형, 전류, 전류의 강도, 적용부위 등에 따라 그 기능의 차이가 현저하다.
종래의 전기치료는 동일 주파수 특성을 갖는 규칙적인 저주파 신호를 공급하여 신체에 전기자극을 전달하도록 하는 것이 일반적이다. 그러나 저주파 전류는 피시술자의 환부에 직접 붙여진 패취형 전극패드를 통해서만 전달되게 되므로 전기 자극이 전달되는 범위가 협소하여 전기 자극을 통한 치료효과 및 마사지효과를 기대하기에는 다소 미흡함이 있었으며, 전극패드를 통해 전달되는 전기 자극은 피시술자에게 다소 세게 전달되므로 물리적인 자극이 피시술자에게 그대로 전달되는 문제가 있었다.
따라서 본 발명은 이와 같은 종래 기술의 문제점을 개선하여, 3~30kHz의 극장파(VLF) 주파수범위를 가질 수 있는 기준파동 미세전류와 30kHz~300kHz의 장파(LF) 주파수범위를 가질 수 있는 메인파동 미세전류가 설정패턴으로 중첩되면서 사람이나 동물의 생체에 인가되도록 함으로써 생체 자극에 따른 각종 생리기능의 활성화가 도모될 수 있는 새로운 형태의 파동 중첩형 생체자극용 미세전류 생성방법을 제공하는 것을 목적으로 한다.
특히 본 발명은 메인파동 미세전류를 이루는 파동의 마루를 연결하는 궤적이 기준파동 미세전류의 파형이 되도록 기준파동 미세전류와 메인파동 미세전류가 생성되고, 기준파동 미세전류가 삼각파, 사각파, 톱니파, 사인파, 계단파를 포함하는 DC파 등의 파형을 가지는 구조를 통해 통증, 암, 치매, 바이러스 감염 등의 질병에 대응하거나 인체 성장에 도움을 주기 위한 신체자극의 효율이 증대될 수 있도록 하는 한편, 양식장/수족관의 물고기, 양식하는 동물인 소/돼지/닭/오리 등의 질병과 바이러스 감염 등에 대응하거나 동물 성장 활성화를 위한 생체자극 효율이 증대될 수 있도록 하는 새로운 형태의 파동 중첩형 생체자극용 미세전류 생성방법을 제공하는 것을 목적으로 한다.
상술한 목적을 달성하기 위한 본 발명의 특징에 의하면, 본 발명은 설정된 기준파동 주파수 범위에 속하는 주파수 크기 및 설정된 생체자극용 미세전류값 범위에 속하는 전류값을 갖는 기준파동 미세전류가 생성되는 기준파동 미세전류 생성단계; 상기 기준파동 미세전류의 주파수 크기보다 크게 설정되는 메인파동 미세전류 주파수 범위에 속하는 주파수 크기 및 설정된 생체자극용 미세전류값 범위에 속하는 전류값을 갖는 메인파동 미세전류가 생성되는 메인파동 미세전류 생성단계; 상기 기준파동 미세전류와 메인파동 미세전류를 중첩시키는 미세전류 중첩단계;를 포함하는 것을 특징으로 하는 파동 중첩형 생체자극용 미세전류 생성방법을 제공한다.
이와 같은 본 발명에 따른 파동 중첩형 생체자극용 미세전류 생성방법에서 상기 기준파동 미세전류 생성단계는 기준파동 주파수 범위를 3~30kHz의 극장파(VLF)로 설정하고, 상기 메인파동 미세전류 생성단계는 메인파동 미세전류 주파수 범위를 30kHz~300kHz의 장파(LF)로 설정할 수 있다.
이와 같은 본 발명에 따른 파동 중첩형 생체자극용 미세전류 생성방법에서 상기 메인파동 미세전류 생성단계는, 상기 메인파동 미세전류의 시간 별 파동 변위값이 해당 시간에서의 상기 기준파동 미세전류의 파동 변위값을 초과하지 않는 제1조건, 상기 메인파동 미세전류의 시간 별 파동 변위값과 해당 시간에서의 상기 기준파동 미세전류의 파동 변위값의 부호가 동일한 제2조건을 모두 만족시키는 파형의 메인파동 미세전류를 생성시킬 수 있다.
이와 같은 본 발명에 따른 파동 중첩형 생체자극용 미세전류 생성방법에서 상기 메인파동 미세전류 생성단계는, 상기 메인파동 미세전류를 이루는 파동의 마루를 연결하는 궤적이 상기 기준파동 미세전류의 파형이 되도록 상기 메인파동 미세전류를 생성시킬 수 있다.
이와 같은 본 발명에 따른 파동 중첩형 생체자극용 미세전류 생성방법에서 상기 기준파동 미세전류 생성단계는, 상기 기준파동 미세전류가 삼각파, 사각파, 톱니파, 사인파, 계단파를 포함하는 DC파 군 중에서 선택된 어느 하나의 파형을 가지도록 하되, 상기 기준파동 미세전류는 양의 파동 변위값을 갖는 영역만으로 생성될 수 있다.
본 발명에 의한 파동 중첩형 생체자극용 미세전류 생성방법에 의하면, 3~30kHz의 극장파(VLF) 주파수범위를 가질 수 있는 기준파동 미세전류와 30kHz~300kHz의 장파(LF) 주파수범위를 가질 수 있는 메인파동 미세전류가 설정패턴으로 중첩되면서 사람이나 동물의 생체에 인가되므로, 생체 자극에 따른 각종 생리기능이 활성화되는 효과가 있다.
여기서 본 발명에 의한 파동 중첩형 생체자극용 미세전류 생성방법에 의하면, 메인파동 미세전류를 이루는 파동의 마루를 연결하는 궤적이 기준파동 미세전류의 파형이 되도록 기준파동 미세전류와 메인파동 미세전류가 생성되고, 삼각파, 사각파, 톱니파, 사인파, 계단파를 포함하는 DC파 등의 파형을 가지도록 기준파동 미세전류가 생성되므로, 통증, 암, 치매, 바이러스 감염 등의 질병에 대응하거나 인체 성장에 도움을 주기 위한 신체자극의 효율이 증대되는 한편, 양식장/수족관의 물고기, 양식하는 동물인 소/돼지/닭/오리 등의 질병과 바이러스 감염 등에 대응하거나 동물 성장 활성화를 위한 생체자극 효율이 증대되는 효과가 있다. 특히 본 발명의 파동 중첩형 생체자극용 미세전류 생성방법을 양식하는 동물에 적용함으로써 항생제를 대체할 수 있는 가능성이 발생하며, 동물의 상처를 치료하는데에도 활용할 수 있게 된다.
도 1은 본 발명의 실시예에 따른 파동 중첩형 생체자극용 미세전류 생성방법의 순서도;
도 2의 (a) 내지 (d)는 본 발명의 실시예에 따른 기준파동 미세전류의 파형 예시도;
도 3은 본 발명의 실시예에 따른 기준파동 미세전류와 메인파동 미세전류의 변위값 함수 예시도;
도 4는 본 발명의 실시예에 따른 메인파동 미세전류 생성단계에서 기준파동 미세전류의 파형에 대응하여 메인파동 미세전류가 생성되는 것을 보여주기 위한 도면;
도 5 내지 도 8은 본 발명의 실시예에 따른 미세전류 중첩단계의 예시도이다.
이하, 본 발명의 실시예를 첨부된 도면 도 1 내지 도 8에 의거하여 상세히 설명한다. 한편, 도면과 상세한 설명에서 일반적인 미세전류, 미세전류에 의한 생체자극, 파동의 중첩, 극장파(VLF), 장파(LF), 삼각파, 사각파, 톱니파, 계단파 등으로부터 이 분야의 종사자들이 용이하게 알 수 있는 구성 및 작용에 대한 도시 및 언급은 간략히 하거나 생략하였다. 특히 도면의 도시 및 상세한 설명에 있어서 본 발명의 기술적 특징과 직접적으로 연관되지 않는 요소의 구체적인 기술적 구성 및 작용에 대한 상세한 설명 및 도시는 생략하고, 본 발명과 관련되는 기술적 구성만을 간략하게 도시하거나 설명하였다.
본 발명은 침윤성 반복 주파수 생체 자극방법에 관한 것으로, 이를 위한 본 발명의 실시예에 따른 파동 중첩형 생체자극용 미세전류 생성방법은 도 1에서와 같이 기준파동 미세전류 생성단계, 메인파동 미세전류 생성단계, 미세전류 중첩단계를 거쳐 수행된다.
기준파동 미세전류 생성단계는 설정된 기준파동 주파수 범위에 속하는 주파수 크기 및 설정된 생체자극용 미세전류값 범위에 속하는 전류값을 갖는 기준파동 미세전류가 생성되는 단계이다. 기준파동 주파수 범위는 3~30kHz의 극장파(VLF)로 설정될 수 있다. 바람직하게는 3Hz~30Hz의 주파수로 기준파동 미세전류의 주파수 크기가 설정될 수 있다. 물론 기준파동 미세전류의 주파수 크기가 이에 한정되는 것은 아니다.
그리고 기준파동 미세전류 생성단계는 기준파동 미세전류가 도 2의 (a)에서와 같이 삼각파의 파형을 가지도록 하거나, 도 2의 (b)에서와 같이 사각파의 파형을 가지도록 하거나, 도 2의 (c)에서와 같이 톱니파의 파형을 가지도록 하거나, 도 2의 (d)에서와 같이 계단파의 파형을 가지도록 한다. 물론 기준파동 미세전류는 사인파, 계단파와 같은 DC파의 파형을 가질 수도 있다. 이와 같이 삼각파, 사각파, 톱니파, 사인파, 계단파를 포함하는 DC파의 파형을 가지는 기준파동 미세전류는 양의 파동 변위값을 갖는 영역만으로 생성될 수 있다.
메인파동 미세전류 생성단계는 기준파동 미세전류의 주파수 크기보다 크게 설정되는 메인파동 미세전류 주파수 범위에 속하는 주파수 크기 및 설정된 생체자극용 미세전류값 범위에 속하는 전류값을 갖는 메인파동 미세전류가 생성되는 단계이다. 메인파동 미세전류 주파수 범위는 30kHz~300kHz의 장파(LF)로 설정될 수 있다. 바람직하게는 40kHz~100kHz의 주파수로 메인파동 미세전류의 주파수 크기가 설정될 수 있다. 물론 메인파동 미세전류의 주파수 크기가 이에 한정되는 것은 아니다.
본 발명의 실시예에 따른 메인파동 미세전류 생성단계는 메인파동 미세전류의 시간 별 파동 변위값이 해당 시간에서의 기준파동 미세전류의 파동 변위값을 초과하지 않는 제1조건, 메인파동 미세전류의 시간 별 파동 변위값과 해당 시간에서의 기준파동 미세전류의 파동 변위값의 부호가 동일한 제2조건을 모두 만족시키는 파형의 메인파동 미세전류를 생성시키게 된다.(도 3의 기준파동 미세전류와 메인파동 미세전류의 변위값 함수 참조)
특히 본 발명의 실시예에 따른 메인파동 미세전류 생성단계는 도 4에서와 같이 메인파동 미세전류를 이루는 파동의 마루를 연결하는 궤적이 기준파동 미세전류의 파형이 되도록 메인파동 미세전류를 생성시키게 된다.
미세전류 중첩단계는 기준파동 미세전류와 메인파동 미세전류를 중첩시키는 단계이다. 본 발명의 실시예에 따른 미세전류 중첩단계는 도 5 내지 도 8에서와 같이 기준파동 미세전류의 파형 내부에서 메인파동 미세전류가 주기적으로 진동하는 구조로 기준파동 미세전류와 메인파동 미세전류를 중첩시키게 된다.
상기와 같이 구성된 본 발명의 실시예에 따른 파동 중첩형 생체자극용 미세전류 생성방법은 3~30kHz의 극장파(VLF) 주파수범위를 가질 수 있는 기준파동 미세전류와 30kHz~300kHz의 장파(LF) 주파수범위를 가질 수 있는 메인파동 미세전류가 설정패턴으로 중첩되면서 사람이나 동물의 생체에 인가되도록 하므로, 생체 자극에 따른 각종 생리기능의 활성화가 도모된다. 특히 본 발명의 실시예에 따른 파동 중첩형 생체자극용 미세전류 생성방법은 메인파동 미세전류를 이루는 파동의 마루를 연결하는 궤적이 기준파동 미세전류의 파형이 되도록 기준파동 미세전류와 메인파동 미세전류가 생성되고, 기준파동 미세전류가 삼각파, 사각파, 톱니파, 사인파, 계단파를 포함하는 DC파 등의 파형을 가지는 구조를 통해 통증, 암, 치매, 바이러스 감염 등의 질병에 대응하거나 인체 성장에 도움을 주기 위한 신체자극의 효율이 증대되도록 하거나, 양식장/수족관의 물고기, 양식하는 동물인 소/돼지/닭/오리 등의 질병과 바이러스 감염 등에 대응하거나 동물 성장 활성화를 위한 생체자극 효율이 증대되도록 한다.
상기와 같이 생체자극 효율이 증대되는 본 발명의 실시예에 따른 파동 중첩형 생체자극용 미세전류 생성방법의 효과는 본 발명자가 공동저자로 참여한 논문 "알츠하이머 질환 마우스에서 중첩주파수를 활용한 미세전류가 인지능력 개선에 미치는 효과"(2019년 5월, 한국산학기술학회 논문지 제20권 제5호 수록)를 통해서도 확인된다.
상기 논문에서는 SAW_Minus파형(중첩Hz 미적용)의 Wave1, SAW파형(중첩 Hz적용)의 Wave2, SQUARE파형(중첩 Hz적용)의 Wave3, STEP FORM파형(중첩 Hz적용)의 Wave4를 미세전류 세기 1μA(250 ohm), 전압 5V, 기본 주파수 7 Hz, Wave2,3,4의 중첩 주파수 44KHz로 생성한 다음, Alzheimer's disease(AD) 마우스 모델에 적용한 결과,
미세전류 Wave4[STEP FORM 파형(0, 1.5, 3, 5V), 중첩Hz 적용] 적용군에서 Aβ 생성 관련 단백질인 β-secretase, presenilin 1, presenilin 2의 발현이 감소하였고 신경영양인자인 brain-derived neurotrophic factor 단백질 발현이 증가하였음이 확인되었다. 이를 통해 AD마우스에서 미세전류를 이용한 손상된 인지능력에 대한 개선 효과가 확인되므로, 본 발명의 실시예에 따른 파동 중첩형 생체자극용 미세전류 생성방법을 적용할 경우, 생체자극 효율이 증대되는 효과를 가짐이 확인된다.
상술한 바와 같은, 본 발명의 실시예에 따른 파동 중첩형 생체자극용 미세전류 생성방법을 상기한 설명 및 도면에 따라 도시하였지만, 이는 예를 들어 설명한 것에 불과하며 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다는 것을 이 분야의 통상적인 기술자들은 잘 이해할 수 있을 것이다.
Claims (5)
- 설정된 기준파동 주파수 범위에 속하는 주파수 크기 및 설정된 생체자극용 미세전류값 범위에 속하는 전류값을 갖는 기준파동 미세전류가 생성되는 기준파동 미세전류 생성단계;상기 기준파동 미세전류의 주파수 크기보다 크게 설정되는 메인파동 미세전류 주파수 범위에 속하는 주파수 크기 및 설정된 생체자극용 미세전류값 범위에 속하는 전류값을 갖는 메인파동 미세전류가 생성되는 메인파동 미세전류 생성단계;상기 기준파동 미세전류와 메인파동 미세전류를 중첩시키는 미세전류 중첩단계;를 포함하는 것을 특징으로 하는 파동 중첩형 생체자극용 미세전류 생성방법.
- 제 1항에 있어서,상기 기준파동 미세전류 생성단계는 기준파동 주파수 범위를 3~30kHz의 극장파(VLF)로 설정하고, 상기 메인파동 미세전류 생성단계는 메인파동 미세전류 주파수 범위를 30kHz~300kHz의 장파(LF)로 설정하는 것을 특징으로 하는 파동 중첩형 생체자극용 미세전류 생성방법.
- 제 1항에 있어서,상기 메인파동 미세전류 생성단계는,상기 메인파동 미세전류의 시간 별 파동 변위값이 해당 시간에서의 상기 기준파동 미세전류의 파동 변위값을 초과하지 않는 제1조건, 상기 메인파동 미세전류의 시간 별 파동 변위값과 해당 시간에서의 상기 기준파동 미세전류의 파동 변위값의 부호가 동일한 제2조건을 모두 만족시키는 파형의 메인파동 미세전류를 생성시키는 것을 특징으로 하는 파동 중첩형 생체자극용 미세전류 생성방법.
- 제 1항에 있어서,상기 메인파동 미세전류 생성단계는,상기 메인파동 미세전류를 이루는 파동의 마루를 연결하는 궤적이 상기 기준파동 미세전류의 파형이 되도록 상기 메인파동 미세전류를 생성시키는 것을 특징으로 하는 파동 중첩형 생체자극용 미세전류 생성방법
- 제 1항에 있어서,상기 기준파동 미세전류 생성단계는,상기 기준파동 미세전류가 삼각파, 사각파, 톱니파, 사인파, 계단파를 포함하는 DC파 군 중에서 선택된 어느 하나의 파형을 가지도록 하되,상기 기준파동 미세전류는 양의 파동 변위값을 갖는 영역만으로 생성되는 것을 특징으로 하는 파동 중첩형 생체자극용 미세전류 생성방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0094512 | 2018-08-13 | ||
KR20180094512 | 2018-08-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020036351A1 true WO2020036351A1 (ko) | 2020-02-20 |
Family
ID=69525591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/009635 WO2020036351A1 (ko) | 2018-08-13 | 2019-08-01 | 파동 중첩형 생체자극용 미세전류 생성방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020036351A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100839675B1 (ko) * | 2007-01-17 | 2008-06-19 | 유서종 | 심부와 표피와의 온도차 조절이 가능한 고주파 치료기 |
KR20120036871A (ko) * | 2009-06-16 | 2012-04-18 | 와보메드 리미티드 | 이동식 정상파 장치 및 방법 |
KR20130125154A (ko) * | 2012-05-08 | 2013-11-18 | 홍정환 | 의료용 레이저 치료기의 전원장치 |
KR20150135335A (ko) * | 2013-03-15 | 2015-12-02 | 소노비아 홀딩스 엘엘씨 | 광 및 초음파 트랜스듀서 장치 |
KR20160108466A (ko) * | 2014-01-10 | 2016-09-19 | 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 | 고주파 파장 투과성의 용량성 센서 패드 |
-
2019
- 2019-08-01 WO PCT/KR2019/009635 patent/WO2020036351A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100839675B1 (ko) * | 2007-01-17 | 2008-06-19 | 유서종 | 심부와 표피와의 온도차 조절이 가능한 고주파 치료기 |
KR20120036871A (ko) * | 2009-06-16 | 2012-04-18 | 와보메드 리미티드 | 이동식 정상파 장치 및 방법 |
KR20130125154A (ko) * | 2012-05-08 | 2013-11-18 | 홍정환 | 의료용 레이저 치료기의 전원장치 |
KR20150135335A (ko) * | 2013-03-15 | 2015-12-02 | 소노비아 홀딩스 엘엘씨 | 광 및 초음파 트랜스듀서 장치 |
KR20160108466A (ko) * | 2014-01-10 | 2016-09-19 | 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 | 고주파 파장 투과성의 용량성 센서 패드 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2021200212B2 (en) | Devices and methods for non-invasive capacitive electrical stimulation and their use for vagus nerve stimulation on the neck of a patient | |
JP7176949B2 (ja) | 経皮直流電流ブロックによる神経伝導変更システム及び方法 | |
JP4879754B2 (ja) | 移植された非活性導電体を介して、身体組織に電流を搬送する方法 | |
JP5108787B2 (ja) | 埋め込まれた受動導体を介して電流を体組織へルーティングする方法 | |
WO2009018394A1 (en) | Device and method for hypertension treatment by non-invasive stimulation to vascular baroreceptors | |
DE60023784D1 (de) | System zur selektiven Aktivierung von Gehirnneuronen, Wirbelsäulenparenchyma oder periphären Nerven | |
US11672972B2 (en) | Nerve stimulation device for unidirectional stimulation and current steering | |
CN201329130Y (zh) | 植入式心脏起搏器双极电极导管 | |
WO2022233103A2 (zh) | 一种用于吞咽障碍治疗的方法 | |
Tyler | Peripheral nerve stimulation | |
WO2020036351A1 (ko) | 파동 중첩형 생체자극용 미세전류 생성방법 | |
WO2023096360A1 (ko) | 복합 자극의 제어 방법 및 복합 자극 장치 | |
CN110870946B (zh) | 刺激脑内缰核和/或髓纹和/或后屈束的装置 | |
Kagan et al. | Magnetic stimulation of mammalian peripheral nerves in vivo: an alternative to functional electrical stimulation | |
Hanson et al. | Technology for multielectrode microstimulation of brain tissue | |
Bracciano | Principles of Electrotherapy | |
Prodanov | Morphometric analysis of the rat lower limb nerves-anatomical data for neural prosthesis design | |
CN205494679U (zh) | 一种电磁一体治疗装置 | |
CN116115904A (zh) | 一种中枢神经刺激系统 | |
Frantz | EFFECTS OF ELECTRICAL STIMULATION | |
MASDAR | Development of a wireless current controlled stimulator for individuals with spinal cord injury | |
Bogaardt | Electrical stimulation in dysphagia treatment: a justified controversy? |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19849997 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.05.2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19849997 Country of ref document: EP Kind code of ref document: A1 |