WO2020036232A1 - Radiation measuring body, and radiation exposure dose measuring device - Google Patents
Radiation measuring body, and radiation exposure dose measuring device Download PDFInfo
- Publication number
- WO2020036232A1 WO2020036232A1 PCT/JP2019/032227 JP2019032227W WO2020036232A1 WO 2020036232 A1 WO2020036232 A1 WO 2020036232A1 JP 2019032227 W JP2019032227 W JP 2019032227W WO 2020036232 A1 WO2020036232 A1 WO 2020036232A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiation
- visible light
- transmitting member
- light transmitting
- dosimeter
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 181
- 210000000695 crystalline len Anatomy 0.000 claims abstract description 160
- 239000011521 glass Substances 0.000 claims abstract description 47
- 238000005259 measurement Methods 0.000 claims description 71
- 230000005284 excitation Effects 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 19
- 210000000056 organ Anatomy 0.000 claims description 17
- 238000005192 partition Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 4
- 210000005252 bulbus oculi Anatomy 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 abstract description 17
- 230000000903 blocking effect Effects 0.000 abstract description 2
- 239000000843 powder Substances 0.000 description 40
- 231100000987 absorbed dose Toxicity 0.000 description 25
- 230000004048 modification Effects 0.000 description 24
- 238000012986 modification Methods 0.000 description 24
- 238000001514 detection method Methods 0.000 description 23
- 238000010586 diagram Methods 0.000 description 19
- 230000003287 optical effect Effects 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 17
- 210000001508 eye Anatomy 0.000 description 12
- 229920003002 synthetic resin Polymers 0.000 description 11
- 239000000057 synthetic resin Substances 0.000 description 11
- 230000001678 irradiating effect Effects 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 8
- 238000000342 Monte Carlo simulation Methods 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 210000000744 eyelid Anatomy 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005424 photoluminescence Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000000904 thermoluminescence Methods 0.000 description 3
- 241001460678 Napo <wasp> Species 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004980 dosimetry Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002697 interventional radiology Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000013146 percutaneous coronary intervention Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 206010020675 Hypermetropia Diseases 0.000 description 1
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- -1 Then Inorganic materials 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000005250 beta ray Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000003503 early effect Effects 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 230000004305 hyperopia Effects 0.000 description 1
- 201000006318 hyperopia Diseases 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007775 late Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 208000001491 myopia Diseases 0.000 description 1
- 230000004379 myopia Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000006100 radiation absorber Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000002105 tongue Anatomy 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 210000000216 zygoma Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/02—Dosimeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T7/00—Details of radiation-measuring instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/10—Safety means specially adapted therefor
Definitions
- the present invention relates to a radiation measuring body and a radiation exposure measuring device.
- IVR Interventional Radiology
- Radiation generally used in medical equipment using radiation has a higher density than radiation that is normally exposed to the human body in a normal environment.
- the medical device using radiation can provide a high therapeutic effect to the affected part of the patient by the high-density radiation dose (dose).
- dose high-density radiation dose
- overirradiation of the affected area of the patient with radiation in excess of an appropriate dose and irradiation of non-treated areas other than the affected area with radiation must be avoided.
- dose management at non-treatment sites other than the affected area of the patient is important.
- radioisotope handling facility a facility that handles radioisotopes
- radiation generators or nuclear facilities
- workers near the accident site May be subject to uneven exposure (where there are other sites that are more likely to be exposed than the male chest and female abdomen). Therefore, in a normal state where no severe accident has occurred, radiation measurement management that assumes various types of radiation generation and exposure to workers in radioisotope element handling facilities, radiation generators, nuclear facilities, etc. Need to be continuously implemented under appropriate management.
- ion beams such as heavy ion beams and proton beams generated from large accelerator facilities, neutron beams, medical radiation such as ⁇ -rays and X-rays, etc.
- generalization progressing. As such generalization progresses, the possibility that a greater variety of unequal exposures will occur to healthcare workers, patients, patient caregivers, and other intervening persons present at the time of the medical procedure. I have.
- Personal dosimeters are used to measure and manage external dose at each individual level.
- Personal dosimeters include radio-photoluminescence (RPL) fluorescent glass dosimeters, thermoluminescence dosimeters (Thermo-Luminescence Dosimeter; TLD), photostimulable (Optically Stimulated Luminescence: OSL) dosimeters,
- RPL radio-photoluminescence
- TLD thermoluminescence Dosimeter
- OSL Optically Stimulated Luminescence
- dosimeters such as film badges, which are used in conjunction with semi-real-time personal dosimeters such as ionization chamber dosimeters and electronic dosimeters. The operation of these dosimeters is managed in accordance with laws and regulations.
- the International Commission on Radiation Protection (ICRP) has implemented a law on prevention of radiation hazards that incorporates the 1990 recommendations from April 1, 2001.
- ICRP International Commission on Radiation Protection
- the lens of the eye is managed according to a dose standard of 150 mSv / year as an equivalent dose limit for an individual site.
- Patent Documents 1, 2, and 3 Prior art documents close to the technical field of the present invention are shown in Patent Documents 1, 2, and 3 and Non-Patent Documents 1 to 5.
- Patent Literature 1 discloses a technique related to a dosimeter that realizes both improvement of an electromagnetic shielding function and reduction in size, weight, and cost.
- Patent Literature 2 discloses a technique relating to an absorbed dose management device for precisely managing the absorbed dose of medical staff.
- Patent Literature 3 discloses a technique related to an eyeglass-type structure device for reducing the radiation dose to the lens of the eye.
- Non-Patent Documents 1 and 2 disclose various dosimeters that are assumed to be used under protective glasses.
- Non-Patent Literature 3 and Non-Patent Literature 4 disclose guidelines on the equivalent dose limit of the crystalline lens of a radiation worker.
- Non-Patent Document 5 describes that a radiation dosimeter according to the prior art has a problem in direction dependency.
- Non-Patent Document 6 describes technical information on protective equipment such as protective clothing and protective glasses for protecting a human body against diagnostic X-rays.
- JP 2005-221463 A Japanese Patent No. 5072662 JP-A-2005-152548
- the lens exposure dose evaluation method for individuals has not been completely established and is a social issue.
- the protection of the lens of the human eye in a structure that satisfies the requirements of “protective clothing, protective glasses, and patient protective equipment” listed in JIS T 61331-3, regardless of the presence or absence of the IVR procedure, Several X-ray protective glasses have been developed to be worn by an operator and to protect their eyes. In addition to devices that describe lead equivalents using photon attenuation by lead, there are devices that claim dose attenuation with a structure as described in Patent Document 3, but how much dose is actually given through these devices.
- an exposure dose measurement method that can be used for evaluation of the lens exposure over a wider range, and has a structure that covers the eye lens over a wide area and has a structure that can also assume ⁇ -ray incidence between the radiation source and the dosimeter and the lens Maintenance is required.
- the present invention has been made in view of the above circumstances, has a simple structure, can be realized at relatively low cost, and can quickly and accurately measure an exposure amount of a subject such as a crystalline lens.
- An object of the present invention is to provide an exposure dose measuring device.
- the radiation measuring body of the present invention is a visible light transmitting member formed with a dosimeter capable of transmitting visible light at least partially, the visible light transmitting member of at least one of the crystalline lens of the wearer A placement tool to be placed in the vicinity, and a visible light transmitting member fixing tool interposed between the visible light transmitting member and the placement tool for fixing the visible light transmitting member to the placement tool are provided.
- a radiation measuring body and a radiation exposure dose measuring device which can be realized at a relatively low cost with a simple structure and can quickly and accurately measure the exposure dose of a subject such as a crystalline lens. Can be. Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.
- FIG. 3 is a block diagram illustrating a hardware configuration of the radiation exposure dose measuring device. It is a block diagram which shows the software function of a radiation exposure measuring device. 5 is a graph of a signal obtained from a linear amplifier and a graph of a current flowing through an excitation light emitting unit. It is a functional block diagram which shows the detail of the process which estimates the radiation exposure dose in a wearer's lens and each organ performed by the input-output control part. It is the schematic of the holding stand and partition provided in the inside of a light shielding box.
- FIG. 1A is an external view of a radiation measurement body 101 according to the first embodiment of the present invention.
- the radiation measurement body 101 has a well-known eyeglass shape.
- the lenses 102a and 102b of the radiation measuring body 101 are inexpensive, and the lenses 102a and 102b are a dosimeter (Radio-Photoluminescence dosimeter: fluorescent glass dosimeter (RPL), a thermoluminescence dosimeter (Thermo- It has a Luminescence Dosimeter (TLD) and a photostimulated luminescence (Optically Stimulated Luminescence: OSL) dosimeter.
- RPL fluorescent glass dosimeter
- TLD Luminescence Dosimeter
- OSL photostimulated luminescence
- the left and right lenses 102a and 102b having the function of the dosimeter are fixed by rims 103a and 103b constituting a part of the frame of the glasses.
- the rims 103a and 103b are fixed by bridges 104. Further, the rims 103a and 103b are connected to the temples 107a and 107b via clasps 105a and 105b and hinges 106a and 106b.
- the bridge 104 for fixing the rims 103a and 103b, and the tongues 105a and 105b, the hinges 106a and 106b, and the temples 107a and 107b are those who mount the lenses 102a and 102b as visible light transmitting members on the radiation measuring body 101 (wearing).
- the rims 103a and 103b are interposed between the visible light transmitting member and the placement device, and serve as visible light transmitting member fixing devices for fixing the visible light transmitting member to the placement device.
- the wearer refers to a person who wears and uses the radiation measurement body in a state close to his / her eyes, such as eyeglasses.
- the eyelid is an organ that covers the eyeball, and the eyeball contains the lens. Therefore, the bridge 104 for fixing the rims 103a and 103b, and the chimneys 105a and 105b, the hinges 106a and 106b, and the temples 107a and 107b are provided with the lenses 102a and 102b that are visible light transmitting members and the person who wears the radiation measurement body 101. It can also be said that it has a function as a placement tool placed near at least one lens of the (wearer).
- the radiation measuring body 101 is a well-known eyeglass itself except that the lenses 102a and 102b having no power have a function of a dosimeter capable of transmitting visible light.
- there is an article called overglass which is one size larger than normal glasses and can be worn so as to cover normal glasses used by the wearer.
- the radiation measurement object 101 according to the first embodiment of the present invention is described. May be configured with the shape and size of the overglass.
- FIG. 1B is an external view of a radiation measurement body 121 according to the second embodiment of the present invention.
- the radiation measuring body 121 has a shape of a well-known goggle.
- the transparent lens 122 which is a main component of the goggles, has a dosimeter capable of transmitting visible light.
- the lens 122 having a dosimeter function is fixed by a goggle frame 123.
- a face pad 124 is provided on the side of the frame 123 that contacts the face of the wearer.
- straps 125 made of elastic rubber bands are connected.
- the strap 125 is an arrangement tool that arranges the lens 122, which is a visible light transmitting member, near at least one of the eyelids of the wearer by being wrapped around the wearer's head.
- the frame 123 is interposed between the visible light transmitting member and the placement device, and functions as a visible light transmitting member fixing device for fixing the visible light transmitting member to the placement device.
- the external shape of the radiation measurement body 121 is a well-known goggle, except that the lens has a function of a dosimeter capable of transmitting visible light.
- the radiation measurement body 121 according to the second embodiment of the present invention may be configured to have a shape and a size that can be put on ordinary glasses.
- FIG. 1C is an external view of a radiation measuring body 131 according to the third embodiment of the present invention.
- the radiation measuring body 131 has a shape of a well-known retro sunglass.
- the lenses 132a and 132b without transparency, which are the main components of the retrofit sunglasses, have a dosimeter that can transmit visible light.
- the left and right lenses 132a and 132b having a dosimeter function are fixed by screws or the like by a bridge 133.
- the bridge 133 is provided with a clip 134 for holding the lens of the glasses.
- the clip 134 has a function of fixing the lenses 132a and 132b, which are visible light transmitting members, to at least one of the eyelids of the wearer by fixing the glasses to the glasses worn by the wearer.
- the bridge 133 is interposed between the visible light transmitting member and the placement device, and functions as a visible light transmitting member fixing device for fixing the visible light transmitting member to the placement device.
- the radiation measuring body 131 is a well-known retro sunglass itself. Note that the method of fixing the left and right lenses is not limited to screwing the bridge 133 described above, and rims 103a and 103b and a bridge 104 similar to FIG. 1A may be used.
- the radiation measurement body 131 according to the third embodiment of the present invention can be worn in the same usage form as the retrofit sunglasses by attaching the radiation measurement body 131 to the lens of the eyeglasses used by the wearer with the clip 134. Further, the radiation measuring body 131 can be attached to a safety hat instead of the wearer's glasses by configuring the clip 134 to be rotatable or by providing a predetermined attachment.
- the dosimeter irradiated with X-rays or ⁇ -rays When the dosimeter irradiated with X-rays or ⁇ -rays is irradiated with excitation light, it emits fluorescence having a wavelength corresponding to a level formed by radiation such as orange.
- the intensity and time of the fluorescent light emission are proportional to the intensity of the X-ray or ⁇ -ray and the irradiation time, that is, the exposure dose.
- a worker who does not need to use eyeglasses in daily life and has a normal eyesight can use the eyeglass-shaped radiation measurement body 101 shown in FIG. 1A or the goggle shown in FIG.
- the radiation measuring body 121 having a shape is mounted.
- the radiation measurement body 101 shown in FIG. 1B, the goggle-shaped radiation measurement body 121 shown in FIG. 1B is attached, or the retrofitted sunglasses-shaped radiation measurement body 131 shown in FIG.
- FIG. 2A is a schematic view illustrating a first step of a method of manufacturing a flat lens according to a first modification.
- FIG. 2B is a schematic view showing a second step of the method for manufacturing a flat lens.
- the temperature of the crucible 201 into which the material powder has been charged is raised from room temperature to 1000 ° C. over 1 hour. Thereafter, the state at 1000 ° C. is maintained for one hour.
- the heating is indicated by the gas burner S205 or the like, but an electric furnace may be used.
- FIG. 2C is a schematic view showing a third step of the method of manufacturing a flat lens.
- the dosimeter material melted in the crucible 201 is poured onto the aluminum plate 206 at room temperature. That is, the dosimeter material is cooled by the rapid cooling method. Then, a glass plate 207 having a dosimeter function is formed.
- FIG. 2D is a schematic view showing a fourth step of the method of manufacturing a flat lens.
- the glass plate 207 having a dosimeter function formed on the aluminum plate 206 is cut into a desired shape using a contour saw or the like. That is, in the lens formed by the process of FIG. 2, the entire lens is made of glass having a dosimeter function.
- FIG. 2 illustrates an example of the RPL glass made of NaPO 3 and Al (PO 3 ) 3
- a lens may be formed using other materials such as RPL glass, OSL material, and TLD material.
- FIG. 3A is a schematic diagram illustrating a fluorescence phenomenon formed in the dosimeter glass plate 301 as a result of vertically irradiating the dosimeter glass plate 301 with a charged particle beam.
- FIG. 3B is a schematic diagram illustrating a fluorescence phenomenon formed in the dosimeter glass plate 301 as a result of irradiating the flat dosimeter glass plate 301 with a charged particle beam at a predetermined angle.
- a large number of conical fluorescent change portions 302 appear in a direction parallel to the irradiation directions V303 and V304 of the charged particle beam.
- the dosimeter glass plate 301 is enlarged by a microscope or the like in the stage of measuring the amount of light emission by irradiating the excitation light. This makes it possible to confirm the irradiation direction of the radiation. That is, in the lens formed by the process of FIG. 2, due to the radiation exposure, a fluorescence changing portion 302 shown in FIG. 3A and FIG.
- the flat lens formed by the manufacturing method according to the first modification shown in FIG. 2 is heated to about 300 ° C. after being irradiated with radiation and further irradiated with excitation light by a measuring device described later. As a result, an annealing phenomenon occurs, and the sensitivity to radiation can be restored again. That is, the lens can be repeatedly used by heating.
- the entire frame of the eyeglass-shaped radiation measurement body 101 shown in FIG. 1A is made of a heat-resistant material, so that the entire radiation measurement body 101 can be heated and reused.
- the goggle-shaped radiation measurement body 121 shown in FIG. 1B is configured so that the lens can be detached from the frame, so that the lens can be removed from the frame, heated, and reused.
- the radiation measurement body 131 in the form of retrofit sunglasses shown in FIG. 1C is configured so that the lens can be detached from the bridge, so that the lens can be removed from the bridge, and the lens can be heated and reused.
- the bridge and the clip may be made of a material having heat resistance, and the entire radiation measuring body 131 may be heated and made reusable similarly to the radiation measuring body 101 of FIG. 1A.
- FIGS. 1 and 2 The lens disclosed in FIGS. 1 and 2 is entirely formed of a glass plate having a dosimeter function. Although this lens can be repeatedly reused by annealing, the cost of the material itself is high, and an expensive machine tool or the like must be used to form a curved shape. Therefore, as a method of forming a cheaper lens, a method of manufacturing the dosimeter powder according to the second modified example will be described with reference to FIGS. 4A, 4B, 4C, and 4D.
- FIG. 4A is a schematic diagram illustrating a first step of a method for manufacturing dosimeter powder 403 according to a second modification.
- the dosimeter glass plate 301 prepared in FIG. 2C or FIG. 2D is finely crushed using a well-known pestle and mortar to obtain a raw dosimeter powder 401.
- FIG. 4B is a schematic diagram illustrating a second step of the method for manufacturing dosimeter powder 403.
- the dosimeter raw powder 401 created in FIG. 4A is classified using 1 mm and 0.5 mm sieves 402a and 402b to extract a 0.5-1 mm diameter dosimeter powder 403.
- FIG. 4C is a schematic diagram illustrating a third step of the method for manufacturing dosimeter powder 403.
- the dosimeter powder 403 extracted in FIG. 4B is put into the crucible 201 together with the carbon powder and stirred. Then, it heats at 550 degreeC for 3 hours.
- FIG. 4D is a schematic diagram illustrating a fourth step of the method of manufacturing dosimeter powder 403.
- the dosimeter powder 403 heated in FIG. 4C is cleaned in pure water 404 using an ultrasonic cleaner.
- Various methods can be considered for forming a thin layer of dosimeter on the front and / or back surface of the transparent synthetic resin plate by fixing the dosimeter powder 403 or the fine particles of the dosimeter on the surface of the transparent synthetic resin plate.
- it is applied by being mixed with a synthetic resin adhesive, paint or binder.
- vacuum evaporation such as sputtering, resistance heating evaporation, and electron beam evaporation is also possible in principle.
- the dosimeter powder 403 may be applied to existing commercially available glasses, Date glasses, goggles, retrofit sunglasses and other lenses, or lead-containing glass lenses of protective glasses described in Non-Patent Document 6.
- FIG. 5A is a partially enlarged view showing a lens 501 having a dosimeter function according to a third modification.
- FIG. 5B is a partial cross-sectional view of a lens 501 having a dosimeter function according to a third modification.
- the lens 501 illustrated in FIGS. 5A and 5B is assumed to be applied to the radiation measurement body 101 according to the first embodiment illustrated in FIG. 1A and the radiation measurement body 131 according to the third embodiment illustrated in FIG. 1C. Although the shape is the same, the same technical idea can be applied to the radiation measurement body 121 according to the second embodiment shown in FIG. 1B.
- 5A and 5B has a dosimeter layer 503 formed by applying the dosimeter powder 403 described in FIG. 4 to the entire surface of a transparent synthetic resin base material 502. Further, a transparent scintillator 504 such as cesium iodide is applied on the periphery of the dosimeter layer 503.
- a transparent scintillator 504 such as cesium iodide is applied on the periphery of the dosimeter layer 503.
- the dosimeter does not emit light only when irradiated with radiation, but emits light only when irradiated with stimulating light such as ultraviolet light from an excitation light source. That is, even if excessive radiation is applied to the wearer of the radiation measurement body, it is impossible to determine in real time whether or not the currently exposed state is dangerous. Therefore, if the scintillator 504 is applied to the periphery of the lens 501 of the radiation measurement body, the scintillator 504 emits light in real time when radiation is irradiated. In the light emission state of the scintillator 504, the wearer of the radiation measuring body can instantaneously determine that danger is imminent on his or her body.
- the reason for applying the scintillator 504 only to the periphery of the lens 501 is that if the scintillator 504 is applied to the entire surface of the lens 501, it obstructs the field of view of the wearer of the radiation measurement body and significantly impedes the evacuation behavior of the wearer. This is a result in consideration of fear.
- the dosimeter layer 503 may be formed on the back surface or both surfaces of the base material 502 by coating or the like.
- the dosimeter powder 403 is applied to the entire surface of the lens made of a synthetic resin.
- the area for measuring the emission of the dosimeter applied to the lens is limited because the excitation light is focused on the surface of the lens by the optical system.
- the dosimeter powder 403 is not applied to the entire surface of the lens, if the dosimeter powder 403 is applied to the minimum necessary portion, the desired purpose of measuring the radiation exposure of the lens of the wearer can be achieved. It is possible.
- FIG. 6A is a schematic diagram illustrating an application range of the dosimeter powder 403 on the lenses 601a and 601b of the radiation measurement body 101 according to the fourth modification.
- FIG. 6B is a schematic diagram illustrating a state in which radiation is applied to the dosimeter powder 403 applied to the lenses 601a and 601b of the radiation measurement body 101 according to the fourth modification.
- 6A, 6B, 6C, and 6D the radiation measurement body 101 according to the first embodiment illustrated in FIG. 1A is described as an example, but according to the second embodiment illustrated in FIG. 1B.
- the same technical idea can be applied to the radiation measurement body 121 and the radiation measurement body 131 according to the third embodiment shown in FIG. 1C.
- the lenses 601a and 601b of the radiation measurement body 101 shown in FIGS. 6A and 6B have first detection areas 602a and 602b in which dosimeter powder 403 is applied near the bridge (closer to the wearer's nose).
- the second detection regions 603a and 603b on which the dosimeter powder 403 is applied (on the side close to the wearer's ear) are provided.
- the radiation measurement body 101 in the form of glasses is curved along the contour of the wearer's face as shown in FIG. 6B.
- the irradiation angles of the radiation are different between the first detection areas 602a and 602b and the second detection areas 603a and 603b. There is a difference in the amount of exposure in each detection area.
- the second detection areas 603a and 603b are formed on the side closer to the wearer's ear, it is possible to objectively infer whether the radiation is emitted from the right side or the left side of the wearer. .
- the right second detection region 603a has a relative angle relationship closer to a right angle with respect to the radiation irradiation direction V604 than the left second detection region 603b. Therefore, when the excitation light is applied to the second detection area 603a on the right and the second detection area 603b on the left, it is considered that the fluorescence emission time of the second detection area 603a on the right is longer than that of the second detection area 603b on the left. . Therefore, the irradiation direction of the radiation can be inferred from the difference in the amount of light generated when the second detection regions 603a and 603b are irradiated with the stimulating light such as the ultraviolet light from the excitation light source.
- the stimulating light such as the ultraviolet light from the excitation light source.
- FIG. 6C is a schematic diagram illustrating an application range of the dosimeter powder 403 on the lenses 611a and 611b of the radiation measurement body 101 according to the fifth modification.
- FIG. 6D is a schematic diagram illustrating a state in which radiation is applied to the dosimeter powder 403 applied to the lenses 611a and 611b of the radiation measurement body 101 according to the fifth modification.
- the first detection regions 612a and 612b of the lenses 611a and 611b of the radiation measurement body 101 illustrated in FIGS. 6C and 6D are equivalent to the lenses 601a and 601b according to the fourth modification illustrated in FIGS. 6A and 6B.
- tongue-shaped extension protrusions 613a and 613b are further formed near the temple (on the side near the ear of the wearer), and the dosimeter powder 403 is applied to the extension protrusions 613a and 613b.
- the extended projections 613a and 613b that form the second detection area are formed closer to the wearer's ear than the second detection areas 603a and 603b in the fourth modification. For this reason, it is possible to objectively analogize whether the radiation is emitted from the right side or the left side of the wearer more clearly than in the fourth modification.
- the radiation measurement body according to the present invention described above has the following embodiments.
- the radiation measuring body 121 has a goggle shape.
- the radiation measuring body 131 is a sunglass-shaped retrofit.
- the lens (visible light transmitting member) applied to the radiation measuring object according to the present invention described in the above (1), (2) and (3) has the following modifications.
- the entire lens is formed by a dosimeter.
- the base material of the lens is formed of a transparent synthetic resin, and dosimeter powder 403 is applied to the entire surface.
- (6) As shown in FIG.
- the base material 502 of the lens 501 is formed of a transparent synthetic resin
- the dosimeter powder 403 is applied to the entire surface
- the scintillator 504 is further applied to the lens periphery. I have.
- the base material of the lenses 601a and 601b is formed of a transparent synthetic resin
- the first detection regions 602a and 602b are provided on the side near the nose of the wearer as ears of the wearer.
- the dosimeter 403 is applied as the second detection areas 603a and 603b on the side closer to.
- extension protrusions 613a and 613b are formed near the wearer's cheekbone of the lenses 611a and 611b, and dosimeter powder 403 is applied to the extension protrusions 613a and 613b. .
- FIG. 7 is a schematic diagram showing the overall configuration of the radiation exposure dose measuring device 701.
- the radiation exposure dose measuring device 701 includes a light shielding box 703 for confining the radiation measuring body 702 and a computer 704 connected to the light shielding box 703.
- a well-known personal computer is connected as an example of the computer 704, but a well-known one-board microcomputer may be used.
- FIG. 8 is a block diagram illustrating a hardware configuration of the radiation exposure dose measuring device 701.
- the light shielding box 703 includes a holding table 801 for holding the radiation measurement body 702 therein, a motor 802 for driving the holding table 801, an excitation light emitting unit 803 for irradiating the radiation measurement body 702 with excitation light, It has a fluorescence receiving unit 804 for converting fluorescence generated from the radiation measurement body 702 into an electric signal, an optical system 805a for condensing excitation light on the radiation measurement body 702, and an optical system 805b for condensing fluorescence to the fluorescence reception unit 804. .
- the holding table 801 and the motor 802 are provided to change the relative positional relationship between the optical systems 805a and 805b and the radiation measurement body 702.
- the weak voltage signal output from the fluorescent light receiving unit 804 including a photodiode, a phototransistor, a CMOS sensor, and the like is integrated by the charge amplifier 806 and further amplified by the linear amplifier 807.
- the output signal of the linear amplifier 807 is converted into digital data by the A / D converter 819 of the computer 704. Note that the A / D converter 819 may be provided in the light shielding box 703.
- the computer 704 includes a CPU 812, a ROM 813, a RAM 814, a display unit 815, an operation unit 816, a nonvolatile storage 817, a serial interface such as a USB (hereinafter, abbreviated as “serial I / F”) 818 connected to the bus 811, and A A / D converter 819 is provided.
- the non-volatile storage 817 stores a program for operating the computer 704 as the radiation exposure dose measuring device 701.
- a motor 802 and an excitation light emitting unit 803 are connected to the serial I / F 818.
- FIG. 9 is a block diagram illustrating a software function of the radiation exposure dose measuring device 701.
- Digital data output from the A / D converter 819 is input to the input / output control unit 902 via the switch 901.
- the switch 901 is on / off controlled by the sequence control unit 903.
- the input / output control unit 902 performs a time integration process on data input via the switch 901 to calculate a radiation exposure dose. Then, the calculated radiation exposure amount is displayed on the display unit, and is recorded in a predetermined file in the nonvolatile storage.
- the sequence control unit 903 transmits an on / off control signal to the excitation light emitting unit 803 and the switch 901. Specifically, the switch 901 is turned on after a predetermined time interval has elapsed after the excitation light emitting unit 803 emits light for a predetermined time.
- FIG. 10 is a graph of a signal obtained from the linear amplifier 807 and a graph of a current flowing through the excitation light emitting unit 803.
- a signal is generated from the fluorescent light receiving unit 804 slightly after the start of the excitation light irradiation (T1001) (T1003). Slightly after the end of the excitation light irradiation (T1002), the signal generated from the fluorescent light receiving unit 804 temporarily stops (T1004).
- the signal obtained from the linear amplifier 807 between the time points T1003 and T1004 is noise that depends only on the irradiation time of the excitation light. Then, after a short time interval from the time T1004, the dosimeter starts to emit light spontaneously (T1005). This light emission continues until time T1006.
- the light emission from the time T1005 to the time T1006 is a fluorescence phenomenon depending on the radiation exposure dose, and the end time of the time T1006 fluctuates before and after depending on the radiation exposure dose.
- the input / output control unit 902 must exclude the noise from the time point T1003 to the time point T1004 among the signals obtained from the linear amplifier 807 and make only the signal due to the fluorescent phenomenon from the time point T1005 to the time point T1006 into the calculation target. Must.
- a sequence control unit 903 is provided to mask the signals from time T1001 to T1005.
- the radiation exposure dose of the crystalline lens is lower than when the radiation measuring body 702 is not mounted. Further, since the lens of the radiation measurement body 702 and the lens of the wearer have different compositions and densities, the absorbed dose of radiation differs. The correlation between the radiation dose of the radiation measurement body 702 and the radiation dose of the lens exposure is estimated by simulation.
- the input / output control unit 902 of the radiation exposure dose measuring device 701 has a correction operation function based on the above-described dose estimation method.
- the wearer does not wear radiation protective clothing, it is considered that equal exposure (a situation in which the whole body of the person to be exposed to radiation is almost uniformly exposed to radiation) is applied.
- the radiation exposure dose to the wearer's lens calculated from the radiation measurement body 702 is multiplied by a predetermined coefficient to estimate the radiation exposure dose to other organs or tissues other than the wearer's lens. It becomes possible to do.
- FIG. 11 is a functional block diagram illustrating the details of the processing performed by the input / output control unit 902 for estimating and calculating the radiation exposure dose to the wearer's lens and each organ.
- the RPL read amount input from the A / D converter 819 and read from the left lens of the radiation measurement object is M rad (L)
- the RPL read amount read from the right lens is M rad (R).
- the left and right lens RPL reading amounts 1101 consisting of M rad (L) and M rad (R) are respectively multiplied by the absorption dose calibration constant 1102 of the radiation absorber determined in the calibration standard field by the first multiplier 1103. Note that the 11 and absorbed dose calibration constant 1102 on formulas and N D.
- the absorbed dose D rad (L) of the left lens of the radiation measuring object and the absorbed dose D rad (R) of the right lens of the radiation measuring object are derived by the following equations.
- D rad (L) N D ⁇ M rad (L)
- D rad (R) N D ⁇ M rad (R)
- an average absorbed dose 1106 is calculated by the average calculator 1105.
- the ratio between the 3 mm dose equivalent H p (3) in the Monte Carlo simulation and the average absorbed dose of the radiation measuring body in the Monte Carlo simulation, which has been calculated in advance by the Monte Carlo simulation, is defined as a 3 mm dose equivalent calibration constant 1107.
- the 3 mm dose equivalent is a dose equivalent at a depth of 3 mm from the body surface, which is used as an index of the dose equivalent of the crystalline lens.
- the average value 1106 of the absorbed dose is multiplied by a 3 mm dose equivalent calibration constant 1107 by the second multiplier 1108 to derive a 3 mm dose equivalent 1109. That is, the 3 mm dose equivalent 1109 is calculated by the following equation.
- the left and right lens absorbed dose 1104 composed of D rad (L) and D rad (R) is also input to the radiation incident angle calculation unit 1110.
- the radiation arrival angle calculation unit 1110 derives a relation of the radiation arrival angle 1111 with high expectation to the left and right dose ratio D rad (L) ⁇ D rad (R) in the left and right lens absorbed dose 1104 in advance by Monte Carlo simulation. , In a table or the like. Then, a radiation flying angle 1111 corresponding to the input left and right lens absorbed dose 1104 is output. Note that the radiation arrival angle 1111 in FIG. 11 and the mathematical expression is ⁇ rad .
- the absorbed dose average value 1106 and the radiation angle of incidence 1111 are input to the organ absorbed dose calculation unit 1113.
- the organ absorbed dose calculation unit 1113 searches for the organ incident angle absorbed dose ratio 1112 at the radiation incident angle 1111, derives a table of coefficients for each organ at the corresponding radiation incident angle, and multiplies by the absorbed dose average value 1106. . That is, the organ absorbed dose 1114 in the organ T is calculated by the following equation.
- FIG. 12 is a schematic diagram of the holding table 801 and the partition 1201 provided inside the light shielding box 703.
- a dosimeter formed on a lens irradiated with radiation emits visible light by a fluorescent phenomenon when irradiated with excitation light.
- the radiation measurement body 702 is put in the light shielding box 703, and measures the light emission amount of the dosimeter in a state where external light is shielded.
- the excitation light emitting unit 803 such as an ultraviolet LED or a laser diode is driven to emit light with constant power using a known constant current circuit.
- the excitation light emitting unit 803 such as an ultraviolet LED or a laser diode is driven to emit light with constant power using a known constant current circuit.
- the excitation light will be dispersed over a wide area and the fluorescent light generated over a wide area It is difficult to condense the light on the fluorescent light receiving unit 804 without leaving the light.
- an optical system called a PL system (Photoluminescence) in which a light emitting optical system and a light receiving optical system are separately configured.
- an optical system called a confocal system and a light emitting optical system and a light receiving optical system that share an objective lens.
- the holding table 801 and the motor 802 are provided to change the relative positional relationship between the optical systems 805a and 805b and the visible light transmitting member, and execute measurement at a plurality of positions on the lens.
- a visible light transmitting member such as a lens constituting the dosimeter is made of glass or a transparent synthetic resin, and thus has optical characteristics such as refracting and reflecting light.
- the excitation light is no exception, and a part of the excitation light applied to the visible light transmitting member is irregularly reflected in various directions. Then, the irregularly reflected excitation light is irradiated on the dosimeter on the visible light transmitting member outside the measurement target, and fluorescence may be generated in another measurement portion even though measurement is not performed.
- a partition 1201 is provided.
- the partition 1201 eliminates the possibility that, when measuring the fluorescence of one visible light transmitting member, the excitation light that has been irregularly reflected is applied to the other visible light transmitting member.
- the radiation measuring body and the radiation exposure dose measuring device 701 having various forms are disclosed.
- the radiation measuring body can be realized by forming a transparent dosimeter on a lens in the form of well-known glasses, goggles, retro-fitted sunglasses, or the like.
- the entire lens may be formed of dosimeter glass, or dosimeter powder obtained by pulverizing dosimeter glass may be applied to a transparent synthetic resin.
- a scintillator may be formed on the periphery of the lens or on the entire surface or a part of the lens.
- the range in which the dosimeter is formed on the lens may be the entire lens, but if the dosimeter layer is formed on the front and / or back surface of the lens on the side near the right ear and the side near the left ear of the wearer by coating or the like.
- the irradiation direction of radiation can be inferred.
- the extension protrusions 613a and 613b may be formed on the lens.
- the radiation exposure dose measuring device 701 includes a light shielding box 703 for confining the radiation measuring body 702 and blocking external light, and a computer 704.
- the computer 704 includes a sequence control unit 903 that controls a switch 901 that shuts off noise when irradiating the radiation measurement body 702 with excitation light and measuring the amount of light emission. Further, a partition 1101 is provided inside the light shielding box 703 to prevent light from leaking.
- 101 radiation measuring body, 102a, 102b: lens, 103a, 103b: rim, 104: bridge, 105a, 105b: tomo, 106a, 106b: hinge, 107a, 107b: temple, 121: radiation measuring body, 122: lens , 123 ... frame, 124 ... face pad, 125 ... strap, 131 ... radiation measuring body, 132a, 132b ... lens, 133 ... bridge, 134 ... clip, 201 ... crucible, 206 ... aluminum plate, 207 ... glass plate, 301 ...
- Dosimeter glass plate, 302 fluorescence changing portion
- 401 dosimeter raw powder
- 402a, 402b sieve
- 403 dosimeter powder
- 404 pure water
- 501 lens
- 502 base material
- 503 dosimeter layer
- 504 ... Scintillator, 601a, 601b ...
- lens 602a, 02b: First detection area, 603a, 603b: Second detection area, 611a, 611b: Lens, 612a, 612b: First detection area, 613a, 613b: Extended projection, 701: Radiation exposure dose measuring device, 702: Radiation Measurement object, 703: light shielding box, 704: computer, 801: holding table, 802: motor, 803: excitation light emitting unit, 804: fluorescent light receiving unit, 805a, 805b: optical system, 806: charge amplifier, 807: linear Amplifier, 811 bus, 812 CPU, 813 ROM, 814 RAM, 815 display unit, 816 operation unit, 817 nonvolatile storage, 818 serial interface, 819 A / D converter, 901 switch , 902, an input / output control unit, 903, a sequence control unit, 1101, a left and right lens RPL reading amount, 1102 Absorbed dose calibration constant, 1103 first multiplier, 1104 left and right lens absorbed dose, 11
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
Abstract
The objective of the present invention is to provide a radiation measuring body and a radiation exposure dose measuring device which can be realized relatively inexpensively using a simple structure, and with which the exposure dose to which the crystalline lens of a subject, for example, is subjected can be measured rapidly and accurately. The radiation measuring body can be realized by forming a transparent dosimeter on a lens in the form of known spectacles, goggles, retrofitted sunglasses and the like, or protective glasses. The radiation exposure dose measuring device consists of a light shielding box in which the radiation measuring body is confined in order to block external light, and a computer. The computer includes a sequence control unit which controls a switch for blocking noise when the radiation measuring body is irradiated with exciting light and an amount of emitted light is measured.
Description
本発明は、放射線計測体及び放射線被曝量計測装置に関する。
The present invention relates to a radiation measuring body and a radiation exposure measuring device.
近年、低侵襲医療行為として、画像下治療(Interventional Radiology:インターヴェンショナルラジオロジー、IVR)が普及しつつある。この画像下治療のうち、X線等の放射線発生装置を用いる医療行為で、介助者が必要となる条件下では、主に医療従事者である介助者の断続的かつ長期間の放射線被曝が問題になる。
In recent years, as a minimally invasive medical practice, interventional radiology (Interventional Radiology, IVR) is becoming widespread. Under this image-based treatment, intermittent and long-term radiation exposure of caregivers, who are mainly healthcare workers, is a problem under medical conditions that require a radiation generator such as X-rays. become.
一般に放射線を用いた医療装置で用いられる放射線は、通常の環境中で常態的に人体が被曝する放射線に比べて高密度である。放射線を用いた医療装置は、この高密度な放射線量(線量)により、患者の患部に対して高い治療効果を与えることが可能になる。しかしながら、患者の患部に対する適正な線量を超えた放射線の過剰照射や、患部以外の非治療部位に対する放射線の照射は回避しなければならない。このような放射線による負の影響を最小限に抑えるために、患者の患部以外の非治療部位における線量管理は重要である。
(4) Radiation generally used in medical equipment using radiation has a higher density than radiation that is normally exposed to the human body in a normal environment. The medical device using radiation can provide a high therapeutic effect to the affected part of the patient by the high-density radiation dose (dose). However, overirradiation of the affected area of the patient with radiation in excess of an appropriate dose and irradiation of non-treated areas other than the affected area with radiation must be avoided. In order to minimize the negative effects of such radiation, dose management at non-treatment sites other than the affected area of the patient is important.
特に、経皮的冠動脈インターベンション(Percutaneous Coronary Intervention:PCI)等のIVRを実施する医療従事者は、治療行為において継続的かつ長期間の放射線被曝に曝される。すると、医療従事者の水晶体等を始めとする人体の局所箇所に、高い線量の放射線が不均等に照射される可能性がある。これら人体の局所箇所には、特に放射線の感受性の高い箇所も存在するため、危険である。最悪の場合、白内障等の確定的影響の恐れのあるリスクになる。
In particular, health care providers who perform IVRs, such as Percutaneous Coronary Intervention (PCI), are exposed to continuous and prolonged radiation exposure in the course of treatment. Then, there is a possibility that a high dose of radiation is unequally applied to a local part of a human body such as a lens of a medical worker. These local parts of the human body are dangerous because some parts are particularly sensitive to radiation. In the worst case, there is a risk of deterministic effects such as cataracts.
放射線同位体元素を扱う施設(以下「放射性同位体元素取扱施設」と称する)や放射線発生装置、あるいは原子力施設等において過酷事故(severe accident:シビアアクシデント)が発生すると、事故現場近傍の作業従事者が不均等被曝(男性の胸部、女性の腹部よりも多く被爆していると思しき部位が他にある状態)を被る可能性がある。したがって、シビアアクシデントが発生していない通常の状態において、放射性同位体元素取扱施設、放射線発生装置、原子力施設等において、様々な放射線の発生や作業従事者に対する被曝を想定した放射線計測管理が、適切な管理下で継続的に履行される必要がある。
If a severe accident occurs at a facility that handles radioisotopes (hereinafter referred to as “radioisotope handling facility”), radiation generators, or nuclear facilities, workers near the accident site May be subject to uneven exposure (where there are other sites that are more likely to be exposed than the male chest and female abdomen). Therefore, in a normal state where no severe accident has occurred, radiation measurement management that assumes various types of radiation generation and exposure to workers in radioisotope element handling facilities, radiation generators, nuclear facilities, etc. Need to be continuously implemented under appropriate management.
従来大型の加速器施設から発生する重粒子線、陽子線等のイオンビームや中性子線、γ線やX線等の医療用放射線において、近年では歯科レントゲンのX線発生装置に代表されるように小型化や汎用化が進んでいる。この様な汎用化が更に進むことで、より多様な不均等被曝が医療業務従事者、患者、患者介助者、またこれ以外に当該医療行為時に周辺に存在する介在者に生じる可能性が高まっている。
Conventionally, ion beams such as heavy ion beams and proton beams generated from large accelerator facilities, neutron beams, medical radiation such as γ-rays and X-rays, etc. And generalization are progressing. As such generalization progresses, the possibility that a greater variety of unequal exposures will occur to healthcare workers, patients, patient caregivers, and other intervening persons present at the time of the medical procedure. I have.
現在、各個人レベルの外部被曝線量の計測及び管理には個人用被曝線量計が用いられている。個人用被曝線量計には、ラジオフォトルミネセンス(Radio-photoluminescence; RPL)蛍光ガラス線量計、熱ルミネッセンス線量計(Thermo-Luminescence Dosimeter; TLD)や輝尽発光(Optically Stimulated Luminescence: OSL)線量計、フィルムバッジ等の積算型線量計があり、電離箱式線量計及び電子式線量計といった半リアルタイムの個人用被曝線量計と合わせて利用されている。これら被曝線量計の運用については法令に基づいた管理がなされている。日本国内では国際放射線防護委員会(International Commission on Radiological Protection:ICRP)による1990年勧告を取り入れた放射線障害防止に関する法令が2001年4月1日より施行されており、放射線業務従事者の線量限度のうち、個別部位が対象の等価線量限度として目の水晶体は、年間150mSvという線量基準に従って管理されている。
Currently, personal dosimeters are used to measure and manage external dose at each individual level. Personal dosimeters include radio-photoluminescence (RPL) fluorescent glass dosimeters, thermoluminescence dosimeters (Thermo-Luminescence Dosimeter; TLD), photostimulable (Optically Stimulated Luminescence: OSL) dosimeters, There are integrating dosimeters such as film badges, which are used in conjunction with semi-real-time personal dosimeters such as ionization chamber dosimeters and electronic dosimeters. The operation of these dosimeters is managed in accordance with laws and regulations. In Japan, the International Commission on Radiation Protection (ICRP) has implemented a law on prevention of radiation hazards that incorporates the 1990 recommendations from April 1, 2001. Of these, the lens of the eye is managed according to a dose standard of 150 mSv / year as an equivalent dose limit for an individual site.
しかしながら、近年、水晶体のしきい線量が過小評価されているという見解から、水晶体被曝に関する閾値の見直しが進んでいる。具体的には、5Gyから0.5Gyと、従来の1/10の値にすべきである、と議論されている。ICRPの2011年勧告において、放射線作業者の水晶体の等価線量限度を年間150mSvから年平均20mSv(単年度では1年間50mSv、5年間では100mSv)への大幅な引き下げ指針が示された(非特許文献3、4参照)。今後各国で批准が予定されており、例えば欧州では2018年に批准が予定されている。このため、日本国内においても水晶体の被曝管理が極めて厳格に適応される可能性が高まっている。しかしながら現在様々な現場で使用されている個人被曝線量計は眼部を覆うことが難しく、水晶体被曝に相当する線量を推定する程度にとどまっている。このため、現状の個人用被曝線量計は不均等被曝環境下での利用が推奨されていない。
However, in recent years, thresholds for lens exposure have been reviewed in view of the fact that the threshold dose of the lens has been underestimated. Specifically, it is argued that the value should be set to 5 Gy to 0.5 Gy, which is 1/10 of the conventional value. The ICRP's 2011 recommendation indicated a significant reduction in the equivalent dose limit of the lens of radiation workers from 150 mSv per year to an average of 20 mSv per year (50 mSv for one year, 100 mSv for one year, and 100 mSv for five years). 3, 4). Ratification is scheduled in the future, for example in Europe in 2018. For this reason, the possibility of extremely strictly adapting the exposure control of the lens in Japan is increasing. However, personal dosimeters currently used in various fields are difficult to cover the eyes, and can only estimate the dose corresponding to lens exposure. For this reason, the use of current personal dosimeters in uneven exposure environments is not recommended.
本発明の技術分野に近い先行技術文献を特許文献1、2、3及び非特許文献1~5に示す。
特許文献1には、電磁シールド機能の向上と、小型化・軽量化・低コスト化と、をともに実現するような線量計に関する技術が開示されている。
特許文献2には、医療スタッフの吸収線量を精密に管理するための吸収線量管理装置に関する技術が開示されている。
特許文献3には、眼部水晶体への放射線照射量を低減するための眼鏡型構造体装置に関する技術が開示されている。
非特許文献1及び非特許文献2には、防護眼鏡の下での利用が想定される各種線量計が開示されている。
非特許文献3及び非特許文献4には、放射線作業者の水晶体の等価線量限度に関する指針が開示されている。
非特許文献5には、先行技術に係る放射線量計において、方向依存性に課題があるとの報告が記載されている。
非特許文献6には、診断用X線に対し、人体を防護する防護衣、防護眼鏡などの防護用具に関する技術情報が記載されている。 Prior art documents close to the technical field of the present invention are shown in Patent Documents 1, 2, and 3 and Non-Patent Documents 1 to 5.
Patent Literature 1 discloses a technique related to a dosimeter that realizes both improvement of an electromagnetic shielding function and reduction in size, weight, and cost.
Patent Literature 2 discloses a technique relating to an absorbed dose management device for precisely managing the absorbed dose of medical staff.
Patent Literature 3 discloses a technique related to an eyeglass-type structure device for reducing the radiation dose to the lens of the eye.
Non-Patent Documents 1 and 2 disclose various dosimeters that are assumed to be used under protective glasses.
Non-Patent Literature 3 and Non-Patent Literature 4 disclose guidelines on the equivalent dose limit of the crystalline lens of a radiation worker.
Non-Patent Document 5 describes that a radiation dosimeter according to the prior art has a problem in direction dependency.
Non-Patent Document 6 describes technical information on protective equipment such as protective clothing and protective glasses for protecting a human body against diagnostic X-rays.
特許文献1には、電磁シールド機能の向上と、小型化・軽量化・低コスト化と、をともに実現するような線量計に関する技術が開示されている。
特許文献2には、医療スタッフの吸収線量を精密に管理するための吸収線量管理装置に関する技術が開示されている。
特許文献3には、眼部水晶体への放射線照射量を低減するための眼鏡型構造体装置に関する技術が開示されている。
非特許文献1及び非特許文献2には、防護眼鏡の下での利用が想定される各種線量計が開示されている。
非特許文献3及び非特許文献4には、放射線作業者の水晶体の等価線量限度に関する指針が開示されている。
非特許文献5には、先行技術に係る放射線量計において、方向依存性に課題があるとの報告が記載されている。
非特許文献6には、診断用X線に対し、人体を防護する防護衣、防護眼鏡などの防護用具に関する技術情報が記載されている。 Prior art documents close to the technical field of the present invention are shown in
Patent Literature 2 discloses a technique relating to an absorbed dose management device for precisely managing the absorbed dose of medical staff.
Non-Patent Document 5 describes that a radiation dosimeter according to the prior art has a problem in direction dependency.
Non-Patent Document 6 describes technical information on protective equipment such as protective clothing and protective glasses for protecting a human body against diagnostic X-rays.
ICRPの2011年勧告でなされた水晶体被曝線量限度下限の変更に対し、個人向けの水晶体被曝線量評価手法は完全に確立しておらず、社会的な課題となっている。人体眼部水晶体の防護においては、JIS T 61331-3に挙げられる『防護衣,防護眼鏡及び患者用防護具』の要件に掛かる構造において、主にIVR手技の有無にかかわらず,放射線曝露環境にいる操作者が装着しその眼を防護することを目的に、いくつかのX線防護眼鏡が開発されている。鉛による光子減弱を用いて鉛当量を記載した機器以外に特許文献3に挙げられるような構造体をもって線量減弱を謳った機器が存在するが、これらの機器を通じてどの程度の線量が実際に付与されているかについては計測がなされておらず、特に水晶体での局所の線量計測が必要となっている。
このうち国内企業の1社である(株)千代田テクノルでは、フランス放射線防護原子力安全研究所(IRSN)が開発したTLD型線量計DOSIRIS(登録商標)の展開を開始しており、国内の医療現場での治験が開始されている(非特許文献2参照)。しかしながら、1点の計測点を利用するDOSIRIS(登録商標)では方向依存性に課題があり、患者人体など医療従事者の下部からの線量を正確に評価できていないといった報告もあり(非特許文献5参照)、水晶体被曝線量を計測するための放射線測定機器としての運用に未だ解決できていない問題点が残ると想定される。 In response to the change of the lower limit of the lens exposure dose made in the 2011 ICRP recommendation, the lens exposure dose evaluation method for individuals has not been completely established and is a social issue. Regarding the protection of the lens of the human eye, in a structure that satisfies the requirements of “protective clothing, protective glasses, and patient protective equipment” listed in JIS T 61331-3, regardless of the presence or absence of the IVR procedure, Several X-ray protective glasses have been developed to be worn by an operator and to protect their eyes. In addition to devices that describe lead equivalents using photon attenuation by lead, there are devices that claim dose attenuation with a structure as described inPatent Document 3, but how much dose is actually given through these devices. No measurement has been made on whether this is the case, and local dosimetry is required, especially at the lens.
Chiyoda Technol Co., Ltd., one of the domestic companies, has begun deploying the TLD dosimeter DOSIRIS (registered trademark) developed by the French Institute for Radiation Protection and Nuclear Safety (IRSN), (See Non-Patent Document 2). However, DOSIRIS (registered trademark) using one measurement point has a problem in direction dependency, and there is also a report that the dose from the lower part of a medical worker such as a patient's body cannot be accurately evaluated (Non-patent Literature) 5), it is assumed that there remains a problem that has not been solved yet in operation as a radiation measuring device for measuring a lens exposure dose.
このうち国内企業の1社である(株)千代田テクノルでは、フランス放射線防護原子力安全研究所(IRSN)が開発したTLD型線量計DOSIRIS(登録商標)の展開を開始しており、国内の医療現場での治験が開始されている(非特許文献2参照)。しかしながら、1点の計測点を利用するDOSIRIS(登録商標)では方向依存性に課題があり、患者人体など医療従事者の下部からの線量を正確に評価できていないといった報告もあり(非特許文献5参照)、水晶体被曝線量を計測するための放射線測定機器としての運用に未だ解決できていない問題点が残ると想定される。 In response to the change of the lower limit of the lens exposure dose made in the 2011 ICRP recommendation, the lens exposure dose evaluation method for individuals has not been completely established and is a social issue. Regarding the protection of the lens of the human eye, in a structure that satisfies the requirements of “protective clothing, protective glasses, and patient protective equipment” listed in JIS T 61331-3, regardless of the presence or absence of the IVR procedure, Several X-ray protective glasses have been developed to be worn by an operator and to protect their eyes. In addition to devices that describe lead equivalents using photon attenuation by lead, there are devices that claim dose attenuation with a structure as described in
Chiyoda Technol Co., Ltd., one of the domestic companies, has begun deploying the TLD dosimeter DOSIRIS (registered trademark) developed by the French Institute for Radiation Protection and Nuclear Safety (IRSN), (See Non-Patent Document 2). However, DOSIRIS (registered trademark) using one measurement point has a problem in direction dependency, and there is also a report that the dose from the lower part of a medical worker such as a patient's body cannot be accurately evaluated (Non-patent Literature) 5), it is assumed that there remains a problem that has not been solved yet in operation as a radiation measuring device for measuring a lens exposure dose.
他方で、歯科診断等におけるハンドヘルドレントゲン装置の実用化など、レントゲン等の従来技術に用いられる装置の小型化も目覚しく、これらの実用化により推定される患者の患部以外の被曝リスクも拡大している。医療業務従事者以外の放射線被曝量管理等は、現状議論も限定的で未整備である。これは言い換えれば、放射線業務従事者でない患者について、その個人の負担を最小限にしながらかつ線量計測を行うべき潜在需要が存在することを意味する。しかしながら、これらに適応可能な、簡便かつ効果的に水晶体への放射線照射線量を求める効果的な測定方法に必要となる、検出体積ならびに放射線に対して有効な面積が大型でかつ線量評価が可能な測定方法を提供できていないという問題があった。
On the other hand, the downsizing of devices used in conventional technologies such as X-rays has been remarkable, such as the practical use of hand-held X-ray devices in dental diagnosis and the like, and the risk of exposure of patients other than the diseased part estimated by their practical use is expanding. . Discussions on radiation exposure management, etc. for non-medical workers are limited and incomplete. In other words, there is a potential need for dosimetry for patients who are not radiation workers while minimizing the burden on the individual. However, it is necessary to have an effective measurement method for determining the irradiation dose to the lens that is simple and effective, and the detection volume and radiation effective area are large and the dose can be evaluated. There was a problem that a measurement method could not be provided.
医療放射線分野以外にも、水晶体被曝線量限度は適用されるため、広く原子力施設で利用可能な線量計の開発が重要である。しかしながら、多様な放射線場、特にβ線やα線を想定計測対象として含めるべき多様な環境では、防護眼鏡の下での利用が想定されるDOSIRIS等の先行の各種線量計(非特許文献1、2参照)では、十分にその線量が評価できず、不均等被曝の量を過小評価する恐れがある。このため、より広範囲の水晶体被曝線量評価に活用可能な、眼部水晶体を広範囲でカバーしながら、かつ放射線源と線量計、水晶体間でβ線入射についても想定できる構造を備えた被爆線量計測方法の整備が必要である。
水晶 Besides the medical radiation field, since the lens exposure limit is applied, it is important to develop a dosimeter that can be widely used in nuclear facilities. However, in various radiation fields, in particular, in various environments in which β-rays and α-rays are to be included in the assumed measurement target, various leading dosimeters such as DOSIRIS, which are expected to be used under protective glasses (Non-Patent Document 1, 2), the dose cannot be sufficiently evaluated, and the amount of uneven exposure may be underestimated. For this reason, an exposure dose measurement method that can be used for evaluation of the lens exposure over a wider range, and has a structure that covers the eye lens over a wide area and has a structure that can also assume β-ray incidence between the radiation source and the dosimeter and the lens Maintenance is required.
つまり、水晶体の被曝線量の限度の下限値が従来の5Gyから1/10である0.5Gyと、大幅に引き下げられることが確実な情勢になっている。この様な状況において、簡易で迅速かつ正確に被験者の水晶体等の被曝量を計測できる手段は、現時点では存在していない。
In other words, there is a certain situation that the lower limit of the exposure dose limit of the lens is greatly reduced to 0.5 Gy, which is 1/10 from 5 Gy in the related art. In such a situation, there is no means at present at present that can easily, quickly, and accurately measure the dose of the subject such as the crystalline lens.
本発明は係る状況に鑑みてなされたものであり、簡素な構造で比較的安価に実現でき、被験者の水晶体等の被曝量を迅速かつ正確に計測することが可能になる、放射線計測体及び放射線被曝量計測装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, has a simple structure, can be realized at relatively low cost, and can quickly and accurately measure an exposure amount of a subject such as a crystalline lens. An object of the present invention is to provide an exposure dose measuring device.
上記課題を解決するために、本発明の放射線計測体は、少なくとも一部に可視光を透過可能なドシメータが形成された可視光透過部材と、可視光透過部材を装着者の少なくとも一方の水晶体の近傍に配置する配置器具と、可視光透過部材と配置器具との間に介在して、可視光透過部材を配置器具に固定する可視光透過部材固定具とを具備する。
In order to solve the above problems, the radiation measuring body of the present invention is a visible light transmitting member formed with a dosimeter capable of transmitting visible light at least partially, the visible light transmitting member of at least one of the crystalline lens of the wearer A placement tool to be placed in the vicinity, and a visible light transmitting member fixing tool interposed between the visible light transmitting member and the placement tool for fixing the visible light transmitting member to the placement tool are provided.
本発明によれば、簡素な構造で比較的安価に実現でき、被験者の水晶体等の被曝量を迅速かつ正確に計測することが可能になる、放射線計測体及び放射線被曝量計測装置を提供することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to provide a radiation measuring body and a radiation exposure dose measuring device which can be realized at a relatively low cost with a simple structure and can quickly and accurately measure the exposure dose of a subject such as a crystalline lens. Can be.
Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to provide a radiation measuring body and a radiation exposure dose measuring device which can be realized at a relatively low cost with a simple structure and can quickly and accurately measure the exposure dose of a subject such as a crystalline lens. Can be.
Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.
[放射線計測体:全体構成のバリエーション]
図1Aは、本発明の第一の実施形態に係る放射線計測体101の外観図である。
放射線計測体101は、周知の眼鏡の形状を有する。放射線計測体101のレンズ102a、102bは度なしであり、このレンズ102a、102bは、可視光を透過可能なドシメータ(Radio-Photoluminescence dosimeter:蛍光ガラス線量計(RPL)、熱ルミネッセンス線量計(Thermo-Luminescence Dosimeter; TLD)や輝尽発光(Optically Stimulated Luminescence: OSL)線量計)を有する。ドシメータの材料及び製造方法については図2にて後述する。
ドシメータの機能を有する左右のレンズ102a、102bは、眼鏡のフレームの一部を構成するリム103a、103bによって固定されている。リム103a、103bはブリッジ104によって固定されている。
更に、リム103a、103bは、智105a、105b、丁番106a、106bを介してテンプル107a、107bと接続されている。 [Radiation measurement body: Variation of overall configuration]
FIG. 1A is an external view of aradiation measurement body 101 according to the first embodiment of the present invention.
Theradiation measurement body 101 has a well-known eyeglass shape. The lenses 102a and 102b of the radiation measuring body 101 are inexpensive, and the lenses 102a and 102b are a dosimeter (Radio-Photoluminescence dosimeter: fluorescent glass dosimeter (RPL), a thermoluminescence dosimeter (Thermo- It has a Luminescence Dosimeter (TLD) and a photostimulated luminescence (Optically Stimulated Luminescence: OSL) dosimeter. The material and manufacturing method of the dosimeter will be described later with reference to FIG.
The left and right lenses 102a and 102b having the function of the dosimeter are fixed by rims 103a and 103b constituting a part of the frame of the glasses. The rims 103a and 103b are fixed by bridges 104.
Further, the rims 103a and 103b are connected to the temples 107a and 107b via clasps 105a and 105b and hinges 106a and 106b.
図1Aは、本発明の第一の実施形態に係る放射線計測体101の外観図である。
放射線計測体101は、周知の眼鏡の形状を有する。放射線計測体101のレンズ102a、102bは度なしであり、このレンズ102a、102bは、可視光を透過可能なドシメータ(Radio-Photoluminescence dosimeter:蛍光ガラス線量計(RPL)、熱ルミネッセンス線量計(Thermo-Luminescence Dosimeter; TLD)や輝尽発光(Optically Stimulated Luminescence: OSL)線量計)を有する。ドシメータの材料及び製造方法については図2にて後述する。
ドシメータの機能を有する左右のレンズ102a、102bは、眼鏡のフレームの一部を構成するリム103a、103bによって固定されている。リム103a、103bはブリッジ104によって固定されている。
更に、リム103a、103bは、智105a、105b、丁番106a、106bを介してテンプル107a、107bと接続されている。 [Radiation measurement body: Variation of overall configuration]
FIG. 1A is an external view of a
The
The left and
Further, the
リム103a、103bを固定するブリッジ104、そして智105a、105b、丁番106a、106b及びテンプル107a、107bは、可視光透過部材であるレンズ102a、102bを、放射線計測体101を装着する者(装着者)の少なくとも一方のまぶたの近傍に配置される配置器具としての機能を有する。そしてリム103a、103bは、可視光透過部材と配置器具との間に介在して、可視光透過部材を配置器具に固定する可視光透過部材固定具となる。ここで装着者とは、放射線計測体を眼鏡等のように自らの目に近接した状態にて装着して使用する者をいう。
The bridge 104 for fixing the rims 103a and 103b, and the tongues 105a and 105b, the hinges 106a and 106b, and the temples 107a and 107b are those who mount the lenses 102a and 102b as visible light transmitting members on the radiation measuring body 101 (wearing). ) Has a function as a placement tool placed near at least one of the eyelids. The rims 103a and 103b are interposed between the visible light transmitting member and the placement device, and serve as visible light transmitting member fixing devices for fixing the visible light transmitting member to the placement device. Here, the wearer refers to a person who wears and uses the radiation measurement body in a state close to his / her eyes, such as eyeglasses.
周知のように、まぶたは眼球を覆う器官であり、眼球には水晶体が含まれる。したがって、リム103a、103bを固定するブリッジ104、そして智105a、105b、丁番106a、106b及びテンプル107a、107bは、可視光透過部材であるレンズ102a、102bを、放射線計測体101を装着する者(装着者)の少なくとも一方の水晶体の近傍に配置される配置器具としての機能を有する、とも言える。
As is well known, the eyelid is an organ that covers the eyeball, and the eyeball contains the lens. Therefore, the bridge 104 for fixing the rims 103a and 103b, and the chimneys 105a and 105b, the hinges 106a and 106b, and the temples 107a and 107b are provided with the lenses 102a and 102b that are visible light transmitting members and the person who wears the radiation measurement body 101. It can also be said that it has a function as a placement tool placed near at least one lens of the (wearer).
すなわち、放射線計測体101は、度なしのレンズ102a、102bが可視光を透過可能なドシメータの機能を有する以外は、その外観形状は周知の眼鏡そのものである。
また、通常の眼鏡より一回り大きく、装着者が使用している通常の眼鏡に被せる様に装着が可能なオーバーグラスという物品があるが、本発明の第一の実施形態に係る放射線計測体101は、そのオーバーグラスの形状及び大きさにて構成してもよい。 That is, theradiation measuring body 101 is a well-known eyeglass itself except that the lenses 102a and 102b having no power have a function of a dosimeter capable of transmitting visible light.
In addition, there is an article called overglass which is one size larger than normal glasses and can be worn so as to cover normal glasses used by the wearer. However, theradiation measurement object 101 according to the first embodiment of the present invention is described. May be configured with the shape and size of the overglass.
また、通常の眼鏡より一回り大きく、装着者が使用している通常の眼鏡に被せる様に装着が可能なオーバーグラスという物品があるが、本発明の第一の実施形態に係る放射線計測体101は、そのオーバーグラスの形状及び大きさにて構成してもよい。 That is, the
In addition, there is an article called overglass which is one size larger than normal glasses and can be worn so as to cover normal glasses used by the wearer. However, the
図1Bは、本発明の第二の実施形態に係る放射線計測体121の外観図である。
放射線計測体121は、周知のゴーグルの形状を有する。ゴーグルの主要要素である透明なレンズ122は、可視光を透過可能なドシメータを有する。
ドシメータの機能を有するレンズ122は、ゴーグルのフレーム123によって固定されている。フレーム123の、装着者の顔面に当接する側にはフェイスパッド124が設けられている。
フレーム123の両端には伸縮可能なゴムバンドよりなるストラップ125が接続されている。 FIG. 1B is an external view of aradiation measurement body 121 according to the second embodiment of the present invention.
Theradiation measuring body 121 has a shape of a well-known goggle. The transparent lens 122, which is a main component of the goggles, has a dosimeter capable of transmitting visible light.
Thelens 122 having a dosimeter function is fixed by a goggle frame 123. A face pad 124 is provided on the side of the frame 123 that contacts the face of the wearer.
To both ends of theframe 123, straps 125 made of elastic rubber bands are connected.
放射線計測体121は、周知のゴーグルの形状を有する。ゴーグルの主要要素である透明なレンズ122は、可視光を透過可能なドシメータを有する。
ドシメータの機能を有するレンズ122は、ゴーグルのフレーム123によって固定されている。フレーム123の、装着者の顔面に当接する側にはフェイスパッド124が設けられている。
フレーム123の両端には伸縮可能なゴムバンドよりなるストラップ125が接続されている。 FIG. 1B is an external view of a
The
The
To both ends of the
ストラップ125は、装着者の頭部に巻き付くことで、可視光透過部材であるレンズ122を装着者の少なくとも一方のまぶたの近傍に配置する配置器具である。そしてフレーム123は、可視光透過部材と配置器具との間に介在して、可視光透過部材を配置器具に固定する可視光透過部材固定具として機能する。
The strap 125 is an arrangement tool that arranges the lens 122, which is a visible light transmitting member, near at least one of the eyelids of the wearer by being wrapped around the wearer's head. The frame 123 is interposed between the visible light transmitting member and the placement device, and functions as a visible light transmitting member fixing device for fixing the visible light transmitting member to the placement device.
すなわち、放射線計測体121は、レンズが可視光を透過可能なドシメータの機能を有する以外は、その外観形状は周知のゴーグルそのものである。
また、本発明の第二の実施形態に係る放射線計測体121は、通常の眼鏡に被せることが可能な形状及び大きさにて構成してもよい。 That is, the external shape of theradiation measurement body 121 is a well-known goggle, except that the lens has a function of a dosimeter capable of transmitting visible light.
Further, theradiation measurement body 121 according to the second embodiment of the present invention may be configured to have a shape and a size that can be put on ordinary glasses.
また、本発明の第二の実施形態に係る放射線計測体121は、通常の眼鏡に被せることが可能な形状及び大きさにて構成してもよい。 That is, the external shape of the
Further, the
図1Cは、本発明の第三の実施形態に係る放射線計測体131の外観図である。
放射線計測体131は、周知の後付サングラスの形状を有する。後付サングラスの主要要素である透明な度なしのレンズ132a、132bは、可視光を透過可能なドシメータを有する。
ドシメータの機能を有する左右のレンズ132a、132bは、ブリッジ133によってネジ止め等で固定されている。ブリッジ133には眼鏡のレンズを挟むクリップ134が設けられている。 FIG. 1C is an external view of aradiation measuring body 131 according to the third embodiment of the present invention.
Theradiation measuring body 131 has a shape of a well-known retro sunglass. The lenses 132a and 132b without transparency, which are the main components of the retrofit sunglasses, have a dosimeter that can transmit visible light.
The left and right lenses 132a and 132b having a dosimeter function are fixed by screws or the like by a bridge 133. The bridge 133 is provided with a clip 134 for holding the lens of the glasses.
放射線計測体131は、周知の後付サングラスの形状を有する。後付サングラスの主要要素である透明な度なしのレンズ132a、132bは、可視光を透過可能なドシメータを有する。
ドシメータの機能を有する左右のレンズ132a、132bは、ブリッジ133によってネジ止め等で固定されている。ブリッジ133には眼鏡のレンズを挟むクリップ134が設けられている。 FIG. 1C is an external view of a
The
The left and
クリップ134は、装着者が装着している眼鏡に固定することで、可視光透過部材であるレンズ132a、132bを装着者の少なくとも一方のまぶたの近傍に配置する機能を有する。そしてブリッジ133は、可視光透過部材と配置器具との間に介在して、可視光透過部材を配置器具に固定する可視光透過部材固定具として機能する。
The clip 134 has a function of fixing the lenses 132a and 132b, which are visible light transmitting members, to at least one of the eyelids of the wearer by fixing the glasses to the glasses worn by the wearer. The bridge 133 is interposed between the visible light transmitting member and the placement device, and functions as a visible light transmitting member fixing device for fixing the visible light transmitting member to the placement device.
すなわち、放射線計測体131は、レンズ132a、132bが可視光を透過可能なドシメータの機能を有する以外は、その外観形状は周知の後付サングラスそのものである。
なお、左右のレンズの固定方法は上述のブリッジ133に対するネジ止めにとどまらず、図1Aと同様の、リム103a、103bとブリッジ104を用いてもよい。
本発明の第三の実施形態に係る放射線計測体131は、装着者が使用する眼鏡のレンズにクリップ134で取り付けることにより、後付サングラスと同様の使用形態で装着することが可能である。
また、放射線計測体131はクリップ134を回動可能に構成するか、あるいは所定のアタッチメントを設けることで、装着者の眼鏡に代えて、安全帽に取り付けることも可能である。 That is, except that the lenses 132a and 132b have the function of a dosimeter capable of transmitting visible light, the radiation measuring body 131 is a well-known retro sunglass itself.
Note that the method of fixing the left and right lenses is not limited to screwing thebridge 133 described above, and rims 103a and 103b and a bridge 104 similar to FIG. 1A may be used.
Theradiation measurement body 131 according to the third embodiment of the present invention can be worn in the same usage form as the retrofit sunglasses by attaching the radiation measurement body 131 to the lens of the eyeglasses used by the wearer with the clip 134.
Further, theradiation measuring body 131 can be attached to a safety hat instead of the wearer's glasses by configuring the clip 134 to be rotatable or by providing a predetermined attachment.
なお、左右のレンズの固定方法は上述のブリッジ133に対するネジ止めにとどまらず、図1Aと同様の、リム103a、103bとブリッジ104を用いてもよい。
本発明の第三の実施形態に係る放射線計測体131は、装着者が使用する眼鏡のレンズにクリップ134で取り付けることにより、後付サングラスと同様の使用形態で装着することが可能である。
また、放射線計測体131はクリップ134を回動可能に構成するか、あるいは所定のアタッチメントを設けることで、装着者の眼鏡に代えて、安全帽に取り付けることも可能である。 That is, except that the
Note that the method of fixing the left and right lenses is not limited to screwing the
The
Further, the
X線またはγ線が照射されたドシメータに励起光を照射すると、オレンジ色等の放射線により形成された準位に対応した波長を有する蛍光を発光する。蛍光発光の強度及び時間はX線またはγ線の強度と照射時間、すなわち被曝量に比例する。このドシメータからの蛍光発光量を計測することで、放射線被曝量を計測することが可能になる。
When the dosimeter irradiated with X-rays or γ-rays is irradiated with excitation light, it emits fluorescence having a wavelength corresponding to a level formed by radiation such as orange. The intensity and time of the fluorescent light emission are proportional to the intensity of the X-ray or γ-ray and the irradiation time, that is, the exposure dose. By measuring the amount of fluorescence emitted from the dosimeter, the amount of radiation exposure can be measured.
日常生活に眼鏡を使用する必要がない、視力が健常な作業者は、放射線被曝のおそれが大きい現場での作業の際に、図1Aに示す眼鏡形状の放射線計測体101または図1Bに示すゴーグル形状の放射線計測体121を装着する。あるいは、度なしの伊達眼鏡に図1Cに示す後付サングラス形状の放射線計測体131を装着してもよい。
近視、遠視あるいは乱視等、日常生活に眼鏡を使用する必要がある作業者は、放射線被曝の虞が大きい現場での作業の際に、自らが装着する眼鏡の上に図1Aに示すオーバーグラス形状の放射線計測体101を装着するか、図1Bに示すゴーグル形状の放射線計測体121を装着するか、自らが装着する眼鏡に図1Cに示す後付サングラス形状の放射線計測体131を装着する。 A worker who does not need to use eyeglasses in daily life and has a normal eyesight can use the eyeglass-shapedradiation measurement body 101 shown in FIG. 1A or the goggle shown in FIG. The radiation measuring body 121 having a shape is mounted. Alternatively, the radiation measuring body 131 in the form of retrofit sunglasses shown in FIG.
Workers who need to use eyeglasses in daily life, such as myopia, hyperopia, or astigmatism, need to use the overglass shape shown in FIG. Theradiation measurement body 101 shown in FIG. 1B, the goggle-shaped radiation measurement body 121 shown in FIG. 1B is attached, or the retrofitted sunglasses-shaped radiation measurement body 131 shown in FIG.
近視、遠視あるいは乱視等、日常生活に眼鏡を使用する必要がある作業者は、放射線被曝の虞が大きい現場での作業の際に、自らが装着する眼鏡の上に図1Aに示すオーバーグラス形状の放射線計測体101を装着するか、図1Bに示すゴーグル形状の放射線計測体121を装着するか、自らが装着する眼鏡に図1Cに示す後付サングラス形状の放射線計測体131を装着する。 A worker who does not need to use eyeglasses in daily life and has a normal eyesight can use the eyeglass-shaped
Workers who need to use eyeglasses in daily life, such as myopia, hyperopia, or astigmatism, need to use the overglass shape shown in FIG. The
[レンズの変形例:平板状レンズとその製造方法]
前述の第一の実施形態、第二の実施形態及び第三の実施形態に適用するレンズには、ドシメータの機能を持たせる必要がある。ドシメータの機能を付与したレンズは、様々な形態で構成することが可能である。これより、それらレンズの変形例を説明する。
先ず、図2A、図2B、図2C及び図2Dにかけて、第一の変形例に係る平板状レンズを説明する。
図2Aは、第一の変形例に係る平板状レンズの製造方法の第一段階を示す概略図である。
可視光を透過可能なドシメータ(Radio-Photoluminescence dosimeter:蛍光ガラス線量計(RPL))を例にとると、アルミナ製のるつぼ201に、NaPO3の粉末M202、Al(PO3)3の粉末M203、及び活性中心賦活材料(アクティベータ)としてのAgClまたはCuClの粉末M204を投入し、撹拌する。
図2Bは、平板状レンズの製造方法の第二段階を示す概略図である。
図2Aの段階において、材料粉末が投入されたるつぼ201を、常温から1000℃迄、1時間かけて温度上昇させる。その後、1000℃の状態を1時間保持する。なお、図2Bでは加熱をガスバーナS205等で示しているが、電気炉を用いてもよい。 [Modification of lens: flat lens and manufacturing method thereof]
The lenses applied to the first, second, and third embodiments need to have a dosimeter function. A lens provided with a dosimeter function can be configured in various forms. Hereinafter, modified examples of these lenses will be described.
First, a flat lens according to a first modification will be described with reference to FIGS. 2A, 2B, 2C, and 2D.
FIG. 2A is a schematic view illustrating a first step of a method of manufacturing a flat lens according to a first modification.
Taking a dosimeter (Radio-Photoluminescence dosimeter: fluorescent glass dosimeter (RPL)) capable of transmitting visible light as an example, a powder M202 of NaPO 3 , a powder M203 of Al (PO 3 ) 3 in acrucible 201 made of alumina, Then, AgCl or CuCl powder M204 as an active center activating material (activator) is charged and stirred.
FIG. 2B is a schematic view showing a second step of the method for manufacturing a flat lens.
In the stage of FIG. 2A, the temperature of thecrucible 201 into which the material powder has been charged is raised from room temperature to 1000 ° C. over 1 hour. Thereafter, the state at 1000 ° C. is maintained for one hour. In FIG. 2B, the heating is indicated by the gas burner S205 or the like, but an electric furnace may be used.
前述の第一の実施形態、第二の実施形態及び第三の実施形態に適用するレンズには、ドシメータの機能を持たせる必要がある。ドシメータの機能を付与したレンズは、様々な形態で構成することが可能である。これより、それらレンズの変形例を説明する。
先ず、図2A、図2B、図2C及び図2Dにかけて、第一の変形例に係る平板状レンズを説明する。
図2Aは、第一の変形例に係る平板状レンズの製造方法の第一段階を示す概略図である。
可視光を透過可能なドシメータ(Radio-Photoluminescence dosimeter:蛍光ガラス線量計(RPL))を例にとると、アルミナ製のるつぼ201に、NaPO3の粉末M202、Al(PO3)3の粉末M203、及び活性中心賦活材料(アクティベータ)としてのAgClまたはCuClの粉末M204を投入し、撹拌する。
図2Bは、平板状レンズの製造方法の第二段階を示す概略図である。
図2Aの段階において、材料粉末が投入されたるつぼ201を、常温から1000℃迄、1時間かけて温度上昇させる。その後、1000℃の状態を1時間保持する。なお、図2Bでは加熱をガスバーナS205等で示しているが、電気炉を用いてもよい。 [Modification of lens: flat lens and manufacturing method thereof]
The lenses applied to the first, second, and third embodiments need to have a dosimeter function. A lens provided with a dosimeter function can be configured in various forms. Hereinafter, modified examples of these lenses will be described.
First, a flat lens according to a first modification will be described with reference to FIGS. 2A, 2B, 2C, and 2D.
FIG. 2A is a schematic view illustrating a first step of a method of manufacturing a flat lens according to a first modification.
Taking a dosimeter (Radio-Photoluminescence dosimeter: fluorescent glass dosimeter (RPL)) capable of transmitting visible light as an example, a powder M202 of NaPO 3 , a powder M203 of Al (PO 3 ) 3 in a
FIG. 2B is a schematic view showing a second step of the method for manufacturing a flat lens.
In the stage of FIG. 2A, the temperature of the
図2Cは、平板状レンズの製造方法の第三段階を示す概略図である。
図2Bの段階において、るつぼ201内で溶融したドシメータ材料を、室温中のアルミプレート206上に流し込む。すなわち、急冷法にてドシメータ材料を冷却する。すると、ドシメータの機能を有するガラス板207が形成される。
図2Dは、平板状レンズの製造方法の第四段階を示す概略図である。
図2Cの段階において、アルミプレート206上に形成された、ドシメータの機能を有するガラス板207を、コンターソー等を用いて所望の形状に切削加工する。
すなわち、図2の工程によって形成されるレンズは、レンズ全体がドシメータの機能を有するガラスにて構成されている。
なお、図2はNaPO3とAl(PO3)3よりなるRPLガラスを一例に説明したが、他の材料によるRPLガラス、OSL材料、TLD材料を用いてレンズを作成してもよい。 FIG. 2C is a schematic view showing a third step of the method of manufacturing a flat lens.
2B, the dosimeter material melted in thecrucible 201 is poured onto the aluminum plate 206 at room temperature. That is, the dosimeter material is cooled by the rapid cooling method. Then, a glass plate 207 having a dosimeter function is formed.
FIG. 2D is a schematic view showing a fourth step of the method of manufacturing a flat lens.
In the stage of FIG. 2C, theglass plate 207 having a dosimeter function formed on the aluminum plate 206 is cut into a desired shape using a contour saw or the like.
That is, in the lens formed by the process of FIG. 2, the entire lens is made of glass having a dosimeter function.
Although FIG. 2 illustrates an example of the RPL glass made of NaPO 3 and Al (PO 3 ) 3, a lens may be formed using other materials such as RPL glass, OSL material, and TLD material.
図2Bの段階において、るつぼ201内で溶融したドシメータ材料を、室温中のアルミプレート206上に流し込む。すなわち、急冷法にてドシメータ材料を冷却する。すると、ドシメータの機能を有するガラス板207が形成される。
図2Dは、平板状レンズの製造方法の第四段階を示す概略図である。
図2Cの段階において、アルミプレート206上に形成された、ドシメータの機能を有するガラス板207を、コンターソー等を用いて所望の形状に切削加工する。
すなわち、図2の工程によって形成されるレンズは、レンズ全体がドシメータの機能を有するガラスにて構成されている。
なお、図2はNaPO3とAl(PO3)3よりなるRPLガラスを一例に説明したが、他の材料によるRPLガラス、OSL材料、TLD材料を用いてレンズを作成してもよい。 FIG. 2C is a schematic view showing a third step of the method of manufacturing a flat lens.
2B, the dosimeter material melted in the
FIG. 2D is a schematic view showing a fourth step of the method of manufacturing a flat lens.
In the stage of FIG. 2C, the
That is, in the lens formed by the process of FIG. 2, the entire lens is made of glass having a dosimeter function.
Although FIG. 2 illustrates an example of the RPL glass made of NaPO 3 and Al (PO 3 ) 3, a lens may be formed using other materials such as RPL glass, OSL material, and TLD material.
[平板状レンズの特性]
図3Aは、平板状のドシメータガラス板301に対し、垂直に荷電粒子線を照射した結果、ドシメータガラス板301内に形成される蛍光現象を説明する概略図である。
図3Bは、平板状のドシメータガラス板301に対し、所定の角度を以て荷電粒子線を照射した結果、ドシメータガラス板301内に形成される蛍光現象を説明する概略図である。
約1μm以上の厚みを有する平板状のドシメータガラス板301は、荷電粒子線の照射方向V303及びV304に平行な方向に、円錐状の蛍光変化部302が多数現れる。このように、所定の厚みを有するドシメータガラス板301に荷電粒子線を照射した後、励起光を照射して発光量を計測する段階において、顕微鏡等でドシメータガラス板301を拡大することで、放射線の照射方向を確認することが可能になる。
すなわち、図2の工程によって形成されるレンズには、放射線被曝によって、図3A及び図3Bに示される、放射線の照射方向がわかる蛍光変化部302がレンズの全体に発生する。 [Characteristics of flat lens]
FIG. 3A is a schematic diagram illustrating a fluorescence phenomenon formed in thedosimeter glass plate 301 as a result of vertically irradiating the dosimeter glass plate 301 with a charged particle beam.
FIG. 3B is a schematic diagram illustrating a fluorescence phenomenon formed in thedosimeter glass plate 301 as a result of irradiating the flat dosimeter glass plate 301 with a charged particle beam at a predetermined angle.
In a flatdosimeter glass plate 301 having a thickness of about 1 μm or more, a large number of conical fluorescent change portions 302 appear in a direction parallel to the irradiation directions V303 and V304 of the charged particle beam. As described above, after irradiating the charged particle beam to the dosimeter glass plate 301 having a predetermined thickness, the dosimeter glass plate 301 is enlarged by a microscope or the like in the stage of measuring the amount of light emission by irradiating the excitation light. This makes it possible to confirm the irradiation direction of the radiation.
That is, in the lens formed by the process of FIG. 2, due to the radiation exposure, afluorescence changing portion 302 shown in FIG. 3A and FIG.
図3Aは、平板状のドシメータガラス板301に対し、垂直に荷電粒子線を照射した結果、ドシメータガラス板301内に形成される蛍光現象を説明する概略図である。
図3Bは、平板状のドシメータガラス板301に対し、所定の角度を以て荷電粒子線を照射した結果、ドシメータガラス板301内に形成される蛍光現象を説明する概略図である。
約1μm以上の厚みを有する平板状のドシメータガラス板301は、荷電粒子線の照射方向V303及びV304に平行な方向に、円錐状の蛍光変化部302が多数現れる。このように、所定の厚みを有するドシメータガラス板301に荷電粒子線を照射した後、励起光を照射して発光量を計測する段階において、顕微鏡等でドシメータガラス板301を拡大することで、放射線の照射方向を確認することが可能になる。
すなわち、図2の工程によって形成されるレンズには、放射線被曝によって、図3A及び図3Bに示される、放射線の照射方向がわかる蛍光変化部302がレンズの全体に発生する。 [Characteristics of flat lens]
FIG. 3A is a schematic diagram illustrating a fluorescence phenomenon formed in the
FIG. 3B is a schematic diagram illustrating a fluorescence phenomenon formed in the
In a flat
That is, in the lens formed by the process of FIG. 2, due to the radiation exposure, a
図2に示した第一の変形例に係る製造方法によって形成された平板状のレンズは、放射線が照射され、更に後述する計測装置によって励起光が照射された後に、約300℃に加熱することで、アニール現象が生じ、再び放射線に対する感受性を回復させることが可能になる。すなわち、レンズは加熱することで繰り返し使用が可能になる。
図1Aに示す眼鏡形状の放射線計測体101は、フレーム全体を耐熱性を有する材料で構成することで、放射線計測体101全体を加熱して再利用することが可能になる。
図1Bに示すゴーグル形状の放射線計測体121は、フレームからレンズを脱着可能に構成することで、フレームからレンズを取り外し、レンズを加熱して再利用することが可能になる。
図1Cに示す後付サングラス形状の放射線計測体131は、ブリッジからレンズを脱着可能に構成することで、ブリッジからレンズを取り外し、レンズを加熱して再利用することが可能になる。また、ブリッジ及びクリップに耐熱性を有する材料で構成して、図1Aの放射線計測体101と同様に放射線計測体131全体を加熱して再利用可能にしてもよい。 The flat lens formed by the manufacturing method according to the first modification shown in FIG. 2 is heated to about 300 ° C. after being irradiated with radiation and further irradiated with excitation light by a measuring device described later. As a result, an annealing phenomenon occurs, and the sensitivity to radiation can be restored again. That is, the lens can be repeatedly used by heating.
The entire frame of the eyeglass-shapedradiation measurement body 101 shown in FIG. 1A is made of a heat-resistant material, so that the entire radiation measurement body 101 can be heated and reused.
The goggle-shapedradiation measurement body 121 shown in FIG. 1B is configured so that the lens can be detached from the frame, so that the lens can be removed from the frame, heated, and reused.
Theradiation measurement body 131 in the form of retrofit sunglasses shown in FIG. 1C is configured so that the lens can be detached from the bridge, so that the lens can be removed from the bridge, and the lens can be heated and reused. Further, the bridge and the clip may be made of a material having heat resistance, and the entire radiation measuring body 131 may be heated and made reusable similarly to the radiation measuring body 101 of FIG. 1A.
図1Aに示す眼鏡形状の放射線計測体101は、フレーム全体を耐熱性を有する材料で構成することで、放射線計測体101全体を加熱して再利用することが可能になる。
図1Bに示すゴーグル形状の放射線計測体121は、フレームからレンズを脱着可能に構成することで、フレームからレンズを取り外し、レンズを加熱して再利用することが可能になる。
図1Cに示す後付サングラス形状の放射線計測体131は、ブリッジからレンズを脱着可能に構成することで、ブリッジからレンズを取り外し、レンズを加熱して再利用することが可能になる。また、ブリッジ及びクリップに耐熱性を有する材料で構成して、図1Aの放射線計測体101と同様に放射線計測体131全体を加熱して再利用可能にしてもよい。 The flat lens formed by the manufacturing method according to the first modification shown in FIG. 2 is heated to about 300 ° C. after being irradiated with radiation and further irradiated with excitation light by a measuring device described later. As a result, an annealing phenomenon occurs, and the sensitivity to radiation can be restored again. That is, the lens can be repeatedly used by heating.
The entire frame of the eyeglass-shaped
The goggle-shaped
The
[レンズの変形例:ドシメータの粉末とその製造方法]
図1及び図2にて開示したレンズは全体がドシメータの機能を有するガラス板で形成されている。このレンズはアニール処理によって繰り返しの再利用が可能である反面、材料自体のコストが高く、また湾曲形状を形成するためには高価な工作機械等を用いる必要がある。そこで、より安価なレンズを形成する方法として、これより図4A、図4B、図4C及び図4Dにかけて、第二の変形例に係るドシメータの粉末を製造する方法を説明する。 [Modification of Lens: Dosimeter Powder and Manufacturing Method]
The lens disclosed in FIGS. 1 and 2 is entirely formed of a glass plate having a dosimeter function. Although this lens can be repeatedly reused by annealing, the cost of the material itself is high, and an expensive machine tool or the like must be used to form a curved shape. Therefore, as a method of forming a cheaper lens, a method of manufacturing the dosimeter powder according to the second modified example will be described with reference to FIGS. 4A, 4B, 4C, and 4D.
図1及び図2にて開示したレンズは全体がドシメータの機能を有するガラス板で形成されている。このレンズはアニール処理によって繰り返しの再利用が可能である反面、材料自体のコストが高く、また湾曲形状を形成するためには高価な工作機械等を用いる必要がある。そこで、より安価なレンズを形成する方法として、これより図4A、図4B、図4C及び図4Dにかけて、第二の変形例に係るドシメータの粉末を製造する方法を説明する。 [Modification of Lens: Dosimeter Powder and Manufacturing Method]
The lens disclosed in FIGS. 1 and 2 is entirely formed of a glass plate having a dosimeter function. Although this lens can be repeatedly reused by annealing, the cost of the material itself is high, and an expensive machine tool or the like must be used to form a curved shape. Therefore, as a method of forming a cheaper lens, a method of manufacturing the dosimeter powder according to the second modified example will be described with reference to FIGS. 4A, 4B, 4C, and 4D.
図4Aは、第二の変形例に係る、ドシメータ粉末403の製造方法の第一段階を説明する概略図である。先ず、図2Cまたは図2Dで作成したドシメータガラス板301を、周知の乳棒と乳鉢等を用いて細かく破砕して、ドシメータ原粉末401を得る。
図4Bは、ドシメータ粉末403の製造方法の第二段階を説明する概略図である。図4Aで作成したドシメータ原粉末401を、1mmと0.5mmの篩402a、402bを用いて分級して、直径0.5-1mmのドシメータ粉末403を抽出する。 FIG. 4A is a schematic diagram illustrating a first step of a method for manufacturingdosimeter powder 403 according to a second modification. First, the dosimeter glass plate 301 prepared in FIG. 2C or FIG. 2D is finely crushed using a well-known pestle and mortar to obtain a raw dosimeter powder 401.
FIG. 4B is a schematic diagram illustrating a second step of the method for manufacturingdosimeter powder 403. The dosimeter raw powder 401 created in FIG. 4A is classified using 1 mm and 0.5 mm sieves 402a and 402b to extract a 0.5-1 mm diameter dosimeter powder 403.
図4Bは、ドシメータ粉末403の製造方法の第二段階を説明する概略図である。図4Aで作成したドシメータ原粉末401を、1mmと0.5mmの篩402a、402bを用いて分級して、直径0.5-1mmのドシメータ粉末403を抽出する。 FIG. 4A is a schematic diagram illustrating a first step of a method for manufacturing
FIG. 4B is a schematic diagram illustrating a second step of the method for manufacturing
図4Cは、ドシメータ粉末403の製造方法の第三段階を説明する概略図である。図4Bで抽出したドシメータ粉末403を、カーボンパウダーと共にるつぼ201に投入し、撹拌する。その後、550℃で3時間かけて加熱する。
図4Dは、ドシメータ粉末403の製造方法の第四段階を説明する概略図である。図4Cで加熱したドシメータ粉末403を、純水404中で超音波洗浄機を用いて洗浄する。 FIG. 4C is a schematic diagram illustrating a third step of the method for manufacturingdosimeter powder 403. The dosimeter powder 403 extracted in FIG. 4B is put into the crucible 201 together with the carbon powder and stirred. Then, it heats at 550 degreeC for 3 hours.
FIG. 4D is a schematic diagram illustrating a fourth step of the method ofmanufacturing dosimeter powder 403. The dosimeter powder 403 heated in FIG. 4C is cleaned in pure water 404 using an ultrasonic cleaner.
図4Dは、ドシメータ粉末403の製造方法の第四段階を説明する概略図である。図4Cで加熱したドシメータ粉末403を、純水404中で超音波洗浄機を用いて洗浄する。 FIG. 4C is a schematic diagram illustrating a third step of the method for manufacturing
FIG. 4D is a schematic diagram illustrating a fourth step of the method of
粉末状のドシメータを形成すると、図3に示した円錐状の蛍光変化部302の観察は不可能になる。しかし、例えばアクリルや塩化ビニール等、低価格で透明な合成樹脂の板の全面にドシメータ粉末403を塗布することで、使い捨てにはなるが、安価な放射線計測体を実現することが可能になる。
す る と If the powder dosimeter is formed, the observation of the conical fluorescence changing portion 302 shown in FIG. 3 becomes impossible. However, by applying the dosimeter powder 403 to the entire surface of a low-cost transparent synthetic resin plate such as acrylic or vinyl chloride, a disposable but inexpensive radiation measuring body can be realized.
ドシメータ粉末403あるいはドシメータの微粒子を透明な合成樹脂の板の表面に固着させることで、透明な合成樹脂の板の表面及び/または裏面にドシメータの薄い層を形成する方法は、種々の方法が考えられる。例えば、合成樹脂製の接着剤、塗料やバインダと混合して塗布する。また、スパッタリングや、抵抗加熱蒸着、電子ビーム蒸着等の真空蒸着も原理的には可能である。
Various methods can be considered for forming a thin layer of dosimeter on the front and / or back surface of the transparent synthetic resin plate by fixing the dosimeter powder 403 or the fine particles of the dosimeter on the surface of the transparent synthetic resin plate. Can be For example, it is applied by being mixed with a synthetic resin adhesive, paint or binder. In addition, vacuum evaporation such as sputtering, resistance heating evaporation, and electron beam evaporation is also possible in principle.
すなわち、既存の眼鏡やゴーグルの製造工程において、レンズの製造過程に粉末状のドシメータを塗布する工程を追加するだけで、安価かつ容易に放射線計測体を実現することが可能になる。勿論、既存の市販の眼鏡、伊達眼鏡、ゴーグル、後付サングラス等のレンズや非特許文献6に挙げられる防護眼鏡の鉛含有ガラスレンズにドシメータ粉末403を塗布してもよい。
That is, in the existing manufacturing process of eyeglasses and goggles, it is possible to easily and inexpensively realize a radiation measuring body simply by adding a process of applying a powder dosimeter to the manufacturing process of the lens. Of course, the dosimeter powder 403 may be applied to existing commercially available glasses, Date glasses, goggles, retrofit sunglasses and other lenses, or lead-containing glass lenses of protective glasses described in Non-Patent Document 6.
[レンズの変形例:シンチレータの機能を有する使い捨てレンズ]
図5Aは、第三の変形例に係るドシメータの機能を有するレンズ501を示す一部拡大図である。
図5Bは、第三の変形例に係るドシメータの機能を有するレンズ501の一部横断面図である。
図5A及び図5Bに示すレンズ501は、図1Aに示す第一の実施形態に係る放射線計測体101、及び図1Cに示す第三の実施形態に係る放射線計測体131に適用することを想定した形状であるが、図1Bに示す第二の実施形態に係る放射線計測体121にも同様の技術思想にて適用が可能である。
図5A及び図5Bに示すレンズ501は、透明な合成樹脂の基材502の全面に図4で説明したドシメータ粉末403が塗布されて、ドシメータ層503が形成されている。そして更にドシメータ層503の上に、その周縁にヨウ化セシウム等の透明なシンチレータ504が塗布されている。 [Modification of lens: disposable lens having scintillator function]
FIG. 5A is a partially enlarged view showing alens 501 having a dosimeter function according to a third modification.
FIG. 5B is a partial cross-sectional view of alens 501 having a dosimeter function according to a third modification.
Thelens 501 illustrated in FIGS. 5A and 5B is assumed to be applied to the radiation measurement body 101 according to the first embodiment illustrated in FIG. 1A and the radiation measurement body 131 according to the third embodiment illustrated in FIG. 1C. Although the shape is the same, the same technical idea can be applied to the radiation measurement body 121 according to the second embodiment shown in FIG. 1B.
Thelens 501 shown in FIGS. 5A and 5B has a dosimeter layer 503 formed by applying the dosimeter powder 403 described in FIG. 4 to the entire surface of a transparent synthetic resin base material 502. Further, a transparent scintillator 504 such as cesium iodide is applied on the periphery of the dosimeter layer 503.
図5Aは、第三の変形例に係るドシメータの機能を有するレンズ501を示す一部拡大図である。
図5Bは、第三の変形例に係るドシメータの機能を有するレンズ501の一部横断面図である。
図5A及び図5Bに示すレンズ501は、図1Aに示す第一の実施形態に係る放射線計測体101、及び図1Cに示す第三の実施形態に係る放射線計測体131に適用することを想定した形状であるが、図1Bに示す第二の実施形態に係る放射線計測体121にも同様の技術思想にて適用が可能である。
図5A及び図5Bに示すレンズ501は、透明な合成樹脂の基材502の全面に図4で説明したドシメータ粉末403が塗布されて、ドシメータ層503が形成されている。そして更にドシメータ層503の上に、その周縁にヨウ化セシウム等の透明なシンチレータ504が塗布されている。 [Modification of lens: disposable lens having scintillator function]
FIG. 5A is a partially enlarged view showing a
FIG. 5B is a partial cross-sectional view of a
The
The
ドシメータは放射線を照射しただけでは発光せず、励起光源からの紫外線などの刺激光を照射することで初めて発光する。つまり、過大な放射線が照射されて放射線計測体の装着者に危険が生じても、現在被爆している状態が危険であるか否かをリアルタイムで判断することができない。そこで、放射線計測体のレンズ501の周縁にシンチレータ504を塗布しておけば、放射線が照射されるとリアルタイムにシンチレータ504が発光する。このシンチレータ504の発光状態で、放射線計測体の装着者は自らの身に危険が迫っていることを瞬時に判断することが可能になる。なお、レンズ501の周縁にのみシンチレータ504を塗布する理由は、レンズ501全面にシンチレータ504を塗布すると、放射線計測体の装着者の視界を妨げてしまい、装着者の避難行動を著しく阻害してしまう虞を鑑みた結果である。
なお、ドシメータ層503は、基材502の裏面や両面に塗布等で形成してもよい。 The dosimeter does not emit light only when irradiated with radiation, but emits light only when irradiated with stimulating light such as ultraviolet light from an excitation light source. That is, even if excessive radiation is applied to the wearer of the radiation measurement body, it is impossible to determine in real time whether or not the currently exposed state is dangerous. Therefore, if thescintillator 504 is applied to the periphery of the lens 501 of the radiation measurement body, the scintillator 504 emits light in real time when radiation is irradiated. In the light emission state of the scintillator 504, the wearer of the radiation measuring body can instantaneously determine that danger is imminent on his or her body. Note that the reason for applying the scintillator 504 only to the periphery of the lens 501 is that if the scintillator 504 is applied to the entire surface of the lens 501, it obstructs the field of view of the wearer of the radiation measurement body and significantly impedes the evacuation behavior of the wearer. This is a result in consideration of fear.
Note that thedosimeter layer 503 may be formed on the back surface or both surfaces of the base material 502 by coating or the like.
なお、ドシメータ層503は、基材502の裏面や両面に塗布等で形成してもよい。 The dosimeter does not emit light only when irradiated with radiation, but emits light only when irradiated with stimulating light such as ultraviolet light from an excitation light source. That is, even if excessive radiation is applied to the wearer of the radiation measurement body, it is impossible to determine in real time whether or not the currently exposed state is dangerous. Therefore, if the
Note that the
[レンズの変形例:ドシメータ粉末403の塗布範囲を最小限に抑えた使い捨てレンズ]
前述の第二の変形例及び第三の変形例では、合成樹脂で構成されたレンズの全面にドシメータ粉末403を塗布していた。しかし、図7以降で後述する放射線被曝量計測装置は、光学系によって励起光をレンズの表面に集光する都合上、レンズに塗布されたドシメータの発光を計測する面積は限られている。つまり、レンズの全面にドシメータ粉末403を塗布せずとも、必要最小限の箇所にドシメータ粉末403を塗布すれば、装着者の水晶体の放射線被曝量を計測する、という所望の目的を達成することが可能である。 [Modification of lens: disposable lens with minimum application range of dosimeter powder 403]
In the second and third modifications described above, thedosimeter powder 403 is applied to the entire surface of the lens made of a synthetic resin. However, in the radiation exposure dose measuring device described later with reference to FIG. 7 and subsequent figures, the area for measuring the emission of the dosimeter applied to the lens is limited because the excitation light is focused on the surface of the lens by the optical system. In other words, even if the dosimeter powder 403 is not applied to the entire surface of the lens, if the dosimeter powder 403 is applied to the minimum necessary portion, the desired purpose of measuring the radiation exposure of the lens of the wearer can be achieved. It is possible.
前述の第二の変形例及び第三の変形例では、合成樹脂で構成されたレンズの全面にドシメータ粉末403を塗布していた。しかし、図7以降で後述する放射線被曝量計測装置は、光学系によって励起光をレンズの表面に集光する都合上、レンズに塗布されたドシメータの発光を計測する面積は限られている。つまり、レンズの全面にドシメータ粉末403を塗布せずとも、必要最小限の箇所にドシメータ粉末403を塗布すれば、装着者の水晶体の放射線被曝量を計測する、という所望の目的を達成することが可能である。 [Modification of lens: disposable lens with minimum application range of dosimeter powder 403]
In the second and third modifications described above, the
図6Aは、第四の変形例に係る、放射線計測体101のレンズ601a、601bにおけるドシメータ粉末403の塗布範囲を説明する概略図である。
図6Bは、第四の変形例に係る、放射線計測体101のレンズ601a、601bに塗布されたドシメータ粉末403に対し、放射線が照射された状態を説明する概略図である。
なお、図6A、図6B、図6C及び図6Dでは、図1Aに示す第一の実施形態に係る放射線計測体101を例に説明しているが、図1Bに示す第二の実施形態に係る放射線計測体121及び図1Cに示す第三の実施形態に係る放射線計測体131においても同様の技術思想にて適用が可能である。 FIG. 6A is a schematic diagram illustrating an application range of thedosimeter powder 403 on the lenses 601a and 601b of the radiation measurement body 101 according to the fourth modification.
FIG. 6B is a schematic diagram illustrating a state in which radiation is applied to thedosimeter powder 403 applied to the lenses 601a and 601b of the radiation measurement body 101 according to the fourth modification.
6A, 6B, 6C, and 6D, theradiation measurement body 101 according to the first embodiment illustrated in FIG. 1A is described as an example, but according to the second embodiment illustrated in FIG. 1B. The same technical idea can be applied to the radiation measurement body 121 and the radiation measurement body 131 according to the third embodiment shown in FIG. 1C.
図6Bは、第四の変形例に係る、放射線計測体101のレンズ601a、601bに塗布されたドシメータ粉末403に対し、放射線が照射された状態を説明する概略図である。
なお、図6A、図6B、図6C及び図6Dでは、図1Aに示す第一の実施形態に係る放射線計測体101を例に説明しているが、図1Bに示す第二の実施形態に係る放射線計測体121及び図1Cに示す第三の実施形態に係る放射線計測体131においても同様の技術思想にて適用が可能である。 FIG. 6A is a schematic diagram illustrating an application range of the
FIG. 6B is a schematic diagram illustrating a state in which radiation is applied to the
6A, 6B, 6C, and 6D, the
図6A及び図6Bに示す放射線計測体101のレンズ601a、601bは、ブリッジの近傍(装着者の鼻に近い側)にドシメータ粉末403が塗布された第一検出領域602a、602bが、テンプルの近傍(装着者の耳に近い側)にドシメータ粉末403が塗布された第二検出領域603a、603bが、それぞれ設けられている。眼鏡形状である放射線計測体101は、図6Bに示すように装着者の顔の輪郭に沿って湾曲している。この湾曲した形状のレンズ601a、601bに対し、放射線が照射方向V604から照射されると、第一検出領域602a、602bと第二検出領域603a、603bとで、放射線の照射角度が異なるために、それぞれの検出領域における被曝量に差異が生じる。特に、第二検出領域603a、603bは装着者の耳に近い側に形成されているため、放射線が装着者の右側と左側のどちらから照射されたのかを客観的に類推することが可能になる。
The lenses 601a and 601b of the radiation measurement body 101 shown in FIGS. 6A and 6B have first detection areas 602a and 602b in which dosimeter powder 403 is applied near the bridge (closer to the wearer's nose). The second detection regions 603a and 603b on which the dosimeter powder 403 is applied (on the side close to the wearer's ear) are provided. The radiation measurement body 101 in the form of glasses is curved along the contour of the wearer's face as shown in FIG. 6B. When radiation is applied to the curved lenses 601a and 601b from the irradiation direction V604, the irradiation angles of the radiation are different between the first detection areas 602a and 602b and the second detection areas 603a and 603b. There is a difference in the amount of exposure in each detection area. In particular, since the second detection areas 603a and 603b are formed on the side closer to the wearer's ear, it is possible to objectively infer whether the radiation is emitted from the right side or the left side of the wearer. .
図6Bでは、放射線の照射方向V604に対し、右側の第二検出領域603aの方が左側の第二検出領域603bよりもより直角に近い相対角度関係を有している。したがって、右側の第二検出領域603aと左側の第二検出領域603bに励起光を照射すると、右側の第二検出領域603aの方が左側の第二検出領域603bより蛍光発光時間が長くなると考えられる。
したがって、第二検出領域603a、603bに励起光源からの紫外線などの刺激光を照射した際に生じる発光量の違いから、放射線の照射方向を類推することが可能になる。 In FIG. 6B, the rightsecond detection region 603a has a relative angle relationship closer to a right angle with respect to the radiation irradiation direction V604 than the left second detection region 603b. Therefore, when the excitation light is applied to the second detection area 603a on the right and the second detection area 603b on the left, it is considered that the fluorescence emission time of the second detection area 603a on the right is longer than that of the second detection area 603b on the left. .
Therefore, the irradiation direction of the radiation can be inferred from the difference in the amount of light generated when the second detection regions 603a and 603b are irradiated with the stimulating light such as the ultraviolet light from the excitation light source.
したがって、第二検出領域603a、603bに励起光源からの紫外線などの刺激光を照射した際に生じる発光量の違いから、放射線の照射方向を類推することが可能になる。 In FIG. 6B, the right
Therefore, the irradiation direction of the radiation can be inferred from the difference in the amount of light generated when the
[レンズの変形例:更に放射線の照射方向の判別を確実にすべく形成した使い捨てレンズ]
図6Cは、第五の変形例に係る、放射線計測体101のレンズ611a、611bにおけるドシメータ粉末403の塗布範囲を説明する概略図である。
図6Dは、第五の変形例に係る、放射線計測体101のレンズ611a、611bに塗布されたドシメータ粉末403に対し、放射線が照射された状態を説明する概略図である。
図6C及び図6Dに示す放射線計測体101のレンズ611a、611bの第一検出領域612a、612bは、図6A及び図6Bに示した第四の変形例に係るレンズ601a、601bと同等である。しかし第二検出領域は、テンプルの近傍(装着者の耳に近い側)に更に舌状の延長突起部613a、613bが形成され、この延長突起部613a、613bにドシメータ粉末403が塗布されている。この第二検出領域を構成する延長突起部613a、613bは、第四の変形例における第二検出領域603a、603bと比べて、より装着者の耳に近い側に形成されている。このため、第四の変形例よりも明確に、放射線が装着者の右側と左側のどちらから照射されたのかを客観的に類推することが可能になる。 [Modification of lens: disposable lens formed to further determine the irradiation direction of radiation]
FIG. 6C is a schematic diagram illustrating an application range of thedosimeter powder 403 on the lenses 611a and 611b of the radiation measurement body 101 according to the fifth modification.
FIG. 6D is a schematic diagram illustrating a state in which radiation is applied to thedosimeter powder 403 applied to the lenses 611a and 611b of the radiation measurement body 101 according to the fifth modification.
The first detection regions 612a and 612b of the lenses 611a and 611b of the radiation measurement body 101 illustrated in FIGS. 6C and 6D are equivalent to the lenses 601a and 601b according to the fourth modification illustrated in FIGS. 6A and 6B. However, in the second detection area, tongue-shaped extension protrusions 613a and 613b are further formed near the temple (on the side near the ear of the wearer), and the dosimeter powder 403 is applied to the extension protrusions 613a and 613b. . The extended projections 613a and 613b that form the second detection area are formed closer to the wearer's ear than the second detection areas 603a and 603b in the fourth modification. For this reason, it is possible to objectively analogize whether the radiation is emitted from the right side or the left side of the wearer more clearly than in the fourth modification.
図6Cは、第五の変形例に係る、放射線計測体101のレンズ611a、611bにおけるドシメータ粉末403の塗布範囲を説明する概略図である。
図6Dは、第五の変形例に係る、放射線計測体101のレンズ611a、611bに塗布されたドシメータ粉末403に対し、放射線が照射された状態を説明する概略図である。
図6C及び図6Dに示す放射線計測体101のレンズ611a、611bの第一検出領域612a、612bは、図6A及び図6Bに示した第四の変形例に係るレンズ601a、601bと同等である。しかし第二検出領域は、テンプルの近傍(装着者の耳に近い側)に更に舌状の延長突起部613a、613bが形成され、この延長突起部613a、613bにドシメータ粉末403が塗布されている。この第二検出領域を構成する延長突起部613a、613bは、第四の変形例における第二検出領域603a、603bと比べて、より装着者の耳に近い側に形成されている。このため、第四の変形例よりも明確に、放射線が装着者の右側と左側のどちらから照射されたのかを客観的に類推することが可能になる。 [Modification of lens: disposable lens formed to further determine the irradiation direction of radiation]
FIG. 6C is a schematic diagram illustrating an application range of the
FIG. 6D is a schematic diagram illustrating a state in which radiation is applied to the
The
以上説明した、本発明に係る放射線計測体は、以下の実施形態を有する。
(1)図1Aに示すように、眼鏡形状の放射線計測体101である。
(2)図1Bに示すように、ゴーグル形状の放射線計測体121である。
(3)図1Cに示すように、後付サングラス形状の放射線計測体131である。
また、上記(1)、(2)及び(3)にて説明した、本発明に係る放射線計測体に対して適用されるレンズ(可視光透過部材)には、以下の変形例を有する。
(4)図2に示すように、レンズ全体がドシメータで形成されている。
(5)図4に示すように、レンズの基材は透明の合成樹脂で形成され、その表面全面にドシメータ粉末403が塗布されている。
(6)図5に示すように、レンズ501の基材502は透明の合成樹脂で形成され、その表面全面にドシメータ粉末403が塗布され、その上に更に、レンズ周縁にシンチレータ504が塗布されている。
(7)図6A及び図6Bに示すように、レンズ601a、601bの基材は透明の合成樹脂で形成され、装着者の鼻に近い側に第一検出領域602a、602bとして、装着者の耳に近い側に第二検出領域603a、603bとして、ドシメータ粉末403が塗布されている。
(8)図6C及び図6Dに示すように、レンズ611a、611bの、装着者の頬骨近傍に延長突起部613a、613bが形成され、延長突起部613a、613bにドシメータ粉末403が塗布されている。 The radiation measurement body according to the present invention described above has the following embodiments.
(1) As shown in FIG. 1A, aradiation measuring body 101 in the shape of glasses.
(2) As shown in FIG. 1B, theradiation measuring body 121 has a goggle shape.
(3) As shown in FIG. 1C, theradiation measuring body 131 is a sunglass-shaped retrofit.
The lens (visible light transmitting member) applied to the radiation measuring object according to the present invention described in the above (1), (2) and (3) has the following modifications.
(4) As shown in FIG. 2, the entire lens is formed by a dosimeter.
(5) As shown in FIG. 4, the base material of the lens is formed of a transparent synthetic resin, anddosimeter powder 403 is applied to the entire surface.
(6) As shown in FIG. 5, thebase material 502 of the lens 501 is formed of a transparent synthetic resin, the dosimeter powder 403 is applied to the entire surface, and the scintillator 504 is further applied to the lens periphery. I have.
(7) As shown in FIGS. 6A and 6B, the base material of the lenses 601a and 601b is formed of a transparent synthetic resin, and the first detection regions 602a and 602b are provided on the side near the nose of the wearer as ears of the wearer. The dosimeter 403 is applied as the second detection areas 603a and 603b on the side closer to.
(8) As shown in FIGS. 6C and 6D, extension protrusions 613a and 613b are formed near the wearer's cheekbone of the lenses 611a and 611b, and dosimeter powder 403 is applied to the extension protrusions 613a and 613b. .
(1)図1Aに示すように、眼鏡形状の放射線計測体101である。
(2)図1Bに示すように、ゴーグル形状の放射線計測体121である。
(3)図1Cに示すように、後付サングラス形状の放射線計測体131である。
また、上記(1)、(2)及び(3)にて説明した、本発明に係る放射線計測体に対して適用されるレンズ(可視光透過部材)には、以下の変形例を有する。
(4)図2に示すように、レンズ全体がドシメータで形成されている。
(5)図4に示すように、レンズの基材は透明の合成樹脂で形成され、その表面全面にドシメータ粉末403が塗布されている。
(6)図5に示すように、レンズ501の基材502は透明の合成樹脂で形成され、その表面全面にドシメータ粉末403が塗布され、その上に更に、レンズ周縁にシンチレータ504が塗布されている。
(7)図6A及び図6Bに示すように、レンズ601a、601bの基材は透明の合成樹脂で形成され、装着者の鼻に近い側に第一検出領域602a、602bとして、装着者の耳に近い側に第二検出領域603a、603bとして、ドシメータ粉末403が塗布されている。
(8)図6C及び図6Dに示すように、レンズ611a、611bの、装着者の頬骨近傍に延長突起部613a、613bが形成され、延長突起部613a、613bにドシメータ粉末403が塗布されている。 The radiation measurement body according to the present invention described above has the following embodiments.
(1) As shown in FIG. 1A, a
(2) As shown in FIG. 1B, the
(3) As shown in FIG. 1C, the
The lens (visible light transmitting member) applied to the radiation measuring object according to the present invention described in the above (1), (2) and (3) has the following modifications.
(4) As shown in FIG. 2, the entire lens is formed by a dosimeter.
(5) As shown in FIG. 4, the base material of the lens is formed of a transparent synthetic resin, and
(6) As shown in FIG. 5, the
(7) As shown in FIGS. 6A and 6B, the base material of the
(8) As shown in FIGS. 6C and 6D,
[放射線被曝量計測装置701:全体概略とハードウェア構成]
放射線計測体は、それ単体では放射線被曝量を計測することができない。前述のように、レンズに形成されたドシメータに励起光を照射して蛍光させ、その発光量を計測することで、初めて放射線被曝量を計測することが可能になる。
図7は、放射線被曝量計測装置701の全体構成を示す概略図である。
放射線被曝量計測装置701は、放射線計測体702を閉じ込める光遮蔽箱703と、光遮蔽箱703に接続される計算機704よりなる。図7では計算機704の一例として周知のパソコンが接続されているが、周知のワンボードマイコンでもよい。 [Radiation Exposure Measurement Device 701: Overall Schematic and Hardware Configuration]
The radiation measurement body alone cannot measure the radiation exposure dose. As described above, the radiation exposure dose can be measured for the first time by irradiating the dosimeter formed on the lens with the excitation light to fluoresce and measuring the light emission amount.
FIG. 7 is a schematic diagram showing the overall configuration of the radiation exposuredose measuring device 701.
The radiation exposuredose measuring device 701 includes a light shielding box 703 for confining the radiation measuring body 702 and a computer 704 connected to the light shielding box 703. In FIG. 7, a well-known personal computer is connected as an example of the computer 704, but a well-known one-board microcomputer may be used.
放射線計測体は、それ単体では放射線被曝量を計測することができない。前述のように、レンズに形成されたドシメータに励起光を照射して蛍光させ、その発光量を計測することで、初めて放射線被曝量を計測することが可能になる。
図7は、放射線被曝量計測装置701の全体構成を示す概略図である。
放射線被曝量計測装置701は、放射線計測体702を閉じ込める光遮蔽箱703と、光遮蔽箱703に接続される計算機704よりなる。図7では計算機704の一例として周知のパソコンが接続されているが、周知のワンボードマイコンでもよい。 [Radiation Exposure Measurement Device 701: Overall Schematic and Hardware Configuration]
The radiation measurement body alone cannot measure the radiation exposure dose. As described above, the radiation exposure dose can be measured for the first time by irradiating the dosimeter formed on the lens with the excitation light to fluoresce and measuring the light emission amount.
FIG. 7 is a schematic diagram showing the overall configuration of the radiation exposure
The radiation exposure
図8は、放射線被曝量計測装置701のハードウェア構成を示すブロック図である。
光遮蔽箱703は、その内部に放射線計測体702を保持する保持台801と、保持台801を駆動するモータ802と、放射線計測体702に励起光を照射するための励起光発光部803と、放射線計測体702から生じる蛍光を電気信号に変換する蛍光受光部804と、励起光を放射線計測体702に集光させる光学系805aと、蛍光を蛍光受光部804へ集光する光学系805bを有する。
保持台801とモータ802は、光学系805a、805bと放射線計測体702との相対的な位置関係を変更するために設けられている。
フォトダイオード、フォトトランジスタ、CMOSセンサ等よりなる蛍光受光部804から出力される微弱な電圧信号は、電荷増幅器806によって積分され、更に線形増幅器807で増幅される。線形増幅器807の出力信号は、計算機704のA/D変換器819によってデジタルデータに変換される。
なお、A/D変換器819は光遮蔽箱703に設けられていてもよい。 FIG. 8 is a block diagram illustrating a hardware configuration of the radiation exposuredose measuring device 701.
Thelight shielding box 703 includes a holding table 801 for holding the radiation measurement body 702 therein, a motor 802 for driving the holding table 801, an excitation light emitting unit 803 for irradiating the radiation measurement body 702 with excitation light, It has a fluorescence receiving unit 804 for converting fluorescence generated from the radiation measurement body 702 into an electric signal, an optical system 805a for condensing excitation light on the radiation measurement body 702, and an optical system 805b for condensing fluorescence to the fluorescence reception unit 804. .
The holding table 801 and themotor 802 are provided to change the relative positional relationship between the optical systems 805a and 805b and the radiation measurement body 702.
The weak voltage signal output from the fluorescentlight receiving unit 804 including a photodiode, a phototransistor, a CMOS sensor, and the like is integrated by the charge amplifier 806 and further amplified by the linear amplifier 807. The output signal of the linear amplifier 807 is converted into digital data by the A / D converter 819 of the computer 704.
Note that the A /D converter 819 may be provided in the light shielding box 703.
光遮蔽箱703は、その内部に放射線計測体702を保持する保持台801と、保持台801を駆動するモータ802と、放射線計測体702に励起光を照射するための励起光発光部803と、放射線計測体702から生じる蛍光を電気信号に変換する蛍光受光部804と、励起光を放射線計測体702に集光させる光学系805aと、蛍光を蛍光受光部804へ集光する光学系805bを有する。
保持台801とモータ802は、光学系805a、805bと放射線計測体702との相対的な位置関係を変更するために設けられている。
フォトダイオード、フォトトランジスタ、CMOSセンサ等よりなる蛍光受光部804から出力される微弱な電圧信号は、電荷増幅器806によって積分され、更に線形増幅器807で増幅される。線形増幅器807の出力信号は、計算機704のA/D変換器819によってデジタルデータに変換される。
なお、A/D変換器819は光遮蔽箱703に設けられていてもよい。 FIG. 8 is a block diagram illustrating a hardware configuration of the radiation exposure
The
The holding table 801 and the
The weak voltage signal output from the fluorescent
Note that the A /
計算機704は、バス811に接続された、CPU812、ROM813、RAM814、表示部815、操作部816、不揮発性ストレージ817、USB等のシリアルインターフェース(以下「シリアルI/F」と略)818、そしてA/D変換器819を備える。
不揮発性ストレージ817には、計算機704を放射線被曝量計測装置701として動作させるためのプログラムが格納されている。
シリアルI/F818には、モータ802と励起光発光部803が接続されている。 Thecomputer 704 includes a CPU 812, a ROM 813, a RAM 814, a display unit 815, an operation unit 816, a nonvolatile storage 817, a serial interface such as a USB (hereinafter, abbreviated as “serial I / F”) 818 connected to the bus 811, and A A / D converter 819 is provided.
Thenon-volatile storage 817 stores a program for operating the computer 704 as the radiation exposure dose measuring device 701.
Amotor 802 and an excitation light emitting unit 803 are connected to the serial I / F 818.
不揮発性ストレージ817には、計算機704を放射線被曝量計測装置701として動作させるためのプログラムが格納されている。
シリアルI/F818には、モータ802と励起光発光部803が接続されている。 The
The
A
[放射線被曝量計測装置701:ソフトウェア機能]
図9は、放射線被曝量計測装置701のソフトウェア機能を示すブロック図である。
A/D変換器819から出力されるデジタルデータは、スイッチ901を介して入出力制御部902に入力される。このスイッチ901は、シーケンス制御部903によってオンオフ制御される。入出力制御部902は、スイッチ901を介して入力されたデータに時間積分処理を施して、放射線被曝量を算出する。そして、算出した放射線被曝量を表示部に表示し、不揮発性ストレージ内の所定のファイルに記録する。
シーケンス制御部903は、励起光発光部803とスイッチ901に対し、オンオフ制御信号を送信する。具体的には、励起光発光部803を所定時間だけ発光させた後、所定の時間間隔を経過してから、スイッチ901をオン制御する。 [Radiation exposure dose measuring device 701: software function]
FIG. 9 is a block diagram illustrating a software function of the radiation exposuredose measuring device 701.
Digital data output from the A /D converter 819 is input to the input / output control unit 902 via the switch 901. The switch 901 is on / off controlled by the sequence control unit 903. The input / output control unit 902 performs a time integration process on data input via the switch 901 to calculate a radiation exposure dose. Then, the calculated radiation exposure amount is displayed on the display unit, and is recorded in a predetermined file in the nonvolatile storage.
Thesequence control unit 903 transmits an on / off control signal to the excitation light emitting unit 803 and the switch 901. Specifically, the switch 901 is turned on after a predetermined time interval has elapsed after the excitation light emitting unit 803 emits light for a predetermined time.
図9は、放射線被曝量計測装置701のソフトウェア機能を示すブロック図である。
A/D変換器819から出力されるデジタルデータは、スイッチ901を介して入出力制御部902に入力される。このスイッチ901は、シーケンス制御部903によってオンオフ制御される。入出力制御部902は、スイッチ901を介して入力されたデータに時間積分処理を施して、放射線被曝量を算出する。そして、算出した放射線被曝量を表示部に表示し、不揮発性ストレージ内の所定のファイルに記録する。
シーケンス制御部903は、励起光発光部803とスイッチ901に対し、オンオフ制御信号を送信する。具体的には、励起光発光部803を所定時間だけ発光させた後、所定の時間間隔を経過してから、スイッチ901をオン制御する。 [Radiation exposure dose measuring device 701: software function]
FIG. 9 is a block diagram illustrating a software function of the radiation exposure
Digital data output from the A /
The
図10は、線形増幅器807から得られる信号のグラフと、励起光発光部803に流れる電流のグラフである。
励起光発光部803から励起光がドシメータに一定時間照射される(T1001からT1002)と、励起光照射の開始時点(T1001)から少し遅れて、蛍光受光部804から信号が発生し(T1003)、励起光照射の終了時点(T1002)から少し遅れて、蛍光受光部804から発生する信号が一旦途絶える(T1004)。この、時点T1003からT1004の間に線形増幅器807から得られる信号は、励起光照射の時間にのみ依存するノイズである。
そして、時点T1004から僅かな時間間隔を経て、ドシメータは自発的に発光を始める(T1005)。この発光は時点T1006迄継続する。この、時点T1005から時点T1006迄の発光が、放射線被曝量に依存する蛍光現象であり、放射線被曝量に応じて時点T1006の終了時刻が前後に変動する。 FIG. 10 is a graph of a signal obtained from thelinear amplifier 807 and a graph of a current flowing through the excitation light emitting unit 803.
When the excitation light is emitted from the excitationlight emitting unit 803 to the dosimeter for a certain period of time (from T1001 to T1002), a signal is generated from the fluorescent light receiving unit 804 slightly after the start of the excitation light irradiation (T1001) (T1003). Slightly after the end of the excitation light irradiation (T1002), the signal generated from the fluorescent light receiving unit 804 temporarily stops (T1004). The signal obtained from the linear amplifier 807 between the time points T1003 and T1004 is noise that depends only on the irradiation time of the excitation light.
Then, after a short time interval from the time T1004, the dosimeter starts to emit light spontaneously (T1005). This light emission continues until time T1006. The light emission from the time T1005 to the time T1006 is a fluorescence phenomenon depending on the radiation exposure dose, and the end time of the time T1006 fluctuates before and after depending on the radiation exposure dose.
励起光発光部803から励起光がドシメータに一定時間照射される(T1001からT1002)と、励起光照射の開始時点(T1001)から少し遅れて、蛍光受光部804から信号が発生し(T1003)、励起光照射の終了時点(T1002)から少し遅れて、蛍光受光部804から発生する信号が一旦途絶える(T1004)。この、時点T1003からT1004の間に線形増幅器807から得られる信号は、励起光照射の時間にのみ依存するノイズである。
そして、時点T1004から僅かな時間間隔を経て、ドシメータは自発的に発光を始める(T1005)。この発光は時点T1006迄継続する。この、時点T1005から時点T1006迄の発光が、放射線被曝量に依存する蛍光現象であり、放射線被曝量に応じて時点T1006の終了時刻が前後に変動する。 FIG. 10 is a graph of a signal obtained from the
When the excitation light is emitted from the excitation
Then, after a short time interval from the time T1004, the dosimeter starts to emit light spontaneously (T1005). This light emission continues until time T1006. The light emission from the time T1005 to the time T1006 is a fluorescence phenomenon depending on the radiation exposure dose, and the end time of the time T1006 fluctuates before and after depending on the radiation exposure dose.
入出力制御部902には、線形増幅器807から得られる信号のうち、時点T1003から時点T1004迄のノイズを除外し、時点T1005から時点T1006迄の蛍光現象に因る信号だけを演算の対象にしなければならない。この、時点T1001からT1005迄の信号をマスキングするため、シーケンス制御部903が設けられている。
The input / output control unit 902 must exclude the noise from the time point T1003 to the time point T1004 among the signals obtained from the linear amplifier 807 and make only the signal due to the fluorescent phenomenon from the time point T1005 to the time point T1006 into the calculation target. Must. A sequence control unit 903 is provided to mask the signals from time T1001 to T1005.
装着者の水晶体は放射線計測体702のレンズ自体が放射線遮蔽素材として働くため、水晶体の放射線被曝量は放射線計測体702の未装着時より低くなる。また、放射線計測体702のレンズと装着者の水晶体は組成及び密度が異なるため、放射線の吸収線量が異なる。
放射線計測体702の放射線量と水晶体被曝の放射線量の相関は、シミュレーションにより推定する。
放射線被曝量計測装置701の入出力制御部902は、上記の線量推定方法に基づく補正演算機能を有している。 Since the lens of the wearer's crystalline lens itself acts as a radiation shielding material, the radiation exposure dose of the crystalline lens is lower than when theradiation measuring body 702 is not mounted. Further, since the lens of the radiation measurement body 702 and the lens of the wearer have different compositions and densities, the absorbed dose of radiation differs.
The correlation between the radiation dose of theradiation measurement body 702 and the radiation dose of the lens exposure is estimated by simulation.
The input /output control unit 902 of the radiation exposure dose measuring device 701 has a correction operation function based on the above-described dose estimation method.
放射線計測体702の放射線量と水晶体被曝の放射線量の相関は、シミュレーションにより推定する。
放射線被曝量計測装置701の入出力制御部902は、上記の線量推定方法に基づく補正演算機能を有している。 Since the lens of the wearer's crystalline lens itself acts as a radiation shielding material, the radiation exposure dose of the crystalline lens is lower than when the
The correlation between the radiation dose of the
The input /
また、装着者が放射線防護服を着用していない場合は、均等被曝(放射線被曝の対象となる人の全身が概ね均等に放射線被曝を受ける状況)が適用されると考えられる。この場合、放射線計測体702から算出される装着者の水晶体の放射線被曝量に対して、所定の係数を乗算する等で、装着者の水晶体以外の他の臓器や組織における放射線被曝量を推定演算することが可能になる。
(4) If the wearer does not wear radiation protective clothing, it is considered that equal exposure (a situation in which the whole body of the person to be exposed to radiation is almost uniformly exposed to radiation) is applied. In this case, the radiation exposure dose to the wearer's lens calculated from the radiation measurement body 702 is multiplied by a predetermined coefficient to estimate the radiation exposure dose to other organs or tissues other than the wearer's lens. It becomes possible to do.
図11は、入出力制御部902にて実行される、装着者の水晶体及び各臓器における放射線被曝量を推定演算する処理の詳細を示す機能ブロック図である。
A/D変換器819から入力される、放射線計測体の左レンズから読み取られたRPL読取量をMrad(L)、右レンズから読み取られたRPL読取量をMrad(R)とする。Mrad(L)とMrad(R)よりなる左右レンズRPL読取量1101は、校正標準場において決定される放射線吸収体の吸収線量校正定数1102と、第一乗算器1103によってそれぞれ乗算される。なお、図11及び数式上の吸収線量校正定数1102をNDとする。
その結果、放射線計測体の左レンズの吸収線量Drad(L)と、放射線計測体の右レンズの吸収線量Drad(R)が、以下の式で導き出される。
Drad(L)=ND×Mrad(L)
Drad(R)=ND×Mrad(R) FIG. 11 is a functional block diagram illustrating the details of the processing performed by the input /output control unit 902 for estimating and calculating the radiation exposure dose to the wearer's lens and each organ.
The RPL read amount input from the A /D converter 819 and read from the left lens of the radiation measurement object is M rad (L), and the RPL read amount read from the right lens is M rad (R). The left and right lens RPL reading amounts 1101 consisting of M rad (L) and M rad (R) are respectively multiplied by the absorption dose calibration constant 1102 of the radiation absorber determined in the calibration standard field by the first multiplier 1103. Note that the 11 and absorbed dose calibration constant 1102 on formulas and N D.
As a result, the absorbed dose D rad (L) of the left lens of the radiation measuring object and the absorbed dose D rad (R) of the right lens of the radiation measuring object are derived by the following equations.
D rad (L) = N D × M rad (L)
D rad (R) = N D × M rad (R)
A/D変換器819から入力される、放射線計測体の左レンズから読み取られたRPL読取量をMrad(L)、右レンズから読み取られたRPL読取量をMrad(R)とする。Mrad(L)とMrad(R)よりなる左右レンズRPL読取量1101は、校正標準場において決定される放射線吸収体の吸収線量校正定数1102と、第一乗算器1103によってそれぞれ乗算される。なお、図11及び数式上の吸収線量校正定数1102をNDとする。
その結果、放射線計測体の左レンズの吸収線量Drad(L)と、放射線計測体の右レンズの吸収線量Drad(R)が、以下の式で導き出される。
Drad(L)=ND×Mrad(L)
Drad(R)=ND×Mrad(R) FIG. 11 is a functional block diagram illustrating the details of the processing performed by the input /
The RPL read amount input from the A /
As a result, the absorbed dose D rad (L) of the left lens of the radiation measuring object and the absorbed dose D rad (R) of the right lens of the radiation measuring object are derived by the following equations.
D rad (L) = N D × M rad (L)
D rad (R) = N D × M rad (R)
Drad(L)とDrad(R)よりなる左右レンズ吸収線量1104は、平均値演算部1105によって、吸収線量平均値1106が算出される。
With respect to the left and right lens absorbed dose 1104 composed of D rad (L) and D rad (R), an average absorbed dose 1106 is calculated by the average calculator 1105.
事前にモンテカルロ・シミュレーションにより計算しておいた、モンテカルロ・シミュレーションにおける3mm線量当量Hp(3)とモンテカルロ・シミュレーションにおける放射線計測体の吸収線量平均値の比を、3mm線量当量校正定数1107とする。3mm線量当量とは、水晶体の線量当量の指標として用いられる、身体表面から3mmの深さの線量当量である。
The ratio between the 3 mm dose equivalent H p (3) in the Monte Carlo simulation and the average absorbed dose of the radiation measuring body in the Monte Carlo simulation, which has been calculated in advance by the Monte Carlo simulation, is defined as a 3 mm dose equivalent calibration constant 1107. The 3 mm dose equivalent is a dose equivalent at a depth of 3 mm from the body surface, which is used as an index of the dose equivalent of the crystalline lens.
吸収線量平均値1106は、第二乗算器1108によって、3mm線量当量校正定数1107と乗算されて、3mm線量当量1109が導き出される。すなわち、以下の式にて3mm線量当量1109が算出される。
The average value 1106 of the absorbed dose is multiplied by a 3 mm dose equivalent calibration constant 1107 by the second multiplier 1108 to derive a 3 mm dose equivalent 1109. That is, the 3 mm dose equivalent 1109 is calculated by the following equation.
一方、Drad(L)とDrad(R)よりなる左右レンズ吸収線量1104は、放射線飛来角演算部1110にも入力される。
放射線飛来角演算部1110は、事前にモンテカルロ・シミュレーションにより、左右レンズ吸収線量1104における左右の線量比Drad(L)÷Drad(R)に対する、期待度の高い放射線飛来角1111の関係を導き出し、テーブル等にて記憶しておく。そして、入力される左右レンズ吸収線量1104に対応する放射線飛来角1111を出力する。
なお、図11及び数式上の放射線飛来角1111をθradとする。 On the other hand, the left and right lens absorbeddose 1104 composed of D rad (L) and D rad (R) is also input to the radiation incident angle calculation unit 1110.
The radiation arrivalangle calculation unit 1110 derives a relation of the radiation arrival angle 1111 with high expectation to the left and right dose ratio D rad (L) ÷ D rad (R) in the left and right lens absorbed dose 1104 in advance by Monte Carlo simulation. , In a table or the like. Then, a radiation flying angle 1111 corresponding to the input left and right lens absorbed dose 1104 is output.
Note that theradiation arrival angle 1111 in FIG. 11 and the mathematical expression is θ rad .
放射線飛来角演算部1110は、事前にモンテカルロ・シミュレーションにより、左右レンズ吸収線量1104における左右の線量比Drad(L)÷Drad(R)に対する、期待度の高い放射線飛来角1111の関係を導き出し、テーブル等にて記憶しておく。そして、入力される左右レンズ吸収線量1104に対応する放射線飛来角1111を出力する。
なお、図11及び数式上の放射線飛来角1111をθradとする。 On the other hand, the left and right lens absorbed
The radiation arrival
Note that the
更に、事前にモンテカルロ・シミュレーションにより計算しておいた、モンテカルロ・シミュレーションにおける放射線飛来角毎の臓器Tの臓器吸収線量DTと、モンテカルロ・シミュレーションにおける放射線計測体の吸収線量平均値の比を、テーブル等にて記憶しておく。このテーブルを臓器毎飛来角吸収線量比1112とする。
Furthermore, pre had been calculated by Monte Carlo simulation, and organ absorbed dose D T organ T of each radiation flying angle in Monte Carlo simulations, the ratio of the absorbed dose mean value of the radiation measurement body in the Monte Carlo simulation, Tables And so on. This table is defined as the flying angle absorbed dose ratio 1112 for each organ.
吸収線量平均値1106と放射線飛来角1111は、臓器吸収線量演算部1113に入力される。臓器吸収線量演算部1113は、放射線飛来角1111にて臓器毎飛来角吸収線量比1112を検索して、該当する放射線飛来角における臓器毎の係数のテーブルを引き出し、吸収線量平均値1106と乗算する。
すなわち、以下の式によって臓器Tにおける臓器吸収線量1114が算出される。 The absorbed doseaverage value 1106 and the radiation angle of incidence 1111 are input to the organ absorbed dose calculation unit 1113. The organ absorbed dose calculation unit 1113 searches for the organ incident angle absorbed dose ratio 1112 at the radiation incident angle 1111, derives a table of coefficients for each organ at the corresponding radiation incident angle, and multiplies by the absorbed dose average value 1106. .
That is, the organ absorbed dose 1114 in the organ T is calculated by the following equation.
すなわち、以下の式によって臓器Tにおける臓器吸収線量1114が算出される。 The absorbed dose
That is, the organ absorbed dose 1114 in the organ T is calculated by the following equation.
[放射線被曝量計測装置701:間仕切り]
図12は、光遮蔽箱703の内部に設けられる、保持台801と間仕切り1201の概略図である。
放射線が照射されたレンズに形成されているドシメータは、励起光を照射すると蛍光現象によって可視光を発光する。この蛍光現象によって生じる発光を正確に計測するため、蛍光受光部804を稼働する際には、ドシメータの蛍光に由来しない光を遮蔽する必要がある。このため、放射線計測体702は光遮蔽箱703に入れられ、外部の光を遮蔽した状態でドシメータの発光量の計測を行う。 [Radiation exposure dose measuring device 701: partition]
FIG. 12 is a schematic diagram of the holding table 801 and thepartition 1201 provided inside the light shielding box 703.
A dosimeter formed on a lens irradiated with radiation emits visible light by a fluorescent phenomenon when irradiated with excitation light. In order to accurately measure the light emission caused by this fluorescence phenomenon, it is necessary to shield light that does not originate from the fluorescence of the dosimeter when operating thefluorescence receiving unit 804. For this reason, the radiation measurement body 702 is put in the light shielding box 703, and measures the light emission amount of the dosimeter in a state where external light is shielded.
図12は、光遮蔽箱703の内部に設けられる、保持台801と間仕切り1201の概略図である。
放射線が照射されたレンズに形成されているドシメータは、励起光を照射すると蛍光現象によって可視光を発光する。この蛍光現象によって生じる発光を正確に計測するため、蛍光受光部804を稼働する際には、ドシメータの蛍光に由来しない光を遮蔽する必要がある。このため、放射線計測体702は光遮蔽箱703に入れられ、外部の光を遮蔽した状態でドシメータの発光量の計測を行う。 [Radiation exposure dose measuring device 701: partition]
FIG. 12 is a schematic diagram of the holding table 801 and the
A dosimeter formed on a lens irradiated with radiation emits visible light by a fluorescent phenomenon when irradiated with excitation light. In order to accurately measure the light emission caused by this fluorescence phenomenon, it is necessary to shield light that does not originate from the fluorescence of the dosimeter when operating the
紫外線LEDやレーザダイオード等の励起光源発光部803は、周知の定電流回路を用いて一定の電力にて発光駆動が行われる。一定の電力によって発生させた励起光をドシメータに照射させる都合上、ドシメータが形成されたレンズに対して広範囲に励起光を照射すると、励起光が広範囲に分散されてしまうと共に、広範囲に発生した蛍光を余すことなく蛍光受光部804に集光させることが難しい。また、図6で説明したように、ドシメータの異なる部位における輝度が放射線の照射方向によって変化することから、レンズに対して広範囲に励起光を照射することは好ましくない。このため、励起光発光部803から生じた励起光は、光学系805a、805bによってドシメータが形成されたレンズの一部分に対して集光される。
(4) The excitation light emitting unit 803 such as an ultraviolet LED or a laser diode is driven to emit light with constant power using a known constant current circuit. For the purpose of irradiating the dosimeter with excitation light generated by constant power, if the dosimeter-formed lens is irradiated with excitation light over a wide area, the excitation light will be dispersed over a wide area and the fluorescent light generated over a wide area It is difficult to condense the light on the fluorescent light receiving unit 804 without leaving the light. In addition, as described with reference to FIG. 6, it is not preferable to irradiate the lens with excitation light over a wide range because the luminance at different portions of the dosimeter changes depending on the radiation irradiation direction. Therefore, the excitation light generated from the excitation light emitting unit 803 is focused on a part of the lens where the dosimeter is formed by the optical systems 805a and 805b.
本発明の実施形態に係る放射線被曝量計測装置701において利用可能な光学系805a、805bの種類としては、PL系(Photoluminescence)と呼ばれる、発光光学系と受光光学系が別々に構成されている光学系と、共焦点系(Confocal)と呼ばれる、発光光学系と受光光学系のうち、対物レンズが共用される光学系がある。何れの光学系であっても、可視光透過部材の一箇所に励起光を集光させる必要がある点は共通する。このため、可視光透過部材の複数の箇所に対し、励起光を集光させて蛍光を計測する作業を複数回実施する必要がある。特に、第一の実施形態(眼鏡型放射線計測体)と第三の実施形態(後付サングラス型放射線計測体)では、可視光透過部材の右目側と左目側とで、別々に計測作業を実施する必要がある。保持台801とモータ802は、光学系805a、805bと可視光透過部材との相対的な位置関係を変更して、レンズに対し複数箇所における計測を実行するために設けられている。
As the types of optical systems 805a and 805b that can be used in the radiation exposure dose measuring apparatus 701 according to the embodiment of the present invention, an optical system called a PL system (Photoluminescence) in which a light emitting optical system and a light receiving optical system are separately configured. There is an optical system called a confocal system and a light emitting optical system and a light receiving optical system that share an objective lens. Regardless of the type of optical system, it is common that the excitation light needs to be focused on one location of the visible light transmitting member. For this reason, it is necessary to perform the operation of condensing the excitation light and measuring the fluorescence on a plurality of portions of the visible light transmitting member a plurality of times. In particular, in the first embodiment (eyeglass-type radiation measurement body) and the third embodiment (rear-mounted sunglass-type radiation measurement body), measurement work is separately performed on the right eye side and the left eye side of the visible light transmitting member. There is a need to. The holding table 801 and the motor 802 are provided to change the relative positional relationship between the optical systems 805a and 805b and the visible light transmitting member, and execute measurement at a plurality of positions on the lens.
一方、ドシメータを構成するレンズ等の可視光透過部材は、ガラスや透明な合成樹脂で構成されていることから、光を屈折させる他、反射させる等の光学特性を有する。励起光に対しても例外ではなく、可視光透過部材に照射された励起光の一部は、様々な方向へ乱反射する。すると、乱反射した励起光が、計測対象外の可視光透過部材上のドシメータに照射されてしまい、計測していないにもかかわらず、別の計測部分で蛍光が生じてしまう可能性がある。
On the other hand, a visible light transmitting member such as a lens constituting the dosimeter is made of glass or a transparent synthetic resin, and thus has optical characteristics such as refracting and reflecting light. The excitation light is no exception, and a part of the excitation light applied to the visible light transmitting member is irregularly reflected in various directions. Then, the irregularly reflected excitation light is irradiated on the dosimeter on the visible light transmitting member outside the measurement target, and fluorescence may be generated in another measurement portion even though measurement is not performed.
このような、光学系805a、805bが計測対象としていない箇所における励起光の漏れ込みを防ぎ、蛍光の計測誤差を最小限に防ぐため、保持台801に固定された放射線計測体702の中心を横切り、可視光透過部材の右目側と左目側を相互に光学的に遮蔽するために、間仕切り1201が設けられる。この間仕切り1201によって、一方の可視光透過部材の蛍光を計測する際に、乱反射した励起光が他方の可視光透過部材に照射される可能性を排除する。
In order to prevent the excitation light from leaking into the places where the optical systems 805a and 805b are not to be measured and to minimize the fluorescence measurement error, the optical system 805a and 805b cross the center of the radiation measurement body 702 fixed to the holding table 801. In order to optically shield the right eye side and the left eye side of the visible light transmitting member from each other, a partition 1201 is provided. The partition 1201 eliminates the possibility that, when measuring the fluorescence of one visible light transmitting member, the excitation light that has been irregularly reflected is applied to the other visible light transmitting member.
本発明の実施形態では、種々の形態を有する放射線計測体と放射線被曝量計測装置701を開示した。
放射線計測体は、周知の眼鏡、ゴーグル、後付サングラス等の形態で、レンズに透明なドシメータを形成することで実現できる。
レンズは、その全体をドシメータガラスで形成してもよいし、ドシメータガラスを粉砕したドシメータ粉末を透明な合成樹脂に塗布してもよい。また、レンズの周縁や、レンズの全面あるいは一部分にシンチレータを形成してもよい。
ドシメータをレンズに形成する範囲は、レンズ全体でもよいが、レンズの表面及び/または裏面の、装着者の右耳に近い側と左耳に近い側のそれぞれにドシメータの層を塗布等で形成すると、放射線の照射方向を類推することが可能になる利点がある。またこの利点をより追求するため、レンズに延長突起部613a、613bを形成してもよい。 In the embodiment of the present invention, the radiation measuring body and the radiation exposuredose measuring device 701 having various forms are disclosed.
The radiation measuring body can be realized by forming a transparent dosimeter on a lens in the form of well-known glasses, goggles, retro-fitted sunglasses, or the like.
The entire lens may be formed of dosimeter glass, or dosimeter powder obtained by pulverizing dosimeter glass may be applied to a transparent synthetic resin. Further, a scintillator may be formed on the periphery of the lens or on the entire surface or a part of the lens.
The range in which the dosimeter is formed on the lens may be the entire lens, but if the dosimeter layer is formed on the front and / or back surface of the lens on the side near the right ear and the side near the left ear of the wearer by coating or the like. In addition, there is an advantage that the irradiation direction of radiation can be inferred. Further, in order to further pursue this advantage, the extension protrusions 613a and 613b may be formed on the lens.
放射線計測体は、周知の眼鏡、ゴーグル、後付サングラス等の形態で、レンズに透明なドシメータを形成することで実現できる。
レンズは、その全体をドシメータガラスで形成してもよいし、ドシメータガラスを粉砕したドシメータ粉末を透明な合成樹脂に塗布してもよい。また、レンズの周縁や、レンズの全面あるいは一部分にシンチレータを形成してもよい。
ドシメータをレンズに形成する範囲は、レンズ全体でもよいが、レンズの表面及び/または裏面の、装着者の右耳に近い側と左耳に近い側のそれぞれにドシメータの層を塗布等で形成すると、放射線の照射方向を類推することが可能になる利点がある。またこの利点をより追求するため、レンズに延長突起部613a、613bを形成してもよい。 In the embodiment of the present invention, the radiation measuring body and the radiation exposure
The radiation measuring body can be realized by forming a transparent dosimeter on a lens in the form of well-known glasses, goggles, retro-fitted sunglasses, or the like.
The entire lens may be formed of dosimeter glass, or dosimeter powder obtained by pulverizing dosimeter glass may be applied to a transparent synthetic resin. Further, a scintillator may be formed on the periphery of the lens or on the entire surface or a part of the lens.
The range in which the dosimeter is formed on the lens may be the entire lens, but if the dosimeter layer is formed on the front and / or back surface of the lens on the side near the right ear and the side near the left ear of the wearer by coating or the like. In addition, there is an advantage that the irradiation direction of radiation can be inferred. Further, in order to further pursue this advantage, the
放射線被曝量計測装置701は、放射線計測体702を閉じ込めて外部の光を遮断する光遮蔽箱703と、計算機704で構成される。計算機704は、放射線計測体702に励起光を照射して発光量を計測する際、ノイズを遮断するスイッチ901を制御するシーケンス制御部903を有する。
また、光遮蔽箱703の内部には、光の漏れ込みを防ぐために間仕切り1101が設けられる。 The radiation exposuredose measuring device 701 includes a light shielding box 703 for confining the radiation measuring body 702 and blocking external light, and a computer 704. The computer 704 includes a sequence control unit 903 that controls a switch 901 that shuts off noise when irradiating the radiation measurement body 702 with excitation light and measuring the amount of light emission.
Further, a partition 1101 is provided inside thelight shielding box 703 to prevent light from leaking.
また、光遮蔽箱703の内部には、光の漏れ込みを防ぐために間仕切り1101が設けられる。 The radiation exposure
Further, a partition 1101 is provided inside the
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、他の変形例、応用例を含む。
As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above embodiment, and other modified examples and application examples may be provided without departing from the gist of the present invention described in the claims. Including.
101…放射線計測体、102a、102b…レンズ、103a、103b…リム、104…ブリッジ、105a、105b…智、106a、106b…丁番、107a、107b…テンプル、121…放射線計測体、122…レンズ、123…フレーム、124…フェイスパッド、125…ストラップ、131…放射線計測体、132a、132b…レンズ、133…ブリッジ、134…クリップ、201…るつぼ、206…アルミプレート、207…ガラス板、301…ドシメータガラス板、302…蛍光変化部、401…ドシメータ原粉末、402a、402b…篩、403…ドシメータ粉末、404…純水、501…レンズ、502…基材、503…ドシメータ層、504…シンチレータ、601a、601b…レンズ、602a、602b…第一検出領域、603a、603b…第二検出領域、611a、611b…レンズ、612a、612b…第一検出領域、613a、613b…延長突起部、701…放射線被曝量計測装置、702…放射線計測体、703…光遮蔽箱、704…計算機、801…保持台、802…モータ、803…励起光発光部、804…蛍光受光部、805a、805b…光学系、806…電荷増幅器、807…線形増幅器、811…バス、812…CPU、813…ROM、814…RAM、815…表示部、816…操作部、817…不揮発性ストレージ、818…シリアルインターフェース、819…A/D変換器、901…スイッチ、902…入出力制御部、903…シーケンス制御部、1101…左右レンズRPL読取量、1102…吸収線量校正定数、1103…第一乗算器、1104…左右レンズ吸収線量、1105…平均値演算部、1106…吸収線量平均値、1107…3mm線量当量校正定数、1108…第二乗算器、1109…3mm線量当量、1110…放射線飛来角演算部、1111…放射線飛来角、1112…臓器毎飛来角吸収線量比、1113…臓器吸収線量演算部、1114…臓器吸収線量、1201…間仕切り
101: radiation measuring body, 102a, 102b: lens, 103a, 103b: rim, 104: bridge, 105a, 105b: tomo, 106a, 106b: hinge, 107a, 107b: temple, 121: radiation measuring body, 122: lens , 123 ... frame, 124 ... face pad, 125 ... strap, 131 ... radiation measuring body, 132a, 132b ... lens, 133 ... bridge, 134 ... clip, 201 ... crucible, 206 ... aluminum plate, 207 ... glass plate, 301 ... Dosimeter glass plate, 302: fluorescence changing portion, 401: dosimeter raw powder, 402a, 402b: sieve, 403: dosimeter powder, 404: pure water, 501: lens, 502: base material, 503: dosimeter layer, 504 ... Scintillator, 601a, 601b ... lens, 602a, 02b: First detection area, 603a, 603b: Second detection area, 611a, 611b: Lens, 612a, 612b: First detection area, 613a, 613b: Extended projection, 701: Radiation exposure dose measuring device, 702: Radiation Measurement object, 703: light shielding box, 704: computer, 801: holding table, 802: motor, 803: excitation light emitting unit, 804: fluorescent light receiving unit, 805a, 805b: optical system, 806: charge amplifier, 807: linear Amplifier, 811 bus, 812 CPU, 813 ROM, 814 RAM, 815 display unit, 816 operation unit, 817 nonvolatile storage, 818 serial interface, 819 A / D converter, 901 switch , 902, an input / output control unit, 903, a sequence control unit, 1101, a left and right lens RPL reading amount, 1102 Absorbed dose calibration constant, 1103 first multiplier, 1104 left and right lens absorbed dose, 1105 average value calculation unit, 1106 absorbed dose average value, 1107 3 mm dose equivalent calibration constant, 1108 second multiplier, 1109 3mm dose equivalent, 1110 ... radiation flying angle calculation unit, 1111 ... radiation flying angle, 1112 ... organ flying angle absorption dose ratio, 1113 ... organ absorption dose calculation unit, 1114 ... organ absorption dose, 1201 ... partition
Claims (14)
- 少なくとも一部に可視光を透過可能なドシメータが形成された可視光透過部材と、
前記可視光透過部材を装着者の少なくとも一方の水晶体の近傍に配置する配置器具と、
前記可視光透過部材と前記配置器具との間に介在して、前記可視光透過部材を前記配置器具に固定する可視光透過部材固定具と
を具備する放射線計測体。 A visible light transmitting member formed with a dosimeter capable of transmitting visible light at least in part,
An arrangement tool for arranging the visible light transmitting member near at least one crystalline lens of a wearer,
A radiation measuring body, comprising: a visible light transmitting member fixing device interposed between the visible light transmitting member and the placement device to fix the visible light transmitting member to the positioning device. - 前記ドシメータは積算型被曝線量計素子である、請求項1に記載の放射線計測体。 The radiation measuring body according to claim 1, wherein the dosimeter is an integrating dosimeter element.
- 前記可視光透過部材は眼鏡のレンズであり、
前記配置器具は眼鏡のテンプルであり、
前記可視光透過部材固定具は眼鏡のブリッジ及びリムを有する、
請求項2に記載の放射線計測体。 The visible light transmitting member is a lens of spectacles,
The placement device is a temple of glasses,
The visible light transmitting member fixture has a bridge and a rim of spectacles,
The radiation measurement body according to claim 2. - 前記可視光透過部材はゴーグルのレンズであり、
前記配置器具はゴーグルのストラップであり、
前記可視光透過部材固定具はゴーグルのフェイスパッドを有する、
請求項2に記載の放射線計測体。 The visible light transmitting member is a goggle lens,
The placement device is a goggle strap,
The visible light transmitting member fixing device has a goggle face pad,
The radiation measurement body according to claim 2. - 前記可視光透過部材は後付サングラスのレンズであり、
前記配置器具は後付サングラスのクリップであり、
前記可視光透過部材固定具は後付サングラスのブリッジを有する、
請求項2に記載の放射線計測体。 The visible light transmitting member is a lens of a retrofit sunglass,
The placement instrument is a clip of retro sunglasses,
The visible light transmitting member fixing device has a bridge for retrofit sunglasses,
The radiation measurement body according to claim 2. - 前記配置器具及び前記可視光透過部材固定具は前記可視光透過部材のアニール処理に耐える熱耐性を有する、
請求項3または5に記載の放射線計測体。 The arrangement tool and the visible light transmitting member fixing tool have heat resistance to withstand the annealing treatment of the visible light transmitting member,
A radiation measuring body according to claim 3. - 前記可視光透過部材は前記可視光透過部材固定具から脱着が可能であると共に、アニール処理に耐える熱耐性を有する、
請求項4に記載の放射線計測体。 The visible light transmitting member is detachable from the visible light transmitting member fixture, and has heat resistance to withstand an annealing process.
The radiation measuring body according to claim 4. - 前記可視光透過部材は、少なくとも一部にシンチレータが形成されている、
請求項3または4または5に記載の放射線計測体。 The visible light transmitting member has a scintillator formed at least in part,
The radiation measuring body according to claim 3, 4, or 5. - 前記可視光透過部材は、表面及び/または裏面の、前記装着者の右耳に近い側と左耳に近い側のそれぞれにドシメータの層が形成されている、
請求項3または4または5に記載の放射線計測体。 In the visible light transmitting member, a dosimeter layer is formed on each of a surface near the right ear and a side near the left ear of the wearer on the front surface and / or the back surface.
The radiation measuring body according to claim 3, 4, or 5. - 前記可視光透過部材は、表面及び/または裏面の、前記装着者の右耳に近い側と左耳に近い側のそれぞれに、前記装着者の顔面に沿う角度で延長突起部が形成され、前記延長突起部にドシメータの層が形成されている、
請求項3または4または5に記載の放射線計測体。 In the visible light transmitting member, an extension protrusion is formed at an angle along the face of the wearer on each of a surface near the right ear and a side near the left ear of the wearer on the front surface and / or the back surface, A dosimeter layer is formed on the extension protrusion,
The radiation measuring body according to claim 3, 4, or 5. - 少なくとも一部に可視光を透過可能なドシメータが形成された可視光透過部材と、前記可視光透過部材を装着者の少なくとも一方の水晶体の近傍に配置する配置器具と、前記可視光透過部材と前記配置器具との間に介在して、前記可視光透過部材を前記配置器具に固定する可視光透過部材固定具とを具備する放射線計測体を用いて前記放射線計測体を装着した装着者の放射線被曝量を測定する放射線被曝量計測装置であって、
前記放射線計測体を閉じ込め、可視光の入射を防ぐ光遮蔽箱と、
前記光遮蔽箱の内部の前記放射線計測体に励起光を照射する励起光発光部と、
前記放射線計測体の発光状態を所定の電気信号に変換する蛍光受光部と、
前記蛍光受光部の出力信号に基づいて、前記放射線計測体の放射線被曝量を演算することにより、前記装着者の眼球における放射線被曝量を出力する入出力制御部と
を具備する、放射線被曝量計測装置。 A visible light transmitting member formed with a dosimeter capable of transmitting visible light in at least a part thereof, an arrangement tool for arranging the visible light transmitting member near at least one crystalline lens of a wearer, the visible light transmitting member, and Radiation exposure of a wearer who wears the radiation measuring body using a radiation measuring body including a visible light transmitting member fixing device that fixes the visible light transmitting member to the positioning device, interposed between the positioning device and the visible light transmitting member. A radiation exposure measuring device for measuring the amount of radiation,
A light shielding box for enclosing the radiation measurement body and preventing the incidence of visible light,
An excitation light emitting unit that irradiates excitation light to the radiation measuring body inside the light shielding box,
A fluorescent light receiving unit that converts a light emitting state of the radiation measuring body into a predetermined electric signal,
An input / output control unit that outputs a radiation exposure amount in the eyeball of the wearer by calculating a radiation exposure amount of the radiation measurement body based on an output signal of the fluorescence light receiving unit; apparatus. - 更に、
前記蛍光受光部と前記入出力制御部との間に設けられ、前記蛍光受光部の出力信号に含まれる、前記励起光発光部の発光が終了した時点から所定の時間に生じるノイズを遮断するスイッチと、
前記励起光発光部と前記スイッチのオンオフ制御を行うシーケンス制御部と
を具備する、請求項11に記載の放射線被曝量計測装置。 Furthermore,
A switch that is provided between the fluorescent light receiving unit and the input / output control unit and that shuts off noise that is included in an output signal of the fluorescent light receiving unit and that occurs at a predetermined time after emission of the excitation light emitting unit ends When,
The radiation exposure dose measuring device according to claim 11, further comprising: the excitation light emitting unit; and a sequence control unit that performs on / off control of the switch. - 前記入出力制御部は更に、前記装着者の前記眼球における前記放射線被曝量に所定の係数を乗じて、前記装着者の各種臓器における放射線被曝量を出力する、請求項12に記載の放射線被曝量計測装置。 The radiation exposure dose according to claim 12, wherein the input / output control unit further multiplies the radiation exposure dose in the eyeball of the wearer by a predetermined coefficient to output a radiation exposure dose in various organs of the wearer. Measuring device.
- 前記放射線計測体の前記可視光透過部材は、前記装着者の右耳に近い側と左耳に近い側のそれぞれにドシメータが形成されており、
前記光遮蔽箱は、前記可視光透過部材に形成されている左右の前記ドシメータの間に相互の発光の漏れ込みを防ぐ間仕切りが設けられている、
請求項13に記載の放射線被曝量計測装置。
The visible light transmitting member of the radiation measurement body, a dosimeter is formed on each of the side near the right ear and the side near the left ear of the wearer,
The light shielding box is provided with a partition that prevents leakage of mutual light emission between the left and right dosimeters formed in the visible light transmitting member,
The radiation exposure dose measuring device according to claim 13.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020537117A JP7260868B2 (en) | 2018-08-17 | 2019-08-19 | Radiation measuring body and radiation dose measuring device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018153458 | 2018-08-17 | ||
JP2018-153458 | 2018-08-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020036232A1 true WO2020036232A1 (en) | 2020-02-20 |
Family
ID=69525507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/032227 WO2020036232A1 (en) | 2018-08-17 | 2019-08-19 | Radiation measuring body, and radiation exposure dose measuring device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7260868B2 (en) |
WO (1) | WO2020036232A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021145821A (en) * | 2020-03-18 | 2021-09-27 | 学校法人帝京大学 | Radiation amount visualization device |
KR102608024B1 (en) * | 2023-03-14 | 2023-11-29 | 제주대학교 산학협력단 | A radiation measurement device in which a radiation measurement sensing module and a Google Glass module are mounted on a helmet |
CN118091730A (en) * | 2023-07-25 | 2024-05-28 | 中国测试技术研究院辐射研究所 | Wearing equipment with nuclear radiation detection function |
WO2024191243A1 (en) * | 2023-03-14 | 2024-09-19 | 제주대학교 산학협력단 | Hybrid radiation measurement detection system using it devices, including google glass, and camera-equipped robot having 360° panoramic search radius viewing angle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0961528A (en) * | 1995-08-23 | 1997-03-07 | Toshiba Glass Co Ltd | Method and apparatus for measuring dose of fluorescent glass |
JPH09222481A (en) * | 1996-02-16 | 1997-08-26 | Toshiba Glass Co Ltd | Glass dosemeter for finger tip and glass dosemeter |
WO2004023159A1 (en) * | 2002-09-02 | 2004-03-18 | Asahi Techno Glass Corporation | Dose distribution reading method for glass dosimeter and its apparatus |
JP2008256622A (en) * | 2007-04-06 | 2008-10-23 | Chiyoda Technol Corp | Lamination type radiation meter |
JP2015111110A (en) * | 2013-10-28 | 2015-06-18 | 国立大学法人徳島大学 | X-ray detection tool and x-ray detection method |
US9480604B2 (en) * | 2012-08-07 | 2016-11-01 | Mason Zemlak | Eye protection employing luminescent materials for ionizing radiation warnings to the wearer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3905420B2 (en) | 2002-04-16 | 2007-04-18 | アロカ株式会社 | Radiation measuring instrument |
-
2019
- 2019-08-19 JP JP2020537117A patent/JP7260868B2/en active Active
- 2019-08-19 WO PCT/JP2019/032227 patent/WO2020036232A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0961528A (en) * | 1995-08-23 | 1997-03-07 | Toshiba Glass Co Ltd | Method and apparatus for measuring dose of fluorescent glass |
JPH09222481A (en) * | 1996-02-16 | 1997-08-26 | Toshiba Glass Co Ltd | Glass dosemeter for finger tip and glass dosemeter |
WO2004023159A1 (en) * | 2002-09-02 | 2004-03-18 | Asahi Techno Glass Corporation | Dose distribution reading method for glass dosimeter and its apparatus |
JP2008256622A (en) * | 2007-04-06 | 2008-10-23 | Chiyoda Technol Corp | Lamination type radiation meter |
US9480604B2 (en) * | 2012-08-07 | 2016-11-01 | Mason Zemlak | Eye protection employing luminescent materials for ionizing radiation warnings to the wearer |
JP2015111110A (en) * | 2013-10-28 | 2015-06-18 | 国立大学法人徳島大学 | X-ray detection tool and x-ray detection method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021145821A (en) * | 2020-03-18 | 2021-09-27 | 学校法人帝京大学 | Radiation amount visualization device |
JP7496592B2 (en) | 2020-03-18 | 2024-06-07 | 学校法人帝京大学 | Radiation Dose Visualization Device |
KR102608024B1 (en) * | 2023-03-14 | 2023-11-29 | 제주대학교 산학협력단 | A radiation measurement device in which a radiation measurement sensing module and a Google Glass module are mounted on a helmet |
WO2024191243A1 (en) * | 2023-03-14 | 2024-09-19 | 제주대학교 산학협력단 | Hybrid radiation measurement detection system using it devices, including google glass, and camera-equipped robot having 360° panoramic search radius viewing angle |
CN118091730A (en) * | 2023-07-25 | 2024-05-28 | 中国测试技术研究院辐射研究所 | Wearing equipment with nuclear radiation detection function |
Also Published As
Publication number | Publication date |
---|---|
JP7260868B2 (en) | 2023-04-19 |
JPWO2020036232A1 (en) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020036232A1 (en) | Radiation measuring body, and radiation exposure dose measuring device | |
Magee et al. | Derivation and application of dose reduction factors for protective eyewear worn in interventional radiology and cardiology | |
Do | General principles of radiation protection in fields of diagnostic medical exposure | |
McVey et al. | An assessment of lead eyewear in interventional radiology | |
Mao et al. | Influences of operator head posture and protective eyewear on eye lens doses in interventional radiology: a Monte Carlo study | |
Marshall et al. | An investigation into the effect of protective devices on the dose to radiosensitive organs in the head and neck | |
Cornacchia et al. | The new lens dose limit: implication for occupational radiation protection | |
Danforth et al. | Operator Exposure to Scatter Radiation from a Portable Hand‐held Dental Radiation Emitting Device (Aribex™ NOMAD™) While Making 915 Intraoral Dental Radiographs | |
Homolka et al. | Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications | |
Hoedlmoser et al. | New eye lens dosemeters for integration in radiation protection glasses | |
Cuaron et al. | Introduction to radiation safety and monitoring | |
Domienik et al. | The effectiveness of lead glasses in reducing the doses to eye lenses during cardiac implantation procedures performed using x-ray tubes above the patient table | |
Imai et al. | Occupational eye lens dose in endoscopic retrograde cholangiopancreatography using a dedicated eye lens dosimeter | |
Asahara et al. | Evaluation of calibration factor of OSLD toward eye lens exposure dose measurement of medical staff during IVR | |
JP6895896B2 (en) | Personal dosimeter with at least two ionizing radiation detectors, personal radiation dose measurement system and personal radiation dose measurement method | |
Martin | Protecting interventional radiology and cardiology staff: are current designs of lead glasses and eye dosemeters fit for purpose? | |
Jones et al. | The Benefits of Using a Bismuth‐Containing, Radiation‐Absorbing Drape in Cardiac Resynchronization Implant Procedures | |
Shindo et al. | Comparison of shielding effects of over-glasses-type and regular eyewear in terms of occupational eye dose reduction | |
Kidoń et al. | Exposure of the eye lens and brain for interventional cardiology staff | |
Asha et al. | Dosimetry in dentistry | |
Shoshtary et al. | An evaluation of the organ dose received by cardiologists arising from angiography examinations in educational hospital in Rasht | |
Schultz | Radiation-associated cataracts among interventional physicians and support staff | |
McLean et al. | Eye dose to staff involved in interventional and procedural fluoroscopy | |
Challa et al. | Redundant protective barriers: minimizing operator occupational risk | |
Rivera-Montalvo et al. | Scattered radiation on cardiologists during interventional cardiac procedure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19849716 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020537117 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19849716 Country of ref document: EP Kind code of ref document: A1 |