JP2021145821A - Radiation amount visualization device - Google Patents

Radiation amount visualization device Download PDF

Info

Publication number
JP2021145821A
JP2021145821A JP2020047480A JP2020047480A JP2021145821A JP 2021145821 A JP2021145821 A JP 2021145821A JP 2020047480 A JP2020047480 A JP 2020047480A JP 2020047480 A JP2020047480 A JP 2020047480A JP 2021145821 A JP2021145821 A JP 2021145821A
Authority
JP
Japan
Prior art keywords
image
dose
visualization device
mounted display
operator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020047480A
Other languages
Japanese (ja)
Inventor
純一 古徳
Junichi KOTOKU
純一 古徳
剛志 高田
Takeshi Takata
剛志 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikyo University
Original Assignee
Teikyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikyo University filed Critical Teikyo University
Priority to JP2020047480A priority Critical patent/JP2021145821A/en
Publication of JP2021145821A publication Critical patent/JP2021145821A/en
Pending legal-status Critical Current

Links

Images

Abstract

To facilitate recognition of exposure or the like according to various environmental conditions.SOLUTION: A radiation amount visualization device that displays an image indicating an exposure amount by overlapping the image with an actual image that is a see-through image or a captured image displayed correspondingly to the see-through image includes: a head mounted display 104; and a processing unit (local host server 102) that reads spatial dose distribution data corresponding to an environmental condition at the time of X-ray irradiation among pieces of spatial dose distribution data calculated correspondingly to a plurality of environmental conditions of X-ray irradiation in advance, obtains a crystal lens exposure amount according to a position of a crystal lens of a surgeon, and causes the head mounted display 104 to display an image according to the crystal lens exposure amount by overlapping the image with the actual image.SELECTED DRAWING: Figure 1

Description

本発明は、被験者や術者の被ばく放射線量を可視化する放射線量可視化装置に関するものである。 The present invention relates to a radiation dose visualization device that visualizes the radiation dose of a subject or an operator.

X線透視・撮影時の空間線量分布をモニタにリアルタイム表示するシステムとして、線量計によって複数の所要座標における空間線量分布データを取得し、これに基づいて、X線透視・撮影時の空間線量分布モニタに表示するシステムが知られている(例えば、特許文献1参照。)。 As a system that displays the air dose distribution during X-ray fluoroscopy / imaging on a monitor in real time, the air dose distribution data at multiple required coordinates is acquired by a dosimeter, and based on this, the air dose distribution during X-ray fluoroscopy / imaging is acquired. A system for displaying on a monitor is known (see, for example, Patent Document 1).

特開2017−47757号公報Japanese Unexamined Patent Publication No. 2017-47757

しかしながら、上記のように線量計によって空間線量分布データを取得する場合、保持装置の位置条件等に対応して計測を行う必要があり、様々な環境条件に対応した空間線量分布を把握することは容易でない。 However, when acquiring air dose distribution data with a dosimeter as described above, it is necessary to perform measurement according to the position conditions of the holding device, etc., and it is not possible to grasp the air dose distribution corresponding to various environmental conditions. Not easy.

本発明は、上記の点に鑑み、様々な環境条件に対応した被ばく等の把握を容易できるようにすることを目的としている。 In view of the above points, it is an object of the present invention to make it easy to grasp exposure and the like corresponding to various environmental conditions.

上記の目的を達成するため、本発明は、
シースルー画像またはそれに対応して表示される撮像画像である実画像と重畳させて、被ばく量を示す画像を表示する放射線量可視化装置であって、
上記実画像を視認可能なヘッドマウントディスプレイと、
あらかじめ、複数のX線照射の環境条件に対応して算出された空間線量分布データのうち、X線照射時の環境条件に対応する空間線量分布データを読み出し、術者の水晶体位置に応じた水晶体線量を求めて、上記水晶体線量に応じた画像を上記実画像と重畳させて上記ヘッドマウントディスプレイに表示させる処理部と、
を備えたことを特徴とする。
In order to achieve the above object, the present invention
A radiation dose visualization device that displays an image showing the amount of exposure by superimposing it on a see-through image or a real image that is a captured image displayed correspondingly.
With a head-mounted display that allows you to see the actual image above,
Of the air dose distribution data calculated in advance corresponding to the environmental conditions of multiple X-ray irradiation, the air dose distribution data corresponding to the environmental conditions at the time of X-ray irradiation is read out, and the crystalline lens corresponding to the position of the crystalline lens of the operator. A processing unit that obtains a dose, superimposes an image corresponding to the crystalline lens dose on the actual image, and displays it on the head-mounted display.
It is characterized by being equipped with.

これにより、ヘッドマウントディスプレイによるシースルー画像や撮像実画像などと重畳させて放射線量の表示がなされることにより、実質的なリアルタイムで被ばく量を容易に把握可能にすることができる。 As a result, the radiation dose is displayed by superimposing it on the see-through image or the captured actual image by the head-mounted display, so that the exposure dose can be easily grasped in a substantially real time.

本発明によれば、様々な環境条件に対応した被ばく等の把握を容易にできるようになる。 According to the present invention, it becomes possible to easily grasp the exposure and the like corresponding to various environmental conditions.

放射線量可視化装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the radiation amount visualization apparatus. 放射線量可視化装置による表示画面例を示す説明図である。。It is explanatory drawing which shows the display screen example by a radiation amount visualization apparatus. .. 放射線量可視化装置の動作を示すフローチャートである。It is a flowchart which shows the operation of a radiation amount visualization apparatus.

本発明の実施形態として、X線診断装置やCT装置等のX線装置による放射線被ばくを容易に把握できるようにする放射線量可視化装置の例を説明する。 As an embodiment of the present invention, an example of a radiation dose visualization device that makes it possible to easily grasp radiation exposure by an X-ray device such as an X-ray diagnostic device or a CT device will be described.

放射線量可視化装置は、例えば図1に示すように、あらかじめ、種々のX線照射の環境条件における空間線量分布をモンテカルロ法によって計算し、蓄積するクラウドコンピュータ101と、X線装置103によるX線の照射条件等に基づいて、患者(被験者)の皮膚被ばく量(線量)をモンテカルロ法によって計算するとともに、上記照射条件等に応じてクラウドコンピュータ101から空間線量分布を読み出し、術者の水晶体被ばく量(線量)を推定するローカルホストサーバ102と、上記患者(被験者)の皮膚被ばく量や術者の水晶体被ばく量を示す表示を、例えば図2に示すような現実世界の像に重畳させて、いわゆるシースルー表示で行う例えばHoloLens(マイクロソフト社の登録商標)などの複合現実(Mixed Reality)のヘッドマウントディスプレイ104とを備えて構成される。 As shown in FIG. 1, for example, the radiation amount visualization device calculates and stores the air dose distribution under various X-ray irradiation environmental conditions by the Monte Carlo method in advance, and the X-rays by the cloud computer 101 and the X-ray device 103. The skin exposure amount (dose) of the patient (subject) is calculated by the Monte Carlo method based on the irradiation conditions, etc., and the air dose distribution is read out from the cloud computer 101 according to the irradiation conditions, etc. The local host server 102 that estimates the dose) and the display showing the skin exposure amount of the patient (subject) and the crystal body exposure amount of the operator are superimposed on a real-world image as shown in FIG. 2, for example, so-called see-through. It is configured to include a head-mounted display 104 of a mixed reality such as HoloLens (registered trademark of Microsoft Corporation) that performs display.

以下、上記各部で行われる処理や動作について、図3に示すフローチャートを参照して、より詳しく説明する。 Hereinafter, the processes and operations performed in each of the above parts will be described in more detail with reference to the flowchart shown in FIG.

(クラウドコンピュータ101の処理)
(S101) クラウドコンピュータ101には、まず、検査室の種々のX線照射の環境条件が設定される。具体的には、例えば、検査室の大きさや、室内機器、遮蔽板などの設備、おこびこれらの材質(X線等価や吸収等に関する特性)、X線管の管電圧、管電流、パルスレート、X線照射時間、照射視野絞りや、X線装置の位置、姿勢(アームの角度)などが複数通り設定される。
(Processing of cloud computer 101)
(S101) First, various environmental conditions for X-ray irradiation in the examination room are set in the cloud computer 101. Specifically, for example, the size of the inspection room, indoor equipment, equipment such as a shielding plate, these materials (characteristics related to X-ray equivalence and absorption), X-ray tube voltage, tube current, pulse rate, X The line irradiation time, the irradiation field aperture, the position of the X-ray device, the posture (arm angle), and the like are set in a plurality of ways.

(S102) 次に、各環境条件ごとに、モンテカルロ計算によって検査室内の空間線量が計算され、蓄積される。 (S102) Next, the air dose in the examination room is calculated and accumulated by Monte Carlo calculation for each environmental condition.

(ローカルホストサーバ102の処理)
(S201) ローカルホストサーバ102では、まず、現在の透視条件(X線照射の環境条件)が収集される。具体的には、例えば、X線装置103に設定されたX線管の管電圧、管電流、パルスレート、X線装置103の位置、姿勢等の情報が取得される。また、図示しない操作装置からの入力等に基づいて、検査室や設備等についての環境条件が収集される。なお、種々のセンサや画像処理などによって設備等の位置などが検出されるようにしてもよい。また、患者203の位置も、例えば超音波センサなどによって検出される。さらに、患者について、あらかじめCT装置によって得られた体の組成構造(例えば皮膚部分、骨の部分、主として水の部分、空気の部分などの配置等)などの情報も収集される。
(Processing of localhost server 102)
(S201) The local host server 102 first collects the current fluoroscopic conditions (environmental conditions for X-ray irradiation). Specifically, for example, information such as the tube voltage, tube current, pulse rate of the X-ray tube set in the X-ray device 103, the position of the X-ray device 103, and the posture is acquired. In addition, environmental conditions for inspection rooms, equipment, etc. are collected based on inputs from operating devices (not shown). The position of the equipment or the like may be detected by various sensors or image processing. The position of the patient 203 is also detected by, for example, an ultrasonic sensor. Further, for the patient, information such as the compositional structure of the body (for example, the arrangement of the skin part, the bone part, mainly the water part, the air part, etc.) obtained in advance by the CT device is also collected.

(S202) 上記(S201)で収集されたX線装置103によるX線の照射条件に関する情報、および患者の体の組成構造に関する情報にも応じて、モンテカルロ計算によって患者の皮膚被ばく量が計算される。すなわち、この被ばく量の算出は比較的計算量を少なく抑えることが容易なので、ローカルホストサーバ102で例えば数秒おきなどに計算される。ここで、患者の体の組成構造も考慮されることによって、より正確な被ばく量の算出を容易にできる。 (S202) The patient's skin exposure dose is calculated by Monte Carlo calculation according to the information on the X-ray irradiation conditions by the X-ray apparatus 103 collected in the above (S201) and the information on the composition structure of the patient's body. .. That is, since it is easy to keep the calculation amount relatively small, the exposure amount is calculated by the local host server 102, for example, every few seconds. Here, by considering the compositional structure of the patient's body, more accurate calculation of the exposure dose can be facilitated.

(S203) 上記(S202)で算出された皮膚被ばく量が累積され、保持データが更新される。 (S203) The skin exposure amount calculated in (S202) above is accumulated, and the retained data is updated.

(S204) 一方、術者の被ばくに関しては、上記(S201)で収集された環境条件に基づいて、対応する検査室内の空間線量が、クラウドコンピュータ101から読み出される。すなわち、このような空間線量の計算は、例えば35cmグリッドで計算するとすればかなり大きな計算量になるので、あらかじめ比較的処理能力の大きなクラウドコンピュータ101等によって種々の環境条件の場合の空間線量分布を計算しておき、ローカルホストサーバ102により読み出すことによって、リアルタイム的な表示が容易になる。 (S204) On the other hand, regarding the exposure of the operator, the air dose in the corresponding examination room is read out from the cloud computer 101 based on the environmental conditions collected in (S201) above. That is, since such calculation of the air dose would be a considerably large amount of calculation if it is calculated with a 35 cm grid, for example, the air dose distribution under various environmental conditions is previously calculated by a cloud computer 101 or the like having a relatively large processing capacity. By calculating and reading by the local host server 102, real-time display becomes easy.

(S205) 上記(S204)で算出された空間線量と、後述するヘッドマウントディスプレイ104によって追跡される術者の水晶体の位置に基づいて、術者の水晶体被ばく推定値が求められる。 (S205) An estimated value of the operator's crystalline lens exposure is obtained based on the air dose calculated in (S204) above and the position of the operator's crystalline lens tracked by the head-mounted display 104 described later.

(S206) 上記(S203)および(S205)で求められた患者の累積皮膚被ばく分布や、術者の水晶体被ばく量の算出結果がヘッドマウントディスプレイ104に送信されて、後述するように放射線量の可視化表示が行われる。以後、上記(S201)以降が繰り返される。 (S206) The cumulative skin exposure distribution of the patient obtained in (S203) and (S205) above and the calculation result of the crystalline lens exposure amount of the operator are transmitted to the head-mounted display 104, and the radiation dose is visualized as described later. The display is done. After that, the above (S201) and subsequent steps are repeated.

(ヘッドマウントディスプレイ104の処理)
(S301) ヘッドマウントディスプレイ104では、まず、図示しない内蔵カメラによって患者の身体上や術者上、検査室内のマーカーが撮像、識別され、空間上の位置が求められる。
(Processing of head-mounted display 104)
(S301) In the head-mounted display 104, first, markers on the patient's body, on the operator, and in the examination room are imaged and identified by a built-in camera (not shown), and a position in space is obtained.

(S302) 上記マーカーの位置に基づいて、術者の位置が求められ、位置情報がローカルホストサーバ102に送られる。この位置情報に基づいて、ローカルホストサーバ102では、上記のように術者の水晶体被ばく推定値が求められる。 (S302) The position of the operator is obtained based on the position of the marker, and the position information is sent to the local host server 102. Based on this position information, the local host server 102 obtains the estimated value of the operator's crystalline lens exposure as described above.

(S303) (S301)で求められたマーカー位置に応じて、ローカルホストサーバ102により上記(S206)で送信された患者の皮膚被ばく分布や術者の水晶体被ばく量のデータに基づいた被ばく量の可視化表示が行われる。具体的には、例えば、図2に示すように、ヘッドマウントディスプレイ104では、シースルー画像、または撮像画像表示よって、ベッド201、X線装置103の保持装置202、患者203、および術者204が視認されるとともに、上記患者203の像や術者の像に重畳させて、患者の皮膚被ばく分布や術者の水晶体被ばく量を示す例えば色分け表示や濃淡表示などがなされ、放射線量の3次元的な可視化表示がなされる。具体的には、例えば、患者203の体の表面位置に皮膚線量に応じた色の線量マーク203’が表示される。また、術者204の目の位置に水晶体線量に応じた色の線量マーク204’が表示されたり、表示画面の隅に水晶体線量の数値が表示されたりする。 (S303) Visualization of the exposure dose based on the patient's skin exposure distribution and the operator's crystalline lens exposure dose data transmitted in (S206) by the local host server 102 according to the marker position obtained in (S301). The display is done. Specifically, for example, as shown in FIG. 2, in the head-mounted display 104, the bed 201, the holding device 202 of the X-ray device 103, the patient 203, and the operator 204 are visually recognized by the see-through image or the captured image display. At the same time, by superimposing it on the image of the patient 203 and the image of the operator, for example, a color-coded display or a shading display showing the skin exposure distribution of the patient and the crystal body exposure amount of the operator is made, and the radiation dose is three-dimensional. A visualized display is made. Specifically, for example, a dose mark 203'in a color corresponding to the skin dose is displayed on the surface position of the body of the patient 203. In addition, a dose mark 204'in a color corresponding to the crystalline lens dose is displayed at the eye position of the operator 204, or a numerical value of the crystalline lens dose is displayed in the corner of the display screen.

上記のように、ヘッドマウントディスプレイ104によるシースルー画像や撮像実画像などと重畳させて放射線量の表示がなされることにより、実質的なリアルタイムで被ばく量を容易に把握可能にすることができる。 As described above, the radiation dose is displayed by superimposing it on the see-through image or the captured actual image by the head-mounted display 104, so that the exposure dose can be easily grasped in a substantially real time.

しかも、比較的計算負荷の小さい患者皮膚被ばくをローカルホストサーバ102によって求めることにより、実質的にリアルタイムな表示を可能にできる一方、比較的計算負荷の大きい検査室の空間線量は、あらかじめクラウドコンピュータ101によって算出し、環境条件に応じて呼び出すことによって、やはり、実質的にリアルタイムな表示を可能にできる。なお、検査室の空間線量を求めるためには、クラウドコンピュータ101を用いるのに限らず、例えば所定の処理能力を有するワークステーションなどのコンピュータが用いられてもよく、配置場所も遠隔やローカルなどでもよい。 Moreover, by obtaining the patient skin exposure with a relatively small calculation load by the local host server 102, it is possible to display in substantially real time, while the air dose in the laboratory having a relatively large calculation load is determined in advance by the cloud computer 101. By calculating according to the above and calling it according to the environmental conditions, it is possible to display in substantially real time. In addition, in order to obtain the air dose in the examination room, the cloud computer 101 is not limited to be used, and for example, a computer such as a workstation having a predetermined processing capacity may be used, and the location may be remote or local. good.

また、上記のような空間線量のモンテカルロ計算によって空間線量が求められるので、環境条件ごとに空間線量分布の計測を行うことなく、多様な環境条件での表示を容易に行うことができる。 Further, since the air dose is obtained by the Monte Carlo calculation of the air dose as described above, it is possible to easily display under various environmental conditions without measuring the air dose distribution for each environmental condition.

101 クラウドコンピュータ
102 ローカルホストサーバ
103 X線装置
104 ヘッドマウントディスプレイ
201 ベッド
202 保持装置
203 患者
203’ 線量マーク
204 術者
204’ 線量マーク

101 Cloud Computer 102 Local Host Server 103 X-ray Device 104 Head Mounted Display 201 Bed 202 Holding Device 203 Patient 203'Dose Mark 204 Operator 204'Dose Mark

Claims (4)

シースルー画像またはそれに対応して表示される撮像画像である実画像と重畳させて、被ばく量を示す画像を表示する放射線量可視化装置であって、
上記実画像を視認可能なヘッドマウントディスプレイと、
あらかじめ、複数のX線照射の環境条件に対応して算出された空間線量分布データのうち、X線照射時の環境条件に対応する空間線量分布データを読み出し、術者の水晶体位置に応じた水晶体線量を求めて、上記水晶体線量に応じた画像を上記実画像と重畳させて上記ヘッドマウントディスプレイに表示させる処理部と、
を備えたことを特徴とする放射線量可視化装置。
A radiation dose visualization device that displays an image showing the amount of exposure by superimposing it on a see-through image or a real image that is a captured image displayed correspondingly.
With a head-mounted display that allows you to see the actual image above,
Of the air dose distribution data calculated in advance corresponding to the environmental conditions of multiple X-ray irradiation, the air dose distribution data corresponding to the environmental conditions at the time of X-ray irradiation is read out, and the crystalline lens corresponding to the position of the crystalline lens of the operator. A processing unit that obtains a dose, superimposes an image corresponding to the crystalline lens dose on the actual image, and displays it on the head-mounted display.
A radiation dose visualization device characterized by being equipped with.
請求項1の放射線量可視化装置であって、
上記ヘッドマウントディスプレイはカメラを備え、撮像された画像に基づいて、上記術者の水晶体位置を求め、
上記処理部は、上記求められた術者の水晶体位置に基づいて、術者の水晶体位置に応じた水晶体被線量を求めることを特徴とする放射線量可視化装置。
The radiation amount visualization device according to claim 1.
The head-mounted display is equipped with a camera, and the position of the crystalline lens of the operator is obtained based on the captured image.
The processing unit is a radiation amount visualization device characterized in that the lens dose according to the position of the operator's lens is obtained based on the position of the lens of the operator obtained.
請求項1から請求項2のうち何れか1項の放射線量可視化装置であって、
上記処理部は、さらに、上記X線照射時の環境条件に基づいて、モンテカルロ計算により被験者の皮膚での累積皮膚線量を求め、上記被験者の皮膚での累積皮膚線量に応じた画像を上記実画像と重畳させて上記ヘッドマウントディスプレイに表示させることを特徴とする放射線量可視化装置。
The radiation amount visualization device according to any one of claims 1 to 2.
The processing unit further obtains the cumulative skin dose on the subject's skin by Monte Carlo calculation based on the environmental conditions at the time of the X-ray irradiation, and obtains an image corresponding to the cumulative skin dose on the subject's skin as the actual image. A radiation amount visualization device characterized by superimposing and displaying on the head-mounted display.
請求項3の放射線量可視化装置であって、
上記処理部は、さらに、あらかじめ上記被験者について求められたCTデータに基づいて、上記モンテカルロ計算による被験者の皮膚での累積皮膚線量を求めることを特徴とする放射線量可視化装置。


The radiation amount visualization device according to claim 3.
The processing unit is a radiation dose visualization device that further obtains the cumulative skin dose on the skin of the subject by the Monte Carlo calculation based on the CT data obtained in advance for the subject.


JP2020047480A 2020-03-18 2020-03-18 Radiation amount visualization device Pending JP2021145821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020047480A JP2021145821A (en) 2020-03-18 2020-03-18 Radiation amount visualization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020047480A JP2021145821A (en) 2020-03-18 2020-03-18 Radiation amount visualization device

Publications (1)

Publication Number Publication Date
JP2021145821A true JP2021145821A (en) 2021-09-27

Family

ID=77849897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020047480A Pending JP2021145821A (en) 2020-03-18 2020-03-18 Radiation amount visualization device

Country Status (1)

Country Link
JP (1) JP2021145821A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213709A (en) * 2008-03-11 2009-09-24 Toshiba Corp Absorbed dose management apparatus
JP2013544605A (en) * 2010-12-08 2013-12-19 ベイヤー、インク. Creating an appropriate model to predict patient radiation doses resulting from medical imaging scans
JP2015100417A (en) * 2013-11-21 2015-06-04 株式会社東芝 Medical apparatus having dosage management function
JP2016009912A (en) * 2014-06-23 2016-01-18 富士通株式会社 Calibration device, calibration method, display control device and display control method
JP2016077795A (en) * 2014-10-22 2016-05-16 株式会社東芝 X-ray imaging diagnostic apparatus
JP2020505686A (en) * 2017-01-17 2020-02-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Augmented reality for predictive workflow in the operating room
WO2020036232A1 (en) * 2018-08-17 2020-02-20 国立大学法人群馬大学 Radiation measuring body, and radiation exposure dose measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213709A (en) * 2008-03-11 2009-09-24 Toshiba Corp Absorbed dose management apparatus
JP2013544605A (en) * 2010-12-08 2013-12-19 ベイヤー、インク. Creating an appropriate model to predict patient radiation doses resulting from medical imaging scans
JP2015100417A (en) * 2013-11-21 2015-06-04 株式会社東芝 Medical apparatus having dosage management function
JP2016009912A (en) * 2014-06-23 2016-01-18 富士通株式会社 Calibration device, calibration method, display control device and display control method
JP2016077795A (en) * 2014-10-22 2016-05-16 株式会社東芝 X-ray imaging diagnostic apparatus
JP2020505686A (en) * 2017-01-17 2020-02-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Augmented reality for predictive workflow in the operating room
WO2020036232A1 (en) * 2018-08-17 2020-02-20 国立大学法人群馬大学 Radiation measuring body, and radiation exposure dose measuring device

Similar Documents

Publication Publication Date Title
EP3453330B1 (en) Virtual positioning image for use in imaging
JP4537506B2 (en) X-ray diagnostic equipment
US8611499B2 (en) Method for monitoring the X-ray dosage administered to a patient by a radiation source when using an X-ray device, and X-ray device
US20170296136A1 (en) System and method for automatically determining calibration parameters of a fluoroscope
US9974618B2 (en) Method for determining an imaging specification and image-assisted navigation as well as device for image-assisted navigation
CN112155727A (en) Surgical navigation systems, methods, devices, and media based on three-dimensional models
US10918346B2 (en) Virtual positioning image for use in imaging
US20100014629A1 (en) Method and apparatus for setting a dynamically adjustable position of an imaging system
US20130322726A1 (en) Methods, apparatuses, assemblies, circuits and systems for assessing, estimating and/or determining relative positions, alignments, orientations and angles of rotation of a portion of a bone and between two or more portions of a bone or bones
JP2009042247A (en) Radiation dose estimation device
CN111973273A (en) Operation navigation system, method, device and medium based on AR technology
JP6157919B2 (en) X-ray diagnostic equipment
DE102008009266A1 (en) Calibrating an instrument locator with an imaging device
US9888895B2 (en) Angiographic examination method to implement a rotational angiography
CN108778135B (en) Optical camera selection in multi-modal X-ray imaging
JP6955909B2 (en) Image processing device
JP2021145821A (en) Radiation amount visualization device
JP4290398B2 (en) Device for detecting a three-dimensional position of a test instrument inserted into a body part and radiation image creating device
JP2017169715A (en) Image processing device, radiographic image capturing system, image processing method, and image processing program
JPH03231643A (en) Image display device
CN111655152A (en) Method and system for calibrating an X-ray imaging system
CN110650686A (en) Device and corresponding method for providing spatial information of an interventional device in live 2D X radiographs
JP2018061844A (en) Information processing apparatus, information processing method, and program
JP6790284B2 (en) Isocentering in C-arm computed tomography
JP2017023834A (en) Picture processing apparatus, imaging system, and picture processing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200417

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220