WO2020036176A1 - Friction material production device and friction material production method - Google Patents

Friction material production device and friction material production method Download PDF

Info

Publication number
WO2020036176A1
WO2020036176A1 PCT/JP2019/031836 JP2019031836W WO2020036176A1 WO 2020036176 A1 WO2020036176 A1 WO 2020036176A1 JP 2019031836 W JP2019031836 W JP 2019031836W WO 2020036176 A1 WO2020036176 A1 WO 2020036176A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction material
jig
manufacturing apparatus
material manufacturing
laminate
Prior art date
Application number
PCT/JP2019/031836
Other languages
French (fr)
Japanese (ja)
Inventor
正規 加藤
高橋 秀明
勝弘 小野寺
麻里奈 仁平
敦 上野
恵里 高田
Original Assignee
曙ブレーキ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019132171A external-priority patent/JP7311339B2/en
Application filed by 曙ブレーキ工業株式会社 filed Critical 曙ブレーキ工業株式会社
Priority to EP19850707.1A priority Critical patent/EP3838443B1/en
Publication of WO2020036176A1 publication Critical patent/WO2020036176A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F2003/023Lubricant mixed with the metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present application discloses a friction material manufacturing apparatus and a friction material manufacturing method.
  • an object of the present invention is to make it possible to efficiently manufacture a friction material.
  • a laminate of a work which is a preformed product of a friction material, is sandwiched between jigs, and in that state, heated by infrared rays from the side in the laminating direction.
  • the present invention relates to a friction material manufacturing apparatus for sintering a friction material, comprising: a jig for clamping a laminate of a work, which is a preform of the friction material, in a laminating direction; And a heating device that is provided in the middle of the transport path and heats the laminated body sandwiched by the jigs from the side in the laminating direction with infrared rays.
  • such a heating device is provided in the middle of the transport path, and a jig for holding the stacked body to be heated is transported by the transport mechanism.
  • the laminated body after the above can be separated from the heating device integrally with the jig. For this reason, while waiting for the temperature of the laminated body heated by the heating device to drop, the laminated body held by another jig can be continuously heated by the heating device.
  • the jig may include a support unit that supports the stacked body from one side in the stacking direction and a pressing unit that presses the stacked body from the other side in the stacking direction toward the support unit.
  • the laminated body heated by the heating device can be separated from the heating device integrally with the jig while maintaining the pressurized state. For this reason, in the heating device, it is possible to quickly replace the laminate to be heated.
  • the heating device may include an element that emits infrared light at a position on the side of the laminate when the jig is at the position of the heating device. If the heating device has an element that emits infrared light at such a position, the jig holding the stack to be heated is simply transported to the vicinity of the heating device by the transfer mechanism, and the stack sandwiched by the jig is removed. Since the device can be illuminated with infrared light, the heating device can quickly replace the laminate to be heated.
  • the jig may have a transparent plate-like window that covers the laminate from the side in the laminating direction, and may have a storage unit that stores the laminate.
  • the jig may have a gas introduction unit for introducing an inert gas into the storage unit.
  • infrared rays since infrared rays are used for heating, it is also possible to heat through such a transparent plate window. Therefore, if the housing is provided in the jig in this way and the structure is heated with infrared rays through a transparent plate window, for example, the interior of the housing can be made to have an inert gas atmosphere.
  • the above-described friction material manufacturing apparatus may further include a storage unit that stores the jig, the transport mechanism, and the heating device.
  • This storage section may have a gas introduction section for introducing an inert gas.
  • the jig can be easily moved even when the inside of the storage section is in an inert gas atmosphere.
  • the above-described friction material manufacturing apparatus may further include a storage unit that stores the heating device and that allows the jig to be taken in and out.
  • the storage section may have a door at an opening through which the jig is taken in and out.
  • the storage section may have an introduction section for introducing an inert gas.
  • the housing is provided in the heating device, the jig is conveyed to the vicinity of the heating device by the conveyance mechanism, and then the housing is closed, whereby the atmosphere in the housing can be made an inert gas atmosphere.
  • the jig may have a heat insulating material at a portion in contact with the laminate. In this case, heat transfer from the laminate to the jig can be suppressed.
  • the heating device may be a near-infrared heater having a peak wavelength in a range of 1200 to 1700 nm.
  • the near-infrared ray having such a wavelength has a higher transmittance in a substance than the mid-infrared ray having a peak wavelength of, for example, 1700 to 2700 nm, so that even a laminated body in which friction materials are laminated does not remain near the surface thereof. It is possible to heat the inside of the laminate with high energy. Therefore, it is suitable for heating a heating object in which heating of the central portion is not easy, such as a laminate in which friction materials are stacked.
  • the present invention can also be grasped from the aspect of the method.
  • the present invention relates to a friction material manufacturing method for sintering a friction material, in which a laminate of a work, which is a preform of the friction material, is sandwiched by a jig in a laminating direction, and the jig is transported by a transfer mechanism.
  • the laminate may be transported along a transport path to be formed and heated by infrared rays from a side in the laminating direction with a heating device provided in the middle of the transport path.
  • a friction material can be efficiently manufactured.
  • FIG. 1 is a schematic configuration diagram of a friction material manufacturing apparatus according to the embodiment.
  • FIG. 2 is a structural view of the friction material manufacturing apparatus as viewed from a side of a transport path.
  • FIG. 3 is a structural view of the friction material manufacturing apparatus as viewed from the transport direction of the transport path.
  • FIG. 4 is a first diagram illustrating a method of using the friction material manufacturing apparatus.
  • FIG. 5 is a second diagram illustrating a method of using the friction material manufacturing apparatus.
  • FIG. 6 is a diagram showing a state in which jigs are continuously arranged.
  • FIG. 7 is a diagram showing a modification of the friction material manufacturing apparatus.
  • FIG. 8 is a diagram showing an example of gas openings provided in the upper plate and the lower plate.
  • FIG. 8 is a diagram showing an example of gas openings provided in the upper plate and the lower plate.
  • FIG. 9 is a view showing a first modification of the friction material manufacturing apparatus.
  • FIG. 10 is a structural view of the friction material manufacturing apparatus according to the first modified example as viewed from a side of a transport path.
  • FIG. 11 is a view showing a second modification of the friction material manufacturing apparatus.
  • FIG. 12 is a view showing a third modification of the friction material manufacturing apparatus.
  • FIG. 13 is a view showing a fourth modification of the friction material manufacturing apparatus.
  • FIG. 1 is a schematic configuration diagram of the friction material manufacturing apparatus according to the embodiment.
  • the friction material manufacturing apparatus 1 is an apparatus for sintering a friction material for a brake, and a jig 4 for holding a stacked body 2 on which a work, which is a preform of the friction material, is stacked by a pressing mechanism 3 in a stacking direction.
  • a transport mechanism for forming the transport path 5 of the jig 4, and the stack 2 provided in the middle of the transport path 5 and sandwiched by the pressing mechanism 3 by the jig 4 is laterally arranged in the stacking direction.
  • a heating device 6 for heating from above with infrared rays.
  • the friction material manufacturing apparatus 1 moves the jig 4 in a state where the laminate 2 is sandwiched by the pressing mechanism 3 along the transport path 5, and heats the laminate 2 by the heating device 6 in the middle of the transport path 5. Thereby, the friction material in the laminate 2 is heated.
  • the friction material manufacturing apparatus 1 is not limited to the structure in which the laminate 2 is vertically held, and may be a structure in which the laminate 2 is horizontally sandwiched. This friction material is assumed to be used, for example, for various industrial equipment, transportation equipment, office equipment, and the like.
  • the laminated body 2 is obtained by mixing a grinding material or a lubricant with metal powder, pressing a preform formed into a thin plate shape on a pressure plate, and further arranging a combination product in which an alumina setter is arranged on the friction surface side of the preform. A plurality of sets are stacked.
  • the laminate 2 can be realized by, for example, setting the preform, the pressure plate, and the setter on a stacking jig and stacking them.
  • the jig 4 has a storage section 7 that can store such a laminated body 2 while being sandwiched by the pressing mechanism 3.
  • the storage section 7 is provided with a window through which near-infrared rays of the heating device 6 pass, as described later.
  • the storage section 7 is formed of a material having heat resistance to the heat of the heating device 6.
  • FIG. 2 is a structural view of the friction material manufacturing apparatus 1 as viewed from the side of the transport path 5.
  • FIG. 3 is a structural view of the friction material manufacturing apparatus 1 as viewed from the transport direction of the transport path 5.
  • the friction material manufacturing apparatus 1 includes a transport mechanism 8 that forms the transport path 5 and a support member 9 that supports the heating device 6. Further, an inert gas cylinder 10 is provided in the friction material manufacturing apparatus 1, and the inert gas cylinder 10 is connected to a gas inlet 12 of the jig 4 via a hose 11. Then, the inert gas supplied from the inert gas cylinder 10 flows through the storage section 7 of the jig 4. Examples of the inert gas filled in the inert gas cylinder 10 include an argon gas, a nitrogen gas, and various other inert gases.
  • the inert gas cylinder 10 is provided for the purpose of preventing oxidation during sintering by setting the inside of the storage section 7 in which the laminated body 2 is stored to an inert gas atmosphere.
  • an inert gas atmosphere sintering under an inert gas atmosphere
  • a reducing gas atmosphere a combined atmosphere of an inert gas and a reducing gas, or a reduced pressure atmosphere is also possible. Therefore, the hose 11 connecting the inert gas cylinder 10 and the gas inlet 12 of the jig 4 is routed so that the jig 4 can follow the conveyance path 5 even if it slides.
  • the storage section 7 is provided with a quartz glass 13 through which the near infrared rays of the heating device 6 pass.
  • the storage section 7 is basically formed of a metal material such as stainless steel having heat resistance to the heat of the heating device 6, but when the jig 4 is near the heating device 6,
  • the quartz glass 13 is arranged at a position where the near infrared rays are irradiated, and is designed so that the near infrared rays of the heating device 6 are hardly irradiated to unnecessary portions of the jig 4.
  • the storage portion 7 formed of quartz glass 13 or another metal material has a configuration in which leakage of an inert gas flowing through the storage portion falls within a predetermined allowable range, and expansion of a member caused by a rise in temperature by the heating device 6 is prevented.
  • Each member is designed with appropriate dimensions so as not to cause interference between the members.
  • the inert gas of the inert gas cylinder 10 introduced into the storage unit 7 from the gas inlet 12 passes through the storage unit 7 and is exhausted from the gas exhaust port 17 provided in the storage unit 7.
  • the inert gas introduced into the storage unit 7 from the gas inlet 12 suppresses the oxidation of the friction material, and also exhibits a cooling function of members constituting the storage unit 7 and an antifouling function of the quartz glass 13.
  • the amount of exhaust gas at the gas exhaust port 17 is adjusted in consideration of maintaining these functions.
  • the material of the transparent plate window that covers the laminate 2 from the side in the lamination direction is not limited to quartz glass 13 as long as it transmits infrared rays and has heat resistance.
  • the pressurizing mechanism 3 provided in the storage unit 7 includes a support unit 14 that supports the stack 2 from above and a press unit 15 that presses the stack 2 from below toward the support 14. Prepare.
  • the pressurizing section 15 is a portion that is vertically moved up and down by the air cylinder 16.
  • the air cylinder 16 is connected to a compressor that supplies high-pressure air via a pressure-resistant hose, and raises and lowers the pressurizing unit 15 in accordance with opening and closing of a valve provided in a path for supplying the high-pressure air.
  • the pressing mechanism 3 includes a load cell for measuring a load applied to the multilayer body 2, and can adjust the magnitude of the load applied to the multilayer body 2.
  • the pressurizing mechanism 3 is provided with a cooling structure such as a water-cooled jacket to prevent the load cell from being damaged by the heat of the heating device 6.
  • the pressurizing mechanism 3 only needs to be able to pressurize the laminated body 2.
  • a coil spring, a lever combined with a weight, a manual jack, a hydraulic cylinder, and various other types Pressure means may be applied.
  • the jig 4 thus configured is slidable on the transport path 5 by the transport mechanism 8.
  • the transport mechanism 8 that slides the jig 4 may be a roller-type conveyor on which the jig 4 is placed, or may be a linear guide that fits on a rail extending along the transport path 5.
  • the transport mechanism 8 may be a manual mechanism having no power source such as a motor for sliding the jig 4 or an automatic mechanism having a power source.
  • the jig 4 is conveyed while moving forward or stopping on the conveyance path 5 at an appropriate timing.
  • the timing at which the jig 4 is advanced or stopped depends on the heating power of the heating device 6, the ambient temperature in the factory where the friction material manufacturing device 1 is installed, the composition of the friction material laminated on the laminate 2, It is determined according to the number of friction materials laminated on the laminate 2, the pressing force of the pressing mechanism 3, and other various factors.
  • the heating device 6 heats the laminate 2 set on such a jig 4 with near infrared rays.
  • the heating device 6 includes a plurality of rod-shaped near-infrared heaters extending in the direction of the transport path 5 on both sides of the transport path 5, and has a heating capacity capable of heating the laminate 2 to about 1000 ° C. Have.
  • Each near-infrared heater emits near-infrared light having a peak wavelength in the range of 1200 to 1700 nm, for example.
  • Near-infrared rays having such a wavelength have higher permeability in a substance than far-infrared rays having a longer wavelength, and therefore, even if the laminate 2 has a friction material laminated thereon, it does not remain near the surface thereof, Can be heated. Therefore, it is suitable for heating the laminate 2 by infrared rays through the quartz glass 13.
  • each near-infrared heater is controlled to be energized for each one or a plurality of combinations, so that an appropriate amount of heat can be applied to each of the upper layer, the middle layer, and the lower layer of the laminate 2.
  • the energization pattern of each near-infrared heater of the heating device 6 includes the heating power of the heating device 6, the ambient temperature in the factory where the friction material manufacturing device 1 is installed, the composition of the friction material laminated on the laminate 2, and the lamination. It is adjusted according to the number of friction materials laminated on the body 2, the pressing force of the pressing mechanism 3, and other various factors.
  • the energization pattern of the heating device 6 may be in accordance with a predetermined sequence set in advance, or may be in accordance with information of a radiation thermometer such as a thermography for measuring the temperature of the laminate 2 in a non-contact manner.
  • FIG. 4 is a first diagram illustrating a method of using the friction material manufacturing apparatus 1.
  • FIG. 5 is a second diagram illustrating a method of using the friction material manufacturing apparatus 1.
  • the jig 4 is slid by the transfer mechanism 8 and the jig 4 is moved to the vicinity of the heating device 6 as shown in FIG. . Then, the laminate 2 is heated by the heating device 6.
  • the jig 4 is slid at an appropriate timing to separate the jig 4 from the heating device 6 as shown in FIG.
  • the laminated body 2 is cooled by natural cooling or the like until the friction material laminated on the laminated body 2 falls to an appropriate temperature, the sintering of the friction material laminated on the laminated body 2 is completed.
  • the air cylinder 16 is contracted to set the pressurizing portion 15 to the lower limit position, and in this state, the laminate 2 Is removed from the jig 4.
  • the jig 4 from which the laminate 2 has been removed can be used immediately for sintering another friction material.
  • Near-infrared heaters have a 10- to 20-fold increase in temperature compared to resistance heaters.
  • the near-infrared heater has a shorter peak wavelength than the range of 1700 nm to 2700 nm, which is the peak wavelength of the middle-wavelength carbon heater and the middle-wavelength infrared heater, and therefore has higher energy than the middle-wavelength carbon heater and the middle-wavelength infrared heater. It is possible to output, and it is possible to sinter an inorganic friction material obtained by mixing an abrasive and a lubricant with metal powder in a relatively short time.
  • the jig 4 on which the stacked body 2 is set can be passed near the heating device 6 while being slid by the transport mechanism 8.
  • the friction material By using the friction material, a large amount of the friction material can be fired in a continuous manner, not in a batch manner.
  • FIG. 6 is a view showing a state in which the jigs 4 are continuously arranged. Since the friction material manufacturing apparatus 1 can pass the jig 4 on which the laminated body 2 is set and slide it by the transport mechanism 8 near the heating device 6, for example, as shown in FIG. A plurality of jigs 4 (4-1 to 5) on which are set are arranged in the transport path 5, so that the jig 4 which has finished heating the laminate 2 in the heating device 6 is quickly slid and separated from the heating device 6. Subsequently, by sliding the subsequent jig 4 on which the laminated body 2 before heating is set and placing the jig 4 at the position of the heating device 6, heating and cooling of the friction material can be performed simultaneously.
  • an area where the heating device 6 is located in the transport path 5 can be regarded as a heating zone, and an area other than the heating zone can be regarded as a cooling zone.
  • the sintering of the friction material is performed only by the heating device 6, but the sintering of the friction material is performed by the heating device 6 and other heating devices in cooperation. Is also good.
  • the friction material manufacturing apparatus 1 is provided with a convection furnace using warm air next to a heating apparatus 6 having a near-infrared heater, and the heating apparatus 6 raises the temperature of the friction material.
  • the convection furnace may be responsible for maintaining the temperature of the friction material that has been heated in step (1). Further, the output of the near-infrared heaters of the plurality of heating devices 6 may be changed to maintain the temperature of the friction material.
  • FIG. 7 is a view showing a modified example of the friction material manufacturing apparatus 1.
  • the friction material manufacturing apparatus 1 may be provided with a plurality of heating devices 6 along the transport path 5. If the friction material manufacturing apparatus 1 is provided with a plurality of heating devices 6 along the transport path 5, the stacked bodies 2 set on the plurality of jigs 4 are simultaneously heated by the plurality of heating devices 6. Can be. Therefore, with the friction material manufacturing apparatus 1 of the present modification, it is possible to sinter a large number of friction materials.
  • the stacked body 2 was arranged so that the stacked direction of the stacked body 2 was horizontal instead of up and down as in the above-described embodiment, and verification was performed by heating the stacked body 2 from above and below.
  • a rod-like near-infrared heater constituting a heating device having a peak wavelength of 1200 to 1700 nm, a total length of 405 mm, and a length (effective length) of a heat generating portion was used as 340 mm.
  • six near-infrared heaters were installed on the upper side and three on the lower side of the stacked body 2 arranged with the stacking direction being horizontal.
  • a pressurizing mechanism is constituted by a coil spring, and argon gas is contained in a sealed housing formed of heat-resistant metal parts or transparent quartz glass and sealed.
  • argon gas is contained in a sealed housing formed of heat-resistant metal parts or transparent quartz glass and sealed.
  • argon gas was introduced into the storage unit through two inlets and discharged through one exhaust outlet.
  • the structure is configured to be constantly cooled by being sprayed to the coil spring constituting the pressurizing mechanism, thereby preventing thermal deformation of the coil spring.
  • metal powder mixed with an abrasive and a lubricant was pressed into a thin plate, and six cylindrical block preforms having a diameter of 42 mm and a thickness of 12 mm were prepared. Then, each of the columnar blocks was superimposed on a hot-rolled steel plate corresponding to a pressure plate of a brake, and a laminated body was further sandwiched between alumina setters. The laminate was heated with a coil spring applying a load of 3.0 MPa. For heating, the heights of the upper and lower near infrared heaters were adjusted so that the distance between the center of the near infrared heater and the center of the columnar block was 70 mm. Further, the argon gas was kept flowing into the storage section at a pressure of 0.45 MPa. Gas replacement (purging) in the storage section was performed for 5 minutes.
  • the near-infrared heater was controlled so that the total output of the upper and lower stages was 20 kW, and the output ratio of the upper and lower heaters was 16.8 to 4.9. Then, after the temperature of the thermocouple attached to the laminate to be heated reached 950 ° C., the temperature was maintained at 950 ⁇ 15 ° C. for 30 minutes, and then the energization of the near-infrared heater was turned off. The ventilation of the argon gas was continued until the temperature of the laminate to be heated reached room temperature.
  • the sintered friction material manufactured by the method corresponding to the above embodiment is hereinafter referred to as an example.
  • the evaluation results of this example in comparison with a comparative example manufactured using a sintering furnace using a resistance heater will be described below.
  • the comparative example was manufactured in an argon gas atmosphere at a surface pressure of 3.0 MPa, a sintering temperature of 950 ° C., a holding time of 30 minutes, and a heating rate of 10 ° C./min.
  • the following table shows the evaluation results for each item.
  • the sintering temperature of the example reached 950 ° C. in a very short time of about 1/10 compared to the comparative example. Further, regarding the shrinkage ratio and the surface hardness, both the examples and the comparative examples had the same results. In addition, the base material shear strength and the PP adhesive shear strength tended to be 1.4 to 1.6 times higher in the example than in the comparative example.
  • the sintering temperature was 950 ⁇ 15 ° C.
  • the sintering holding time was 30 minutes
  • the sintering surface pressure was 3.0 MPa.
  • the sintering temperature in the sintering step was 900 to 1300 ° C.
  • it is 950-1250 ° C.
  • the sintering time is preferably 30 to 180 minutes.
  • the sintering surface pressure is preferably 1 to 18 MPa. If the sintering temperature, the sintering holding time, and the sintering surface pressure are within these ranges, the same effects as those of the above embodiment can be obtained.
  • the friction material production apparatus 1 of the above embodiment is not limited to the production of the sintered friction material, but also includes, for example, a resin containing a large amount of an organic material. It can also be used for the production of a friction material of the system.
  • FIG. 8 is a diagram showing an example of gas openings provided in the upper plate and the lower plate.
  • the storage unit 7 includes, for example, a lower plate having five gas inlets LF1 to LF5 arranged side by side on the front side of the friction material manufacturing apparatus 1 and five gas inlets LB1 to LB5 arranged sideways on the back side.
  • an upper plate having five gas exhaust ports UF1 to UF5 arranged side by side on the front side of the friction material manufacturing apparatus 1 and five gas exhaust ports UB1 to UB5 arranged side by side on the back side. May be used.
  • the lower plate is provided with a first internal flow path for supplying gas to each of the gas introduction ports LF1 to LF5 and a second internal flow path for supplying gas to each of the gas introduction ports LB1 to LB5.
  • FIG. 8 shows a state in which ten gas openings are provided in the upper plate and the lower plate, respectively, the diameters and the number of the gas introduction ports LF1 to LF5, LB1 to 5, and gas exhaust are illustrated.
  • the diameter and number of the ports UF1 to UF5 and UB1 to UB5 and the flow rate of gas can be appropriately set according to the size and shape of the work, the heating temperature and the like. Unnecessary openings can be closed with plugs according to, for example, the size and shape of the work and the heating temperature.
  • a support portion 14 for supporting the stacked body 2 on which the workpieces are stacked from above and a pressing portion 15 for pressing the stacked body 2 toward the supporting portion 14 from below are provided with a heat insulating material at a portion in contact with the stacked body 2. May be provided. If a heat insulating material is provided at a portion that comes into contact with the laminated body 2, heat transfer from the work constituting the laminated body 2 to the jig 4 can be suppressed. It is possible to suppress the temperature from becoming lower than that of other works.
  • the pressing force of the pressing unit 15 is applied to the heat insulating material. Therefore, it is preferable that the material constituting the heat insulating material withstand such a pressing force. Examples of such a material include a carbon plate material, an electrically insulating and insulating plate such as Neoarc (registered trademark), and a calcium silicate insulating plate such as Lumiboard (registered trademark).
  • the jig 4 has the storage section 7, and the jig 4 moves along the transport path 5 together with the storage section 7 and is heated from outside the storage section 7 by the heating device 6.
  • the storage unit 7 is not provided in the jig 4, but the storage unit 7 stores all of the jig 4, the transport path 5, and the heating device 6, or The storage unit 7 stores the heating device 6, and the jig 4 may be in a form that can be taken in and out.
  • FIG. 9 is a view showing a first modification of the friction material manufacturing apparatus 1.
  • the friction material manufacturing apparatus 1 of the above embodiment may have a configuration in which the storage unit 7 stores all of the jig 4, the transport path 5, and the heating device 6.
  • the quartz glass 13 becomes unnecessary. Therefore, it is not necessary to supply a gas for the purpose of preventing the quartz glass 13 from being stained, and a gas for discharging a volatile component that is vaporized by heating from the work is supplied into the storage unit 7.
  • the storage unit 7 be provided with a door for enabling the attachment of the work to the jig 4 and the movement of the jig 4.
  • FIG. 10 is a structural view of the friction material manufacturing apparatus according to the first modified example as viewed from a side of a transport path.
  • the inert gas cylinder 10 is connected by a hose to a gas introduction unit of a storage unit 7 that stores all of the jig 4, the transport path 5, and the heating device 6.
  • the jig 4 is housed in the housing 7 and is not connected to the inert gas cylinder 10.
  • the hose connected to the inert gas cylinder 10 does not hinder the movement of the jig 4. Therefore, the jig 4 can be easily moved along the transport path 5.
  • FIG. 11 is a view showing a second modification of the friction material manufacturing apparatus 1.
  • a heating unit 6 is provided with a storage unit 7, and the jig 4 before heating and the jig 4 after heating are stored in a storage unit. 7 may be arranged outside.
  • an opening for allowing the jig 4 to be taken in and out, and doors for opening and closing the opening are provided on both side surfaces of the storage unit 7. Then, by closing the opening with the door to close the storage section, the inside of the storage section can be filled with the gas supplied from the inert gas cylinder 10.
  • the quartz glass 13 becomes unnecessary.
  • FIG. 12 is a view showing a third modification of the friction material manufacturing apparatus 1.
  • the storage unit 7 stores the jig 4 and the heating device 6 before heating, and the jig 4 after heating is stored in the storage unit 7.
  • positioned outside may be sufficient.
  • an opening for allowing the jig 4 to be taken in and out, and a door for opening and closing the opening are provided on the side surface of the storage unit 7. Then, by closing the opening with the door to close the storage, the storage can be filled with the gas supplied from the inert gas cylinder 10.
  • the quartz glass 13 becomes unnecessary.
  • FIG. 13 is a view showing a fourth modification of the friction material manufacturing apparatus 1.
  • the storage unit 7 stores the heated jig 4 and the heating device 6, and the jig 4 before heating is stored in the storage unit 7.
  • positioned outside may be sufficient.
  • an opening for allowing the jig 4 to be taken in and out, and a door for opening and closing the opening are provided on the side surface of the storage unit 7. Then, by closing the opening with the door to close the storage section, the inside of the storage section can be filled with the gas supplied from the inert gas cylinder 10.
  • the heating device 6 is housed in the housing 7, so that the quartz glass 13 becomes unnecessary.
  • Friction material manufacturing device 2. Laminated body 3. Pressing mechanism 4. Jig 5. Transport path 6. Heating device 7. Storage unit 8. Transport mechanism 9. Support member 10. ⁇ Inert gas cylinder 11 ⁇ ⁇ Hose 12 ⁇ ⁇ Gas inlet 13 ⁇ ⁇ Quartz glass 14 ⁇ ⁇ Support part 15 ⁇ ⁇ Pressure part 16 ⁇ ⁇ Air cylinder 17 ⁇ ⁇ Gas exhaust port

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

The problem to be solved by the present invention is to enable a friction material to be efficiently produced. The present invention is a friction material production device for sintering a friction material. The device is provided with: a jig for holding a workpiece laminate, that is, a preform of the friction material, in a lamination direction; a conveyance mechanism forming a conveyance path of the jig; and heating devices disposed at some point on the conveyance path and used for heating the laminate held by the jig by means of an infrared ray from the side with respect to the lamination direction.

Description

摩擦材製造装置および摩擦材製造方法Friction material manufacturing apparatus and friction material manufacturing method
 本願は、摩擦材製造装置および摩擦材製造方法を開示する。 The present application discloses a friction material manufacturing apparatus and a friction material manufacturing method.
 車両やその他各種の機械で用いられるブレーキには、通常、摩擦材が備わっている。摩擦材は、運動エネルギーを熱エネルギーに変換する部材なので、高温になっても所定の制動力を発揮することが求められる。そこで、摩擦材が高温の状態で使用されても所定の制動力を発揮するように、摩擦材の製造ラインでは摩擦材を適切な温度で成形するための各種工夫がなされている(特許文献1-3を参照)。 ブ レ ー キ Brakes used in vehicles and other various machines usually have friction materials. Since the friction material is a member that converts kinetic energy into heat energy, it is required to exhibit a predetermined braking force even at a high temperature. Therefore, various methods have been devised for molding the friction material at an appropriate temperature in a friction material production line so that the friction material exerts a predetermined braking force even when used in a high temperature state (Patent Document 1). -3).
日本国特表2016-522362号公報Japanese Patent Publication No. 2016-522362 日本国特許第6113927号公報Japanese Patent No. 6113927 中国実用新案第205437147号明細書Chinese Utility Model No. 205473147
 例えば、金属粉を焼結した摩擦材に代表されるように、成形時の温度が比較的高い摩擦材を効率よく製造するには、摩擦材を速やかに加熱することが望まれる。しかし、摩擦材を熱板で昇温する場合には、熱が熱源から熱板を介して摩擦材へ伝達されるので、熱板自体の昇温を伴い、摩擦材の温度上昇率が熱板の熱容量に大きく依存する。また摩擦材を対流炉で昇温する場合には、熱が熱源から気流を介して摩擦材へ伝達されるので、伝熱性に劣る気体を介することになり、摩擦材を速やかに昇温することが容易でない。 For example, in order to efficiently produce a friction material having a relatively high molding temperature, as represented by a friction material obtained by sintering metal powder, it is desired to heat the friction material quickly. However, when the temperature of the friction material is increased by the hot plate, heat is transmitted from the heat source to the friction material via the hot plate, so that the temperature of the hot plate itself rises, and the temperature rise rate of the friction material increases. Greatly depends on the heat capacity. In addition, when the friction material is heated in a convection furnace, heat is transferred from the heat source to the friction material via the airflow, so that the heat is transmitted through a gas having poor heat conductivity, and the temperature of the friction material is rapidly increased. Is not easy.
 そこで、本発明は、摩擦材を効率的に製造可能にすることを解決課題とする。 Therefore, an object of the present invention is to make it possible to efficiently manufacture a friction material.
 上記課題を解決するため、本発明では、摩擦材の予備成形品であるワークの積層体を治具で挟持し、その状態で積層方向に対し側方から赤外線で加熱することにした。 In order to solve the above problems, in the present invention, a laminate of a work, which is a preformed product of a friction material, is sandwiched between jigs, and in that state, heated by infrared rays from the side in the laminating direction.
 詳細には、本発明は、摩擦材を焼結する摩擦材製造装置であって、摩擦材の予備成形品であるワークの積層体を、積層方向において挟持する治具と、治具の搬送経路を形成する搬送機構と、搬送経路の途中に設けられており、治具に挟持される積層体を、積層方向に対し側方から赤外線で加熱する加熱装置と、を備える。 More specifically, the present invention relates to a friction material manufacturing apparatus for sintering a friction material, comprising: a jig for clamping a laminate of a work, which is a preform of the friction material, in a laminating direction; And a heating device that is provided in the middle of the transport path and heats the laminated body sandwiched by the jigs from the side in the laminating direction with infrared rays.
 上記の摩擦材製造装置では、治具に挟持される積層体の加熱に赤外線を用いているので、積層体の部分を選択的に集中して加熱することが可能である。よって、例えば、対流式のように特定の箇所を選択的に集中して加熱することが難しい加熱方式に比べて、加熱対象を効率的に加熱可能である。 (4) In the above-described friction material manufacturing apparatus, since the infrared rays are used for heating the laminate sandwiched between the jigs, it is possible to selectively concentrate and heat the portion of the laminate. Therefore, for example, it is possible to heat the object to be heated more efficiently than a heating method such as a convection method in which it is difficult to selectively heat a specific portion in a concentrated manner.
 そして、上記の摩擦材製造装置では、このような加熱装置を搬送経路の途中に設け、加熱対象の積層体を挟持する治具を搬送機構で搬送する形態を採っているため、加熱装置で加熱を終えた積層体を治具と一体で加熱装置から離すことができる。このため、加熱装置で加熱を終えた積層体の温度が下がるのを待つ間に、他の治具に挟持されている積層体の加熱を当該加熱装置で連続して行うことができる。 In the friction material manufacturing apparatus described above, such a heating device is provided in the middle of the transport path, and a jig for holding the stacked body to be heated is transported by the transport mechanism. The laminated body after the above can be separated from the heating device integrally with the jig. For this reason, while waiting for the temperature of the laminated body heated by the heating device to drop, the laminated body held by another jig can be continuously heated by the heating device.
 したがって、上記の摩擦材製造装置であれば、摩擦材を効率的に製造することが可能となる。 Therefore, with the above-described friction material manufacturing apparatus, it is possible to efficiently manufacture a friction material.
 なお、治具は、積層体を積層方向における一方側から支持する支持部と、積層体を積層方向における他方側から支持部の方へ加圧する加圧部と、を有するものであってもよい。
 このような治具を用いれば、加熱装置で加熱を終えた積層体を、加圧した状態を保ったまま治具と一体で加熱装置から離すことができる。このため、加熱装置において、加熱対象である積層体の入れ替えを速やかに行うことが可能である。
Note that the jig may include a support unit that supports the stacked body from one side in the stacking direction and a pressing unit that presses the stacked body from the other side in the stacking direction toward the support unit. .
When such a jig is used, the laminated body heated by the heating device can be separated from the heating device integrally with the jig while maintaining the pressurized state. For this reason, in the heating device, it is possible to quickly replace the laminate to be heated.
 また、加熱装置は、赤外線を発する素子を、治具が加熱装置の位置にある状態において積層体の側方となる位置に有するものであってもよい。赤外線を発する素子をこのような位置に有する加熱装置であれば、加熱対象の積層体を挟持する治具を搬送機構で加熱装置付近に搬送するだけで、治具に挟持されている積層体が素子の赤外線に照らされるようにすることができるため、加熱装置において、加熱対象である積層体の入れ替えを速やかに行うことが可能である。 The heating device may include an element that emits infrared light at a position on the side of the laminate when the jig is at the position of the heating device. If the heating device has an element that emits infrared light at such a position, the jig holding the stack to be heated is simply transported to the vicinity of the heating device by the transfer mechanism, and the stack sandwiched by the jig is removed. Since the device can be illuminated with infrared light, the heating device can quickly replace the laminate to be heated.
 また、治具は、積層体を積層方向に対し側方から覆う透明な板製の窓を有しており、積層体を収納する収納部を有するものであってもよい。この場合、治具は、収納部内に不活性ガスを導入するガス導入部を有するものであってもよい。上記の摩擦材製造装置では、加熱に赤外線を用いているので、このように透明な板製の窓を通じた加熱も可能である。
 よって、このように治具に収納部を設け、透明な板製の窓を通じて赤外線で加熱する構成を採れば、例えば、収納部内を不活性ガスの雰囲気にすることも可能となる。
Further, the jig may have a transparent plate-like window that covers the laminate from the side in the laminating direction, and may have a storage unit that stores the laminate. In this case, the jig may have a gas introduction unit for introducing an inert gas into the storage unit. In the above-mentioned friction material manufacturing apparatus, since infrared rays are used for heating, it is also possible to heat through such a transparent plate window.
Therefore, if the housing is provided in the jig in this way and the structure is heated with infrared rays through a transparent plate window, for example, the interior of the housing can be made to have an inert gas atmosphere.
 また、上記の摩擦材製造装置は、治具と搬送機構と加熱装置とを収納する収納部を更に備えるものであってもよい。この収納部は、不活性ガスを導入するガス導入部を有していてもよい。この場合、例えば、収納部内を不活性ガスの雰囲気にしても治具の移動が容易である。 The above-described friction material manufacturing apparatus may further include a storage unit that stores the jig, the transport mechanism, and the heating device. This storage section may have a gas introduction section for introducing an inert gas. In this case, for example, the jig can be easily moved even when the inside of the storage section is in an inert gas atmosphere.
 また、上記の摩擦材製造装置は、加熱装置を収納し、治具を出し入れ可能な収納部を更に備えるものであってもよい。この収納部は、治具を出し入れする開口部に扉を有していてもよい。また、この場合、収納部は、不活性ガスを導入する導入部を有してもよい。このように加熱装置に収納部を設け、治具を搬送機構で加熱装置付近に搬送後、収納部を閉鎖することにより、収納部内を不活性ガスの雰囲気にすることが可能である。 The above-described friction material manufacturing apparatus may further include a storage unit that stores the heating device and that allows the jig to be taken in and out. The storage section may have a door at an opening through which the jig is taken in and out. In this case, the storage section may have an introduction section for introducing an inert gas. As described above, the housing is provided in the heating device, the jig is conveyed to the vicinity of the heating device by the conveyance mechanism, and then the housing is closed, whereby the atmosphere in the housing can be made an inert gas atmosphere.
 また、治具は、積層体に接する部位に断熱材を有するものであってもよい。この場合、積層体から治具への熱移動を抑制することができる。 治 Also, the jig may have a heat insulating material at a portion in contact with the laminate. In this case, heat transfer from the laminate to the jig can be suppressed.
 また、加熱装置は、ピーク波長が1200~1700nmの範囲内にある近赤外線ヒータであってもよい。このような波長の近赤外線は、例えば、ピーク波長が1700~2700nmの中赤外線に比べて物質内の透過性が高いため、摩擦材を積層した積層体であってもその表面付近に留まらず、積層体の内部を高エネルギーで加熱することが可能である。したがって、摩擦材を積み重ねた積層体のように中心部の加熱が容易でない加熱対象物の加熱に好適である。 (4) The heating device may be a near-infrared heater having a peak wavelength in a range of 1200 to 1700 nm. The near-infrared ray having such a wavelength has a higher transmittance in a substance than the mid-infrared ray having a peak wavelength of, for example, 1700 to 2700 nm, so that even a laminated body in which friction materials are laminated does not remain near the surface thereof. It is possible to heat the inside of the laminate with high energy. Therefore, it is suitable for heating a heating object in which heating of the central portion is not easy, such as a laminate in which friction materials are stacked.
 また、本発明は、方法の側面から捉えることもできる。例えば、本発明は、摩擦材を焼結する摩擦材製造方法であって、摩擦材の予備成形品であるワークの積層体を、積層方向において治具で挟持し、治具を、搬送機構が形成する搬送経路に沿って搬送し、搬送経路の途中に設けられた加熱装置で、治具に挟持される積層体を、積層方向に対し側方から赤外線で加熱するものであってもよい。 本 The present invention can also be grasped from the aspect of the method. For example, the present invention relates to a friction material manufacturing method for sintering a friction material, in which a laminate of a work, which is a preform of the friction material, is sandwiched by a jig in a laminating direction, and the jig is transported by a transfer mechanism. The laminate may be transported along a transport path to be formed and heated by infrared rays from a side in the laminating direction with a heating device provided in the middle of the transport path.
 本発明であれば、摩擦材を効率的に製造可能である。 According to the present invention, a friction material can be efficiently manufactured.
図1は、実施形態に係る摩擦材製造装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a friction material manufacturing apparatus according to the embodiment. 図2は、摩擦材製造装置を搬送経路の側方から見た構造図である。FIG. 2 is a structural view of the friction material manufacturing apparatus as viewed from a side of a transport path. 図3は、摩擦材製造装置を搬送経路の搬送方向から見た構造図である。FIG. 3 is a structural view of the friction material manufacturing apparatus as viewed from the transport direction of the transport path. 図4は、摩擦材製造装置の使用方法を示した第1の図である。FIG. 4 is a first diagram illustrating a method of using the friction material manufacturing apparatus. 図5は、摩擦材製造装置の使用方法を示した第2の図である。FIG. 5 is a second diagram illustrating a method of using the friction material manufacturing apparatus. 図6は、治具を連続的に並べた様子を示した図である。FIG. 6 is a diagram showing a state in which jigs are continuously arranged. 図7は、摩擦材製造装置の変形例を示した図である。FIG. 7 is a diagram showing a modification of the friction material manufacturing apparatus. 図8は、上板と下板に設けられるガス用の開口の一例を示した図である。FIG. 8 is a diagram showing an example of gas openings provided in the upper plate and the lower plate. 図9は、摩擦材製造装置の第1変形例を示した図である。FIG. 9 is a view showing a first modification of the friction material manufacturing apparatus. 図10は、第1変形例に係る摩擦材製造装置を搬送経路の側方から見た構造図である。FIG. 10 is a structural view of the friction material manufacturing apparatus according to the first modified example as viewed from a side of a transport path. 図11は、摩擦材製造装置の第2変形例を示した図である。FIG. 11 is a view showing a second modification of the friction material manufacturing apparatus. 図12は、摩擦材製造装置の第3変形例を示した図である。FIG. 12 is a view showing a third modification of the friction material manufacturing apparatus. 図13は、摩擦材製造装置の第4変形例を示した図である。FIG. 13 is a view showing a fourth modification of the friction material manufacturing apparatus.
 以下、本発明の実施形態について説明する。以下に示す実施形態は、本発明の実施形態を例示するものであり、本発明の技術的範囲を以下の形態に限定するものではない。 Hereinafter, embodiments of the present invention will be described. The embodiments described below exemplify embodiments of the present invention, and do not limit the technical scope of the present invention to the following embodiments.
 図1は、実施形態に係る摩擦材製造装置の概略構成図である。摩擦材製造装置1は、ブレーキ用の摩擦材を焼結する装置であり、摩擦材の予備成形品であるワークを積み重ねた積層体2を、積層方向において加圧機構3で挟持する治具4と、治具4の搬送経路5を形成する搬送機構と、搬送経路5の途中に設けられており、治具4で加圧機構3に挟持されている積層体2を積層方向に対し側方から赤外線で加熱する加熱装置6とを備える。摩擦材製造装置1は、積層体2を加圧機構3で挟持した状態の治具4を搬送経路5に沿って移動し、搬送経路5の途中にある加熱装置6で積層体2を加熱することにより、積層体2にある摩擦材を加熱する。なお、摩擦材製造装置1は積層体2を上下で挟持する構造に限定されず、積層体2を横向きで挟持する構造であってもよい。この摩擦材は、例えば、各種産業機器、輸送機器、事務用機器等への使用が想定される。 FIG. 1 is a schematic configuration diagram of the friction material manufacturing apparatus according to the embodiment. The friction material manufacturing apparatus 1 is an apparatus for sintering a friction material for a brake, and a jig 4 for holding a stacked body 2 on which a work, which is a preform of the friction material, is stacked by a pressing mechanism 3 in a stacking direction. And a transport mechanism for forming the transport path 5 of the jig 4, and the stack 2 provided in the middle of the transport path 5 and sandwiched by the pressing mechanism 3 by the jig 4 is laterally arranged in the stacking direction. And a heating device 6 for heating from above with infrared rays. The friction material manufacturing apparatus 1 moves the jig 4 in a state where the laminate 2 is sandwiched by the pressing mechanism 3 along the transport path 5, and heats the laminate 2 by the heating device 6 in the middle of the transport path 5. Thereby, the friction material in the laminate 2 is heated. Note that the friction material manufacturing apparatus 1 is not limited to the structure in which the laminate 2 is vertically held, and may be a structure in which the laminate 2 is horizontally sandwiched. This friction material is assumed to be used, for example, for various industrial equipment, transportation equipment, office equipment, and the like.
 積層体2は、金属粉に研削材や潤滑材を混ぜて薄い板状にプレスした予備成形品をプレッシャプレートに重ね、更に、予備成形品の摩擦面側にアルミナのセッターを配置した組み合わせ品を複数組積み重ねたものである。積層体2は、予備成型品とプレッシャプレートとセッターを、例えば、積み重ね用の治具にセットして積み重ねることにより実現できる。 The laminated body 2 is obtained by mixing a grinding material or a lubricant with metal powder, pressing a preform formed into a thin plate shape on a pressure plate, and further arranging a combination product in which an alumina setter is arranged on the friction surface side of the preform. A plurality of sets are stacked. The laminate 2 can be realized by, for example, setting the preform, the pressure plate, and the setter on a stacking jig and stacking them.
 治具4は、このような積層体2を、加圧機構3で挟持した状態で格納可能な収納部7を有する。収納部7には、後述するように、加熱装置6の近赤外線を通す窓が備わっている。収納部7は、加熱装置6の熱に対して耐熱性を有する素材で形成される。 The jig 4 has a storage section 7 that can store such a laminated body 2 while being sandwiched by the pressing mechanism 3. The storage section 7 is provided with a window through which near-infrared rays of the heating device 6 pass, as described later. The storage section 7 is formed of a material having heat resistance to the heat of the heating device 6.
 摩擦材製造装置1の各部の詳細について説明する。図2は、摩擦材製造装置1を搬送経路5の側方から見た構造図である。また、図3は、摩擦材製造装置1を搬送経路5の搬送方向から見た構造図である。 詳細 Details of each part of the friction material manufacturing apparatus 1 will be described. FIG. 2 is a structural view of the friction material manufacturing apparatus 1 as viewed from the side of the transport path 5. FIG. 3 is a structural view of the friction material manufacturing apparatus 1 as viewed from the transport direction of the transport path 5.
 摩擦材製造装置1は、搬送経路5を形成する搬送機構8や、加熱装置6を支持する支持部材9を備える。また、摩擦材製造装置1には不活性ガスボンベ10が併設されており、不活性ガスボンベ10がホース11を介して治具4のガス導入口12に連結されている。
 そして、治具4の収納部7には、不活性ガスボンベ10から供給された不活性ガスが流通する。不活性ガスボンベ10に充填されている不活性ガスとしては、例えば、アルゴンガス、窒素ガス、その他各種の不活性ガスが挙げられる。不活性ガスボンベ10は、積層体2が収納されている収納部7内を不活性ガスの雰囲気にすることで、焼結中の酸化を防ぐ目的で設けられている。なお、不活性ガス雰囲気下のほかに、還元ガス雰囲気下や、不活性ガスと還元ガスの併用雰囲気下、減圧雰囲気下での焼結も可能である。よって、不活性ガスボンベ10と治具4のガス導入口12とを連結するホース11は、治具4が搬送経路5をスライドしても追従可能なように引き回されている。
The friction material manufacturing apparatus 1 includes a transport mechanism 8 that forms the transport path 5 and a support member 9 that supports the heating device 6. Further, an inert gas cylinder 10 is provided in the friction material manufacturing apparatus 1, and the inert gas cylinder 10 is connected to a gas inlet 12 of the jig 4 via a hose 11.
Then, the inert gas supplied from the inert gas cylinder 10 flows through the storage section 7 of the jig 4. Examples of the inert gas filled in the inert gas cylinder 10 include an argon gas, a nitrogen gas, and various other inert gases. The inert gas cylinder 10 is provided for the purpose of preventing oxidation during sintering by setting the inside of the storage section 7 in which the laminated body 2 is stored to an inert gas atmosphere. In addition to sintering under an inert gas atmosphere, sintering under a reducing gas atmosphere, a combined atmosphere of an inert gas and a reducing gas, or a reduced pressure atmosphere is also possible. Therefore, the hose 11 connecting the inert gas cylinder 10 and the gas inlet 12 of the jig 4 is routed so that the jig 4 can follow the conveyance path 5 even if it slides.
 収納部7には、加熱装置6の近赤外線が透過する石英ガラス13が設けられている。収納部7は、加熱装置6の熱に対して耐熱性のステンレス等の金属製の素材で基本的に形成されているが、治具4が加熱装置6の付近に居る場合に加熱装置6の近赤外線が照射される部位に石英ガラス13が配置されており、加熱装置6の近赤外線が治具4の無用な箇所に照射されにくいように設計されている。石英ガラス13やその他の金属製の素材で形成される収納部7は、内部を流通する不活性ガスの漏出が所定の許容範囲に収まり、且つ、加熱装置6による温度上昇に伴う部材の膨張が部材同士の干渉を引き起こさないように、各部材同士が適切な寸法で設計されている。また、ガス導入口12から収納部7内に導入される不活性ガスボンベ10の不活性ガスは、収納部7内を通過し、収納部7に設けられたガス排気口17から排気される。ガス導入口12から収納部7内に導入された不活性ガスは、摩擦材の酸化を抑制する他、収納部7を構成する部材の冷却機能、石英ガラス13の防汚機能を発揮するため、ガス排気口17における排気量はこれらの機能維持を考慮して調整される。なお、積層体2を積層方向に対し側方から覆う透明な板製の窓は、赤外線を透過し耐熱性があれば材質は石英ガラス13に限定されない。 (4) The storage section 7 is provided with a quartz glass 13 through which the near infrared rays of the heating device 6 pass. The storage section 7 is basically formed of a metal material such as stainless steel having heat resistance to the heat of the heating device 6, but when the jig 4 is near the heating device 6, The quartz glass 13 is arranged at a position where the near infrared rays are irradiated, and is designed so that the near infrared rays of the heating device 6 are hardly irradiated to unnecessary portions of the jig 4. The storage portion 7 formed of quartz glass 13 or another metal material has a configuration in which leakage of an inert gas flowing through the storage portion falls within a predetermined allowable range, and expansion of a member caused by a rise in temperature by the heating device 6 is prevented. Each member is designed with appropriate dimensions so as not to cause interference between the members. Further, the inert gas of the inert gas cylinder 10 introduced into the storage unit 7 from the gas inlet 12 passes through the storage unit 7 and is exhausted from the gas exhaust port 17 provided in the storage unit 7. The inert gas introduced into the storage unit 7 from the gas inlet 12 suppresses the oxidation of the friction material, and also exhibits a cooling function of members constituting the storage unit 7 and an antifouling function of the quartz glass 13. The amount of exhaust gas at the gas exhaust port 17 is adjusted in consideration of maintaining these functions. The material of the transparent plate window that covers the laminate 2 from the side in the lamination direction is not limited to quartz glass 13 as long as it transmits infrared rays and has heat resistance.
 また、収納部7に設けられている加圧機構3は、積層体2を上側から支持する支持部14と、積層体2を下側から支持部14の方へ加圧する加圧部15とを備える。加圧部15は、エアシリンダ16によって上下方向に昇降される部位である。エアシリンダ16は、高圧の空気を供給するコンプレッサーに耐圧ホースを介して接続されており、当該高圧の空気を供給する経路の途中に設けられる弁の開閉に応じて加圧部15を昇降させる。また、加圧機構3には、積層体2に加わる荷重を計測するロードセルが備わっており、積層体2に加える荷重の大きさを調整可能である。加圧機構3には、加熱装置6の熱によるロードセルの破損を防ぐため、水冷ジャケット等による冷却構造が備わっている。なお、加圧機構3は、積層体2を加圧可能であればよく、エアシリンダ16を用いたもの以外に、例えば、コイルバネ、錘を併用したテコ、手動ジャッキ、油圧シリンダ、その他各種の加圧手段を適用してもよい。 The pressurizing mechanism 3 provided in the storage unit 7 includes a support unit 14 that supports the stack 2 from above and a press unit 15 that presses the stack 2 from below toward the support 14. Prepare. The pressurizing section 15 is a portion that is vertically moved up and down by the air cylinder 16. The air cylinder 16 is connected to a compressor that supplies high-pressure air via a pressure-resistant hose, and raises and lowers the pressurizing unit 15 in accordance with opening and closing of a valve provided in a path for supplying the high-pressure air. Further, the pressing mechanism 3 includes a load cell for measuring a load applied to the multilayer body 2, and can adjust the magnitude of the load applied to the multilayer body 2. The pressurizing mechanism 3 is provided with a cooling structure such as a water-cooled jacket to prevent the load cell from being damaged by the heat of the heating device 6. The pressurizing mechanism 3 only needs to be able to pressurize the laminated body 2. In addition to the mechanism using the air cylinder 16, for example, a coil spring, a lever combined with a weight, a manual jack, a hydraulic cylinder, and various other types Pressure means may be applied.
 このように構成される治具4は、搬送機構8によって搬送経路5をスライド可能になっている。治具4をスライドさせる搬送機構8は、治具4が載るローラ式のコンベアであってもよいし、或いは、搬送経路5に沿って延在するレールに嵌合するリニアガイドであってもよい。また、搬送機構8は、治具4をスライドさせるモータ等の動力源を有しない手動式の機構であってもよいし、或いは、動力源を有する自動式の機構であってもよい。 治 The jig 4 thus configured is slidable on the transport path 5 by the transport mechanism 8. The transport mechanism 8 that slides the jig 4 may be a roller-type conveyor on which the jig 4 is placed, or may be a linear guide that fits on a rail extending along the transport path 5. . Further, the transport mechanism 8 may be a manual mechanism having no power source such as a motor for sliding the jig 4 or an automatic mechanism having a power source.
 治具4は、搬送経路5上を適当なタイミングで前進したり停止したりしながら搬送される。治具4が前進されたり停止されたりするタイミングは、加熱装置6の加熱力、摩擦材製造装置1が設置されている工場内の雰囲気温度、積層体2に積層されている摩擦材の組成、積層体2に積層されている摩擦材の枚数、加圧機構3の加圧力、その他各種の要素に応じて決定される。 (4) The jig 4 is conveyed while moving forward or stopping on the conveyance path 5 at an appropriate timing. The timing at which the jig 4 is advanced or stopped depends on the heating power of the heating device 6, the ambient temperature in the factory where the friction material manufacturing device 1 is installed, the composition of the friction material laminated on the laminate 2, It is determined according to the number of friction materials laminated on the laminate 2, the pressing force of the pressing mechanism 3, and other various factors.
 加熱装置6は、このような治具4にセットされている積層体2を近赤外線で加熱する。
 加熱装置6は、搬送経路5の方向に沿って延在する棒状の近赤外線ヒータを搬送経路5の両側に複数本ずつ備えており、積層体2を約1000℃程度に加熱可能な加熱能力を有する。
The heating device 6 heats the laminate 2 set on such a jig 4 with near infrared rays.
The heating device 6 includes a plurality of rod-shaped near-infrared heaters extending in the direction of the transport path 5 on both sides of the transport path 5, and has a heating capacity capable of heating the laminate 2 to about 1000 ° C. Have.
 各近赤外線ヒータは、例えば、ピーク波長が1200~1700nmの範囲内にある近赤外線を放つ。このような波長の近赤外線は、波長の長い遠赤外線に比べて物質内の透過性が高いため、摩擦材を積層した積層体2であってもその表面付近に留まらず、積層体2の内部を加熱することが可能である。したがって、石英ガラス13を通じた赤外線による積層体2の加熱に好適である。 Each near-infrared heater emits near-infrared light having a peak wavelength in the range of 1200 to 1700 nm, for example. Near-infrared rays having such a wavelength have higher permeability in a substance than far-infrared rays having a longer wavelength, and therefore, even if the laminate 2 has a friction material laminated thereon, it does not remain near the surface thereof, Can be heated. Therefore, it is suitable for heating the laminate 2 by infrared rays through the quartz glass 13.
 各近赤外線ヒータは、一乃至複数本の組み合わせ毎に通電が制御されており、積層体2の上層部と中層部と下層部の各々に適切な熱量を加えることが可能となっている。加熱装置6の各近赤外線ヒータの通電パターンは、加熱装置6の加熱力、摩擦材製造装置1が設置されている工場内の雰囲気温度、積層体2に積層されている摩擦材の組成、積層体2に積層されている摩擦材の枚数、加圧機構3の加圧力、その他各種の要素に応じて調整される。加熱装置6の通電パターンは、予め設定された既定のシーケンスに従ってもよいし、或いは、積層体2の温度を非接触で測定するサーモグラフィ等の放射温度計の情報に従ってもよい。 通電 Each near-infrared heater is controlled to be energized for each one or a plurality of combinations, so that an appropriate amount of heat can be applied to each of the upper layer, the middle layer, and the lower layer of the laminate 2. The energization pattern of each near-infrared heater of the heating device 6 includes the heating power of the heating device 6, the ambient temperature in the factory where the friction material manufacturing device 1 is installed, the composition of the friction material laminated on the laminate 2, and the lamination. It is adjusted according to the number of friction materials laminated on the body 2, the pressing force of the pressing mechanism 3, and other various factors. The energization pattern of the heating device 6 may be in accordance with a predetermined sequence set in advance, or may be in accordance with information of a radiation thermometer such as a thermography for measuring the temperature of the laminate 2 in a non-contact manner.
 次に、摩擦材製造装置1の使用方法について説明する。図4は、摩擦材製造装置1の使用方法を示した第1の図である。また、図5は、摩擦材製造装置1の使用方法を示した第2の図である。摩擦材製造装置1を使って摩擦材の焼結を行う場合は、まず、図4(A)に示されるように、エアシリンダ16を収縮させて加圧部15を下限位置にし、その状態で積層体2を治具4にセットする。次に、図4(B)に示されるように、エアシリンダ16を伸ばして加圧部15を上昇させ、積層体2を支持部14と加圧部15で挟持する。そして、収納部7の開放部分を閉鎖し、不活性ガスボンベ10の不活性ガスを収納部7内へ供給する。 Next, a method of using the friction material manufacturing apparatus 1 will be described. FIG. 4 is a first diagram illustrating a method of using the friction material manufacturing apparatus 1. FIG. 5 is a second diagram illustrating a method of using the friction material manufacturing apparatus 1. When sintering the friction material using the friction material manufacturing apparatus 1, first, as shown in FIG. 4A, the air cylinder 16 is contracted to set the pressing portion 15 to the lower limit position, and in this state, The laminate 2 is set on the jig 4. Next, as shown in FIG. 4B, the air cylinder 16 is extended to raise the pressurizing section 15, and the laminate 2 is sandwiched between the support section 14 and the pressurizing section 15. Then, the open portion of the storage section 7 is closed, and the inert gas in the inert gas cylinder 10 is supplied into the storage section 7.
 このようにして加熱装置6による加熱の準備が整うと、図4(C)に示されるように、治具4を搬送機構8でスライドさせて、治具4を加熱装置6の付近に移動する。そして、加熱装置6で積層体2を加熱する。積層体2に積層されている摩擦材の焼結が進むと、適当なタイミングで治具4をスライドさせて、図5(A)に示されるように、治具4を加熱装置6から離す。そして、積層体2に積層されている摩擦材が適当な温度に下がるまで積層体2を自然冷却等により冷却させると、積層体2に積層されている摩擦材の焼結が完了する。積層体2に積層されている摩擦材の焼結が完了すると、図5(B)に示されるように、エアシリンダ16を収縮させて加圧部15を下限位置にし、その状態で積層体2を治具4から取り外す。積層体2が取り外された治具4は、ただちに他の摩擦材の焼結に用いることが可能である。 When the preparation for heating by the heating device 6 is completed in this way, the jig 4 is slid by the transfer mechanism 8 and the jig 4 is moved to the vicinity of the heating device 6 as shown in FIG. . Then, the laminate 2 is heated by the heating device 6. When the sintering of the friction material laminated on the laminate 2 proceeds, the jig 4 is slid at an appropriate timing to separate the jig 4 from the heating device 6 as shown in FIG. Then, when the laminated body 2 is cooled by natural cooling or the like until the friction material laminated on the laminated body 2 falls to an appropriate temperature, the sintering of the friction material laminated on the laminated body 2 is completed. When the sintering of the friction material laminated on the laminate 2 is completed, as shown in FIG. 5B, the air cylinder 16 is contracted to set the pressurizing portion 15 to the lower limit position, and in this state, the laminate 2 Is removed from the jig 4. The jig 4 from which the laminate 2 has been removed can be used immediately for sintering another friction material.
 近赤外線ヒータは、抵抗加熱ヒータに比べると、昇温速度が10~20倍である。また、近赤外線ヒータは、中波長カーボンヒータや中波長赤外線ヒータのピーク波長である1700nmから2700nmまでの範囲内よりもピーク波長が短いため、中波長カーボンヒータや中波長赤外線ヒータよりも高エネルギーを出力可能であり、金属粉に研削材や潤滑材を混ぜた無機物の摩擦材を比較的短時間で焼結可能である。 Near-infrared heaters have a 10- to 20-fold increase in temperature compared to resistance heaters. In addition, the near-infrared heater has a shorter peak wavelength than the range of 1700 nm to 2700 nm, which is the peak wavelength of the middle-wavelength carbon heater and the middle-wavelength infrared heater, and therefore has higher energy than the middle-wavelength carbon heater and the middle-wavelength infrared heater. It is possible to output, and it is possible to sinter an inorganic friction material obtained by mixing an abrasive and a lubricant with metal powder in a relatively short time.
 そして、上記実施形態の摩擦材製造装置1であれば、積層体2がセットされた治具4を搬送機構8でスライドさせながら加熱装置6付近を通過させることができるため、例えば、次のようにして用いることにより、摩擦材を実質的にバッチ式ではなく連続式で大量に焼成可能である。 In the friction material manufacturing apparatus 1 according to the above embodiment, the jig 4 on which the stacked body 2 is set can be passed near the heating device 6 while being slid by the transport mechanism 8. By using the friction material, a large amount of the friction material can be fired in a continuous manner, not in a batch manner.
 図6は、治具4を連続的に並べた様子を示した図である。摩擦材製造装置1は、積層体2がセットされた治具4を搬送機構8でスライドさせながら加熱装置6付近を通過させることができるため、例えば、図6に示されるように、積層体2がセットされた治具4(4-1~5)を搬送経路5に複数並べることにより、加熱装置6において積層体2の加熱を終えた治具4を速やかにスライドさせて加熱装置6から離し、続けて加熱前の積層体2がセットされている後続の治具4をスライドさせて加熱装置6の位置に置くことで、摩擦材の加熱と冷却を同時に行うことができる。よって、加熱装置6の利用効率を可及的に高めることが可能である。摩擦材製造装置1は、このような使用が可能であるため、搬送経路5のうち加熱装置6がある領域を加熱ゾーン、加熱ゾーン以外の領域を冷却ゾーンとして捉えることができる。 FIG. 6 is a view showing a state in which the jigs 4 are continuously arranged. Since the friction material manufacturing apparatus 1 can pass the jig 4 on which the laminated body 2 is set and slide it by the transport mechanism 8 near the heating device 6, for example, as shown in FIG. A plurality of jigs 4 (4-1 to 5) on which are set are arranged in the transport path 5, so that the jig 4 which has finished heating the laminate 2 in the heating device 6 is quickly slid and separated from the heating device 6. Subsequently, by sliding the subsequent jig 4 on which the laminated body 2 before heating is set and placing the jig 4 at the position of the heating device 6, heating and cooling of the friction material can be performed simultaneously. Therefore, it is possible to increase the utilization efficiency of the heating device 6 as much as possible. Since the friction material manufacturing apparatus 1 can be used as described above, an area where the heating device 6 is located in the transport path 5 can be regarded as a heating zone, and an area other than the heating zone can be regarded as a cooling zone.
 なお、上記実施形態の摩擦材製造装置1では、摩擦材の焼結が加熱装置6のみで行われているが、摩擦材の焼結は加熱装置6とその他の加熱装置が協働で行ってもよい。例えば、摩擦材製造装置1には、近赤外線ヒータを備えた加熱装置6の隣に温風を使った対流炉が併設されており、摩擦材の昇温を加熱装置6が担い、加熱装置6で昇温された摩擦材の温度の維持を対流炉が担うようにしてもよい。また、複数の加熱装置6の近赤外線ヒータの出力をそれぞれ変えることで摩擦材の温度の維持を行なってもよい。 In the friction material manufacturing apparatus 1 of the above embodiment, the sintering of the friction material is performed only by the heating device 6, but the sintering of the friction material is performed by the heating device 6 and other heating devices in cooperation. Is also good. For example, the friction material manufacturing apparatus 1 is provided with a convection furnace using warm air next to a heating apparatus 6 having a near-infrared heater, and the heating apparatus 6 raises the temperature of the friction material. The convection furnace may be responsible for maintaining the temperature of the friction material that has been heated in step (1). Further, the output of the near-infrared heaters of the plurality of heating devices 6 may be changed to maintain the temperature of the friction material.
 図7は、摩擦材製造装置1の変形例を示した図である。摩擦材製造装置1は、例えば、図7に示されるように、搬送経路5沿いに加熱装置6を複数設けたものであってもよい。
 摩擦材製造装置1が搬送経路5沿いに加熱装置6を複数設けたものであれば、複数の治具4に各々セットされている各積層体2を、複数の加熱装置6で同時に加熱することができる。よって、本変形例の摩擦材製造装置1であれば、多数の摩擦材を焼結させることが可能である。
FIG. 7 is a view showing a modified example of the friction material manufacturing apparatus 1. For example, as shown in FIG. 7, the friction material manufacturing apparatus 1 may be provided with a plurality of heating devices 6 along the transport path 5.
If the friction material manufacturing apparatus 1 is provided with a plurality of heating devices 6 along the transport path 5, the stacked bodies 2 set on the plurality of jigs 4 are simultaneously heated by the plurality of heating devices 6. Can be. Therefore, with the friction material manufacturing apparatus 1 of the present modification, it is possible to sinter a large number of friction materials.
 近赤外線ヒータを用いて焼結摩擦材を作製する場合と、抵抗加熱ヒータを用いて焼結摩擦材を作製する場合とを比較検証したので、その結果を以下に示す。本検証では、積層体2の積層方向が上記実施形態のように上下ではなく横向きとなるように積層体2を配置し、これを上側と下側から加熱する形態で検証を行った。 Compared and verified the case of producing a sintered friction material using a near-infrared heater and the case of producing a sintered friction material using a resistance heater. The results are shown below. In this verification, the stacked body 2 was arranged so that the stacked direction of the stacked body 2 was horizontal instead of up and down as in the above-described embodiment, and verification was performed by heating the stacked body 2 from above and below.
 本検証では、加熱装置を構成する棒状の近赤外線ヒータとして、ピーク波長が1200~1700nm、全長405mm、発熱する部位の長さ(有効長)が340mmのものを使用した。本検証では、この近赤外線ヒータを、積層方向が横向きとなる状態で配置された積層体2の上側に6本、下側に3本設置した。 検 証 In this verification, a rod-like near-infrared heater constituting a heating device having a peak wavelength of 1200 to 1700 nm, a total length of 405 mm, and a length (effective length) of a heat generating portion was used as 340 mm. In the present verification, six near-infrared heaters were installed on the upper side and three on the lower side of the stacked body 2 arranged with the stacking direction being horizontal.
 本検証では、上記実施形態の治具4に相当する治具として、コイルバネで加圧機構を構成し、耐熱性の金属製部品や透明な石英ガラスで形成されて密封された収納部内にアルゴンガスを通気させたものを用意した。近赤外線ヒータの有効長が340mmであるため、
治具のフレームを540mm程度の長さとすることで、治具のフレームを構成する金属製部品が、近赤外線ヒータから照射される近赤外線に直接照射されにくい構造とした。
In this verification, as a jig corresponding to the jig 4 of the above embodiment, a pressurizing mechanism is constituted by a coil spring, and argon gas is contained in a sealed housing formed of heat-resistant metal parts or transparent quartz glass and sealed. Was prepared. Since the effective length of the near infrared heater is 340 mm,
By making the frame of the jig about 540 mm in length, the metal parts constituting the frame of the jig are structured to be hard to be directly irradiated with near infrared rays emitted from the near infrared heater.
 本検証では、アルゴンガスが、2系統ある導入口から収納部内へ導入され、1系統の排気口から排出されるようにした。また、アルゴンガスは、2系統ある導入口から収納部内へ流入すると、加圧機構を構成するコイルバネに吹き付けられるようにすることで常時冷却される構造とし、コイルバネの熱変形を防止した。 検 証 In this verification, argon gas was introduced into the storage unit through two inlets and discharged through one exhaust outlet. In addition, when the argon gas flows into the housing from the two inlets, the structure is configured to be constantly cooled by being sprayed to the coil spring constituting the pressurizing mechanism, thereby preventing thermal deformation of the coil spring.
 本検証では、金属粉に研削材や潤滑材を混ぜて薄い板状にプレスし、φ42mm、厚さ12mmの円柱状ブロックの予備成形品を6枚用意した。そして、ブレーキのプレッシャプレートに相当する熱間圧延鋼プレートに各円柱状ブロックを重ね、更にアルミナのセッターを挟んで積層体とした。この積層体にコイルバネで3.0MPaの荷重を加えた状態で加熱を行った。加熱は、近赤外線ヒータの中心と円柱状ブロックの中心との間の距離が70mmとなるように上段と下段の近赤外線ヒータの高さを調整した。また、アルゴンガスは0.45MPaの圧力で収納部内に流し続けた。収納部内のガス置換(パージ)は5分間とした。 In this verification, metal powder mixed with an abrasive and a lubricant was pressed into a thin plate, and six cylindrical block preforms having a diameter of 42 mm and a thickness of 12 mm were prepared. Then, each of the columnar blocks was superimposed on a hot-rolled steel plate corresponding to a pressure plate of a brake, and a laminated body was further sandwiched between alumina setters. The laminate was heated with a coil spring applying a load of 3.0 MPa. For heating, the heights of the upper and lower near infrared heaters were adjusted so that the distance between the center of the near infrared heater and the center of the columnar block was 70 mm. Further, the argon gas was kept flowing into the storage section at a pressure of 0.45 MPa. Gas replacement (purging) in the storage section was performed for 5 minutes.
 近赤外線ヒータは、上段と下段の全出力が20kWとし、上下のヒータの出力比が16.8対4.9となるように制御した。そして、加熱対象の積層体に取り付けた熱電対の温度が950℃に到達後、950±15℃で30分間保持させ、その後、近赤外線ヒータの通電をオフにした。また、アルゴンガスの通気は、加熱対象の積層体が常温になるまで継続した。 (4) The near-infrared heater was controlled so that the total output of the upper and lower stages was 20 kW, and the output ratio of the upper and lower heaters was 16.8 to 4.9. Then, after the temperature of the thermocouple attached to the laminate to be heated reached 950 ° C., the temperature was maintained at 950 ± 15 ° C. for 30 minutes, and then the energization of the near-infrared heater was turned off. The ventilation of the argon gas was continued until the temperature of the laminate to be heated reached room temperature.
 このように上記実施形態に相当する方法で作製した焼結摩擦材を、以下、実施例と呼ぶ。この実施例を、抵抗加熱ヒータを用いた焼結炉を使って作製した比較例と比べた評価結果を以下に説明する。なお、比較例は、アルゴンガスの雰囲気にて、面圧3.0MPa、焼結温度950℃、保持時間30分間、昇温速度10℃/分で作製した。 焼 結 The sintered friction material manufactured by the method corresponding to the above embodiment is hereinafter referred to as an example. The evaluation results of this example in comparison with a comparative example manufactured using a sintering furnace using a resistance heater will be described below. The comparative example was manufactured in an argon gas atmosphere at a surface pressure of 3.0 MPa, a sintering temperature of 950 ° C., a holding time of 30 minutes, and a heating rate of 10 ° C./min.
 本評価では、以下の5項目について評価を行った。
   1.焼結温度が950℃に到達するまでの時間
   2.収縮率
   3.表面硬さ
   4.母材せん断強度
   5.プレッシャプレート(PP)接着せん断強度
In this evaluation, the following five items were evaluated.
1. 1. Time until sintering temperature reaches 950 ° C 2. Shrinkage rate Surface hardness 4. Base material shear strength 5. Pressure plate (PP) adhesive shear strength
 各項目の評価結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000001
The following table shows the evaluation results for each item.
Figure JPOXMLDOC01-appb-T000001
 上記の表から判るように、実施例の場合は、比較例の場合に比べると、約10分の1という極めて短い時間で焼結温度が950℃に到達した。また、収縮率や表面硬さについては、実施例と比較例の何れも同等の結果となった。また、母材せん断強度とPP接着せん断強度については、実施例の方が比較例の1.4~1.6倍高くなる傾向が得られた。 判 As can be seen from the above table, the sintering temperature of the example reached 950 ° C. in a very short time of about 1/10 compared to the comparative example. Further, regarding the shrinkage ratio and the surface hardness, both the examples and the comparative examples had the same results. In addition, the base material shear strength and the PP adhesive shear strength tended to be 1.4 to 1.6 times higher in the example than in the comparative example.
 以上の結果より、実施例は、比較例と同等の性能の焼結摩擦材を、比較例よりも約90分短い昇温時間で製作できることが確認された。なお、本検証では、焼結温度を950±15℃とし、焼結保持時間を30分とし、焼結面圧を3.0MPaとしていたが、焼結工程における焼結温度は900~1300℃が好ましく、より好ましくは950~1250℃である。また、焼結保持時間は30~180分が好ましい。また、焼結面圧は1~18MPaが好ましい。焼結温度や焼結保持時間、焼結面圧がこれらの範囲内であれば、上記実施例と同等の効果が発揮される。 From the above results, it was confirmed that in the example, a sintered friction material having the same performance as that of the comparative example could be manufactured with a heating time shorter than that of the comparative example by about 90 minutes. In this verification, the sintering temperature was 950 ± 15 ° C., the sintering holding time was 30 minutes, and the sintering surface pressure was 3.0 MPa. However, the sintering temperature in the sintering step was 900 to 1300 ° C. Preferably, it is 950-1250 ° C. The sintering time is preferably 30 to 180 minutes. The sintering surface pressure is preferably 1 to 18 MPa. If the sintering temperature, the sintering holding time, and the sintering surface pressure are within these ranges, the same effects as those of the above embodiment can be obtained.
 なお、上記の説明では、焼結摩擦材の製造を前提としていたが、上記実施形態の摩擦材製造装置1は、焼結摩擦材の製造のみならず、例えば、有機系の材料を多く含むレジン系の摩擦材の製造に用いることも可能である。 In the above description, the production of the sintered friction material has been premised. However, the friction material production apparatus 1 of the above embodiment is not limited to the production of the sintered friction material, but also includes, for example, a resin containing a large amount of an organic material. It can also be used for the production of a friction material of the system.
 ところで、収納部7の底面を構成する下板及び天面を構成する上板は、次のように構成されていてもよい。図8は、上板と下板に設けられるガス用の開口の一例を示した図である。収納部7は、例えば、摩擦材製造装置1の手前側に横並びに配列される5つのガス導入口LF1~5及び奥側に横並びに配列される5つのガス導入口LB1~5を有する下板と、摩擦材製造装置1の手前側に横並びに配列される5つのガス排気口UF1~5及び奥側に横並びに配列される5つのガス排気口UB1~5を有する上板と、によって形成されるものであってもよい。この場合、下板には、各ガス導入口LF1~5にガスを供給する第1の内部流路と、各ガス導入口LB1~5にガスを供給する第2の内部流路と、が設けられる。 By the way, the lower plate constituting the bottom surface of the storage section 7 and the upper plate constituting the top surface may be configured as follows. FIG. 8 is a diagram showing an example of gas openings provided in the upper plate and the lower plate. The storage unit 7 includes, for example, a lower plate having five gas inlets LF1 to LF5 arranged side by side on the front side of the friction material manufacturing apparatus 1 and five gas inlets LB1 to LB5 arranged sideways on the back side. And an upper plate having five gas exhaust ports UF1 to UF5 arranged side by side on the front side of the friction material manufacturing apparatus 1 and five gas exhaust ports UB1 to UB5 arranged side by side on the back side. May be used. In this case, the lower plate is provided with a first internal flow path for supplying gas to each of the gas introduction ports LF1 to LF5 and a second internal flow path for supplying gas to each of the gas introduction ports LB1 to LB5. Can be
 収納部7がこのような上板および下板で構成されていれば、ガス導入口LF1~5,LB1~5から吹き出たガスが石英ガラス13の表面に沿って流れ、ガス排気口UF1~5,UB1~5から排出される。よって、石英ガラス13の表面がガスによって防汚される。なお、図8では、ガス用の開口が上板と下板にそれぞれ10個ずつ設けられている様子が図示されているが、ガス導入口LF1~5,LB1~5の口径や口数、ガス排気口UF1~5,UB1~5の口径や口数、及び、ガスの流量は、ワークの大きさや形状、加熱温度等に応じて適宜設定可能である。また、不要な開口については、例えば、ワークの大きさや形状、加熱温度等に応じて栓をして閉鎖することもできる。 If the storage section 7 is composed of such an upper plate and a lower plate, the gas blown out from the gas inlets LF1 to LF5 and LB1 to 5 flows along the surface of the quartz glass 13, and the gas outlets UF1 to UF5. , UB1-5. Therefore, the surface of the quartz glass 13 is stained by the gas. Although FIG. 8 shows a state in which ten gas openings are provided in the upper plate and the lower plate, respectively, the diameters and the number of the gas introduction ports LF1 to LF5, LB1 to 5, and gas exhaust are illustrated. The diameter and number of the ports UF1 to UF5 and UB1 to UB5 and the flow rate of gas can be appropriately set according to the size and shape of the work, the heating temperature and the like. Unnecessary openings can be closed with plugs according to, for example, the size and shape of the work and the heating temperature.
 また、ワークを積み重ねた積層体2を上側から支持する支持部14や、積層体2を下側から支持部14の方へ加圧する加圧部15は、積層体2に接触する部位に断熱材を有していてもよい。積層体2に接触する部位に断熱材が設けられていれば、積層体2を構成するワークから治具4への熱移動を抑制することができるため、積層体2の下部や上部のワークが他のワークより低温になるのを抑制することができる。当該断熱材には、加圧部15の加圧力が加わる。よって、断熱材を構成する素材には、このような加圧力に耐えるものが好ましい。このような素材としては、例えば、カーボン製の板材や、ネオアーク(登録商標)等の電気絶縁断熱板、ルミボード(登録商標)等のケイ酸カルシウム製断熱板などが挙げられる。 Further, a support portion 14 for supporting the stacked body 2 on which the workpieces are stacked from above and a pressing portion 15 for pressing the stacked body 2 toward the supporting portion 14 from below are provided with a heat insulating material at a portion in contact with the stacked body 2. May be provided. If a heat insulating material is provided at a portion that comes into contact with the laminated body 2, heat transfer from the work constituting the laminated body 2 to the jig 4 can be suppressed. It is possible to suppress the temperature from becoming lower than that of other works. The pressing force of the pressing unit 15 is applied to the heat insulating material. Therefore, it is preferable that the material constituting the heat insulating material withstand such a pressing force. Examples of such a material include a carbon plate material, an electrically insulating and insulating plate such as Neoarc (registered trademark), and a calcium silicate insulating plate such as Lumiboard (registered trademark).
 また、上記実施形態では、治具4が収納部7を有しており、治具4が収納部7と共に搬送経路5を移動して加熱装置6で収納部7の外から加熱される形態となっていたが、摩擦材製造装置1は、例えば、収納部7が治具4に設けられるのではなく、収納部7が治具4と搬送経路5と加熱装置6を全て収納する形態、或いは、収納部7が加熱装置6を収納しており、治具4については出し入れ可能な形態であってもよい。 In the above embodiment, the jig 4 has the storage section 7, and the jig 4 moves along the transport path 5 together with the storage section 7 and is heated from outside the storage section 7 by the heating device 6. However, in the friction material manufacturing apparatus 1, for example, the storage unit 7 is not provided in the jig 4, but the storage unit 7 stores all of the jig 4, the transport path 5, and the heating device 6, or The storage unit 7 stores the heating device 6, and the jig 4 may be in a form that can be taken in and out.
 図9は、摩擦材製造装置1の第1変形例を示した図である。上記実施形態の摩擦材製造装置1は、例えば、図9に示されるように、収納部7が治具4と搬送経路5と加熱装置6を全て収納する形態であってもよい。本変形例では、加熱装置6が収納部7内に収納されているため、石英ガラス13が不要となる。このため、石英ガラス13の防汚を目的とするガスの供給は不要となり、収納部7内にはワークから加熱によって気化する揮散成分を排出するためのガスが供給されることになる。この場合、収納部7には治具4へのワークの取付や治具4の移動を可能にするための扉が設けられていることが好ましい。 FIG. 9 is a view showing a first modification of the friction material manufacturing apparatus 1. As shown in FIG. For example, as shown in FIG. 9, the friction material manufacturing apparatus 1 of the above embodiment may have a configuration in which the storage unit 7 stores all of the jig 4, the transport path 5, and the heating device 6. In this modification, since the heating device 6 is housed in the housing 7, the quartz glass 13 becomes unnecessary. Therefore, it is not necessary to supply a gas for the purpose of preventing the quartz glass 13 from being stained, and a gas for discharging a volatile component that is vaporized by heating from the work is supplied into the storage unit 7. In this case, it is preferable that the storage unit 7 be provided with a door for enabling the attachment of the work to the jig 4 and the movement of the jig 4.
 このような変形例の摩擦材製造装置1であれば、治具4をホース11で不活性ガスボンベ10に繋ぐ必要がない。よって、治具4の取扱いが容易となる。図10は、第1変形例に係る摩擦材製造装置を搬送経路の側方から見た構造図である。図10に示されるように、不活性ガスボンベ10は、治具4と搬送経路5と加熱装置6を全て収納する収納部7のガス導入部にホースで接続されている。そして、治具4は、収納部7内に収納されており、不活性ガスボンベ10には繋がれていない。よって、本変形例の摩擦材製造装置1では、治具4を搬送経路5沿いに移動する際、不活性ガスボンベ10に繋がるホースが治具4の移動の妨げとならない。このため、治具4を搬送経路5に沿って容易に動かすことができる。 With the friction material manufacturing apparatus 1 of such a modified example, it is not necessary to connect the jig 4 to the inert gas cylinder 10 with the hose 11. Therefore, handling of the jig 4 becomes easy. FIG. 10 is a structural view of the friction material manufacturing apparatus according to the first modified example as viewed from a side of a transport path. As shown in FIG. 10, the inert gas cylinder 10 is connected by a hose to a gas introduction unit of a storage unit 7 that stores all of the jig 4, the transport path 5, and the heating device 6. The jig 4 is housed in the housing 7 and is not connected to the inert gas cylinder 10. Therefore, in the friction material manufacturing apparatus 1 of the present modified example, when the jig 4 is moved along the transport path 5, the hose connected to the inert gas cylinder 10 does not hinder the movement of the jig 4. Therefore, the jig 4 can be easily moved along the transport path 5.
 図11は、摩擦材製造装置1の第2変形例を示した図である。上記実施形態の摩擦材製造装置1は、例えば、図11に示されるように、加熱装置6に収納部7が設けられており、加熱前の治具4と加熱後の治具4は収納部7の外側に配置される形態であってもよい。
 この場合、治具4を出し入れ可能にするための開口部、及び、開口部を開閉する扉が収納部7の両側面に設けられることになる。そして、当該扉で開口部を閉じて収納部を閉鎖することにより、不活性ガスボンベ10から供給されるガスで収納部内を満たすことが可能となる。本変形例も第1変形例と同様、加熱装置6が収納部7内に収納されているため、石英ガラス13が不要となる。
FIG. 11 is a view showing a second modification of the friction material manufacturing apparatus 1. As shown in FIG. In the friction material manufacturing apparatus 1 of the above embodiment, for example, as shown in FIG. 11, a heating unit 6 is provided with a storage unit 7, and the jig 4 before heating and the jig 4 after heating are stored in a storage unit. 7 may be arranged outside.
In this case, an opening for allowing the jig 4 to be taken in and out, and doors for opening and closing the opening are provided on both side surfaces of the storage unit 7. Then, by closing the opening with the door to close the storage section, the inside of the storage section can be filled with the gas supplied from the inert gas cylinder 10. In this modification, as in the first modification, since the heating device 6 is housed in the housing 7, the quartz glass 13 becomes unnecessary.
 図12は、摩擦材製造装置1の第3変形例を示した図である。上記実施形態の摩擦材製造装置1は、例えば、図12に示されるように、加熱前の治具4と加熱装置6を収納部7が収納し、加熱後の治具4は収納部7の外側に配置される形態であってもよい。この場合、治具4を出し入れ可能にするための開口部、及び、開口部を開閉する扉が収納部7の側面に設けられることになる。そして、当該扉で開口部を閉じて収納部を閉鎖することにより、不活性ガスボンベ10から供給されるガスで収納部内を満たすことが可能となる。本変形例も第1変形例や第2変形例と同様、加熱装置6が収納部7内に収納されているため、石英ガラス13が不要となる。 FIG. 12 is a view showing a third modification of the friction material manufacturing apparatus 1. As shown in FIG. In the friction material manufacturing apparatus 1 of the above embodiment, for example, as shown in FIG. 12, the storage unit 7 stores the jig 4 and the heating device 6 before heating, and the jig 4 after heating is stored in the storage unit 7. The form arrange | positioned outside may be sufficient. In this case, an opening for allowing the jig 4 to be taken in and out, and a door for opening and closing the opening are provided on the side surface of the storage unit 7. Then, by closing the opening with the door to close the storage, the storage can be filled with the gas supplied from the inert gas cylinder 10. In this modification, as in the first modification and the second modification, since the heating device 6 is housed in the housing 7, the quartz glass 13 becomes unnecessary.
 図13は、摩擦材製造装置1の第4変形例を示した図である。上記実施形態の摩擦材製造装置1は、例えば、図13に示されるように、加熱後の治具4と加熱装置6を収納部7が収納し、加熱前の治具4は収納部7の外側に配置される形態であってもよい。この場合、治具4を出し入れ可能にするための開口部、及び、開口部を開閉する扉が収納部7の側面に設けられることになる。そして、当該扉で開口部を閉じて収納部を閉鎖することにより、不活性ガスボンベ10から供給されるガスで収納部内を満たすことが可能となる。本変形例も第1変形例や第2変形例、第3変形例と同様、加熱装置6が収納部7内に収納されているため、石英ガラス13が不要となる。 FIG. 13 is a view showing a fourth modification of the friction material manufacturing apparatus 1. As shown in FIG. In the friction material manufacturing apparatus 1 of the above embodiment, for example, as shown in FIG. 13, the storage unit 7 stores the heated jig 4 and the heating device 6, and the jig 4 before heating is stored in the storage unit 7. The form arrange | positioned outside may be sufficient. In this case, an opening for allowing the jig 4 to be taken in and out, and a door for opening and closing the opening are provided on the side surface of the storage unit 7. Then, by closing the opening with the door to close the storage section, the inside of the storage section can be filled with the gas supplied from the inert gas cylinder 10. In this modification, as in the first, second, and third modifications, the heating device 6 is housed in the housing 7, so that the quartz glass 13 becomes unnecessary.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described with reference to the drawings, it is needless to say that the present invention is not limited to such examples. It is obvious that those skilled in the art can conceive various changes or modifications within the scope of the claims, and these naturally belong to the technical scope of the present invention. I understand. Further, each component in the above embodiment may be arbitrarily combined without departing from the spirit of the invention.
 なお、本出願は、2018年8月13日出願の日本特許出願(特願2018-152363)及び2019年7月17日出願の日本特許出願(特願2019-132171)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application filed on August 13, 2018 (Japanese Patent Application No. 2018-152363) and a Japanese patent application filed on July 17, 2019 (Japanese Patent Application No. 2019-132171). The contents are incorporated by reference into this application.
1・・摩擦材製造装置
2・・積層体
3・・加圧機構
4・・治具
5・・搬送経路
6・・加熱装置
7・・収納部
8・・搬送機構
9・・支持部材
10・・不活性ガスボンベ
11・・ホース
12・・ガス導入口
13・・石英ガラス
14・・支持部
15・・加圧部
16・・エアシリンダ
17・・ガス排気口
1. Friction material manufacturing device 2. Laminated body 3. Pressing mechanism 4. Jig 5. Transport path 6. Heating device 7. Storage unit 8. Transport mechanism 9. Support member 10.・ Inert gas cylinder 11 ・ ・ Hose 12 ・ ・ Gas inlet 13 ・ ・ Quartz glass 14 ・ ・ Support part 15 ・ ・ Pressure part 16 ・ ・ Air cylinder 17 ・ ・ Gas exhaust port

Claims (12)

  1.  摩擦材を焼結する摩擦材製造装置であって、
     前記摩擦材の予備成形品であるワークの積層体を、積層方向において挟持する治具と、
     前記治具の搬送経路を形成する搬送機構と、
     前記搬送経路の途中に設けられており、前記治具に挟持される前記積層体を、積層方向に対し側方から赤外線で加熱する加熱装置と、を備える、
     摩擦材製造装置。
    A friction material manufacturing apparatus for sintering a friction material,
    A jig for clamping a laminate of a work, which is a preform of the friction material, in a laminating direction,
    A transfer mechanism for forming a transfer path of the jig,
    A heating device that is provided in the middle of the transport path and that heats the laminate sandwiched by the jig with infrared rays from the side in the stacking direction,
    Friction material production equipment.
  2.  前記治具は、
      前記積層体を前記積層方向における一方側から支持する支持部と、
      前記積層体を前記積層方向における他方側から前記支持部の方へ加圧する加圧部と、
    を有する、
     請求項1に記載の摩擦材製造装置。
    The jig is
    A support unit that supports the laminate from one side in the lamination direction,
    A pressing unit that presses the laminate toward the support unit from the other side in the lamination direction,
    Having,
    The friction material manufacturing apparatus according to claim 1.
  3.  前記加熱装置は、赤外線を発する素子を、前記治具が前記加熱装置の位置にある状態において前記積層体の側方となる位置に有する、
     請求項1または2に記載の摩擦材製造装置。
    The heating device has an element that emits infrared light, at a position on the side of the laminate in a state where the jig is at the position of the heating device,
    The friction material manufacturing apparatus according to claim 1.
  4.  前記治具は、前記積層体を積層方向に対し側方から覆う透明な板製の窓を有しており、
    前記積層体を収納する収納部を有する、
     請求項1から3の何れか一項に記載の摩擦材製造装置。
    The jig has a transparent plate window that covers the laminate from the side in the lamination direction,
    Having a storage unit for storing the laminate,
    The friction material manufacturing apparatus according to claim 1.
  5.  前記治具は、前記収納部内に不活性ガスを導入するガス導入部を有する、
     請求項4に記載の摩擦材製造装置。
    The jig has a gas introduction unit for introducing an inert gas into the storage unit,
    The friction material manufacturing apparatus according to claim 4.
  6.  前記治具と前記搬送機構と前記加熱装置とを収納する収納部を更に備える、
     請求項1から3の何れか一項に記載の摩擦材製造装置。
    The apparatus further includes a storage unit that stores the jig, the transport mechanism, and the heating device,
    The friction material manufacturing apparatus according to claim 1.
  7.  前記加熱装置を収納し、前記治具を出し入れ可能な収納部を更に備える、
     請求項1から3の何れか一項に記載の摩擦材製造装置。
    The heating device is housed, and further includes a storage unit capable of taking the jig in and out,
    The friction material manufacturing apparatus according to claim 1.
  8.  前記収納部は、前記治具を出し入れする開口部に扉を有する、
     請求項7に記載の摩擦材製造装置。
    The storage unit has a door at an opening for taking the jig in and out,
    The friction material manufacturing apparatus according to claim 7.
  9.  前記収納部は、不活性ガスを導入するガス導入部を有する、
     請求項6から8の何れか一項に記載の摩擦材製造装置。
    The storage unit has a gas introduction unit for introducing an inert gas,
    The friction material manufacturing apparatus according to claim 6.
  10.  前記治具は、前記積層体に接する部位に断熱材を有する、
     請求項1から9の何れか一項に記載の摩擦材製造装置。
    The jig has a heat insulating material in a portion in contact with the laminate,
    The friction material manufacturing apparatus according to claim 1.
  11.  前記加熱装置は、ピーク波長が1200~1700nmの範囲内にある近赤外線ヒータである、
     請求項1から10の何れか一項に記載の摩擦材製造装置。
    The heating device is a near-infrared heater having a peak wavelength in a range of 1200 to 1700 nm.
    The friction material manufacturing apparatus according to claim 1.
  12.  摩擦材を焼結する摩擦材製造方法であって、
     前記摩擦材の予備成形品であるワークの積層体を、積層方向において治具で挟持し、
     前記治具を、搬送機構が形成する搬送経路に沿って搬送し、
     前記搬送経路の途中に設けられた加熱装置で、前記治具に挟持される前記積層体を、積層方向に対し側方から赤外線で加熱する、
     摩擦材製造方法。
    A friction material manufacturing method for sintering a friction material,
    A laminate of a work, which is a preform of the friction material, is sandwiched by a jig in a lamination direction,
    The jig is transported along a transport path formed by a transport mechanism,
    With a heating device provided in the middle of the transport path, the laminated body sandwiched by the jig is heated with infrared light from the side in the laminating direction,
    Friction material manufacturing method.
PCT/JP2019/031836 2018-08-13 2019-08-13 Friction material production device and friction material production method WO2020036176A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19850707.1A EP3838443B1 (en) 2018-08-13 2019-08-13 A friction material manufacturing apparatus and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-152363 2018-08-13
JP2018152363 2018-08-13
JP2019-132171 2019-07-17
JP2019132171A JP7311339B2 (en) 2018-08-13 2019-07-17 FRICTION MATERIAL MANUFACTURING DEVICE AND FRICTION MATERIAL MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
WO2020036176A1 true WO2020036176A1 (en) 2020-02-20

Family

ID=69525424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031836 WO2020036176A1 (en) 2018-08-13 2019-08-13 Friction material production device and friction material production method

Country Status (2)

Country Link
EP (1) EP3838443B1 (en)
WO (1) WO2020036176A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265703A (en) * 1975-11-28 1977-05-31 Mitsubishi Metal Corp Method of sintering under pressure of stack formed body
JPS6113927B2 (en) 1978-10-11 1986-04-16 Trw Inc
JPH0331689A (en) * 1989-06-28 1991-02-12 Setsuo Tate Continuous furnace
JP2016522362A (en) 2013-04-03 2016-07-28 アイティーティー・イタリア・エス.アール.エル Method and plant for carrying out heat treatment of brake elements, in particular brake pads
CN205437147U (en) 2016-01-04 2016-08-10 秦文隆 Continuous hot -pressing sintering device of brake lining piece
JP2018152363A (en) 2018-07-06 2018-09-27 パナソニックIpマネジメント株式会社 Lighting device
JP2019132171A (en) 2018-01-30 2019-08-08 株式会社神戸製鋼所 Reciprocating compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014105484B4 (en) * 2014-04-17 2017-09-07 Tmd Friction Services Gmbh Method and device for the thermal treatment of friction linings
JP6381036B2 (en) * 2015-02-03 2018-08-29 住友電工焼結合金株式会社 Warm sizing equipment and warm sizing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265703A (en) * 1975-11-28 1977-05-31 Mitsubishi Metal Corp Method of sintering under pressure of stack formed body
JPS6113927B2 (en) 1978-10-11 1986-04-16 Trw Inc
JPH0331689A (en) * 1989-06-28 1991-02-12 Setsuo Tate Continuous furnace
JP2016522362A (en) 2013-04-03 2016-07-28 アイティーティー・イタリア・エス.アール.エル Method and plant for carrying out heat treatment of brake elements, in particular brake pads
CN205437147U (en) 2016-01-04 2016-08-10 秦文隆 Continuous hot -pressing sintering device of brake lining piece
JP2019132171A (en) 2018-01-30 2019-08-08 株式会社神戸製鋼所 Reciprocating compressor
JP2018152363A (en) 2018-07-06 2018-09-27 パナソニックIpマネジメント株式会社 Lighting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3838443A4

Also Published As

Publication number Publication date
EP3838443B1 (en) 2024-05-29
EP3838443A1 (en) 2021-06-23
EP3838443A4 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
WO2014051014A1 (en) Molding device and molding method
CA2816172A1 (en) Method and installation for producing a component from sheet magnesium
WO2005075184A1 (en) Pressing/molding apparatus, mold, and pressing/molding method
JP6116366B2 (en) Mold assembly
JP2017144594A (en) Refrigeration optimization device and refrigeration optimization method
KR101735680B1 (en) a apparatus for hot press with frame Integrated
WO2020036176A1 (en) Friction material production device and friction material production method
JP7311339B2 (en) FRICTION MATERIAL MANUFACTURING DEVICE AND FRICTION MATERIAL MANUFACTURING METHOD
WO2013015129A1 (en) Thermoforming device and forming method
EP1854617A1 (en) Machining method of microstructure and machining system of microstructure
KR102626323B1 (en) Glass panel curved surface thermoforming system using glass panel curved surface thermoforming mold module
JP2002011780A (en) Pressing device system
WO2013015169A1 (en) Thermoforming apparatus and forming method
CN211939046U (en) Lifting type atmosphere sintering device
JP5771794B2 (en) Apparatus and method for thermoforming
KR102518252B1 (en) Thermoplastic composite thermoforming machine
TWI613159B (en) Airtight cavity thermal insulation layer of molded three-dimensional glass continuous forming device
JP5811339B2 (en) Apparatus and method for thermoforming
JP6549515B2 (en) Device for manufacturing molded body and method for manufacturing molded body
TW201313627A (en) Molding device and molding method for glass casings
JPH04164826A (en) Apparatus for forming glass lens and production process
KR102626321B1 (en) Glass panel curved part thermoforming system
JP2015009262A (en) Reflow device
TWM560387U (en) Supporting device of airtight continuous hot press molding device
US20150176906A1 (en) Energy-saving charge transport system in the press furnace line

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019850707

Country of ref document: EP

Effective date: 20210315