WO2020035961A1 - Underwater concrete structure manufacturing method - Google Patents

Underwater concrete structure manufacturing method Download PDF

Info

Publication number
WO2020035961A1
WO2020035961A1 PCT/JP2018/042631 JP2018042631W WO2020035961A1 WO 2020035961 A1 WO2020035961 A1 WO 2020035961A1 JP 2018042631 W JP2018042631 W JP 2018042631W WO 2020035961 A1 WO2020035961 A1 WO 2020035961A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
concrete structure
underwater
fibers
manufacturing
Prior art date
Application number
PCT/JP2018/042631
Other languages
French (fr)
Japanese (ja)
Inventor
昌樹 阿波根
博美 西薗
信男 標
広一 高江洲
米男 大城
仁 細矢
俊二 有賀
Original Assignee
株式会社Hpc沖縄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Hpc沖縄 filed Critical 株式会社Hpc沖縄
Publication of WO2020035961A1 publication Critical patent/WO2020035961A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • B28B23/04Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members the elements being stressed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/42Glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D15/00Handling building or like materials for hydraulic engineering or foundations
    • E02D15/02Handling of bulk concrete specially for foundation or hydraulic engineering purposes
    • E02D15/06Placing concrete under water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D23/00Caissons; Construction or placing of caissons
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/02Retaining or protecting walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a concrete structure to be installed in the sea, and particularly to a prestressed concrete manufactured with a concrete abutment form, and a seawater concrete structure in which seawater containing sulfate ions or sulfate ions is mixed and used as water. And a method for producing the same.
  • Wave-dissipating blocks installed on quays are widely used as underwater concrete structures. Also, artificial reefs made of concrete are installed on the sea floor.
  • Japanese Patent Application Laid-Open No. 2006-322400 discloses that, on a gravity type foundation of an offshore wind turbine, a precast truncated conical caisson manufactured in advance in a land yard or the like is transported by a ship, submerged by a crane to the sea floor, and a high height It is filled with a filling material such as a specific gravity material to form a gravity-type foundation.
  • a high tensile steel material (PC steel material) is used as a tension member for introducing prestress, and a PC steel wire or a two- or three-stranded PC steel stranded wire is used in a long-line method or Concrete is poured while being tensioned by a mold fixing method, and after curing and hardening, these PC steel wires are cut to produce prestressed concrete.
  • prestressed tendons using rods made of a fiber material reinforced in one direction with high-strength glass fiber, carbon fiber, aramid fiber or the like have been used, and are attracting attention as prestressed concrete having excellent corrosion resistance.
  • JP-A-2004-155623 discloses a technique for expressing high tensile strength and shear strength of prestressed concrete.
  • Japanese Patent Application Laid-Open No. 2002-326285 discloses a technique of a prestressed concrete tendon using a continuous fiber reinforced plastic composite material.
  • prestressed concrete was developed to overcome the biggest weakness of concrete: strong against compression but weak against tension. Prestressing is applied to prevent the occurrence of tensile stress in concrete when a load is applied, or to control tensile stress. Cracking due to tensile stress can be prevented compared to ordinary reinforced concrete. Things.
  • Japanese Patent Application Laid-Open No. 2015-20925 discloses a pouring mortar used in a prepacked concrete method or a postpacked concrete method using a concrete shell crushed to a size of 200 mm or more and 500 mm or less as coarse aggregate. Further, a method for producing concrete using seawater as mixing water for mixing a binder and fine aggregate is disclosed.
  • the purpose is to improve the initial strength by using seawater as the mixing water and to shorten the period until demolding, to secure sufficient strength, to increase production efficiency, and to contribute to the suppression of bleeding. It is.
  • JP 2006-322400 A JP 2004-155623 A JP-A-2002-326285 JP-A-2015-20925 JP 2005-281112 A
  • underwater concrete structures are heavy, they are superior to other steel structures in that they are less affected by tidal currents and waves and can be manufactured at low cost.
  • the present invention has been made in view of the above problems, does not require a large crane ship for hanging a concrete structure, can introduce mechanical prestress by a tendon, and has no problem in use in the sea.
  • An object of the present invention is to realize an undersea concrete structure in which a formwork is realized, and the formwork material is made of concrete and is used as a surface material of the structure.
  • seawater can be used as the mixing water, the strength of concrete can be improved, and the adhesive strength of the tendon can be improved.
  • the present invention provides a method for manufacturing a concrete structure by assembling a form of a concrete structure on land or on a ship, placing the assembled form under the sea, filling the form with concrete, and solidifying the form. is there.
  • the present invention provides a concrete abut form having a side wall facing an abutment of a concrete hollow structure having at least a part of an upper part or a side part opened.
  • the present invention provides a method for manufacturing an underwater concrete structure, which comprises introducing a mechanical stress due to a material, filling concrete in the formwork, and solidifying the form.
  • the hollow structure made of concrete may be any structure having a hollow structure made of concrete, such as a cube, a sphere, and a dome, and also has a hollow inside even if it has an irregular shape, Alternatively, any structure may be used as long as it has a structure in which a part of the side is open.
  • the hollow structure was a concrete form to be filled, and the facing side wall was an abutment (reaction table), and a tension member was stretched in the hollow structure, that is, in the form to apply tension. Later, concrete is filled and solidified to form a prestressed concrete structure.
  • the tension members may be arranged inside or outside the formwork.
  • the mechanical stress caused by the tension member may be any one capable of introducing mechanical tensile stress into concrete in advance using various high-strength wires as a tension member, and may be any of a pretension method or a post-tension method.
  • a prestressing introduction method may be used.
  • a second aspect of the present invention is a method for manufacturing an underwater concrete structure, wherein the hollow concrete structure is a box-shaped concrete box plate.
  • the box-shaped concrete box plate serves as a concrete formwork, and the facing side wall functions as an abutment (reaction table).
  • a box-shaped formwork becomes an abutment (reaction table)
  • a tension member is stretched in the formwork
  • concrete is filled and solidified to form a prestressed concrete structure. It is.
  • the tension members may be arranged inside or outside the formwork.
  • the shape of the box plate form may be any shape as long as it can be filled with concrete and solidified, and may be any shape such as a square, a polygon, a circle, and a sector.
  • the mechanical stress caused by the tension member may be any one capable of introducing mechanical tensile stress into concrete in advance using various high-strength wires as a tension member, and may be any of a pretension method or a post-tension method.
  • a prestressing introduction method may be used.
  • a third aspect of the present invention is a method for manufacturing an underwater concrete structure, wherein the concrete abut form is made of prestressed concrete in which mechanical stress due to a tendon is introduced.
  • a tension member is arranged inside the frame itself of the abutment form, and after the tension is applied, the solidification is performed. To form a prestressed concrete formwork.
  • a PC steel wire can be used, but by using a rust-resistant material, the cover thickness can be reduced and the concrete frame thickness can be reduced.
  • rust-resistant metals such as stainless steel, resin materials, aramid fibers, carbon fibers, glass fibers, and the like can be used.
  • An underwater concrete structure characterized in that a plurality of the concrete abutment forms are combined, a mechanical stress is introduced by a tension material, concrete is filled in the form, and the concrete is solidified. It is a method of manufacturing a product.
  • the concrete abutment form can be used in combination of two or more, and is fixed by pressure bonding by mechanical prestress by a tendon. Only the formwork at both ends of the concrete abutment formwork in which a plurality is combined may function as an abutment.
  • a plurality of the rectangular concrete abutment forms may be joined, or the fan-shaped concrete abutment forms may be joined to form a circular shape.
  • various shapes may be formed by combining a plurality of abutment frames of the amorphous concrete hollow structure.
  • the tension members may be arranged either inside or outside of each mold.
  • a fifth aspect of the present invention is a method for manufacturing an underwater concrete structure, wherein sulfate ions are mixed with mixing water for concrete to be filled in the formwork.
  • the kneading water is water for kneading binders such as cement and aggregates such as gravel and sand.
  • binders such as cement and aggregates such as gravel and sand.
  • fresh water such as tap water is used. Is used.
  • the kneading water may be kneading water used for manufacturing the concrete abutment form or kneading water used for manufacturing an undersea concrete structure manufactured using the abutment form.
  • the sulfate ion (SO4 2 ⁇ ) used in the present invention may be any as long as it becomes sulfate ion in the mixed water.
  • sodium sulfate (Na2SO4) such as a water-soluble sulfate may be used.
  • a sixth aspect of the present invention is a method for manufacturing an underwater concrete structure, wherein seawater is used as sulfate ions to be mixed with the mixing water.
  • Seawater is natural seawater collected from the sea. It is composed mainly of water and is composed of about 3.5% of salts and trace metals. Sulfate (SO4 2- ) contains about 0.2649% by mass. I have. (Content varies depending on the sea area.)
  • the inside of the concrete is alkaline, and the surface of the reinforced PC steel or the like has a thickness of about 20 to 60 micrometers.
  • iron hydroxide ⁇ -Fe2O3.nH2O, where n is a natural number
  • passive film is electrochemically stable, and steel is less likely to corrode. Has become.
  • seawater collected from the sea may be used as it is.
  • seawater from which dust and the like have been removed by a filter or the like is good, and not surface seawater but seawater of a certain depth with a small amount of dust and the like is pumped. May be used.
  • Claim 7 provides a method for manufacturing an underwater concrete structure, wherein the tendon is a rust-resistant wire.
  • the rust-resistant wire may be any wire that does not cause the concrete to burst due to expansion due to rust of the tendon after casting the concrete, such as stainless steel, aluminum alloy, titanium alloy, nickel alloy, and chromium. Rust-resistant metals such as alloys, molybdenum alloys, and tungsten alloys, and non-metallic materials such as resin materials and plant fiber materials may be used.
  • An eighth aspect of the present invention is a method for manufacturing an underwater concrete structure, wherein the tendon is a continuous fiber reinforced wire.
  • the continuous fiber reinforced wire is a linear continuous fiber reinforced material, and is a PC tendon made of a continuous fiber reinforced fiber reinforced material.
  • the continuous fiber reinforcement is a general term for a material obtained by binding carbon fiber, glass fiber, aramid fiber, vinylon fiber, or the like with an epoxy resin or the like.
  • the reinforcing fiber reinforcing material has excellent physical properties (tensile strength, elastic modulus), such as light weight, high strength, high elasticity, corrosion resistance, non-conductivity, non-magnetism, and excellent corrosion resistance and electromagnetic properties that are not found in rebars. It has.
  • linear refers to a linear material having a round shape such as a round shape or a rectangular shape, a deformed (rib, indented surface) rod, a braided rod, a stranded wire strand, a lattice shape, or the like. It means a three-dimensional assembled shape.
  • a ninth aspect is that the continuous fiber reinforced wire is a reinforced fiber wire made of one or more kinds of fibers selected from metal fibers, aramid fibers, carbon fibers, glass fibers, and poly-p-phenylenebenzobisoxazole fibers.
  • a method for producing an underwater concrete structure is a reinforced fiber wire made of one or more kinds of fibers selected from metal fibers, aramid fibers, carbon fibers, glass fibers, and poly-p-phenylenebenzobisoxazole fibers.
  • the present invention provides a method for manufacturing an underwater concrete structure, wherein the sulfate ions contained in the mixing water are contained at a ratio of 1000 to 5000 ppm per unit mass of the mixing water. It is.
  • ⁇ Sulfate ions in the kneading water may be any as long as the amount of ettringite generated at the time of cement hydration is sufficient for the expansion effect.
  • 1500 to 4000 ppm Preferably, 1500 to 4000 ppm, more preferably, about 1800 to 3000 ppm.
  • the present invention provides a method for producing an underwater concrete structure, wherein seawater used for the mixing water is 50 to 200% by weight based on the total weight of the mixing water.
  • the amount of seawater used for the mixing water is 50% by weight or less, the amount of ettringite (3CaO.Al2O3.3CaSO4.32H2O) which is an expanding material for expanding the hardened cement is small due to a small amount of sulfate ions in the seawater.
  • the expansion effect cannot be expected.
  • it is 60 to 150% by weight, more preferably 80 to 120% by weight.
  • the amount of seawater shall be converted by the weight of natural seawater before concentration.
  • a twelfth aspect of the present invention is a method for manufacturing an underwater concrete structure, wherein the sulfate ions contained in the seawater are contained at a ratio of 1500 to 3000 ppm per unit mass of the seawater.
  • Sulfate ions in natural seawater are generally about 2,000 to 2,800, and there is a slight variation when dust and the like are removed by a normal filter. It is in the range of 3000 ppm.
  • a thirteenth aspect of the present invention is a method for manufacturing an underwater concrete structure, wherein a discontinuous fiber reinforcing material is mixed into concrete at the time of placing concrete.
  • the discontinuous fiber reinforcement may be any discontinuous fiber reinforcement.
  • the fibers preferably have a diameter of 0.005 to 1.0 mm and a length of 2 to 30 mm, more preferably 2 to 30 mm, from the viewpoint of preventing material separation of these fibers in the blend and improving flexural strength and toughness after curing. It is preferable that the diameter is 0.01 to 0.5 mm and the length is 5 to 25 mm. Further, the aspect ratio (fiber length / fiber diameter) of the carbon fiber is preferably 20 to 200, and more preferably 30 to 150.
  • the amount is suitably 0.2 to 5.0%, preferably 0.5 to 3.0%, more preferably 0.8 to 2.0% by volume in the composition. If the amount is less than 0.2%, it is not expected to increase the bending strength or toughness. On the other hand, if the blending amount exceeds 5.0%, the unit water amount increases in order to secure fluidity and the like, and even if the blending amount is increased, the effect of reinforcing the fiber is not improved, so that it is not economical. It is not preferable because a so-called fiber ball is easily generated in the kneaded material.
  • discontinuous fiber reinforcing material is a reinforcing fiber material made of one or more kinds of fibers selected from metal fibers, carbon fibers, glass fibers, and resin fibers. It is a method of manufacturing a product.
  • the present invention has the following effects. 1) By using a hollow concrete structure as an abutment form, the formwork can have the function of an abutment (reaction table), and a concrete abutment form for a prestressed concrete structure can be realized. .
  • the formwork can have the function of an abutment (reaction table), realizing a concrete abutment formwork for a prestressed concrete structure. it can.
  • the shape of the abut mold can be any shape.
  • seawater As the mixing water for concrete, sulphate ions in the seawater generate ettringite which is an expansive material at the time of cement hydration. And the adhesion of concrete can be increased.
  • seawater As the mixing water, it is possible to cover, as a chemical stress, a portion that is hardly affected by mechanical prestress due to its expanding action.
  • FIG. 1 is a schematic flow chart showing a method for manufacturing an underwater concrete structure according to the present invention. It is an outline longitudinal section showing an example of a wave power generator using an abut type frame of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view which shows the Example of the wave power guidance structure for wave power generators by the abutment form using the concrete hollow structure of this invention.
  • FIG. 1 is a view showing an abut form using a box-shaped concrete box plate of the present invention.
  • a vertical frame portion 6 into which the tension member 2 in the vertical direction is inserted is provided at four corners inside the concrete box plates 1a (upper stage) and 1b (lower stage).
  • a horizontal frame portion 7 is provided on the inner side of the opposed side wall surfaces 4 and 5 into which the horizontal tension member 3 is inserted.
  • the box plates are in a two-tiered state, and the upper and lower box plates 1a and 1b are integrated under pressure by the tension of the tension member 2.
  • the crimped portion may have an uneven fitting structure.
  • An underwater concrete structure can be obtained by filling and solidifying underwater concrete or the like.
  • rust-resistant material as a tendon material and can be used as underwater concrete, using seawater kneaded and mixed with water.
  • FIG. 2 is a diagram showing a combination state of the abutment box plate formwork of the present invention.
  • the concrete box plates 1 are crimped and integrated in a state in which eight box plates 1 are connected in the horizontal direction.
  • a sheath tube 2a for inserting a tendon material in the horizontal direction is provided, and the tendon material 2 is inserted into the sheath tube 2a, tension is applied, and the sheath material is crimped and integrated. is there.
  • FIG. 3 is a schematic flow chart showing a method for manufacturing an underwater concrete structure according to the present invention.
  • This flow chart shows the case where the method for manufacturing an underwater concrete structure of the present invention is used for a gravity type substructure of an offshore wind turbine.
  • an abutment form 10 to be a caisson made of prestressed concrete is manufactured.
  • the abutment form is relatively light, it is possible to assemble the abutment form on board.
  • the abutment formwork has no problem such as corrosion in the sea and is a concrete surface material, there is no need to remove the formwork and the construction period can be shortened.
  • seawater is used as the mixing water for the concrete to be filled, there is no need to transport water to the sea.
  • FIG. 4 is a schematic longitudinal sectional view showing an embodiment of a wave power generation device using the abut mold according to the present invention.
  • This embodiment is a wave power generation device that is installed near the shore of a shore, concentrates waves, rotates a propeller by wave power, and drives a generator by the rotation to generate power.
  • the propeller 23 of the power generation device 22 is disposed on the outlet side 21 of the wave flow path of the wave power guiding structure 20 for guiding and concentrating the waves.
  • the wave power guiding structure 20 is a structure in which the center portion has a hollow or semi-cylindrical shape, and a circular wave flow path 24 is provided in the center portion in the axial direction.
  • the diameter gradually becomes smaller, the diameter becomes smaller at the central portion 35, and then becomes slightly larger after that.
  • the diameter is the same from the latter half of the propeller 23 portion of the power generator 22 to the outlet 21.
  • the wave force is concentrated, and thereafter the diameter is slightly increased, whereby the flow velocity and flow rate of the wave are adjusted, and stable power generation can be performed.
  • a wave is pushed up on the entrance side 25 of the wave power guiding structure 20 to cause a floating force.
  • an auxiliary guiding wing 26 for wave power is provided on the upper side of the entrance side 25, and a large wave
  • the waves are rushed into the guide vanes 26 and are pushed downward from a discharge port 27 provided inside the guide vanes 26.
  • the inlet side 25 of the wave power guiding structure 20 is pressed downward, and has a structure for preventing the wave power guiding structure 20 from rising.
  • the wave force guiding structure 20 is installed in the sea on the shore. However, since the sea bottom 28 is not flat but uneven, a leakage hole 30 of concrete is provided on the bottom 29 of the structure. When the structure 20 is cast, concrete leaks from the leak hole into the uneven portion of the sea floor 28 and solidifies, so that the main wave force guiding structure 20 can be reliably fixed to the sea floor.
  • FIG. 5 is a longitudinal sectional view showing an embodiment of a wave power guiding structure for a wave power generator using an abutment form using the concrete hollow structure of the present invention.
  • the wave force guiding structure 20 is an abutment form using a hollow structure made of concrete. As shown in the figure, the wave force guiding structure 20 includes a first structure 31, a second structure 32, and a third structure 33. Manufactured separately.
  • each structure is a prestressed concrete mold having a thickness of 50 mm or less and has a hollow structure.
  • the first structure 31 is a structure of the wave entrance 25 of the wave power guiding structure 20, and the wave power auxiliary guiding wing 26 is provided on an upper portion thereof.
  • (1) is an external view of the first structure 31 viewed from the wave entrance side 25.
  • the second structure 32 is a structure for narrowing the wave flow path 24 and concentrating wave power.
  • (2) is an external view of the second structure 32 viewed from the wave entrance side 25.
  • the third structure is a portion where the propeller type generator 21 is installed, and is a structure on the outlet side 21.
  • (3) is an external view of the third structure 33 viewed from the wave entrance side 25.
  • a leak hole 30 of concrete is provided in the bottom plate 29 of the first structure 31, the second structure 32, and the third structure 33 of the wave power guiding structure 20, and is provided in the abut form.
  • the concrete When the concrete is filled, the concrete leaks from the leak hole 30, and the uneven portion on the seabed is filled with concrete, and the seabed 40 and the bottom of the wave force guiding structure 20 are fixed.
  • (4) is a view of the vertical cross section taken along the line AA in (1) viewed from the right side. The arrangement of the tension members 34 is shown.
  • the first structure 31, the second structure 32, and the third structure 33 of the wave power guiding structure 20 are such that the tendon 34 is in the longitudinal direction of the bottom. And two on the left and right sides, and after tension is previously introduced into the tendon material, concrete is filled and solidified to form a wave force guiding structure 20 made of prestressed concrete.
  • a post tube may be introduced by arranging a sheath tube for the tendon material to tension the tendon material.
  • the first structure 31 and the third structure 33 function as an abutment (reaction table), so that the wave-force guiding structure 20 made of prestressed concrete can be realized.
  • a ship equipped with a general crane can be used, and an abutment form can be assembled on the ship, installed under the sea, filled with concrete and fixed.
  • seawater is used as concrete for mixing water
  • ettringite which is an expansive material during hydration of cement
  • its expansion action can increase the adhesive force between the tendon and concrete during the introduction of mechanical prestress.
  • the strength of the prestressed concrete can be increased.
  • the hollow formwork is made of concrete, it can be used as it is as a surface material of the structure after solidification, so there is no rust problem unlike steel formwork, and no work to remove after solidification is required.
  • a concrete mold it can be easily formed into an arbitrary shape such as a curved surface or an uneven surface, and various designs that were impossible with a conventional mold can be made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Architecture (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Revetment (AREA)
  • Moulds, Cores, Or Mandrels (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

[Problem] The present invention addresses the problems of enabling production of a formwork such that a large crane vessel for suspending a concrete structure is not necessary, mechanical pre-stress can be introduced via tendons, and use underwater is possible without any problems, and enabling the production of an underwater concrete structure such that work to remove the formwork is not required because the formwork is made of concrete and serves as the surface material of the structure. [Solution] This underwater concrete structure manufacturing method is characterized by using tendons to introduce mechanical stress into a concrete abutment formwork in which side wall parts of a concrete hollow structure that face each other act as abutments, at least part of the hollow concrete structure being open at an upper part or a side part; filling the interior of the formwork with concrete; and solidifying the concrete.

Description

海中コンクリート構造物の製造方法Method of manufacturing underwater concrete structures
 本発明は、海中に設置するためのコンクリート構造物であり、特にコンクリート製のアバット型枠でプレストレストコンクリートを製造し、硫酸イオン、あるいは硫酸イオンを含む海水を練り混ぜ水に使用した海中コンクリート構造物の製造方法に関する。 The present invention relates to a concrete structure to be installed in the sea, and particularly to a prestressed concrete manufactured with a concrete abutment form, and a seawater concrete structure in which seawater containing sulfate ions or sulfate ions is mixed and used as water. And a method for producing the same.
 海中でのコンクリート構造物としては、岸壁に設置される消波ブロックが広く用いられている。また、コンクリートによる人口漁礁なども海底に設置されている。 波 Wave-dissipating blocks installed on quays are widely used as underwater concrete structures. Also, artificial reefs made of concrete are installed on the sea floor.
 近年、海洋発電が注目され、海岸より洋上に5kmから10km程度で水深20m~50m程度で比較的平坦な海域に洋上風力発電装置用の重力式基礎構造物や潮力発電用基礎構造物などが沈設されている。 In recent years, marine power generation has been attracting attention, and gravitational foundation structures for offshore wind turbines and tidal power generation structures have been installed in relatively flat waters at a depth of about 5 to 10 km and a depth of about 20 to 50 m above the coast. Has been sunk.
 特開2006-322400公報では、洋上風力発電装置の重力式基礎において、陸上ヤード等で予め製作されるプレキャストの円錐台形状のケーソンを船で搬送し、クレーンで海底に沈め、ケーソン内には高比重材料などの中詰材を充填し、重力式基礎とするものである。 Japanese Patent Application Laid-Open No. 2006-322400 discloses that, on a gravity type foundation of an offshore wind turbine, a precast truncated conical caisson manufactured in advance in a land yard or the like is transported by a ship, submerged by a crane to the sea floor, and a high height It is filled with a filling material such as a specific gravity material to form a gravity-type foundation.
 また、従来より、機械的特性(圧縮強度、曲げ強度等)に優れるセメント系材料にプレストレスを導入してなるコンクリートの開発が行なわれている。 コ ン ク リ ー ト Conventionally, concrete has been developed by introducing prestress into a cementitious material having excellent mechanical properties (compression strength, bending strength, etc.).
 従来のプレストレストコンクリートにおいて、プレテンション方式の場合は、プレストレスを導入する緊張材として高張力鋼材(PC鋼材)を使用し、PC鋼線や2~3本撚りPC鋼撚り線をロングライン方式または型枠定着方式によって緊張しながらコンクリートを打設し、養生硬化後にこれらのPC鋼線を切断してプレストレストコンクリートを製造している。 In the conventional prestressed concrete, in the case of the pretension method, a high tensile steel material (PC steel material) is used as a tension member for introducing prestress, and a PC steel wire or a two- or three-stranded PC steel stranded wire is used in a long-line method or Concrete is poured while being tensioned by a mold fixing method, and after curing and hardening, these PC steel wires are cut to produce prestressed concrete.
 近年、高強度を有するガラス繊維、炭素繊維、アラミド繊維などにより一方向に強化した繊維素材によるロッドを利用したプレストレスト緊張材が使用され、防蝕性に勝れたプレストレストコンクリートとして注目されている。 In recent years, prestressed tendons using rods made of a fiber material reinforced in one direction with high-strength glass fiber, carbon fiber, aramid fiber or the like have been used, and are attracting attention as prestressed concrete having excellent corrosion resistance.
 プレストレストコンクリートの高い引張強度やせん断強度を発現する技術として特開2004-155623号が開示されている。 JP-A-2004-155623 discloses a technique for expressing high tensile strength and shear strength of prestressed concrete.
 連続繊維強化プラスチック複合材によるプレストレストコンクリート緊張材の技術として、特開2002-326285号が開示されている。 Japanese Patent Application Laid-Open No. 2002-326285 discloses a technique of a prestressed concrete tendon using a continuous fiber reinforced plastic composite material.
 このように、プレストレストコンクリートは、コンクリートの最大の弱点である、圧縮には強いが引張には弱いという問題を克服する目的で開発されたものであり、荷重が作用する前にコンクリート部材に圧縮力がかかった状態(プレストレス)とし、荷重を受けた時にコンクリートに引張応力が発生しないようにする、もしくは引張応力を制御するもので、通常の鉄筋コンクリートに比べ、引張応力によるひび割れを防ぐことができるものである。 Thus, prestressed concrete was developed to overcome the biggest weakness of concrete: strong against compression but weak against tension. Prestressing is applied to prevent the occurrence of tensile stress in concrete when a load is applied, or to control tensile stress. Cracking due to tensile stress can be prevented compared to ordinary reinforced concrete. Things.
 また、近年、東北の被災地復旧工事等で、建設資材が足りないため、海水を練り混ぜ水に用いたコンクリートが開発されている。 近年 In recent years, concrete has been developed using seawater mixed with water due to a lack of construction materials for restoration work in the stricken area of Tohoku.
 例えば、特開2015-20925号公報では、200mm以上500mm以下の大きさに破砕されたコンクリート殻を粗骨材とするプレパックドコンクリート工法、又は、ポストパックドコンクリート工法に使用される注入用モルタルであって、結合材及び細骨材を練り混ぜる練り混ぜ水として海水を用いるコンクリートの製造方法が開示されている。 For example, Japanese Patent Application Laid-Open No. 2015-20925 discloses a pouring mortar used in a prepacked concrete method or a postpacked concrete method using a concrete shell crushed to a size of 200 mm or more and 500 mm or less as coarse aggregate. Further, a method for producing concrete using seawater as mixing water for mixing a binder and fine aggregate is disclosed.
 練り混ぜ水に海水を用いることで初期強度を向上させ、脱型までの期間の短縮を目的とするものであり、十分な強度を確保させ、製造効率が高く、ブリーディング抑制にも寄与するというものである。 The purpose is to improve the initial strength by using seawater as the mixing water and to shorten the period until demolding, to secure sufficient strength, to increase production efficiency, and to contribute to the suppression of bleeding. It is.
 また、特開2005-281112号公報では、鉄筋により構成される鉄筋構造体をコンクリート型枠内に配置した後に、アルミナセメントと海水と細骨材と粗骨材をを練り混ぜて流動体状のフレッシュコンクリートを生成し、このフレッシュコンクリートを型枠内に充填して鉄筋構造体を埋設して硬化させた海水配合型アルミナセメントコンクリートが開示されている。 Further, in Japanese Patent Application Laid-Open No. 2005-281112, after a reinforcing steel structure constituted by reinforcing steel is placed in a concrete form, alumina cement, seawater, fine aggregate and coarse aggregate are mixed and mixed to form a fluid. There is disclosed a seawater-mixed type alumina cement concrete in which fresh concrete is produced, the fresh concrete is filled in a formwork, and a reinforcing steel structure is buried and hardened.
 鉄筋の腐食防止効果があり、プレストレストコンクリートのPC鋼材の腐食防止にも適応可能とされている。 が It has the effect of preventing corrosion of reinforcing steel, and can be applied to the prevention of corrosion of PC steel in prestressed concrete.
 このように、従来、海水は塩分を含むため、鉄筋を錆びさせてしまうため、コンクリートの製造において種々の規制がされていたものであるが、使用方法によっては、初期強度の向上や鉄筋の腐食防止などに活用されるようになってきている。
As described above, conventionally, since seawater contains salt, it rusts the reinforcing bars, and thus various regulations have been made in the production of concrete.However, depending on the method of use, improvement of the initial strength and corrosion of the reinforcing bars are required. It is being used for prevention.
特開2006-322400公報JP 2006-322400 A 特開2004-155623号公報JP 2004-155623 A 特開2002-326285号公報JP-A-2002-326285 特開2015-20925号公報JP-A-2015-20925 特開2005-281112号公報JP 2005-281112 A
 海中でのコンクリート構造物は、重量物であることから他の鋼製構造物などと比較して、潮流や波の影響が少なく、安価に製造できる点で優れている。 コ ン ク リ ー ト Since underwater concrete structures are heavy, they are superior to other steel structures in that they are less affected by tidal currents and waves and can be manufactured at low cost.
 しかしながら、従来、海中にコンクリート構造物を設置するためには、陸上でコンクリート構造物を製造し、大型クレーンを有する船で所定の場所まで搬送し、クレーンで海中に沈める必要がある。 However, conventionally, in order to install a concrete structure in the sea, it is necessary to manufacture the concrete structure on land, transport it to a predetermined place by a ship having a large crane, and sink it in the sea with a crane.
 あるいは、所定の場所までコンクリートの原材料を運び、船上でコンクリート構造物を製造して、クレーンで沈めるなどの方法がある。 Alternatively, there is a method of transporting concrete raw materials to a predetermined place, manufacturing a concrete structure on a ship, and submerging with a crane.
 また、船上でコンクリート構造物の型枠を組み立て、該型枠を海中に沈めて設置し、コンクリートを充填し、固化させて製造することも考えられるが、陸上で広く使用されている型枠材である木材、樹脂などは、浮力の問題があり使用できない。鋼製型枠もあるが、海中では腐食の問題がある。さらに、固化後には型枠を撤去する必要があるなど多くの問題があり、実用化されていないのが現状である。 It is also conceivable to assemble a formwork of a concrete structure on a ship, place the formwork in the sea, fill it with concrete, and solidify it, but the formwork material widely used on land is also considered. Wood and resin cannot be used due to the problem of buoyancy. There are steel forms, but there is a problem of corrosion in the sea. Furthermore, after solidification, there are many problems such as the necessity of removing the formwork, and at present it has not been put to practical use.
 本発明は、上記の問題に鑑みてなされたものであり、コンクリート構造物をつりさげるような大型クレーン船を必要とせず、緊張材によるメカニカルプレストレスを導入でき、海中での使用に問題のない型枠を実現し、型枠材はコンクリート製であり、構造物の表面材となるので、型枠の撤去作業も不要となる海中コンクリート構造物を実現することを課題とするものである。 The present invention has been made in view of the above problems, does not require a large crane ship for hanging a concrete structure, can introduce mechanical prestress by a tendon, and has no problem in use in the sea. An object of the present invention is to realize an undersea concrete structure in which a formwork is realized, and the formwork material is made of concrete and is used as a surface material of the structure.
 また、練り混ぜ水に海水を使用することができるので、コンクリートの強度を向上させ、緊張材の付着力を向上させることができる。 海 In addition, since seawater can be used as the mixing water, the strength of concrete can be improved, and the adhesive strength of the tendon can be improved.
 陸上又は船上で、コンクリート構造物の型枠を組み立て、組み立てた型枠を海中に沈めて設置し、該型枠にコンクリートを充填し、固化させてコンクリート構造物を製造する方法を提供するものである。
The present invention provides a method for manufacturing a concrete structure by assembling a form of a concrete structure on land or on a ship, placing the assembled form under the sea, filling the form with concrete, and solidifying the form. is there.
 本発明は諸課題を解決するために、請求項1は、上部又は側部の少なくとも一部が開口されたコンクリート製中空構造体の対面する側壁部をアバットとするコンクリート製アバット型枠に、緊張材による機械的ストレスを導入し、該型枠内にコンクリートを充填し、固化させて製造することを特徴とする海中コンクリート構造物の製造方法とするものである。 SUMMARY OF THE INVENTION In order to solve the problems, the present invention provides a concrete abut form having a side wall facing an abutment of a concrete hollow structure having at least a part of an upper part or a side part opened. The present invention provides a method for manufacturing an underwater concrete structure, which comprises introducing a mechanical stress due to a material, filling concrete in the formwork, and solidifying the form.
 該コンクリート製中空構造体は、コンクリート製で形成された中空構造の構造体であればいずれでも良く、立方体や球体、ドーム型などの他、非定型形状であっても内部に空洞があり、上部又は側部の一部が開口している構造体であればいずれでも良い。 The hollow structure made of concrete may be any structure having a hollow structure made of concrete, such as a cube, a sphere, and a dome, and also has a hollow inside even if it has an irregular shape, Alternatively, any structure may be used as long as it has a structure in which a part of the side is open.
 そして、その中空構造体は充填するコンクリートの型枠であるとともに、対面する側壁部をアバット(反力台)とし、その中空構造体内すなわち、型枠内に緊張材を張り、緊張力を与えた後に、コンクリートを充填して固化し、プレストレストコンクリート構造物とするものである。 The hollow structure was a concrete form to be filled, and the facing side wall was an abutment (reaction table), and a tension member was stretched in the hollow structure, that is, in the form to apply tension. Later, concrete is filled and solidified to form a prestressed concrete structure.
 また、緊張材の配置は、型枠の内側あるいは外側のいずれでも良い。 配置 The tension members may be arranged inside or outside the formwork.
 該緊張材による機械的ストレスとは、各種の高強度線材を緊張材としてコンクリートにあらかじめ機械的な引張応力を導入できるものであればいずれでもよく、プレテンション方式あるいはポストテンション方式のいずれの方式によるプレストレスの導入方式でも良い。 The mechanical stress caused by the tension member may be any one capable of introducing mechanical tensile stress into concrete in advance using various high-strength wires as a tension member, and may be any of a pretension method or a post-tension method. A prestressing introduction method may be used.
 請求項2は、前記のコンクリート製中空構造体が箱状のコンクリート製箱板であることを特徴とする海中コンクリート構造物の製造方法とするものである。 A second aspect of the present invention is a method for manufacturing an underwater concrete structure, wherein the hollow concrete structure is a box-shaped concrete box plate.
 該箱状のコンクリート箱板がコンクリートの型枠となるとともに、対面する側壁部がアバット(反力台)として機能するものである。 と と も に The box-shaped concrete box plate serves as a concrete formwork, and the facing side wall functions as an abutment (reaction table).
 すなわち、箱板形状である型枠がアバット(反力台)となり、この型枠内に緊張材を張り、緊張力を与えた後に、コンクリートを充填して固化し、プレストレストコンクリート構造物とするものである。 That is, a box-shaped formwork becomes an abutment (reaction table), a tension member is stretched in the formwork, and after applying tension, concrete is filled and solidified to form a prestressed concrete structure. It is.
 また、緊張材の配置は、型枠の内側あるいは外側のいずれでも良い。 配置 The tension members may be arranged inside or outside the formwork.
 該箱板型枠の形状は、コンクリートを充填して固化できるものであればいずれの形状のものでも良く、方形、多角形、円形、扇形などいずれの形状でも良い。 箱 The shape of the box plate form may be any shape as long as it can be filled with concrete and solidified, and may be any shape such as a square, a polygon, a circle, and a sector.
 該緊張材による機械的ストレスとは、各種の高強度線材を緊張材としてコンクリートにあらかじめ機械的な引張応力を導入できるものであればいずれでもよく、プレテンション方式あるいはポストテンション方式のいずれの方式によるプレストレスの導入方式でも良い。 The mechanical stress caused by the tension member may be any one capable of introducing mechanical tensile stress into concrete in advance using various high-strength wires as a tension member, and may be any of a pretension method or a post-tension method. A prestressing introduction method may be used.
 請求項3は、前記のコンクリート製アバット型枠が緊張材による機械的ストレスが導入されたプレストレスコンクリート製であることを特徴とする海中コンクリート構造物の製造方法である。 A third aspect of the present invention is a method for manufacturing an underwater concrete structure, wherein the concrete abut form is made of prestressed concrete in which mechanical stress due to a tendon is introduced.
 前記のコンクリート製中空構造体及び箱状のコンクリート製箱板によるコンクリート製アバット型枠の製造時において、該アバット型枠の枠自体の内部に緊張材が配置され、緊張力を与えた後、固化してプレストレストコンクリート製の型枠としたものである。 During the production of the concrete abutment form by the concrete hollow structure and the box-like concrete box plate, a tension member is arranged inside the frame itself of the abutment form, and after the tension is applied, the solidification is performed. To form a prestressed concrete formwork.
 緊張材は、PC鋼線材を用いることができるが、難錆性材料を用いることにより、かぶり厚を小さくでき、コンクリート製枠厚を薄くすることが可能となる。例えば、ステンレス鋼などの難錆性金属や、樹脂材、アラミド繊維、炭素繊維、ガラス繊維などが使用できる。 (4) As the tendon, a PC steel wire can be used, but by using a rust-resistant material, the cover thickness can be reduced and the concrete frame thickness can be reduced. For example, rust-resistant metals such as stainless steel, resin materials, aramid fibers, carbon fibers, glass fibers, and the like can be used.
 請求項4は、前記のコンクリート製アバット型枠を複数台組み合わせ、緊張材による機械的ストレスを導入し、該型枠内にコンクリートを充填し、固化させて製造することを特徴とする海中コンクリート構造物の製造方法とするものである。 An underwater concrete structure according to claim 4, characterized in that a plurality of the concrete abutment forms are combined, a mechanical stress is introduced by a tension material, concrete is filled in the form, and the concrete is solidified. It is a method of manufacturing a product.
 該コンクリート製アバット型枠は、任意に複数組み合わせて使用でき、緊張材による機械的プレストレスにより、圧着固定させるものである。複数組み合わせたコンクリート製アバット型枠の両端の型枠のみをアバットとして機能させるようにしてもよい。 コ ン ク リ ー ト The concrete abutment form can be used in combination of two or more, and is fixed by pressure bonding by mechanical prestress by a tendon. Only the formwork at both ends of the concrete abutment formwork in which a plurality is combined may function as an abutment.
 方形の前記コンクリート製アバット型枠を複数接合しても良く、扇型の前記コンクリート製アバット型枠を接合して円形に構成しても良い。また、不定形の前記コンクリート製中空構造体によるアバット型枠を複数組み合わせて種々の形状を形成するようにしても良い。 A plurality of the rectangular concrete abutment forms may be joined, or the fan-shaped concrete abutment forms may be joined to form a circular shape. In addition, various shapes may be formed by combining a plurality of abutment frames of the amorphous concrete hollow structure.
 また、緊張材の配置は、各型枠の内側あるいは外側のいずれでも良い。 配置 The tension members may be arranged either inside or outside of each mold.
 請求項5は、前記の型枠内に充填するコンクリートの練り混ぜ水に硫酸イオンを混合することを特徴とする海中コンクリート構造物の製造方法とするものである。 A fifth aspect of the present invention is a method for manufacturing an underwater concrete structure, wherein sulfate ions are mixed with mixing water for concrete to be filled in the formwork.
 該練り混ぜ水とは、セメントなどの結合材、及び砂利や砂などの骨材を練り混ぜるための水であり、従来、上水道水などの真水が使用されているが、真水に硫酸イオンを混合して使用するものである。 The kneading water is water for kneading binders such as cement and aggregates such as gravel and sand.Conventionally, fresh water such as tap water is used. Is used.
 該練り混ぜ水は、前記のコンクリート製アバット型枠の製造に用いる練り混ぜ水、或いは前記アバット型枠で製造する海中コンクリート構造物の製造に用いる練り混ぜ水のいずれでも良い。 The kneading water may be kneading water used for manufacturing the concrete abutment form or kneading water used for manufacturing an undersea concrete structure manufactured using the abutment form.
 本発明に使用する硫酸イオン(SO42-)は、練り混ぜ水中で硫酸イオンとなるものであればいずれでも良い。例えば、水溶性の硫酸塩など、硫酸ナトリウム(Na2SO4)などでも良い。 The sulfate ion (SO4 2− ) used in the present invention may be any as long as it becomes sulfate ion in the mixed water. For example, sodium sulfate (Na2SO4) such as a water-soluble sulfate may be used.
 請求項6は、前記の練り混ぜ水に混合する硫酸イオンとして海水を用いることを特徴とする海中コンクリート構造物の製造方法とするものである。 A sixth aspect of the present invention is a method for manufacturing an underwater concrete structure, wherein seawater is used as sulfate ions to be mixed with the mixing water.
 海水は、海から採取される自然海水であり、水を主成分とし、3.5%程度の塩、微量金属から構成されており、硫酸イオン(SO42-)は、0.2649質量%程度が含まれている。(海域により含有量は異なる。) Seawater is natural seawater collected from the sea. It is composed mainly of water and is composed of about 3.5% of salts and trace metals. Sulfate (SO4 2- ) contains about 0.2649% by mass. I have. (Content varies depending on the sea area.)
 一般に、コンクリートの材料としてポルトランドセメントを用いた鉄筋コンクリートやPC鋼材を用いたプレストレストコンクリートの場合、コンクリート内部はアルカリ性となっており、鉄筋PC鋼材などの表面には、20~60マイクロメートル程度の厚さの鉄の水酸化物(γ-Fe2O3・nH2O、nは自然数)の薄い皮膜(以下、「不動態皮膜」という。)が形成されているため電気化学的に安定であり、鋼材は腐食しにくくなっている。 Generally, in the case of reinforced concrete using Portland cement or prestressed concrete using PC steel as the concrete material, the inside of the concrete is alkaline, and the surface of the reinforced PC steel or the like has a thickness of about 20 to 60 micrometers. Of iron hydroxide (γ-Fe2O3.nH2O, where n is a natural number) (hereinafter referred to as "passive film") is electrochemically stable, and steel is less likely to corrode. Has become.
 しかし、コンクリート構造物は塩化物イオン(Cl-)がコンクリート内部に浸透すると、これに伴い鋼材表面の不働態被膜が破壊され、鋼材の腐食を生じるという問題があるため、練り混ぜ水に海水を使用することは一般的にはほとんどなかった。 However, the concrete structure is chloride ion (Cl -) When penetrating into the concrete, are destroyed passive film of the steel surface with this, because there is a problem that results in corrosion of the steel, the seawater Mixing water It was generally rarely used.
 該海水は、海から採取した海水をそのまま使用しても良く、好ましくは、フィルターなどでごみなどを除去した海水が良く、表層海水ではなく、ごみなどの少ない一定程度の深さの海水をくみ上げて使用しても良い。 As the seawater, seawater collected from the sea may be used as it is.Preferably, seawater from which dust and the like have been removed by a filter or the like is good, and not surface seawater but seawater of a certain depth with a small amount of dust and the like is pumped. May be used.
 請求項7は、前記の緊張材は、難錆性線材であることを特徴とする海中コンクリート構造物の製造方法とするものである。 7 Claim 7 provides a method for manufacturing an underwater concrete structure, wherein the tendon is a rust-resistant wire.
 該難錆性線材は、コンクリート打設後において、緊張材の錆びによる膨張によってコンクリートが破裂する恐れのない線材であればいずれでも良く、例えば、ステンレス鋼、アルミニウム合金、チタン合金、ニッケル合金、クロム合金、モリブデン合金、タングステン合金などの難錆性金属や、樹脂材、植物繊維材などの非金属材を用いても良い。 The rust-resistant wire may be any wire that does not cause the concrete to burst due to expansion due to rust of the tendon after casting the concrete, such as stainless steel, aluminum alloy, titanium alloy, nickel alloy, and chromium. Rust-resistant metals such as alloys, molybdenum alloys, and tungsten alloys, and non-metallic materials such as resin materials and plant fiber materials may be used.
 請求項8は、前記の緊張材は、連続繊維補強線材であることを特徴とする海中コンクリート構造物の製造方法とするものである。 An eighth aspect of the present invention is a method for manufacturing an underwater concrete structure, wherein the tendon is a continuous fiber reinforced wire.
 該連続繊維補強線材とは、線状の連続繊維補強材であり、連続的に線状に成形された強化繊維補強材によるPC緊張材である。連続繊維補強材は、炭素繊維、ガラス繊維、アラミド繊維、ビニロン繊維などをエポキシ樹脂などでバインドしたものの総称である。 連 続 The continuous fiber reinforced wire is a linear continuous fiber reinforced material, and is a PC tendon made of a continuous fiber reinforced fiber reinforced material. The continuous fiber reinforcement is a general term for a material obtained by binding carbon fiber, glass fiber, aramid fiber, vinylon fiber, or the like with an epoxy resin or the like.
 該強化繊維補強材は、軽量、高強度、高弾性、耐食性、非電導、非磁性など、鉄筋よりも優れた物性(引張強度、弾性率)と鉄筋にはない優れた耐食、電磁気的特性とを有しているものである。 The reinforcing fiber reinforcing material has excellent physical properties (tensile strength, elastic modulus), such as light weight, high strength, high elasticity, corrosion resistance, non-conductivity, non-magnetism, and excellent corrosion resistance and electromagnetic properties that are not found in rebars. It has.
 線状とは、断面形状が丸形、矩形など線材、異形(リブ、インデンテッド表面)ロッド、組紐状ロッド、撚り線状ストランド、格子状等、概して線形形状またはその形状単位からの2次元または3次元組立て形状を意味するものである。 The term “linear” refers to a linear material having a round shape such as a round shape or a rectangular shape, a deformed (rib, indented surface) rod, a braided rod, a stranded wire strand, a lattice shape, or the like. It means a three-dimensional assembled shape.
 請求項9は、前記の連続繊維補強線材は、金属繊維、アラミド繊維、炭素繊維、ガラス繊維、ポリ-p-フェニレンベンゾビスオキサゾール繊維から選ばれた1種又は2種以上の繊維による強化繊維線材であることを特徴とする海中コンクリート構造物の製造方法とするものである。 A ninth aspect is that the continuous fiber reinforced wire is a reinforced fiber wire made of one or more kinds of fibers selected from metal fibers, aramid fibers, carbon fibers, glass fibers, and poly-p-phenylenebenzobisoxazole fibers. A method for producing an underwater concrete structure.
 請求項10は、前記の練り混ぜ水に含まれる硫酸イオンは、練り混ぜ水の単位質量当たり、1000~5000ppmの比率で含有されていることを特徴とする海中コンクリート構造物の製造方法とするものである。 In a tenth aspect, the present invention provides a method for manufacturing an underwater concrete structure, wherein the sulfate ions contained in the mixing water are contained at a ratio of 1000 to 5000 ppm per unit mass of the mixing water. It is.
 該練り混ぜ水中の硫酸イオンは、セメント水和時に生成されるエトリンガイトの量が膨張効果に十分な生成量となるものであれば良い。 硫酸 Sulfate ions in the kneading water may be any as long as the amount of ettringite generated at the time of cement hydration is sufficient for the expansion effect.
 練り混ぜ水中の硫酸イオンの比率が1000ppm以下では、エトリンガイトの生成が不十分であり好ましくない。5000ppm以上では、エトリンガイトの生成量が多くなりすぎるため、膨張効果が過剰となり、ひび割れの要因となるため好ましくない。 で は If the proportion of sulfate ions in the mixing water is 1000 ppm or less, the production of ettringite is insufficient, which is not preferable. If the content is 5000 ppm or more, the amount of ettringite produced is too large, and the expansion effect becomes excessive, which is not preferable because it causes cracks.
 好ましくは、1500~4000ppm、さらに好ましくは、1800~3000ppm程度が良い。 Preferably, 1500 to 4000 ppm, more preferably, about 1800 to 3000 ppm.
 請求項11は、前記の練り混ぜ水に用いる海水は、練り混ぜ水全重量に対して、50~200重量%であることを特徴とする海中コンクリート構造物の製造方法とするものである。 The present invention provides a method for producing an underwater concrete structure, wherein seawater used for the mixing water is 50 to 200% by weight based on the total weight of the mixing water.
 該練り混ぜ水に用いる海水の量は、50重量%以下では、海水中の硫酸イオンが少なく、セメント硬化体を膨張させる膨張材となるエトリンガイト(3CaO・Al2O3・3CaSO4・32H2O)の生成量が少なく、膨張効果が期待できない。好ましくは、60~150重量%が良く、さらに好ましくは、80~120重量%が良い。 When the amount of seawater used for the mixing water is 50% by weight or less, the amount of ettringite (3CaO.Al2O3.3CaSO4.32H2O) which is an expanding material for expanding the hardened cement is small due to a small amount of sulfate ions in the seawater. The expansion effect cannot be expected. Preferably, it is 60 to 150% by weight, more preferably 80 to 120% by weight.
 海水を濃縮した濃縮海水を使用する場合の海水の量は、濃縮する前の自然海水の重量で換算するものとする。 量 When using concentrated seawater that is concentrated seawater, the amount of seawater shall be converted by the weight of natural seawater before concentration.
 請求項12は、前記の海水に含まれる硫酸イオンは、海水の単位質量当たり、1500~3000ppmの比率で含有されていることを特徴とする海中コンクリート構造物の製造方法とするものである。 A twelfth aspect of the present invention is a method for manufacturing an underwater concrete structure, wherein the sulfate ions contained in the seawater are contained at a ratio of 1500 to 3000 ppm per unit mass of the seawater.
 自然海水中の硫酸イオンは、概ね2000~2800程度とされており、通常のフィルターにより、ごみ等を除去した場合には、若干の変動があるが、どこの海水を使用しても、1500~3000ppmの範囲内となる。 Sulfate ions in natural seawater are generally about 2,000 to 2,800, and there is a slight variation when dust and the like are removed by a normal filter. It is in the range of 3000 ppm.
 請求項13は、コンクリート打設時において、コンクリートに不連続繊維補強材を混入したことを特徴とする海中コンクリート構造物の製造方法とするものである。 A thirteenth aspect of the present invention is a method for manufacturing an underwater concrete structure, wherein a discontinuous fiber reinforcing material is mixed into concrete at the time of placing concrete.
 該不連続繊維補強材は、不連続状態の繊維補強材であればいずれでも良い。 The discontinuous fiber reinforcement may be any discontinuous fiber reinforcement.
 繊維の寸法は、配合物中におけるこれら繊維の材料分離の防止や硬化後の曲げ強度や靭性の向上の点から、直径0.005~1.0mm、長さ2~30mmが好ましく、さらに好ましくは、直径0.01~0.5mm、長さ5~25mmが良い。また、炭素繊維のアスペクト比(繊維長/繊維直径)は20~200が好ましく、30~150がより好ましい。 The fibers preferably have a diameter of 0.005 to 1.0 mm and a length of 2 to 30 mm, more preferably 2 to 30 mm, from the viewpoint of preventing material separation of these fibers in the blend and improving flexural strength and toughness after curing. It is preferable that the diameter is 0.01 to 0.5 mm and the length is 5 to 25 mm. Further, the aspect ratio (fiber length / fiber diameter) of the carbon fiber is preferably 20 to 200, and more preferably 30 to 150.
 配合量は、配合物中の体積百分率で、0.2~5.0%が適当であり、0.5~3.0%が好ましく、0.8~2.0%がより好ましい。この配合量が0.2%未満では曲げ強度や靭性を高めることは期待できない。一方、この配合量が5.0%を超えると、流動性等を確保するために単位水量が増大するうえ、配合量を増やしても繊維の増強効果が向上しないため、経済的でなく、さらに混練物中にいわゆるファイバーボールを生じ易くなるので、好ましくない。 (4) The amount is suitably 0.2 to 5.0%, preferably 0.5 to 3.0%, more preferably 0.8 to 2.0% by volume in the composition. If the amount is less than 0.2%, it is not expected to increase the bending strength or toughness. On the other hand, if the blending amount exceeds 5.0%, the unit water amount increases in order to secure fluidity and the like, and even if the blending amount is increased, the effect of reinforcing the fiber is not improved, so that it is not economical. It is not preferable because a so-called fiber ball is easily generated in the kneaded material.
 請求項14は、該不連続繊維補強材は、金属繊維、炭素繊維、ガラス繊維、樹脂繊維から選ばれた1種又は2種以上の繊維による強化繊維材であることを特徴とする海中コンクリート構造物の製造方法とするものである。
14. The underwater concrete structure according to claim 14, wherein the discontinuous fiber reinforcing material is a reinforcing fiber material made of one or more kinds of fibers selected from metal fibers, carbon fibers, glass fibers, and resin fibers. It is a method of manufacturing a product.
 本発明は以下の効果を奏する。
1)コンクリート製中空構造体をアバット型枠とすることにより、型枠にアバット(反力台)の機能をもたせることができ、プレストレストコンクリート製構造物のためのコンクリート製のアバット型枠を実現できる。
The present invention has the following effects.
1) By using a hollow concrete structure as an abutment form, the formwork can have the function of an abutment (reaction table), and a concrete abutment form for a prestressed concrete structure can be realized. .
2)箱型のコンクリート箱板をアバット型枠とすることにより、型枠にアバット(反力台)の機能をもたせることができ、プレストレストコンクリート製構造物のためのコンクリート製のアバット型枠を実現できる。 2) By using a box-type concrete box plate as an abutment form, the formwork can have the function of an abutment (reaction table), realizing a concrete abutment formwork for a prestressed concrete structure. it can.
3)コンクリート製アバット型枠がプレストレスコンクリート製であるので、該型枠の枠壁の厚さを薄くできる。 3) Since the concrete abut mold is made of prestressed concrete, the thickness of the frame wall of the mold can be reduced.
4)型枠材は海中でも問題なく使用でき、かつ表面材となるので、型枠の撤去作業が不要となる。 4) Since the form material can be used in the sea without any problem and becomes a surface material, it is not necessary to remove the form material.
5)アバット型枠の形状は任意の形状とできる。 5) The shape of the abut mold can be any shape.
6)アバット型枠を組み合わせて構成できるので、種々の形状のコンクリート構造物を製造できる。 6) Since it can be configured by combining abutment forms, concrete structures of various shapes can be manufactured.
7)アバット型枠のみを海中に沈設するため、大型のクレーンを必要としない。(コンクリート構造物本体を搬送する必要がない。)
8)コンクリートの練り混ぜ水に硫酸イオンを使用することにより、セメント水和時に膨張材であるエトリンガイトを生成するため、その膨張作用により、機械的プレストレスの導入における緊張材とコンクリートの付着力を高めることができる。
7) Since only the abutment form is submerged in the sea, a large crane is not required. (There is no need to transport the concrete structure itself.)
8) The use of sulfate ions in the mixing water of concrete generates ettringite, which is an expanding material during hydration of cement, and the expansion action reduces the adhesive force between the tendon and concrete during the introduction of mechanical prestress. Can be enhanced.
9)コンクリートの練り混ぜ水に海水を使用することにより、海水中の硫酸イオンにより、セメント水和時に膨張材であるエトリンガイトを生成するため、その膨張作用により、機械的プレストレスの導入における緊張材とコンクリートの付着力を高めることができる。 9) By using seawater as the mixing water for concrete, sulphate ions in the seawater generate ettringite which is an expansive material at the time of cement hydration. And the adhesion of concrete can be increased.
10)上記の付着力の強化により、機械的プレストレス時の滑りを防止でき、強力でかつ信頼性の高いプレストレスを実現できる。 10) By strengthening the above adhesive force, slippage during mechanical prestress can be prevented, and a strong and highly reliable prestress can be realized.
11)上記の付着力の強化により、機械的プレストレスの緊張材の有効範囲を大きく広げることができる。 11) By strengthening the adhesive force, the effective range of the tendon for mechanical prestress can be greatly expanded.
12)練り混ぜ水に海水を使用することにより、その膨張作用により、機械的プレストレスの影響しにくい部分をケミカルストレスとしてカバーすることができる。 12) By using seawater as the mixing water, it is possible to cover, as a chemical stress, a portion that is hardly affected by mechanical prestress due to its expanding action.
13)コンクリート中に不連続繊維補強材が混入されていると、コンクリートの曲げ強度を向上させることができ、膨張材の効果を高め、付着力を高めることができる。 13) When the discontinuous fiber reinforcing material is mixed in the concrete, the bending strength of the concrete can be improved, the effect of the expanding material can be increased, and the adhesive force can be increased.
14)船上での型枠組み立てや海中での型枠設置が可能となり、自由度の高いデザインの海中コンクリート構造物を実現できる。 14) It is possible to assemble the formwork on board and install the formwork in the sea, thereby realizing an underwater concrete structure with a high degree of freedom in design.
本発明の箱型のコンクリート箱板を用いたアバット型枠を示す図である。It is a figure which shows the abutment formwork using the box-shaped concrete box board of this invention. 本発明の箱型のコンクリート箱板を用いたアバット型枠の組み合わせ状態を示す図である。It is a figure showing the combination state of the abutment formwork which used the box type concrete box board of the present invention. 本発明による海中コンクリート構造物の製造方法を示す概略フロー図である。1 is a schematic flow chart showing a method for manufacturing an underwater concrete structure according to the present invention. 本発明のアバット型枠を用いた波力発電装置の実施例を示す概略縦断面図である。It is an outline longitudinal section showing an example of a wave power generator using an abut type frame of the present invention. 本発明のコンクリート製中空構造体を用いたアバット型枠による波力発電装置用の波力誘導構造物の実施例を示す縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view which shows the Example of the wave power guidance structure for wave power generators by the abutment form using the concrete hollow structure of this invention.
 本発明の実施の形態について図面を用いて説明する。 Embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の箱型のコンクリート箱板を用いたアバット型枠を示す図である。
 コンクリート製の箱板1a(上段)、1b(下段)の内部の4隅の角部に垂直方向の緊張材2が挿通される縦枠部6が設けられている。
FIG. 1 is a view showing an abut form using a box-shaped concrete box plate of the present invention.
A vertical frame portion 6 into which the tension member 2 in the vertical direction is inserted is provided at four corners inside the concrete box plates 1a (upper stage) and 1b (lower stage).
 相対する側壁面4、5の内面側に、水平方向の緊張材3が挿通される横枠部7が設けられている。 横 A horizontal frame portion 7 is provided on the inner side of the opposed side wall surfaces 4 and 5 into which the horizontal tension member 3 is inserted.
 この箱板は2段重ねの状態であり、緊張材2による緊張力により上段1aと下段1bの箱板が圧着された状態で一体化させるものである。圧着部分は、凹凸状の嵌め合わせ構造としても良い。 箱 The box plates are in a two-tiered state, and the upper and lower box plates 1a and 1b are integrated under pressure by the tension of the tension member 2. The crimped portion may have an uneven fitting structure.
 該コンクリート箱板を用いたアバット型枠は、緊張材2を垂直方向に緊張力を与え、緊張材3に水平方向の緊張力を与えた状態で、海中に設置し、該アバット型枠内に水中コンクリート等を充填し、固化させることで海中コンクリート構造物とすることができる。 The abut form using the concrete box plate is installed in the sea in a state where the tension member 2 is vertically tensioned and the tension member 3 is horizontally tensioned. An underwater concrete structure can be obtained by filling and solidifying underwater concrete or the like.
 緊張材に難錆性材料を使用し、水中コンクリートとして、海水を練り混ぜ水に使用したコンクリートを使用できる。 コ ン ク リ ー ト Uses rust-resistant material as a tendon material and can be used as underwater concrete, using seawater kneaded and mixed with water.
 なお、このアバット型枠1a、1bの箱板自体は、炭素繊維による緊張材8が設けられ、薄い板厚となっており、垂直方向に緊張力がかけられているプレストレストコンクリート製である。
 図2は、本発明のアバット箱板型枠の組み合わせ状態を示す図である。
The box plates of the abutment frames 1a and 1b are made of prestressed concrete which is provided with a tension member 8 made of carbon fiber, has a small thickness, and is vertically tensioned.
FIG. 2 is a diagram showing a combination state of the abutment box plate formwork of the present invention.
 コンクリート製の箱板1が水平方向に8台連なっている状態で圧着され、一体化しているものである。 The concrete box plates 1 are crimped and integrated in a state in which eight box plates 1 are connected in the horizontal direction.
 本実施例では、水平方向に緊張材を挿通させるためのシース管2aが設けられており、そのシース管2a内に緊張材2を挿通し、緊張力をかけ、圧着して一体化させるものである。 In this embodiment, a sheath tube 2a for inserting a tendon material in the horizontal direction is provided, and the tendon material 2 is inserted into the sheath tube 2a, tension is applied, and the sheath material is crimped and integrated. is there.
 図3は、本発明による海中コンクリート構造物の製造方法を示す概略フロー図である。 FIG. 3 is a schematic flow chart showing a method for manufacturing an underwater concrete structure according to the present invention.
 本フロー図は、洋上風力発電装置の重力式基礎構造物に本発明の海中コンクリート構造物の製造方法を用いた場合のを示す。 This flow chart shows the case where the method for manufacturing an underwater concrete structure of the present invention is used for a gravity type substructure of an offshore wind turbine.
(1)陸上において、プレストレストコンクリート製のケーソンとなるアバット型枠10を製作する。 (1) On land, an abutment form 10 to be a caisson made of prestressed concrete is manufactured.
(2)クレーン船11でアバット型枠10を釣り上げ搬送する。 (2) The abutment form 10 is caught and transported by the crane ship 11.
(3)アバット型枠10を所定の海底にクレーン船11で沈設する。 (3) The abutment form 10 is laid down on a predetermined seabed by the crane ship 11.
(4)アバット型枠10内に、コンクリートミキサー船12でコンクリート13を充填する。 (4) The concrete 13 is filled into the abutment form 10 by the concrete mixer ship 12.
(5)アバット型枠10内のコンクリート13が固化したら、上部に風力発電装置14を設置する。 (5) When the concrete 13 in the abutment form 10 is solidified, the wind power generator 14 is installed on the upper part.
 このように、アバット型枠による海中コンクリート構造物の製造方法によると、コンクリート構造物本体を搬送する必要がないため、大型の輸送船、大型のクレーン船は必要とせず、小型のクレーン船で設置可能となる。 As described above, according to the method of manufacturing an underwater concrete structure using an abutment form, there is no need to transport the concrete structure body, so a large transport ship and a large crane ship are not required, and the small crane ship is installed. It becomes possible.
 また、アバット型枠は比較的軽量であるので、船上でアバット型枠を組み立てることも可能である。 Also, since the abutment form is relatively light, it is possible to assemble the abutment form on board.
 また、アバット型枠は、海中でも腐食などの問題がなく、かつ、コンクリート製の表面材でもあるため、型枠の撤去作業の必要がなく、工期を短縮できる。 ア In addition, since the abutment formwork has no problem such as corrosion in the sea and is a concrete surface material, there is no need to remove the formwork and the construction period can be shortened.
 また、充填するコンクリートの練り混ぜ水に海水を使用すると、洋上まで水を運ぶ必要もなくなる。 海 In addition, if seawater is used as the mixing water for the concrete to be filled, there is no need to transport water to the sea.
 また、充填するコンクリートの練り混ぜ水に海水を使用することでプレストレスによる緊張材の付着力が高まり、強度を向上させることができる。 海 Also, by using seawater as the mixing water for the concrete to be filled, the adhesive force of the tendon due to prestress is increased, and the strength can be improved.
 図4は、本発明のアバット型枠を用いた波力発電装置の実施例を示す概略縦断面図である。 FIG. 4 is a schematic longitudinal sectional view showing an embodiment of a wave power generation device using the abut mold according to the present invention.
 本実施例は、海岸の波打ち際近辺に設置され、波を集中させ、波力でプロペラを回転させ、その回転で発電機を駆動して、発電する波力発電装置である。 実 施 This embodiment is a wave power generation device that is installed near the shore of a shore, concentrates waves, rotates a propeller by wave power, and drives a generator by the rotation to generate power.
 波を誘導して集中させる為の波力誘導構造物20の波の流路の出口側21に発電装置22のプロペラ23が配置されている。 The propeller 23 of the power generation device 22 is disposed on the outlet side 21 of the wave flow path of the wave power guiding structure 20 for guiding and concentrating the waves.
 該波力誘導構造物20は、中心部分が空洞となったかまぼこ状の形状となった構造体であり、軸方向に中心部分に円形状の波の流路24が設けられ、入口側25から徐々に口径が小さくなり、中央部35が最も口径が小さく、その後は少し口径が広くなり、発電装置22のプロペラ23部分より後半部分から出口21までは同じ口径となっているものである。 The wave power guiding structure 20 is a structure in which the center portion has a hollow or semi-cylindrical shape, and a circular wave flow path 24 is provided in the center portion in the axial direction. The diameter gradually becomes smaller, the diameter becomes smaller at the central portion 35, and then becomes slightly larger after that. The diameter is the same from the latter half of the propeller 23 portion of the power generator 22 to the outlet 21.
 波の流路24の口径が小さくなることで、波力が集中させ、その後やや口径を広くすることで、波の流速、流量を調整し、安定した発電ができるようにしたものである。 By reducing the diameter of the wave flow path 24, the wave force is concentrated, and thereafter the diameter is slightly increased, whereby the flow velocity and flow rate of the wave are adjusted, and stable power generation can be performed.
 また、波力誘導構造物20の入り口側25は、波が押し寄せることで、浮き上がる力が働くが、入り口側25の上部には、波力の補助誘導翼26が設けられており、大きな波の場合、この誘導翼26内に波が勢いよく押し込まれ、誘導翼26の奥に設けられた排出口27より、下方向に押し出される。これにより、波力誘導構造物20の入口側25は、下方向に押しつけられ、浮き上がりを防止する構造となっている。 In addition, a wave is pushed up on the entrance side 25 of the wave power guiding structure 20 to cause a floating force. However, an auxiliary guiding wing 26 for wave power is provided on the upper side of the entrance side 25, and a large wave In this case, the waves are rushed into the guide vanes 26 and are pushed downward from a discharge port 27 provided inside the guide vanes 26. Thus, the inlet side 25 of the wave power guiding structure 20 is pressed downward, and has a structure for preventing the wave power guiding structure 20 from rising.
 本波力誘導構造物20は、海岸の海中に設置されるが、海底面28は平坦ではなく、凹凸状であるため、本構造物の底面29にはコンクリートの漏出孔30が設けられ、該構造物20の打設時にその漏出孔からコンクリートを海底面28の凹凸部に漏出させて固化することで、海底に本波力誘導構造物20を確実に固定することができる。 The wave force guiding structure 20 is installed in the sea on the shore. However, since the sea bottom 28 is not flat but uneven, a leakage hole 30 of concrete is provided on the bottom 29 of the structure. When the structure 20 is cast, concrete leaks from the leak hole into the uneven portion of the sea floor 28 and solidifies, so that the main wave force guiding structure 20 can be reliably fixed to the sea floor.
 図5は、本発明のコンクリート製中空構造体を用いたアバット型枠による波力発電装置用の波力誘導構造物の実施例を示す縦断面図である。 FIG. 5 is a longitudinal sectional view showing an embodiment of a wave power guiding structure for a wave power generator using an abutment form using the concrete hollow structure of the present invention.
 本波力誘導構造物20は、コンクリート製中空構造体を用いたアバット型枠であり、図に示すように、第1構造物31と第2構造物32と第3構造物33の3つに分割して製造される。 The wave force guiding structure 20 is an abutment form using a hollow structure made of concrete. As shown in the figure, the wave force guiding structure 20 includes a first structure 31, a second structure 32, and a third structure 33. Manufactured separately.
 図に示すように、各々の構造物は、厚さが50mm以下で製造されたプレストレストコンクリート製の型枠であり、中空構造となっている。 As shown in the figure, each structure is a prestressed concrete mold having a thickness of 50 mm or less and has a hollow structure.
 第1構造物31は、波力誘導構造物20の波の入り口部25の構造物であり、上部に波力の補助誘導翼26が設けられている。 The first structure 31 is a structure of the wave entrance 25 of the wave power guiding structure 20, and the wave power auxiliary guiding wing 26 is provided on an upper portion thereof.
 (1)は、波の入口側25から見た第1構造物31の外観図である。 (1) is an external view of the first structure 31 viewed from the wave entrance side 25.
 第2の構造物32は、波の流路24を狭くし、波力を集中させる為の構造部である。 The second structure 32 is a structure for narrowing the wave flow path 24 and concentrating wave power.
 (2)は、波の入口側25から見た第2構造物32の外観図である。 (2) is an external view of the second structure 32 viewed from the wave entrance side 25.
 第3の構造物は、プロペラ式の発電機21を設置する部分であり、出口側21の構造部である。 The third structure is a portion where the propeller type generator 21 is installed, and is a structure on the outlet side 21.
 (3)は、波の入口側25から見た第3構造物33の外観図である。 (3) is an external view of the third structure 33 viewed from the wave entrance side 25.
 これらの3つのコンクリート製中空構造物を工場で製作し、海岸の海底に連結して組み立て設置し、中空部分に水中コンクリートを充填し、固化させる。また、工場以外、現場サイト、船上で製造してもよい。 中空 These three concrete hollow structures are manufactured at the factory, connected to the seabed on the coast, assembled and installed, and the hollow parts are filled with underwater concrete and solidified. In addition, it may be manufactured on site, on a ship, in addition to a factory.
 該波力誘導構造物20の第1の構造物31、第2の構造物32、第3の構造物33の底板29には、コンクリートの漏出孔30が設けられており、アバット型枠内にコンクリートを充填すると、漏出孔30よりコンクリートが漏出し、海底の凹凸部分をコンクリートで埋め、海底40と波力誘導構造物20の底部とが固定される。 A leak hole 30 of concrete is provided in the bottom plate 29 of the first structure 31, the second structure 32, and the third structure 33 of the wave power guiding structure 20, and is provided in the abut form. When the concrete is filled, the concrete leaks from the leak hole 30, and the uneven portion on the seabed is filled with concrete, and the seabed 40 and the bottom of the wave force guiding structure 20 are fixed.
 (4)は、(1)のA-A部における縦断面を右側から見た図である。緊張材34の配置状況を示す。 (4) is a view of the vertical cross section taken along the line AA in (1) viewed from the right side. The arrangement of the tension members 34 is shown.
 該波力誘導構造物20の第1の構造物31、第2の構造物32、第3の構造物33は、(1)から(4)に示すように、緊張材34が底部の長手方向に4本、左右に2本配置されており、緊張材には予め緊張力が導入された後に、コンクリートを充填して固化することで、プレストレストコンクリート製の波力誘導構造物20となる。また、緊張材用のシース管を配置し、緊張材を緊張させポストテンションを導入しても良い。 As shown in (1) to (4), the first structure 31, the second structure 32, and the third structure 33 of the wave power guiding structure 20 are such that the tendon 34 is in the longitudinal direction of the bottom. And two on the left and right sides, and after tension is previously introduced into the tendon material, concrete is filled and solidified to form a wave force guiding structure 20 made of prestressed concrete. Alternatively, a post tube may be introduced by arranging a sheath tube for the tendon material to tension the tendon material.
 本実施例では、第1の構造物31と第3の構造物33とがアバット(反力台)として機能し、プレストレストコンクリート製の波力誘導構造物20を実現できるものである。 In the present embodiment, the first structure 31 and the third structure 33 function as an abutment (reaction table), so that the wave-force guiding structure 20 made of prestressed concrete can be realized.
 このように、大型の波力誘導構造物においても、コンクリート製中空構造体のアバット型枠とすることにより、工場で分割して製造するため、大型トラックを必要とせず、また、中空型枠であり軽量であるため、大型クレーンを用いた設置工事を必要としない。 As described above, even in a large wave power guiding structure, since it is manufactured by dividing it at a factory by using an abut form of a hollow structure made of concrete, a large truck is not required, and a hollow form is used. Because it is light and lightweight, installation work using a large crane is not required.
 また、一般的なクレーンを備えた船舶が使用でき、その船上でアバット型枠を組み立て、海中に設置し、コンクリートを充填し固定させることができる。 船舶 Also, a ship equipped with a general crane can be used, and an abutment form can be assembled on the ship, installed under the sea, filled with concrete and fixed.
 海水を練り混ぜ水に使用したコンクリートとすると、セメント水和時に膨張材であるエトリンガイトを生成するため、その膨張作用により、機械的プレストレスの導入における緊張材とコンクリートの付着力を高めることができ、プレストレストコンクリートの強度を高めることができる。 If seawater is used as concrete for mixing water, ettringite, which is an expansive material during hydration of cement, will be generated, and its expansion action can increase the adhesive force between the tendon and concrete during the introduction of mechanical prestress. The strength of the prestressed concrete can be increased.
 中空型枠がコンクリ-ト製であるため、固化後は構造物の表面材としてそのまま使用できる為、鋼製型枠などのように、錆の問題もなく、固化後に撤去する工事も必要ない。 Since the hollow formwork is made of concrete, it can be used as it is as a surface material of the structure after solidification, so there is no rust problem unlike steel formwork, and no work to remove after solidification is required.
 また、コンクリート製型枠とすると、曲面や凹凸面など任意の形状に容易に成形することができ、従来の型枠では、不可能であった様々なデザインを可能とするものである。 コ ン ク リ ー ト In addition, if a concrete mold is used, it can be easily formed into an arbitrary shape such as a curved surface or an uneven surface, and various designs that were impossible with a conventional mold can be made.
 1a、1b アバット型枠
 2 垂直方向の緊張材
 2a 水平方向のシース管
 3 水平方向の緊張材
 6 縦枠部
 7 横枠部
 8 炭素繊維による緊張材
 10 アバット型枠によるケーソン
 11 クレーン船
 12 コンクリートミキサー船
 13 コンクリート
 14 風力発電装置
 20 波力誘導構造物
 21 波力誘導構造物の出口側
 22 発電装置
 23 プロペラ
 24 波の流路
 25 波力誘導構造物の入口側
 26 波力の補助誘導翼
 27 排出口
 28 海底面
 29 波力誘導構造物の底面
 30 漏出孔
 31 第1の構造物
 32 第2の構造物
 33 第3の構造物
 34 緊張材
 35 中央部
 40 海底
DESCRIPTION OF SYMBOLS 1a, 1b Abut formwork 2 Vertical tendon 2a Horizontal sheath pipe 3 Horizontal tendon 6 Vertical frame 7 Horizontal frame 8 Carbon fiber tendon 10 Caisson with abutment form 11 Crane ship 12 Concrete mixer Ship 13 Concrete 14 Wind power generator 20 Wave power guiding structure 21 Outlet side of wave power guiding structure 22 Power generator 23 Propeller 24 Wave flow path 25 Inlet side of wave power guiding structure 26 Auxiliary induction wing of wave power 27 Discharge Exit 28 Sea bottom 29 Wave power guiding structure bottom surface 30 Leakage hole 31 First structure 32 Second structure 33 Third structure 34 Tendon 35 Central part 40 Sea bottom

Claims (14)

  1.  上部又は側部の少なくとも一部が開口されたコンクリート製中空構造体の対面する側壁部をアバットとするコンクリート製アバット型枠に、緊張材による機械的ストレスを導入し、該型枠内にコンクリートを充填し、固化させて製造することを特徴とする海中コンクリート構造物の製造方法。 Mechanical stress due to the tendon material is introduced into a concrete abut mold having an abutment on a facing side wall of a concrete hollow structure in which at least a part of an upper part or a side part is opened, and concrete is introduced into the form. A method for producing an undersea concrete structure, characterized by being filled and solidified.
  2.  前記のコンクリート製中空構造体が箱状のコンクリート製箱板であることを特徴とする請求項1に記載の海中コンクリート構造物の製造方法。 The method according to claim 1, wherein the hollow concrete structure is a box-shaped concrete box plate.
  3.  前記のコンクリート製アバット型枠は緊張材による機械的ストレスが導入されたプレストレスコンクリート製であることを特徴とする請求項1又は請求項2に記載の海中コンクリート構造物の製造方法。 The method according to claim 1 or 2, wherein the concrete abutment form is made of prestressed concrete to which mechanical stress by a tendon is introduced.
  4.  前記のコンクリート製アバット型枠を複数台組み合わせ、緊張材による機械的ストレスを導入し、該型枠内にコンクリートを充填し、固化させて製造することを特徴とする請求項1から請求項3までのいずれか1項に記載の海中コンクリート構造物の製造方法。 4. The method according to claim 1, wherein a plurality of the concrete abutment forms are combined, mechanical stress is introduced by a tension member, concrete is filled in the form and solidified, and the mold is manufactured. The method for producing an underwater concrete structure according to any one of the above items.
  5.  前記の型枠内に充填するコンクリートの練り混ぜ水に硫酸イオンを混合することを特徴とする請求項1から請求項4までのいずれか1項に記載の海中コンクリート構造物の製造方法。 The method of manufacturing an underwater concrete structure according to any one of claims 1 to 4, wherein sulfate ions are mixed into the mixing water of the concrete to be filled in the formwork.
  6.  前記の練り混ぜ水に混合する硫酸イオンとして海水を用いることを特徴とする請求項5に記載の海中コンクリート構造物の製造方法。 6. The method according to claim 5, wherein seawater is used as the sulfate ion to be mixed with the mixing water.
  7.  前記の緊張材は、難錆性線材であることを特徴とする請求項1から請求項6までの何れか1項に記載の海中コンクリート構造物の製造方法。 方法 The method for manufacturing an underwater concrete structure according to any one of claims 1 to 6, wherein the tendon is a rust-resistant wire.
  8.  前記の緊張材は、連続繊維補強線材であることを特徴とする請求項1から請求項7までの何れか1項に記載の海中コンクリート構造物の製造方法。 方法 The method of manufacturing an underwater concrete structure according to any one of claims 1 to 7, wherein the tension member is a continuous fiber reinforced wire.
  9.  前記の連続繊維補強線材は、金属繊維、アラミド繊維、炭素繊維、ガラス繊維、ポリ-p-フェニレンベンゾビスオキサゾール繊維から選ばれた1種又は2種以上の繊維による強化繊維線材であることを特徴とする請求項8に記載の海中コンクリート構造物の製造方法。 The continuous fiber reinforced wire is a reinforced fiber wire made of one or more fibers selected from metal fibers, aramid fibers, carbon fibers, glass fibers, and poly-p-phenylenebenzobisoxazole fibers. The method for producing an underwater concrete structure according to claim 8, wherein
  10.  前記の練り混ぜ水に含まれる硫酸イオンは、練り混ぜ水の単位質量当たり、1000~5000ppmの比率で含有されていることを特徴とする請求項5から請求項9までのいずれか1項に記載の海中コンクリート構造物の製造方法。 10. The method according to claim 5, wherein the sulfate ions contained in the mixing water are contained at a ratio of 1000 to 5000 ppm per unit mass of the mixing water. Method of manufacturing underwater concrete structures.
  11.  前記の練り混ぜ水に用いる海水は、練り混ぜ水全重量に対して、50~200重量%であることを特徴とする請求項5から請求項10までのいずれか1項に記載の海中コンクリート構造物の製造方法。 The underwater concrete structure according to any one of claims 5 to 10, wherein the seawater used for the mixing water is 50 to 200% by weight based on the total weight of the mixing water. Method of manufacturing a product.
  12.  前記の海水に含まれる硫酸イオンは、海水の単位質量当たり、1500~3000ppmの比率で含有されていることを特徴とする請求項5から請求項11でのいずれか1項に記載の海中コンクリート構造物の製造方法。 The underwater concrete structure according to any one of claims 5 to 11, wherein the sulfate ion contained in the seawater is contained at a ratio of 1500 to 3000 ppm per unit mass of the seawater. Method of manufacturing a product.
  13.  コンクリート打設時において、コンクリートに不連続繊維補強材を混入したことを特徴とする請求項1から請求項12までの何れか1項に記載の海中コンクリート構造物の製造方法。 (13) The method for producing an underwater concrete structure according to any one of (1) to (12), wherein a discontinuous fiber reinforcing material is mixed into the concrete at the time of placing the concrete.
  14.  該不連続繊維補強材は、金属繊維、炭素繊維、ガラス繊維、樹脂繊維から選ばれた1種又は2種以上の繊維による強化繊維材であることを特徴とする請求項13に記載の海中コンクリート構造物の製造方法。 The underwater concrete according to claim 13, wherein the discontinuous fiber reinforcing material is a reinforcing fiber material made of one or more kinds of fibers selected from metal fibers, carbon fibers, glass fibers, and resin fibers. The method of manufacturing the structure.
PCT/JP2018/042631 2017-11-21 2018-11-19 Underwater concrete structure manufacturing method WO2020035961A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017223242 2017-11-21
JP2018-152821 2018-08-15
JP2018152821A JP2019093702A (en) 2017-11-21 2018-08-15 Production method of concrete structure in sea

Publications (1)

Publication Number Publication Date
WO2020035961A1 true WO2020035961A1 (en) 2020-02-20

Family

ID=66970647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042631 WO2020035961A1 (en) 2017-11-21 2018-11-19 Underwater concrete structure manufacturing method

Country Status (3)

Country Link
JP (1) JP2019093702A (en)
TW (1) TW201925580A (en)
WO (1) WO2020035961A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145241B1 (en) 2018-02-15 2018-12-04 Electricwaze LLC Roadway conduit systems and methods
US10913178B2 (en) * 2018-02-15 2021-02-09 Electricwaze LLC Conduit segment casting mold and method of forming a conduit segment
CN115416141A (en) * 2022-10-12 2022-12-02 中冶建筑研究总院(深圳)有限公司 Carbon fiber composite seawater sea sand concrete member template and integrated forming method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51711A (en) * 1974-06-24 1976-01-06 Penta Ocean Construction KUMITATESHIKIKONKURIITOKEESON
JPS5664164A (en) * 1979-10-03 1981-06-01 French Michael Joseph Wave energy convertor employing envelop with flexible wall
JPS59150810A (en) * 1983-02-17 1984-08-29 Sumitomo Metal Ind Ltd Coastal structure with caisson and its construction
JPS6195125A (en) * 1984-10-17 1986-05-13 Mitsui Eng & Shipbuild Co Ltd Fixation of concrete caisson
JPH0353905A (en) * 1989-07-21 1991-03-07 Chugoku Concrete Kogyo Kk Throw-away frame made of concrete
JP2003092951A (en) * 2001-09-26 2003-04-02 Hokuei Kensetsu Kk Article for artificial fish bank and method of production for the same
JP2006206401A (en) * 2005-01-31 2006-08-10 Taiheiyo Cement Corp Abutment
JP2006322400A (en) * 2005-05-19 2006-11-30 Kajima Corp Gravity type foundation for off-shore wind power generation device
JP6055953B1 (en) * 2015-10-05 2016-12-27 昌樹 阿波根 Prestressed concrete manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51711A (en) * 1974-06-24 1976-01-06 Penta Ocean Construction KUMITATESHIKIKONKURIITOKEESON
JPS5664164A (en) * 1979-10-03 1981-06-01 French Michael Joseph Wave energy convertor employing envelop with flexible wall
JPS59150810A (en) * 1983-02-17 1984-08-29 Sumitomo Metal Ind Ltd Coastal structure with caisson and its construction
JPS6195125A (en) * 1984-10-17 1986-05-13 Mitsui Eng & Shipbuild Co Ltd Fixation of concrete caisson
JPH0353905A (en) * 1989-07-21 1991-03-07 Chugoku Concrete Kogyo Kk Throw-away frame made of concrete
JP2003092951A (en) * 2001-09-26 2003-04-02 Hokuei Kensetsu Kk Article for artificial fish bank and method of production for the same
JP2006206401A (en) * 2005-01-31 2006-08-10 Taiheiyo Cement Corp Abutment
JP2006322400A (en) * 2005-05-19 2006-11-30 Kajima Corp Gravity type foundation for off-shore wind power generation device
JP6055953B1 (en) * 2015-10-05 2016-12-27 昌樹 阿波根 Prestressed concrete manufacturing method

Also Published As

Publication number Publication date
JP2019093702A (en) 2019-06-20
TW201925580A (en) 2019-07-01

Similar Documents

Publication Publication Date Title
WO2020035961A1 (en) Underwater concrete structure manufacturing method
CN201785751U (en) Double-tube reinforced composite material combined pile
CN101892661A (en) Double-pipe reinforced composite combined built pile
JP6055953B1 (en) Prestressed concrete manufacturing method
WO2021003859A1 (en) All-coral aggregate seawater concrete column with buckle-type frp spiral hooping reinforced square frp pipe
CN110439109A (en) A kind of prestressing force assembly concrete beam-column connection and engineering method
WO2018003190A1 (en) Method for producing prestressed concrete
CN106193450A (en) A kind of highly energy-consuming concrete connecting-beam of built-in mild steel
CN110056129A (en) FRP pipe profile sea sand fast hardening concrete square combination column
CN211113134U (en) FRP pipe sea water sand concrete core reinforced concrete beam
CN204491565U (en) Can be used for the ultra-high performance concrete engineering structures that Hai Jiao becomes island to build
CN202000558U (en) Pre-stress fiber resin composite rib
CN107938845A (en) A kind of concrete prefabricated assembling combining structures of FRP
CN108118692A (en) Fibre reinforced composites regenerate masonry aggregate concrete hollow steel pipe pile
JP3565957B2 (en) Bridge pier reinforcement method
CN211772846U (en) Composite rib-composite material grid seawater sea sand bridge deck
CN207469595U (en) A kind of combined reinforced beam
CN109911121B (en) Corrosion-resistant, crack-resistant and electrification-resistant gravity anchor for marine internal wave observation subsurface buoy
CN206859085U (en) A kind of bracing means
CN111395575A (en) One-step formed light wallboard with hidden rib structure and manufacturing method
CN105525601A (en) Ultra-high performance concrete engineering structure used for ocean reef islanding construction and construction process of structure
CN109989526A (en) FRP pipe profile sea sand fast hardening concrete circular group zygostyle
CN107034794A (en) A kind of bracing means and its application method
CN205088677U (en) Low hollow side of prestressed concrete stake of high performance
CN213268585U (en) Confined concrete column based on sea sand seawater TRC prefabricated shell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930320

Country of ref document: EP

Kind code of ref document: A1