WO2020034977A1 - 电机补偿方法、驱动器、机械臂关节模组及机械臂 - Google Patents

电机补偿方法、驱动器、机械臂关节模组及机械臂 Download PDF

Info

Publication number
WO2020034977A1
WO2020034977A1 PCT/CN2019/100506 CN2019100506W WO2020034977A1 WO 2020034977 A1 WO2020034977 A1 WO 2020034977A1 CN 2019100506 W CN2019100506 W CN 2019100506W WO 2020034977 A1 WO2020034977 A1 WO 2020034977A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular displacement
reducer
motor
displacement
rotor
Prior art date
Application number
PCT/CN2019/100506
Other languages
English (en)
French (fr)
Inventor
刘元江
严雷
刘鹏
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2020034977A1 publication Critical patent/WO2020034977A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator

Definitions

  • the present invention relates to the technical field of robots, and more particularly, to a motor compensation method, a driver, a robot arm joint module, and a robot arm.
  • the robotic arm joint module usually includes a motor, a reducer, a feedback device, a driver, and a brake.
  • the existing robotic arm usually adopts a single encoder as a feedback device, and installs the single encoder on the motor end.
  • the single encoder can detect the angular displacement of the motor, and feed back the angular displacement of the motor detected to the driver to complete the closed-loop control of the motor. Because the reducer will accumulate errors after long-term use, this method of using the angular displacement of the motor feedback encoder to perform closed-loop control of the motor position does not take into account the effect of the cumulative error of the reducer, which affects the robot arm joint module Working accuracy.
  • An object of the present invention is to provide a new technical solution for motor angular displacement compensation, so that the angular displacement at the output end of the reducer reaches a set target angular displacement.
  • a motor compensation method including:
  • driving the motor according to the first displacement signal and the second displacement signal so that the angular displacement of the output end of the reducer reaches a set target angular displacement includes:
  • the motor is driven to operate by using the angular displacement compensation amount of the rotor of the motor and the first displacement signal, so that the angular displacement of the output end of the reducer reaches a set target angular displacement.
  • obtaining the angular displacement compensation amount of the rotor of the motor according to the first displacement signal and the second displacement signal includes:
  • An angular displacement compensation amount of a rotor of the motor is obtained according to an angular displacement compensation amount of an output end of the reducer and a reduction ratio of the reducer.
  • the obtaining the angular displacement compensation amount of the rotor of the motor according to the first displacement signal and the second displacement signal includes:
  • Driving the motor using the angular displacement compensation amount of the rotor of the motor to make the angular displacement of the output end of the reducer reach a set target angular displacement includes:
  • a unit compensation amount for each unit angle of rotation of the rotor of the motor is used to drive the motor to make the angular displacement of the output end of the reducer reach a set target angular displacement.
  • the obtaining the angular displacement compensation amount of the rotor of the motor according to the first displacement signal and the second displacement signal includes:
  • An angular displacement compensation amount of a rotor of the motor is obtained according to an angular displacement compensation amount of an output end of the reducer and an actual reduction ratio of the reducer.
  • the method further includes:
  • a driver including:
  • An obtaining module configured to obtain a first displacement signal of the angular displacement of the rotor of the motor detected by the first encoder, and obtain a second displacement signal of the angular displacement of the output of the reducer, which is detected by the second encoder; Wherein, the input end of the reducer is connected to the rotor of the motor;
  • the driving module is configured to drive the motor to act according to the first displacement signal and the second displacement signal, so that the angular displacement of the output end of the reducer reaches a set target angular displacement.
  • a driver comprising: a memory and a processor, the memory being configured to store instructions, the instructions being used to control the processor to perform operations according to any one of the first aspects Item.
  • a mechanical arm joint module including a motor, a reducer, a first encoder, a second encoder, and a driver according to the second aspect or the third aspect.
  • a robot arm including at least one robot arm joint module according to the fourth aspect.
  • An advantageous effect of an embodiment of the present invention is that, according to a first displacement signal representing the angular displacement of the rotor of the motor detected by the first encoder, and a Two displacement signals drive the motor to make the angular displacement of the output of the reducer reach the set target angular displacement, which reduces the positioning error of the output of the reducer.
  • FIG. 1 is a schematic flowchart of a motor compensation method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of determining an angular displacement compensation amount of a rotor of a motor according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of determining an angular displacement compensation amount of a rotor of a motor according to still another embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of determining an angular displacement compensation amount of a rotor of a motor according to still another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a motor compensation method according to another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a motor compensation method according to another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a motor compensation method according to another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a driver according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a hardware structure of a driver according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an internal structure of a robot arm joint module according to an embodiment of the present invention.
  • any specific value should be construed as exemplary only and not as a limitation. Therefore, other examples of the exemplary embodiments may have different values.
  • FIG. 1 is a schematic flowchart of a motor compensation method according to an embodiment of the present invention.
  • the motor compensation method according to the embodiment of the present invention is implemented by a driver.
  • the motor compensation method may include the following steps:
  • Step S1100 Obtain a first displacement signal representative of the angular displacement of the rotor of the motor detected by the first encoder, and obtain a second displacement signal representative of the angular displacement of the output end of the reducer detected by the second encoder, where: The input of the reducer is connected to the rotor of the motor.
  • step S1200 the motor is driven to operate according to the first displacement signal and the second displacement signal, so that the angular displacement of the output end of the reducer reaches a set target angular displacement.
  • the driver obtains the angular displacement compensation amount of the rotor of the motor according to the first displacement signal and the second displacement signal, and then uses the angular displacement compensation amount of the rotor of the motor to drive the motor to make the output end of the reducer
  • the angular displacement reaches the set target angular displacement.
  • the driver after the driver receives the motor rotation instruction, it controls the rotation of the motor according to the feedback from the first encoder until the rotor of the motor generates an angular displacement corresponding to the instruction to drive the reduction gear to rotate, so that the There is a certain angular displacement at the output. Due to the effect of the cumulative error of the reducer, the angular displacement of the output of the current reducer is smaller than the set target angular displacement. Therefore, in the embodiment of the present invention, after the rotor of the motor completes the angular displacement corresponding to the instruction, the compensation method of the angular displacement of the rotor of the motor is obtained by using the method shown in FIG. 2. The driver drives the motor according to the angular displacement compensation amount of the rotor of the motor, so that the angular displacement of the output end of the reducer reaches the set target angular displacement.
  • the angular displacement compensation amount of the rotor of the motor may include the following steps:
  • Step S2100 Obtain the reduction ratio of the reducer.
  • the reduction ratio of the reducer is stored in the driver in advance.
  • Step S2200 Obtain a set target angular displacement of the output end of the reducer according to the reduction ratio of the reducer and the angular displacement of the rotor of the motor corresponding to the first displacement signal.
  • the set target angular displacement of the output of the reducer is calculated.
  • P 1 is the angular displacement of the rotor of the motor corresponding to the first displacement signal
  • i is the reduction ratio of the reducer
  • P 2 ′ is the set target angular displacement of the output of the reducer.
  • step S2300 the angular displacement of the output end of the reducer corresponding to the second displacement signal and the set target angular displacement are subjected to difference processing to obtain the angular displacement compensation amount of the output end of the reducer.
  • the amount of angular displacement compensation at the output of the reducer is calculated.
  • P 2 is the angular displacement of the output end of the reducer corresponding to the second displacement signal
  • ⁇ P 2 is the angular displacement compensation amount of the output end of the reducer.
  • step S2400 the angular displacement compensation amount of the rotor of the motor is obtained according to the angular displacement compensation amount of the output end of the reducer and the reduction ratio of the reducer.
  • the angular displacement compensation amount of the rotor of the motor is calculated.
  • ⁇ P 1 is the angular displacement compensation amount of the rotor of the motor.
  • the driver controls the motor to rotate after receiving the motor rotation instruction.
  • the driver can receive the first displacement signal fed back by the first encoder and the second displacement signal fed back by the second encoder in real time.
  • the output of the reducer rotates according to the reduction ratio.
  • the output end of the reducer fails to rotate the corresponding angle according to the reduction ratio every time the rotor of the motor rotates by a unit angle. Therefore, in the embodiment of the present invention, when the motor is rotating, according to the first displacement signal fed back by the first encoder and the second displacement signal fed back by the second encoder, the method shown in FIG.
  • Unit compensation amount at unit angle The driver drives the motor to act according to a unit compensation amount every time the rotor of the motor rotates by a unit angle, so that the angular displacement of the output end of the reducer reaches a set target angular displacement.
  • the angular displacement compensation amount of the rotor of the motor may include the following steps:
  • Step S3100 Obtain the reduction ratio of the reducer.
  • the reduction ratio of the reducer is stored in the driver in advance.
  • step S3200 the set target angular displacement of the output end of the reducer is obtained according to the reduction ratio of the reducer and the angular displacement of the rotor of the motor corresponding to the first displacement signal.
  • the set target angular displacement of the output of the reducer in this step refers to the target angular displacement of the output of the reducer corresponding to the current angular displacement of the rotor of the motor during the rotation of the motor.
  • step S3300 the angular displacement of the output end of the reducer corresponding to the second displacement signal and the set target angular displacement are subjected to difference processing to obtain the angular displacement compensation amount of the output end of the reducer.
  • the angular displacement compensation amount ⁇ P 2 at the output end of the speed reducer is calculated.
  • step S3400 according to the angular displacement compensation amount at the output of the reducer, the reduction ratio of the reducer, and the angular displacement of the rotor of the motor corresponding to the first displacement signal, a unit compensation amount is obtained for each unit angle of the rotor of the motor.
  • the unit compensation amount per unit angle of rotation of the rotor of the motor is calculated.
  • ⁇ P 2 is the angular displacement compensation amount of the output of the reducer
  • i is the reduction ratio of the reducer
  • P 1 is the angular displacement of the rotor of the motor corresponding to the first displacement signal
  • P 1per is the unit angle of the rotor of the motor per rotation The amount of unit compensation.
  • the driver drives the motor to rotate.
  • the driver since the first encoder can feed back the first displacement signal to the driver in real time, and the second encoder can feed back the second displacement signal to the driver in real time, so that the driver can obtain it in real time using the method shown in FIG. 3
  • the unit compensation amount per unit angle of the electronic rotor since the first encoder can feed back the first displacement signal to the driver in real time, and the second encoder can feed back the second displacement signal to the driver in real time, so that the driver can obtain it in real time using the method shown in FIG. 3
  • the unit compensation amount per unit angle of the electronic rotor since the first encoder can feed back the first displacement signal to the driver in real time, and the second encoder can feed back the second displacement signal to the driver in real time, so that the driver can obtain it in real time using the method shown in FIG. 3
  • the unit compensation amount per unit angle of the rotor of the motor is used to drive the motor to make the angular displacement of the output end of the reducer reach the set point. Fixed target angular displacement.
  • the driver controls the motor to rotate, each time the rotor of the motor rotates, the corresponding angle of the unit compensation amount is also rotated to make the output end of the reducer
  • the angular displacement reaches the set target angular displacement.
  • the driver controls the motor to rotate after receiving the motor rotation instruction.
  • the driver can receive the first displacement signal fed back by the first encoder and the second displacement signal fed back by the second encoder in real time.
  • the output of the reducer rotates according to the reduction ratio.
  • the actual reduction ratio of the reducer and the reduction ratio pre-stored in the drive are different. Therefore, in the embodiment of the present invention, when the motor is rotating, according to the first displacement signal fed back by the first encoder and the second displacement signal fed back by the second encoder, the method shown in FIG.
  • the driver drives the motor to act according to a unit compensation amount every time the rotor of the motor rotates by a unit angle, so that the angular displacement of the output end of the reducer reaches a set target angular displacement.
  • the angular displacement compensation amount of the rotor of the motor may include the following steps:
  • Step S4100 Obtain the reduction ratio of the reducer.
  • the reduction ratio of the reducer is stored in the driver in advance.
  • Step S4200 Obtain a set target angular displacement of the output end of the reducer according to the reduction ratio of the reducer and the angular displacement of the rotor of the motor corresponding to the first displacement signal.
  • the set target angular displacement of the output of the reducer in this step refers to the target angular displacement of the output of the reducer corresponding to the current angular displacement of the rotor of the motor during the rotation of the motor.
  • the set target angular displacement P 1per of the output end of the reducer is calculated.
  • step S4300 the angular displacement of the output end of the reducer corresponding to the second displacement signal and the set target angular displacement are subjected to difference processing to obtain the angular displacement compensation amount of the output end of the reducer.
  • the angular displacement compensation amount ⁇ P 2 at the output end of the speed reducer is calculated.
  • step S4400 the actual reduction ratio of the reducer is obtained according to the angular displacement of the output end of the reducer corresponding to the second displacement signal and the angular displacement of the rotor of the motor corresponding to the first displacement signal.
  • P 2 is the angular displacement of the output of the reducer corresponding to the second displacement signal
  • P 1 is the angular displacement of the rotor of the motor corresponding to the first displacement signal
  • i is actually the actual reduction ratio of the reducer.
  • step S4500 the angular displacement compensation amount of the rotor of the motor is obtained according to the angular displacement compensation amount of the output end of the reducer and the actual reduction ratio of the reducer.
  • the angular displacement compensation amount of the rotor of the motor is calculated.
  • ⁇ P 2 is the angular displacement compensation amount of the output end of the reducer
  • ⁇ P 1 is the angular displacement compensation amount of the rotor of the motor.
  • the driver drives the motor to rotate.
  • the first encoder can feedback the first displacement signal to the driver in real time
  • the second encoder can feedback the second displacement signal to the driver in real time, so that the driver can obtain the actual reduction ratio of the reducer in real time.
  • the angular displacement compensation amount of the electronic rotor can be obtained in real time.
  • the angular displacement compensation amount at the output end of the reducer is obtained by using the method shown in FIG. 2, FIG. 3, or FIG. 4, the angular displacement compensation amount at the output end of the reducer and the preset angular displacement are compared. Compensation amount to get the comparison result.
  • the step of obtaining the angular displacement compensation amount of the rotor of the motor or the unit compensation amount per unit angle of rotation of the rotor of the motor is performed.
  • FIG. 5 is another schematic flowchart of a motor compensation method according to an embodiment of the present invention.
  • the motor compensation method may include the following steps:
  • step S5100 after receiving the motor rotation instruction, the driver controls the rotation of the motor according to the feedback from the first encoder until the rotor of the motor generates an angular displacement corresponding to the instruction.
  • Step S5200 when the rotor of the motor generates an angular displacement corresponding to the instruction, the driver obtains a first displacement signal representing the angular displacement of the rotor of the motor detected by the first encoder, and an output of the reducer detected by the second encoder.
  • step S5300 the driver obtains the set target angular displacement of the output end of the reducer according to the reduction ratio of the reducer and the angular displacement of the rotor of the motor corresponding to the first displacement signal.
  • the set target angular displacement of the output end of the speed reducer is calculated.
  • step S5400 the driver obtains the angular displacement compensation amount of the output end of the reducer according to the angular displacement of the output end of the reducer corresponding to the second displacement signal and the set target angular displacement.
  • the angular displacement compensation amount at the output end of the reducer is calculated.
  • Step S5500 it is determined whether the angular displacement compensation amount of the output end of the reducer exceeds a preset angular displacement compensation amount.
  • step S5600 is executed, and the driver obtains the angular displacement compensation amount of the rotor of the motor according to the angular displacement compensation amount of the output end of the reducer and the reduction ratio of the reducer.
  • step S5700 the driver uses the angular displacement compensation amount of the rotor of the motor to drive the motor to make the angular displacement of the output end of the reducer reach the set target angular displacement.
  • the driver determines whether the angular displacement at the output end of the reducer reaches the set target angular displacement through the second displacement signal fed back by the second encoder.
  • step S5800 is executed, and the driver determines that the angular displacement of the output end of the reducer reaches the set target angular displacement.
  • FIG. 6 is a schematic flowchart of a motor compensation method according to another embodiment of the present invention.
  • the motor compensation method may include the following steps:
  • Step S6100 After receiving the motor rotation instruction, the driver controls the motor rotation according to the feedback from the first encoder.
  • Step S6200 during the rotation of the motor, the driver obtains a first displacement signal representing the angular displacement of the rotor of the motor detected by the first encoder, and a second displacement representing the angular displacement of the output end of the reducer detected by the second encoder. Signal, reducer reduction ratio.
  • step S6300 the driver obtains the set target angular displacement of the output end of the reducer according to the reduction ratio of the reducer and the angular displacement of the rotor of the motor corresponding to the first displacement signal.
  • the set target angular displacement of the output of the reducer in this step refers to the target angular displacement of the output of the reducer corresponding to the current angular displacement of the rotor of the motor during the rotation of the motor.
  • the set target angular displacement of the output end of the speed reducer is calculated.
  • step S6400 the driver performs difference processing between the angular displacement of the output end of the reducer corresponding to the second displacement signal and the set target angular displacement to obtain the angular displacement compensation amount of the output end of the reducer.
  • the angular displacement compensation amount at the output end of the reducer is calculated.
  • step S6500 the driver determines whether the angular displacement compensation amount at the output end of the reducer exceeds a preset angular displacement compensation amount.
  • step S6600 executes step S6600, and the driver obtains the angular displacement of the rotor of the motor according to the angular displacement compensation amount of the output of the reducer, the reduction ratio of the reducer and the angular displacement of the rotor of the motor corresponding to the first displacement signal.
  • Unit compensation amount when unit angle is turned.
  • step S6700 each time the driver controls the rotor of the motor to rotate by a unit angle, it also rotates the angle corresponding to the unit compensation amount to compensate the angular displacement of the electronic rotor.
  • step S6800 is executed, and the driver determines that the current angular displacement of the output of the reducer meets the requirements. At this time, the driver currently does not need to compensate the angular displacement of the rotor of the motor.
  • the driver needs to perform the operations involved in the above steps S6200 to S6800 in a loop until the angular displacement of the output end of the reducer reaches the set target angular displacement.
  • the set target angular displacement here refers to the target angular displacement of the output of the reducer carried by the motor rotation command received by the driver.
  • FIG. 7 is a schematic flowchart of a motor compensation method according to another embodiment of the present invention.
  • the motor compensation method may include the following steps:
  • step S7100 after the driver receives the motor rotation instruction, it controls the motor rotation according to the feedback from the first encoder.
  • Step S7200 during the rotation of the motor, the driver obtains a first displacement signal representing the angular displacement of the rotor of the motor detected by the first encoder, and a second displacement representing the angular displacement of the output end of the reducer detected by the second encoder. Signal, reducer reduction ratio.
  • step S7300 the driver obtains the set target angular displacement of the output end of the reducer according to the reduction ratio of the reducer and the angular displacement of the rotor of the motor corresponding to the first displacement signal.
  • the set target angular displacement of the output of the reducer in this step refers to the target angular displacement of the output of the reducer corresponding to the current angular displacement of the rotor of the motor during the rotation of the motor.
  • the set target angular displacement of the output end of the speed reducer is calculated.
  • step S7400 the driver performs difference processing between the angular displacement of the output end of the reducer corresponding to the second displacement signal and the set target angular displacement to obtain the angular displacement compensation amount of the output end of the reducer.
  • the angular displacement compensation amount at the output end of the reducer is calculated.
  • step S7500 the driver determines whether the angular displacement compensation amount at the output end of the reducer exceeds a preset angular displacement compensation amount.
  • step S7600 the driver obtains the actual reduction ratio of the reducer according to the angular displacement of the output of the reducer corresponding to the second displacement signal and the angular displacement of the rotor of the motor corresponding to the first displacement signal.
  • Step S7700 The driver obtains the angular displacement compensation amount of the rotor of the motor according to the angular displacement compensation amount of the output end of the reducer and the actual reduction ratio of the reducer.
  • the angular displacement compensation amount of the rotor of the motor is calculated.
  • step S7800 the driver drives the motor to act according to the angular displacement compensation amount of the rotor of the motor to compensate the angular displacement of the electronic rotor.
  • step S7900 is executed, and the driver determines that the current angular displacement of the output end of the reducer meets the requirements. At this time, the driver currently does not need to compensate the angular displacement of the rotor of the motor. In the embodiment of the present invention, the driver needs to perform the operations involved in the above steps S7200 to S7900 cyclically until the angular displacement of the output end of the reducer reaches the set target angular displacement.
  • the set target angular displacement here refers to the target angular displacement of the output of the reducer carried by the motor rotation instruction received by the driver.
  • FIG. 8 is a schematic block diagram of a driver according to an embodiment of the present invention.
  • the driver includes an obtaining module 810 and a driving module 820.
  • the obtaining module 810 is configured to obtain a first displacement signal of the angular displacement of the rotor of the motor, which is detected by the first encoder, and a second displacement signal of the angular displacement of the output of the reducer, which is detected by the second encoder,
  • the input of the reducer is connected to the rotor of the motor
  • the driving module 820 is configured to drive the motor according to the first displacement signal and the second displacement signal, so that the angular displacement of the output end of the reducer reaches a set target angular displacement.
  • the driving module 820 includes an angular displacement compensation amount determining unit and a driving unit.
  • the angular displacement compensation amount determining unit is configured to obtain the angular displacement compensation amount of the rotor of the motor according to the first displacement signal and the second displacement signal.
  • the driving unit is used to drive the motor by using the angular displacement compensation amount of the rotor of the motor and the first displacement signal, so that the angular displacement of the output end of the reducer reaches the set target angular displacement.
  • the angular displacement compensation amount determining unit is further configured to obtain a reduction ratio of the reducer; and obtain the output of the reducer according to the reduction ratio of the reducer and the angular displacement of the rotor of the motor corresponding to the first displacement signal.
  • Set the target angular displacement at the end of the gearbox perform differential processing between the angular displacement at the output end of the gearbox corresponding to the second displacement signal and the set target angular displacement to obtain the angular displacement compensation amount at the output end of the gearbox; according to the output of the gearbox
  • the amount of angular displacement compensation at the end and the reduction ratio of the reducer are used to obtain the amount of angular displacement compensation of the rotor of the motor.
  • the angular displacement compensation amount determining unit is further configured to obtain a reduction ratio of the reducer; and obtain the output of the reducer according to the reduction ratio of the reducer and the angular displacement of the rotor of the motor corresponding to the first displacement signal.
  • the driving unit is further configured to drive the motor by using a unit compensation amount every time the rotor of the motor is rotated, so that the angular displacement of the output end of the reducer reaches a set target angular displacement.
  • the angular displacement compensation amount determining unit is further configured to obtain a reduction ratio of the reducer; and obtain the output of the reducer according to the reduction ratio of the reducer and the angular displacement of the rotor of the motor corresponding to the first displacement signal.
  • the angular displacement compensation amount determining unit is further configured to compare the angular displacement compensation amount at the output end of the reducer with a preset angular displacement compensation amount to obtain a comparison result; the comparison result is the When the angular displacement compensation amount exceeds the preset angular displacement compensation amount, the step of obtaining the angular displacement compensation amount of the rotor of the motor or the unit compensation amount per unit angle of rotation of the rotor of the motor is performed.
  • FIG. 9 is a schematic diagram of a hardware structure of a driver according to an embodiment of the present invention.
  • the driver may include a memory 910 and a processor 920.
  • the memory 910 is configured to store an instruction, which is used to control the processor 920 to operate to execute the motor compensation method according to an embodiment of the present invention.
  • Those skilled in the art may design the instruction according to the technical solution disclosed in the present invention. How the instructions control the processor for operation is well known in the art, so the embodiments of the present invention are not described in detail here.
  • FIG. 10 is a schematic diagram of an internal structure of a robot arm joint module according to an embodiment of the present invention.
  • the robot arm joint module includes a motor 1010, a reducer 1020, a first encoder 1030, a second encoder 1040, and a driver 1050 provided by any one of the foregoing embodiments.
  • the first encoder 1030 and the reducer 1020 are separately disposed at both ends of the motor 1010.
  • the second encoder 1040 is fixedly connected to the output of the speed reducer 1020.
  • the motor 1010 may be any of an iron core torque motor and an ironless torque motor.
  • an embodiment of the present invention provides a robot arm.
  • the robot arm includes at least one robot arm joint module shown in FIG. 10.
  • the host to which the invention relates may be a system, a method, and / or a computer program product.
  • the computer program product may include a computer-readable storage medium having computer-readable program instructions for causing a processor to implement various aspects of the present invention.
  • the computer-readable storage medium may be a tangible device that can hold and store instructions used by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electric storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Non-exhaustive list of computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) Or flash memory), static random access memory (SRAM), portable compact disc read only memory (CD-ROM), digital versatile disc (DVD), memory stick, floppy disk, mechanical encoding device, such as a printer with instructions stored thereon A protruding structure in the hole card or groove, and any suitable combination of the above.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory flash memory
  • SRAM static random access memory
  • CD-ROM compact disc read only memory
  • DVD digital versatile disc
  • memory stick floppy disk
  • mechanical encoding device such as a printer with instructions stored thereon A protruding structure in the hole card or groove, and any suitable combination of the above.
  • Computer-readable storage media used herein are not to be interpreted as transient signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (for example, light pulses through fiber optic cables), or via electrical wires Electrical signal transmitted.
  • the computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to various computing / processing devices, or downloaded to an external computer or external storage device via a network, such as the Internet, a local area network, a wide area network, and / or a wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and / or edge servers.
  • the network adapter card or network interface in each computing / processing device receives computer-readable program instructions from the network and forwards the computer-readable program instructions for storage in a computer-readable storage medium in each computing / processing device .
  • the computer program instructions for performing the operations of the present invention may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine related instructions, microcode, firmware instructions, state setting data, or in one or more programming languages.
  • Programming languages include object-oriented programming languages—such as Smalltalk, C ++, and so on—as well as regular procedural programming languages—such as "C” or similar programming languages.
  • Computer-readable program instructions may be executed entirely on a user's computer, partly on a user's computer, as a stand-alone software package, partly on a user's computer, partly on a remote computer, or entirely on a remote computer or server carried out.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as through an Internet service provider using the Internet connection).
  • LAN local area network
  • WAN wide area network
  • an electronic circuit such as a programmable logic circuit, a field-programmable gate array (FPGA), or a programmable logic array (PLA), can be personalized by using state information of computer-readable program instructions.
  • FPGA field-programmable gate array
  • PDA programmable logic array
  • the electronic circuit can Computer-readable program instructions are executed to implement various aspects of the invention.
  • These computer-readable program instructions can be provided to a processor of a general-purpose computer, special-purpose computer, or other programmable data processing device, thereby producing a machine such that when executed by a processor of a computer or other programmable data processing device , Means for implementing the functions / actions specified in one or more blocks in the flowcharts and / or block diagrams.
  • These computer-readable program instructions may also be stored in a computer-readable storage medium, and these instructions cause a computer, a programmable data processing apparatus, and / or other devices to work in a specific manner. Therefore, a computer-readable medium storing instructions includes: An article of manufacture that includes instructions to implement various aspects of the functions / acts specified in one or more blocks in the flowcharts and / or block diagrams.
  • Computer-readable program instructions can also be loaded onto a computer, other programmable data processing device, or other device, so that a series of operating steps can be performed on the computer, other programmable data processing device, or other device to produce a computer-implemented process , So that the instructions executed on the computer, other programmable data processing apparatus, or other equipment can implement the functions / actions specified in one or more blocks in the flowchart and / or block diagram.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of an instruction.
  • a module, program segment, or part of an instruction contains one or more executable functions for implementing a specified logical function. instruction.
  • the functions marked in the blocks may also occur in a different order than those marked in the drawings. For example, two consecutive blocks may actually be executed substantially in parallel, and they may sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagrams and / or flowcharts, and combinations of blocks in the block diagrams and / or flowcharts can be implemented in a dedicated hardware-based system that performs the specified function or action. , Or it can be implemented with a combination of dedicated hardware and computer instructions. It is well known to those skilled in the art that the implementation by hardware, the implementation by software, and the implementation by combination of software and hardware are all equivalent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种电机(1010)补偿方法、驱动器(1050)、机械臂关节模组及机械臂,其中,电机(1010)补偿方法包括:获取第一编码器(1030)检测到的代表电机(1010)的转子的角位移的第一位移信号,以及,获取第二编码器(1040)检测到的代表减速器(1020)的输出端的角位移的第二位移信号,其中,减速器(1020)的输入端与电机(1010)的转子连接;根据第一位移信号和第二位移信号驱动电机(1010)动作,以使减速器(1020)的输出端的角位移达到设定的目标角位移。

Description

电机补偿方法、驱动器、机械臂关节模组及机械臂 技术领域
本发明涉及机器人技术领域,更具体地,涉及一种电机补偿方法、一种驱动器、一种机械臂关节模组以及一种机械臂。
背景技术
目前,在工业生产和生活中,机器人技术发挥着越来越重要的作用。其中,机械臂作为机器人的一种,在现代化工业生产中,得到了广泛应用。机械臂关节模组作为机械臂的重要组成部分,通常包括电机、减速器、反馈装置、驱动器、制动器。
现有的机械臂通常采用单编码器作为反馈装置,并将单编码器安装在电机端。在机械臂工作过程中,该单编码器可以检测到电机的角位移,并将其检测到的电机的角位移反馈至驱动器,以完成电机的闭环控制。由于减速器长期使用后会产生累积误差,这种利用编码器反馈的电机的角位移,对电机位置进行闭环控制的方式,未考虑到减速器的累积误差的影响,影响了机械臂关节模组的工作精度。
因此,需要提供一种新的技术方案,针对上述现有技术中的技术问题进行改进。
发明内容
本发明的一个目的是提供一种用于电机角位移补偿的新技术方案,以使减速器的输出端的角位移达到设定的目标角位移。
根据本发明的第一方面,提供了一种电机补偿方法,包括:
获取第一编码器检测到的代表电机的转子的角位移的第一位移信号,以及,获取第二编码器检测到的代表减速器的输出端的角位移的第二位移 信号,其中,所述减速器的输入端与所述电机的转子连接;
根据所述第一位移信号和所述第二位移信号驱动所述电机动作,以使所述减速器的输出端的角位移达到设定的目标角位移。
可选地,所述根据所述第一位移信号和所述第二位移信号驱动所述电机动作,以使所述减速器的输出端的角位移达到设定的目标角位移,包括:
根据所述第一位移信号和所述第二位移信号,得到所述电机的转子的角位移补偿量;
利用所述电机的转子的角位移补偿量和所述第一位移信号驱动电机动作,以使所述减速器的输出端的角位移达到设定的目标角位移。
可选地,根据所述第一位移信号和所述第二位移信号,得到所述电机的转子的角位移补偿量,包括:
获取所述减速器的减速比;
根据所述减速器的减速比和所述第一位移信号对应的所述电机的转子的角位移,得到所述减速器的输出端的设定的目标角位移;
将所述第二位移信号对应的所述减速器的输出端的角位移和所述设定的目标角位移进行作差处理,得到所述减速器的输出端的角位移补偿量;
根据所述减速器的输出端的角位移补偿量和所述减速器的减速比,得到所述电机的转子的角位移补偿量。
可选地,所述根据所述第一位移信号和所述第二位移信号得到所述电机的转子的角位移补偿量,包括:
获取所述减速器的减速比;
根据所述减速器的减速比和所述第一位移信号对应的所述电机的转子的角位移,得到所述减速器的输出端的设定的目标角位移;
将所述第二位移信号对应的所述减速器的输出端的角位移和所述设定的目标角位移进行作差处理,得到所述减速器的输出端的角位移补偿量;
根据所述减速器的输出端的角位移补偿量、所述减速器的减速比和所述第一位移信号对应的所述电机的转子的角位移,得到所述电机的转子每转动单位角度时的单位补偿量;
利用所述电机的转子的角位移补偿量驱动电机动作,以使所述减速器 的输出端的角位移达到设定的目标角位移,包括:
利用所述电机的转子每转动单位角度时的单位补偿量驱动电机动作,以使所述减速器的输出端的角位移达到设定的目标角位移。
可选地,所述根据所述第一位移信号和所述第二位移信号得到所述电机的转子的角位移补偿量,包括:
获取所述减速器的减速比;
根据所述减速器的减速比和所述第一位移信号对应的所述电机的转子的角位移,得到所述减速器的输出端的设定的目标角位移;
将所述第二位移信号对应的所述减速器的输出端的角位移和所述设定的目标角位移进行作差处理,得到所述减速器的输出端的角位移补偿量;
根据所述第二位移信号对应的所述减速器的输出端的角位移和所述第一位移信号对应的所述电机的转子的角位移,得到所述减速器的实际减速比;
根据所述减速器的输出端的角位移补偿量和所述减速器的实际减速比,得到所述电机的转子的角位移补偿量。
可选地,在得到所述减速器的输出端的角位移补偿量之后,所述方法还包括:
比较所述减速器的输出端的角位移补偿量和预设角位移补偿量,得到比较结果;
在所述比较结果为所述减速器的输出端的角位移补偿量超过所述预设角位移补偿量时,才执行得到所述电机的转子的角位移补偿量或者所述电机的转子每转动单位角度时的单位补偿量的步骤。
根据本发明的第二方面,提供了一种驱动器,包括:
获取模块,用于获取第一编码器检测得到的、电机的转子的角位移的第一位移信号,以及,获取第二编码器检测得到的、减速器的输出端的角位移的第二位移信号,其中,所述减速器的输入端与所述电机的转子连接;
驱动模块,用于根据所述第一位移信号和所述第二位移信号驱动所述电机动作,以使所述减速器的输出端的角位移达到设定的目标角位移。
根据本发明的第三方面,提供了一种驱动器,包括:存储器和处理器, 所述存储器用于存储指令,所述指令用于控制所述处理器进行操作以执行根据第一方面中任一项所述的方法。
根据本发明的第四方面,提供了一种机械臂关节模组,包括电机、减速器、第一编码器、第二编码器和如第二方面或第三方面所述的驱动器。
根据本发明的第四方面,提供了一种机械臂,包括至少一组如第四方面所述的机械臂关节模组。
本发明的一个实施例的有益效果在于,根据第一编码器检测到的代表电机的转子的角位移的第一位移信号,以及第二编码器检测到的代表减速器的输出端的角位移的第二位移信号,驱动电机动作,使得减速器的输出端的角位移能够达到设定的目标角位移,降低了减速器的输出端的定位误差。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是根据本发明实施例的电机补偿方法的示意性流程图。
图2是根据本发明实施例的确定电机的转子的角位移补偿量的示意性流程图。
图3是根据本发明又一实施例的确定电机的转子的角位移补偿量的示意性流程图。
图4是根据本发明又一实施例的确定电机的转子的角位移补偿量的示意性流程图。
图5是根据本发明又一实施例的电机补偿方法的示意性流程图。
图6是根据本发明又一实施例的电机补偿方法的示意性流程图。
图7是根据本发明又一实施例的电机补偿方法的示意性流程图。
图8为根据本发明实施例的驱动器的示意性原理框图。
图9是根据本发明实施例的驱动器的硬件结构示意图。
图10是根据本发明实施例的机械臂关节模组的内部结构示意图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
<电机补偿方法实施例>
图1是根据本发明实施例的电机补偿方法的示意性流程图。
本发明实施例的电机补偿方法由驱动器实施。参照图1,电机补偿方法可以包括如下步骤:
步骤S1100,获取第一编码器检测到的代表电机的转子的角位移的第一位移信号,以及,获取第二编码器检测到的代表减速器的输出端的角位移的第二位移信号,其中,减速器的输入端与电机的转子连接。
步骤S1200,根据第一位移信号和第二位移信号驱动电机动作,以使减速器的输出端的角位移达到设定的目标角位移。
本发明实施例中,驱动器根据第一位移信号和第二位移信号,得到电机的转子的角位移补偿量,然后,利用电机的转子的角位移补偿量驱动电机动作,以使减速器的输出端的角位移达到设定的目标角位移。
在本发明的一个实施例中,驱动器接收到电机旋转指令后,根据第一 编码器的反馈控制电机旋转,直至电机的转子产生该指令对应的角位移,以带动减速器转动,使得减速器的输出端产生一定角位移。由于减速器自身的累积误差的影响,使得当前减速器的输出端的角位移小于设定的目标角位移。因此,本发明实施例中,当电机的转子完成该指令对应的角位移后,利用图2示出的方法得到电机的转子的角位移补偿量。驱动器根据该电机的转子的角位移补偿量驱动电机动作,以使减速器的输出端的角位移达到设定的目标角位移。
参见图2,电机的转子的角位移补偿量可以包括如下步骤:
步骤S2100,获取减速器的减速比。
本发明实施例中,减速器的减速比预先存储在驱动器中。
步骤S2200,根据减速器的减速比和第一位移信号对应的电机的转子的角位移,得到减速器的输出端的设定的目标角位移。
基于以下计算式(1),计算得到减速器的输出端的设定的目标角位移。
P 2′=P 1/i—计算式(1),
其中,P 1为第一位移信号对应的电机的转子的角位移,i为减速器的减速比,P 2′为减速器的输出端的设定的目标角位移。
步骤S2300,将第二位移信号对应的减速器的输出端的角位移和设定的目标角位移进行作差处理,得到减速器的输出端的角位移补偿量。
基于以下计算式(2),计算得到减速器的输出端的角位移补偿量。
ΔP 2=P 2′-P 2—计算式(1),
其中,P 2为第二位移信号对应的减速器的输出端的角位移,ΔP 2为减速器的输出端的角位移补偿量。
步骤S2400,根据减速器的输出端的角位移补偿量和减速器的减速比,得到电机的转子的角位移补偿量。
基于以下计算式(3),计算得到电机的转子的角位移补偿量。
ΔP 1=ΔP 2×i—计算式(3),
其中,ΔP 1为电机的转子的角位移补偿量。
在本发明的一个实施例中,驱动器接收到电机旋转指令后,控制电机 旋转。在电机旋转过程中,驱动器可以实时接收到第一编码器反馈的第一位移信号和第二编码器反馈的第二位移信号。理想状态下,电机的转子每转动单位角度时,减速器的输出端按照减速比转动对应的角度。但是,由于减速器自身累积误差的影响,使得电机的转子每转动单位角度时,减速器的输出端按照减速比未能转动对应的角度。因此,本发明实施例中,当电机旋转过程中,根据第一编码器反馈的第一位移信号和第二编码器反馈的第二位移信号,利用图3示出的方法得到电机的转子每转动单位角度时的单位补偿量。驱动器根据该电机的转子每转动单位角度时的单位补偿量驱动电机动作,以使减速器的输出端的角位移达到设定的目标角位移。
参见图3,电机的转子的角位移补偿量可以包括如下步骤:
步骤S3100,获取减速器的减速比。
本发明实施例中,减速器的减速比预先存储在驱动器中。
步骤S3200,根据减速器的减速比和第一位移信号对应的电机的转子的角位移,得到减速器的输出端的设定的目标角位移。
该步骤中减速器的输出端的设定的目标角位移是指在电机旋转过程中,电机的转子的当前角位移对应的减速器的输出端的目标角位移。
基于上述计算式(1),计算得到减速器的输出端的设定的目标角位移ΔP 2
步骤S3300,将第二位移信号对应的减速器的输出端的角位移和设定的目标角位移进行作差处理,得到减速器的输出端的角位移补偿量。
基于上述计算式(2),计算得到减速器的输出端的角位移补偿量ΔP 2
步骤S3400,根据减速器的输出端的角位移补偿量、减速器的减速比和第一位移信号对应的电机的转子的角位移,得到电机的转子每转动单位角度时的单位补偿量。
基于以下计算式(4),计算得到电机的转子每转动单位角度时的单位补偿量。
P 1per=(ΔP 2×i)/P 1—计算式(4),
其中,ΔP 2为减速器的输出端的角位移补偿量,i为减速器的减速比,P 1为第一位移信号对应的电机的转子的角位移,P 1per为电机的转子每转动单 位角度时的单位补偿量。
本发明实施例中,驱动器接收到电机旋转指令后,驱动电机旋转。在电机旋转过程中,由于第一编码器可以实时将第一位移信号反馈至驱动器,以及第二编码器可以实时将第二位移信号反馈至驱动器,这样驱动器可以实时利用图3示出的方法得到电子的转子每转动单位角度时的单位补偿量。
本发明实施例中,在得到电机的转子每转动单位角度时的单位补偿量之后,利用电机的转子每转动单位角度时的单位补偿量驱动电机动作,以使减速器的输出端的角位移达到设定的目标角位移。
例如,在得到电机的转子每转动单位角度时的单位补偿量之后,在驱动器控制电机旋转时,电机的转子每转动单位角度时,还转动单位补偿量对应的角度,以使减速器的输出端的角位移达到设定的目标角位移。
在本发明的一个实施例中,驱动器接收到电机旋转指令后,控制电机旋转。在电机旋转过程中,驱动器可以实时接收到第一编码器反馈的第一位移信号和第二编码器反馈的第二位移信号。理想状态下,电机的转子每转动单位角度时,减速器的输出端按照减速比转动对应的角度。但是,由于减速器自身的累积误差的影响,使得减速器的实际减速比和预存在驱动器中的减速比是不同的。因此,本发明实施例中,当电机旋转过程中,根据第一编码器反馈的第一位移信号和第二编码器反馈的第二位移信号,利用图4示出的方法得到电机的转子每转动单位角度时的单位补偿量。驱动器根据该电机的转子每转动单位角度时的单位补偿量驱动电机动作,以使减速器的输出端的角位移达到设定的目标角位移。
参见图4,电机的转子的角位移补偿量可以包括如下步骤:
步骤S4100,获取减速器的减速比。
本发明实施例中,减速器的减速比预先存储在驱动器中。
步骤S4200,根据减速器的减速比和第一位移信号对应的电机的转子的角位移,得到减速器的输出端的设定的目标角位移。
该步骤中减速器的输出端的设定的目标角位移是指在电机旋转过程中,电机的转子的当前角位移对应的减速器的输出端的目标角位移。
基于上述计算式(1),计算得到减速器的输出端的设定的目标角位移P 1per
步骤S4300,将第二位移信号对应的减速器的输出端的角位移和设定的目标角位移进行作差处理,得到减速器的输出端的角位移补偿量。
基于上述计算式(2),计算得到减速器的输出端的角位移补偿量ΔP 2
步骤S4400,根据第二位移信号对应的减速器的输出端的角位移和第一位移信号对应的电机的转子的角位移,得到减速器的实际减速比。
基于以下计算式(5),计算得到减速器的实际减速比。
i =P 2/P 1—计算式(5),
其中,P 2为第二位移信号对应的减速器的输出端的角位移,P 1为第一位移信号对应的电机的转子的角位移,i 为减速器的实际减速比。
步骤S4500,根据减速器的输出端的角位移补偿量和减速器的实际减速比,得到电机的转子的角位移补偿量。
基于以下计算式(6),计算得到电机的转子的角位移补偿量。
ΔP 1=ΔP 2×i —计算式(6),
其中,ΔP 2为减速器的输出端的角位移补偿量,ΔP 1为电机的转子的角位移补偿量。
本发明实施例中,驱动器接收到电机旋转指令后,驱动电机旋转。在电机旋转过程中,由于第一编码器可以实时将第一位移信号反馈至驱动器,以及第二编码器可以实时将第二位移信号反馈至驱动器,这样驱动器可以实时得到减速器的实际减速比。再结合图4示出的方法,可以实时得到电子的转子的角位移补偿量。
在本发明的一个实施例中,在利用图2、图3或者图4示出的方法得到减速器的输出端的角位移补偿量之后,比较减速器的输出端的角位移补偿量和预设角位移补偿量,得到比较结果。
在比较结果为减速器的输出端的角位移补偿量超过预设角位移补偿量时,才执行得到电机的转子的角位移补偿量或者电机的转子每转动单位角度时的单位补偿量的步骤。
<例子1>
图5是根据本发明实施例的电机补偿方法的另一种示意性流程图。
根据图5所示,该电机补偿方法可以包括以下步骤:
步骤S5100,驱动器接收电机旋转指令后,根据第一编码器的反馈控制电机旋转,直至电机的转子产生该指令对应的角位移。
步骤S5200,在电机的转子产生该指令对应的角位移时,驱动器获取第一编码器检测到的代表电机的转子的角位移的第一位移信号、第二编码器检测到的代表减速器的输出端的角位移的第二位移信号、减速器的减速比。
步骤S5300,驱动器根据减速器的减速比和第一位移信号对应的电机的转子的角位移,得到减速器的输出端的设定的目标角位移。
基于上述计算式(1),计算得到减速器的输出端的设定的目标角位移。
步骤S5400,驱动器根据第二位移信号对应的减速器的输出端的角位移和设定的目标角位移,得到减速器的输出端的角位移补偿量。
基于上述计算式(2),计算得到减速器的输出端的角位移补偿量。
步骤S5500,判断减速器的输出端的角位移补偿量是否超过预设角位移补偿量。
若步骤S5500的判断结果为是时,执行步骤S5600,驱动器根据减速器的输出端的角位移补偿量和减速器的减速比,得到电机的转子的角位移补偿量。
基于上述计算式(3),得到电机的转子的角位移补偿量。
步骤S5700,驱动器利用电机的转子的角位移补偿量驱动电机动作,以使减速器的输出端的角位移达到设定的目标角位移。
本发明实施例中,驱动器通过第二编码器反馈的第二位移信号确定减速器的输出端的角位移是否达到设定的目标角位移。
若步骤S5500的判断结果为否时,执行步骤S5800,驱动器确定减速器的输出端的角位移达到设定的目标角位移。
<例子2>
图6是根据本发明又一实施例的电机补偿方法的示意性流程图。
根据图6所示,该电机补偿方法可以包括以下步骤:
步骤S6100,驱动器接收电机旋转指令后,根据第一编码器的反馈控制电机旋转。
步骤S6200,在电机旋转过程中,驱动器获取第一编码器检测到的代表电机的转子的角位移的第一位移信号、第二编码器检测到的代表减速器的输出端的角位移的第二位移信号、减速器的减速比。
步骤S6300,驱动器根据减速器的减速比和第一位移信号对应的电机的转子的角位移,得到减速器的输出端的设定的目标角位移。
该步骤中减速器的输出端的设定的目标角位移是指在电机旋转过程中,电机的转子的当前角位移对应的减速器的输出端的目标角位移。
基于上述计算式(1),计算得到减速器的输出端的设定的目标角位移。
步骤S6400,驱动器将第二位移信号对应的减速器的输出端的角位移和设定的目标角位移进行作差处理,得到减速器的输出端的角位移补偿量。
基于上述计算式(2),计算得到减速器的输出端的角位移补偿量。
步骤S6500,驱动器判断减速器的输出端的角位移补偿量是否超过预设角位移补偿量。
若步骤S6500的判断结果为是时,执行步骤S6600,驱动器根据减速器的输出端的角位移补偿量、减速器的减速比和第一位移信号对应的电机的转子的角位移,得到电机的转子每转动单位角度时的单位补偿量。
步骤S6700,驱动器控制电机的转子每转动单位角度时,还转动单位补偿量对应的角度,以对电子的转子的角位移进行补偿。
若步骤S6500的判断结果为否时,执行步骤S6800,驱动器确定减速器的输出端的当前角位移符合要求。此时,驱动器当前不需要对电机的转子的角位移进行补偿。
本发明实施例中,驱动器需要循环执行上述步骤S6200至步骤S6800涉及的操作,直至减速器的输出端的角位移达到设定的目标角位移。此处 的设定的目标角位移是指驱动器接收到的电机旋转指令携带的减速器的输出端的目标角位移。
<例子3>
图7是根据本发明又一实施例的电机补偿方法的示意性流程图。
根据图7所示,该电机补偿方法可以包括以下步骤:
步骤S7100,驱动器接收电机旋转指令后,根据第一编码器的反馈控制电机旋转。
步骤S7200,在电机旋转过程中,驱动器获取第一编码器检测到的代表电机的转子的角位移的第一位移信号、第二编码器检测到的代表减速器的输出端的角位移的第二位移信号、减速器的减速比。
步骤S7300,驱动器根据减速器的减速比和第一位移信号对应的电机的转子的角位移,得到减速器的输出端的设定的目标角位移。
该步骤中减速器的输出端的设定的目标角位移是指在电机旋转过程中,电机的转子的当前角位移对应的减速器的输出端的目标角位移。
基于上述计算式(1),计算得到减速器的输出端的设定的目标角位移。
步骤S7400,驱动器将第二位移信号对应的减速器的输出端的角位移和设定的目标角位移进行作差处理,得到减速器的输出端的角位移补偿量。
基于上述计算式(2),计算得到减速器的输出端的角位移补偿量。
步骤S7500,驱动器判断减速器的输出端的角位移补偿量是否超过预设角位移补偿量。
若步骤S7500的判断结果为是时,执行步骤S7600,驱动器根据第二位移信号对应的减速器的输出端的角位移和第一位移信号对应的电机的转子的角位移,得到减速器的实际减速比。
基于上述计算式(5),计算得到减速器的实际减速比。
步骤S7700,驱动器根据减速器的输出端的角位移补偿量和减速器的实际减速比,得到电机的转子的角位移补偿量。
基于上述计算式(6),计算得到电机的转子的角位移补偿量。
步骤S7800,驱动器根据电机的转子的角位移补偿量,驱动电机动作,以对电子的转子的角位移进行补偿。
若步骤S7500的判断结果为否时,执行步骤S7900,驱动器确定减速器的输出端的当前角位移符合要求。此时,驱动器当前不需要对电机的转子的角位移进行补偿。本发明实施例中,驱动器需要循环执行上述步骤S7200至步骤S7900涉及的操作,直至减速器的输出端的角位移达到设定的目标角位移。此处的设定的目标角位移是指驱动器接收到的电机旋转指令携带的减速器的输出端的目标角位移。
<驱动器>
图8为根据本发明实施例的驱动器的示意性原理框图。
根据图8所示,本发明实施例的驱动器包括获取模块810和驱动模块820。
获取模块810用于获取第一编码器检测得到的、电机的转子的角位移的第一位移信号,以及,获取第二编码器检测得到的、减速器的输出端的角位移的第二位移信号,其中,减速器的输入端与电机的转子连接
驱动模块820用于根据第一位移信号和第二位移信号驱动电机动作,以使减速器的输出端的角位移达到设定的目标角位移。
在本发明的一个实施例中,驱动模块820包括角位移补偿量确定单元和驱动单元。
角位移补偿量确定单元用于根据第一位移信号和第二位移信号,得到电机的转子的角位移补偿量。
驱动单元用于利用电机的转子的角位移补偿量和第一位移信号驱动电机动作,以使减速器的输出端的角位移达到设定的目标角位移。
在本发明的一个实施例中,角位移补偿量确定单元进一步用于获取减速器的减速比;根据减速器的减速比和第一位移信号对应的电机的转子的角位移,得到减速器的输出端的设定的目标角位移;将第二位移信号对应的减速器的输出端的角位移和设定的目标角位移进行作差处理,得到减速器的输出端的角位移补偿量;根据减速器的输出端的角位移补偿量和减速 器的减速比,得到电机的转子的角位移补偿量。
在本发明的一个实施例中,角位移补偿量确定单元进一步用于获取减速器的减速比;根据减速器的减速比和第一位移信号对应的电机的转子的角位移,得到减速器的输出端的设定的目标角位移;将第二位移信号对应的减速器的输出端的角位移和设定的目标角位移进行作差处理,得到减速器的输出端的角位移补偿量;根据减速器的输出端的角位移补偿量、减速器的减速比和第一位移信号对应的电机的转子的角位移,得到电机的转子每转动单位角度时的单位补偿量。
本发明实施例中,驱动单元进一步用于利用电机的转子每转动单位角度时的单位补偿量驱动电机动作,以使减速器的输出端的角位移达到设定的目标角位移。
在本发明的一个实施例中,角位移补偿量确定单元进一步用于获取减速器的减速比;根据减速器的减速比和第一位移信号对应的电机的转子的角位移,得到减速器的输出端的设定的目标角位移;将第二位移信号对应的减速器的输出端的角位移和设定的目标角位移进行作差处理,得到减速器的输出端的角位移补偿量;根据第二位移信号对应的减速器的输出端的角位移和第一位移信号对应的电机的转子的角位移,得到减速器的实际减速比;根据减速器的输出端的角位移补偿量和减速器的实际减速比,得到电机的转子的角位移补偿量。
在本发明的一个实施例中,角位移补偿量确定单元还进一步用于比较减速器的输出端的角位移补偿量和预设角位移补偿量,得到比较结果;在比较结果为减速器的输出端的角位移补偿量超过预设角位移补偿量时,才执行得到电机的转子的角位移补偿量或者电机的转子每转动单位角度时的单位补偿量的步骤。
图9是根据本发明实施例的驱动器的硬件结构示意图。
根据图9所示,驱动器可以包括存储器910和处理器920。
存储器910用于存储指令,该指令用于控制处理器920进行操作以执行根据本发明实施例的电机补偿方法,本领域技术人员可以根据本发明所公开的技术方案设计指令。指令是如何控制处理器进行操作,这是本领域 的公知,故本发明实施例在此不再详细描述。
<机械臂关节模组和机械臂>
图10是根据本发明实施例的机械臂关节模组的内部结构示意图。
根据图10所示,机械臂关节模组包括电机1010、减速器1020、第一编码器1030、第二编码器1040和上述任一实施例提供的驱动器1050。
本发明实施例中,第一编码器1030与减速器1020分设在电机1010的两端。第二编码器1040与减速器1020的输出端固定连接。
本发明实施例中,电机1010可以采用有铁芯力矩电机和无铁芯力矩电机中任一种。
基于同一发明构思,本发明的一个实施例提供了一种机械臂。该机械臂包括至少一组图10示出的机械臂关节模组。
本发明涉及的主机可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本发明的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/ 或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本发明操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本发明的各个方面。
这里参照根据本发明实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本发明的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的 计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本发明的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。对于本领域技术人员来说公知的是,通过硬件方式实现、通过软件方式实现以及通过软件和硬件结合的方式实现都是等价的。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种电机补偿方法,其特征在于,包括:
    获取第一编码器检测到的代表电机的转子的角位移的第一位移信号,以及,获取第二编码器检测到的代表减速器的输出端的角位移的第二位移信号,其中,所述减速器的输入端与所述电机的转子连接;
    根据所述第一位移信号和所述第二位移信号驱动所述电机动作,以使所述减速器的输出端的角位移达到设定的目标角位移。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一位移信号和所述第二位移信号驱动所述电机动作,以使所述减速器的输出端的角位移达到设定的目标角位移,包括:
    根据所述第一位移信号和所述第二位移信号,得到所述电机的转子的角位移补偿量;
    利用所述电机的转子的角位移补偿量和所述第一位移信号驱动电机动作,以使所述减速器的输出端的角位移达到设定的目标角位移。
  3. 根据权利要求2所述的方法,其特征在于,根据所述第一位移信号和所述第二位移信号,得到所述电机的转子的角位移补偿量,包括:
    获取所述减速器的减速比;
    根据所述减速器的减速比和所述第一位移信号对应的所述电机的转子的角位移,得到所述减速器的输出端的设定的目标角位移;
    将所述第二位移信号对应的所述减速器的输出端的角位移和所述设定的目标角位移进行作差处理,得到所述减速器的输出端的角位移补偿量;
    根据所述减速器的输出端的角位移补偿量和所述减速器的减速比,得到所述电机的转子的角位移补偿量。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述第一位移信号和所述第二位移信号得到所述电机的转子的角位移补偿量,包括:
    获取所述减速器的减速比;
    根据所述减速器的减速比和所述第一位移信号对应的所述电机的转子 的角位移,得到所述减速器的输出端的设定的目标角位移;
    将所述第二位移信号对应的所述减速器的输出端的角位移和所述设定的目标角位移进行作差处理,得到所述减速器的输出端的角位移补偿量;
    根据所述减速器的输出端的角位移补偿量、所述减速器的减速比和所述第一位移信号对应的所述电机的转子的角位移,得到所述电机的转子每转动单位角度时的单位补偿量;
    利用所述电机的转子的角位移补偿量驱动电机动作,以使所述减速器的输出端的角位移达到设定的目标角位移,包括:
    利用所述电机的转子每转动单位角度时的单位补偿量驱动电机动作,以使所述减速器的输出端的角位移达到设定的目标角位移。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述第一位移信号和所述第二位移信号得到所述电机的转子的角位移补偿量,包括:
    获取所述减速器的减速比;
    根据所述减速器的减速比和所述第一位移信号对应的所述电机的转子的角位移,得到所述减速器的输出端的设定的目标角位移;
    将所述第二位移信号对应的所述减速器的输出端的角位移和所述设定的目标角位移进行作差处理,得到所述减速器的输出端的角位移补偿量;
    根据所述第二位移信号对应的所述减速器的输出端的角位移和所述第一位移信号对应的所述电机的转子的角位移,得到所述减速器的实际减速比;
    根据所述减速器的输出端的角位移补偿量和所述减速器的实际减速比,得到所述电机的转子的角位移补偿量。
  6. 根据权利要求3-5中任一所述的方法,其特征在于,在得到所述减速器的输出端的角位移补偿量之后,所述方法还包括:
    比较所述减速器的输出端的角位移补偿量和预设角位移补偿量,得到比较结果;
    在所述比较结果为所述减速器的输出端的角位移补偿量超过所述预设角位移补偿量时,才执行得到所述电机的转子的角位移补偿量或者所述电机的转子每转动单位角度时的单位补偿量的步骤。
  7. 一种驱动器,其特征在于,包括:
    获取模块,用于获取第一编码器检测得到的、电机的转子的角位移的第一位移信号,以及,获取第二编码器检测得到的、减速器的输出端的角位移的第二位移信号,其中,所述减速器的输入端与所述电机的转子连接;
    驱动模块,用于根据所述第一位移信号和所述第二位移信号驱动所述电机动作,以使所述减速器的输出端的角位移达到设定的目标角位移。
  8. 一种驱动器,其特征在于,包括:存储器和处理器,所述存储器用于存储指令,所述指令用于控制所述处理器进行操作以执行根据权利要求1-6中任一项所述的方法。
  9. 一种机械臂关节模组,其特征在于,包括电机、减速器、第一编码器、第二编码器和如权利要求7或8所述的驱动器。
  10. 一种机械臂,其特征在于,包括至少一组如权利要求9所述的机械臂关节模组。
PCT/CN2019/100506 2018-08-16 2019-08-14 电机补偿方法、驱动器、机械臂关节模组及机械臂 WO2020034977A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810937210.1A CN109108967B (zh) 2018-08-16 2018-08-16 电机补偿方法、驱动器、机械臂关节模组及机械臂
CN201810937210.1 2018-08-16

Publications (1)

Publication Number Publication Date
WO2020034977A1 true WO2020034977A1 (zh) 2020-02-20

Family

ID=64852499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100506 WO2020034977A1 (zh) 2018-08-16 2019-08-14 电机补偿方法、驱动器、机械臂关节模组及机械臂

Country Status (2)

Country Link
CN (1) CN109108967B (zh)
WO (1) WO2020034977A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109108967B (zh) * 2018-08-16 2021-03-30 深圳市歌尔泰克科技有限公司 电机补偿方法、驱动器、机械臂关节模组及机械臂
CN112692819B (zh) * 2019-10-22 2022-08-19 深圳市大族机器人有限公司 编码器组位置补偿方法、机器人模组位置补偿方法
CN114102594B (zh) * 2021-11-25 2023-11-14 深圳市越疆科技股份有限公司 机械臂关节及初始位置确定方法、装置、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122509A (ja) * 2010-12-06 2012-06-28 Ihi Corp 波動歯車減速機の角度伝達誤差補正方法及び装置
CN204235546U (zh) * 2014-09-04 2015-04-01 深圳市得意自动化科技有限公司 机械臂控制装置
CN105666483A (zh) * 2016-03-18 2016-06-15 杭州新松机器人自动化有限公司 一种涉及机器人的关节编码器布置及减速机误差抵消方法
CN107538494A (zh) * 2016-06-29 2018-01-05 沈阳新松机器人自动化股份有限公司 一种基于转矩传感器和编码器的机器人控制方法及系统
CN109108967A (zh) * 2018-08-16 2019-01-01 深圳市歌尔泰克科技有限公司 电机补偿方法、驱动器、机械臂关节模组及机械臂

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162780B (zh) * 2010-12-20 2013-03-20 长春设备工艺研究所 扭力轴数控强力扭转测试试验台
CN102320040B (zh) * 2011-08-11 2014-02-26 南昌大学 一种自主调节自重平衡的力反馈交互设备
CN102507060A (zh) * 2011-10-13 2012-06-20 西北工业大学 用于被动式电动加载系统的力矩校准装置
CN102591205B (zh) * 2012-02-29 2013-07-31 清华大学 化学机械抛光传输机器人的递归优化控制系统
US10029366B2 (en) * 2014-11-21 2018-07-24 Canon Kabushiki Kaisha Control device for motor drive device, control device for multi-axial motor, and control method for motor drive device
JP2016221615A (ja) * 2015-05-29 2016-12-28 キヤノン株式会社 ロボット装置の診断方法、およびロボットシステム
CN106182002B (zh) * 2016-07-29 2018-10-16 微创(上海)医疗机器人有限公司 机械臂关节的控制系统以及控制方法
CN107689754B (zh) * 2017-09-21 2019-12-27 中国科学院长春光学精密机械与物理研究所 一种舵机位置信息处理方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122509A (ja) * 2010-12-06 2012-06-28 Ihi Corp 波動歯車減速機の角度伝達誤差補正方法及び装置
CN204235546U (zh) * 2014-09-04 2015-04-01 深圳市得意自动化科技有限公司 机械臂控制装置
CN105666483A (zh) * 2016-03-18 2016-06-15 杭州新松机器人自动化有限公司 一种涉及机器人的关节编码器布置及减速机误差抵消方法
CN107538494A (zh) * 2016-06-29 2018-01-05 沈阳新松机器人自动化股份有限公司 一种基于转矩传感器和编码器的机器人控制方法及系统
CN109108967A (zh) * 2018-08-16 2019-01-01 深圳市歌尔泰克科技有限公司 电机补偿方法、驱动器、机械臂关节模组及机械臂

Also Published As

Publication number Publication date
CN109108967B (zh) 2021-03-30
CN109108967A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
WO2020034977A1 (zh) 电机补偿方法、驱动器、机械臂关节模组及机械臂
JP6888659B2 (ja) モータモジュールおよびモータ認証方法
WO2020135389A1 (zh) 电机补偿方法、装置、驱动器及系统
US11148282B2 (en) Control device for motor drive device, control device for multi-axial motor, and control method for motor drive device
KR100889961B1 (ko) 스텝 모터 위치 오차 보정 방법 및 시스템
EP3823156B1 (en) Motor initial phase and phase sequence detection method and permanent magnet synchronous motor control system
US10632615B2 (en) Servo driving method, apparatus, and robot thereof
US11110607B2 (en) Servo output shaft rotational angle calibration method and system and robot using the same
US10429815B2 (en) Motor control device, position control system, and motor control method
WO2017185669A1 (zh) 传感器的校准参数的配置方法及电子设备
US9507338B2 (en) Motor control device and correction data generation method in same
WO2021036619A1 (zh) 电流电压调节方法、装置、设备及存储介质
CN104065314A (zh) 一种电机位置传感器零位自动学习系统及其零位标定方法
JP2012003489A (ja) シミュレーション装置
JP6844617B2 (ja) モータモジュール、モータステップ動作制御システム、およびモータ制御装置
US9602030B2 (en) Motor drive circuit and motor thereof
JP2017205835A (ja) マニピュレータ装置の制御装置、マニピュレータ装置の制御方法及びマニピュレータ装置の制御プログラム
JP7113195B2 (ja) モータ駆動装置
TW201533748A (zh) 編碼器之歸零位置設定方法及其電腦程式
Louis et al. Implementation of closed loop based scan mechanism
CN112003536A (zh) 一种转矩补偿方法、存储介质及控制器
US9855656B2 (en) Robot control device for controlling motor-driven robot
KR20160012602A (ko) 모션 제어 시스템 및 그 설정 방법
CN104683587A (zh) 一种移动终端及其摄像头对焦方法和装置
US20210211074A1 (en) Driving apparatus of semiconductor manufacturing equipment and driving method of semiconductor manufacturing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849968

Country of ref document: EP

Kind code of ref document: A1