WO2020034890A1 - Mobile robot region-crossing method, device, and scheduling system - Google Patents

Mobile robot region-crossing method, device, and scheduling system Download PDF

Info

Publication number
WO2020034890A1
WO2020034890A1 PCT/CN2019/099767 CN2019099767W WO2020034890A1 WO 2020034890 A1 WO2020034890 A1 WO 2020034890A1 CN 2019099767 W CN2019099767 W CN 2019099767W WO 2020034890 A1 WO2020034890 A1 WO 2020034890A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
mobile robot
positioning
jump
information
Prior art date
Application number
PCT/CN2019/099767
Other languages
French (fr)
Chinese (zh)
Inventor
缪松华
葛俊
Original Assignee
杭州海康机器人技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康机器人技术有限公司 filed Critical 杭州海康机器人技术有限公司
Publication of WO2020034890A1 publication Critical patent/WO2020034890A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means

Definitions

  • the present application relates to the field of automatic adaptive navigation technology, and in particular, to a method, a device, and a scheduling system for a mobile robot across regions.
  • the mobile robot can use sensors to obtain information in its environment, and match the obtained information with a pre-established map to determine the location of the mobile robot on the map.
  • a pre-established map to determine the location of the mobile robot on the map.
  • the sensors used by the mobile robot during positioning and the information it needs to acquire may be different.
  • Common map types can include two-dimensional code maps and maps based on SLAM (simultaneous localization and mapping) technologies (hereinafter referred to as SLAM maps).
  • the two-dimensional code map carries the corresponding relationship between the two-dimensional code identification information and coordinate information, and a plurality of two-dimensional codes are pasted in the mobile robot's active area in advance.
  • the mobile robot can use the image sensor to collect the two-dimensional code identification on the ground. Information and match it with a QR code map to locate the coordinates of the location.
  • the SLAM map can contain the position information of each marker in the active area.
  • the mobile robot can use a laser rangefinder to measure the distance to multiple markers in the active area. Based on the obtained distance and the position in the SLAM map The information determines the location of the mobile robot in the SLAM map.
  • the purpose of the embodiments of the present application is to provide a mobile robot cross-area operation, device, and scheduling system, so as to enable the mobile robot to perform cross-area work between active areas with different map types.
  • Specific technical solutions are as follows:
  • a mobile robot cross-region method includes:
  • the positioning position of the mobile robot in the first map is at a preset transfer position corresponding to the second map, determining a jump position corresponding to the transfer position in the second map, the first map A map used for positioning the mobile robot, the positioning methods corresponding to the first map and the second map are different;
  • the determining a jump position corresponding to the handover position in the second map includes:
  • the method further includes:
  • the method before the determining a jump position corresponding to the transfer position in the second map, the method further includes :
  • the controlling the mobile robot to move to the actual spatial position indicated by the target position in the second map based on the positioning method corresponding to the second map includes:
  • the first map and the second map do not have the same coordinate position, and the method further includes:
  • the coordinates of the mobile robot in a global coordinate system are determined based on the coordinates of the positioning position of the mobile robot in any of the first map and the second map, and identification information of the map, and the identification information is used to represent the map The offset between the map coordinate system and the global coordinate system.
  • the switching the positioning method of the mobile robot to a positioning method corresponding to the second map includes:
  • the sensor that collects positioning information is switched from a sensor corresponding to the first map to a sensor corresponding to the second map.
  • a mobile robot cross-region device in a second aspect of the embodiments of the present application, includes:
  • the map handover module determines a jump position corresponding to the handover position in the second map after the positioning position of the mobile robot in the first map is at a preset handover position corresponding to the second map.
  • a map is a map used by the mobile robot for positioning, and the positioning methods corresponding to the first map and the second map are different;
  • the coordinate jump module determines the jump position as a positioning position of the mobile robot in the second map, and switches a positioning mode of the mobile robot to a positioning mode corresponding to the second map.
  • the map handover module is specifically configured to find a jump position in the second map that corresponds to the handover position in advance.
  • the apparatus further includes a movement control module, configured to determine the jump position as the mobile robot in the second map. After locating the position and switching the positioning method of the mobile robot to the positioning method corresponding to the second map, controlling the mobile robot to move to a target position in the second map based on the positioning method corresponding to the second map The actual spatial position represented.
  • the movement control module is further configured to determine a jump corresponding to the handover position in the second map. Before turning the location, plan a path from the starting position in the first map to the target position in the second map, and the path passes through the transfer position corresponding to the second map in the first map;
  • the movement control module is specifically configured to control the mobile robot to move to the actual spatial position indicated by the target position in the second map based on the positioning method corresponding to the second map.
  • the first map does not have the same coordinate position as the second map
  • the device further includes a global positioning module for The coordinates of the positioning position in any of the map and the second map, and the identification information of the map determine the coordinates of the mobile robot in the global coordinate system, and the identification information is used to indicate the map coordinate system of the map and the location of the map. Describes the offset between global coordinate systems.
  • the coordinate jump module is specifically configured to switch a sensor that collects positioning information from a sensor corresponding to the first map to a sensor corresponding to the first map.
  • the sensor corresponding to the second map is described.
  • a mobile robot cross-region scheduling system includes:
  • the scheduling service module obtains the location information, the target location information, and the first map and the second map of the mobile robot.
  • the first map is preset with a transfer position corresponding to the second map.
  • a jump position corresponding to the transfer position is preset in the two maps, and the transfer position is configured with switching information, and the switching information is used to indicate a positioning method corresponding to the second map, and the first map and The positioning methods corresponding to the second map are different;
  • the path planning module controls the mobile robot from the positioning information based on the positioning method corresponding to the first map based on the location information, the target location information, and the first map and the second map.
  • the indicated actual space position is moved to the actual space position indicated by the transfer position; and the jump position is determined as a positioning position of the mobile robot in the second map;
  • the scheduling service module switches the positioning mode of the mobile robot to a navigation mode corresponding to the second map indicated by the switching information;
  • the path planning module controls the mobile robot to move from the actual spatial position indicated by the transfer position to the actual spatial position indicated by the target position information based on the positioning mode of the second map.
  • an electronic device including:
  • the processor is configured to implement any one of the mobile robot cross-region methods described above when executing a program stored in the memory.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, any one of the foregoing is implemented.
  • Cross-region method for mobile robots any one of the foregoing is implemented.
  • a computer program product containing instructions is provided, which, when run on a computer, causes the computer to execute the mobile robot cross-region method according to any one of the first aspect.
  • the mobile robot cross-region method, device, and scheduling system provided in the embodiments of the present application can determine the positioning position of the mobile robot in the second map at the handover position, and switch the positioning method of the mobile robot to the positioning method corresponding to the second map. So that the mobile robot can still position normally after crossing the area, and then implement the mobile robot to perform cross-area operations between active areas with different map types.
  • the implementation of any product or method of this application does not necessarily need to achieve all the advantages described above at the same time.
  • FIG. 1 is a schematic flowchart of a mobile robot cross-region method according to an embodiment of the present application
  • FIG. 2a is a schematic flowchart of a map construction method according to an embodiment of the present application.
  • FIG. 2b is a schematic layout diagram of an active area provided by an embodiment of the present application.
  • 2c is a schematic layout diagram of a multi-region mosaic map provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a map construction method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for moving a mobile robot across regions according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a system for a method for moving a mobile robot across regions according to an embodiment of the present application
  • 6a is a schematic structural diagram of a mobile robot cross-region device according to an embodiment of the present application.
  • FIG. 6b is another schematic structural diagram of a mobile robot cross-region device according to an embodiment of the present application.
  • 6c is another schematic structural diagram of a mobile robot cross-region device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a mobile robot cross-region scheduling system according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of an electronic device according to an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a mobile robot cross-region method according to an embodiment of the present application, which may include:
  • the positioning position of the mobile robot may refer to the position of the mobile robot in the map used for positioning by the sensor positioning.
  • the sensors used for mobile robot positioning may be different.
  • the active area indicated by the first map is hereinafter referred to as the first active area
  • the active area indicated by the second map is referred to as the second active area.
  • the first map may be a two-dimensional code map or a SLAM map.
  • the positioning method corresponding to the second map is different from the positioning method corresponding to the first map.
  • the first map is a SLAM map
  • the second map may be a two-dimensional code map
  • the first map is a SLAM map and the second map is a two-dimensional code map. It can be understood that the first map is a two-dimensional code map and the second map is a SLAM map. The principles are the same.
  • the first activity area is the new factory area in the smart factory
  • the second activity area is the old factory area in the smart factory.
  • SLAM technology may not be mature, so the second map uses a QR code map.
  • SLAM maps can be established for the new plant because SLAM technology is mature.
  • the transfer position may be one or more coordinate positions in the first map.
  • the first map may also include transfer positions corresponding to maps of other active areas.
  • the positioning position of the mobile robot at the transfer position may mean that the coordinates of the positioning position of the mobile robot are the same as the coordinates of one transfer position among the multiple transfer positions.
  • the actual spatial position represented by the transfer location is located in the transfer area between the first active area and the second active area. Therefore, the actual spatial location represented by the transfer location also belongs to the second active area, so there is a representation of the actual space in the second map
  • the coordinate position of the position which is the jump position corresponding to the transfer position in the second map.
  • the actual spatial position represented by the transfer position may be determined based on the coordinates of the transfer position, and the coordinate position corresponding to the calculated actual space position in the second map may be used as the transfer position.
  • the corresponding jump position may also be determined in advance as the jump position corresponding to the transfer position. After the positioning position of the mobile robot is in the transfer position preset for the second map in the first map, the jump position corresponding to the transfer position is determined by searching.
  • the transfer position is the coordinate position in the first map
  • the jump position is the coordinate position in the second map. Therefore, the transfer position and the jump position are two different coordinate positions, but the actual spatial positions represented by the two coordinate positions Are consistent.
  • the jump position is determined as the positioning position of the mobile robot in the second map, but the positioning position of the mobile robot is determined in the second map, and the position of the mobile robot in the actual space has not changed as a result.
  • switching the positioning method of the mobile robot to a positioning method corresponding to the second map may be to switch a sensor that collects positioning information from a sensor corresponding to the first map to a corresponding second map. Sensors.
  • the mobile robot taking the first map as a SLAM map and the second map as a two-dimensional code map, for example, the mobile robot can be controlled to turn off its own laser rangefinder and turn on the image sensor to capture the two-dimensional code on the ground.
  • the identification information of the two-dimensional code of the ground collected by the image sensor is used as the positioning information of the mobile robot.
  • the laser rangefinder may not be turned off, but the distance information measured by the laser rangefinder is not used as the positioning information.
  • mobile robots may need to work across active areas of different map types.
  • the mobile robot may need to transfer the goods located in the first active area to the storage location in the second active area.
  • the mobile robot crosses the area from the first active area to the second It may not be possible to locate after the moving area, so the goods cannot be moved to the storage location of the second moving area.
  • the position of the mobile robot in the second map can be directly determined through the correspondence between the transfer position in the first map and the jump position in the second map, and the mobile robot's positioning mode can be switched to the second The corresponding positioning method of the map, so that the mobile robot can still position normally after crossing the area, and then implement the mobile robot to perform cross-area operations between active areas with different map types.
  • FIG. 2 is a schematic flowchart of a map establishment method according to an embodiment of the present application, which may include:
  • a first map is established according to a first coordinate system for a first active area
  • a second map is established according to a second coordinate system for a second active area.
  • the establishment of the first map and the establishment of the second map may be performed synchronously, or the first map may be established first and then the second map according to actual needs, or the second map may be established before the first map is established.
  • the first map and the establishment of the second map may also be performed alternately.
  • the first active area is a new factory area
  • the first map is a SLAM map
  • the second active area is an old factory area
  • the second map is a two-dimensional code map.
  • the first map and the second map are established according to the same coordinate system, the same coordinate position in the first map will exist as in the second map.
  • there is a relative offset between the first coordinate system and the second coordinate system that is, a coordinate origin of the first coordinate system and a displacement amount between the coordinate origin of the second coordinate system, and the first coordinate system
  • the offset is ( ⁇ x, ⁇ y, ⁇ )
  • the coordinates of the coordinate origin of the second coordinate system may be ( ⁇ x, ⁇ y), and the x-axis of the second coordinate system and the The angle between the x-axes of a coordinate system is ⁇ .
  • the size of the offset depends on the size of the interface between the first active area and the second active area. The larger the transfer area, the larger the offset may be, and the smaller the transfer area, the smaller the offset may be.
  • the relative offset between the first coordinate system and the second coordinate system should satisfy the condition: that the same coordinate position does not exist in the first map and the second map in the global coordinate system.
  • the global coordinate system may be a preset coordinate system, and the global coordinate system may be the same as the first coordinate system or the second coordinate system.
  • the switching position belongs to the transfer area, so there are coordinate positions in the first map and the second map indicating the switching position.
  • One or more positions in the transfer area can be set as the switching position.
  • the first map is a SLAM map and the second map is a QR code map.
  • one or more of the transfer areas can be pasted with two The grid of dimension codes is used as the switching position.
  • S203 Determine the coordinate position of the switching position in the first map based on the first type of positioning information of the switching position, as the transfer position corresponding to the second map in the first map, and determine the switching based on the second type of positioning information of the switching position.
  • the coordinate position of the position in the second map is used as the jump position corresponding to the transfer position.
  • the first type of positioning information is positioning information used by the first map
  • the second type of positioning information is positioning information used by the second map.
  • the first type of positioning information may be laser ends of lasers emitted by the laser rangefinder of the mobile robot in the first active area in all directions The distance between the point and the mobile robot.
  • the second type of positioning information may be identification information of a two-dimensional code.
  • the mobile robot can emit lasers in multiple directions through its own laser rangefinder. These lasers hit the objects in the scene, such as walls, tables and chairs, etc., which will generate laser end points.
  • the laser rangefinder can measure each laser. The distance from the end point to the mobile robot.
  • the mobile robot can be placed in a switching position, and the mobile robot can measure the laser end point of the laser emitted by the laser range finder in the first active area with the mobile robot through its own laser range finder. The distance between them is used as the first type of positioning information, and the mobile robot collects the identification information of the two-dimensional code on the ground of the switching position through its own image sensor as the second type of positioning information.
  • the first type of positioning information corresponds to a coordinate position in the first map
  • the second type of positioning information corresponds to a coordinate position in the second map.
  • the actual spatial positions represented by these two coordinate positions are switching positions.
  • the coordinate positions can be regarded as two topological points of the switching position in the first map and the second map.
  • the coordinate position of the switching position in the second map as the jump position of the coordinate position of the switching position in the first map may be to establish an association between the two coordinate positions.
  • the first map and the second map may be stitched into one map, and the coordinated position of the switching position in the second map and the coordinate position of the switching position in the first map may be combined in the stitched map. Connected to indicate that the two coordinate positions are related.
  • the position in the second map that is connected to the transfer position of the first map may be used as the jump position. It can effectively reduce the amount of calculation required to determine the jump position, further shorten the map switching time, and improve the efficiency of mobile robots' cross-region operations.
  • a map of the mobile robot's active area can be displayed on a preset display device, and the positioning position of the mobile robot can be displayed on the map, so that users can more clearly understand the status of the mobile robot.
  • a map used for mobile robot positioning can be displayed on a display device, but the user can only understand the position of the mobile robot in the displayed map through the map, and lacks knowledge of the global position of the mobile robot.
  • the first map and the second map are established according to two different coordinate systems, and the same coordinate position does not exist in the first map and the second map in the global coordinate system, the first map can be The first map and the second map are displayed in a large map based on the global coordinate system, so that the user can better understand the global position of the mobile robot and better manage the mobile robot.
  • FIG. 2b is a schematic diagram of the distribution of active areas in the actual space, where 100 and 300 together form a first active area, 200 and 300 together form a second active area, and 300 is a first activity. At the interface between the area and the second live area, 310 is a switching position.
  • FIG. 2c is a schematic diagram of a layout structure of a map in the case of FIG. 2b. 210 is the first map, 220 is the second map, 211 is the topological point of the switching location 310 on the first map, and 221 is the topological point of the switching location 310 on the second map. 211 and 221 represent switching positions 310 in real space.
  • a positioning manner corresponding to the first map may be used to determine a positioning position of the mobile robot in the first map, and the positioning position may represent a position of the mobile robot in the first active area.
  • the first active area may be only one active area among multiple active areas of the mobile robot. In some usage scenarios, in order to better manage the mobile robot, it may be necessary to determine the coordinates of the mobile robot in the global coordinate system.
  • the method may include:
  • the map coordinates refer to coordinates of a positioning position in the first map in a map coordinate system of the first map.
  • the global coordinate system can be a coordinate system selected according to actual needs, and it is a coordinate system used in mobile robot global positioning.
  • there is an offset between the global coordinate system and the map coordinate system of the first map that is, the coordinate origin of the global coordinate system is different from the coordinate origin of the map coordinate system, and / or, the base vector of the global coordinate system and The basis vectors of the map coordinate system are inconsistent.
  • the global coordinate system may be consistent with the map coordinate system of the first map.
  • the map identifier can be expressed in the form of an offset, or it can be expressed in a map code that has a corresponding relationship with the offset, such as letters, numbers, etc.
  • the map identifier of the first map can be AA, 11 or ( ⁇ x, ⁇ y, ⁇ ). It can be understood It is true that whether the map identifier of the first map is AA, 11 or ( ⁇ x, ⁇ y, ⁇ ), the offset of the first map represented by the map identifier is ( ⁇ x, ⁇ y, ⁇ ).
  • the coordinates of the positioning position of the mobile robot can more intuitively represent the position of the mobile robot.
  • all active areas of the mobile robot can be placed in the first quadrant of the global coordinate system. In this case, when the mobile robot is at any position in any active area, the global coordinates of the mobile robot are not negative number.
  • the offset indicated by the map identifier of the first map is ( ⁇ x 1 , ⁇ y 1 , ⁇ 1 ), and the map coordinates of the positioning position of the mobile robot in the first map are (x 1 , y 1 ), Then the coordinates (x 0 , y 0 ) of the mobile robot in the global coordinate system can be calculated according to the following formula:
  • the mobile robot can be globally located in the same way.
  • Global positioning may be performed periodically or irregularly.
  • the global positioning may be performed on the mobile robot every preset interval, or the global positioning may be performed on the mobile robot after the user inputs a global positioning instruction.
  • the mobile robot cross-region movement will be described in combination with application scenarios.
  • This method can be applied to a mobile robot controller, which can be integrated in a mobile robot. It can also be independent of the mobile robot.
  • the method can include:
  • Controlling the mobile robot to move to the actual spatial position indicated by the transfer position corresponding to the second map in the first map may be controlling the mobile robot to move to the actual spatial position indicated by any transfer position according to the planned path, or It is the actual spatial position indicated by moving to a specific transfer position.
  • the actual spatial position indicated by the transfer position corresponding to the second map in the first map is located at the transfer area between the first active area and the second active area.
  • the movement instructions can be sent to the controller by the control platform or remotely sent by the client to the controller.
  • S404 Control the mobile robot to move to the actual spatial position indicated by the target position in the second map based on the positioning method corresponding to the second map.
  • the actual spatial position indicated by the target position in the second map is the destination of the movement instruction.
  • the second map as a two-dimensional code map as an example
  • the position of the mobile robot in the second active area can be determined based on the second map and the two-dimensional code identification information collected by the mobile robot's image sensor.
  • the position and the position of the target position control the mobile robot to move so that the mobile robot moves to the target position according to the planned path.
  • handover information may be configured in advance at the transfer position of the first map, and the handover information may be used to indicate a positioning method corresponding to the second map.
  • the positioning method of the mobile robot may be switched to the positioning method corresponding to the second map according to the switching information preset in the handover position.
  • the process can include:
  • the scheduling service module downloads map information of all active areas of the mobile robot.
  • the map information includes map identifiers of the maps corresponding to the multiple active areas.
  • the mobile robot sends registration information to the scheduling service module.
  • the dispatch service module After receiving the registration information, the dispatch service module sends a Uniform Resource Locator (URL) of the map to the mobile robot.
  • URL Uniform Resource Locator
  • two-dimensional codes can be pasted in the active areas that require two-dimensional code navigation, and the two-dimensional codes can contain map information, it is only necessary to send the URL of the SLAM map to the mobile robot.
  • the mobile robot sends map coordinates of the positioning position in the first map to the scheduling service module.
  • the SLAM map information obtained by the mobile robot according to the URL of the SLAM map may be used to determine the map coordinates of the positioning position of the SLAM map in the first map, and send the map coordinates to Scheduling service module.
  • the scheduling service module performs global positioning on the mobile robot based on the map coordinates and the map identifier of the first map.
  • the scheduling server registers the mobile robot and multiple active areas in the space where the mobile robot is located.
  • the scheduling service module obtains the target location of the mobile robot across the region.
  • the target position is a coordinate position in the second map, and the actual spatial position indicated by the target position is not in a junction area between the first active area and the second active area.
  • the path planning module plans a path of the mobile robot to an actual spatial position indicated by the target position.
  • the path includes at least one transfer position and a jump position corresponding to the transfer position.
  • the path may include a sub-path of the mobile robot in the first map, a sub-path of the mobile robot in the second map, and a sub-path from the transfer position to the jump position, where in the first map
  • the end point of the sub-path is the preset transfer position corresponding to the second map in the first map
  • the start position of the sub-path in the second map is the jump position corresponding to the transfer position.
  • the end point of the sub-path is the target position in the second map.
  • the path planning module controls the mobile robot to move to the actual spatial position indicated by the transfer position in the path.
  • the path planning module sends a map switching instruction to the mobile robot.
  • the map switching instruction may include switching information, where the switching information may be used to indicate a positioning mode of the second map and may also be used to indicate an offset of the second map.
  • the switching information may be pre-configured to a transfer position in the first map, and the switching information may be a map identifier of the second map.
  • the switching information may be "12", indicating that the second map is an identifier.
  • the map switching instruction may not include the switching information, and the switching information and the map switching instruction are respectively sent to the mobile robot by the path planning module.
  • the mobile robot After receiving the map switching instruction, the mobile robot determines the jump position corresponding to the transfer position in the second map, and sends the coordinates of the jump position in the second map to the scheduling service module.
  • the scheduling service module switches the positioning method of the mobile robot to the positioning method corresponding to the second map, and determines the jump position in the second map as the positioning position of the mobile robot in the second map.
  • the scheduling service module may determine the positioning mode corresponding to the second map based on the handover information sent by the path planning module.
  • the switching information refer to the description in the foregoing S510, and details are not described herein again.
  • the path planning module controls the mobile robot to move from the actual space position indicated by the jump position to the actual space position indicated by the target position based on the positioning method corresponding to the second map.
  • FIG. 6a shows a map switching device provided by an embodiment of the present application, including:
  • the map handover module 601 determines the jump position corresponding to the handover position in the second map after presetting the handover position corresponding to the second map at the positioning position of the mobile robot in the first map.
  • the first map is for mobile robot positioning
  • the maps used, the positioning methods corresponding to the first map and the second map are different;
  • the coordinate jump module 602 determines the jump position as the positioning position of the mobile robot on the second map, and switches the positioning mode of the mobile robot to the positioning mode corresponding to the second map.
  • the map transfer module 601 is specifically configured to find a jump position in the second map that corresponds to the transfer location in advance.
  • the device further includes a movement control module 603 for determining the jump position as the positioning position of the mobile robot in the second map, and switching the positioning method of the mobile robot to the second map After the corresponding positioning method, the mobile robot is controlled to move to the actual spatial position indicated by the target position in the second map based on the positioning method corresponding to the second map.
  • a movement control module 603 for determining the jump position as the positioning position of the mobile robot in the second map, and switching the positioning method of the mobile robot to the second map After the corresponding positioning method, the mobile robot is controlled to move to the actual spatial position indicated by the target position in the second map based on the positioning method corresponding to the second map.
  • the movement control module 603 is further configured to plan a path from a starting position in the first map to a target position in the second map before determining a jump position corresponding to the transfer position in the second map. Passing the handover position corresponding to the second map in the first map;
  • the movement control module 603 is specifically configured to control the mobile robot to move to the actual spatial position indicated by the target position in the second map based on the positioning method corresponding to the second map.
  • the device further includes a global positioning module 604, which is used to locate the position in any of the first map and the second map based on the mobile robot.
  • the identification information of the map determine the coordinates of the mobile robot in the global coordinate system, and the identification information is used to represent the offset between the map coordinate system of the map and the global coordinate system.
  • the coordinate jump module 602 is specifically configured to switch a sensor that collects positioning information from a sensor corresponding to the first map to a sensor corresponding to the second map.
  • FIG. 7 illustrates a mobile robot cross-region scheduling system according to an embodiment of the present application.
  • the system includes:
  • the dispatch service module 701 obtains the location information, target location information of the mobile robot, and a first map and a second map.
  • the first map is preset with a transfer position corresponding to the second map
  • the second map is preset with The jump position corresponding to the handover position.
  • the handover position is configured with switching information, which is used to indicate a positioning method corresponding to the second map.
  • the positioning methods corresponding to the first map and the second map are different.
  • the dispatch service module 701 sends the location information, the target location information, and the first map and the second map to the path planning module 702;
  • the path planning module 702 controls the mobile robot to move from the actual spatial position indicated by the positioning information to the actual position indicated by the transfer position based on the positioning method corresponding to the first map based on the location information, the target location information, and the first map and the second map. Spatial position; and determining the jump position as the positioning position of the mobile robot in the second map;
  • the scheduling service module 701 switches the positioning mode of the mobile robot to the navigation mode corresponding to the second map indicated by the switching information;
  • the path planning module 702 controls the mobile robot to move from the actual spatial position indicated by the transfer position to the actual spatial position indicated by the target position information based on the positioning mode of the second map.
  • the scheduling service module 701 and the path planning module 702 may be physical devices or virtual modules implemented by software. In other embodiments, a physical device or software may be used to implement the scheduling service module and Functions of the path planning module.
  • An embodiment of the present application further provides an electronic device, as shown in FIG. 8, including:
  • the memory 801 is configured to store a computer program
  • the processor 802 is configured to execute the following steps when executing a program stored in the memory 801:
  • the first map is a map used for mobile robot positioning. , The positioning methods corresponding to the first map and the second map are different;
  • the jump position is determined as the positioning position of the mobile robot in the second map, and the positioning mode of the mobile robot is switched to the positioning mode corresponding to the second map.
  • determining the jump position corresponding to the transfer position in the second map includes:
  • the method further includes:
  • the mobile robot is controlled to move to an actual spatial position represented by a target position in the second map based on a positioning method corresponding to the second map.
  • the following steps may also be implemented:
  • Driving a mobile system of the mobile robot so that the mobile robot moves to an actual spatial position represented by a target position in the second map based on a positioning method corresponding to the second map includes:
  • the mobile system of the mobile robot is driven so that the mobile robot moves to the actual spatial position indicated by the target position in the second map based on the positioning method corresponding to the second map.
  • the first map and the second map do not have the same coordinate position, and the following steps may also be implemented:
  • the identification information is used to represent the map coordinate system of the map. The offset from the global coordinate system.
  • switching the positioning method of the mobile robot to the positioning method corresponding to the second map includes:
  • the sensor that collects the positioning information is switched from a sensor corresponding to the first map to a sensor corresponding to the second map.
  • the memory mentioned in the above electronic device may include random access memory (Random Access Memory, RAM), and may also include non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk memory.
  • RAM Random Access Memory
  • NVM Non-Volatile Memory
  • the memory may also be at least one storage device located far from the foregoing processor.
  • the aforementioned processor may be a general-purpose processor, including a central processing unit (CPU), a network processor (NP), etc .; it may also be a digital signal processor (Digital Signal Processing, DSP), special integration Circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU central processing unit
  • NP network processor
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • a computer-readable storage medium stores instructions, and when the computer-readable storage medium is run on a computer, the computer executes any of the foregoing embodiments.
  • Cross-region method for mobile robots
  • a computer program product containing instructions is also provided.
  • the computer program product is run on a computer, the computer is caused to execute the mobile robot cross-region method in any of the above embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (Solid State Disk (SSD)

Abstract

A mobile robot region-crossing method, a device, and a scheduling system. The method comprises: S101, when the location at where a mobile robot is positioned in a first map (210) is located at a preset handover location corresponding to a second map (220), determining a jump location in the second map corresponding to the handover location, the first map being a map used for positioning the mobile robot, positioning schemes corresponding to the first map and to the second map being different; and S102, determining the jump location as the location at where the mobile robot is positioned in the second map, and switching the positioning scheme for the mobile robot to the positioning scheme corresponding to the second map. By determining, via the handover location, the location at where the mobile robot is positioned in the second map, and switching the positioning scheme for the mobile robot to the position scheme corresponding to the second map, implemented is the mobile robot performing a cross-region operation between activity regions of different map types.

Description

一种移动机器人跨区域方法、装置、调度系统Cross-region method, device and scheduling system for mobile robot
本申请要求于2018年8月15日提交中国专利局、申请号为201810930261.1、申请名称为“一种移动机器人跨区域方法、装置、调度系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims the priority of a Chinese patent application filed with the Chinese Patent Office on August 15, 2018, with application number 201810930261.1, and with the application name "A Cross-region Method, Device, and Dispatching System for Mobile Robots", the entire contents of which are hereby incorporated by reference Incorporated in this application.
技术领域Technical field
本申请涉及自动适配导航技术领域,特别是涉及一种移动机器人跨区域方法、装置、调度系统。The present application relates to the field of automatic adaptive navigation technology, and in particular, to a method, a device, and a scheduling system for a mobile robot across regions.
背景技术Background technique
移动机器人可以利用传感器获取所处环境中的信息,并将获取到的信息与预先建立的地图进行匹配,以确定移动机器人在地图中的定位位置。根据预先建立的地图的类型不同,移动机器人在定位的过程中所使用的传感器以及所需要获取的信息可能不同。The mobile robot can use sensors to obtain information in its environment, and match the obtained information with a pre-established map to determine the location of the mobile robot on the map. Depending on the type of pre-established map, the sensors used by the mobile robot during positioning and the information it needs to acquire may be different.
常见的地图类型可以包括二维码地图以及基于SLAM(simultaneous localization and mapping,即时定位与地图构建)技术构建的地图(以下简称SLAM地图)。其中,二维码地图中携带有二维码标识信息与坐标信息的对应关系,并预先在移动机器人的活动区域中粘贴多个二维码,移动机器人可以利用图像传感器采集地面二维码的标识信息,并与二维码地图进行匹配,进而定位位置的坐标。SLAM地图中可以包含有活动区域中各个标志物的位置信息,移动机器人可以利用激光测距仪测量得到与活动区中多个标志物之间的距离,基于获取到的距离与SLAM地图中的位置信息确定移动机器人在SLAM地图中的定位位置。Common map types can include two-dimensional code maps and maps based on SLAM (simultaneous localization and mapping) technologies (hereinafter referred to as SLAM maps). The two-dimensional code map carries the corresponding relationship between the two-dimensional code identification information and coordinate information, and a plurality of two-dimensional codes are pasted in the mobile robot's active area in advance. The mobile robot can use the image sensor to collect the two-dimensional code identification on the ground. Information and match it with a QR code map to locate the coordinates of the location. The SLAM map can contain the position information of each marker in the active area. The mobile robot can use a laser rangefinder to measure the distance to multiple markers in the active area. Based on the obtained distance and the position in the SLAM map The information determines the location of the mobile robot in the SLAM map.
出于实际需求,两个相邻的活动区域,预先建立的地图的类型可能不同。移动机器人在其中一个活动区域的定位方式无法适用另一个活动区域,从而移动机器人跨区域后无法定位。因此相关技术中,移动机器人只能够在这两个区域中的一个区域进行作业。如何实现移动机器人在地图类型不同的活动区域之间进行跨区域作业成为亟待解决的技术问题。Due to actual needs, the types of pre-built maps of two adjacent active areas may be different. The positioning method of the mobile robot in one of the active areas cannot be applied to the other active area, so the mobile robot cannot locate after crossing the area. Therefore, in the related art, the mobile robot can only perform work in one of the two areas. How to implement mobile robots to perform cross-region operations between active areas with different map types has become an urgent technical problem.
发明内容Summary of the Invention
本申请实施例的目的在于提供一种移动机器人跨区域作业、装置、调度 系统,以实现移动机器人在地图类型不同的活动区域之间进行跨区域作业。具体技术方案如下:The purpose of the embodiments of the present application is to provide a mobile robot cross-area operation, device, and scheduling system, so as to enable the mobile robot to perform cross-area work between active areas with different map types. Specific technical solutions are as follows:
在本申请实施例的第一方面,提供了一种移动机器人跨区域方法,所述方法包括:In a first aspect of the embodiments of the present application, a mobile robot cross-region method is provided, and the method includes:
在移动机器人在第一地图中的定位位置处于预设的与第二地图对应的交接位置后,确定所述所述第二地图中与所述交接位置对应的跳转位置,所述第一地图为所述移动机器人定位所使用的地图,所述第一地图和所述第二地图所对应的定位方式不同;After the positioning position of the mobile robot in the first map is at a preset transfer position corresponding to the second map, determining a jump position corresponding to the transfer position in the second map, the first map A map used for positioning the mobile robot, the positioning methods corresponding to the first map and the second map are different;
将所述跳转位置确定为所述移动机器人在所述第二地图中的定位位置,并将所述移动机器人的定位方式切换为所述第二地图对应的定位方式。Determining the jump position as the positioning position of the mobile robot in the second map, and switching the positioning mode of the mobile robot to a positioning mode corresponding to the second map.
结合第一方面,在第一种可能的实现方式中,所述确定所述第二地图中与所述交接位置对应的跳转位置,包括:With reference to the first aspect, in a first possible implementation manner, the determining a jump position corresponding to the handover position in the second map includes:
在所述第二地图中查找与所述交接位置预先存在对应关系的跳转位置。Looking for a jump position in the second map that has a corresponding relationship with the transfer position in advance.
结合第一方面,在第二种可能的实现方式中,在所述将所述跳转位置确定为所述移动机器人的在所述第二地图中的定位位置,并将所述移动机器人的定位方式切换为所述第二地图对应的定位方式之后,所述方法还包括:With reference to the first aspect, in a second possible implementation manner, in the determining the jump position as a positioning position of the mobile robot in the second map, and positioning the mobile robot After the mode is switched to the positioning mode corresponding to the second map, the method further includes:
控制所述移动机器人基于与所述第二地图对应的定位方式移动至第二地图中的目标位置所表示的实际空间位置。Controlling the mobile robot to move to an actual spatial position indicated by a target position in the second map based on a positioning manner corresponding to the second map.
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,在所述确定所述第二地图中与所述交接位置对应的跳转位置之前,所述方法还包括:With reference to the second possible implementation manner of the first aspect, in a third possible implementation manner, before the determining a jump position corresponding to the transfer position in the second map, the method further includes :
规划从第一地图中的起始位置至第二地图中的目标位置的路径,所述路径经过所述第一地图中与所述第二地图对应的交接位置;Planning a path from a starting position in the first map to a target position in the second map, the path passing through a transfer position corresponding to the second map in the first map;
控制所述移动机器人基于与所述第一地图对应的定位方式,按照所述路径移动至所述交接位置所表示的实际空间位置;Controlling the mobile robot to move to an actual spatial position indicated by the transfer position according to the path based on a positioning method corresponding to the first map;
所述控制所述移动机器人基于与所述第二地图对应的定位方式移动至第二地图中的目标位置所表示的实际空间位置,包括:The controlling the mobile robot to move to the actual spatial position indicated by the target position in the second map based on the positioning method corresponding to the second map includes:
控制所述移动机器人基于与所述第二地图对应的定位方式,按照所述路径移动至第二地图中的目标位置所表示的实际空间位置。Controlling the mobile robot to move to an actual spatial position indicated by a target position in the second map based on the positioning method corresponding to the second map.
结合第一方面,在第四种可能的实现方式中,所述第一地图与所述第二地图不存在相同的坐标位置,所述方法还包括:With reference to the first aspect, in a fourth possible implementation manner, the first map and the second map do not have the same coordinate position, and the method further includes:
基于移动机器人在第一地图和第二地图中任一地图中定位位置的坐标,以及该地图的标识信息,确定所述移动机器人在全局坐标系中的坐标,所述标识信息用于表示该地图的地图坐标系与所述全局坐标系之间的偏移量。The coordinates of the mobile robot in a global coordinate system are determined based on the coordinates of the positioning position of the mobile robot in any of the first map and the second map, and identification information of the map, and the identification information is used to represent the map The offset between the map coordinate system and the global coordinate system.
结合第一方面,在第五种可能的实现方式中,所述将所述移动机器人的定位方式切换为所述第二地图对应的定位方式,包括:With reference to the first aspect, in a fifth possible implementation manner, the switching the positioning method of the mobile robot to a positioning method corresponding to the second map includes:
将采集定位信息的传感器,从与所述第一地图对应的传感器切换为与所述第二地图对应的传感器。The sensor that collects positioning information is switched from a sensor corresponding to the first map to a sensor corresponding to the second map.
在本申请实施例的第二方面,提供了一种移动机器人跨区域装置,所述装置包括:In a second aspect of the embodiments of the present application, a mobile robot cross-region device is provided, and the device includes:
地图交接模块,在移动机器人在第一地图中的定位位置处于预设的与第二地图对应的交接位置后,确定所述第二地图中与所述交接位置对应的跳转位置,所述第一地图为所述移动机器人定位所使用的地图,所述第一地图和所述第二地图所对应的定位方式不同;The map handover module determines a jump position corresponding to the handover position in the second map after the positioning position of the mobile robot in the first map is at a preset handover position corresponding to the second map. A map is a map used by the mobile robot for positioning, and the positioning methods corresponding to the first map and the second map are different;
坐标跳转模块,将所述跳转位置确定为所述移动机器人在所述第二地图中的定位位置,并将所述移动机器人的定位方式切换为所述第二地图对应的定位方式。The coordinate jump module determines the jump position as a positioning position of the mobile robot in the second map, and switches a positioning mode of the mobile robot to a positioning mode corresponding to the second map.
结合第二方面,在第一种可能的实现方式中,所述地图交接模块具体用于在所述第二地图中查找与所述交接位置预先存在对应关系的跳转位置。With reference to the second aspect, in a first possible implementation manner, the map handover module is specifically configured to find a jump position in the second map that corresponds to the handover position in advance.
结合第二方面,在第二种可能的实现方式中,所述装置还包括移动控制模块,用于在所述将所述跳转位置确定为所述移动机器人的在所述第二地图中的定位位置,并将所述移动机器人的定位方式切换为所述第二地图对应的定位方式之后,控制所述移动机器人基于与所述第二地图对应的定位方式移动至第二地图中的目标位置所表示的实际空间位置。With reference to the second aspect, in a second possible implementation manner, the apparatus further includes a movement control module, configured to determine the jump position as the mobile robot in the second map. After locating the position and switching the positioning method of the mobile robot to the positioning method corresponding to the second map, controlling the mobile robot to move to a target position in the second map based on the positioning method corresponding to the second map The actual spatial position represented.
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述移动控制模块,还用于在所述确定所述第二地图中与所述交接位置对应的跳转位置之前,规划从第一地图中的起始位置至第二地图中的目标位置的路径,所述路径经过所述第一地图中与所述第二地图对应的交接位置;With reference to the second possible implementation manner of the second aspect, in a third possible implementation manner, the movement control module is further configured to determine a jump corresponding to the handover position in the second map. Before turning the location, plan a path from the starting position in the first map to the target position in the second map, and the path passes through the transfer position corresponding to the second map in the first map;
控制所述移动机器人基于与所述第一地图对应的定位方式,按照所述路径移动至所述交接位置所表示的实际空间位置;Controlling the mobile robot to move to an actual spatial position indicated by the transfer position according to the path based on a positioning method corresponding to the first map;
所述移动控制模块,具体用于控制所述移动机器人基于与所述第二地图对应的定位方式,按照所述路径移动至第二地图中的目标位置所表示的实际空间位置。The movement control module is specifically configured to control the mobile robot to move to the actual spatial position indicated by the target position in the second map based on the positioning method corresponding to the second map.
结合第二方面,在第四种可能的实现方式中,所述第一地图与所述第二地图不存在相同的坐标位置,所述装置还包括全局定位模块,用于基于移动机器人在第一地图和第二地图中任一地图中定位位置的坐标,以及该地图的标识信息,确定所述移动机器人在全局坐标系中的坐标,所述标识信息用于表示该地图的地图坐标系与所述全局坐标系之间的偏移量。With reference to the second aspect, in a fourth possible implementation manner, the first map does not have the same coordinate position as the second map, and the device further includes a global positioning module for The coordinates of the positioning position in any of the map and the second map, and the identification information of the map determine the coordinates of the mobile robot in the global coordinate system, and the identification information is used to indicate the map coordinate system of the map and the location of the map. Describes the offset between global coordinate systems.
结合本申请实施例的第二方面,在第五种可能的实现方式中,所述坐标跳转模块具体用于将采集定位信息的传感器,从与所述第一地图对应的传感器切换为与所述第二地图对应的传感器。With reference to the second aspect of the embodiments of the present application, in a fifth possible implementation manner, the coordinate jump module is specifically configured to switch a sensor that collects positioning information from a sensor corresponding to the first map to a sensor corresponding to the first map. The sensor corresponding to the second map is described.
在本申请实施例提供的第三方面,提供了一种移动机器人跨区域调度系统,所述系统包括:In a third aspect provided by the embodiments of the present application, a mobile robot cross-region scheduling system is provided, and the system includes:
调度服务模块、路径规划模块;Scheduling service module and path planning module;
所述调度服务模块获取移动机器人的所处位置信息、目标位置信息,以及第一地图和第二地图,所述第一地图中预设有与所述第二地图对应的交接位置,所述第二地图中预设有与所述交接位置对应的跳转位置,所述交接位置配置有切换信息,所述切换信息用于表示所述第二地图对应的定位方式,所述第一地图和所述第二地图所对应的定位方式不同;The scheduling service module obtains the location information, the target location information, and the first map and the second map of the mobile robot. The first map is preset with a transfer position corresponding to the second map. A jump position corresponding to the transfer position is preset in the two maps, and the transfer position is configured with switching information, and the switching information is used to indicate a positioning method corresponding to the second map, and the first map and The positioning methods corresponding to the second map are different;
所述调度服务模块将所述所处位置信息、所述目标位置信息以及所述第一地图和所述第二地图发送至所述路径规划模块;Sending, by the scheduling service module, the location information, the target location information, and the first map and the second map to the path planning module;
所述路径规划模块基于所述所处位置信息、所述目标位置信息以及所述第一地图和所述第二地图,控制所述移动机器人基于第一地图对应的定位方式从所述定位信息所表示的实际空间位置移动至所述交接位置所表示的实际空间位置;并将所述跳转位置确定为所述移动机器人在所述第二地图中的定位位置;The path planning module controls the mobile robot from the positioning information based on the positioning method corresponding to the first map based on the location information, the target location information, and the first map and the second map. The indicated actual space position is moved to the actual space position indicated by the transfer position; and the jump position is determined as a positioning position of the mobile robot in the second map;
所述调度服务模块将所述移动机器人的定位方式切换为所述切换信息所表示的所述第二地图对应的导航方式;The scheduling service module switches the positioning mode of the mobile robot to a navigation mode corresponding to the second map indicated by the switching information;
所述路径规划模块控制所述移动机器人基于所述第二地图的定位方式从所述交接位置所表示的实际空间位置移动至所述目标位置信息所表示的实际空间位置。The path planning module controls the mobile robot to move from the actual spatial position indicated by the transfer position to the actual spatial position indicated by the target position information based on the positioning mode of the second map.
在本申请实施例提供的第四方面,提供了一种电子设备,包括:In a fourth aspect provided by the embodiments of the present application, an electronic device is provided, including:
存储器,用于存放计算机程序;Memory for storing computer programs;
处理器,用于执行存储器上所存放的程序时,实现上述任一所述的移动机器人跨区域方法。The processor is configured to implement any one of the mobile robot cross-region methods described above when executing a program stored in the memory.
在本申请实施例提供的第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述任一所述的移动机器人跨区域方法。In a fifth aspect provided by the embodiments of the present application, a computer-readable storage medium is provided. The computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, any one of the foregoing is implemented. Cross-region method for mobile robots.
在本申请实施例提供的第六方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面中任一所述的移动机器人跨区域方法。In a sixth aspect provided by the embodiments of the present application, a computer program product containing instructions is provided, which, when run on a computer, causes the computer to execute the mobile robot cross-region method according to any one of the first aspect.
本申请实施例提供的移动机器人跨区域方法、装置、调度系统,可以通过在交接位置确定移动机器人在第二地图中的定位位置,并将移动机器人定位方式切换为第二地图对应的定位方式,以使得移动机器人在跨区域后仍然能正常定位,进而实行移动机器人在地图类型不同的活动区域之间进行跨区域作业。当然,实施本申请的任一产品或方法并不一定需要同时达到以上所述的所有优点。The mobile robot cross-region method, device, and scheduling system provided in the embodiments of the present application can determine the positioning position of the mobile robot in the second map at the handover position, and switch the positioning method of the mobile robot to the positioning method corresponding to the second map. So that the mobile robot can still position normally after crossing the area, and then implement the mobile robot to perform cross-area operations between active areas with different map types. Of course, the implementation of any product or method of this application does not necessarily need to achieve all the advantages described above at the same time.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application or related technologies, the drawings used in the description of the embodiments or related technologies will be briefly introduced below. Obviously, the drawings in the following description are only Some embodiments of the application, for those of ordinary skill in the art, can obtain other drawings according to the drawings without paying creative labor.
图1为本申请实施例提供的移动机器人跨区域方法的一种流程示意图;FIG. 1 is a schematic flowchart of a mobile robot cross-region method according to an embodiment of the present application; FIG.
图2a为本申请实施例提供的地图构建方法的一种流程示意图;2a is a schematic flowchart of a map construction method according to an embodiment of the present application;
图2b为本申请实施例提供的活动区域的一种布局示意图;FIG. 2b is a schematic layout diagram of an active area provided by an embodiment of the present application; FIG.
图2c为本申请实施例提供的多区域拼接地图的一种布局示意图;2c is a schematic layout diagram of a multi-region mosaic map provided by an embodiment of the present application;
图3为本申请实施例提供的地图构建方法的一种流程示意图;3 is a schematic flowchart of a map construction method according to an embodiment of the present application;
图4为本申请实施例提供的移动机器人跨区域移动方法的一种流程示意图;4 is a schematic flowchart of a method for moving a mobile robot across regions according to an embodiment of the present application;
图5为本申请实施例提供的移动机器人跨区域移动方法的一种系统流程示意图;5 is a schematic flowchart of a system for a method for moving a mobile robot across regions according to an embodiment of the present application;
图6a为本申请实施例提供的移动机器人跨区域装置的一种结构示意图;6a is a schematic structural diagram of a mobile robot cross-region device according to an embodiment of the present application;
图6b为本申请实施例提供的移动机器人跨区域装置的另一种结构示意图;FIG. 6b is another schematic structural diagram of a mobile robot cross-region device according to an embodiment of the present application; FIG.
图6c为本申请实施例提供的移动机器人跨区域装置的另一种结构示意图;6c is another schematic structural diagram of a mobile robot cross-region device according to an embodiment of the present application;
图7为本申请实施例提供的移动机器人跨区调度系统的一种结构示意图;7 is a schematic structural diagram of a mobile robot cross-region scheduling system according to an embodiment of the present application;
图8为本申请实施例提供的电子设备的一种流程示意图。FIG. 8 is a schematic flowchart of an electronic device according to an embodiment of the present application.
具体实施方式detailed description
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In the following, the technical solutions in the embodiments of the present application will be clearly and completely described with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by a person of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application.
参见图1,图1所示为本申请实施例提供的移动机器人跨区域方法的一种流程示意图,可以包括:Referring to FIG. 1, FIG. 1 is a schematic flowchart of a mobile robot cross-region method according to an embodiment of the present application, which may include:
S101,在移动机器人在第一地图中的定位位置处于预设的与第二地图对应的交接位置后,确定第二地图中与交接位置对应的跳转位置。S101. After the positioning position of the mobile robot in the first map is at a preset transfer position corresponding to the second map, determine a jump position corresponding to the transfer position in the second map.
其中,移动机器人的定位位置可以是指移动机器人通过传感器定位得到的,自身在定位所使用的地图中的位置。根据移动机器人定位所使用的地图的类型不同,移动机器人定位时所使用的传感器可能不同。为描述方便,下文称第一地图所表示的活动区域为第一活动区域,第二地图所表示的活动区域为第二活动区域。第一活动区域与第二活动区域存在交接区域,即实际空间中存在至少一个区域同时属于第一活动区域与第二活动区域,但是第一活动区域与第二活动区域不完全重叠。对于第一活动区域与第二活动区域不存在交接区域,或者,第一活动区域与第二活动区域完全重叠的情况,不存在本申请实施例所需要解决的技术问题,在此不做讨论。在本实施例中,第一地图可以是二维码地图,也可以是SLAM地图,第二地图对应的定位方式与第一地图对应的定位方式不同。示例性的,假设第一地图为SLAM地图,则第二地图可以是二维码地图,如果第一地图为二维码地图,则第二地图可以是SLAM地图。为描述方便,下面将以第一地图为SLAM地图,第二地图为二维码地图进行讨论,可以理解的是,第一地图为二维码地图,第二地图为SLAM地图的情况原理相同。Wherein, the positioning position of the mobile robot may refer to the position of the mobile robot in the map used for positioning by the sensor positioning. Depending on the type of map used for mobile robot positioning, the sensors used for mobile robot positioning may be different. For convenience of description, the active area indicated by the first map is hereinafter referred to as the first active area, and the active area indicated by the second map is referred to as the second active area. There is a transfer area between the first active area and the second active area, that is, at least one area in the actual space belongs to both the first active area and the second active area, but the first active area and the second active area do not completely overlap. For the case where there is no interface area between the first active area and the second active area, or the first active area and the second active area completely overlap, there is no technical problem to be solved in the embodiment of the present application, and it will not be discussed here. In this embodiment, the first map may be a two-dimensional code map or a SLAM map. The positioning method corresponding to the second map is different from the positioning method corresponding to the first map. Exemplarily, assuming that the first map is a SLAM map, the second map may be a two-dimensional code map, and if the first map is a two-dimensional code map, the second map may be a SLAM map. For the convenience of description, the first map is a SLAM map and the second map is a two-dimensional code map. It can be understood that the first map is a two-dimensional code map and the second map is a SLAM map. The principles are the same.
示例性的,第一活动区域为智能工场中的新厂区,第二活动区域为智能工场中的老厂区,在建设老厂区时可能由于SLAM技术尚未成熟,因此第二地图选用二维码地图。在建设新厂区时,由于SLAM技术已经成熟,可以针对新厂区建立SLAM地图。Exemplarily, the first activity area is the new factory area in the smart factory, and the second activity area is the old factory area in the smart factory. When the old factory area is constructed, SLAM technology may not be mature, so the second map uses a QR code map. When constructing a new plant, SLAM maps can be established for the new plant because SLAM technology is mature.
交接位置可以是第一地图中的一个或多个坐标位置,第一地图中除了与第二地图对应的交接位置外,还可以包括与其他活动区域的地图对应的交接位置,当第一地图中存在多个预设的与第二地图对应的交接位置时,移动机器人的定位位置处于交接位置可以是指,移动机器人的定位位置的坐标与这多个交接位置中一个交接位置的坐标相同。交接位置所表示的实际空间位置位于第一活动区域与第二活动区域的交接区域中,因此交接位置所表示的实 际空间位置也属于第二活动区域,故在第二地图中存在表示该实际空间位置的坐标位置,该坐标位置即为第二地图中与该交接位置对应的跳转位置。在一种可选的实施例中,可以基于交接位置的坐标,确定交接位置所表示的实际空间位置,再计算得到的实际空间位置在第二地图中对应的坐标位置,以作为与该交接位置对应的跳转位置。在其他可选的实施例中,也可以预先确定第一地图中每个交接位置所表示的实际空间位置在第二地图中的坐标位置,作为该交接位置对应的跳转位置。在移动机器人的定位位置处于第一地图中针对第二地图预设的交接位置后,通过查找的方式确定该交接位置对应的跳转位置。The transfer position may be one or more coordinate positions in the first map. In addition to the transfer position corresponding to the second map, the first map may also include transfer positions corresponding to maps of other active areas. When there are multiple preset transfer positions corresponding to the second map, the positioning position of the mobile robot at the transfer position may mean that the coordinates of the positioning position of the mobile robot are the same as the coordinates of one transfer position among the multiple transfer positions. The actual spatial position represented by the transfer location is located in the transfer area between the first active area and the second active area. Therefore, the actual spatial location represented by the transfer location also belongs to the second active area, so there is a representation of the actual space in the second map The coordinate position of the position, which is the jump position corresponding to the transfer position in the second map. In an optional embodiment, the actual spatial position represented by the transfer position may be determined based on the coordinates of the transfer position, and the coordinate position corresponding to the calculated actual space position in the second map may be used as the transfer position. The corresponding jump position. In other optional embodiments, the coordinate position of the actual spatial position indicated by each transfer position in the first map on the second map may also be determined in advance as the jump position corresponding to the transfer position. After the positioning position of the mobile robot is in the transfer position preset for the second map in the first map, the jump position corresponding to the transfer position is determined by searching.
S102,将跳转位置确定为移动机器人在第二地图中的定位位置,并将移动机器人的定位方式切换为第二地图对应的定位方式。S102. Determine the jump position as the positioning position of the mobile robot in the second map, and switch the positioning mode of the mobile robot to the positioning mode corresponding to the second map.
交接位置为第一地图中的坐标位置,跳转位置为第二地图中的坐标位置,因此交接位置和跳转位置是两个不同的坐标位置,但是这两个坐标位置所表示的实际空间位置是一致的。将跳转位置确定为移动机器人在第二地图中的定位位置,只是在第二地图中确定了移动机器人的定位位置,移动机器人在实际空间中所处的位置并没有因此发生改变。The transfer position is the coordinate position in the first map, and the jump position is the coordinate position in the second map. Therefore, the transfer position and the jump position are two different coordinate positions, but the actual spatial positions represented by the two coordinate positions Are consistent. The jump position is determined as the positioning position of the mobile robot in the second map, but the positioning position of the mobile robot is determined in the second map, and the position of the mobile robot in the actual space has not changed as a result.
由于跳转位置为第二地图中的坐标位置,在将跳转位置确定为移动机器人在第二地图中的定位位置之后,可以视为完成移动机器人在第二地图中的定位。在一种可选的实施例中,将移动机器人的定位方式切换为第二地图对应的定位方式,可以是将采集定位信息的传感器,从与第一地图对应的传感器切换为与第二地图对应的传感器。示例性的,以第一地图为SLAM地图,第二地图为二维码地图为例,可以是控制移动机器人关闭自身的激光测距仪,并开启图像传感器以拍摄地面的二维码,进而将图像传感器采集到的地面的二维码的标识信息作为移动机器人的定位信息。在其他实施例中,也可以不关闭激光测距仪,但是不将激光测距仪测量得到的距离信息作为定位信息。Since the jump position is a coordinate position in the second map, after the jump position is determined as the positioning position of the mobile robot in the second map, it can be regarded as completing the positioning of the mobile robot in the second map. In an optional embodiment, switching the positioning method of the mobile robot to a positioning method corresponding to the second map may be to switch a sensor that collects positioning information from a sensor corresponding to the first map to a corresponding second map. Sensors. Exemplarily, taking the first map as a SLAM map and the second map as a two-dimensional code map, for example, the mobile robot can be controlled to turn off its own laser rangefinder and turn on the image sensor to capture the two-dimensional code on the ground. The identification information of the two-dimensional code of the ground collected by the image sensor is used as the positioning information of the mobile robot. In other embodiments, the laser rangefinder may not be turned off, but the distance information measured by the laser rangefinder is not used as the positioning information.
在一些使用场景中,移动机器人可能需要跨越地图类型不同的活动区域进行工作。示例性的,移动机器人可能需要将位于第一活动区域的货物,搬运至第二活动区域的储存位置上。而相关技术中,移动机器人在从第一活动区域跨区域至第二活动区域后,由于第一地图和第二地图对应的定位方式不 同,因此移动机器人在从第一活动区域跨区域至第二活动区域后可能无法定位,因此无法将货物搬运至第二活动区域的储存位置上。而选用该实施例,可以通过第一地图中的交接位置与第二地图中跳转位置的对应关系,直接确定移动机器人在第二地图中的定位位置,并将移动机器人定位方式切换为第二地图对应的定位方式,以使得移动机器人在跨区域后仍然能正常定位,进而实行移动机器人在地图类型不同的活动区域之间进行跨区域作业。In some usage scenarios, mobile robots may need to work across active areas of different map types. Exemplarily, the mobile robot may need to transfer the goods located in the first active area to the storage location in the second active area. In related technology, after the mobile robot crosses from the first active area to the second active area, because the positioning methods corresponding to the first map and the second map are different, the mobile robot crosses the area from the first active area to the second It may not be possible to locate after the moving area, so the goods cannot be moved to the storage location of the second moving area. With this embodiment, the position of the mobile robot in the second map can be directly determined through the correspondence between the transfer position in the first map and the jump position in the second map, and the mobile robot's positioning mode can be switched to the second The corresponding positioning method of the map, so that the mobile robot can still position normally after crossing the area, and then implement the mobile robot to perform cross-area operations between active areas with different map types.
参见图2,图2为本申请实施例提供的地图建立方法的一种流程示意图,可以包括:Referring to FIG. 2, FIG. 2 is a schematic flowchart of a map establishment method according to an embodiment of the present application, which may include:
S201,针对第一活动区域按照第一坐标系建立第一地图,以及针对第二活动区域按照第二坐标系建立第二地图。S201. A first map is established according to a first coordinate system for a first active area, and a second map is established according to a second coordinate system for a second active area.
在本实施例中,建立第一地图和建立第二地图可以是同步进行的,也可以根据实际需求先建立第一地图再建立第二地图,或者先建立第二地图再建立第一地图,建立第一地图和建立第二地图还可以是交替进行的。In this embodiment, the establishment of the first map and the establishment of the second map may be performed synchronously, or the first map may be established first and then the second map according to actual needs, or the second map may be established before the first map is established. The first map and the establishment of the second map may also be performed alternately.
示例性的,假设第一活动区域为新厂区,第一地图为SLAM地图,第二活动区域是老厂区,第二地图为二维码地图。可以是在老厂区建设完成后,尚未建设新厂区时,在老厂区划分栅格并粘贴二维码,以针对老厂区建立二维码地图,作为第二地图。在新厂区建设后,基于SLAM技术针对新厂区建立SLAM地图作为第一地图。Exemplarily, it is assumed that the first active area is a new factory area, the first map is a SLAM map, the second active area is an old factory area, and the second map is a two-dimensional code map. After the construction of the old factory area is completed, when the new factory area is not yet constructed, the grid is divided in the old factory area and a QR code is pasted to establish a QR code map for the old factory area as a second map. After the construction of the new plant, a SLAM map was established for the new plant based on SLAM technology as the first map.
又例如,假设在老厂区建设完成后,新厂区已经处于规划阶段,则可以是等待新厂区建设完成后,在老厂区划分栅格并粘贴二维码,以建立第二地图,同时基于SLAM技术针对新厂区建立第一地图。As another example, assuming that after the construction of the old plant is completed, the new plant is already in the planning stage, you can wait for the construction of the new plant to be completed, divide the grid in the old plant and paste the QR code to establish a second map, and based on SLAM technology Create the first map for the new plant.
由于第一活动区域与第二活动区域存在交接区域,因此如果第一地图和第二地图是按照相同的坐标系建立的话,第一地图中会存在与第二地图中相同的坐标位置。本实施例中,第一坐标系与第二坐标系之间存在相对偏移量,即第一坐标系的坐标原点,与第二坐标系的坐标原点之间存在位移量,并且第一坐标系的坐标轴与第二坐标系的相同的坐标轴之间可能存在一定的偏转角度。示例性的,假设偏移量为(Δx,Δy,Δθ),在第一坐标系中,第二坐标系的坐标原点的坐标可以是(Δx,Δy),第二坐标系的x轴与第一坐标系的x轴之间 的夹角为Δθ。偏移量的大小取决于第一活动区域与第二活动区域的交接区域的大小,交接区域越大则偏移量可能越大,交接区域越小则偏移量可能越小。第一坐标系与第二坐标系之间的相对偏移量应当满足条件:使得全局坐标系中第一地图与第二地图不存在相同的坐标位置。其中,全局坐标系可以是预先设置的一个坐标系,并且全局坐标系可以与第一坐标系或者第二坐标系相同。Because there is a transfer area between the first active area and the second active area, if the first map and the second map are established according to the same coordinate system, the same coordinate position in the first map will exist as in the second map. In this embodiment, there is a relative offset between the first coordinate system and the second coordinate system, that is, a coordinate origin of the first coordinate system and a displacement amount between the coordinate origin of the second coordinate system, and the first coordinate system There may be a certain deflection angle between the coordinate axis of X and the same coordinate axis of the second coordinate system. Exemplarily, assuming that the offset is (Δx, Δy, Δθ), in the first coordinate system, the coordinates of the coordinate origin of the second coordinate system may be (Δx, Δy), and the x-axis of the second coordinate system and the The angle between the x-axes of a coordinate system is Δθ. The size of the offset depends on the size of the interface between the first active area and the second active area. The larger the transfer area, the larger the offset may be, and the smaller the transfer area, the smaller the offset may be. The relative offset between the first coordinate system and the second coordinate system should satisfy the condition: that the same coordinate position does not exist in the first map and the second map in the global coordinate system. The global coordinate system may be a preset coordinate system, and the global coordinate system may be the same as the first coordinate system or the second coordinate system.
S202,在第一活动区域与第二活动区域的交接区域设置切换位置。S202. Set a switching position in a transition area between the first active area and the second active area.
切换位置属于交接区域,因此第一地图和第二地图中均存在表示切换位置的坐标位置。可以是将交接区域中的一个或多个位置设置为切换位置,以第一地图为SLAM地图,第二地图为二维码地图为例,可以是将交接区域中的一个或多个粘贴有二维码的栅格作为切换位置。The switching position belongs to the transfer area, so there are coordinate positions in the first map and the second map indicating the switching position. One or more positions in the transfer area can be set as the switching position. The first map is a SLAM map and the second map is a QR code map. For example, one or more of the transfer areas can be pasted with two The grid of dimension codes is used as the switching position.
S203,基于切换位置的第一类定位信息,确定切换位置在第一地图中的坐标位置,作为第一地图中第二地图对应的交接位置,以及基于切换位置的第二类定位信息,确定切换位置在第二地图中的坐标位置,作为交接位置对应的跳转位置。S203. Determine the coordinate position of the switching position in the first map based on the first type of positioning information of the switching position, as the transfer position corresponding to the second map in the first map, and determine the switching based on the second type of positioning information of the switching position. The coordinate position of the position in the second map is used as the jump position corresponding to the transfer position.
其中,第一类定位信息为第一地图所使用的定位信息,第二类定位信息为第二地图所使用的定位信息。示例性的,以第一地图为SLAM地图,第二地图为二维码地图为例,第一类定位信息可以是第一活动区域中移动机器人的激光测距仪向各个方向发射的激光的激光末端点与移动机器人之间的距离,第二类定位信息可以是二维码的标识信息。移动机器人可以通过自身的激光测距仪向多个方向发射激光,这些激光打在所处场景中的物体上,如墙壁、桌椅等,会产生激光末端点,激光测距仪可以测量各个激光末端点距离移动机器人的距离。可选的,可以是将移动机器人置于切换位置,由移动机器人通过自身的激光测距仪,测量得到该激光测距仪发射的激光在第一活动区域内产生的激光末端点与移动机器人之间的距离作为第一类定位信息,并由移动机器人通过自身的图像传感器采集得到切换位置地面的二维码的标识信息作为第二类定位信息。第一类定位信息在第一地图中对应于一个坐标位置,第二类定位信息在第二地图中对应一个坐标位置,这两个坐标位置所表示的实际空间位置均为切换位置,因此这两个坐标位置可以视为切换位置在第一 地图与第二地图中的两个拓扑点。The first type of positioning information is positioning information used by the first map, and the second type of positioning information is positioning information used by the second map. Exemplarily, taking the first map as a SLAM map and the second map as a two-dimensional code map as an example, the first type of positioning information may be laser ends of lasers emitted by the laser rangefinder of the mobile robot in the first active area in all directions The distance between the point and the mobile robot. The second type of positioning information may be identification information of a two-dimensional code. The mobile robot can emit lasers in multiple directions through its own laser rangefinder. These lasers hit the objects in the scene, such as walls, tables and chairs, etc., which will generate laser end points. The laser rangefinder can measure each laser. The distance from the end point to the mobile robot. Optionally, the mobile robot can be placed in a switching position, and the mobile robot can measure the laser end point of the laser emitted by the laser range finder in the first active area with the mobile robot through its own laser range finder. The distance between them is used as the first type of positioning information, and the mobile robot collects the identification information of the two-dimensional code on the ground of the switching position through its own image sensor as the second type of positioning information. The first type of positioning information corresponds to a coordinate position in the first map, and the second type of positioning information corresponds to a coordinate position in the second map. The actual spatial positions represented by these two coordinate positions are switching positions. The coordinate positions can be regarded as two topological points of the switching position in the first map and the second map.
将切换位置在第二地图中的坐标位置,作为切换位置在第一地图中的坐标位置的跳转位置,可以是建立这两个坐标位置之间的关联。示例性的,可以是将第一地图与第二地图拼接为一幅地图,并在拼接得到的地图中,将切换位置在第二地图中的坐标位置与切换位置在第一地图中的坐标位置相连接,用于表示这两个坐标位置存在关联。在该实施例中,在移动机器人的定位位置处于第一地图中针对第二地图预设的交接位置后,可以将第二地图中与第一地图的交接位置相连接的位置作为跳转位置。可以有效减少确定跳转位置所需要的计算量,进一步缩短地图切换时间,提高移动机器人跨区域作业的效率。The coordinate position of the switching position in the second map as the jump position of the coordinate position of the switching position in the first map may be to establish an association between the two coordinate positions. Exemplarily, the first map and the second map may be stitched into one map, and the coordinated position of the switching position in the second map and the coordinate position of the switching position in the first map may be combined in the stitched map. Connected to indicate that the two coordinate positions are related. In this embodiment, after the positioning position of the mobile robot is at the transfer position preset for the second map in the first map, the position in the second map that is connected to the transfer position of the first map may be used as the jump position. It can effectively reduce the amount of calculation required to determine the jump position, further shorten the map switching time, and improve the efficiency of mobile robots' cross-region operations.
另一方面,在一些使用场景中,可以在预设的显示设备上展示移动机器人活动区域的地图,并在地图中显示移动机器人的定位位置,以方便用户更清楚地了解移动机器人的状态。相关技术中,可以在显示设备上展示移动机器人定位所使用的地图,但是用户仅能够通过该地图了解到移动机器人在所展示的地图中的位置,而缺少对移动机器人全局位置的了解。而选用该实施例,由于第一地图与第二地图是按照两个不同的坐标系建立的,并且在全局坐标系中第一地图与第二地图中不存在相同的坐标位置,因此可以将第一地图与第二地图在基于全局坐标系建立的大地图中展示,使得用户能够更好地了解到移动机器人的全局位置,以对移动机器人进行更好的管理。On the other hand, in some usage scenarios, a map of the mobile robot's active area can be displayed on a preset display device, and the positioning position of the mobile robot can be displayed on the map, so that users can more clearly understand the status of the mobile robot. In the related art, a map used for mobile robot positioning can be displayed on a display device, but the user can only understand the position of the mobile robot in the displayed map through the map, and lacks knowledge of the global position of the mobile robot. In this embodiment, since the first map and the second map are established according to two different coordinate systems, and the same coordinate position does not exist in the first map and the second map in the global coordinate system, the first map can be The first map and the second map are displayed in a large map based on the global coordinate system, so that the user can better understand the global position of the mobile robot and better manage the mobile robot.
示例性的,可以参见图2b以及图2c,图2b为实际空间中活动区域的分布示意图,其中100和300共同组成第一活动区域,200和300共同组成第二活动区域,300为第一活动区域与第二活区域的交接区域,310为一切换位置。图2c为在图2b的情况下,地图的一种布局结构示意图。其中210为第一地图,220为第二地图,211为切换位置310在第一地图上的拓扑点,221为切换位置310在第二地图上的拓扑点。211和221在实际空间所表示的均为切换位置310。For example, see FIG. 2b and FIG. 2c. FIG. 2b is a schematic diagram of the distribution of active areas in the actual space, where 100 and 300 together form a first active area, 200 and 300 together form a second active area, and 300 is a first activity. At the interface between the area and the second live area, 310 is a switching position. FIG. 2c is a schematic diagram of a layout structure of a map in the case of FIG. 2b. 210 is the first map, 220 is the second map, 211 is the topological point of the switching location 310 on the first map, and 221 is the topological point of the switching location 310 on the second map. 211 and 221 represent switching positions 310 in real space.
进一步,如果移动机器人位于第一活动区域,则可以利用与第一地图对应的定位方式确定移动机器人在第一地图中的定位位置,该定位位置可以表示移动机器人在第一活动区域中的位置。但是第一活动区域可能只是移动机器人多个活动区域中的一个活动区域,在一些使用场景下,为了对移动机器 人进行更好的管理,可能需要确定移动机器人在全局坐标系中的坐标。而为了第一地图与第二地图中不存在相同的坐标位置,第一地图的地图坐标系和第二地图的地图坐标系之间存在偏移量,因此第一地图的地图坐标系和第二地图的地图坐标系中至少一个地图坐标系与全局坐标系之间存在偏移量,下面以第一地图的地图坐标系与全局坐标系之间存在偏移量为例,描述基于移动机器人在第一地图的定位位置对移动机器人进行全局定位的方法,参见图3,该方法可以包括,Further, if the mobile robot is located in the first active area, a positioning manner corresponding to the first map may be used to determine a positioning position of the mobile robot in the first map, and the positioning position may represent a position of the mobile robot in the first active area. However, the first active area may be only one active area among multiple active areas of the mobile robot. In some usage scenarios, in order to better manage the mobile robot, it may be necessary to determine the coordinates of the mobile robot in the global coordinate system. In order that the first map and the second map do not have the same coordinate position, there is an offset between the map coordinate system of the first map and the map coordinate system of the second map, so the map coordinate system of the first map and the second map There is an offset between at least one of the map coordinate system and the global coordinate system in the map's map coordinate system. The following uses the offset between the map coordinate system of the first map and the global coordinate system as an example to describe how the mobile robot A method for global positioning of a mobile robot at a map positioning position. Referring to FIG. 3, the method may include:
S301,确定移动机器人在第一地图中的定位位置的地图坐标。S301. Determine map coordinates of a positioning position of the mobile robot in the first map.
其中,地图坐标是指第一地图中的定位位置在第一地图的地图坐标系中的坐标。The map coordinates refer to coordinates of a positioning position in the first map in a map coordinate system of the first map.
S302,获取第一地图的地图标识,地图标识用于表示第一地图的地图坐标系与全局坐标系之间的偏移量。S302. Obtain a map identifier of the first map, where the map identifier is used to represent an offset between a map coordinate system of the first map and a global coordinate system.
全局坐标系可以为根据实际需求选取的一个坐标系,为移动机器人全局定位时所使用的坐标系。在本实施例中,全局坐标系与第一地图的地图坐标系存在偏移量,即全局坐标系的坐标原点与该地图坐标系的坐标原点不同,和/或,全局坐标系的基矢与该地图坐标系的基矢不一致。在其他实施例中,全局坐标系可以和第一地图的地图坐标系一致。The global coordinate system can be a coordinate system selected according to actual needs, and it is a coordinate system used in mobile robot global positioning. In this embodiment, there is an offset between the global coordinate system and the map coordinate system of the first map, that is, the coordinate origin of the global coordinate system is different from the coordinate origin of the map coordinate system, and / or, the base vector of the global coordinate system and The basis vectors of the map coordinate system are inconsistent. In other embodiments, the global coordinate system may be consistent with the map coordinate system of the first map.
地图标识可以是以偏移量的形式表示的,也可以是以与偏移量存在对应关系的地图代码(Map Code)表示的,如字母、数字等形式,示例性的,假设第一地图的地图坐标系相对于全局坐标系的偏移量为(Δx,Δy,Δθ),则第一地图的地图标识可以是AA,也可以是11,还可以是(Δx,Δy,Δθ),可以理解的是,无论第一地图的地图标识是AA、11还是(Δx,Δy,Δθ),该地图标识所表示的第一地图的偏移量均为(Δx,Δy,Δθ)。The map identifier can be expressed in the form of an offset, or it can be expressed in a map code that has a corresponding relationship with the offset, such as letters, numbers, etc. For example, assuming the first map The offset of the map coordinate system relative to the global coordinate system is (Δx, Δy, Δθ), then the map identifier of the first map can be AA, 11 or (Δx, Δy, Δθ). It can be understood It is true that whether the map identifier of the first map is AA, 11 or (Δx, Δy, Δθ), the offset of the first map represented by the map identifier is (Δx, Δy, Δθ).
在一种可选的实施例中,为了移动机器人的定位位置的坐标可以更直观地表示出移动机器人的位置。选取全局坐标系时,可以使得移动机器人的所有活动区域均处于全局坐标系中的第一象限,在该情况下,移动机器人处于任意活动区域中的任意位置时,移动机器人的全局坐标均不为负数。In an optional embodiment, the coordinates of the positioning position of the mobile robot can more intuitively represent the position of the mobile robot. When the global coordinate system is selected, all active areas of the mobile robot can be placed in the first quadrant of the global coordinate system. In this case, when the mobile robot is at any position in any active area, the global coordinates of the mobile robot are not negative number.
S303,基于移动机器人在第一地图中定位位置的坐标,以及第一地图的 地图标识,确定移动机器人在全局坐标系中的坐标。S303. Determine the coordinates of the mobile robot in the global coordinate system based on the coordinates of the positioning position of the mobile robot in the first map and the map identifier of the first map.
示例性的,第一地图的地图标识所表示的偏移量为(Δx 1,Δy 1,Δθ 1),移动机器人在第一地图中的定位位置的地图坐标为(x 1,y 1),则移动机器人在全局坐标系中的坐标(x 0,y 0)可以按照下式计算得到: Exemplarily, the offset indicated by the map identifier of the first map is (Δx 1 , Δy 1 , Δθ 1 ), and the map coordinates of the positioning position of the mobile robot in the first map are (x 1 , y 1 ), Then the coordinates (x 0 , y 0 ) of the mobile robot in the global coordinate system can be calculated according to the following formula:
Figure PCTCN2019099767-appb-000001
Figure PCTCN2019099767-appb-000001
可以理解的是,基于移动机器人在第二地图中定位位置的坐标,和第二地图的地图标识,同理可以对移动机器人进行全局定位。全局定位可以定期或者不定期地的进行,示例性的,可以是每间隔预设周期对移动机器人进行全局定位,也可以是在用户输入全局定位指令后,对移动机器人进行全局定位。It can be understood that, based on the coordinates of the positioning position of the mobile robot in the second map and the map identification of the second map, the mobile robot can be globally located in the same way. Global positioning may be performed periodically or irregularly. For example, the global positioning may be performed on the mobile robot every preset interval, or the global positioning may be performed on the mobile robot after the user inputs a global positioning instruction.
为对本申请实施例提供的移动机器人跨区域方法进行说明,下面将结合应用场景,对移动机器人跨区域移动进行描述,本方法可以应用于移动机器人的控制器,该控制器可以是集成在移动机器人上的,也可以是相对于移动机器人独立的,方法可以包括:In order to describe the mobile robot cross-region method provided in the embodiments of the present application, the mobile robot cross-region movement will be described in combination with application scenarios. This method can be applied to a mobile robot controller, which can be integrated in a mobile robot. It can also be independent of the mobile robot. The method can include:
S401,在接收到移动指令后,控制移动机器人移动至第一地图中与第二地图对应的交接位置所表示的实际空间位置。S401. After receiving the movement instruction, control the mobile robot to move to the actual spatial position indicated by the transfer position corresponding to the second map in the first map.
其中,移动指令的目的地位于第二活动区域,移动机器人处于第一活动区域,并且目的地以及移动机器人均不处于第一活动区域与第二活动区域的交接区域,在不满足这些条件的情况下,可能不会出现本申请实施例所需要解决的技术问题,在此不作过多讨论。控制移动机器人移动至第一地图中与第二地图对应的交接位置所表示的实际空间位置,可以是控制移动机器人按照所规划的路径,移动至任一交接位置所表示的实际空间位置,也可以是移动至特定的交接位置所表示的实际空间位置。可以理解的是,第一地图中与第二地图对应的交接位置所表示的实际空间位置位于第一活动区域与第二活动区域的交接区域。根据移动机器人控制系统的框架不同,移动指令可以是由控制平台发送给控制器的,也可以是由客户端远程发送给控制器的。Among them, the destination of the move instruction is in the second active area, the mobile robot is in the first active area, and the destination and the mobile robot are not in the interface area between the first active area and the second active area. In the case where these conditions are not met In the following, the technical problems that need to be solved in the embodiments of the present application may not occur, and will not be discussed too much here. Controlling the mobile robot to move to the actual spatial position indicated by the transfer position corresponding to the second map in the first map may be controlling the mobile robot to move to the actual spatial position indicated by any transfer position according to the planned path, or It is the actual spatial position indicated by moving to a specific transfer position. It can be understood that the actual spatial position indicated by the transfer position corresponding to the second map in the first map is located at the transfer area between the first active area and the second active area. Depending on the framework of the mobile robot control system, the movement instructions can be sent to the controller by the control platform or remotely sent by the client to the controller.
S402,在移动机器人的定位位置处于第一地图中针对第二地图预设的交 接位置后,确定第二地图中与交接位置对应的跳转位置。S402. After the positioning position of the mobile robot is in the transfer position preset for the second map in the first map, determine the jump position corresponding to the transfer position in the second map.
该步骤与S101相同,可以参见前述关于S101的描述,在此不再赘述。This step is the same as S101. For details, refer to the foregoing description of S101, and details are not described herein again.
S403,将跳转位置确定为移动机器人在第二地图中的定位位置,并将移动机器人的定位方式切换为第二地图对应的定位方式。S403. Determine the jump position as the positioning position of the mobile robot in the second map, and switch the positioning mode of the mobile robot to the positioning mode corresponding to the second map.
该步骤与S102相同,可以参见前述关于S102的描述,在此不再赘述。This step is the same as S102. For details, refer to the foregoing description of S102, and details are not described herein again.
S404,控制移动机器人基于第二地图对应的定位方式移动至第二地图中的目标位置所表示的实际空间位置。S404: Control the mobile robot to move to the actual spatial position indicated by the target position in the second map based on the positioning method corresponding to the second map.
其中,第二地图中的目标位置所表示的实际空间位置即为移动指令的目的地。以第二地图为二维码地图为例,可以是基于第二地图,以及移动机器人的图像传感器采集到的二维码标识信息确定移动机器人在第二活动区域中所处的位置,根据移动机器人所处的位置以及目标位置的位置,控制移动机器人进行移动,以使得移动机器人按照规划的路径移动至目标位置。The actual spatial position indicated by the target position in the second map is the destination of the movement instruction. Taking the second map as a two-dimensional code map as an example, the position of the mobile robot in the second active area can be determined based on the second map and the two-dimensional code identification information collected by the mobile robot's image sensor. The position and the position of the target position control the mobile robot to move so that the mobile robot moves to the target position according to the planned path.
可选的,可以预先在第一地图的交接位置上配置有切换信息,该切换信息可以用于表示第二地图对应的定位方式。可以是根据交接位置所预先配置的切换信息,将移动机器人的定位方式切换为第二地图对应的定位方式。Optionally, handover information may be configured in advance at the transfer position of the first map, and the handover information may be used to indicate a positioning method corresponding to the second map. The positioning method of the mobile robot may be switched to the positioning method corresponding to the second map according to the switching information preset in the handover position.
由于在移动机器人跨区域作业过程中,可能涉及到多端信息交互,下面将结合移动机器人控制系统,对移动机器人的跨区域作业进行描述,参见图5,流程可以包括:As the mobile robot's cross-region operation may involve multi-terminal information interaction, the mobile robot's cross-region operation will be described below in conjunction with the mobile robot control system. Referring to Figure 5, the process can include:
S501,调度服务模块下载移动机器人所有活动区域的地图信息。S501. The scheduling service module downloads map information of all active areas of the mobile robot.
其中,地图信息中包括多个活动区域各自所对应的地图的地图标识。The map information includes map identifiers of the maps corresponding to the multiple active areas.
S502,移动机器人向调度服务模块发送注册信息。S502. The mobile robot sends registration information to the scheduling service module.
S503,调度服务模块在接收到注册信息后,向移动机器人发送地图的统一资源定位符(Uniform Resource Locator,URL)。S503. After receiving the registration information, the dispatch service module sends a Uniform Resource Locator (URL) of the map to the mobile robot.
由于需要使用二维码导航的活动区域可以预先在这些活动区域粘贴二维码,而二维码中可以包含有地图信息,因此可以是只下发SLAM地图的URL至移动机器人。Since two-dimensional codes can be pasted in the active areas that require two-dimensional code navigation, and the two-dimensional codes can contain map information, it is only necessary to send the URL of the SLAM map to the mobile robot.
S504,移动机器人发送在第一地图中定位位置的地图坐标至调度服务模块。S504. The mobile robot sends map coordinates of the positioning position in the first map to the scheduling service module.
以第一地图为SLAM地图为例,则可以是由移动机器人根据SLAM地图的URL所获取到的SLAM地图信息,确定自身的定位位置在第一地图中的地图坐标,并将该地图坐标发送至调度服务模块。Taking the SLAM map as an example, the SLAM map information obtained by the mobile robot according to the URL of the SLAM map may be used to determine the map coordinates of the positioning position of the SLAM map in the first map, and send the map coordinates to Scheduling service module.
S505,调度服务模块基于地图坐标以及第一地图的地图标识,对移动机器人进行全局定位。S505: The scheduling service module performs global positioning on the mobile robot based on the map coordinates and the map identifier of the first map.
S506,调度服务器注册移动机器人以及移动机器人所处空间的多个活动区域。S506. The scheduling server registers the mobile robot and multiple active areas in the space where the mobile robot is located.
S507,在移动机器人完成路径规划模块中的注册后,调度服务模块获取移动机器人的跨区域的目标位置。S507. After the mobile robot completes the registration in the path planning module, the scheduling service module obtains the target location of the mobile robot across the region.
其中,在本实施例中,目标位置为第二地图中的一个坐标位置,并且目标位置所表示的实际空间位置不处于第一活动区域与第二活动区域的交接区域。Wherein, in this embodiment, the target position is a coordinate position in the second map, and the actual spatial position indicated by the target position is not in a junction area between the first active area and the second active area.
S508,路径规划模块规划移动机器人的前往目标位置所表示的实际空间位置的路径。S508: The path planning module plans a path of the mobile robot to an actual spatial position indicated by the target position.
其中,路径包括至少一个交接位置,以及与交接位置对应的跳转位置。示例性的,路径可以包括移动机器人在第一地图中的子路径,和移动机器人在第二地图中的子路径以及从交接位置到跳转位置之间的子路径,其中,在第一地图中的子路径的终点为第一地图中预设的与第二地图对应的交接位置,在第二地图中的子路径的起始位置为该交接位置所对应的跳转位置,在第二地图中的子路径的终点为第二地图中的目标位置。The path includes at least one transfer position and a jump position corresponding to the transfer position. Exemplarily, the path may include a sub-path of the mobile robot in the first map, a sub-path of the mobile robot in the second map, and a sub-path from the transfer position to the jump position, where in the first map The end point of the sub-path is the preset transfer position corresponding to the second map in the first map, and the start position of the sub-path in the second map is the jump position corresponding to the transfer position. In the second map, The end point of the sub-path is the target position in the second map.
S509,路径规划模块控制移动机器人移动至路径中的交接位置所表示的实际空间位置。S509. The path planning module controls the mobile robot to move to the actual spatial position indicated by the transfer position in the path.
S510,路径规划模块向移动机器人发送地图切换指令。S510. The path planning module sends a map switching instruction to the mobile robot.
在一种可选的实施例中,地图切换指令可以包括切换信息,其中,切换信息可以用于表示第二地图的定位方式,还可以用于表示第二地图的偏移量。 可选的,切换信息可以是预先配置到第一地图中的交接位置上,并且切换信息可以是第二地图的地图标识,示例性的,切换信息可以是“12”,表示第二地图为标识信息为“12”的SLAM地图。在其他实施例中,地图切换指令中也可以不包括切换信息,切换信息与地图切换指令由路径规划模块分别发送至移动机器人。In an optional embodiment, the map switching instruction may include switching information, where the switching information may be used to indicate a positioning mode of the second map and may also be used to indicate an offset of the second map. Optionally, the switching information may be pre-configured to a transfer position in the first map, and the switching information may be a map identifier of the second map. For example, the switching information may be "12", indicating that the second map is an identifier. SLAM map with information "12". In other embodiments, the map switching instruction may not include the switching information, and the switching information and the map switching instruction are respectively sent to the mobile robot by the path planning module.
S511,移动机器人在接收到地图切换指令后,确定第二地图中与交接位置对应的跳转位置,并向调度服务模块发送自身在第二地图中的跳转位置的坐标。S511. After receiving the map switching instruction, the mobile robot determines the jump position corresponding to the transfer position in the second map, and sends the coordinates of the jump position in the second map to the scheduling service module.
S512,调度服务模块将移动机器人的定位方式切换为第二地图对应的定位方式,并将第二地图中的跳转位置确定为移动机器人在第二地图中的定位位置。S512. The scheduling service module switches the positioning method of the mobile robot to the positioning method corresponding to the second map, and determines the jump position in the second map as the positioning position of the mobile robot in the second map.
在一种可选的实施例中,调度服务模块可以是基于路径规划模块发送的切换信息,确定第二地图对应的定位方式的。关于切换信息可以参见前述S510中的描述,在此不再赘述。In an optional embodiment, the scheduling service module may determine the positioning mode corresponding to the second map based on the handover information sent by the path planning module. For the switching information, refer to the description in the foregoing S510, and details are not described herein again.
S513,路径规划模块控制移动机器人基于第二地图对应的定位方式,从跳转位置所表示的实际空间位置移动至目标位置所表示的实际空间位置。S513. The path planning module controls the mobile robot to move from the actual space position indicated by the jump position to the actual space position indicated by the target position based on the positioning method corresponding to the second map.
参见图6a,图6a所示为本申请实施例提供的地图切换装置,包括:Referring to FIG. 6a, FIG. 6a shows a map switching device provided by an embodiment of the present application, including:
地图交接模块601,在移动机器人在第一地图中的定位位置处预设与第二地图对应的交接位置后,确定第二地图中与交接位置对应的跳转位置,第一地图为移动机器人定位所使用的地图,第一地图和第二地图所对应的定位方式不同;The map handover module 601 determines the jump position corresponding to the handover position in the second map after presetting the handover position corresponding to the second map at the positioning position of the mobile robot in the first map. The first map is for mobile robot positioning The maps used, the positioning methods corresponding to the first map and the second map are different;
坐标跳转模块602,将跳转位置确定为移动机器人在第二地图中的定位位置,并将移动机器人的定位方式切换为第二地图对应的定位方式。The coordinate jump module 602 determines the jump position as the positioning position of the mobile robot on the second map, and switches the positioning mode of the mobile robot to the positioning mode corresponding to the second map.
可选的,地图交接模块601具体用于在第二地图中查找与交接位置预先存在对应关系的跳转位置。Optionally, the map transfer module 601 is specifically configured to find a jump position in the second map that corresponds to the transfer location in advance.
可选的,可以参见图6b,装置还包括移动控制模块603,用于在将跳转位置确定为移动机器人的在第二地图中的定位位置,并将移动机器人的定位方 式切换为第二地图对应的定位方式之后,控制移动机器人基于与第二地图对应的定位方式移动至第二地图中的目标位置所表示的实际空间位置。Optionally, as shown in FIG. 6b, the device further includes a movement control module 603 for determining the jump position as the positioning position of the mobile robot in the second map, and switching the positioning method of the mobile robot to the second map After the corresponding positioning method, the mobile robot is controlled to move to the actual spatial position indicated by the target position in the second map based on the positioning method corresponding to the second map.
可选的,移动控制模块603,还用于在确定第二地图中与交接位置对应的跳转位置之前,规划从第一地图中的起始位置至第二地图中的目标位置的路径,路径经过第一地图中与第二地图对应的交接位置;Optionally, the movement control module 603 is further configured to plan a path from a starting position in the first map to a target position in the second map before determining a jump position corresponding to the transfer position in the second map. Passing the handover position corresponding to the second map in the first map;
控制移动机器人基于与第一地图对应的定位方式,按照路径移动至交接位置所表示的实际空间位置;Controlling the mobile robot to move to the actual spatial position indicated by the transfer position according to the positioning method corresponding to the first map;
移动控制模块603,具体用于控制移动机器人基于与第二地图对应的定位方式,按照路径移动至第二地图中的目标位置所表示的实际空间位置。The movement control module 603 is specifically configured to control the mobile robot to move to the actual spatial position indicated by the target position in the second map based on the positioning method corresponding to the second map.
可选的,第一地图与第二地图不存在相同的坐标位置,参见图6c,装置还包括全局定位模块604,用于基于移动机器人在第一地图和第二地图中任一地图中定位位置的坐标,以及该地图的标识信息,确定移动机器人在全局坐标系中的坐标,标识信息用于表示该地图的地图坐标系与全局坐标系之间的偏移量。Optionally, the first map and the second map do not have the same coordinate position. Referring to FIG. 6c, the device further includes a global positioning module 604, which is used to locate the position in any of the first map and the second map based on the mobile robot. And the identification information of the map determine the coordinates of the mobile robot in the global coordinate system, and the identification information is used to represent the offset between the map coordinate system of the map and the global coordinate system.
可选的,坐标跳转模块602具体用于将采集定位信息的传感器,从与第一地图对应的传感器切换为与第二地图对应的传感器。Optionally, the coordinate jump module 602 is specifically configured to switch a sensor that collects positioning information from a sensor corresponding to the first map to a sensor corresponding to the second map.
参见图7,图7所示为本申请实施例提供的移动机器人跨区调度系统,系统包括:Referring to FIG. 7, FIG. 7 illustrates a mobile robot cross-region scheduling system according to an embodiment of the present application. The system includes:
调度服务模块701、路径规划模块702; Scheduling service module 701 and path planning module 702;
调度服务模块701获取移动机器人的所处位置信息、目标位置信息,以及第一地图和第二地图,第一地图中预设有与第二地图对应的交接位置,第二地图中预设有与交接位置对应的跳转位置,交接位置配置有切换信息,切换信息用于表示第二地图对应的定位方式,第一地图和第二地图所对应的定位方式不同;The dispatch service module 701 obtains the location information, target location information of the mobile robot, and a first map and a second map. The first map is preset with a transfer position corresponding to the second map, and the second map is preset with The jump position corresponding to the handover position. The handover position is configured with switching information, which is used to indicate a positioning method corresponding to the second map. The positioning methods corresponding to the first map and the second map are different.
调度服务模块701将所处位置信息、目标位置信息以及第一地图和第二地图发送至路径规划模块702;The dispatch service module 701 sends the location information, the target location information, and the first map and the second map to the path planning module 702;
路径规划模块702基于所处位置信息、目标位置信息以及第一地图和第二 地图,控制移动机器人基于第一地图对应的定位方式从定位信息所表示的实际空间位置移动至交接位置所表示的实际空间位置;并将跳转位置确定为移动机器人在第二地图中的定位位置;The path planning module 702 controls the mobile robot to move from the actual spatial position indicated by the positioning information to the actual position indicated by the transfer position based on the positioning method corresponding to the first map based on the location information, the target location information, and the first map and the second map. Spatial position; and determining the jump position as the positioning position of the mobile robot in the second map;
调度服务模块701将移动机器人的定位方式切换为切换信息所表示的第二地图对应的导航方式;The scheduling service module 701 switches the positioning mode of the mobile robot to the navigation mode corresponding to the second map indicated by the switching information;
路径规划模块702控制移动机器人基于第二地图的定位方式从交接位置所表示的实际空间位置移动至目标位置信息所表示的实际空间位置。The path planning module 702 controls the mobile robot to move from the actual spatial position indicated by the transfer position to the actual spatial position indicated by the target position information based on the positioning mode of the second map.
其中,调度服务模块701以及路径规划模块702可以是实体设备,也可以是通过软件实现的虚拟模块,在其他的实施例中,也可以是用一个实体设备或者一个软件同时实现上述调度服务模块以及路径规划模块的功能。The scheduling service module 701 and the path planning module 702 may be physical devices or virtual modules implemented by software. In other embodiments, a physical device or software may be used to implement the scheduling service module and Functions of the path planning module.
本申请实施例还提供了一种电子设备,如图8所示,包括:An embodiment of the present application further provides an electronic device, as shown in FIG. 8, including:
存储器801,用于存放计算机程序;The memory 801 is configured to store a computer program;
处理器802,用于执行存储器801上所存放的程序时,实现如下步骤:The processor 802 is configured to execute the following steps when executing a program stored in the memory 801:
在移动机器人在第一地图中的定位位置处于预设的与第二地图对应的交接位置后,确定第二地图中与交接位置对应的跳转位置,第一地图为移动机器人定位所使用的地图,第一地图和第二地图所对应的定位方式不同;After the positioning position of the mobile robot in the first map is at a preset transfer position corresponding to the second map, the jump position corresponding to the transfer position in the second map is determined. The first map is a map used for mobile robot positioning. , The positioning methods corresponding to the first map and the second map are different;
将跳转位置确定为移动机器人在第二地图中的定位位置,并将移动机器人的定位方式切换为第二地图对应的定位方式。The jump position is determined as the positioning position of the mobile robot in the second map, and the positioning mode of the mobile robot is switched to the positioning mode corresponding to the second map.
可选的,确定第二地图中与交接位置对应的跳转位置,包括:Optionally, determining the jump position corresponding to the transfer position in the second map includes:
在第二地图中查找与交接位置预先存在对应关系的跳转位置。Find the jump position in the second map that corresponds to the transfer position in advance.
可选的,在将跳转位置确定为移动机器人的在第二地图中的定位位置,并将移动机器人的定位方式切换为第二地图对应的定位方式之后,方法还包括:Optionally, after the jump position is determined as the positioning position of the mobile robot in the second map, and the positioning mode of the mobile robot is switched to the positioning mode corresponding to the second map, the method further includes:
控制移动机器人基于与第二地图对应的定位方式移动至第二地图中的目标位置所表示的实际空间位置。The mobile robot is controlled to move to an actual spatial position represented by a target position in the second map based on a positioning method corresponding to the second map.
可选的,在确定第二地图中与交接位置对应的跳转位置之前,还可以实 现如下步骤:Optionally, before the jump position corresponding to the transfer position in the second map is determined, the following steps may also be implemented:
规划从第一地图中的起始位置至第二地图中的目标位置的路径,路径经过第一地图中与第二地图对应的交接位置;Planning a path from a starting position in the first map to a target position in the second map, and the path passes through a transfer position corresponding to the second map in the first map;
驱动移动机器人的移动系统,以使得移动机器人基于与第一地图对应的定位方式,按照路径移动至交接位置所表示的实际空间位置,其中,根据移动机器人的架构不同,移动机器人的移动系统可以不同;Drive the mobile robot's mobile system so that the mobile robot moves to the actual spatial position indicated by the transfer location according to the positioning method corresponding to the first map, where the mobile robot's mobile system can be different according to the architecture of the mobile robot ;
驱动移动机器人的移动系统,以使得移动机器人基于与第二地图对应的定位方式移动至第二地图中的目标位置所表示的实际空间位置,包括:Driving a mobile system of the mobile robot so that the mobile robot moves to an actual spatial position represented by a target position in the second map based on a positioning method corresponding to the second map includes:
驱动移动机器人的移动系统,以使得移动机器人基于与第二地图对应的定位方式,按照路径移动至第二地图中的目标位置所表示的实际空间位置。The mobile system of the mobile robot is driven so that the mobile robot moves to the actual spatial position indicated by the target position in the second map based on the positioning method corresponding to the second map.
可选的,第一地图与第二地图不存在相同的坐标位置,还可以实现如下步骤:Optionally, the first map and the second map do not have the same coordinate position, and the following steps may also be implemented:
基于移动机器人在第一地图和第二地图中任一地图中定位位置的坐标,以及该地图的标识信息,确定移动机器人在全局坐标系中的坐标,标识信息用于表示该地图的地图坐标系与全局坐标系之间的偏移量。Determine the coordinates of the mobile robot in the global coordinate system based on the coordinates of the positioning position of the mobile robot in any of the first and second maps, and the identification information of the map. The identification information is used to represent the map coordinate system of the map. The offset from the global coordinate system.
可选的,将移动机器人的定位方式切换为第二地图对应的定位方式,包括:Optionally, switching the positioning method of the mobile robot to the positioning method corresponding to the second map includes:
将采集定位信息的传感器,从与第一地图对应的传感器切换为与第二地图对应的传感器。The sensor that collects the positioning information is switched from a sensor corresponding to the first map to a sensor corresponding to the second map.
上述电子设备提到的存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。The memory mentioned in the above electronic device may include random access memory (Random Access Memory, RAM), and may also include non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk memory. Optionally, the memory may also be at least one storage device located far from the foregoing processor.
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array, FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。The aforementioned processor may be a general-purpose processor, including a central processing unit (CPU), a network processor (NP), etc .; it may also be a digital signal processor (Digital Signal Processing, DSP), special integration Circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
在本申请提供的又一实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述实施例中任一移动机器人跨区域方法。In still another embodiment provided by the present application, a computer-readable storage medium is also provided. The computer-readable storage medium stores instructions, and when the computer-readable storage medium is run on a computer, the computer executes any of the foregoing embodiments. Cross-region method for mobile robots.
在本申请提供的又一实施例中,还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中任一移动机器人跨区域方法。In still another embodiment provided by the present application, a computer program product containing instructions is also provided. When the computer program product is run on a computer, the computer is caused to execute the mobile robot cross-region method in any of the above embodiments.
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。In the above embodiments, it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof. When implemented in software, it may be implemented in whole or in part in the form of a computer program product. The computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present application are wholly or partially generated. The computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices. The computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center. The computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration. The available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除 在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that in this article, relational terms such as first and second are used only to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that these entities or operations There is any such actual relationship or order among them. Moreover, the terms "including", "comprising", or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article, or device that includes a series of elements includes not only those elements but also those that are not explicitly listed Or other elements inherent to such a process, method, article, or device. Without more restrictions, an element limited by the sentence "including a ..." does not exclude the existence of other identical elements in the process, method, article, or equipment including the element.
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置、调度系统、电子设备、计算机可读存储介质以及计算机程序产品的实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。Each embodiment in this specification is described in a related manner, and the same or similar parts between the various embodiments can be referred to each other. Each embodiment focuses on the differences from other embodiments. In particular, for the embodiments of the apparatus, the scheduling system, the electronic device, the computer-readable storage medium, and the computer program product, since they are basically similar to the method embodiment, the description is relatively simple. For the related parts, see the method embodiment Just explain.
以上所述仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本申请的保护范围内。The above descriptions are merely preferred embodiments of the present application, and are not intended to limit the protection scope of the present application. Any modification, equivalent replacement, and improvement made within the spirit and principle of this application are included in the protection scope of this application.

Claims (15)

  1. 一种移动机器人跨区域方法,所述方法包括:A mobile robot cross-region method, the method includes:
    在移动机器人在第一地图中的定位位置处于预设的与第二地图对应的交接位置后,确定所述第二地图中与所述交接位置对应的跳转位置,所述第一地图为所述移动机器人定位所使用的地图,所述第一地图和所述第二地图所对应的定位方式不同;After the positioning position of the mobile robot in the first map is at a preset transfer position corresponding to the second map, a jump position corresponding to the transfer position in the second map is determined, and the first map is The map used by the mobile robot for positioning, the positioning methods corresponding to the first map and the second map are different;
    将所述跳转位置确定为所述移动机器人在所述第二地图中的定位位置,并将所述移动机器人的定位方式切换为所述第二地图对应的定位方式。Determining the jump position as the positioning position of the mobile robot in the second map, and switching the positioning mode of the mobile robot to a positioning mode corresponding to the second map.
  2. 根据权利要求1所述的方法,其中,所述确定所述第二地图中与所述交接位置对应的跳转位置,包括:The method according to claim 1, wherein the determining a jump position corresponding to the handover position in the second map comprises:
    在所述第二地图中查找与所述交接位置预先存在对应关系的跳转位置。Looking for a jump position in the second map that has a corresponding relationship with the transfer position in advance.
  3. 根据权利要求1所述的方法,其中,在所述将所述跳转位置确定为所述移动机器人在所述第二地图中的定位位置,并将所述移动机器人的定位方式切换为所述第二地图对应的定位方式之后,所述方法还包括:The method according to claim 1, wherein in the determining the jump position as a positioning position of the mobile robot in the second map, and switching a positioning mode of the mobile robot to the After the positioning method corresponding to the second map, the method further includes:
    控制所述移动机器人基于与所述第二地图对应的定位方式移动至第二地图中的目标位置所表示的实际空间位置。Controlling the mobile robot to move to an actual spatial position indicated by a target position in the second map based on a positioning manner corresponding to the second map.
  4. 根据权利要求3所述的方法,其中,在所述确定所述第二地图中与所述交接位置对应的跳转位置之前,所述方法还包括:The method according to claim 3, wherein before the determining a jump position corresponding to the transfer position in the second map, the method further comprises:
    规划从第一地图中的起始位置至第二地图中的目标位置的路径,所述路径经过所述第一地图中与所述第二地图对应的交接位置;Planning a path from a starting position in the first map to a target position in the second map, the path passing through a transfer position corresponding to the second map in the first map;
    控制所述移动机器人基于与所述第一地图对应的定位方式,按照所述路径移动至所述交接位置所表示的实际空间位置;Controlling the mobile robot to move to an actual spatial position indicated by the transfer position according to the path based on a positioning method corresponding to the first map;
    所述控制所述移动机器人基于与所述第二地图对应的定位方式移动至第二地图中的目标位置所表示的实际空间位置,包括:The controlling the mobile robot to move to the actual spatial position indicated by the target position in the second map based on the positioning method corresponding to the second map includes:
    控制所述移动机器人基于与所述第二地图对应的定位方式,按照所述路径移动至第二地图中的目标位置所表示的实际空间位置。Controlling the mobile robot to move to an actual spatial position indicated by a target position in the second map based on the positioning method corresponding to the second map.
  5. 根据权利要求1所述的方法,其中,在全局坐标系中所述第一地图与所述第二地图不存在相同的坐标位置,所述方法还包括:The method according to claim 1, wherein the first map and the second map do not exist in the same coordinate position in a global coordinate system, and the method further comprises:
    基于移动机器人在第一地图和第二地图中任一地图中定位位置的坐标,以及该任一地图的标识信息,确定所述移动机器人在全局坐标系中的坐标,所述标识信息用于表示该地图的地图坐标系与所述全局坐标系之间的偏移量。Determine the coordinates of the mobile robot in the global coordinate system based on the coordinates of the positioning position of the mobile robot in any of the first map and the second map, and the identification information of the map; the identification information is used to represent An offset between a map coordinate system of the map and the global coordinate system.
  6. 根据权利要求1所述的方法,其中,所述将所述移动机器人的定位方式切换为所述第二地图对应的定位方式,包括:The method according to claim 1, wherein the switching the positioning method of the mobile robot to a positioning method corresponding to the second map comprises:
    将采集定位信息的传感器,从与所述第一地图对应的传感器切换为与所述第二地图对应的传感器。The sensor that collects positioning information is switched from a sensor corresponding to the first map to a sensor corresponding to the second map.
  7. 一种移动机器人跨区域装置,所述装置包括:A mobile robot cross-region device includes:
    地图交接模块,在移动机器人在第一地图中的定位位置处预设与第二地图对应的交接位置后,确定所述第二地图中与所述交接位置对应的跳转位置,所述第一地图为所述移动机器人定位所使用的地图,所述第一地图和所述第二地图所对应的定位方式不同;The map handover module determines a jump position corresponding to the handover position in the second map after the handover position corresponding to the second map is preset at the positioning position of the mobile robot in the first map. The map is a map used by the mobile robot for positioning, and the positioning methods corresponding to the first map and the second map are different;
    坐标跳转模块,将所述跳转位置确定为所述移动机器人在所述第二地图中的定位位置,并将所述移动机器人的定位方式切换为所述第二地图对应的定位方式。The coordinate jump module determines the jump position as a positioning position of the mobile robot in the second map, and switches a positioning mode of the mobile robot to a positioning mode corresponding to the second map.
  8. 根据权利要求7所述的装置,其中,所述地图交接模块具体用于在所述第二地图中查找与所述交接位置预先存在对应关系的跳转位置。The device according to claim 7, wherein the map handover module is specifically configured to find, in the second map, a jump position that corresponds to the handover position in advance.
  9. 根据权利要求7所述的装置,其中,所述装置还包括移动控制模块,用于在所述将所述跳转位置确定为所述移动机器人的在所述第二地图中的定位位置,并将所述移动机器人的定位方式切换为所述第二地图对应的定位方式之后,控制所述移动机器人基于与所述第二地图对应的定位方式移动至第二地图中的目标位置所表示的实际空间位置。The device according to claim 7, wherein the device further comprises a movement control module for determining the jump position as a positioning position of the mobile robot in the second map, and After switching the positioning method of the mobile robot to the positioning method corresponding to the second map, controlling the mobile robot to move to the actual position indicated by the target position in the second map based on the positioning method corresponding to the second map Spatial location.
  10. 根据权利要求9所述的装置,其中,所述移动控制模块,还用于在所述确定所述第二地图中与所述交接位置对应的跳转位置之前,规划从第一地图中的起始位置至第二地图中的目标位置的路径,所述路径经过所述第一地 图中与所述第二地图对应的交接位置;The device according to claim 9, wherein the movement control module is further configured to plan from the first map before the jump position corresponding to the transfer position in the second map is determined. A path from a starting position to a target position in a second map, the path passing through a transfer position corresponding to the second map in the first map;
    控制所述移动机器人基于与所述第一地图对应的定位方式,按照所述路径移动至所述交接位置所表示的实际空间位置;Controlling the mobile robot to move to an actual spatial position indicated by the transfer position according to the path based on a positioning method corresponding to the first map;
    所述移动控制模块,具体用于控制所述移动机器人基于与所述第二地图对应的定位方式,按照所述路径移动至第二地图中的目标位置所表示的实际空间位置。The movement control module is specifically configured to control the mobile robot to move to the actual spatial position indicated by the target position in the second map based on the positioning method corresponding to the second map.
  11. 根据权利要求7所述的装置,其中,所述第一地图与所述第二地图不存在相同的坐标位置,所述装置还包括全局定位模块,用于基于移动机器人在第一地图和第二地图中任一地图中定位位置的坐标,以及该地图的标识信息,确定所述移动机器人在全局坐标系中的坐标,所述标识信息用于表示该地图的地图坐标系与所述全局坐标系之间的偏移量。The device according to claim 7, wherein the first map and the second map do not exist in the same coordinate position, and the device further comprises a global positioning module for moving the mobile robot between the first map and the second map. The coordinates of the positioning position in any map in the map and the identification information of the map determine the coordinates of the mobile robot in the global coordinate system, and the identification information is used to represent the map coordinate system and the global coordinate system of the map. The offset between them.
  12. 根据权利要求7所述的装置,其中,所述坐标跳转模块具体用于将采集定位信息的传感器,从与所述第一地图对应的传感器切换为与所述第二地图对应的传感器。The apparatus according to claim 7, wherein the coordinate jump module is specifically configured to switch a sensor that collects positioning information from a sensor corresponding to the first map to a sensor corresponding to the second map.
  13. 一种移动机器人调度系统,其中,所述系统包括:A mobile robot scheduling system, wherein the system includes:
    调度服务模块、路径规划模块;Scheduling service module and path planning module;
    所述调度服务模块获取移动机器人的所处位置信息、目标位置信息,以及第一地图和第二地图,所述第一地图中预设有与所述第二地图对应的交接位置,所述第二地图中预设有与所述交接位置对应的跳转位置,所述交接位置配置有切换信息,所述切换信息用于表示所述第二地图对应的定位方式,所述第一地图和所述第二地图所对应的定位方式不同;The scheduling service module obtains the location information, the target location information, and the first map and the second map of the mobile robot. The first map is preset with a transfer position corresponding to the second map. A jump position corresponding to the transfer position is preset in the two maps, and the transfer position is configured with switching information, and the switching information is used to indicate a positioning method corresponding to the second map, and the first map and The positioning methods corresponding to the second map are different;
    所述调度服务模块将所述所处位置信息、所述目标位置信息以及所述第一地图和所述第二地图发送至所述路径规划模块;Sending, by the scheduling service module, the location information, the target location information, and the first map and the second map to the path planning module;
    所述路径规划模块基于所述所处位置信息、所述目标位置信息以及所述第一地图和所述第二地图,控制所述移动机器人基于第一地图对应的定位方式从所述定位信息所表示的实际空间位置移动至所述交接位置所表示的实际空间位置;并将所述跳转位置确定为所述移动机器人在所述第二地图中的定 位位置;The path planning module controls the mobile robot from the positioning information based on the positioning method corresponding to the first map based on the location information, the target location information, and the first map and the second map. The indicated actual space position is moved to the actual space position indicated by the transfer position; and the jump position is determined as a positioning position of the mobile robot in the second map;
    所述调度服务模块将所述移动机器人的定位方式切换为所述切换信息所表示的所述第二地图对应的导航方式;The scheduling service module switches the positioning mode of the mobile robot to a navigation mode corresponding to the second map indicated by the switching information;
    所述路径规划模块控制所述移动机器人基于所述第二地图的定位方式从所述交接位置所表示的实际空间位置移动至所述目标位置信息所表示的实际空间位置。The path planning module controls the mobile robot to move from the actual spatial position indicated by the transfer position to the actual spatial position indicated by the target position information based on the positioning mode of the second map.
  14. 一种电子设备,其中,所述电子设备包括:An electronic device, wherein the electronic device includes:
    存储器,用于存放计算机程序;Memory for storing computer programs;
    处理器,用于执行存储器上所存放的程序时,实现权利要求1-6任一所述的方法步骤。The processor is configured to implement the method steps according to any one of claims 1-6 when executing a program stored in the memory.
  15. 一种计算机可读存储介质,其中,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-6任一所述的方法步骤。A computer-readable storage medium, wherein a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, implements the method steps of any one of claims 1-6.
PCT/CN2019/099767 2018-08-15 2019-08-08 Mobile robot region-crossing method, device, and scheduling system WO2020034890A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810930261.1A CN110858075B (en) 2018-08-15 2018-08-15 Mobile robot cross-region method, device and scheduling system
CN201810930261.1 2018-08-15

Publications (1)

Publication Number Publication Date
WO2020034890A1 true WO2020034890A1 (en) 2020-02-20

Family

ID=69525178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099767 WO2020034890A1 (en) 2018-08-15 2019-08-08 Mobile robot region-crossing method, device, and scheduling system

Country Status (2)

Country Link
CN (1) CN110858075B (en)
WO (1) WO2020034890A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112539749A (en) * 2020-06-30 2021-03-23 深圳优地科技有限公司 Robot navigation method, robot, terminal device and storage medium
CN113093745A (en) * 2021-03-31 2021-07-09 南京苏美达智能技术有限公司 Control method of cross-regional automatic walking equipment and automatic walking equipment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113449054B (en) * 2020-03-27 2023-08-04 杭州海康机器人股份有限公司 Map switching method and mobile robot
CN111780775A (en) * 2020-06-17 2020-10-16 深圳优地科技有限公司 Path planning method and device, robot and storage medium
CN111769942B (en) * 2020-09-02 2021-01-08 杭州海康威视数字技术股份有限公司 Industrial intelligent robot safety communication method and device and electronic equipment
CN113110437A (en) * 2021-04-06 2021-07-13 深圳优地科技有限公司 Robot scheduling method, device, equipment and storage medium
CN113654558A (en) * 2021-07-16 2021-11-16 北京迈格威科技有限公司 Navigation method and device, server, equipment, system and storage medium
CN113654549A (en) * 2021-07-16 2021-11-16 北京迈格威科技有限公司 Navigation method, navigation system, navigation device, transport system, and storage medium
CN117086868B (en) * 2023-08-09 2024-04-09 北京小米机器人技术有限公司 Robot, control method and device thereof, and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101988834A (en) * 2009-07-31 2011-03-23 爱信艾达株式会社 Map information guidance device, map information guidance method, and computer program
US20160282126A1 (en) * 2015-03-24 2016-09-29 Google Inc. Associating Semantic Location Data with Automated Environment Mapping
CN106871889A (en) * 2017-03-29 2017-06-20 科大智能电气技术有限公司 A kind of control method of changeable navigation pattern
CN107436148A (en) * 2016-05-25 2017-12-05 深圳市朗驰欣创科技股份有限公司 A kind of robot navigation method and device based on more maps
CN107992054A (en) * 2017-12-17 2018-05-04 上海物景智能科技有限公司 A kind of method and system of the positioning of robot

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596517B (en) * 2009-07-28 2015-06-17 悠进机器人股份公司 Control method for localization and navigation of mobile robot and mobile robot using same
CN105243115B (en) * 2015-09-25 2019-06-11 宇龙计算机通信科技(深圳)有限公司 Orientation on map method, Orientation on map device and terminal
JP6830452B2 (en) * 2016-02-05 2021-02-17 株式会社日立産機システム Position detector and control device
CN106017483B (en) * 2016-05-06 2019-10-11 厦门蓝斯通信股份有限公司 A kind of method for drafting, drawing system and the navigation terminal of map vehicle icon
US10520904B2 (en) * 2016-09-08 2019-12-31 Mentor Graphics Corporation Event classification and object tracking
CN107818010A (en) * 2016-09-08 2018-03-20 北京嘀嘀无限科技发展有限公司 The method and apparatus switched between different maps
CN108107461B (en) * 2016-11-24 2021-08-10 星际空间(天津)科技发展有限公司 Indoor and outdoor positioning seamless switching method based on mobile terminal
CN106855881B (en) * 2016-12-16 2021-01-08 北京奇鱼时代科技有限公司 Multi-map switching method and device based on mobile equipment
CN106949895B (en) * 2017-04-13 2020-05-19 杭州申昊科技股份有限公司 Inspection robot positioning method suitable for transformer substation environment
CN107097228B (en) * 2017-05-11 2019-09-10 东北大学秦皇岛分校 Autonomous traveling robot system
CN107423445B (en) * 2017-08-10 2018-10-30 腾讯科技(深圳)有限公司 A kind of map data processing method, device and storage medium
CN107729530A (en) * 2017-10-30 2018-02-23 西安蜂语信息科技有限公司 Map Switch method and device
CN108366341A (en) * 2018-03-08 2018-08-03 中国科学院遥感与数字地球研究所 A kind of localization method and device for supporting the seamless switching between indoor and outdoor positioning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101988834A (en) * 2009-07-31 2011-03-23 爱信艾达株式会社 Map information guidance device, map information guidance method, and computer program
US20160282126A1 (en) * 2015-03-24 2016-09-29 Google Inc. Associating Semantic Location Data with Automated Environment Mapping
CN107436148A (en) * 2016-05-25 2017-12-05 深圳市朗驰欣创科技股份有限公司 A kind of robot navigation method and device based on more maps
CN106871889A (en) * 2017-03-29 2017-06-20 科大智能电气技术有限公司 A kind of control method of changeable navigation pattern
CN107992054A (en) * 2017-12-17 2018-05-04 上海物景智能科技有限公司 A kind of method and system of the positioning of robot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112539749A (en) * 2020-06-30 2021-03-23 深圳优地科技有限公司 Robot navigation method, robot, terminal device and storage medium
CN112539749B (en) * 2020-06-30 2023-09-08 深圳优地科技有限公司 Robot navigation method, robot, terminal device, and storage medium
CN113093745A (en) * 2021-03-31 2021-07-09 南京苏美达智能技术有限公司 Control method of cross-regional automatic walking equipment and automatic walking equipment

Also Published As

Publication number Publication date
CN110858075B (en) 2021-11-19
CN110858075A (en) 2020-03-03

Similar Documents

Publication Publication Date Title
WO2020034890A1 (en) Mobile robot region-crossing method, device, and scheduling system
TWI662388B (en) Obstacle avoidance control system and method for a robot
KR102152192B1 (en) Robot path   planning   systems, methods, robots and media
US20180111274A1 (en) Method and system for controlling indoor autonomous robot
CN103913162B (en) The mobile platform of enhancing positions
CN109426884B (en) Distribution scheme determination method, device and computer readable storage medium
KR101906329B1 (en) Apparatus and method for indoor localization based on camera
CN104199450A (en) Swarm robot control system
CN104199428A (en) Swarm robot management server and method implemented by same
JP2019176490A (en) Method and system for providing indoor positioning service
US20170031925A1 (en) Mapping dynamic spaces and way finding related to the mapping
CN105136144A (en) Mall navigation system and mall navigation method
CN102263933A (en) Intelligent monitoring method and device
KR101534005B1 (en) System for cleaning user defined area using cleaning robot and method thereof
CN111805535B (en) Positioning navigation method, device and computer storage medium
CN109460020A (en) Robot map sharing method, device, robot and system
JP7370148B2 (en) Locating device, moving device, locating system, locating method, and program
CN109048909A (en) Minor matters formula path dispatching method, device, background server and the first robot
WO2023151548A1 (en) Navigation method and apparatus, and program and computer-readable storage medium
JP2019184572A (en) System and method for optimizing placement and number of radio frequency beacon for better indoor localization, computer-implemented method, program, and computerized system
WO2021004328A1 (en) Mobile robot and localization method therefor, and computer-readable storage medium
US20170093619A1 (en) Distributed internet crawler, connector, and information publisher and method of use
CN112950743A (en) Region calibration method and device, electronic equipment and computer readable storage medium
CN111457924A (en) Indoor map processing method and device, electronic equipment and storage medium
CN112327828A (en) Path planning method and device and computer readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849133

Country of ref document: EP

Kind code of ref document: A1