WO2020034627A1 - 一种风扇转速的控制方法和装置 - Google Patents

一种风扇转速的控制方法和装置 Download PDF

Info

Publication number
WO2020034627A1
WO2020034627A1 PCT/CN2019/077394 CN2019077394W WO2020034627A1 WO 2020034627 A1 WO2020034627 A1 WO 2020034627A1 CN 2019077394 W CN2019077394 W CN 2019077394W WO 2020034627 A1 WO2020034627 A1 WO 2020034627A1
Authority
WO
WIPO (PCT)
Prior art keywords
pwm value
temperature
fan
server component
value
Prior art date
Application number
PCT/CN2019/077394
Other languages
English (en)
French (fr)
Inventor
于光义
Original Assignee
郑州云海信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州云海信息技术有限公司 filed Critical 郑州云海信息技术有限公司
Priority to US16/493,296 priority Critical patent/US11452233B2/en
Publication of WO2020034627A1 publication Critical patent/WO2020034627A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20727Forced ventilation of a gaseous coolant within server blades for removing heat from heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20209Thermal management, e.g. fan control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the field of computer technology, and in particular, to a method and a device for controlling the rotation speed of a fan.
  • the temperature of a single component is controlled by only one method, such as segmented control, linear control, or PID (Proportion Integration Differentiation) control.
  • the segmented control and linear control are open-loop control.
  • the fan speed directly corresponds to the component temperature value. It is impossible to adjust the fan speed according to the abnormal temperature feedback. For example, if the maximum fan PWM corresponding to the component temperature is set to 50%, The condition causes the component temperature to exceed the standard, and the fan speed will not increase to a higher speed, resulting in the risk of component temperature exceeding the standard under severe working conditions.
  • PID regulation is a closed-loop control mechanism.
  • the fan speed can continue to increase. For example, if the component temperature is always higher than the reference value, the fan speed can be increased to full speed.
  • PID regulation can achieve different The fan speed controls the component temperature around the reference value. PID regulation can improve the problems of open loop control. However, PID regulation has the following problems:
  • the fan speed cannot be stabilized at a fixed value, and the speed fluctuation is prone to occur. This is because the PID algorithm is related to the temperature difference and the temperature change speed. Parameters need to be adjusted to stabilize the fan speed under different pressures. Debugging takes a long time, and the final parameters cannot guarantee that the fan speed can be kept stable under any circumstances.
  • the present application provides a method and a device for controlling the fan speed, in order to solve the problem of fan speed control in open loop, and also to solve the problem of fan speed fluctuation caused by PID control.
  • a method for controlling the speed of a fan includes:
  • a larger value of the first PWM value and the second PWM value is used to control the fan speed.
  • obtaining the first fan PWM value corresponding to the server component temperature through a PID control algorithm according to the server component temperature specifically includes:
  • the open-loop control algorithm includes a segmented control algorithm or a linear control algorithm.
  • the method further includes:
  • the larger one of the first PWM value and the second PWM value replaces the currently stored PWM value.
  • the second PWM value is smaller than an actual required PWM value for heat dissipation of the server component.
  • a fan speed control device includes:
  • a first PWM obtaining unit configured to obtain a first PWM value of a fan corresponding to the temperature of the server component through a PID control algorithm according to the temperature of the server component;
  • a second PWM obtaining unit configured to obtain a second PWM value of a fan corresponding to the temperature of the server component through an open-loop control algorithm according to the temperature of the server component;
  • a comparison unit configured to compare the magnitudes of the first PWM value and the second PWM value
  • a control unit is configured to control a fan speed by using a larger value of the first PWM value and the second PWM value.
  • the first PWM obtaining unit specifically includes:
  • a first calculation subunit configured to calculate a temperature difference between a temperature of the server component and a reference temperature
  • a second calculation subunit configured to calculate a change value of a PWM value of the fan according to the temperature of the server component and the temperature difference;
  • a processing subunit is configured to add the PWM value change amount and a current PWM value of the fan to obtain a first PWM value.
  • the open-loop control algorithm includes a segmented control algorithm or a linear control algorithm.
  • the apparatus further includes:
  • the replacement unit is configured to replace a larger value of the first PWM value and the second PWM value with a currently stored PWM value.
  • the second PWM value is smaller than an actual required PWM value for heat dissipation of the server component.
  • the method for controlling the fan speed is to obtain a first PWM value of the fan through a PID control algorithm and a second PWM value of the fan through an open-loop control algorithm according to the temperature of the server component, and use the first PWM value and the second PWM value.
  • a larger value controls the fan speed. Therefore, the method comprehensively controls the fan speed by using PID regulation and open-loop control, avoiding the problem that the open-loop control cannot adjust the fan speed in response to abnormal temperature feedback; it also improves the fan speed fluctuation caused by PID regulation, which makes the fan The speed can be stabilized quickly; it also simplifies the setting of PID control parameters, so that when the time for parameter debugging is shortened, it will not cause large fluctuations in fan speed.
  • FIG. 1 is a flowchart of a method for controlling a rotation speed of a fan according to a first embodiment of the present application
  • FIG. 2 is a flowchart of a method for controlling a rotation speed of a fan provided in Embodiment 2 of the present application;
  • FIG. 3 is a schematic structural diagram of a fan speed control device provided in Embodiment 3 of the present application.
  • the present application provides a method for controlling the speed of a fan.
  • the method includes: obtaining a temperature of a server component; and obtaining a corresponding value of the temperature of the server component through a PID control algorithm according to the temperature of the server component.
  • a first PWM value of the fan obtaining a second PWM value of the fan corresponding to the server component temperature through an open-loop control algorithm according to the server component temperature; comparing the magnitude of the first PWM value and the second PWM value; A larger value of the first PWM value and the second PWM value is used to control the fan speed.
  • the method for controlling the fan speed is to obtain a first PWM value of the fan through a PID control algorithm and a second PWM value of the fan through an open-loop control algorithm according to the temperature of the server component, and use the first PWM value and the second PWM value.
  • a larger value controls the fan speed. Therefore, the method comprehensively controls the fan speed by using PID regulation and open-loop control, avoiding the problem that the open-loop control cannot adjust the fan speed in response to abnormal temperature feedback; it also improves the fan speed fluctuation caused by PID regulation, which makes the fan The speed can be stabilized quickly; it also simplifies the setting of PID control parameters, so that when the time for parameter debugging is shortened, it will not cause large fluctuations in fan speed.
  • FIG. 1 is a flowchart of a method for controlling a fan speed provided by Embodiment 1 of the present application.
  • the method for controlling the rotation speed of a fan provided in this application includes
  • S102 Obtain a first PWM value of a fan corresponding to the temperature of the server component through a PID control algorithm according to the temperature of the server component;
  • the PID control algorithm can obtain the corresponding PWM value according to the current temperature.
  • S102 may specifically be:
  • S102a Calculate a temperature difference between a temperature of the server component and a reference temperature
  • the reference temperature is a set temperature in the PID control algorithm, and the reference temperature can be set in advance.
  • Temperature difference server component temperature-reference temperature.
  • S102b Calculate the amount of change in the PWM value of the fan according to the temperature of the server component and the temperature difference;
  • the temperature difference is the input value of the PID control algorithm
  • the change in PWM value is the output value of the PID control algorithm.
  • t is a time variable
  • e (t) is the temperature difference
  • u (t) is the amount of PWM change
  • K p is the proportionality coefficient
  • K i is the integration coefficient
  • K d is a differential coefficient
  • S102c Add the PWM value change amount and the current PWM value of the fan to obtain a first PWM value.
  • First PWM value PWM value change amount + current PWM value.
  • S103 Obtain a second PWM value of a fan corresponding to the temperature of the server component through an open-loop control algorithm according to the temperature of the server component;
  • the open-loop control algorithm can be a linear control algorithm or a segmented control algorithm.
  • S103 can be specifically:
  • the server component temperature is used as the input value of the linear control algorithm, and the second PWM value is the output value of the linear control algorithm.
  • T is the component temperature
  • PWM2 is a calculated second PWM value
  • K a and K b are corresponding linear control coefficients.
  • S105 Use the first PWM value to control the fan speed.
  • S106 Use the second PWM value to control the fan speed.
  • the method for controlling the fan speed is to obtain a first PWM value of the fan through a PID control algorithm and a second PWM value of the fan through an open-loop control algorithm according to the temperature of the server component, and use the first PWM value and the second PWM value.
  • a larger value controls the fan speed. Therefore, the method comprehensively controls the fan speed by using PID regulation and open-loop control, avoiding the problem that the open-loop control cannot adjust the fan speed in response to abnormal temperature feedback; it also improves the fan speed fluctuation caused by PID regulation, which makes the fan The speed can be stabilized quickly; it also simplifies the setting of PID control parameters, so that when the time for parameter debugging is shortened, it will not cause large fluctuations in fan speed.
  • the embodiment of the present application also provides another method for controlling the fan speed.
  • Figure for introduction
  • the second embodiment is improved based on the first embodiment. Therefore, the content of the second embodiment is similar to that of the first embodiment, and for the sake of brevity, it will not be repeated here.
  • the method further includes: comparing a comparison between the first PWM value and the second PWM value. A large value replaces the currently stored PWM value.
  • this figure is a flowchart of a method for controlling a rotation speed of a fan provided in Embodiment 2 of the present application.
  • S201 to S206 are the same as S101 to S106, and are not repeated here.
  • step S205 in order to facilitate obtaining the PWM for controlling the fan speed later, the first PWM value needs to be replaced with the currently stored PWM value.
  • step S206 in order to facilitate obtaining the PWM for controlling the fan speed later, the second PWM value needs to be replaced with the currently stored PWM value.
  • the method further includes: combining the first PWM value and The larger value of the second PWM value replaces the currently stored PWM value, so as to obtain the PWM for controlling the fan speed later, thereby further avoiding the problem that the open-loop control cannot feedback adjust the fan speed for abnormal changes in temperature and improvement Fan speed fluctuation caused by PID regulation.
  • An embodiment of the present application further provides a device for controlling a fan speed, which will be described below with reference to the accompanying drawings.
  • FIG. 3 is a schematic structural diagram of a fan speed control device provided in Embodiment 3 of the present application.
  • An obtaining unit 301 configured to obtain a temperature of a server component
  • a first PWM obtaining unit 302 configured to obtain a first PWM value of a fan corresponding to the temperature of the server component through a PID control algorithm according to the temperature of the server component;
  • a second PWM obtaining unit 303 configured to obtain a second PWM value of a fan corresponding to the temperature of the server component through an open-loop control algorithm according to the temperature of the server component;
  • a comparison unit 304 configured to compare the magnitudes of the first PWM value and the second PWM value
  • the control unit 305 is configured to control a fan speed by using a larger value among the first PWM value and the second PWM value.
  • the first PWM obtaining unit 302 may specifically include:
  • a first calculation subunit configured to calculate a temperature difference between a temperature of the server component and a reference temperature
  • a second calculation subunit configured to calculate a change value of a PWM value of the fan according to the temperature of the server component and the temperature difference;
  • a processing subunit is configured to add the PWM value change amount and a current PWM value of the fan to obtain a first PWM value.
  • the open-loop control algorithm can be a segmented control algorithm or a linear control algorithm.
  • the fan speed control device further includes:
  • the replacement unit is configured to replace a larger value of the first PWM value and the second PWM value with a currently stored PWM value.
  • the second PWM value is smaller than the PWM value for the actual heat dissipation of the server component.
  • the fan speed control device obtained in the embodiment of the present application obtains a first PWM value of the fan through a PID control algorithm and a second PWM value of the fan through an open-loop control algorithm according to the server component temperature, and uses the first PWM value and the second PWM The larger of the values controls the fan speed. Therefore, the device comprehensively controls the fan speed by using PID regulation and open-loop control, which avoids the problem that the open-loop control cannot adjust the fan speed in response to abnormal temperature feedback; it also improves the fan speed fluctuation caused by PID control, making the fan The speed can be stabilized quickly; it also simplifies the setting of PID control parameters, so that when the parameter debugging time is shortened, it will not cause large fluctuations in fan speed.
  • the fan speed control device provided in the embodiment of the present application may be integrated on a baseboard management controller (BMC) of the server.
  • BMC baseboard management controller

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Feedback Control In General (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Temperature (AREA)

Abstract

风扇转速的控制方法和装置。控制方法根据服务器部件温度通过PID调控算法获取风扇的第一PWM值,以及通过开环控制算法获取风扇的第二PWM值,并利用第一PWM值和第二PWM值中的较大值控制风扇转速。该方法通过利用PID调控与开环控制综合控制风扇转速,避免了开环控制无法针对温度的异常变化反馈调节风扇转速的问题,还改善了PID调控带来的风扇转速波动问题,使得风扇转速可以快速的稳定,也简化了PID调控参数的设定,不会导致风扇转速的大幅度波动。

Description

一种风扇转速的控制方法和装置
本申请要求于2018年8月13日提交中国专利局、申请号2018109172181、发明名称为“一种风扇转速的控制方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术领域,尤其涉及一种风扇转速的控制方法和装置。
背景技术
目前,在服务器风扇转速控制方案中,单一部件温度仅采用一种控制方式,例如采用分段法调控、线性调控或PID(Proportion Integration Differentiation,微积分调控)调控。
而分段法调控与线性调控为开环控制,风扇转速与部件温度值直接对应,无法针对温度的异常变化反馈调节风扇转速,如设定部件温度对应的风扇PWM最大值为50%,即使异常状况导致部件温度超标,风扇转速也不会提高到更高转速,导致恶劣工作条件下部件温度存在超标风险。
PID调控为闭环控制机制,当部件温度升高时风扇转速可以持续提升,如部件温度始终高于参考值,风扇转速可以提升到全速,针对散热状况良好及恶劣的状况,PID调控可以实现不同的风扇转速将部件温度控制在参考值附近。PID调控能改善开环控制存在的问题。然而,PID调控存在以下问题:
由于服务器部件温度变化较快,导致风扇转速无法稳定在固定值,容易出现转速波动;这是因为PID算法与温度差值及温度变化快慢有关,需要调整参数使不同压力下风扇转速实现稳定,该调试工作需要时间极长,且最终的参数也无法保证任意情况下风扇转速均可以保持稳定。
发明内容
有鉴于此,本申请提供了一种风扇转速控制方法和装置,以在解决开环控制风扇转速存在的问题的同时,解决PID调控带来的风扇转速波动的问题。
为了解决上述技术问题,本申请采用了如下技术方案:
一种风扇转速的控制方法,包括:
获取服务器部件温度;
根据所述服务器部件温度通过PID调控算法获取所述服务器部件温度对应的风扇的第一PWM值;
根据所述服务器部件温度通过开环控制算法获取所述服务器部件温度对应的风扇的第二PWM值;
比较所述第一PWM值和所述第二PWM值的大小;
利用所述第一PWM值和所述第二PWM值中的较大值控制风扇转速。
可选地,根据所述服务器部件温度通过PID调控算法获取所述服务器部件温度对应的第一风扇PWM值,具体包括:
计算所述服务器部件温度与参考温度之间的温度差;
根据所述服务器部件温度和所述温度差计算风扇的PWM值变化量;
将所述PWM值变化量与风扇的当前PWM值相加,得到第一PWM值。
可选地,所述开环控制算法包括分段法调控算法或线性调控算法。
可选地,所述方法还包括:
将所述所述第一PWM值和所述第二PWM值中的较大值替换当前存储的PWM值。
可选地,所述第二PWM值小于所述服务器部件散热实际需求PWM值。
一种风扇转速的控制装置,包括:
获取单元,用于获取服务器部件温度;
第一PWM获取单元,用于根据所述服务器部件温度通过PID调控算法获取所述服务器部件温度对应的风扇的第一PWM值;
第二PWM获取单元,用于根据所述服务器部件温度通过开环控制算法获取所述服务器部件温度对应的风扇的第二PWM值;
比较单元,用于比较所述第一PWM值和所述第二PWM值的大小;
控制单元,用于利用所述第一PWM值和所述第二PWM值中的较大值控制风扇转速。
可选地,第一PWM获取单元,具体包括:
第一计算子单元,用于计算所述服务器部件温度与参考温度之间的温度差;
第二计算子单元,用于根据所述服务器部件温度和所述温度差计算风扇的PWM值变化量;
处理子单元,用于将所述PWM值变化量与风扇的当前PWM值相加,得到第一PWM值。
可选地,所述开环控制算法包括分段法调控算法或线性调控算法。
可选地,所述装置还包括:
替换单元,用于将所述所述第一PWM值和所述第二PWM值中的较大值替换当前存储的PWM值。
可选地,所述第二PWM值小于所述服务器部件散热实际需求PWM值。
相较于现有技术,本申请具有以下有益效果:
本申请提供的风扇转速的控制方法是根据服务器部件温度通过PID调控算法获取风扇的第一PWM值以及通过开环控制算法获取风扇的第二PWM值,并利用第一PWM值和第二PWM值中的较大值控制风扇转速的。因而,该方法通过利用PID调控与开环控制综合控制风扇转速,避免了开环控制无法 针对温度的异常变化反馈调节风扇转速的问题;还改善了PID调控带来的风扇转速波动问题,使得风扇转速可以快速的稳定;也简化了PID调控参数的设定,使得将参数调试的时间缩短时,不会导致风扇转速的大幅度波动。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一提供的风扇转速的控制方法的流程图;
图2为本申请实施例二提供的风扇转速的控制方法的流程图;
图3为本申请实施例三提供的风扇转速的控制装置的结构示意图。
具体实施方式
为了解决背景技术部分所述的技术问题,本申请提供了一种风扇转速的控制方法,该方法包括:获取服务器部件温度;根据所述服务器部件温度通过PID调控算法获取所述服务器部件温度对应的风扇的第一PWM值;根据所述服务器部件温度通过开环控制算法获取所述服务器部件温度对应的风扇的第二PWM值;比较所述第一PWM值和所述第二PWM值的大小;利用所述第一PWM值和所述第二PWM值中的较大值控制风扇转速。
本申请提供的风扇转速的控制方法是根据服务器部件温度通过PID调控算法获取风扇的第一PWM值以及通过开环控制算法获取风扇的第二PWM值,并利用第一PWM值和第二PWM值中的较大值控制风扇转速的。因而,该方法通过利用PID调控与开环控制综合控制风扇转速,避免了开环控制无法针对温度的异常变化反馈调节风扇转速的问题;还改善了PID调控带来的风扇转速波动问题,使得风扇转速可以快速的稳定;也简化了PID调控参数的设定,使得将参数调试的时间缩短时,不会导致风扇转速的大幅度波动。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
参见图1,该图为本申请实施例一提供的风扇转速的控制方法的流程图。
本申请提供的风扇转速的控制方法包括
S101:获取服务器部件温度;
S102:根据所述服务器部件温度通过PID调控算法获取所述服务器部件温度对应的风扇的第一PWM值;
PID调控算法可以根据当前温度获取相应的PWM值。
为了进一步避免开环控制无法针对温度的异常变化反馈调节风扇转速的问题,S102可以具体为:
S102a:计算所述服务器部件温度与参考温度之间的温度差;
参考温度是PID调控算法中的设定温度,且参考温度可以预先设定。
温度差=服务器部件温度-参考温度。
S102b:根据所述服务器部件温度和所述温度差计算风扇的PWM值变化量;
温度差是PID调控算法的输入值,PWM值变化量是PID调控算法的输出值。
其中,PID调控算法的计算公式如下:
Figure PCTCN2019077394-appb-000001
式中,t为时间变量;
e(t)为温度差值;
u(t)为PWM变化量;
K p为比例系数;
K i为积分系数;
K d为微分系数。
S102c:将所述PWM值变化量与风扇的当前PWM值相加,得到第一PWM值。
第一PWM值=PWM值变化量+当前PWM值。
S103:根据所述服务器部件温度通过开环控制算法获取所述服务器部件温度对应的风扇的第二PWM值;
开环控制算法可以为线性调控算法,也可以为分段法调控算法。
作为示例,下面将以线性调控算法为例进行说明。
为了进一步改善PID调控带来的风扇转速波动问题,并减短风扇转速稳定的时间,S103可以具体为:
服务器部件温度作为线性调控算法的输入值,第二PWM值为线性调控算法的输出值。
其中,线性调控算法的计算公式可以为
PWM2=K aT+K b
式中,T为部件温度;
PWM2为计算得到的第二PWM值;
K a、K b为对应的线性控制系数。
S104:比较所述第一PWM值是否大于所述第二PWM值;若是,执行S105,若否,执行S106。
S105:利用所述第一PWM值控制风扇转速。
S106:利用所述第二PWM值控制风扇转速。
本申请提供的风扇转速的控制方法是根据服务器部件温度通过PID调控算法获取风扇的第一PWM值以及通过开环控制算法获取风扇的第二PWM值,并利用第一PWM值和第二PWM值中的较大值控制风扇转速的。因而,该方法通过利用PID调控与开环控制综合控制风扇转速,避免了开环控制无法针对温度的异常变化反馈调节风扇转速的问题;还改善了PID调控带来的风扇转速波动问题,使得风扇转速可以快速的稳定;也简化了PID调控参数的设定,使得将参数调试的时间缩短时,不会导致风扇转速的大幅度波动。
为了进一步避免了开环控制无法针对温度的异常变化反馈调节风扇转速的问题以及改善PID调控带来的风扇转速波动问题,本申请实施例还提供了另外一种风扇转速的控制方法,下面结合附图进行介绍。
实施例二
实施例二是在实施例一的基础上改进得到的,因此,实施例二与实施例一的部分内容相似,为了简要起见,在此不再赘述。
实施例二在利用所述第一PWM值和所述第二PWM值中的较大值控制风扇转速之后,还包括:将所述所述第一PWM值和所述第二PWM值中的较大值替换当前存储的PWM值。
参见图2,该图为本申请实施例二提供的风扇转速的控制方法的流程图。
本申请实施例提供的风扇转速的控制方法可以具体为:
S201至S206与S101至S106相同,在此不再赘述。
S207:将所述第一PWM值替换当前存储的PWM值。
在步骤S205之后,为了便于之后获取控制风扇转速的PWM,需将第一PWM值替换当前存储的PWM值。
S208:将所述第二PWM值替换当前存储的PWM值。
在步骤S206之后,为了便于之后获取控制风扇转速的PWM,需将第二PWM值替换当前存储的PWM值。
本申请实施例提供的的风扇转速的控制方法在利用所述第一PWM值和所述第二PWM值中的较大值控制风扇转速之后,还包括:将所述所述第一PWM值和所述第二PWM值中的较大值替换当前存储的PWM值,以便于将之后获取控制风扇转速的PWM,从而进一步避免了开环控制无法针对温度的异常变化反馈调节风扇转速的问题以及改善PID调控带来的风扇转速波动问题。
本申请实施例还提供了一种风扇转速的控制装置,下面将结合附图进行说明。
实施例三
参见图3,该图为本申请实施例三提供的风扇转速的控制装置的结构示意图。
本申请实施例提供的风扇转速的控制装置,包括:
获取单元301,用于获取服务器部件温度;
第一PWM获取单元302,用于根据所述服务器部件温度通过PID调控算法获取所述服务器部件温度对应的风扇的第一PWM值;
第二PWM获取单元303,用于根据所述服务器部件温度通过开环控制算法获取所述服务器部件温度对应的风扇的第二PWM值;
比较单元304,用于比较所述第一PWM值和所述第二PWM值的大小;
控制单元305,用于利用所述第一PWM值和所述第二PWM值中的较大值控制风扇转速。
为了进一步避免了开环控制无法针对温度的异常变化反馈调节风扇转速的问题以及改善PID调控带来的风扇转速波动问题,第一PWM获取单元302可以具体包括:
第一计算子单元,用于计算所述服务器部件温度与参考温度之间的温度差;
第二计算子单元,用于根据所述服务器部件温度和所述温度差计算风扇的PWM值变化量;
处理子单元,用于将所述PWM值变化量与风扇的当前PWM值相加,得到第一PWM值。
为了进一步避免了开环控制无法针对温度的异常变化反馈调节风扇转速的问题以及改善PID调控带来的风扇转速波动问题,所述开环控制算法可以为分段法调控算法,也可以为线性调控算法。
为了进一步避免了开环控制无法针对温度的异常变化反馈调节风扇转速的问题以及改善PID调控带来的风扇转速波动问题,风扇转速的控制装置还包括:
替换单元,用于将所述所述第一PWM值和所述第二PWM值中的较大值替换当前存储的PWM值。
为了进一步避免了开环控制无法针对温度的异常变化反馈调节风扇转速的问题以及改善PID调控带来的风扇转速波动问题,所述第二PWM值小于所述服务器部件散热实际需求PWM值。
本申请实施例提供的风扇转速的控制装置根据服务器部件温度通过PID调控算法获取风扇的第一PWM值以及通过开环控制算法获取风扇的第二PWM值,并利用第一PWM值和第二PWM值中的较大值控制风扇转速的。因 而,该装置通过利用PID调控与开环控制综合控制风扇转速,避免了开环控制无法针对温度的异常变化反馈调节风扇转速的问题;还改善了PID调控带来的风扇转速波动问题,使得风扇转速可以快速的稳定;也简化了PID调控参数的设定,使得将参数调试的时间缩短时,不会导致风扇转速的大幅度波动。
作为示例,本申请实施例提供的风扇转速的控制装置可以集成在服务器的基板管理控制器(BMC,Baseboard Management Controller)上。
以上为本申请实施例提供的具体实施方式。

Claims (10)

  1. 一种风扇转速的控制方法,其特征在于,包括:
    获取服务器部件温度;
    根据所述服务器部件温度通过PID调控算法获取所述服务器部件温度对应的风扇的第一PWM值;
    根据所述服务器部件温度通过开环控制算法获取所述服务器部件温度对应的风扇的第二PWM值;
    比较所述第一PWM值和所述第二PWM值的大小;
    利用所述第一PWM值和所述第二PWM值中的较大值控制风扇转速。
  2. 根据权利要求1所述的方法,其特征在于,根据所述服务器部件温度通过PID调控算法获取所述服务器部件温度对应的第一风扇PWM值,具体包括:
    计算所述服务器部件温度与参考温度之间的温度差;
    根据所述服务器部件温度和所述温度差计算风扇的PWM值变化量;
    将所述PWM值变化量与风扇的当前PWM值相加,得到第一PWM值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述开环控制算法包括分段法调控算法或线性调控算法。
  4. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    将所述所述第一PWM值和所述第二PWM值中的较大值替换当前存储的PWM值。
  5. 根据权利要求1所述的方法,其特征在于,所述第二PWM值小于所述服务器部件散热实际需求PWM值。
  6. 一种风扇转速的控制装置,其特征在于,包括:
    获取单元,用于获取服务器部件温度;
    第一PWM获取单元,用于根据所述服务器部件温度通过PID调控算法获取所述服务器部件温度对应的风扇的第一PWM值;
    第二PWM获取单元,用于根据所述服务器部件温度通过开环控制算法获取所述服务器部件温度对应的风扇的第二PWM值;
    比较单元,用于比较所述第一PWM值和所述第二PWM值的大小;
    控制单元,用于利用所述第一PWM值和所述第二PWM值中的较大值控制风扇转速。
  7. 根据权利要求6所述的装置,其特征在于,第一PWM获取单元,具体包括:
    第一计算子单元,用于计算所述服务器部件温度与参考温度之间的温度差;
    第二计算子单元,用于根据所述服务器部件温度和所述温度差计算风扇的PWM值变化量;
    处理子单元,用于将所述PWM值变化量与风扇的当前PWM值相加,得到第一PWM值。
  8. 根据权利要求6或7所述的装置,其特征在于,所述开环控制算法包括分段法调控算法或线性调控算法。
  9. 根据权利要求6或7所述的装置,其特征在于,所述装置还包括:
    替换单元,用于将所述所述第一PWM值和所述第二PWM值中的较大值替换当前存储的PWM值。
  10. 根据权利要求6所述的装置,其特征在于,所述第二PWM值小于所述服务器部件散热实际需求PWM值。
PCT/CN2019/077394 2018-08-13 2019-03-08 一种风扇转速的控制方法和装置 WO2020034627A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/493,296 US11452233B2 (en) 2018-08-13 2019-03-08 Method and apparatus for controlling fan speed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810917218.1A CN109026807A (zh) 2018-08-13 2018-08-13 一种风扇转速的控制方法和装置
CN201810917218.1 2018-08-13

Publications (1)

Publication Number Publication Date
WO2020034627A1 true WO2020034627A1 (zh) 2020-02-20

Family

ID=64633930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077394 WO2020034627A1 (zh) 2018-08-13 2019-03-08 一种风扇转速的控制方法和装置

Country Status (3)

Country Link
US (1) US11452233B2 (zh)
CN (1) CN109026807A (zh)
WO (1) WO2020034627A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109026807A (zh) 2018-08-13 2018-12-18 浪潮电子信息产业股份有限公司 一种风扇转速的控制方法和装置
CN110043499B (zh) * 2019-04-11 2021-04-13 曙光信息产业(北京)有限公司 一种智能风扇调速装置
CN110069117A (zh) * 2019-04-24 2019-07-30 苏州浪潮智能科技有限公司 一种服务器风扇调控方法及系统
CN111622976B (zh) * 2020-05-28 2022-03-08 浪潮电子信息产业股份有限公司 一种风扇控制方法、装置及电子设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177163A (ja) * 2004-12-20 2006-07-06 Usui Kokusai Sangyo Kaisha Ltd 外部制御式ファンクラッチの制御方法
US20110273120A1 (en) * 2007-11-02 2011-11-10 Seiko Epson Corporation Pwm control circuit and pwm control method
CN106907343A (zh) * 2015-12-23 2017-06-30 新唐科技股份有限公司 风扇驱动系统与风扇驱动模拟芯片
CN107165849A (zh) * 2017-06-24 2017-09-15 山东超越数控电子有限公司 一种基于冗余控制策略的服务器机箱风扇控制方法
CN108279754A (zh) * 2018-01-22 2018-07-13 郑州云海信息技术有限公司 一种风扇散热方法、系统、设备及计算机可读存储介质
CN108628425A (zh) * 2018-05-04 2018-10-09 曙光信息产业(北京)有限公司 一种服务器散热方法和装置
CN109026807A (zh) * 2018-08-13 2018-12-18 浪潮电子信息产业股份有限公司 一种风扇转速的控制方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138781B2 (en) * 2004-11-24 2006-11-21 Standard Microsystems Corporation Adaptive controller for PC cooling fans
US7490479B2 (en) * 2005-03-30 2009-02-17 Intel Corporation Method and system of advanced fan speed control
US8868250B2 (en) * 2010-09-28 2014-10-21 Cisco Technology, Inc. Fan speed control
US20130084192A1 (en) * 2011-09-30 2013-04-04 Samsung Electro-Mechanics Co., Ltd. Cooling fan control device and control method thereof
CN104391555B (zh) * 2014-12-05 2017-08-25 浪潮集团有限公司 一种服务器风扇调速方法
CN105587681B (zh) * 2015-12-10 2020-03-06 浪潮电子信息产业股份有限公司 一种基于PID算法应用于SmartRack机柜的风扇调控方法
CN205446130U (zh) * 2015-12-31 2016-08-10 苏州壹达生物科技有限公司 一种智能控制散热风扇线性转速的装置
CN106321482A (zh) * 2016-08-23 2017-01-11 四川科冠电子有限公司 一种新型的风机调速器
CN107762936A (zh) * 2017-11-17 2018-03-06 英业达科技有限公司 温度控制装置及其方法
CN108255272A (zh) * 2018-01-24 2018-07-06 郑州云海信息技术有限公司 一种服务器的散热风扇的调速方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177163A (ja) * 2004-12-20 2006-07-06 Usui Kokusai Sangyo Kaisha Ltd 外部制御式ファンクラッチの制御方法
US20110273120A1 (en) * 2007-11-02 2011-11-10 Seiko Epson Corporation Pwm control circuit and pwm control method
CN106907343A (zh) * 2015-12-23 2017-06-30 新唐科技股份有限公司 风扇驱动系统与风扇驱动模拟芯片
CN107165849A (zh) * 2017-06-24 2017-09-15 山东超越数控电子有限公司 一种基于冗余控制策略的服务器机箱风扇控制方法
CN108279754A (zh) * 2018-01-22 2018-07-13 郑州云海信息技术有限公司 一种风扇散热方法、系统、设备及计算机可读存储介质
CN108628425A (zh) * 2018-05-04 2018-10-09 曙光信息产业(北京)有限公司 一种服务器散热方法和装置
CN109026807A (zh) * 2018-08-13 2018-12-18 浪潮电子信息产业股份有限公司 一种风扇转速的控制方法和装置

Also Published As

Publication number Publication date
US20210337702A1 (en) 2021-10-28
US11452233B2 (en) 2022-09-20
CN109026807A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
WO2020034627A1 (zh) 一种风扇转速的控制方法和装置
CN105587681B (zh) 一种基于PID算法应用于SmartRack机柜的风扇调控方法
JP6615061B2 (ja) 配電系統に接続されたマイクログリッドを制御する方法およびシステム
US7792597B2 (en) Control systems and method using a shared component actuator
CN110206747B (zh) 一种基于部件功耗的服务器风扇调控方法和系统
EP3660323A1 (en) Fan speed control for server
CN103998999B (zh) 用于调整多变量pid控制器的方法和系统
WO2018157578A1 (zh) 一种用于服务器风扇调控的海拔高度修正方法及系统
US8005554B2 (en) Device for controlling a regulated system, and an engine including such a device
TWI669591B (zh) 最佳功率效率的適應性電壓頻率調整
JP2009228605A (ja) エンジン回転数制御方法、エンジン回転数制御装置
CN108539979A (zh) 直流变换器及电压直流变换方法
JP2004086858A (ja) 制御装置、温度調節器および熱処理装置
US20230283192A1 (en) Power supply unit with autonomous input power limiting
EP3704562B1 (en) Advanced power based thermal control systems
US20170250642A1 (en) Rotation Speed Control Method And Device Of Motor, And Motor Control System
JP4603992B2 (ja) 消費電力制御装置
WO2014002435A1 (ja) 馬力制限装置及び馬力制限方法
JP2014227915A (ja) タービン制御装置およびタービン制御方法
KR101180055B1 (ko) 비례적분미분제어기 및 그 제어 방법
JP7155992B2 (ja) 調整装置、調整方法およびプログラム
CN109066645B (zh) 一种设施农业直流供电网络的负荷控制方法及装置
KR20110094946A (ko) 반포화 비례적분미분 제어기
US9436497B2 (en) Linking multiple independent control systems to distribute response
CN117578883A (zh) 反激电路限制环路及反激电路控制方法、光储系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849624

Country of ref document: EP

Kind code of ref document: A1