WO2020034612A1 - 一种光学检测机构及全自动生化分析仪 - Google Patents

一种光学检测机构及全自动生化分析仪 Download PDF

Info

Publication number
WO2020034612A1
WO2020034612A1 PCT/CN2019/075424 CN2019075424W WO2020034612A1 WO 2020034612 A1 WO2020034612 A1 WO 2020034612A1 CN 2019075424 W CN2019075424 W CN 2019075424W WO 2020034612 A1 WO2020034612 A1 WO 2020034612A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
detection mechanism
provided behind
optical detection
mechanism according
Prior art date
Application number
PCT/CN2019/075424
Other languages
English (en)
French (fr)
Inventor
罗继全
罗秦
梁庆琳
Original Assignee
三诺生物传感股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三诺生物传感股份有限公司 filed Critical 三诺生物传感股份有限公司
Publication of WO2020034612A1 publication Critical patent/WO2020034612A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present invention relates to the field of medical equipment, and more particularly, to an optical detection mechanism and a fully automatic biochemical analyzer.
  • Fully automatic biochemical analyzer belongs to a type of clinical biochemical and pathological testing equipment.
  • the automatic biochemical analyzer mainly provides doctors with relevant parameters of clinical biochemistry, clinical hematology, clinical immunology and other items, so as to cooperate with patients.
  • Examination of clinical biochemical indicators such as liver function, kidney function, blood lipid, myocardial enzyme spectrum, protein, etc., provides an important scientific basis for physicians in the diagnosis, treatment, and prevention of diseases, and it is also an indispensable test equipment for clinical diagnosis in hospitals.
  • the automatic biochemical analyzer as one of the important instruments often used in clinical tests, has been widely used in various large and medium-sized hospitals, providing essential information basis for clinical diagnosis, treatment, prognosis and health status of diseases. Become an indispensable standard equipment for large and medium-sized hospitals.
  • a full-automatic biochemical analyzer is generally provided with a special optical detection mechanism, and then the concentration of the item to be measured is analyzed by the principle of photoelectric colorimetry or transmission turbidity.
  • the existing optical detection mechanism often has only one beam channel, and can only achieve the detection of one sample parameter at a time, and the detection efficiency is extremely low.
  • the technical problem to be solved by the present utility model is to provide an optical detection mechanism.
  • the optical detection mechanism can simultaneously detect multiple sample parameters and greatly improve the detection efficiency of the sample.
  • An optical detection mechanism includes an electric light source for emitting a light beam required for detection, a first lens group is provided behind the electric light source, the first lens group is used for beam shaping, the first lens Set behind the group There is a filter, which is used for screening a single-wavelength beam, and a beam splitter is provided behind the filter, and the beam splitter is used to convert one beam input in front into at least two beams and output to the rear; A second lens group is provided behind the beam splitter, the second lens group is used for collimating the light beam, a detection station for carrying a sample to be tested is provided behind the second lens group, and a detection station is provided behind the detection station There are photodetectors for signal reception.
  • the electric light source is a tungsten halogen lamp.
  • the first lens group and the second lens group are quartz glass lens groups.
  • the beam splitter is a Y-shaped optical fiber
  • the Y-shaped optical fiber is a quartz Y-shaped optical fiber.
  • 340nm, 405nm, 546nm, 578nm, 630nm, 660nm and 7000nm filters are disposed in the filter.
  • the photodetector is an ultraviolet response sensitive photodetector.
  • a turning mirror is provided between the beam splitter and the second lens group, and the turning mirror is used for converting a light beam optical path.
  • the turning mirror is an aluminized mirror.
  • the present utility model also provides a full-automatic biochemical analyzer, the optical detection mechanism according to any one of the above is mounted on the full-automatic biochemical analyzer.
  • FIG. 1 is a schematic diagram of an overall structure of an optical detection mechanism provided by an embodiment of the present invention. The best embodiment for carrying out the invention
  • FIG. 1 provides a specific embodiment of an optical detection mechanism, wherein FIG. 1 is a schematic diagram of an overall structure of an optical detection mechanism provided by a practical new embodiment.
  • the arrows in the drawings indicate the transmission direction of the light beam. In the figure, the light beam travels in the forward direction and backward.
  • an optical detection mechanism provided by an embodiment of the present invention includes an electric light source 1, a first lens group 2, a filter 3, a beam splitter 4, a second lens group 5, a detection station 6, Photodetector 7 and turning mirror 8.
  • the optical detection mechanism includes an electric light source 1 for emitting a light beam required for detection.
  • the electric light source 1 is preferably a tin halide lamp. Since the tin halide lamp can provide a wide spectrum within 340 nm SJ and 800 nm, the detection range of the sample can be further improved.
  • a first lens group 2 is disposed behind the electric light source 1, and the first lens group 2 is used for beam shaping. Through the first lens group 2, the divergent light emitted by the electric light source 1 can be collected into a point light source, thereby adjusting the quality of the beam required for optimal detection.
  • a filter 3 is provided behind the first lens group 2, and the filter 3 is used for screening a single-wavelength light beam.
  • the light beam emitted by the electric light source 1 generally includes light of multiple wavelengths, and for a sample to be detected, it usually only requires light of a specific wavelength.
  • the design of the filter 3 can be used
  • the multi-color light source is divided into monochromatic light, and a specific single-wavelength light is selected from the multi-wavelength light to form a detection beam.
  • a spectroscope 4 is provided behind the filter 3, and the spectroscope 4 is configured to convert a light beam input in front into At least two light beams are output toward the rear. In this way, at least two light beams output by the spectroscope 4 can realize the simultaneous detection of at least two samples, which greatly increases the detection efficiency.
  • a second lens group 5 is provided behind the beam splitter 4, and the second lens group 5 is used for collimating the light beam.
  • a detection station 6 for carrying a sample to be tested is disposed behind the second lens group 5. Specifically, the detection station 6 generally places a detection reagent cup containing a sample to be detected, and the detection reagent cup generally uses a disposable reagent cup with a high transmittance.
  • a photodetector 7 for signal reception is provided behind the detection station 6.
  • the photodetector 7 is configured to receive the photoelectric signal after passing through the detection reagent cup, and then the photodetector 7 compares and analyzes the intensity of the signal after transmission and the intensity of the signal before transmission to obtain parameter information of the sample.
  • this scheme mainly uses colorimetric or turbidimetric methods for sample detection.
  • the so-called colorimetric method that is, a reference substance is simultaneously operated during measurement.
  • the blank used in the colorimetric method refers to replacing the reference or test solution with the same volume of solvent, and then adding equal amounts of the corresponding reagents in sequence and processing them in the same way. After measuring the absorbance of the reference and test solution at the specified wavelength, calculate the concentration of the test according to the calculation formula of the reference comparison method under the UV spectrophotometry method.
  • the so-called transmission turbidimetry method that is, according to Lambert-Beer's law, when a beam of light passes through a suspension with a small particle and a colloidal solution, the solution is affected by two factors, light scattering and light absorption, which can weaken the intensity of light
  • the degree of attenuation is directly proportional to the content of fine particles in the solution. Therefore, when light passes through the immune complex, due to the reflection and absorption of the complex particles in the reaction system, the transmitted light is reduced.
  • the light intensity of the transmitted light passing through the reaction system to the photomultiplier tube is measured, or the Absorbance, to derive the concentration of the substance to be measured in the solution.
  • the first lens group 2 and the second lens group 5 are quartz glass lens groups.
  • the beam splitter 4 is a Y-shaped optical fiber
  • the Y-shaped fiber is a quartz Y-shaped fiber.
  • the filter 3 is provided with 3 40nm, 405nm, 546nm, 578nm, 630nm, 660nm, and 700nm filters.
  • the photodetector in order to further optimize the reception of the photoelectric signal, preferably, is an ultraviolet response-sensitive photodetector.
  • a turning mirror 8 is provided between the beam splitter 4 and the second lens group 5, and the turning mirror 8 is used for converting a beam optical path.
  • the turning mirror 8 is an aluminum-coated mirror.
  • the present invention also provides a full-automatic biochemical analyzer, wherein the optical detection mechanism according to any one of the above is mounted on the full-automatic biochemical analyzer.
  • the filter 3 When performing a biochemical detection, the filter 3 is rotated to a filter of a desired wavelength, and the multi-color light emitted by the electric light source 1 is condensed by the first lens group 2, and then is singulated by the selected filter. Color, and then coupled into the Y-fiber. After the Y-fiber splits the beam, it is divided into two channels, and then the optical path is turned by 90 ° and -90 ° through two turning mirrors 8, and collimated by the second lens group 5, Then, the solution in the disposable detection reagent cup on the detection station 6 is irradiated for colorimetric reaction or turbidimetric reaction, and finally a signal is received by the photodetector 8 to complete the optical detection task of the biochemical analyzer.
  • the solution provided by the present invention uses a Y-type optical fiber splitter, which can achieve dual-channel detection without reducing the signal strength of each channel, which doubles the detection efficiency compared with the prior art.
  • the solution provided by the present utility model uses a front light splitting solution of a filter, and two channels share a light splitting module, which has a lower cost than a rear light splitting solution.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种光学检测机构和全自动生化分析仪,包括用于发射检测所需光束的电光源(1),电光源(1)后方设置有第一透镜组(2),第一透镜组(2)用于光束的整形,第一透镜组(2)后方设置有滤光器(3),滤光器(3)用于单一波长光束的筛选,滤光器(3)后方设置有分光器(4),分光器(4)用于将前方输入的一个光束转化成至少两个光束朝后方输出;分光器(4)后方设置有第二透镜组(5),第二透镜组(5)用于光束的准直,第二透镜组(5)后方设置有用于承载待检测样本的检测工位(6),检测工位(6)后方设置有用于信号接收的光电探测器(7),能够同时实现多个样本参数的检测,提高样本的检测效率。

Description

说明书 发明名称:一种光学检测机构及全自动生化分析仪 技术领域
[0001] 本实用新型涉及医疗器械领域, 更具体地说, 特别涉及一种光学检测机构及全 自动生化分析仪。
背景技术
[0002] 全自动生化分析仪属于一种临床生化与病理检验设备, 全自动生化分析仪主要 是为医师提供临床生化学、 临床血液学、 临床免疫学等项目的相关参数, 从而 配合用于患者肝功、 肾功、 血脂、 心肌酶谱、 蛋白质等临床生化指标的检验, 为医师在疾病的诊断、 治疗、 预防中提供重要的科学依据, 也是医院开展临床 诊断工作必备的检验设备。 目前, 全自动生化分析仪作为临床检验中经常使用 的重要仪器之一, 已普遍使用于各个大中型医院, 给临床上对疾病的诊断、 治 疗和预后及健康状态提供必不可少的信息依据, 成为大中型医院不可或缺的标 配仪器。
[0003] 目前而言, 为提高检测精度与效率, 全自动生化分析仪内一般设置有专门的 光学检测机构, 然后通过光电比色或透射比浊的原理分析待测项目的浓度, 实 际操作中, 由于现有全自动生化分析仪内光学检测机构结构设计的局限性, 现 有光学检测机构往往只有一个光束通道, 每次只能实现一个样本参数的检测, 检测效率极低。
发明概述
技术问题
问题的解决方案
技术解决方案
[0004] 本实用新型要解决的技术问题为提供一种光学检测机构, 该光学检测机构通过 其结构设计, 能够同时实现多个样本参数的检测, 极大提高样本的检测效率。
[0005] 一种光学检测机构, 包括用于发射检测所需光束的电光源, 所述电光源后方设 置有第一透镜组, 所述第一透镜组用于光束的整形, 所述第一透镜组后方设置 有滤光器, 所述滤光器用于单一波长光束的筛选, 所述滤光器后方设置有分光 器, 所述分光器用于将前方输入的一个光束转化成至少两个光束朝后方输出; 所述分光器后方设置有第二透镜组, 所述第二透镜组用于光束的准直, 所述第 二透镜组后方设置有用于承载待检测样本的检测工位, 所述检测工位后方设置 有用于信号接收的光电探测器。
[0006] 优选地, 所述电光源为卤钨灯。
[0007] 优选地, 所述第一透镜组与所述第二透镜组为石英玻璃透镜组。
[0008] 优选地, 所述分光器为 Y形光纤, 所述 Y形光纤为石英 Y形光纤。
[0009] 优选地, 所述滤光器内设置有 340nm、 405nm、 546nm、 578nm、 630nm、 660n m与 7 OOnm的滤光片。
[0010] 优选地, 所述光电探测器为紫外响应敏感型光电探测器。
[0011] 优选地, 所述分光器与所述第二透镜组之间设置有转折镜, 所述转折镜用于光 束光路的转换。
[0012] 优选地, 所述转折镜为镀铝膜反射镜。
[0013] 本实用新型还提供了一种全自动生化分析仪, 所述全自动生化分析仪上安装有 上述任意一项所述的光学检测机构。
发明的有益效果
有益效果
[0014] 本实用新型的有益效果是: 本实用新型提供的该光学检测机构及全自动生化分 析仪具体实施时, 能够同时实现多个样本参数的检测, 极大提高样本的检测效 率。 对附图的简要说明
附图说明
[0015] 为了更清楚地说明本实用新型实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本实用新型的实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据提供的附图获得其他的附图。
[0016] 图 1为本实用新型实施例所提供的光学检测机构的整体结构示意图。 实施该发明的最佳实施例
本发明的最佳实施方式
[0017] 为了使本技术领域的人员更好地理解本申请中的技术方案, 下面将结合本申请 实施例中的附图, 对本申请实施例中的技术方案进行清楚、 完整地描述, 显然 , 所描述的实施例仅仅是本申请一部分实施例, 而不是全部的实施例。 基于本 申请中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的 所有其他实施例, 都应当属于本申请保护的范围。
[0018] 在本发明的描述中, 需要理解的是, 术语“前方”、 “后方”等指示的方位或位置 关系为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和简化描述 , 而不是指示或暗示所指的装置或元件必须具有特定的方位、 以特定的方位构 造和操作, 因此不能理解为对本发明的限制。
[0019] 参见图 1, 图 1提供了光学检测机构的一种具体实施例, 其中, 图 1为本实用新 型实施例所提供的光学检测机构的整体结构示意图。 附图中的箭头表示光束的 传输方向。 图中, 光束沿前方向后方传输。
[0020] 如图 1所示, 本实用新型实施例提供的光学检测机构包括电光源 1, 第一透镜组 2, 滤光器 3 , 分光器 4, 第二透镜组 5 , 检测工位 6 , 光电探测器 7与转折镜 8。
[0021] 本方案中, 该光学检测机构包括用于发射检测所需光束的电光源 1。 具体地, 所述电光源 1优选为卤锡灯, 由于卤锡灯可以提供 340nmSJ 800nm内的宽光谱, 从而可以进一步提高样本的检测范围。
[0022] 电光源 1后方设置有第一透镜组 2, 所述第一透镜组 2用于光束的整形。 通过第 一透镜组 2, 可以将电光源 1发射的发散型光线汇聚成点光源, 从而调整优化检 测所需光束的质量。
[0023] 第一透镜组 2后方设置有滤光器 3 , 所述滤光器 3用于单一波长光束的筛选。 具 体地, 电光源 1发射的光束中一般包含多种波长的光线, 而对于待检测样本而言 , 其往往只需要一种特定波长的光线, 本方案通过滤光器 3的设计, 从而可以将 复色光源分成单色光, 从多波长的光线中筛选出特定的单一波长的光线组成检 测用光束。
[0024] 滤光器 3后方设置有分光器 4, 所述分光器 4用于将前方输入的一个光束转化成 至少两个光束朝后方输出。 如此, 分光器 4输出的至少两个光束便可以实现至少 两个样本的同时检测, 极大增加检测效率。
[0025] 分光器 4后方设置有第二透镜组 5 , 所述第二透镜组 5用于光束的准直。
[0026] 第二透镜组 5后方设置有用于承载待检测样本的检测工位 6。 具体地, 检测工位 6—般会放置装载待检测样本的检测试剂杯, 检测试剂杯一般选用高透过率的一 次性试剂杯。
[0027] 检测工位 6后方设置有用于信号接收的光电探测器 7。 具体地, 光电探测器 7用 于接收透过检测试剂杯后的光电信号, 然后光电探测器 7对比分析透过后信号强 度与透过前信号强度从而获取样本的参数信息。 具体地, 本方案主要利用比色 法或透射比浊法来进行样本检测。
[0028] 所谓比色法, 即测定时取对照品同时操作。 除另有规定外,比色法所用的空白系 指用同体积的溶剂代替对照品或供试品溶液,然后依次加入等量的相应试剂, 并 用同样方法处理。 在规定的波长处测定对照品和供试品溶液的吸收度后,按紫外 分光光度法项下对照品比较法的计算式计算供试品浓度。
[0029] 所谓透射比浊法, 即根据 Lambert-Beer定律, 当一束光线通过带有微小粒子的 悬浮液和胶体溶液时, 此溶液受到光散射和光吸收两个因素影响可使光的强度 减弱, 减弱的程度与溶液中微小粒子的含量成正比。 所以, 当光线通过免疫复 合物时, 由于反应体系中复合物颗粒对光线的反射和吸收, 引起透射光减少, 测量通过反应体系后的透射光照到光电倍增管的光强度, 或者测定反应体系的 吸光度, 推导出溶液中待测物质的浓度。
[0030] 本实施例中, 为进一步优化增强紫外信号强度, 优选地, 所述第一透镜组 2与 所述第二透镜组 5为石英玻璃透镜组。
[0031] 本实施例中, 为进一步加强分光效果, 优选地, 所述分光器 4为 Y形光纤, 所述
Y形光纤为石英 Y形光纤。
[0032] 本实施例中, 为进一步扩大样本的检测范围, 优选地, 所述滤光器 3内设置有 3 40nm、 405nm、 546nm、 578nm、 630nm、 660nm与 700nm的滤光片。
[0033] 本实施例中, 为进一步优化光电信号的接收, 优选地, 所述光电探测器为紫外 响应敏感型光电探测器。 [0034] 本实施例中, 所述分光器 4与所述第二透镜组 5之间设置有转折镜 8 , 所述转折 镜 8用于光束光路的转换。 优选地, 所述转折镜 8为镀铝膜反射镜。
[0035] 本实用新型还提供了一种全自动生化分析仪, 所述全自动生化分析仪上安装有 上述任意一项所述的光学检测机构。
[0036] 下面结合附图 1说明本方案的具体操作流程:
[0037] 当进行生化检测时, 滤光器 3旋转到所需波长的滤光片处, 电光源 1发出的复色 光经第一透镜组 2汇聚后, 在经所选择的滤光片进行单色, 然后耦合进 Y型光纤 , 经 Y型光纤分束后, 分成两个通道, 再经两个转折镜 8将光路分别转折 90°和 -90 °, 经第二透镜组 5准直后, 再照射到检测工位 6上的一次性检测试剂杯内的溶液 中进行比色反应或比浊反应, 最后由光电探测器 8接收信号, 从而完成生化仪光 学检测任务。
[0038] 整体而言, 本实用新型提供的方案与现有技术相比, 具有如下有益效果:
[0039] ( 1) 本实用新型提供的方案使用 Y型光纤分束, 在不减弱各通道信号强度的情 况下, 可以实现双通道检测, 相比现有技术提高一倍的检测效率。
[0040] (2) 本实用新型提供的方案使用滤光器的前分光方案, 两个通道共用一个分 光模块, 相比后分光方案, 成本更低。
[0041] (3) 本实用新型提供的方案由于使用了一个电光源, 提高了双通道的一致性 和检测的精确度。
[0042] (4) 本实用新型提供的方案结构简单、 性能稳定、 分辨率高, 且重复性好。
[0043] 以上对本实用新型所提供的一种光学检测机构及全自动生化分析仪进行了详 细介绍。 本文中应用了具体个例对本实用新型的原理及实施方式进行了阐述, 以上实施例的说明只是用于帮助理解本实用新型的方法及其核心思想。 应当指 出, 对于本技术领域的普通技术人员来说, 在不脱离本实用新型原理的前提下 , 还可以对本实用新型进行若干改进和修饰, 这些改进和修饰也落入本实用新 型权利要求的保护范围内。

Claims

权利要求书
[权利要求 1] 一种光学检测机构, 其特征在于, 包括用于发射检测所需光束的电光 源, 所述电光源后方设置有第一透镜组, 所述第一透镜组用于光束的 整形, 所述第一透镜组后方设置有滤光器, 所述滤光器用于单一波长 光束的筛选, 所述滤光器后方设置有分光器, 所述分光器用于将前方 输入的一个光束转化成至少两个光束朝后方输出; 所述分光器后方设 置有第二透镜组, 所述第二透镜组用于光束的准直, 所述第二透镜组 后方设置有用于承载待检测样本的检测工位, 所述检测工位后方设置 有用于信号接收的光电探测器。
[权利要求 2] 根据权利要求 i所述的光学检测机构, 其特征在于, 所述电光源为卤 钨灯。
[权利要求 3] 根据权利要求 i所述的光学检测机构, 其特征在于, 所述第一透镜组 与所述第二透镜组为石英玻璃透镜组。
[权利要求 4] 根据权利要求 1所述的光学检测机构, 其特征在于, 所述分光器为 Y 形光纤, 所述 Y形光纤为石英 Y形光纤。
[权利要求 5] 根据权利要求 1所述的光学检测机构, 其特征在于, 所述滤光器内设 置有 340nm、 405nm、 546nm、 578nm、 630nm、 660nm与 700nm的滤 光片。
[权利要求 6] 根据权利要求 1所述的光学检测机构, 其特征在于, 所述光电探测器 为紫外响应敏感型光电探测器。
[权利要求 7] 根据权利要求 1所述的光学检测机构, 其特征在于, 所述分光器与所 述第二透镜组之间设置有转折镜, 所述转折镜用于光束光路的转换。
[权利要求 8] 根据权利要求 7所述的光学检测机构, 其特征在于, 所述转折镜为镀 铝膜反射镜。
[权利要求 9] 一种全自动生化分析仪, 其特征在于, 所述全自动生化分析仪上安装 有上述权利要求 1至权利要求 8任意一项所述的光学检测机构。
PCT/CN2019/075424 2018-08-14 2019-02-19 一种光学检测机构及全自动生化分析仪 WO2020034612A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821307015.2 2018-08-14
CN201821307015.2U CN208833783U (zh) 2018-08-14 2018-08-14 一种光学检测机构及全自动生化分析仪

Publications (1)

Publication Number Publication Date
WO2020034612A1 true WO2020034612A1 (zh) 2020-02-20

Family

ID=66309252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075424 WO2020034612A1 (zh) 2018-08-14 2019-02-19 一种光学检测机构及全自动生化分析仪

Country Status (2)

Country Link
CN (1) CN208833783U (zh)
WO (1) WO2020034612A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288580A (zh) * 2011-05-09 2011-12-21 南开大学 双光源四通道蛋白比浊仪
CN102292628A (zh) * 2009-01-26 2011-12-21 沃拉克有限公司 用于光学测试样品的装置和方法
JP2013117544A (ja) * 2000-09-06 2013-06-13 E M D Millipore Corp 粒子分析装置
CN104122237A (zh) * 2014-07-16 2014-10-29 深圳市大族激光科技股份有限公司 基因测序光学系统
CN206095942U (zh) * 2016-09-19 2017-04-12 苏州微析生物科技有限公司 一种poct荧光定量分析仪的光路系统及poct荧光定量分析仪
CN106990086A (zh) * 2017-06-06 2017-07-28 中国人民大学 一种多通道倏逝波全光纤生物传感器
CN206684041U (zh) * 2017-02-21 2017-11-28 安迈斯(北京)科技有限公司 一种共聚焦低杂光荧光检测光学系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117544A (ja) * 2000-09-06 2013-06-13 E M D Millipore Corp 粒子分析装置
CN102292628A (zh) * 2009-01-26 2011-12-21 沃拉克有限公司 用于光学测试样品的装置和方法
CN102288580A (zh) * 2011-05-09 2011-12-21 南开大学 双光源四通道蛋白比浊仪
CN104122237A (zh) * 2014-07-16 2014-10-29 深圳市大族激光科技股份有限公司 基因测序光学系统
CN206095942U (zh) * 2016-09-19 2017-04-12 苏州微析生物科技有限公司 一种poct荧光定量分析仪的光路系统及poct荧光定量分析仪
CN206684041U (zh) * 2017-02-21 2017-11-28 安迈斯(北京)科技有限公司 一种共聚焦低杂光荧光检测光学系统
CN106990086A (zh) * 2017-06-06 2017-07-28 中国人民大学 一种多通道倏逝波全光纤生物传感器

Also Published As

Publication number Publication date
CN208833783U (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
JP4791625B2 (ja) 分光光度・比濁検出ユニット
WO2016124083A1 (zh) 一种超小型化多通道实时荧光光谱检测装置
US4945250A (en) Optical read head for immunoassay instrument
US8570495B2 (en) Whole blood immunity measuring device and whole blood immunity measuring method
CN101201319A (zh) 近红外光谱仪
US4977325A (en) Optical read system and immunoassay method
CN103185637A (zh) 用于生化分析仪上的分光光度计的光学系统
CN202404012U (zh) 用于生化分析仪上的分光光度计的光学系统
CN208547572U (zh) 一种可兼容比色、比浊和荧光检测的光学系统
US20070190637A1 (en) Apparatus for handling fluids
CN109342368B (zh) 一种基于参考光信号的双路对比测量光谱仪及测量方法
WO2020034612A1 (zh) 一种光学检测机构及全自动生化分析仪
KR19990029895A (ko) 특정성분의 농도측정장치 및 농도측정방법
CN210894119U (zh) 一种用于体液中物质浓度检测的装置
CN201653885U (zh) 一种酶标分析仪
CN212514221U (zh) 一种全光谱微型光纤光谱仪
CN211527619U (zh) 一种双通道检测仪光学系统
CN202393698U (zh) 一种全自动生化分析仪的光学系统
JPH03154850A (ja) 検体検査装置
US20020110487A1 (en) Apparatus and method for handling fluids
CN112147094A (zh) 一种均衡式光纤阵列生化光谱分光装置
CN218646835U (zh) 一种生化分析仪低浓度光谱检测系统
CN215768616U (zh) 基于led光源的生化光电检测系统与生化分析仪
CN215768615U (zh) 生化光电检测系统与生化分析仪
CN113075133B (zh) 一种基于光微流激光的粒子增强型免疫比浊蛋白质分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849411

Country of ref document: EP

Kind code of ref document: A1